WO2023157586A1 - Cryopump and method for driving cryopump - Google Patents

Cryopump and method for driving cryopump Download PDF

Info

Publication number
WO2023157586A1
WO2023157586A1 PCT/JP2023/002219 JP2023002219W WO2023157586A1 WO 2023157586 A1 WO2023157586 A1 WO 2023157586A1 JP 2023002219 W JP2023002219 W JP 2023002219W WO 2023157586 A1 WO2023157586 A1 WO 2023157586A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerator
cryopump
gate valve
temperature
controller
Prior art date
Application number
PCT/JP2023/002219
Other languages
French (fr)
Japanese (ja)
Inventor
嵩裕 中西
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2023157586A1 publication Critical patent/WO2023157586A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps

Definitions

  • the present invention relates to a cryopump and a cryopump operating method.
  • a cryopump is a vacuum pump that traps gas molecules by condensation or adsorption in a cryopanel cooled to an extremely low temperature and exhausts it.
  • Cryopumps are generally used to realize a clean vacuum environment required for semiconductor circuit manufacturing processes and the like.
  • the vacuum chamber is first roughed and then switched to evacuation by the cryopump.
  • a gate valve provided between the vacuum chamber and the cryopump is closed and opened to initiate evacuation by the cryopump.
  • the ultimate pressure inside the cryopump is already considerably lower than the roughing pressure of the vacuum chamber. Therefore, a large amount of gas temporarily flows into the cryopump from the vacuum chamber, which may result in a heat load on the refrigerator that cools the cryopump, causing an overshoot in the cryopanel temperature. Such temperature rise is also called crossover.
  • An increase in temperature of the cryopanel may have an undesirable effect on the pumping performance of the cryopump in some cases.
  • the permissible range of cryopanel temperature is sometimes determined in advance as a unique setting in the vacuum process equipment.
  • the vacuum process apparatus can take actions to ensure safety, such as issuing an alert or emergency closing of the gate valve.
  • the vacuum process equipment has to wait until the cryopanel temperature returns to within the allowable range, which delays the start of the vacuum process.
  • An exemplary object of an aspect of the present invention is to provide a cryopump that can mitigate overshoot of the cryopanel temperature that can occur during crossover.
  • a cryopump is provided that can be attached to a vacuum chamber via a gate valve.
  • the cryopump detects whether the refrigerator and the gate valve are closed, and controls the refrigerator so that the refrigerating capacity of the refrigerator when the gate valve is closed is increased compared to when the gate valve is open.
  • a controller configured to control the
  • a cryopump operating method is provided.
  • the cryopump can be attached to the vacuum chamber via a gate valve and has a refrigerator.
  • the method includes detecting whether the gate valve is closed and increasing the refrigerating capacity of the refrigerator when the gate valve is closed compared to when the gate valve is open.
  • a cryopump senses whether regeneration of the refrigerator and cryopump has been completed, and provides a refrigeration cycle to temporarily increase the refrigerating capacity of the refrigerator following completion of regeneration.
  • a controller for controlling the machine.
  • a cryopump operating method includes a refrigerator.
  • the method includes detecting whether regeneration of the cryopump is complete, and temporarily increasing refrigeration capacity of the refrigerator following regeneration completion.
  • cryopump capable of alleviating overshoot of the cryopanel temperature that may occur during crossover.
  • FIG. 1 is a diagram schematically showing a cryopump according to an embodiment
  • FIG. 1 is a block diagram schematically showing the configuration of a control device for a cryopump according to an embodiment
  • FIG. 4 is a flow chart showing an example of a method of operating a cryopump according to an embodiment
  • FIG. 4A is a diagram showing the operation of the cryopump according to the comparative example
  • FIG. 4B is a diagram showing the operation of the cryopump according to the embodiment.
  • 8 is a flow chart showing another example of a method of operating a cryopump according to an embodiment
  • FIG. 11 is a block diagram schematically showing the configuration of a cryopump control device according to another embodiment
  • FIG. 1 is a diagram schematically showing a cryopump 10 according to an embodiment.
  • FIG. 2 is a block diagram schematically showing the configuration of the control device for the cryopump 10 according to the embodiment.
  • the cryopump 10 can be attached via a gate valve 102 to a vacuum chamber 100 of, for example, an ion implanter, sputtering device, vapor deposition device, or other vacuum process device.
  • a vacuum chamber 100 and a portion of the gate valve 102 are shown in FIG. 1 along with the cryopump 10 .
  • the cryopump 10 is attached to the vacuum chamber 100 via the gate valve 102 and used to raise the degree of vacuum inside the vacuum chamber 100 to the level required for the desired vacuum process.
  • the cryopump 10 has a cryopump inlet (hereinafter also simply referred to as “inlet”) 12 for receiving gas to be evacuated from the vacuum chamber 100 . Gas enters the internal space of the cryopump 10 from the vacuum chamber 100 through the gate valve 102 and the intake port 12 .
  • the axial direction of the cryopump 10 represents the direction passing through the intake port 12 (that is, the direction along the central axis of the cryopump 10, which is the vertical direction in the drawing), and the radial direction represents the direction along the intake port 12 (the center of the cryopump 10). It is the direction perpendicular to the axis, and represents the left-right direction in the figure.
  • the position relatively close to the air inlet 12 in the axial direction may be referred to as "upper”, and the position relatively farther away may be referred to as "lower”.
  • cryopump 10 relatively far from the bottom of the cryopump 10 may be called “upper”, and relatively close to it may be called “lower”.
  • the area near the center of the intake port 12 may be called “inside”, and the area near the periphery of the intake port 12 may be called “outside”.
  • the cryopump 10 may be mounted vertically in the vacuum chamber 100 with the inlet 12 facing downward.
  • the circumferential direction is a second direction along the intake port 12 and is a tangential direction perpendicular to the radial direction.
  • the cryopump 10 includes a refrigerator 14 , a cryopump container 16 , a first-stage cryopanel 18 , and a cryopanel unit 20 .
  • the first stage cryopanel 18 may also be referred to as a high temperature cryopanel section or a 100K section.
  • the cryopanel unit 20 is a second-stage cryopanel and can also be called a low-temperature cryopanel section, a 10K section, or the like.
  • the refrigerator 14 is, for example, a cryogenic refrigerator such as a Gifford-McMahon refrigerator (so-called GM refrigerator).
  • the refrigerator 14 is a two-stage refrigerator and includes a first cooling stage 22 and a second cooling stage 24 .
  • the refrigerator 14 is configured to cool the first cooling stage 22 to a first cooling temperature and the second cooling stage 24 to a second cooling temperature.
  • the second cooling temperature is lower than the first cooling temperature.
  • the first cooling stage 22 is cooled to about 60K to 120K, preferably 80K to 100K
  • the second cooling stage 24 is cooled to about 10K to 20K.
  • First cooling stage 22 and second cooling stage 24 may be referred to as a hot cooling stage and a cold cooling stage, respectively.
  • the refrigerator 14 also includes a refrigerator structural portion 21 that structurally supports the second cooling stage 24 on the first cooling stage 22 and structurally supports the first cooling stage 22 on the room temperature portion 26 of the refrigerator 14 .
  • the refrigerator structure 21 includes a first cylinder 23 and a second cylinder 25 coaxially extending along the radial direction.
  • a first cylinder 23 connects a room temperature section 26 of the refrigerator 14 to the first cooling stage 22 .
  • a second cylinder 25 connects the first cooling stage 22 to the second cooling stage 24 .
  • the first cooling stage 22 and the second cooling stage 24 are made of a highly thermally conductive metallic material such as copper (eg, pure copper), and the first cylinder 23 and the second cylinder 25 are made of other metallic material, such as stainless steel. It is formed.
  • the room temperature section 26, the first cylinder 23, the first cooling stage 22, the second cylinder 25, and the second cooling stage 24 are arranged linearly in this order.
  • a first displacer and a second displacer are reciprocally arranged inside the first cylinder 23 and the second cylinder 25, respectively.
  • a first regenerator and a second regenerator are incorporated in the first displacer and the second displacer, respectively.
  • the room temperature section 26 also has a drive mechanism (not shown) for reciprocating the first displacer and the second displacer.
  • the drive mechanism includes a refrigerator motor 50, which will be described later.
  • the driving mechanism also includes a channel switching mechanism that switches the channel of the working gas so as to periodically repeat the supply and discharge of the working gas (for example, helium) to the inside of the refrigerator 14 .
  • the refrigerator 14 is connected to a working gas compressor (not shown).
  • the refrigerator 14 expands the working gas pressurized by the compressor to cool the first cooling stage 22 and the second cooling stage 24 .
  • the expanded working gas is recovered by the compressor and pressurized again.
  • the refrigerator 14 generates cold by repeating thermal cycles including supply and discharge of the working gas and synchronized reciprocating motion of the first displacer and the second displacer.
  • the illustrated cryopump 10 is a so-called horizontal cryopump.
  • a horizontal cryopump is generally a cryopump in which the refrigerator 14 is arranged to intersect (normally perpendicular to) the central axis of the cryopump 10 .
  • the present invention can also be applied to so-called vertical cryopumps.
  • a vertical cryopump is a cryopump in which a refrigerator is arranged along the axial direction of the cryopump.
  • the cryopump container 16 is a housing of the cryopump 10 that houses the refrigerator 14, the first-stage cryopanel 18, and the cryopanel unit 20, and is configured to keep the internal space of the cryopump 10 airtight.
  • the cryopump container 16 has an inlet flange 16a extending radially outward from its front end over the entire circumference.
  • the inlet flange 16a defines the inlet 12 radially inwardly thereof.
  • the cryopump container 16 includes a container body portion 16b extending in the axial direction from the inlet flange 16a, a container bottom portion 16c that closes the container body portion 16b on the side opposite to the inlet port 12, the inlet flange 16a and the container bottom portion 16c. and a refrigerator housing cylinder 16d extending laterally between the .
  • An end portion of the refrigerator housing tube 16d is attached to the room temperature portion 26 of the refrigerator 14 on the side opposite to the container body portion 16b, whereby the low temperature portion of the refrigerator 14 (that is, the first cylinder 23, the first cooling stage 22 , a second cylinder 25 , and a second cooling stage 24 ) are disposed within the cryopump vessel 16 without contact with the cryopump vessel 16 .
  • the first cylinder 23 is arranged inside the refrigerator housing tube 16d, and the first cooling stage 22, the second cylinder 25, and the second cooling stage 24 are arranged inside the container body 16b.
  • the first stage cryopanel 18 and the cryopanel unit 20 are also arranged in the container body 16b.
  • the first stage cryopanel 18 includes a radiation shield 30 and an entrance cryopanel 32 and surrounds the cryopanel unit 20 .
  • the first stage cryopanel 18 provides a cryogenic surface to protect the cryopanel unit 20 from radiant heat from outside the cryopump 10 or from the cryopump vessel 16 .
  • the first stage cryopanel 18 is thermally coupled to the first cooling stage 22 and cooled to a first cooling temperature.
  • the first stage cryopanel 18 has a gap with the cryopanel unit 20 , and the first stage cryopanel 18 is not in contact with the cryopanel unit 20 .
  • the first stage cryopanel 18 is also not in contact with the cryopump vessel 16 .
  • the radiation shield 30 is provided to protect the cryopanel unit 20 from radiant heat from the cryopump container 16 .
  • the radiation shield 30 axially extends from the inlet 12 toward the container bottom 16 c within the cryopump container 16 in a cylindrical shape (for example, a cylindrical shape).
  • the radiation shield 30 is open on the inlet port 12 side and closed on the container bottom 16c side.
  • a radiation shield 30 is between the cryopump vessel 16 and the cryopanel unit 20 and surrounds the cryopanel unit 20 .
  • the radiation shield 30 has a slightly smaller diameter than the cryopump vessel 16 to form a shield outer gap 31 between the radiation shield 30 and the cryopump vessel 16 . Therefore, the radiation shield 30 is not in contact with the cryopump vessel 16 .
  • the first cooling stage 22 of the refrigerator 14 is directly attached to the side outer surface of the radiation shield 30 .
  • the radiation shield 30 is thermally coupled to the first cooling stage 22 and thus cooled to the first cooling temperature.
  • the radiation shield 30 may be attached to the first cooling stage 22 via an appropriate heat transfer member.
  • the second cooling stage 24 and the second cylinder 25 of the refrigerator 14 are inserted into the radiation shield 30 from the side of the radiation shield 30 .
  • the inlet cryopanel 32 is provided at the inlet 12 to protect the cryopanel unit 20 from radiant heat from a heat source outside the cryopump 10 (for example, a heat source inside the vacuum chamber to which the cryopump 10 is attached). .
  • the inlet cryopanel 32 is thermally coupled to the first cooling stage 22 through the radiation shield 30 and, like the radiation shield 30, is cooled to the first cooling temperature.
  • gas eg, moisture
  • the cryopanel unit 20 includes a plurality of cryopanels each thermally coupled to the second cooling stage 24 and cooled to a second cooling temperature lower than the first cooling temperature. These cryopanels may be arranged axially from the inlet 12 toward the vessel bottom 16c as shown. At least part of the surface of the cryopanel may be provided with an adsorbent (eg, activated carbon) to capture non-condensable gas (eg, hydrogen) by adsorption.
  • the cryopanel unit 20 is arranged below the entrance cryopanel 32 so as to be surrounded by the radiation shield 30 inside the cryopump container 16 . The cryopanel unit 20 is not in contact with the radiation shield 30 and the entrance cryopanel 32 .
  • Various known configurations can be appropriately adopted for the configuration of the cryopanel unit 20, such as the arrangement and shape of the cryopanels, and thus the details thereof will not be described here.
  • a gate valve 102 is installed between the cryopump 10 and the vacuum chamber 100 .
  • Gate valve 102 includes a valve housing 104 and a valve plate 106 .
  • the valve housing 104 forms a communication path connecting the opening of the vacuum chamber 100 to the inlet 12 of the cryopump 10 .
  • the valve housing 104 has flanges on both sides of this communicating passage, one of which is attached to the flange of the vacuum chamber 100 surrounding the opening of the vacuum chamber 100, and the other of which is the inlet flange 16a. can be attached to
  • the gate valve 102 is closed as necessary, such as when performing maintenance on the vacuum chamber 100 or the cryopump 10.
  • the flange portion of the valve housing 104 on the inlet flange 16a side also serves as the valve seat portion of the gate valve 102, and the gate valve 102 is closed by the valve plate 106 as a valve element coming into close contact with this valve seat portion.
  • gas flow from the vacuum chamber 100 to the cryopump 10 through the inlet 12 is cut off.
  • the cryopump 10 is isolated from the vacuum chamber 100, and the internal space of the cryopump 10 is kept airtight.
  • the gate valve 102 is opened to evacuate the vacuum chamber 100 by the cryopump 10 .
  • a valve plate housing portion 108 is provided in the valve housing 104. As shown by the dashed line in FIG. Valve 102 opens. Gas can enter the internal space of the cryopump 10 from the vacuum chamber 100 through the gate valve 102 and the inlet 12 . Thus, the vacuum chamber 100 can be evacuated by the cryopump 10 in order to perform a desired vacuum process within the vacuum chamber 100 .
  • the cryopump 10 includes a first temperature sensor 40 for measuring the temperature of the first cooling stage 22 and a second temperature sensor 42 for measuring the temperature of the second cooling stage 24.
  • the first temperature sensor 40 is attached to the first cooling stage 22 or the first stage cryopanel 18
  • the second temperature sensor 42 is attached to the second cooling stage 24 or the cryopanel unit 20 . Therefore, the first temperature sensor 40 can measure the temperature of the first stage cryopanel 18 and output a first measured temperature signal T1 indicating the measured temperature of the first stage cryopanel 18 .
  • the second temperature sensor 42 can measure the temperature of the cryopanel unit 20 and output a second measured temperature signal T2 indicative of the measured temperature of the cryopanel unit 20 .
  • the refrigerator 14 includes a refrigerator motor 50 that drives the refrigerator 14 and a refrigerator inverter 52 that controls the operating frequency of the refrigerator 14 .
  • the operating frequency (also referred to as operating speed) of the refrigerator 14 represents the operating frequency or rotation speed of the refrigerator motor 50, the operating frequency of the refrigerator inverter 52, the heat cycle frequency, or any of these.
  • the heat cycle frequency is the number of heat cycles performed in the refrigerator 14 per unit time.
  • the cryopump 10 also includes a controller 60 that controls the cryopump 10 .
  • the controller 60 may be provided integrally with the cryopump 10 or may be configured as a control device separate from the cryopump 10 .
  • the controller 60 is connected to the first temperature sensor 40 to receive the first measured temperature signal T1 from the first temperature sensor 40, and is connected to the second temperature sensor 42 to receive the second measured temperature signal T2 from the second temperature sensor 42. It may be connected to the sensor 42 .
  • the refrigerator inverter 52 described above may be provided in the controller 60 .
  • the controller 60 may be configured to control the refrigerator 14 based on the cooling temperature of the first stage cryopanel 18 or based on the cooling temperature of the cryopanel unit 20 during the evacuation operation of the cryopump 10 . good.
  • the controller 60 may control the operating frequency of the refrigerator 14 through feedback control so as to minimize the deviation between the target temperature of the first cooling stage 22 and the temperature measured by the first temperature sensor 40 .
  • the target temperature of the first cooling stage 22 is normally set to a constant value.
  • the target temperature of the first cooling stage 22 is specified, for example, according to the process performed in the vacuum chamber 100 to which the cryopump 10 is attached. The target temperature may be changed as needed during operation of the cryopump 10 .
  • the controller 60 may determine the operating frequency F of the refrigerator motor 50 as a function of the deviation between the measured temperature and the target temperature (for example, by PID control).
  • the operating frequency F of the refrigerator motor 50 is determined within a predetermined operating frequency range.
  • the operating frequency range is defined by predetermined upper and lower operating frequency limits.
  • the controller 60 outputs the determined operating frequency F to the refrigerator inverter 52 .
  • the refrigerator inverter 52 is configured to provide variable frequency control of the refrigerator motor 50 .
  • the refrigerator inverter 52 converts the input power to have the operating frequency F input from the controller 60 .
  • Input power to the refrigerator inverter 52 is supplied from a refrigerator power supply (not shown).
  • the refrigerator power supply may be a commercial power supply.
  • Refrigerator inverter 52 outputs the converted electric power to refrigerator motor 50 .
  • the refrigerator motor 50 is driven at the operating frequency F determined by the controller 60 and output from the refrigerator inverter 52 .
  • the temperature of the first cooling stage 22 can rise when the heat load on the cryopump 10 increases.
  • the controller 60 increases the operating frequency of the refrigerator 14 .
  • the frequency of the heat cycle in the refrigerator 14 is also increased, and the first stage cryopanel 18 and the first cooling stage 22 are cooled toward the target temperature.
  • the operating frequency of the refrigerator 14 is decreased and the temperature of the first cooling stage 22 is raised toward the target temperature.
  • the temperature of the first stage cryopanel 18 can be kept within a temperature range near the target temperature.
  • Such control helps reduce the power consumption of the cryopump 10 because the operating frequency of the refrigerator 14 can be appropriately adjusted according to the heat load.
  • Controlling the temperature of the first cooling stage 22 in accordance with the target temperature of the refrigerator 14 is hereinafter sometimes referred to as "one-stage temperature control".
