WO2023157465A1 - Shield terminal and outer conductor - Google Patents

Shield terminal and outer conductor Download PDF

Info

Publication number
WO2023157465A1
WO2023157465A1 PCT/JP2022/047273 JP2022047273W WO2023157465A1 WO 2023157465 A1 WO2023157465 A1 WO 2023157465A1 JP 2022047273 W JP2022047273 W JP 2022047273W WO 2023157465 A1 WO2023157465 A1 WO 2023157465A1
Authority
WO
WIPO (PCT)
Prior art keywords
fitting surface
fitting
protrusions
protrusion
metal parts
Prior art date
Application number
PCT/JP2022/047273
Other languages
French (fr)
Japanese (ja)
Inventor
頼一 村林
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2023157465A1 publication Critical patent/WO2023157465A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6581Shield structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/38Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts

Definitions

  • the present disclosure relates to shield terminals and outer conductors.
  • Patent Document 1 discloses a connector in which an inner conductor and a dielectric are surrounded by an outer conductor.
  • the outer conductor is configured by assembling a die-cast outer conductor main body and a plate-like cover.
  • Metal parts that are manufactured solely for the purpose of electrical continuity generally do not require high flatness in surface treatment. When such metal parts are fitted together to form one outer conductor, a gap is generated between the mating surfaces of both metal parts. In a circuit for high-speed communication, a gap between mating surfaces generates an unnecessary capacitor, causes a resonance phenomenon, and deteriorates communication characteristics. As a countermeasure, it is conceivable to reduce the impedance by ensuring a wide contact area of the metal parts. However, when the metal parts are die-cast, it is difficult to secure a large contact area because the dimensional accuracy and flatness are lower than those of pressed products.
  • the present disclosure has been completed based on the circumstances as described above, and aims to bring the metal parts forming the outer conductor into contact with each other over a wide area.
  • the shield terminal of the first disclosure includes: comprising an inner conductor, a dielectric surrounding the inner conductor, and an outer conductor surrounding the dielectric;
  • the outer conductor is configured with a plurality of metal parts that are fitted together, A plurality of protrusions are formed on a fitting surface of at least one of the metal parts that is in sliding contact with the other metal parts during the fitting process, In the state in which the plurality of metal parts are fitted together, the plurality of protrusions are in contact with the other metal part in a state of being plastically deformed.
  • the outer conductor of the second disclosure is an outer conductor surrounding a dielectric in which the inner conductor is housed, It has multiple metal parts that fit together, A plurality of protrusions are formed on a fitting surface of at least one of the metal parts that is in sliding contact with the other metal parts during the fitting process, In the state in which the plurality of metal parts are fitted together, the plurality of protrusions are in contact with the other metal part in a state of being plastically deformed.
  • the metal parts forming the outer conductor can be brought into contact with each other over a wide area.
  • FIG. 1 is a perspective view of the shield terminal of Example 1.
  • FIG. FIG. 2 is a perspective view showing an exploded state of the shield terminal.
  • FIG. 3 is a side sectional view of the shield terminal. 4 is a cross-sectional view taken along line AA of FIG. 3.
  • FIG. 5 is a partially enlarged cross-sectional view exaggerating the size of the projection before the first and second parts forming the outer conductor are fitted together.
  • FIG. 6 is a partially enlarged cross-sectional view exaggerating the size of the protrusion in the fitted state of the first part and the second part.
  • FIG. 7 is a partially enlarged cross-sectional view exaggerating the size of the projection before the first and second parts forming the outer conductor of the second embodiment are fitted together.
  • FIG. 1 is a perspective view of the shield terminal of Example 1.
  • FIG. 2 is a perspective view showing an exploded state of the shield terminal.
  • FIG. 8 is a partially enlarged cross-sectional view exaggerating the size of a protrusion in the fitted state of the first part and the second part that constitute the outer conductor of the second embodiment.
  • FIG. 9 is a partially enlarged cross-sectional view exaggerating the size of a protrusion in a state before the first and second parts forming the outer conductor of Example 3 are fitted together.
  • FIG. 10 is a partially enlarged cross-sectional view exaggerating the size of the protrusion in the fitted state of the first part and the second part that constitute the outer conductor of the third embodiment.
  • FIG. 11 is a partially enlarged cross-sectional view exaggerating the size of the protrusion before fitting the first and second parts constituting the outer conductor of the fourth embodiment.