  • one-stage temperature control the two-stage cooling temperature is not directly controlled. That is, as a result of the one-stage temperature control, the second cooling stage 24 and the cryopanel unit 20 are cooled to a temperature determined by the two-stage cooling capacity of the refrigerator 14 and the heat load from the outside to the second cooling stage 24. be done.
  • the controller 60 can control the temperature of the second cooling stage 24 according to the target temperature of the refrigerator 14, so to speak, "two-stage temperature control".
  • the controller 60 may control the operating frequency of the refrigerator 14 by feedback control so as to minimize the deviation between the target temperature of the second cooling stage 24 and the temperature measured by the second temperature sensor 42 . This allows the temperature of the cryopanel unit 20 to follow the target temperature.
  • the first-stage cooling temperature is not directly controlled.
  • the first-stage cooling temperature is determined by the first-stage refrigerating capacity of the refrigerator 14 and the heat load from the outside to the first cooling stage 22 .
  • the controller 60 may be configured to control not only the cryopump 10 but also the gate valve 102 .
  • the controller 60 may generate and send command signals to the gate valve 102 to open and close the gate valve 102 .
  • the gate valve 102 may receive this command signal and open or close in response to the command signal.
  • the gate valve 102 may generate a gate valve signal S indicating an open/closed state and transmit this to the controller 60 .
  • the controller 60 may receive the gate valve signal S from the gate valve 102 and based on the gate valve signal S detect whether the gate valve 102 is closed.
  • the gate valve 102 may be controlled by a controller other than the controller 60 (for example, a controller higher than the controller 60 that controls the vacuum process apparatus).
  • the controller 60 may receive the gate valve signal S from the controller controlling the gate valve 102 .
  • the internal configuration of the controller 60 is realized as a hardware configuration by elements and circuits such as a computer CPU and memory, and as a software configuration is achieved by a computer program or the like. It is drawn as a function block to be It should be understood by those skilled in the art that these functional blocks can be implemented in various ways by combining hardware and software.
  • the controller 60 can be implemented by a combination of a CPU (Central Processing Unit), a processor (hardware) such as a microcomputer, and a software program executed by the processor (hardware).
  • the software program may be a computer program for causing the controller 60 to execute the operating method of the cryopump 10 .
  • the vacuum chamber 100 Before operating the cryopump 10, the vacuum chamber 100 is first rough-pumped to a predetermined pressure (for example, about 100 Pa or about 10 Pa) by another appropriate roughing pump. During roughing of vacuum chamber 100, gate valve 102 is closed. After that (or in parallel with the roughing of the vacuum chamber 100), the cryopump 10 is activated. By driving the refrigerator 14, the first cooling stage 22 and the second cooling stage 24 are cooled to the first cooling temperature and the second cooling temperature, respectively. Therefore, the first cryopanel unit and the second cryopanel unit thermally coupled to them are also cooled to the first cooling temperature and the second cooling temperature, respectively. The gate valve 102 is opened and the evacuation of the vacuum chamber 100 by the cryopump 10 is started.
  • a predetermined pressure for example, about 100 Pa or about 10 Pa
  • the inlet cryopanel 32 cools gases coming from the vacuum chamber toward the cryopump 10 .
  • a gas with sufficiently low vapor pressure for example, 10 ⁇ 8 Pa or less
  • This gas may be referred to as the first type gas.
  • the first type gas is, for example, water vapor.
  • the inlet cryopanel 32 can exhaust the first type gas. Part of the gas whose vapor pressure is not sufficiently low at the first cooling temperature enters the cryopump 10 through the inlet 12 . Alternatively, another portion of the gas is reflected off the inlet cryopanel 32 and returns to the vacuum chamber 100 without entering the cryopump 10 .
  • the gas entering the cryopump 10 is cooled by the cryopanel unit 20 .
  • gas with sufficiently low vapor pressure for example, 10 ⁇ 8 Pa or less
  • This gas may be referred to as a second type gas.
  • the second type gas is argon, for example.
  • the cryopanel unit 20 can exhaust the second type gas.
  • a gas whose vapor pressure is not sufficiently low at the second cooling temperature is adsorbed by the adsorbent of the cryopanel unit 20 .
  • This gas may be referred to as a third type gas.
  • the third type gas is hydrogen, for example.
  • the cryopanel unit 20 can exhaust the third type gas. Therefore, the cryopump 10 can exhaust various gases by condensation or adsorption to bring the degree of vacuum of the vacuum chamber to a desired level.
  • the cryopump 10 is regenerated in order to discharge the accumulated gas to the outside.
  • Regeneration of the cryopump 10 generally includes heating, evacuation, and cooling down steps.
  • the heating step the cryopump 10 is heated from a cryogenic temperature for evacuation operation to a regeneration temperature (eg, room temperature). Gas trapped within the cryopump 10 is vaporized.
  • the second type gas and the third type gas can be easily discharged from the cryopump 10 during the temperature raising process.
  • the first type gas is mainly discharged in the discharge process.
  • the cool-down process is started.
  • the cryopump 10 is recooled to cryogenic temperatures for evacuation operation. When the regeneration is completed in this way, the cryopump 10 can start the evacuation operation again.
  • the gate valve 102 is closed during regeneration of the cryopump 10 . After completion of regeneration, the gate valve 102 is opened again. However, the gate valve 102 does not have to be opened immediately upon completion of regeneration (that is, upon completion of the cool-down process). After completion of regeneration, the cryopump 10 can also take a standby state in which it is cooled to an extremely low temperature with the gate valve 102 closed. The cryopump 10 in the standby state can immediately start evacuating the vacuum chamber 100 by opening the gate valve 102 .
  • the second stage cryopanels may be more prone to temperature overshoot than the first stage cryopanels. This is simply because the second stage is cooler and has a greater temperature difference than the incoming room temperature gas. Also, in most cases, the second stage has a smaller heat capacity than the first stage (because the first stage is fitted with large components such as the radiation shield 30, it often has a large mass and thus a large heat capacity).
  • a second gas such as nitrogen
  • the latent heat generated with the phase change of the gas can raise the temperature of the second stage.
  • An increase in temperature of the cryopanel may have an undesirable effect on the pumping performance of the cryopump in some cases.
  • the refrigerating capacity of the refrigerator 14 is often suppressed for energy saving while the gate valve 102 that reduces the heat load from the vacuum chamber 100 to the cryopump 10 is closed. Under such control, it is effective to maintain the second stage temperature relatively high. As a result, the temperature of the second stage at the time of crossover tends to be high, and there is concern that temperature overshoot may easily occur.
  • the permissible range of cryopanel temperature is sometimes determined in advance as a unique setting in the vacuum process equipment.
  • the vacuum process apparatus can take actions to ensure safety, such as issuing an alert or emergency closing of the gate valve 102 .
  • the vacuum process equipment has to wait until the cryopanel temperature returns to within the allowable range, which delays the start of the vacuum process.
  • the controller 60 detects whether the gate valve 102 is closed and detects whether the gate valve 102 is closed. is configured to control the refrigerator 14 to increase the refrigerating capacity of the refrigerator 14 when the gate valve 102 is open compared to when the gate valve 102 is open.
  • FIG. 3 is a flow chart showing an example of a method of operating the cryopump 10 according to the embodiment.
  • the controller 60 may periodically execute this process while the cryopump 10 is in operation.
  • the controller 60 may be configured to receive a gate valve signal S indicating the open/close state of the gate valve 102 and detect whether the gate valve 102 is closed based on the gate valve signal S. As noted above, controller 60 may receive gate valve signal S from gate valve 102 or from another controller.
  • the controller 60 may be configured to acquire the heat load on the refrigerator 14 and detect whether the gate valve 102 is closed based on the acquired heat load.
  • the heat load to refrigerator 14 primarily enters refrigerator 14 from vacuum chamber 100 through gate valve 102 . Therefore, the heat load on the refrigerator 14 when the gate valve 102 is closed is expected to be smaller than the heat load on the refrigerator 14 when the gate valve 102 is open. Therefore, when the heat load on the refrigerator 14 is below the heat load threshold, it is detected that the gate valve 102 is closed, and when the heat load on the refrigerator 14 exceeds the heat load threshold, the gate It can be detected that the valve 102 is open.
  • the thermal load threshold may be obtained in advance based on the designer's empirical knowledge of the cryopump 10 or the designer's experiments, simulations, or the like, and may be stored in the controller 60 in advance.
  • the controller 60 refers to a map showing the relationship between the heat load on the refrigerator 14, the operating frequency of the refrigerator 14, and the cryopanel temperature, and based on the current operating frequency of the refrigerator 14 and the measured cryopanel temperature: may be configured to obtain the heat load to the refrigerator 14 by Such a map, also called a road map, may be obtained in advance based on the designer's empirical knowledge of the cryopump 10 or the designer's experiments, simulations, or the like, and may be stored in the controller 60 in advance.
  • the first roadmap includes the heat load on each of the first and second stages of the refrigerator 14, the operating frequency of the refrigerator 14 under first-stage temperature control, and the second-stage cryopanel temperature represents the relationship between
  • the controller 60 refers to the first roadmap during execution of the first stage temperature control, and based on the current operating frequency of the refrigerator 14 and the measured second stage cryopanel temperature, determines the first temperature of the refrigerator 14 .
  • the heat load on each stage and second stage may be obtained.
  • the second stage cryopanel temperature may be measured by a second temperature sensor 42 .
  • the relationship between the thermal load on each of the first stage and the second stage of the refrigerator 14, the operating frequency of the refrigerator 14 under two-stage temperature control, and the cryopanel temperature of the first stage is shown in FIG. 2 roadmaps may be used.
  • the controller 60 refers to the second roadmap during execution of the two-stage temperature control, and based on the current operating frequency of the refrigerator 14 and the measured first stage cryopanel temperature, determines the first temperature of the refrigerator 14 .
  • the heat load on each stage and second stage may be obtained.
  • the first stage cryopanel temperature may be measured by the first temperature sensor 40 .
  • the controller 60 may be configured to switch between the one-stage temperature control and the two-stage temperature control as necessary.
  • one-stage temperature control is normally performed.
  • the controller 60 may execute two-stage temperature control in the standby state of the cryopump 10, switch from two-stage temperature control to one-stage temperature control at crossover, and execute one-stage temperature control during evacuation operation. good.
  • the controller 60 senses whether the gate valve 102 is open, performs single-stage temperature control when the gate valve 102 is open, and performs two-stage temperature control when the gate valve 102 is closed.
  • the controller 60 increases the refrigerating capacity of the refrigerator 14 compared to when the gate valve 102 is open.
  • the refrigerator 14 is controlled as follows (S12).
  • N of S10 such an increase in refrigerating capacity is not performed.
  • the controller 60 operates the refrigerator 14 at an operating frequency equal to or higher than the first lower limit when the gate valve 102 is open, and operates It may be configured to operate the refrigerator 14 at an operating frequency equal to or higher than a second lower limit value that is higher than the first lower limit value. In this way, if the gate valve 102 is closed while the refrigerator 14 is operating at an operating frequency lower than the second lower limit, the operating frequency of the refrigerator 14 is increased to the second lower limit. If the value of the operating frequency determined by the one-step temperature control or the two-step temperature control is greater than the second lower limit value, the operating frequency of the refrigerator 14 is increased to that value. In this way, the refrigerating capacity of refrigerator 14 when gate valve 102 is closed can be increased compared to when gate valve 102 is open.
  • the second lower limit value of the operating frequency is the upper limit value of the allowable operating frequency range of the refrigerator 14 or a predetermined value slightly smaller than it (for example, it may be larger than 80% or 90% of the upper limit value). may By doing so, the refrigerating capacity of the refrigerator 14 when the gate valve 102 is closed can be reliably increased compared to when the gate valve 102 is open.
  • the controller 60 adjusts the cooling temperature of the refrigerator 14 so that the cooling temperature measured by the temperature sensor matches the first target temperature when the gate valve 102 is open.
  • the operation frequency is determined, and the operation frequency of the refrigerator 14 is determined so that the cooling temperature measured by the temperature sensor when the gate valve 102 is closed matches the second target temperature lower than the first target temperature. It may be configured to operate the refrigerator 14 at the same operating frequency. Even in this way, the refrigerator 14 can be controlled to increase the operating frequency of the refrigerator 14 when the gate valve 102 is closed compared to when the gate valve 102 is open.
  • the controller 60 adjusts the operating frequency of the refrigerator 14 so that the cooling temperature measured by the first temperature sensor 40 matches the first target temperature when the gate valve 102 is open. and the operating frequency of the refrigerator 14 may be determined so as to match the cooling temperature measured by the first temperature sensor 40 with a second target temperature lower than the first target temperature when the gate valve 102 is closed.
  • the first target temperature may be selected from the range of 80K to 120K, for example.
  • the second target temperature may be selected from temperatures above 60 K, for example.
  • the controller 60 adjusts the operating frequency of the refrigerator 14 so that the cooling temperature measured by the second temperature sensor 42 matches the first target temperature when the gate valve 102 is open. and the operating frequency of the refrigerator 14 may be determined so as to match the cooling temperature measured by the second temperature sensor 42 with a second target temperature lower than the first target temperature when the gate valve 102 is closed.
  • the first target temperature may be selected from the range of 12K to 20K, for example.
  • the second target temperature may be selected from a range of 10K to 12K, for example.
  • the controller 60 detects whether or not the gate valve 102 is open, and increases the refrigerating capacity of the refrigerator 14 when the gate valve 102 is open. may be terminated. In this way, the refrigerating capacity of the refrigerator 14 can be restored when the gate valve 102 is opened.
  • FIG. 4(a) is a diagram showing the operation of the cryopump according to the comparative example.
  • closing the gate valve reduces the heat load from the vacuum chamber to the refrigerator of the cryopump. controlled. Therefore, as shown in FIG. 4(a), the operating frequency of the refrigerator is reduced while the gate valve is closed. At this time, the heat load on the refrigerator is also reduced, so the cryopanel temperature (for example, the second-stage cryopanel temperature) is maintained at the target temperature Ta.
  • the cryopanel temperature for example, the second-stage cryopanel temperature
  • FIG. 4(b) is a diagram showing the operation of the cryopump according to the embodiment.
  • the refrigerating capacity of the refrigerator 14 can be increased when the gate valve 102 is closed compared to when the gate valve 102 is open.
  • the operating frequency of the refrigerator 14 is increased while the gate valve is closed. Since the heat load on the refrigerator 14 is reduced at this time, the cryopanel temperature is lowered. After that, the gate valve 102 opens to increase the heat load on the refrigerator 14 and the cryopanel temperature rises. However, since the cryopanel temperature is sufficiently lowered in advance while the gate valve 102 is closed, the cryopanel temperature is expected to follow the target temperature Ta without greatly exceeding the target temperature Ta. In this manner, according to the embodiment, overshoot of the cryopanel temperature that may occur during crossover can be mitigated.
  • the power consumption may increase somewhat while the gate valve 102 is closed, but such time is expected to be very short, so there is no significant impact.
  • FIG. 5 is a flow chart showing another example of the operating method of the cryopump 10 according to the embodiment.
  • the controller 60 may detect whether regeneration of the cryopump 10 has been completed, and control the refrigerator 14 to temporarily increase the refrigerating capacity of the refrigerator 14 following the completion of regeneration. . In this way, as in the above-described embodiments, overshoot of the cryopanel temperature that may occur during crossover can be mitigated.
  • the controller 60 acquires the measured temperatures from the first temperature sensor 40 and the second temperature sensor 42 respectively in the cooling down process of regeneration, and uses the measured temperature of the first temperature sensor 40 as the first stage cryopanel 18 for evacuation operation. , and the measured temperature of the second temperature sensor 42 may be compared with the target cooling temperature of the second stage cryopanel unit 20 for the evacuation operation. The controller 60 continues the cool-down process if either of the temperatures measured by the first temperature sensor 40 and the second temperature sensor 42 has not yet reached the target cooling temperature. When the temperatures measured by the temperature sensors 42 reach the respective target cooling temperatures, it may be determined that the cool-down process, that is, the regeneration of the cryopump 10 has been completed.
  • the controller 60 controls the refrigerator 14 to increase the refrigerating capacity of the refrigerator 14 (S22).
  • the refrigerating capacity of the refrigerator 14 can be increased by increasing the operating frequency of the refrigerator 14, by lowering the target temperature in the one-stage temperature control, or by increasing the target temperature in the two-stage temperature control, as in the above-described embodiment. It may be achieved by lowering the temperature.
  • the refrigerating capacity is not increased.
  • the control to increase the refrigerating capacity of the refrigerator 14 may be executed until the gate valve 102 opens.
  • the controller 60 may control the refrigerator 14 to increase the cooling capacity of the refrigerator 14 when the cryopump 10 is in the standby state.
  • the control to increase the refrigerating capacity of refrigerator 14 may be executed over a predetermined period of time.
  • FIG. 6 is a block diagram schematically showing the configuration of a control device for the cryopump 10 according to another embodiment.
  • the refrigerator 14 may be provided with a heating device 62 such as an electric heater.
  • the heating device 62 may be provided in the first cooling stage 22 , in the second cooling stage 24 , or in both the first cooling stage 22 and the second cooling stage 24 .
  • Controller 60 may be configured to turn heating device 62 on and off and/or control the power output of heating device 62 .
  • the controller 60 operates the heating device 62 at a first output when the gate valve 102 is open and operates or operates the heating device 62 at a second output less than the first output when the gate valve 102 is closed. It may be configured not to allow By reducing the output of the heating device 62, the refrigerating capacity of the refrigerator 14 when the gate valve 102 is closed can be increased compared to when the gate valve 102 is open.
  • the refrigerator 14 may include a refrigerator inverter 52 and be configured to have a variable operating frequency.
  • the operating frequency of the refrigerator 14 may be controlled by one-step temperature control or two-step temperature control, and the cooling capacity may be adjusted using the heating device 62 .
  • refrigerator 14 may be driven at a constant operating frequency and may not include refrigerator inverter 52 .
  • the present invention can be used in the field of cryopumps and cryopump operating methods.