  • FIG. 12 is a partially enlarged cross-sectional view exaggerating the size of the protrusion in the fitted state of the first part and the second part that constitute the outer conductor of the fourth embodiment.
  • the shield terminal of the first disclosure includes: (1) An inner conductor, a dielectric surrounding the inner conductor, and an outer conductor surrounding the dielectric, wherein the outer conductor includes a plurality of metal parts that are fitted together, and at least A plurality of protrusions are formed on a fitting surface of one of the metal parts that comes into sliding contact with the other metal part during the fitting process. The protrusion is in contact with the other metal component in a plastically deformed state.
  • the plurality of protrusions formed on the fitting surface of one metal part are plastically deformed while being in sliding contact with other metal parts.
  • the multi-point contact of the plurality of plastically deformed protrusions enables the metal parts forming the outer conductor to be brought into contact with each other over a wide area.
  • the plurality of protrusions are formed by satin finishing. According to this configuration, it is possible to form the projections of desired size and arrangement.
  • the metal parts are preferably formed by casting, forging or cutting. According to this configuration, since the rigidity of the metal part is high, the protrusion can be reliably deformed plastically.
  • the protrusion is formed only on one of the two metal parts that are fitted to each other. According to this configuration, most of the protrusions can be plastically deformed and brought into contact with the mating surface of the mating metal component.
  • the projecting dimensions of the plurality of protrusions are set at random. According to this configuration, in the process of fitting the metal parts together, the timings of plastic deformation of the plurality of projections are dispersed, so that the maximum value of the fitting resistance can be reduced.
  • the plurality of protrusions are randomly arranged on the fitting surface. According to this configuration, it is possible to form the projection by blasting with low accuracy.
  • the fitting surface is oblique with respect to the fitting direction of the two metal parts. According to this configuration, in the process of fitting the metal parts together, the timings of plastic deformation of the plurality of projections are dispersed, so that the maximum value of the fitting resistance can be reduced.
  • the two metal parts to be fitted to each other are a combination in which the number of peaks PPI of the plurality of protrusions is different. According to this configuration, the protrusion of one metal part and the protrusion of the other metal part always come into contact with each other to cause plastic deformation, so that the contact reliability is high.
  • the outer conductor of the second disclosure is (9) An outer conductor surrounding a dielectric in which an inner conductor is housed, comprising a plurality of metal parts to be fitted together, wherein at least one of the metal parts is A plurality of projections are formed on the fitting surface that is in sliding contact with the metal part, and when the plurality of metal parts are fitted together, the plurality of projections are plastically deformed and come into contact with the other metal part. are doing.
  • the plurality of protrusions formed on the fitting surface of one metal part are plastically deformed while being in sliding contact with other metal parts.
  • the plurality of plastically deformed protrusions allows the metal parts forming the outer conductor to be brought into contact with each other over a wide area.
  • Example 1 A shield terminal 1 of Example 1 embodying the present disclosure will be described with reference to FIGS. 1 to 6.
  • FIG. The present invention is not limited to these exemplifications, but is indicated by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.
  • the positive direction of the X-axis in FIGS. 1 to 3 is defined as the front.
  • the positive direction of the Y-axis in FIGS. 1, 2 and 4 is defined as the right side.
  • the positive direction of the Z-axis in FIGS. 1 to 4 is defined as upward.
  • the shield terminal 1 of Example 1 is constructed by assembling one inner conductor 10, one dielectric 11, and one outer conductor 15.
  • the inner conductor 10 is made of an elongated metal material, and has an L-shaped bent shape when viewed from the side of the inner conductor 10 .
  • the dielectric 11 is a component having an L-shape in side view.
  • an L-shaped slit-shaped accommodation chamber 12 is formed inside the dielectric 11 .
  • the inner conductor 10 is inserted into the slit-shaped housing chamber 12 from behind the dielectric 11 .
  • the outer conductor 15 is configured by assembling a metal first part 16 and a metal second part 24 .
  • the first component 16 is a single component having a rectangular body portion 17 and a cylindrical portion 18 projecting forward from the body portion 17 .
  • a housing space 19 for housing the dielectric 11 is formed in the body portion 17 and the cylindrical portion 18 .
  • a rear wall portion 20 of the body portion 17 is formed with an assembly opening 21 for assembling the dielectric 11 into the housing space 19 .
  • the assembly openings 21 are opened on the rear surface and the bottom surface of the body portion 17 .
  • the left and right inner side surfaces of the assembly opening 21 are defined as a pair of first fitting surfaces 22 .