Abstract

A cryopump (10) is attachable to a vacuum chamber through a gate valve (102). The cryopump (10) is provided with a refrigerator (14), and a controller (60) that is configured to detect whether or not the gate valve (102) is closed, and to control the refrigerator (14) to increase the refrigeration capacity of the refrigerator (14) when the gate valve (102) is closed, in comparison to when the gate valve (102) is opened.

Description

クライオポンプおよびクライオポンプの運転方法Cryopumps and operating methods of cryopumps
 本発明は、クライオポンプおよびクライオポンプの運転方法に関する。 The present invention relates to a cryopump and a cryopump operating method.
 クライオポンプは、極低温に冷却されたクライオパネルに気体分子を凝縮または吸着により捕捉して排気する真空ポンプである。クライオポンプは半導体回路製造プロセス等に要求される清浄な真空環境を実現するために一般に利用される。 A cryopump is a vacuum pump that traps gas molecules by condensation or adsorption in a cryopanel cooled to an extremely low temperature and exhausts it. Cryopumps are generally used to realize a clean vacuum environment required for semiconductor circuit manufacturing processes and the like.
特開2012-237293号公報JP 2012-237293 A
 真空プロセス装置の真空チャンバ内で真空プロセスを開始する準備として真空チャンバの真空度を充分に高めるために、真空チャンバはまず粗引きされ、その後クライオポンプによる真空排気に切り替えられる。真空チャンバの粗引き中、真空チャンバとクライオポンプとの間に設けられたゲートバルブは閉鎖されており、クライオポンプによる真空排気を開始するために開かれる。このときクライオポンプ内の到達圧力は既に、真空チャンバの粗引き圧に比べてかなり低くなっている。そのため、真空チャンバからクライオポンプに一時的に多量のガスが流入し、これがクライオポンプを冷却する冷凍機への熱負荷となってクライオパネル温度にオーバーシュートをもたらしうる。このような温度上昇はクロスオーバーとも呼ばれる。クライオパネルの温度上昇は、場合によってはクライオポンプの排気性能に望まれない影響を与えるかもしれない。 In order to sufficiently increase the degree of vacuum in the vacuum chamber in preparation for starting the vacuum process in the vacuum chamber of the vacuum process equipment, the vacuum chamber is first roughed and then switched to evacuation by the cryopump. During roughing of the vacuum chamber, a gate valve provided between the vacuum chamber and the cryopump is closed and opened to initiate evacuation by the cryopump. At this time, the ultimate pressure inside the cryopump is already considerably lower than the roughing pressure of the vacuum chamber. Therefore, a large amount of gas temporarily flows into the cryopump from the vacuum chamber, which may result in a heat load on the refrigerator that cools the cryopump, causing an overshoot in the cryopanel temperature. Such temperature rise is also called crossover. An increase in temperature of the cryopanel may have an undesirable effect on the pumping performance of the cryopump in some cases.
 また、真空プロセス装置における独自の設定として、クライオパネル温度の許容範囲があらかじめ定められていることがある。上述のオーバーシュートの結果、この許容温度範囲を超えたことが検知されると、アラートの発報やゲートバルブの緊急閉鎖など、安全を確保するための動作が真空プロセス装置によって実行されうる。クライオパネル温度が許容範囲内に戻るまで真空プロセス装置は待機することになり、真空プロセスの開始がその分遅れてしまう。 In addition, the permissible range of cryopanel temperature is sometimes determined in advance as a unique setting in the vacuum process equipment. When it is detected that the allowable temperature range has been exceeded as a result of the overshoot described above, the vacuum process apparatus can take actions to ensure safety, such as issuing an alert or emergency closing of the gate valve. The vacuum process equipment has to wait until the cryopanel temperature returns to within the allowable range, which delays the start of the vacuum process.
 本発明のある態様の例示的な目的のひとつは、クロスオーバーの際に起こりうるクライオパネル温度のオーバーシュートを緩和することができるクライオポンプを提供することにある。 An exemplary object of an aspect of the present invention is to provide a cryopump that can mitigate overshoot of the cryopanel temperature that can occur during crossover.
 本発明のある態様によると、真空チャンバにゲートバルブを介して取付可能なクライオポンプが提供される。クライオポンプは、冷凍機と、ゲートバルブが閉じているか否かを検知し、ゲートバルブが閉じているときの冷凍機の冷凍能力をゲートバルブが開いているときに比べて増加させるように冷凍機を制御するように構成されるコントローラと、を備える。 According to one aspect of the present invention, a cryopump is provided that can be attached to a vacuum chamber via a gate valve. The cryopump detects whether the refrigerator and the gate valve are closed, and controls the refrigerator so that the refrigerating capacity of the refrigerator when the gate valve is closed is increased compared to when the gate valve is open. a controller configured to control the
 本発明のある態様によると、クライオポンプの運転方法が提供される。クライオポンプは、真空チャンバにゲートバルブを介して取付可能であり、冷凍機を備える。方法は、ゲートバルブが閉じているか否かを検知することと、ゲートバルブが閉じているときの冷凍機の冷凍能力をゲートバルブが開いているときに比べて増加させることと、を備える。 According to one aspect of the present invention, a cryopump operating method is provided. The cryopump can be attached to the vacuum chamber via a gate valve and has a refrigerator. The method includes detecting whether the gate valve is closed and increasing the refrigerating capacity of the refrigerator when the gate valve is closed compared to when the gate valve is open.
 本発明のある態様によると、クライオポンプは、冷凍機と、クライオポンプの再生が完了したか否かを検知し、再生の完了に続いて冷凍機の冷凍能力を一時的に増加させるように冷凍機を制御するコントローラと、を備える。 According to one aspect of the invention, a cryopump senses whether regeneration of the refrigerator and cryopump has been completed, and provides a refrigeration cycle to temporarily increase the refrigerating capacity of the refrigerator following completion of regeneration. a controller for controlling the machine.
 本発明のある態様によると、クライオポンプの運転方法が提供される。クライオポンプは、冷凍機を備える。方法は、クライオポンプの再生が完了したか否かを検知することと、再生の完了に続いて冷凍機の冷凍能力を一時的に増加させることと、を備える。 According to one aspect of the present invention, a cryopump operating method is provided. A cryopump includes a refrigerator. The method includes detecting whether regeneration of the cryopump is complete, and temporarily increasing refrigeration capacity of the refrigerator following regeneration completion.
 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。 It should be noted that arbitrary combinations of the above-described constituent elements and those in which the constituent elements and expressions of the present invention are replaced with each other between methods, devices, systems, etc. are also effective as embodiments of the present invention.
 本発明によれば、クロスオーバーの際に起こりうるクライオパネル温度のオーバーシュートを緩和することができるクライオポンプを提供することができる。 According to the present invention, it is possible to provide a cryopump capable of alleviating overshoot of the cryopanel temperature that may occur during crossover.
実施の形態に係るクライオポンプを概略的に示す図である。1 is a diagram schematically showing a cryopump according to an embodiment; FIG. 実施の形態に係るクライオポンプの制御装置の構成を概略的に示すブロック図である。1 is a block diagram schematically showing the configuration of a control device for a cryopump according to an embodiment; FIG. 実施の形態に係るクライオポンプの運転方法の一例を示すフローチャートである。4 is a flow chart showing an example of a method of operating a cryopump according to an embodiment; 図4(a)は、比較例に係るクライオポンプの動作を示す図であり、図4(b)は、実施の形態に係るクライオポンプの動作を示す図である。FIG. 4A is a diagram showing the operation of the cryopump according to the comparative example, and FIG. 4B is a diagram showing the operation of the cryopump according to the embodiment. 実施の形態に係るクライオポンプの運転方法の他の一例を示すフローチャートである。8 is a flow chart showing another example of a method of operating a cryopump according to an embodiment; 他の実施の形態に係るクライオポンプの制御装置の構成を概略的に示すブロック図である。FIG. 11 is a block diagram schematically showing the configuration of a cryopump control device according to another embodiment;
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。説明および図面において同一または同等の構成要素、部材、処理には同一の符号を付し、重複する説明は適宜省略する。図示される各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。実施の形態は例示であり、本発明の範囲を何ら限定するものではない。実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description and drawings, the same or equivalent constituent elements, members, and processes are denoted by the same reference numerals, and overlapping descriptions are omitted as appropriate. The scales and shapes of the illustrated parts are set for convenience in order to facilitate explanation, and should not be construed as limiting unless otherwise specified. The embodiment is an example and does not limit the scope of the present invention. All features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 図1は、実施の形態に係るクライオポンプ10を概略的に示す図である。図2は、実施の形態に係るクライオポンプ10の制御装置の構成を概略的に示すブロック図である。 FIG. 1 is a diagram schematically showing a cryopump 10 according to an embodiment. FIG. 2 is a block diagram schematically showing the configuration of the control device for the cryopump 10 according to the embodiment.
 クライオポンプ10は、例えばイオン注入装置、スパッタリング装置、蒸着装置、またはその他の真空プロセス装置の真空チャンバ100にゲートバルブ102を介して取付可能である。図1には、真空チャンバ100およびゲートバルブ102の一部がクライオポンプ10とともに示されている。 The cryopump 10 can be attached via a gate valve 102 to a vacuum chamber 100 of, for example, an ion implanter, sputtering device, vapor deposition device, or other vacuum process device. A vacuum chamber 100 and a portion of the gate valve 102 are shown in FIG. 1 along with the cryopump 10 .
 クライオポンプ10は、真空チャンバ100にゲートバルブ102を介して取り付けられて、真空チャンバ100内部の真空度を所望の真空プロセスに要求されるレベルまで高めるために使用される。クライオポンプ10は、排気されるべき気体を真空チャンバ100から受け入れるためのクライオポンプ吸気口(以下では単に「吸気口」ともいう)12を有する。真空チャンバ100からゲートバルブ102および吸気口12を通じて気体がクライオポンプ10の内部空間に進入する。 The cryopump 10 is attached to the vacuum chamber 100 via the gate valve 102 and used to raise the degree of vacuum inside the vacuum chamber 100 to the level required for the desired vacuum process. The cryopump 10 has a cryopump inlet (hereinafter also simply referred to as “inlet”) 12 for receiving gas to be evacuated from the vacuum chamber 100 . Gas enters the internal space of the cryopump 10 from the vacuum chamber 100 through the gate valve 102 and the intake port 12 .
 なお以下では、クライオポンプ10の構成要素の位置関係をわかりやすく表すために、「軸方向」、「径方向」との用語を使用することがある。クライオポンプ10の軸方向は吸気口12を通る方向(すなわちクライオポンプ10の中心軸に沿う方向であり、図において上下方向)を表し、径方向は吸気口12に沿う方向(クライオポンプ10の中心軸に垂直な方向であり、図において左右方向)を表す。便宜上、軸方向に関して吸気口12に相対的に近いことを「上」、相対的に遠いことを「下」と呼ぶことがある。つまり、クライオポンプ10の底部から相対的に遠いことを「上」、相対的に近いことを「下」と呼ぶことがある。径方向に関しては、吸気口12の中心に近いことを「内」、吸気口12の周縁に近いことを「外」と呼ぶことがある。なお、こうした表現はクライオポンプ10が真空チャンバ100に取り付けられたときの配置とは関係しない。例えば、クライオポンプ10は鉛直方向に吸気口12を下向きにして真空チャンバ100に取り付けられてもよい。 In the following, the terms "axial direction" and "radial direction" may be used in order to express the positional relationship of the constituent elements of the cryopump 10 in an easy-to-understand manner. The axial direction of the cryopump 10 represents the direction passing through the intake port 12 (that is, the direction along the central axis of the cryopump 10, which is the vertical direction in the drawing), and the radial direction represents the direction along the intake port 12 (the center of the cryopump 10). It is the direction perpendicular to the axis, and represents the left-right direction in the figure. For the sake of convenience, the position relatively close to the air inlet 12 in the axial direction may be referred to as "upper", and the position relatively farther away may be referred to as "lower". In other words, relatively far from the bottom of the cryopump 10 may be called "upper", and relatively close to it may be called "lower". With respect to the radial direction, the area near the center of the intake port 12 may be called "inside", and the area near the periphery of the intake port 12 may be called "outside". Note that such expressions are not related to the arrangement of the cryopump 10 when attached to the vacuum chamber 100 . For example, the cryopump 10 may be mounted vertically in the vacuum chamber 100 with the inlet 12 facing downward.
 また、軸方向を囲む方向を「周方向」と呼ぶことがある。周方向は、吸気口12に沿う第2の方向であり、径方向に直交する接線方向である。 Also, the direction surrounding the axial direction is sometimes called the "circumferential direction". The circumferential direction is a second direction along the intake port 12 and is a tangential direction perpendicular to the radial direction.
 クライオポンプ10は、冷凍機14、クライオポンプ容器16、第1段クライオパネル18、及び、クライオパネルユニット20を備える。第1段クライオパネル18は、高温クライオパネル部または100K部などとも称されうる。クライオパネルユニット20は、第2段のクライオパネルであり、低温クライオパネル部または10K部などとも称されうる。 The cryopump 10 includes a refrigerator 14 , a cryopump container 16 , a first-stage cryopanel 18 , and a cryopanel unit 20 . The first stage cryopanel 18 may also be referred to as a high temperature cryopanel section or a 100K section. The cryopanel unit 20 is a second-stage cryopanel and can also be called a low-temperature cryopanel section, a 10K section, or the like.
 冷凍機14は、例えばギフォード・マクマホン式冷凍機(いわゆるGM冷凍機)などの極低温冷凍機である。冷凍機14は、二段式の冷凍機であり、第1冷却ステージ22及び第2冷却ステージ24を備える。冷凍機14は、第1冷却ステージ22を第1冷却温度に冷却し、第2冷却ステージ24を第2冷却温度に冷却するよう構成されている。第2冷却温度は第1冷却温度よりも低温である。例えば、第1冷却ステージ22は60K~120K程度、好ましくは80K~100Kに冷却され、第2冷却ステージ24は10K~20K程度に冷却される。第1冷却ステージ22および第2冷却ステージ24はそれぞれ、高温冷却ステージおよび低温冷却ステージと称してもよい。 The refrigerator 14 is, for example, a cryogenic refrigerator such as a Gifford-McMahon refrigerator (so-called GM refrigerator). The refrigerator 14 is a two-stage refrigerator and includes a first cooling stage 22 and a second cooling stage 24 . The refrigerator 14 is configured to cool the first cooling stage 22 to a first cooling temperature and the second cooling stage 24 to a second cooling temperature. The second cooling temperature is lower than the first cooling temperature. For example, the first cooling stage 22 is cooled to about 60K to 120K, preferably 80K to 100K, and the second cooling stage 24 is cooled to about 10K to 20K. First cooling stage 22 and second cooling stage 24 may be referred to as a hot cooling stage and a cold cooling stage, respectively.
 また、冷凍機14は、第2冷却ステージ24を第1冷却ステージ22に構造的に支持するとともに第1冷却ステージ22を冷凍機14の室温部26に構造的に支持する冷凍機構造部21を備える。そのため冷凍機構造部21は、径方向に沿って同軸に延在する第1シリンダ23及び第2シリンダ25を備える。第1シリンダ23は、冷凍機14の室温部26を第1冷却ステージ22に接続する。第2シリンダ25は、第1冷却ステージ22を第2冷却ステージ24に接続する。典型的に、第1冷却ステージ22と第2冷却ステージ24は銅(例えば純銅)などの高熱伝導金属材料で形成され、第1シリンダ23と第2シリンダ25は例えばステンレス鋼など他の金属材料で形成される。室温部26、第1シリンダ23、第1冷却ステージ22、第2シリンダ25、及び第2冷却ステージ24は、この順に直線状に一列に並ぶ。 The refrigerator 14 also includes a refrigerator structural portion 21 that structurally supports the second cooling stage 24 on the first cooling stage 22 and structurally supports the first cooling stage 22 on the room temperature portion 26 of the refrigerator 14 . Prepare. Therefore, the refrigerator structure 21 includes a first cylinder 23 and a second cylinder 25 coaxially extending along the radial direction. A first cylinder 23 connects a room temperature section 26 of the refrigerator 14 to the first cooling stage 22 . A second cylinder 25 connects the first cooling stage 22 to the second cooling stage 24 . Typically, the first cooling stage 22 and the second cooling stage 24 are made of a highly thermally conductive metallic material such as copper (eg, pure copper), and the first cylinder 23 and the second cylinder 25 are made of other metallic material, such as stainless steel. It is formed. The room temperature section 26, the first cylinder 23, the first cooling stage 22, the second cylinder 25, and the second cooling stage 24 are arranged linearly in this order.
 第1シリンダ23及び第2シリンダ25それぞれの内部には第1ディスプレーサ及び第2ディスプレーサ(図示せず)が往復動可能に配設されている。第1ディスプレーサ及び第2ディスプレーサにはそれぞれ第1蓄冷器及び第2蓄冷器(図示せず)が組み込まれている。また、室温部26は、第1ディスプレーサ及び第2ディスプレーサを往復動させるための駆動機構(図示せず)を有する。駆動機構は後述の冷凍機モータ50を含む。また、駆動機構は、冷凍機14の内部への作動気体(例えばヘリウム)の供給と排出を周期的に繰り返すよう作動気体の流路を切り替える流路切替機構を含む。 A first displacer and a second displacer (not shown) are reciprocally arranged inside the first cylinder 23 and the second cylinder 25, respectively. A first regenerator and a second regenerator (not shown) are incorporated in the first displacer and the second displacer, respectively. The room temperature section 26 also has a drive mechanism (not shown) for reciprocating the first displacer and the second displacer. The drive mechanism includes a refrigerator motor 50, which will be described later. The driving mechanism also includes a channel switching mechanism that switches the channel of the working gas so as to periodically repeat the supply and discharge of the working gas (for example, helium) to the inside of the refrigerator 14 .
 冷凍機14は、作動気体の圧縮機(図示せず)に接続されている。冷凍機14は、圧縮機により加圧された作動気体を内部で膨張させて第1冷却ステージ22及び第2冷却ステージ24を冷却する。膨張した作動気体は圧縮機に回収され再び加圧される。冷凍機14は、作動気体の給排とこれに同期した第1ディスプレーサ及び第2ディスプレーサの往復動とを含む熱サイクルを繰り返すことによって寒冷を発生させる。 The refrigerator 14 is connected to a working gas compressor (not shown). The refrigerator 14 expands the working gas pressurized by the compressor to cool the first cooling stage 22 and the second cooling stage 24 . The expanded working gas is recovered by the compressor and pressurized again. The refrigerator 14 generates cold by repeating thermal cycles including supply and discharge of the working gas and synchronized reciprocating motion of the first displacer and the second displacer.
 図示されるクライオポンプ10は、いわゆる横型のクライオポンプである。横型のクライオポンプとは一般に、冷凍機14がクライオポンプ10の中心軸に交差する(通常は直交する)よう配設されているクライオポンプである。なお、本発明はいわゆる縦型のクライオポンプにも同様に適用することができる。縦型のクライオポンプとは、冷凍機がクライオポンプの軸方向に沿って配設されているクライオポンプである。 The illustrated cryopump 10 is a so-called horizontal cryopump. A horizontal cryopump is generally a cryopump in which the refrigerator 14 is arranged to intersect (normally perpendicular to) the central axis of the cryopump 10 . The present invention can also be applied to so-called vertical cryopumps. A vertical cryopump is a cryopump in which a refrigerator is arranged along the axial direction of the cryopump.
 クライオポンプ容器16は、冷凍機14、第1段クライオパネル18、及びクライオパネルユニット20を収容するクライオポンプ10の筐体であり、クライオポンプ10の内部空間の気密性を保持するよう構成されている。クライオポンプ容器16は、その前端から全周にわたって径方向外側に延出する吸気口フランジ16aを有する。吸気口フランジ16aによって、その径方向内側に吸気口12が画定される。また、クライオポンプ容器16は、吸気口フランジ16aから軸方向に延びる容器胴部16bと、吸気口12とは反対側で容器胴部16bを閉じる容器底部16cと、吸気口フランジ16aと容器底部16cとの間で側方に延びる冷凍機収容筒16dとを有する。 The cryopump container 16 is a housing of the cryopump 10 that houses the refrigerator 14, the first-stage cryopanel 18, and the cryopanel unit 20, and is configured to keep the internal space of the cryopump 10 airtight. there is The cryopump container 16 has an inlet flange 16a extending radially outward from its front end over the entire circumference. The inlet flange 16a defines the inlet 12 radially inwardly thereof. The cryopump container 16 includes a container body portion 16b extending in the axial direction from the inlet flange 16a, a container bottom portion 16c that closes the container body portion 16b on the side opposite to the inlet port 12, the inlet flange 16a and the container bottom portion 16c. and a refrigerator housing cylinder 16d extending laterally between the .
 容器胴部16bとは反対側で冷凍機収容筒16dの端部が冷凍機14の室温部26に取り付けられ、それにより、冷凍機14の低温部(すなわち、第1シリンダ23、第1冷却ステージ22、第2シリンダ25、及び第2冷却ステージ24)がクライオポンプ容器16内でクライオポンプ容器16と非接触に配置される。第1シリンダ23は冷凍機収容筒16d内に配置され、第1冷却ステージ22、第2シリンダ25、及び第2冷却ステージ24は容器胴部16b内に配置される。第1段クライオパネル18とクライオパネルユニット20も容器胴部16b内に配置される。 An end portion of the refrigerator housing tube 16d is attached to the room temperature portion 26 of the refrigerator 14 on the side opposite to the container body portion 16b, whereby the low temperature portion of the refrigerator 14 (that is, the first cylinder 23, the first cooling stage 22 , a second cylinder 25 , and a second cooling stage 24 ) are disposed within the cryopump vessel 16 without contact with the cryopump vessel 16 . The first cylinder 23 is arranged inside the refrigerator housing tube 16d, and the first cooling stage 22, the second cylinder 25, and the second cooling stage 24 are arranged inside the container body 16b. The first stage cryopanel 18 and the cryopanel unit 20 are also arranged in the container body 16b.
 第1段クライオパネル18は、放射シールド30と入口クライオパネル32とを備え、クライオパネルユニット20を包囲する。第1段クライオパネル18は、クライオポンプ10の外部またはクライオポンプ容器16からの輻射熱からクライオパネルユニット20を保護するための極低温表面を提供する。第1段クライオパネル18は第1冷却ステージ22に熱的に結合され、第1冷却温度に冷却される。第1段クライオパネル18はクライオパネルユニット20との間に隙間を有しており、第1段クライオパネル18はクライオパネルユニット20と接触していない。第1段クライオパネル18はクライオポンプ容器16とも接触していない。 The first stage cryopanel 18 includes a radiation shield 30 and an entrance cryopanel 32 and surrounds the cryopanel unit 20 . The first stage cryopanel 18 provides a cryogenic surface to protect the cryopanel unit 20 from radiant heat from outside the cryopump 10 or from the cryopump vessel 16 . The first stage cryopanel 18 is thermally coupled to the first cooling stage 22 and cooled to a first cooling temperature. The first stage cryopanel 18 has a gap with the cryopanel unit 20 , and the first stage cryopanel 18 is not in contact with the cryopanel unit 20 . The first stage cryopanel 18 is also not in contact with the cryopump vessel 16 .
 放射シールド30は、クライオポンプ容器16の輻射熱からクライオパネルユニット20を保護するために設けられている。放射シールド30は、吸気口12からクライオポンプ容器16内で容器底部16cに向かって軸方向に筒状(例えば円筒状)に延在する。放射シールド30は、吸気口12側で開口し、容器底部16c側で閉じられている。放射シールド30は、クライオポンプ容器16とクライオパネルユニット20との間にあり、クライオパネルユニット20を囲む。放射シールド30は、クライオポンプ容器16より僅かに小さい直径を有しており、放射シールド30とクライオポンプ容器16との間にシールド外側隙間31が形成される。よって、放射シールド30はクライオポンプ容器16と接触していない。 The radiation shield 30 is provided to protect the cryopanel unit 20 from radiant heat from the cryopump container 16 . The radiation shield 30 axially extends from the inlet 12 toward the container bottom 16 c within the cryopump container 16 in a cylindrical shape (for example, a cylindrical shape). The radiation shield 30 is open on the inlet port 12 side and closed on the container bottom 16c side. A radiation shield 30 is between the cryopump vessel 16 and the cryopanel unit 20 and surrounds the cryopanel unit 20 . The radiation shield 30 has a slightly smaller diameter than the cryopump vessel 16 to form a shield outer gap 31 between the radiation shield 30 and the cryopump vessel 16 . Therefore, the radiation shield 30 is not in contact with the cryopump vessel 16 .
 冷凍機14の第1冷却ステージ22は、放射シールド30の側部外面に直接取り付けられている。こうして、放射シールド30は、第1冷却ステージ22に熱的に結合され、故に第1冷却温度に冷却される。なお放射シールド30は適宜の伝熱部材を介して第1冷却ステージ22に取り付けられてもよい。また、冷凍機14の第2冷却ステージ24及び第2シリンダ25が放射シールド30の側部から放射シールド30内に挿入されている。 The first cooling stage 22 of the refrigerator 14 is directly attached to the side outer surface of the radiation shield 30 . Thus, the radiation shield 30 is thermally coupled to the first cooling stage 22 and thus cooled to the first cooling temperature. The radiation shield 30 may be attached to the first cooling stage 22 via an appropriate heat transfer member. Also, the second cooling stage 24 and the second cylinder 25 of the refrigerator 14 are inserted into the radiation shield 30 from the side of the radiation shield 30 .
 入口クライオパネル32は、クライオポンプ10の外部の熱源(例えば、クライオポンプ10が取り付けられる真空チャンバ内の熱源)からの輻射熱からクライオパネルユニット20を保護するために、吸気口12に設けられている。入口クライオパネル32は、放射シールド30を介して第1冷却ステージ22に熱的に結合され、放射シールド30と同様に、第1冷却温度に冷却される。よって、第1冷却温度で凝縮する気体(例えば水分)がその表面に捕捉される。 The inlet cryopanel 32 is provided at the inlet 12 to protect the cryopanel unit 20 from radiant heat from a heat source outside the cryopump 10 (for example, a heat source inside the vacuum chamber to which the cryopump 10 is attached). . The inlet cryopanel 32 is thermally coupled to the first cooling stage 22 through the radiation shield 30 and, like the radiation shield 30, is cooled to the first cooling temperature. Thus, gas (eg, moisture) that condenses at the first cooling temperature is trapped on the surface.
 クライオパネルユニット20は、各々が第2冷却ステージ24に熱的に結合され、第1冷却温度より低い第2冷却温度に冷却される複数のクライオパネルを備える。これらクライオパネルは、図示されるように、吸気口12から容器底部16cに向かって軸方向に配列されていてもよい。クライオパネルの少なくとも一部の表面には、非凝縮性ガス(例えば水素)を吸着により捕捉するために吸着材(例えば活性炭)が設けられてもよい。クライオパネルユニット20は、クライオポンプ容器16内で放射シールド30に囲まれるようにして、入口クライオパネル32の下方に配置されている。クライオパネルユニット20は、放射シールド30及び入口クライオパネル32とは接触していない。なおクライオパネルの配置や形状などクライオパネルユニット20の構成は、種々の公知の構成を適宜採用することができるので、ここでは詳述しない。 The cryopanel unit 20 includes a plurality of cryopanels each thermally coupled to the second cooling stage 24 and cooled to a second cooling temperature lower than the first cooling temperature. These cryopanels may be arranged axially from the inlet 12 toward the vessel bottom 16c as shown. At least part of the surface of the cryopanel may be provided with an adsorbent (eg, activated carbon) to capture non-condensable gas (eg, hydrogen) by adsorption. The cryopanel unit 20 is arranged below the entrance cryopanel 32 so as to be surrounded by the radiation shield 30 inside the cryopump container 16 . The cryopanel unit 20 is not in contact with the radiation shield 30 and the entrance cryopanel 32 . Various known configurations can be appropriately adopted for the configuration of the cryopanel unit 20, such as the arrangement and shape of the cryopanels, and thus the details thereof will not be described here.
 ゲートバルブ102は、クライオポンプ10と真空チャンバ100との間に設置されている。ゲートバルブ102は、バルブハウジング104とバルブプレート106とを備える。バルブハウジング104は、真空チャンバ100の開口部をクライオポンプ10の吸気口12に接続する連通路を形成する。この連通路の両側それぞれにバルブハウジング104はフランジ部を有し、片側のフランジ部が真空チャンバ100の開口部を囲む真空チャンバ100のフランジ部に取り付けられ、反対側のフランジ部が吸気口フランジ16aに取り付けられる。 A gate valve 102 is installed between the cryopump 10 and the vacuum chamber 100 . Gate valve 102 includes a valve housing 104 and a valve plate 106 . The valve housing 104 forms a communication path connecting the opening of the vacuum chamber 100 to the inlet 12 of the cryopump 10 . The valve housing 104 has flanges on both sides of this communicating passage, one of which is attached to the flange of the vacuum chamber 100 surrounding the opening of the vacuum chamber 100, and the other of which is the inlet flange 16a. can be attached to
 ゲートバルブ102は、真空チャンバ100またはクライオポンプ10のメンテナンスをするときなど、必要に応じて閉鎖される。バルブハウジング104の吸気口フランジ16a側のフランジ部がゲートバルブ102の弁座部としても働き、弁体としてのバルブプレート106がこの弁座部に密着することにより、ゲートバルブ102は閉鎖される。このとき、真空チャンバ100から吸気口12を通じたクライオポンプ10へのガス流れは遮断される。クライオポンプ10は真空チャンバ100から隔離され、クライオポンプ10の内部空間が気密に保持される。 The gate valve 102 is closed as necessary, such as when performing maintenance on the vacuum chamber 100 or the cryopump 10. The flange portion of the valve housing 104 on the inlet flange 16a side also serves as the valve seat portion of the gate valve 102, and the gate valve 102 is closed by the valve plate 106 as a valve element coming into close contact with this valve seat portion. At this time, gas flow from the vacuum chamber 100 to the cryopump 10 through the inlet 12 is cut off. The cryopump 10 is isolated from the vacuum chamber 100, and the internal space of the cryopump 10 is kept airtight.
 ゲートバルブ102は、クライオポンプ10によって真空チャンバ100の真空排気をするために開放される。バルブハウジング104にはバルブプレート収納部108が設けられており、図1に一点鎖線で示すようにバルブプレート106がバルブハウジング104の弁座部から離れバルブプレート収納部108に収納されるとき、ゲートバルブ102は開く。ゲートバルブ102および吸気口12を通じて真空チャンバ100からクライオポンプ10の内部空間にガスが進入することができる。こうして、真空チャンバ100内で所望の真空プロセスを行うために、クライオポンプ10によって真空チャンバ100を真空排気することができる。 The gate valve 102 is opened to evacuate the vacuum chamber 100 by the cryopump 10 . A valve plate housing portion 108 is provided in the valve housing 104. As shown by the dashed line in FIG. Valve 102 opens. Gas can enter the internal space of the cryopump 10 from the vacuum chamber 100 through the gate valve 102 and the inlet 12 . Thus, the vacuum chamber 100 can be evacuated by the cryopump 10 in order to perform a desired vacuum process within the vacuum chamber 100 .
 図2に示されるように、クライオポンプ10は、第1冷却ステージ22の温度を測定するための第1温度センサ40と、第2冷却ステージ24の温度を測定するための第2温度センサ42と、を備えてもよい。第1温度センサ40は、第1冷却ステージ22または第1段クライオパネル18に取り付けられ、第2温度センサ42は、第2冷却ステージ24またはクライオパネルユニット20に取り付けられている。よって、第1温度センサ40は、第1段クライオパネル18の温度を測定し、第1段クライオパネル18の測定温度を示す第1測定温度信号T1を出力することができる。第2温度センサ42は、クライオパネルユニット20の温度を測定し、クライオパネルユニット20の測定温度を示す第2測定温度信号T2を出力することができる。 As shown in FIG. 2, the cryopump 10 includes a first temperature sensor 40 for measuring the temperature of the first cooling stage 22 and a second temperature sensor 42 for measuring the temperature of the second cooling stage 24. , may be provided. The first temperature sensor 40 is attached to the first cooling stage 22 or the first stage cryopanel 18 , and the second temperature sensor 42 is attached to the second cooling stage 24 or the cryopanel unit 20 . Therefore, the first temperature sensor 40 can measure the temperature of the first stage cryopanel 18 and output a first measured temperature signal T1 indicating the measured temperature of the first stage cryopanel 18 . The second temperature sensor 42 can measure the temperature of the cryopanel unit 20 and output a second measured temperature signal T2 indicative of the measured temperature of the cryopanel unit 20 .
 冷凍機14は、冷凍機14を駆動する冷凍機モータ50と、冷凍機14の運転周波数を制御する冷凍機インバータ52と、を備える。冷凍機14の運転周波数(運転速度ともいう)とは、冷凍機モータ50の運転周波数または回転数、冷凍機インバータ52の運転周波数、熱サイクルの周波数、または、これらのいずれかを表す。熱サイクルの周波数とは、冷凍機14において行われる熱サイクルの単位時間あたりの回数である。 The refrigerator 14 includes a refrigerator motor 50 that drives the refrigerator 14 and a refrigerator inverter 52 that controls the operating frequency of the refrigerator 14 . The operating frequency (also referred to as operating speed) of the refrigerator 14 represents the operating frequency or rotation speed of the refrigerator motor 50, the operating frequency of the refrigerator inverter 52, the heat cycle frequency, or any of these. The heat cycle frequency is the number of heat cycles performed in the refrigerator 14 per unit time.
 また、クライオポンプ10は、クライオポンプ10を制御するコントローラ60を備える。コントローラ60は、クライオポンプ10に一体に設けられていてもよいし、クライオポンプ10とは別体の制御装置として構成されていてもよい。 The cryopump 10 also includes a controller 60 that controls the cryopump 10 . The controller 60 may be provided integrally with the cryopump 10 or may be configured as a control device separate from the cryopump 10 .
 コントローラ60は、第1温度センサ40からの第1測定温度信号T1を受信するよう第1温度センサ40と接続され、第2温度センサ42からの第2測定温度信号T2を受信するよう第2温度センサ42と接続されていてもよい。上述の冷凍機インバータ52は、コントローラ60に設けられてもよい。 The controller 60 is connected to the first temperature sensor 40 to receive the first measured temperature signal T1 from the first temperature sensor 40, and is connected to the second temperature sensor 42 to receive the second measured temperature signal T2 from the second temperature sensor 42. It may be connected to the sensor 42 . The refrigerator inverter 52 described above may be provided in the controller 60 .
 コントローラ60は、クライオポンプ10の真空排気運転中、第1段クライオパネル18の冷却温度に基づいて、またはクライオパネルユニット20の冷却温度に基づいて、冷凍機14を制御するように構成されてもよい。例えば、コントローラ60は、第1冷却ステージ22の目標温度と第1温度センサ40の測定温度との偏差を最小化するようにフィードバック制御により冷凍機14の運転周波数を制御してもよい。 The controller 60 may be configured to control the refrigerator 14 based on the cooling temperature of the first stage cryopanel 18 or based on the cooling temperature of the cryopanel unit 20 during the evacuation operation of the cryopump 10 . good. For example, the controller 60 may control the operating frequency of the refrigerator 14 through feedback control so as to minimize the deviation between the target temperature of the first cooling stage 22 and the temperature measured by the first temperature sensor 40 .
 第1冷却ステージ22の目標温度は通常、一定値に設定される。第1冷却ステージ22の目標温度は例えば、クライオポンプ10が取り付けられる真空チャンバ100で行われるプロセスに応じて仕様として定められる。クライオポンプ10の運転中に、目標温度は必要に応じて変更されてもよい。 The target temperature of the first cooling stage 22 is normally set to a constant value. The target temperature of the first cooling stage 22 is specified, for example, according to the process performed in the vacuum chamber 100 to which the cryopump 10 is attached. The target temperature may be changed as needed during operation of the cryopump 10 .
 コントローラ60は、測定温度と目標温度との偏差の関数として(例えばPID制御により)冷凍機モータ50の運転周波数Fを決定してもよい。冷凍機モータ50の運転周波数Fは、予め定められた運転周波数範囲内において決定される。運転周波数範囲は、予め定められた運転周波数の上限及び下限により定義される。コントローラ60は、決定された運転周波数Fを冷凍機インバータ52に出力する。 The controller 60 may determine the operating frequency F of the refrigerator motor 50 as a function of the deviation between the measured temperature and the target temperature (for example, by PID control). The operating frequency F of the refrigerator motor 50 is determined within a predetermined operating frequency range. The operating frequency range is defined by predetermined upper and lower operating frequency limits. The controller 60 outputs the determined operating frequency F to the refrigerator inverter 52 .
 冷凍機インバータ52は、冷凍機モータ50の可変周波数制御を提供するよう構成されている。冷凍機インバータ52は、入力電力を、コントローラ60から入力された運転周波数Fを有するよう変換する。冷凍機インバータ52への入力電力は、冷凍機電源(図示せず)から供給される。冷凍機電源は商用電源であってもよい。冷凍機インバータ52は、変換された電力を冷凍機モータ50に出力する。こうして冷凍機モータ50は、コントローラ60によって決定され冷凍機インバータ52から出力された運転周波数Fで駆動される。 The refrigerator inverter 52 is configured to provide variable frequency control of the refrigerator motor 50 . The refrigerator inverter 52 converts the input power to have the operating frequency F input from the controller 60 . Input power to the refrigerator inverter 52 is supplied from a refrigerator power supply (not shown). The refrigerator power supply may be a commercial power supply. Refrigerator inverter 52 outputs the converted electric power to refrigerator motor 50 . Thus, the refrigerator motor 50 is driven at the operating frequency F determined by the controller 60 and output from the refrigerator inverter 52 .
 クライオポンプ10への熱負荷が増加したとき第1冷却ステージ22の温度が高まりうる。第1温度センサ40の測定温度が目標温度よりも高温である場合には、コントローラ60は、冷凍機14の運転周波数を増加させる。その結果、冷凍機14における熱サイクルの周波数も増加され、第1段クライオパネル18および第1冷却ステージ22は目標温度に向けて冷却される。逆に第1温度センサ40の測定温度が目標温度よりも低温である場合には、冷凍機14の運転周波数は減少されて第1冷却ステージ22は目標温度に向けて昇温される。こうして、第1段クライオパネル18の温度を目標温度の近傍の温度範囲に留めることができる。熱負荷に応じて冷凍機14の運転周波数を適切に調整することができるので、こうした制御はクライオポンプ10の消費電力の低減に役立つ。 The temperature of the first cooling stage 22 can rise when the heat load on the cryopump 10 increases. When the temperature measured by the first temperature sensor 40 is higher than the target temperature, the controller 60 increases the operating frequency of the refrigerator 14 . As a result, the frequency of the heat cycle in the refrigerator 14 is also increased, and the first stage cryopanel 18 and the first cooling stage 22 are cooled toward the target temperature. Conversely, when the temperature measured by the first temperature sensor 40 is lower than the target temperature, the operating frequency of the refrigerator 14 is decreased and the temperature of the first cooling stage 22 is raised toward the target temperature. Thus, the temperature of the first stage cryopanel 18 can be kept within a temperature range near the target temperature. Such control helps reduce the power consumption of the cryopump 10 because the operating frequency of the refrigerator 14 can be appropriately adjusted according to the heat load.
 第1冷却ステージ22の温度を目標温度に従って冷凍機14を制御することを、以下では「1段温度制御」と呼ぶことがある。1段温度制御では、2段冷却温度は直接制御されない。つまり、1段温度制御の結果として、第2冷却ステージ24及びクライオパネルユニット20は、冷凍機14の2段の冷凍能力と、外部から第2冷却ステージ24への熱負荷とによって定まる温度に冷却される。 Controlling the temperature of the first cooling stage 22 in accordance with the target temperature of the refrigerator 14 is hereinafter sometimes referred to as "one-stage temperature control". In one-stage temperature control, the two-stage cooling temperature is not directly controlled. That is, as a result of the one-stage temperature control, the second cooling stage 24 and the cryopanel unit 20 are cooled to a temperature determined by the two-stage cooling capacity of the refrigerator 14 and the heat load from the outside to the second cooling stage 24. be done.
 同様にして、コントローラ60は、第2冷却ステージ24の温度を目標温度に従って冷凍機14を制御する、いわば「2段温度制御」を実行することもできる。この場合、コントローラ60は、第2冷却ステージ24の目標温度と第2温度センサ42の測定温度との偏差を最小化するようにフィードバック制御により冷凍機14の運転周波数を制御してもよい。これにより、クライオパネルユニット20の温度を目標温度に追従させることができる。2段温度制御において1段冷却温度は直接制御されない。2段温度制御において1段冷却温度は、冷凍機14の1段の冷凍能力と、外部から第1冷却ステージ22への熱負荷とによって定まる。 Similarly, the controller 60 can control the temperature of the second cooling stage 24 according to the target temperature of the refrigerator 14, so to speak, "two-stage temperature control". In this case, the controller 60 may control the operating frequency of the refrigerator 14 by feedback control so as to minimize the deviation between the target temperature of the second cooling stage 24 and the temperature measured by the second temperature sensor 42 . This allows the temperature of the cryopanel unit 20 to follow the target temperature. In two-stage temperature control, the first-stage cooling temperature is not directly controlled. In the two-stage temperature control, the first-stage cooling temperature is determined by the first-stage refrigerating capacity of the refrigerator 14 and the heat load from the outside to the first cooling stage 22 .