  • the second part 24 is a part that closes the opening of the accommodation space 19 on the outer surface of the body part 17 by being assembled to the body part 17 from below.
  • the second part 24 is a single part having a bottom wall portion 25 and a columnar portion 26 rising upward from the rear end portion of the bottom wall portion 25 in a columnar shape.
  • the left and right outer side surfaces of the columnar portion 26 are defined as a pair of second fitting surfaces 27 .
  • the first part 16 and the second part 24 are assembled by vertically translating them.
  • the fitting direction of the two parts 16 and 24 is parallel to the direction in which the columnar portion 26 rises from the bottom wall portion 25 .
  • the columnar part 26 is fitted into the assembly opening 21 from below, and the first fitting surface 22 and the second fitting surface 27 are fitted together. slides in the vertical direction.
  • the bottom wall part 25 closes the opening on the lower surface of the main body part 17 and the columnar part 26 closes the assembly opening 21 .
  • the first part 16 is a part manufactured by casting (die casting), forging, or cutting, so it has higher rigidity than a plate-like metal member.
  • the second part 24 is also a part manufactured by casting (die casting), forging, or cutting, so it has higher rigidity than the plate-like member. Therefore, when the columnar portion 26 is fitted into the assembly opening 21, the first fitting surface 22 and the second fitting surface 27 cannot be elastically brought into close contact with each other. If the dimensional tolerances of the parts 16 and 24 are reduced in order to increase the degree of close contact between the fitting surfaces 22 and 27, the sliding resistance between the columnar portion 26 and the assembly opening 21 becomes too large. In the case of , it becomes impossible to mate.
  • the pair of first fitting surfaces 22 are inclined with respect to the fitting direction of the two parts 16 and 24 .
  • the space between the pair of first fitting surfaces 22 facing each other gradually narrows toward the upper end side of the first fitting surfaces 22 (the tip side in the fitting direction of the second component 24).
  • the distance between the pair of second fitting surfaces 27 in the left-right direction is also the same as the first fitting surface 22, toward the upper end side of the second fitting surface 27 (toward the tip end side in the fitting direction with respect to the first component 16). gradually getting smaller.
  • the first fitting surface 22 and the second fitting surface 27 are parallel.
  • the first fitting surface 22 is satin finished, and a plurality of protrusions 23 are formed by the satin finish.
  • the satin finish can be formed in the casting process by forming fine irregularities in the mold for casting the first component 16 .
  • post-processing can be performed by a wire brush method, a blast method, a dispersion plating method, or the like.
  • the second fitting surface 27 is not satin-finished and does not have a projecting portion corresponding to the projecting portion 23 of the first fitting surface 22 . Therefore, the surface roughness of the first fitting surface 22 is greater than the surface roughness of the second fitting surface 27 .
  • the surface roughness of the first fitting surface 22 is higher than the surface roughness of the second fitting surface 27 in all of the arithmetic mean roughness (Ra), maximum height (Ry), and ten-point average roughness (Rz). is also big.
  • the reference plane of the first fitting surface 22 is defined as the height of the lowest valley bottom, the projecting dimension of each protrusion 23 from the reference plane is random.
  • the plurality of protrusions 23 are not regularly arranged at a constant pitch, but are randomly arranged.
  • FIG. 5 is an enlarged cross-sectional view showing a state before the first part 16 and the second part 24 are fitted together.
  • FIG. Dimensions are exaggerated.
  • the top of the projection 23 is plastically deformed by sliding contact with the second fitting surface 27 .
  • the second fitting surface 27 is also plastically deformed so as to be scraped by sliding contact with the protrusion 23 .
  • a mating resistance is generated between the parts 16 and 24 when they are plastically deformed. Since both fitting surfaces 22 and 27 are inclined with respect to the fitting direction of both parts 16 and 24, the reason why fitting resistance is generated by the contact between the protrusion 23 and the second fitting surface 27 is This is from the middle of the fitting process of the parts 16 and 24 . Therefore, workability during fitting is better than when fitting resistance occurs from the start of fitting.
  • FIG. 6 is an enlarged cross-sectional view showing a state in which the first part 16 and the second part 24 are fitted together, and the first fitting surface 22 and the second fitting surface 27 face each other closely.
  • the sizes and projection dimensions of the plurality of protrusions 23 on the first fitting surface 22 are exaggerated.
  • the flat surfaces without the protrusion 23 are opposed to each other and fitted together, there is a concern that only part of the flat surfaces will come into contact with each other, and the flat surfaces will remain out of contact with each other in the other wide area.