 コントローラ60は、クライオポンプ10だけでなく、ゲートバルブ102も制御するように構成されてもよい。コントローラ60は、ゲートバルブ102を開閉する指令信号を生成し、これをゲートバルブ102に送信してもよい。ゲートバルブ102は、この指令信号を受信し、指令信号に応じて開放または閉鎖されてもよい。ゲートバルブ102は、開閉状態を示すゲートバルブ信号Sを生成し、これをコントローラ60に送信してもよい。コントローラ60は、ゲートバルブ信号Sをゲートバルブ102から受信し、ゲートバルブ信号Sに基づいて、ゲートバルブ102が閉じているか否かを検知してもよい。 The controller 60 may be configured to control not only the cryopump 10 but also the gate valve 102 . The controller 60 may generate and send command signals to the gate valve 102 to open and close the gate valve 102 . The gate valve 102 may receive this command signal and open or close in response to the command signal. The gate valve 102 may generate a gate valve signal S indicating an open/closed state and transmit this to the controller 60 . The controller 60 may receive the gate valve signal S from the gate valve 102 and based on the gate valve signal S detect whether the gate valve 102 is closed.
 なお、ゲートバルブ102は、コントローラ60とは別のコントローラ(例えば、真空プロセス装置を制御するコントローラ60よりも上位のコントローラ)によって制御されてもよい。この場合、コントローラ60は、ゲートバルブ102を制御するコントローラからゲートバルブ信号Sを受信してもよい。 The gate valve 102 may be controlled by a controller other than the controller 60 (for example, a controller higher than the controller 60 that controls the vacuum process apparatus). In this case, the controller 60 may receive the gate valve signal S from the controller controlling the gate valve 102 .
 コントローラ60の内部構成は、ハードウェア構成としてはコンピュータのCPUやメモリをはじめとする素子や回路で実現され、ソフトウェア構成としてはコンピュータプログラム等によって実現されるが、図では適宜、それらの連携によって実現される機能ブロックとして描いている。これらの機能ブロックはハードウェア、ソフトウェアの組合せによっていろいろなかたちで実現できることは、当業者には理解されるところである。 The internal configuration of the controller 60 is realized as a hardware configuration by elements and circuits such as a computer CPU and memory, and as a software configuration is achieved by a computer program or the like. It is drawn as a function block to be It should be understood by those skilled in the art that these functional blocks can be implemented in various ways by combining hardware and software.
 たとえば、コントローラ60は、CPU(Central Processing Unit)、マイコンなどのプロセッサ(ハードウェア)と、プロセッサ(ハードウェア)が実行するソフトウェアプログラムの組み合わせで実装することができる。ソフトウェアプログラムは、クライオポンプ10の運転方法をコントローラ60に実行させるためのコンピュータプログラムであってもよい。 For example, the controller 60 can be implemented by a combination of a CPU (Central Processing Unit), a processor (hardware) such as a microcomputer, and a software program executed by the processor (hardware). The software program may be a computer program for causing the controller 60 to execute the operating method of the cryopump 10 .
 上記の構成のクライオポンプ10の動作を以下に説明する。クライオポンプ10の作動に際しては、まずその作動前に他の適当な粗引きポンプで真空チャンバ100を所定圧力(例えば100Pa程度または10Pa程度)にまで粗引きする。真空チャンバ100の粗引き中、ゲートバルブ102は閉鎖される。その後(または真空チャンバ100の粗引きと並行して)、クライオポンプ10を作動させる。冷凍機14の駆動により第1冷却ステージ22及び第2冷却ステージ24がそれぞれ第1冷却温度及び第2冷却温度に冷却される。よって、これらに熱的に結合されている第1クライオパネルユニット及び第2クライオパネルユニットもそれぞれ第1冷却温度及び第2冷却温度に冷却される。ゲートバルブ102が開かれ、クライオポンプ10による真空チャンバ100の真空排気が開始される。 The operation of the cryopump 10 having the above configuration will be described below. Before operating the cryopump 10, the vacuum chamber 100 is first rough-pumped to a predetermined pressure (for example, about 100 Pa or about 10 Pa) by another appropriate roughing pump. During roughing of vacuum chamber 100, gate valve 102 is closed. After that (or in parallel with the roughing of the vacuum chamber 100), the cryopump 10 is activated. By driving the refrigerator 14, the first cooling stage 22 and the second cooling stage 24 are cooled to the first cooling temperature and the second cooling temperature, respectively. Therefore, the first cryopanel unit and the second cryopanel unit thermally coupled to them are also cooled to the first cooling temperature and the second cooling temperature, respectively. The gate valve 102 is opened and the evacuation of the vacuum chamber 100 by the cryopump 10 is started.
 入口クライオパネル32は、真空チャンバからクライオポンプ10に向かって飛来するガスを冷却する。入口クライオパネル32の表面には、第1冷却温度で蒸気圧が充分に低い(例えば10-8Pa以下の)ガスが凝縮する。このガスは、第1種ガスと称されてもよい。第1種ガスは例えば水蒸気である。こうして、入口クライオパネル32は、第1種ガスを排気することができる。第1冷却温度で蒸気圧が充分に低くないガスの一部は、吸気口12からクライオポンプ10内に進入する。あるいは、ガスの他の一部は、入口クライオパネル32で反射され、クライオポンプ10内に進入せず真空チャンバ100に戻る。 The inlet cryopanel 32 cools gases coming from the vacuum chamber toward the cryopump 10 . On the surface of the inlet cryopanel 32, a gas with sufficiently low vapor pressure (for example, 10 −8 Pa or less) condenses at the first cooling temperature. This gas may be referred to as the first type gas. The first type gas is, for example, water vapor. Thus, the inlet cryopanel 32 can exhaust the first type gas. Part of the gas whose vapor pressure is not sufficiently low at the first cooling temperature enters the cryopump 10 through the inlet 12 . Alternatively, another portion of the gas is reflected off the inlet cryopanel 32 and returns to the vacuum chamber 100 without entering the cryopump 10 .
 クライオポンプ10内に進入したガスは、クライオパネルユニット20によって冷却される。クライオパネルユニット20の表面には、第2冷却温度で蒸気圧が充分に低い(例えば10-8Pa以下の)ガスが凝縮する。このガスは、第2種ガスと称されてもよい。第2種ガスは例えばアルゴンである。こうして、クライオパネルユニット20は、第2種ガスを排気することができる。 The gas entering the cryopump 10 is cooled by the cryopanel unit 20 . On the surface of the cryopanel unit 20, gas with sufficiently low vapor pressure (for example, 10 −8 Pa or less) condenses at the second cooling temperature. This gas may be referred to as a second type gas. The second type gas is argon, for example. Thus, the cryopanel unit 20 can exhaust the second type gas.
 第2冷却温度で蒸気圧が充分に低くないガスは、クライオパネルユニット20の吸着材に吸着される。このガスは、第3種ガスと称されてもよい。第3種ガスは例えば水素である。こうして、クライオパネルユニット20は、第3種ガスを排気することができる。したがって、クライオポンプ10は、種々のガスを凝縮または吸着により排気し、真空チャンバの真空度を所望のレベルに到達させることができる。 A gas whose vapor pressure is not sufficiently low at the second cooling temperature is adsorbed by the adsorbent of the cryopanel unit 20 . This gas may be referred to as a third type gas. The third type gas is hydrogen, for example. Thus, the cryopanel unit 20 can exhaust the third type gas. Therefore, the cryopump 10 can exhaust various gases by condensation or adsorption to bring the degree of vacuum of the vacuum chamber to a desired level.
 クライオポンプ10の真空排気運転が継続されることによりクライオポンプ10には気体が蓄積されていく。蓄積した気体を外部に排出するために、クライオポンプ10の再生が行われる。クライオポンプ10の再生は一般に、昇温工程、排出工程、及びクールダウン工程を含む。昇温工程では、クライオポンプ10は真空排気運転のための極低温から再生温度(例えば室温)へと加熱される。クライオポンプ10内に捕捉されたガスが気化される。第2種ガスおよび第3種ガスは昇温工程でクライオポンプ10から容易に排出されうる。排出工程では主に第1種ガスが排出される。排出工程が完了すれば、クールダウン工程が開始される。クールダウン工程においてはクライオポンプ10が真空排気運転のための極低温に再冷却される。こうして再生が完了すれば、クライオポンプ10は再び真空排気運転を始めることができる。 As the evacuation operation of the cryopump 10 continues, gas accumulates in the cryopump 10 . The cryopump 10 is regenerated in order to discharge the accumulated gas to the outside. Regeneration of the cryopump 10 generally includes heating, evacuation, and cooling down steps. In the heating step, the cryopump 10 is heated from a cryogenic temperature for evacuation operation to a regeneration temperature (eg, room temperature). Gas trapped within the cryopump 10 is vaporized. The second type gas and the third type gas can be easily discharged from the cryopump 10 during the temperature raising process. The first type gas is mainly discharged in the discharge process. After the discharge process is completed, the cool-down process is started. In the cooldown step, the cryopump 10 is recooled to cryogenic temperatures for evacuation operation. When the regeneration is completed in this way, the cryopump 10 can start the evacuation operation again.
 クライオポンプ10の再生中、ゲートバルブ102は閉鎖される。再生完了後にゲートバルブ102は再び開かれる。ただし、ゲートバルブ102は、再生を完了した時点(つまりクールダウン工程の完了時点)で直ちに開かれなくてもよい。再生完了後のクライオポンプ10は、ゲートバルブ102が閉鎖された状態で極低温に冷却されているスタンバイ状態をとることもできる。スタンバイ状態のクライオポンプ10は、ゲートバルブ102が開かれることによって、真空チャンバ100の真空排気を直ちに開始することができる。 The gate valve 102 is closed during regeneration of the cryopump 10 . After completion of regeneration, the gate valve 102 is opened again. However, the gate valve 102 does not have to be opened immediately upon completion of regeneration (that is, upon completion of the cool-down process). After completion of regeneration, the cryopump 10 can also take a standby state in which it is cooled to an extremely low temperature with the gate valve 102 closed. The cryopump 10 in the standby state can immediately start evacuating the vacuum chamber 100 by opening the gate valve 102 .
 上述のように、ゲートバルブ102を開くことで、真空チャンバ100からクライオポンプ10に一時的に多量のガスが流入し、これが冷凍機14への熱負荷となってクライオパネル温度にオーバーシュートをもたらしうる。さまざまな要因により、第1段のクライオパネルに比べて第2段のクライオパネルに温度オーバーシュートが生じやすい場合がある。これは単純には、第2段のほうが温度が低温であり、流入する室温のガスとの温度差が大きいためである。また、たいていの場合、第2段のほうが第1段に比べて熱容量が小さい(第1段には放射シールド30など大型の部品が取り付けられているため、質量ひいては熱容量が大きいことが多い)。流入する主ガスである例えば窒素などの第2種ガスは、第1段に凝縮しないが第2段に凝縮する。ガスの相変化に伴って発生する潜熱が第2段の温度を上昇させうる。クライオパネルの温度上昇は、場合によってはクライオポンプの排気性能に望まれない影響を与えるかもしれない。 As described above, by opening the gate valve 102, a large amount of gas temporarily flows from the vacuum chamber 100 into the cryopump 10, which becomes a heat load on the refrigerator 14 and causes an overshoot in the cryopanel temperature. sell. Due to various factors, the second stage cryopanels may be more prone to temperature overshoot than the first stage cryopanels. This is simply because the second stage is cooler and has a greater temperature difference than the incoming room temperature gas. Also, in most cases, the second stage has a smaller heat capacity than the first stage (because the first stage is fitted with large components such as the radiation shield 30, it often has a large mass and thus a large heat capacity). The incoming main gas, a second gas, such as nitrogen, does not condense in the first stage, but condenses in the second stage. The latent heat generated with the phase change of the gas can raise the temperature of the second stage. An increase in temperature of the cryopanel may have an undesirable effect on the pumping performance of the cryopump in some cases.
 既存のクライオポンプ制御では、真空チャンバ100からクライオポンプ10への熱負荷が低減されるゲートバルブ102の閉鎖中、省エネルギーのために冷凍機14の冷凍能力を抑制することがよく行われている。このような制御のもとでは第2段温度を比較的高く維持することが有効である。その結果、クロスオーバーの発生時点での第2段温度が高くなりがちであり、温度オーバーシュートが容易に発生しうることが懸念される。 In existing cryopump control, the refrigerating capacity of the refrigerator 14 is often suppressed for energy saving while the gate valve 102 that reduces the heat load from the vacuum chamber 100 to the cryopump 10 is closed. Under such control, it is effective to maintain the second stage temperature relatively high. As a result, the temperature of the second stage at the time of crossover tends to be high, and there is concern that temperature overshoot may easily occur.
 また、真空プロセス装置における独自の設定として、クライオパネル温度の許容範囲があらかじめ定められていることがある。上述のオーバーシュートの結果、この許容温度範囲を超えたことが検知されると、アラートの発報やゲートバルブ102の緊急閉鎖など、安全を確保するための動作が真空プロセス装置によって実行されうる。クライオパネル温度が許容範囲内に戻るまで真空プロセス装置は待機することになり、真空プロセスの開始がその分遅れてしまう。 In addition, the permissible range of cryopanel temperature is sometimes determined in advance as a unique setting in the vacuum process equipment. When it is detected that the allowable temperature range has been exceeded as a result of the above-described overshoot, the vacuum process apparatus can take actions to ensure safety, such as issuing an alert or emergency closing of the gate valve 102 . The vacuum process equipment has to wait until the cryopanel temperature returns to within the allowable range, which delays the start of the vacuum process.
 そこで、この実施の形態では、クロスオーバーの際に起こりうるクライオパネル温度のオーバーシュートを緩和するために、コントローラ60は、ゲートバルブ102が閉じているか否かを検知し、ゲートバルブ102が閉じているときの冷凍機14の冷凍能力をゲートバルブ102が開いているときに比べて増加させるように冷凍機14を制御するように構成される。 Therefore, in this embodiment, in order to mitigate the overshoot of the cryopanel temperature that may occur during crossover, the controller 60 detects whether the gate valve 102 is closed and detects whether the gate valve 102 is closed. is configured to control the refrigerator 14 to increase the refrigerating capacity of the refrigerator 14 when the gate valve 102 is open compared to when the gate valve 102 is open.
 図3は、実施の形態に係るクライオポンプ10の運転方法の一例を示すフローチャートである。コントローラ60は、クライオポンプ10の運転中に本処理を周期的に実行してもよい。 FIG. 3 is a flow chart showing an example of a method of operating the cryopump 10 according to the embodiment. The controller 60 may periodically execute this process while the cryopump 10 is in operation.
 図3に示されるように、本処理が開始されると、まず、ゲートバルブ102が閉じているか否かが判定される(S10)。一例として、コントローラ60は、ゲートバルブ102の開閉状態を示すゲートバルブ信号Sを受信し、ゲートバルブ信号Sに基づいてゲートバルブ102が閉じているか否かを検知するように構成されてもよい。上述のように、コントローラ60は、ゲートバルブ102から、または他のコントローラから、ゲートバルブ信号Sを受信することができる。 As shown in FIG. 3, when this process is started, it is first determined whether or not the gate valve 102 is closed (S10). As an example, the controller 60 may be configured to receive a gate valve signal S indicating the open/close state of the gate valve 102 and detect whether the gate valve 102 is closed based on the gate valve signal S. As noted above, controller 60 may receive gate valve signal S from gate valve 102 or from another controller.
 別の方法として、コントローラ60は、冷凍機14への熱負荷を取得し、取得された熱負荷に基づいてゲートバルブ102が閉じているか否かを検知するように構成されてもよい。冷凍機14への熱負荷は主に、真空チャンバ100からゲートバルブ102を通じて冷凍機14に入る。よって、ゲートバルブ102が閉じているときの冷凍機14への熱負荷は、ゲートバルブ102が開いているときの冷凍機14への熱負荷に比べて小さくなるものと期待される。そこで、冷凍機14への熱負荷が熱負荷しきい値を下回る場合にはゲートバルブ102が閉じていると検知し、冷凍機14への熱負荷が熱負荷しきい値を上回る場合にはゲートバルブ102が開いていると検知することができる。熱負荷しきい値は、クライオポンプ10の設計者の経験的知見または設計者による実験やシミュレーション等に基づき事前に取得され、コントローラ60に予め記憶されてもよい。 Alternatively, the controller 60 may be configured to acquire the heat load on the refrigerator 14 and detect whether the gate valve 102 is closed based on the acquired heat load. The heat load to refrigerator 14 primarily enters refrigerator 14 from vacuum chamber 100 through gate valve 102 . Therefore, the heat load on the refrigerator 14 when the gate valve 102 is closed is expected to be smaller than the heat load on the refrigerator 14 when the gate valve 102 is open. Therefore, when the heat load on the refrigerator 14 is below the heat load threshold, it is detected that the gate valve 102 is closed, and when the heat load on the refrigerator 14 exceeds the heat load threshold, the gate It can be detected that the valve 102 is open. The thermal load threshold may be obtained in advance based on the designer's empirical knowledge of the cryopump 10 or the designer's experiments, simulations, or the like, and may be stored in the controller 60 in advance.
 コントローラ60は、冷凍機14への熱負荷と冷凍機14の運転周波数とクライオパネル温度との関係を示すマップを参照し、冷凍機14の現在の運転周波数と測定されるクライオパネル温度とに基づいて冷凍機14への熱負荷を取得するように構成されてもよい。こうしたマップは、ロードマップとも称され、クライオポンプ10の設計者の経験的知見または設計者による実験やシミュレーション等に基づき事前に取得され、コントローラ60に予め記憶されてもよい。 The controller 60 refers to a map showing the relationship between the heat load on the refrigerator 14, the operating frequency of the refrigerator 14, and the cryopanel temperature, and based on the current operating frequency of the refrigerator 14 and the measured cryopanel temperature: may be configured to obtain the heat load to the refrigerator 14 by Such a map, also called a road map, may be obtained in advance based on the designer's empirical knowledge of the cryopump 10 or the designer's experiments, simulations, or the like, and may be stored in the controller 60 in advance.
 例えば、第1ロードマップは、冷凍機14の第1段と第2段それぞれへの熱負荷と、1段温調制御のもとでの冷凍機14の運転周波数および第2段のクライオパネル温度との関係を表す。コントローラ60は、1段温度制御の実行中に第1ロードマップを参照し、冷凍機14の現在の運転周波数と測定される第2段のクライオパネル温度とに基づいて、冷凍機14の第1段と第2段それぞれへの熱負荷を取得してもよい。第2段のクライオパネル温度は、第2温度センサ42によって測定されてもよい。 For example, the first roadmap includes the heat load on each of the first and second stages of the refrigerator 14, the operating frequency of the refrigerator 14 under first-stage temperature control, and the second-stage cryopanel temperature represents the relationship between The controller 60 refers to the first roadmap during execution of the first stage temperature control, and based on the current operating frequency of the refrigerator 14 and the measured second stage cryopanel temperature, determines the first temperature of the refrigerator 14 . The heat load on each stage and second stage may be obtained. The second stage cryopanel temperature may be measured by a second temperature sensor 42 .
 あるいは、冷凍機14の第1段と第2段それぞれへの熱負荷と、2段温調制御のもとでの冷凍機14の運転周波数および第1段のクライオパネル温度との関係を表す第2ロードマップが使用されてもよい。コントローラ60は、2段温度制御の実行中に第2ロードマップを参照し、冷凍機14の現在の運転周波数と測定される第1段のクライオパネル温度とに基づいて、冷凍機14の第1段と第2段それぞれへの熱負荷を取得してもよい。第1段のクライオパネル温度は、第1温度センサ40によって測定されてもよい。 Alternatively, the relationship between the thermal load on each of the first stage and the second stage of the refrigerator 14, the operating frequency of the refrigerator 14 under two-stage temperature control, and the cryopanel temperature of the first stage is shown in FIG. 2 roadmaps may be used. The controller 60 refers to the second roadmap during execution of the two-stage temperature control, and based on the current operating frequency of the refrigerator 14 and the measured first stage cryopanel temperature, determines the first temperature of the refrigerator 14 . The heat load on each stage and second stage may be obtained. The first stage cryopanel temperature may be measured by the first temperature sensor 40 .