  • the plurality of protrusions 23 having different projecting dimensions are formed on the second fitting surface 27. It comes into contact with multiple points in a state of being plastically deformed. Therefore, the contact area between the first part 16 (first fitting surface 22) and the second part 24 (second fitting surface 27) is large.
  • the shield terminal 1 of Example 1 includes an inner conductor 10 , a dielectric 11 surrounding the inner conductor 10 , and an outer conductor 15 surrounding the dielectric 11 .
  • the outer conductor 15 includes a plurality of metal parts (first part 16 and second part 24) that are fitted together.
  • the first part 16 has a first fitting surface 22 that comes into sliding contact with the second part 24 during the fitting process with the second part 24 .
  • a plurality of protrusions 23 are formed on the first fitting surface 22 . When the first part 16 and the second part 24 are fitted together, the protrusions 23 are in contact with the second fitting surface 27 while being plastically deformed.
  • the plurality of protrusions 23 formed on the first fitting surface 22 are plastically deformed while being in sliding contact with the second part 24 .
  • the multipoint contact by the plurality of plastically deformed protrusions 23 allows the first part 16 and the second part 24 forming the outer conductor 15 to be brought into contact over a wide area.
  • a large contact area is secured between the first fitting surface 22 and the second fitting surface 27, and the impedance decreases. Since an unnecessary capacitor is less likely to be generated between the two fitting surfaces 27, the resonance phenomenon is suppressed, and deterioration of communication characteristics in high-speed communication can be prevented.
  • the second part 24 is molded by casting, forging or cutting, and has high rigidity. Since the second fitting surface 27 formed on the second part 24 is a flat surface, it is difficult to deform.
  • the first part 16 is also formed by casting, forging, or cutting, and thus has high rigidity. Relatively low stiffness. Therefore, when the protrusion 23 contacts the second fitting surface 27, the protrusion 23 can be reliably deformed plastically.
  • first part 16 and the second part 24 that are fitted together, only the first part 16 is provided with a plurality of protrusions 23 .
  • most of the protrusions 23 can be plastically deformed to come into contact with the second fitting surface 27 with the second component 24 .
  • the first fitting surface 22 and the second fitting surface 27 are oblique to the fitting direction of the first part 16 and the second part 24 .
  • the timings of plastic deformation of the plurality of protrusions 23 are dispersed, so that the maximum fitting resistance can be reduced.
  • the projecting dimensions of the plurality of protrusions 23 are set at random, the timing of plastic deformation of the plurality of protrusions 23 is dispersed during the fitting process of the two parts 16 and 24 . Therefore, the maximum value of fitting resistance due to plastic deformation of the protrusion 23 can be reduced. Since the plurality of protrusions 23 are formed by satin finishing by a wire brush method, blasting method, dispersion plating method, or the like, the protrusions 23 can be formed in a desired size and arrangement. Since the plurality of projections 23 are randomly arranged on the first fitting surface 22, it is possible to form the projections 23 by blasting with low accuracy.
  • FIG. 2 A shield terminal 2 of a second embodiment embodying the present disclosure will be described with reference to FIGS. 7 and 8.
  • FIG. The shield terminal 2 of the second embodiment has protrusions 32 and 35 formed on both the first fitting surface 31 of the first component 30 and the second fitting surface 34 of the second component 33 . Since other configurations are the same as those of the first embodiment, the same configurations are denoted by the same reference numerals, and descriptions of the structures, actions and effects are omitted.
  • the first fitting surface 31 and the second fitting surface 34 are inclined with respect to the fitting direction of the first part 30 and the second part 33 as in the first embodiment.
  • a plurality of first protrusions 32 are formed on the first fitting surface 31 by satin finishing by a wire brush method, a blast method, a dispersion plating method, or the like.
  • a plurality of second protrusions 35 are formed on the second fitting surface 34 by satin finishing by a wire brush method, a blast method, a dispersion plating method, or the like.
  • the surface roughness of the first fitting surface 31 and the surface roughness of the second fitting surface 34 are the arithmetic average roughness (Ra), the maximum height (Ry), and the ten-point average roughness (Rz). are the same.
  • the reference plane of the first fitting surface 31 is defined as the height of the lowest valley bottom
  • the projecting dimension of each first protrusion 32 from the reference plane is constant.
  • the reference plane of the second fitting surface 34 is defined as the height of the lowest valley bottom
  • the projection dimension of each second protrusion 35 from the reference plane is constant.