 なお、コントローラ60は、必要に応じて、1段温度制御と2段温度制御を切り替えて実行するように構成されてもよい。クライオポンプ10が真空排気運転をしているときは通常、1段温度制御が実行される。コントローラ60は、クライオポンプ10のスタンバイ状態で2段温度制御を実行し、クロスオーバーの際に2段温度制御から1段温度制御に切り替え、真空排気運転中に1段温度制御を実行してもよい。あるいは、コントローラ60は、ゲートバルブ102が開いているか否かを検知し、ゲートバルブ102が開いているとき1段温度制御を実行し、ゲートバルブ102が閉じているとき2段温度制御を実行してもよい。 Note that the controller 60 may be configured to switch between the one-stage temperature control and the two-stage temperature control as necessary. When the cryopump 10 is in the evacuation operation, one-stage temperature control is normally performed. The controller 60 may execute two-stage temperature control in the standby state of the cryopump 10, switch from two-stage temperature control to one-stage temperature control at crossover, and execute one-stage temperature control during evacuation operation. good. Alternatively, the controller 60 senses whether the gate valve 102 is open, performs single-stage temperature control when the gate valve 102 is open, and performs two-stage temperature control when the gate valve 102 is closed. may
 図3に示されるように、ゲートバルブ102が閉じていると検知された場合(S10のY)、コントローラ60は、冷凍機14の冷凍能力をゲートバルブ102が開いているときに比べて増加させるように冷凍機14を制御する(S12)。一方、ゲートバルブ102が開いていると検知された場合(S10のN)、そうした冷凍能力の増加は行われない。 As shown in FIG. 3, when it is detected that the gate valve 102 is closed (Y in S10), the controller 60 increases the refrigerating capacity of the refrigerator 14 compared to when the gate valve 102 is open. The refrigerator 14 is controlled as follows (S12). On the other hand, if it is detected that the gate valve 102 is open (N of S10), such an increase in refrigerating capacity is not performed.
 冷凍機14の冷凍能力を増加させる制御の一例として、コントローラ60は、ゲートバルブ102が開いているときには第1下限値以上の運転周波数で冷凍機14を動作させ、ゲートバルブ102が閉じているときには第1下限値よりも大きい第2下限値以上の運転周波数で冷凍機14を動作させるように構成されてもよい。このようにすれば、冷凍機14が第2下限値よりも小さい運転周波数で動作しているときゲートバルブ102が閉じたとすると、冷凍機14の運転周波数がこの第2下限値まで増加される。1段温度制御または2段温度制御によって決定される運転周波数の値が第2下限値より大きければ、冷凍機14の運転周波数はその値へと増加される。このようにして、ゲートバルブ102が閉じているときの冷凍機14の冷凍能力をゲートバルブ102が開いているときに比べて増加させることができる。 As an example of control for increasing the refrigerating capacity of the refrigerator 14, the controller 60 operates the refrigerator 14 at an operating frequency equal to or higher than the first lower limit when the gate valve 102 is open, and operates It may be configured to operate the refrigerator 14 at an operating frequency equal to or higher than a second lower limit value that is higher than the first lower limit value. In this way, if the gate valve 102 is closed while the refrigerator 14 is operating at an operating frequency lower than the second lower limit, the operating frequency of the refrigerator 14 is increased to the second lower limit. If the value of the operating frequency determined by the one-step temperature control or the two-step temperature control is greater than the second lower limit value, the operating frequency of the refrigerator 14 is increased to that value. In this way, the refrigerating capacity of refrigerator 14 when gate valve 102 is closed can be increased compared to when gate valve 102 is open.
 なお、運転周波数の第2下限値は、冷凍機14の許容される運転周波数範囲の上限値またはそれより若干小さい既定値(例えば、上限値の80%または90%より大きくてもよい)であってもよい。このようにすれば、ゲートバルブ102が閉じているときの冷凍機14の冷凍能力をゲートバルブ102が開いているときに比べて確実に増加させることができる。 The second lower limit value of the operating frequency is the upper limit value of the allowable operating frequency range of the refrigerator 14 or a predetermined value slightly smaller than it (for example, it may be larger than 80% or 90% of the upper limit value). may By doing so, the refrigerating capacity of the refrigerator 14 when the gate valve 102 is closed can be reliably increased compared to when the gate valve 102 is open.
 冷凍機14の冷凍能力を増加させる制御の他の一例として、コントローラ60は、ゲートバルブ102が開いているときには温度センサによって測定される冷却温度を第1目標温度に一致させるように冷凍機14の運転周波数を決定し、ゲートバルブ102が閉じているときには温度センサによって測定される冷却温度を第1目標温度より低い第2目標温度に一致させるように冷凍機14の運転周波数を決定し、決定された運転周波数で冷凍機14を動作させるように構成されてもよい。このようにしても、ゲートバルブ102が閉じているときの冷凍機14の運転周波数をゲートバルブ102が開いているときに比べて増加させるように冷凍機14を制御することができる。 As another example of control for increasing the cooling capacity of the refrigerator 14, the controller 60 adjusts the cooling temperature of the refrigerator 14 so that the cooling temperature measured by the temperature sensor matches the first target temperature when the gate valve 102 is open. The operation frequency is determined, and the operation frequency of the refrigerator 14 is determined so that the cooling temperature measured by the temperature sensor when the gate valve 102 is closed matches the second target temperature lower than the first target temperature. It may be configured to operate the refrigerator 14 at the same operating frequency. Even in this way, the refrigerator 14 can be controlled to increase the operating frequency of the refrigerator 14 when the gate valve 102 is closed compared to when the gate valve 102 is open.
 例えば、1段温度制御の実行中、コントローラ60は、ゲートバルブ102が開いているときには第1温度センサ40によって測定される冷却温度を第1目標温度に一致させるように冷凍機14の運転周波数を決定し、ゲートバルブ102が閉じているときには第1温度センサ40によって測定される冷却温度を第1目標温度より低い第2目標温度に一致させるように冷凍機14の運転周波数を決定してもよい。この場合、第1目標温度は例えば80Kから120Kの範囲から選択されてもよい。第2目標温度は例えば60K以上の温度から選択されてもよい。 For example, during single-stage temperature control, the controller 60 adjusts the operating frequency of the refrigerator 14 so that the cooling temperature measured by the first temperature sensor 40 matches the first target temperature when the gate valve 102 is open. and the operating frequency of the refrigerator 14 may be determined so as to match the cooling temperature measured by the first temperature sensor 40 with a second target temperature lower than the first target temperature when the gate valve 102 is closed. . In this case, the first target temperature may be selected from the range of 80K to 120K, for example. The second target temperature may be selected from temperatures above 60 K, for example.
 あるいは、2段温度制御の実行中、コントローラ60は、ゲートバルブ102が開いているときには第2温度センサ42によって測定される冷却温度を第1目標温度に一致させるように冷凍機14の運転周波数を決定し、ゲートバルブ102が閉じているときには第2温度センサ42によって測定される冷却温度を第1目標温度より低い第2目標温度に一致させるように冷凍機14の運転周波数を決定してもよい。この場合、第1目標温度は例えば12Kから20Kの範囲から選択されてもよい。第2目標温度は例えば10Kから12Kの範囲から選択されてもよい。 Alternatively, during execution of the two-stage temperature control, the controller 60 adjusts the operating frequency of the refrigerator 14 so that the cooling temperature measured by the second temperature sensor 42 matches the first target temperature when the gate valve 102 is open. and the operating frequency of the refrigerator 14 may be determined so as to match the cooling temperature measured by the second temperature sensor 42 with a second target temperature lower than the first target temperature when the gate valve 102 is closed. . In this case, the first target temperature may be selected from the range of 12K to 20K, for example. The second target temperature may be selected from a range of 10K to 12K, for example.
 なお、冷凍機14の冷凍能力を増加させる制御の実行中、コントローラ60は、ゲートバルブ102が開いているか否かを検知し、ゲートバルブ102が開いている場合に冷凍機14の冷凍能力の増加を終了してもよい。このようにして、ゲートバルブ102が開いたとき冷凍機14の冷凍能力を元に戻すことができる。 During execution of the control for increasing the refrigerating capacity of the refrigerator 14, the controller 60 detects whether or not the gate valve 102 is open, and increases the refrigerating capacity of the refrigerator 14 when the gate valve 102 is open. may be terminated. In this way, the refrigerating capacity of the refrigerator 14 can be restored when the gate valve 102 is opened.
 図4(a)は、比較例に係るクライオポンプの動作を示す図である。上述のように、既存のクライオポンプでは多くの場合、ゲートバルブの閉鎖により真空チャンバからクライオポンプの冷凍機への熱負荷が低減されるため、冷凍機の冷凍能力を抑制するように冷凍機が制御される。よって、図4(a)に示されるように、ゲートバルブが閉鎖されている間、冷凍機の運転周波数は低減される。このとき冷凍機への熱負荷も小さくなるから、クライオパネル温度(例えば、第2段のクライオパネル温度)は目標温度Taに維持される。しかし、ゲートバルブが開いたとき状況が変わる。クロスオーバーに伴う冷凍機への熱負荷の増加により、クライオパネル温度が一時的に大きく上昇しうる。つまりクライオパネル温度がオーバーシュートする。こうしてクライオパネル温度が目標温度Taから乖離したことにより、冷凍機の運転周波数が増加され、その後クライオパネル温度は目標温度Taへと徐々に戻っていく。 FIG. 4(a) is a diagram showing the operation of the cryopump according to the comparative example. As described above, in many existing cryopumps, closing the gate valve reduces the heat load from the vacuum chamber to the refrigerator of the cryopump. controlled. Therefore, as shown in FIG. 4(a), the operating frequency of the refrigerator is reduced while the gate valve is closed. At this time, the heat load on the refrigerator is also reduced, so the cryopanel temperature (for example, the second-stage cryopanel temperature) is maintained at the target temperature Ta. However, the situation changes when the gate valve opens. Due to the increased heat load on the refrigerator due to the crossover, the temperature of the cryopanel may temporarily rise significantly. That is, the cryopanel temperature overshoots. Since the cryopanel temperature deviates from the target temperature Ta in this way, the operating frequency of the refrigerator is increased, and thereafter the cryopanel temperature gradually returns to the target temperature Ta.
 図4(b)は、実施の形態に係るクライオポンプの動作を示す図である。実施の形態によれば、ゲートバルブ102が閉じているときの冷凍機14の冷凍能力をゲートバルブ102が開いているときに比べて増加させることができる。図4(b)に示されるように、ゲートバルブが閉鎖されている間、冷凍機14の運転周波数が増加される。このとき冷凍機14への熱負荷は小さくなっているから、クライオパネル温度は低下していく。その後ゲートバルブ102が開くことにより冷凍機14への熱負荷が高まりクライオパネル温度は上昇する。しかし、ゲートバルブ102の閉鎖中にクライオパネル温度をあらかじめ充分に低下させているので、クライオパネル温度は目標温度Taを大きく超えることなく目標温度Taに追従するものと期待される。このようにして、実施の形態によれば、クロスオーバーの際に起こりうるクライオパネル温度のオーバーシュートを緩和することができる。 FIG. 4(b) is a diagram showing the operation of the cryopump according to the embodiment. According to the embodiment, the refrigerating capacity of the refrigerator 14 can be increased when the gate valve 102 is closed compared to when the gate valve 102 is open. As shown in FIG. 4(b), the operating frequency of the refrigerator 14 is increased while the gate valve is closed. Since the heat load on the refrigerator 14 is reduced at this time, the cryopanel temperature is lowered. After that, the gate valve 102 opens to increase the heat load on the refrigerator 14 and the cryopanel temperature rises. However, since the cryopanel temperature is sufficiently lowered in advance while the gate valve 102 is closed, the cryopanel temperature is expected to follow the target temperature Ta without greatly exceeding the target temperature Ta. In this manner, according to the embodiment, overshoot of the cryopanel temperature that may occur during crossover can be mitigated.
 クライオポンプ10の総運転時間のうち大半は真空チャンバ100の真空排気運転であり、この間ゲートバルブ102は開いている。クライオポンプ10の総運転時間のうちゲートバルブ102が閉じている時間が占める割合はごく小さいと考えられる。そのため、実施の形態に係るクライオポンプ10では、ゲートバルブ102の閉鎖中の消費電力がいくらか増加しうるが、そうした時間はごく短いと見込まれるから、大勢に影響は無い。 Most of the total operating time of the cryopump 10 is the evacuation operation of the vacuum chamber 100, during which the gate valve 102 is open. It is considered that the proportion of the time during which the gate valve 102 is closed in the total operating time of the cryopump 10 is very small. Therefore, in the cryopump 10 according to the embodiment, the power consumption may increase somewhat while the gate valve 102 is closed, but such time is expected to be very short, so there is no significant impact.
 図5は、実施の形態に係るクライオポンプ10の運転方法の他の一例を示すフローチャートである。ゲートバルブ102の開閉を検知することに代えて、クライオポンプ10の再生が完了したか否かが検知されてもよい。よって、コントローラ60は、クライオポンプ10の再生が完了したか否かを検知し、再生の完了に続いて冷凍機14の冷凍能力を一時的に増加させるように冷凍機14を制御してもよい。このようにしても、上述の実施の形態と同様に、クロスオーバーの際に起こりうるクライオパネル温度のオーバーシュートを緩和することができる。 FIG. 5 is a flow chart showing another example of the operating method of the cryopump 10 according to the embodiment. Instead of detecting the opening/closing of the gate valve 102, it may be detected whether the regeneration of the cryopump 10 is completed. Therefore, the controller 60 may detect whether regeneration of the cryopump 10 has been completed, and control the refrigerator 14 to temporarily increase the refrigerating capacity of the refrigerator 14 following the completion of regeneration. . In this way, as in the above-described embodiments, overshoot of the cryopanel temperature that may occur during crossover can be mitigated.
 図5に示されるように、クライオポンプ10の再生が完了したか否かが判定される(S20)。コントローラ60は、再生のクールダウン工程において第1温度センサ40および第2温度センサ42それぞれから測定温度を取得し、第1温度センサ40の測定温度を真空排気運転のための第1段クライオパネル18の目標冷却温度と比較し、第2温度センサ42の測定温度を真空排気運転のための第2段のクライオパネルユニット20の目標冷却温度と比較してもよい。コントローラ60は、第1温度センサ40および第2温度センサ42の測定温度のうちいずれかがまだ目標冷却温度に到達していない場合にはクールダウン工程を継続し、第1温度センサ40および第2温度センサ42の測定温度がそれぞれ目標冷却温度に到達している場合にはクールダウン工程すなわちクライオポンプ10の再生が完了したと判定してもよい。 As shown in FIG. 5, it is determined whether the regeneration of the cryopump 10 has been completed (S20). The controller 60 acquires the measured temperatures from the first temperature sensor 40 and the second temperature sensor 42 respectively in the cooling down process of regeneration, and uses the measured temperature of the first temperature sensor 40 as the first stage cryopanel 18 for evacuation operation. , and the measured temperature of the second temperature sensor 42 may be compared with the target cooling temperature of the second stage cryopanel unit 20 for the evacuation operation. The controller 60 continues the cool-down process if either of the temperatures measured by the first temperature sensor 40 and the second temperature sensor 42 has not yet reached the target cooling temperature. When the temperatures measured by the temperature sensors 42 reach the respective target cooling temperatures, it may be determined that the cool-down process, that is, the regeneration of the cryopump 10 has been completed.
 クライオポンプ10の再生が完了した場合(S20のY)、コントローラ60は、冷凍機14の冷凍能力を増加させるように冷凍機14を制御する(S22)。冷凍機14の冷凍能力増加は、上述の実施の形態と同様に、冷凍機14の運転周波数を増加させることによって、1段温度制御における目標温度を低下させることによって、または2段温度制御における目標温度を低下させることによって、実現されてもよい。一方、クライオポンプ10の再生が完了していないと検知された場合(S20のN)、そうした冷凍能力の増加は行われない。 When the regeneration of the cryopump 10 is completed (Y of S20), the controller 60 controls the refrigerator 14 to increase the refrigerating capacity of the refrigerator 14 (S22). The refrigerating capacity of the refrigerator 14 can be increased by increasing the operating frequency of the refrigerator 14, by lowering the target temperature in the one-stage temperature control, or by increasing the target temperature in the two-stage temperature control, as in the above-described embodiment. It may be achieved by lowering the temperature. On the other hand, if it is detected that the regeneration of the cryopump 10 has not been completed (N of S20), the refrigerating capacity is not increased.
 冷凍機14の冷凍能力を増加させる制御は、ゲートバルブ102が開くまで実行されてもよい。この場合、コントローラ60は、クライオポンプ10がスタンバイ状態にあるとき冷凍機14の冷凍能力を増加させるように冷凍機14を制御してもよい。あるいは、冷凍機14の冷凍能力を増加させる制御は、所定時間にわたり実行されてもよい。 The control to increase the refrigerating capacity of the refrigerator 14 may be executed until the gate valve 102 opens. In this case, the controller 60 may control the refrigerator 14 to increase the cooling capacity of the refrigerator 14 when the cryopump 10 is in the standby state. Alternatively, the control to increase the refrigerating capacity of refrigerator 14 may be executed over a predetermined period of time.
 図6は、他の実施の形態に係るクライオポンプ10の制御装置の構成を概略的に示すブロック図である。冷凍機14の冷凍能力を調節するために、冷凍機14が電気ヒータなどの加熱装置62を備えてもよい。加熱装置62は、第1冷却ステージ22に、または第2冷却ステージ24に、または第1冷却ステージ22と第2冷却ステージ24の両方に設けられてもよい。コントローラ60は、加熱装置62のオンオフを切り替え、及び/または、加熱装置62の出力を制御するように構成されてもよい。 FIG. 6 is a block diagram schematically showing the configuration of a control device for the cryopump 10 according to another embodiment. In order to adjust the cooling capacity of the refrigerator 14, the refrigerator 14 may be provided with a heating device 62 such as an electric heater. The heating device 62 may be provided in the first cooling stage 22 , in the second cooling stage 24 , or in both the first cooling stage 22 and the second cooling stage 24 . Controller 60 may be configured to turn heating device 62 on and off and/or control the power output of heating device 62 .
 コントローラ60は、ゲートバルブ102が開いているときには加熱装置62を第1出力で作動させ、ゲートバルブ102が閉じているときには加熱装置62を第1出力よりより低い第2出力で作動させるか又は作動させないように構成されてもよい。加熱装置62の出力を低下させることによって、ゲートバルブ102が閉じているときの冷凍機14の冷凍能力をゲートバルブ102が開いているときに比べて増加させることができる。 The controller 60 operates the heating device 62 at a first output when the gate valve 102 is open and operates or operates the heating device 62 at a second output less than the first output when the gate valve 102 is closed. It may be configured not to allow By reducing the output of the heating device 62, the refrigerating capacity of the refrigerator 14 when the gate valve 102 is closed can be increased compared to when the gate valve 102 is open.
 なお、図6の実施の形態においても、図2の実施の形態と同様に、冷凍機14は、冷凍機インバータ52を備え、運転周波数を可変とするように構成されてもよい。この場合、例えば1段温度制御または2段温度制御により冷凍機14の運転周波数を制御するとともに、加熱装置62を用いて冷凍能力が調節されてもよい。あるいは、図6の実施の形態では、冷凍機14は、一定の運転周波数で駆動されてもよく、冷凍機インバータ52を備えなくてもよい。 In the embodiment of FIG. 6, similarly to the embodiment of FIG. 2, the refrigerator 14 may include a refrigerator inverter 52 and be configured to have a variable operating frequency. In this case, for example, the operating frequency of the refrigerator 14 may be controlled by one-step temperature control or two-step temperature control, and the cooling capacity may be adjusted using the heating device 62 . Alternatively, in the embodiment of FIG. 6, refrigerator 14 may be driven at a constant operating frequency and may not include refrigerator inverter 52 .
 以上、本発明を実施例にもとづいて説明した。本発明は上記実施形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。 The present invention has been described above based on the examples. It should be understood by those skilled in the art that the present invention is not limited to the above embodiments, and that various design changes and modifications are possible, and that such modifications are within the scope of the present invention. By the way.
 本発明は、クライオポンプおよびクライオポンプの運転方法の分野における利用が可能である。 The present invention can be used in the field of cryopumps and cryopump operating methods.
 10 クライオポンプ、 14 冷凍機、 60 コントローラ、 100 真空チャンバ、 102 ゲートバルブ。 10 cryopump, 14 refrigerator, 60 controller, 100 vacuum chamber, 102 gate valve.

Claims (9)

  1.  真空チャンバにゲートバルブを介して取付可能なクライオポンプであって、
     冷凍機と、
     前記ゲートバルブが閉じているか否かを検知し、前記ゲートバルブが閉じているときの前記冷凍機の冷凍能力を前記ゲートバルブが開いているときに比べて増加させるように前記冷凍機を制御するように構成されるコントローラと、を備えることを特徴とするクライオポンプ。
    A cryopump that can be attached to a vacuum chamber via a gate valve,
    a refrigerator;
    detecting whether or not the gate valve is closed, and controlling the refrigerator so as to increase the refrigerating capacity of the refrigerator when the gate valve is closed compared to when the gate valve is open; A cryopump, comprising: a controller configured to:
  2.  前記コントローラは、前記ゲートバルブの開閉状態を示すゲートバルブ信号を受信し、前記ゲートバルブ信号に基づいて前記ゲートバルブが閉じているか否かを検知するように構成されることを特徴とする請求項1に記載のクライオポンプ。 3. The controller is configured to receive a gate valve signal indicating an open/closed state of the gate valve, and to detect whether the gate valve is closed based on the gate valve signal. 1. The cryopump according to 1.
  3.  前記コントローラは、前記冷凍機への熱負荷を取得し、取得された熱負荷に基づいて前記ゲートバルブが閉じているか否かを検知するように構成されることを特徴とする請求項1に記載のクライオポンプ。 2. The controller according to claim 1, wherein the controller acquires a heat load to the refrigerator and detects whether or not the gate valve is closed based on the acquired heat load. cryopump.
  4.  前記冷凍機は、運転周波数を可変とするように構成され、
     前記コントローラは、前記ゲートバルブが開いているときには第1下限値以上の運転周波数で前記冷凍機を動作させ、前記ゲートバルブが閉じているときには前記第1下限値よりも大きい第2下限値以上の運転周波数で前記冷凍機を動作させるように構成されることを特徴とする請求項1から3のいずれかに記載のクライオポンプ。
    The refrigerator is configured to have a variable operating frequency,
    The controller operates the refrigerator at an operating frequency equal to or higher than a first lower limit when the gate valve is open, and operates at an operating frequency equal to or higher than a second lower limit greater than the first lower limit when the gate valve is closed. 4. The cryopump according to any one of claims 1 to 3, wherein the cryopump is configured to operate the refrigerator at an operating frequency.
  5.  前記冷凍機は、運転周波数を可変とするように構成され、
     前記クライオポンプは、前記冷凍機の冷却温度を測定する温度センサをさらに備え、
     前記コントローラは、前記ゲートバルブが開いているときには前記温度センサによって測定される冷却温度を第1目標温度に一致させるように前記冷凍機の運転周波数を決定し、前記ゲートバルブが閉じているときには前記温度センサによって測定される冷却温度を前記第1目標温度より低い第2目標温度に一致させるように前記冷凍機の運転周波数を決定し、決定された運転周波数で前記冷凍機を動作させるように構成されることを特徴とする請求項1から3のいずれかに記載のクライオポンプ。
    The refrigerator is configured to have a variable operating frequency,
    The cryopump further includes a temperature sensor that measures the cooling temperature of the refrigerator,
    The controller determines the operating frequency of the refrigerator so that the cooling temperature measured by the temperature sensor matches the first target temperature when the gate valve is open, and determines the operating frequency of the refrigerator when the gate valve is closed. An operation frequency of the refrigerator is determined so that the cooling temperature measured by the temperature sensor matches a second target temperature lower than the first target temperature, and the refrigerator is operated at the determined operation frequency. 4. The cryopump according to any one of claims 1 to 3, wherein:
  6.  前記冷凍機は、加熱装置を備え、
     前記コントローラは、前記ゲートバルブが開いているときには前記加熱装置を第1出力で作動させ、前記ゲートバルブが閉じているときには前記加熱装置を前記第1出力よりより低い第2出力で作動させるか又は作動させないように構成されることを特徴とする請求項1から4のいずれかに記載のクライオポンプ。
    The refrigerator includes a heating device,
    the controller operates the heating device at a first output when the gate valve is open and operates the heating device at a second output less than the first output when the gate valve is closed; or 5. A cryopump according to any one of claims 1 to 4, wherein the cryopump is configured to be inoperative.
  7.  クライオポンプの運転方法であって、前記クライオポンプは、真空チャンバにゲートバルブを介して取付可能であり、冷凍機を備えており、前記方法は、
     前記ゲートバルブが閉じているか否かを検知することと、
     前記ゲートバルブが閉じているときの前記冷凍機の冷凍能力を前記ゲートバルブが開いているときに比べて増加させることと、を備えることを特徴とする方法。
    A method of operating a cryopump, the cryopump being attachable to a vacuum chamber via a gate valve and comprising a refrigerator, the method comprising:
    detecting whether the gate valve is closed;
    and increasing the refrigerating capacity of the refrigerator when the gate valve is closed compared to when the gate valve is open.
  8.  冷凍機と、
     クライオポンプの再生が完了したか否かを検知し、前記再生の完了に続いて前記冷凍機の冷凍能力を一時的に増加させるように前記冷凍機を制御するコントローラと、を備えることを特徴とするクライオポンプ。
    a refrigerator;
    a controller for detecting whether or not regeneration of the cryopump has been completed, and for controlling the refrigerator so as to temporarily increase the refrigerating capacity of the refrigerator following completion of the regeneration. cryopump.
  9.  クライオポンプの運転方法であって、前記クライオポンプは、冷凍機を備えており、前記方法は、
     前記クライオポンプの再生が完了したか否かを検知することと、
     前記再生の完了に続いて前記冷凍機の冷凍能力を一時的に増加させることと、を備えることを特徴とする方法。
    A method of operating a cryopump, the cryopump comprising a refrigerator, the method comprising:
    detecting whether regeneration of the cryopump is complete;
    and temporarily increasing the refrigerating capacity of the refrigerator following completion of the regeneration.
PCT/JP2023/002219 2022-02-18 2023-01-25 Cryopump and method for driving cryopump WO2023157586A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-024015 2022-02-18
JP2022024015A JP2023120890A (en) 2022-02-18 2022-02-18 Cryopump and operation method of the same

Publications (1)

Publication Number Publication Date
WO2023157586A1 true WO2023157586A1 (en) 2023-08-24

Family

ID=87578395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002219 WO2023157586A1 (en) 2022-02-18 2023-01-25 Cryopump and method for driving cryopump

Country Status (3)

Country Link
JP (1) JP2023120890A (en)
TW (1) TW202334551A (en)
WO (1) WO2023157586A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211870A (en) * 1988-04-13 1990-01-16 Leybold Ag Method and device for inspecting function of cryopump operated by refrigerator
JP2016114007A (en) * 2014-12-17 2016-06-23 住友重機械工業株式会社 Cold trap and control method of cold trap
JP2017172381A (en) * 2016-03-22 2017-09-28 住友重機械工業株式会社 Cryopump, cryopump control device and cryopump control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211870A (en) * 1988-04-13 1990-01-16 Leybold Ag Method and device for inspecting function of cryopump operated by refrigerator
JP2016114007A (en) * 2014-12-17 2016-06-23 住友重機械工業株式会社 Cold trap and control method of cold trap
JP2017172381A (en) * 2016-03-22 2017-09-28 住友重機械工業株式会社 Cryopump, cryopump control device and cryopump control method

Also Published As

Publication number Publication date
TW202334551A (en) 2023-09-01
JP2023120890A (en) 2023-08-30

Similar Documents

Publication Publication Date Title
US10273949B2 (en) Cryopump and method of operating the cryopump
KR101721171B1 (en) Cryopump, Controlling Method of Cryopump, and Refrigerator
JP2011026985A (en) Cryopump and monitoring method of cryopump
KR20130097094A (en) Cryo-pump, regeneration method of cryo-pump, and controlling machine of cryo-pump
TWI489042B (en) Cryogenic pump and vacuum exhaust method
KR101763249B1 (en) Cold Trap and Controlling Method of Cold Trap
TW201632729A (en) Cryopump system, cryopump controller, and method for regenerating the cryopump
US11428216B2 (en) Cryopump and method for controlling cryopump
JP4927642B2 (en) Operation control method for two-stage refrigerator, operation control method for cryopump using two-stage refrigerator, two-stage refrigerator and cryopump
US11078900B2 (en) Cryopump, cryopump controller, and cryopump control method
WO2023157586A1 (en) Cryopump and method for driving cryopump
JP7369129B2 (en) Cryopumps and how to monitor them
JP2022056664A (en) Cryopump and regeneration method of cryopump
WO2010097888A1 (en) Method for controlling the operation of two-stage refrigerator, method for controlling the operation of cryo pump equipped with two-stage refrigerator, two-stage refrigerator, cryo pump, and vacuum substrate processing device
JP6952168B2 (en) Cryopump and cryopump control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756114

Country of ref document: EP

Kind code of ref document: A1