  • the projection dimension of the first projection 32 from the reference plane and the projection dimension of the second projection 35 from the reference plane are set to be the same dimension.
  • the plurality of first protrusions 32 on the first fitting surface 31 are regularly arranged at a constant pitch.
  • the plurality of second protrusions 35 on the second fitting surface 34 are also regularly arranged at a constant pitch.
  • the number of ridges PPI of the first protrusion 32 is less than the number of ridges PPI of the second protrusion 35 .
  • the top portion of the first projection 32 having a small number of peaks PPI forms a relatively gentle mountain shape.
  • the top portion of the second protrusion 35 having a large number of peaks PPI has a sharper peak than that of the first protrusion 32 . Therefore, the strength of the first protrusion 32 is greater than that of the second protrusion 35 .
  • FIG. 7 is an enlarged sectional view showing the state before the first part 30 and the second part 33 are fitted together.
  • FIG. 8 is an enlarged cross-sectional view showing a state in which the two parts 30 and 33 are fitted together and the first fitting surface 31 and the second fitting surface 34 face each other closely.
  • the sizes and projection dimensions of the first protrusion 32 and the second protrusion 35 are exaggerated.
  • the top of the second protrusion 35 is plastically deformed by sliding contact with the first protrusion 32 so as to be scraped.
  • the first protrusion 32 is also plastically deformed so as to be scraped, but the amount of deformation is smaller than that of the second protrusion 35 .
  • the first part 30 and the second part 33 that are fitted to each other are combinations in which the number of peaks PPI of the plurality of protrusions 32 and 35 are different. According to this configuration, the first projection 32 of the first component 30 and the second projection 35 of the second component 33 are inevitably brought into contact with each other to cause plastic deformation, so that contact reliability is high.
  • FIG. 3 A shield terminal 3 of Example 3 embodying the present disclosure will be described with reference to FIGS. 9 to 10.
  • FIG. The shield terminal 3 of the third embodiment has the first fitting surface 41 of the first part 40 and the second fitting surface 44 of the second part 43 parallel to the fitting direction of the first part 40 and the second part 43 . It is aimed at Protrusions 42 and 45 are formed on both the first fitting surface 41 and the second fitting surface 44 . Since other configurations are the same as those of the first and second embodiments, the same configurations are denoted by the same reference numerals, and descriptions of the structures, functions and effects are omitted.
  • a plurality of first protrusions 42 are formed on the first fitting surface 41 by satin finishing by wire brushing, blasting, dispersion plating, or the like.
  • a plurality of second protrusions 45 are formed on the second fitting surface 44 by satin finishing by a wire brush method, a blast method, a dispersion plating method, or the like.
  • the surface roughness of the first fitting surface 41 and the surface roughness of the second fitting surface 44 of the third embodiment are the same as those of the first fitting surface 31 and the second fitting surface 34 of the second embodiment.
  • the distribution and arrangement of the plurality of first projections 42 on the first fitting surface 41 of the third embodiment are the same as those of the first projections 32 of the second embodiment.
  • the distribution and arrangement of the plurality of second protrusions 45 on the second fitting surface 44 of the third embodiment are the same as the second protrusions 35 of the second embodiment.
  • FIG. 9 is an enlarged sectional view showing the state before the first part 40 and the second part 43 are fitted.
  • FIG. 10 is an enlarged cross-sectional view showing a state in which the two parts 40 and 43 are fitted together, and the first fitting surface 41 and the second fitting surface 44 face each other closely. 9 and 10, the sizes and projection dimensions of the first protrusion 42 and the second protrusion 45 are exaggerated.
  • the top of the second protrusion 45 is plastically deformed by sliding contact with the first protrusion 42 so as to be scraped.
  • the first protrusion 42 is also plastically deformed so as to be scraped, but the amount of deformation is smaller than that of the second protrusion 45 .
  • the plurality of second projections 45 contact the plurality of first projections 42 while being plastically deformed. Therefore, the contact area between the first component 40 (first fitting surface 41) and the second component 43 (second fitting surface 44) is large.
  • the first part 40 and the second part 43 that are fitted to each other are combinations in which the number of peaks PPI of the plurality of projections 42 and 45 are different. According to this configuration, the first protrusion 42 of the first component 40 and the second protrusion 45 of the second component 43 are inevitably brought into contact with each other to cause plastic deformation, so that the contact reliability is high.
  • FIG. 4 A shield terminal 4 according to a fourth embodiment embodying the present disclosure will be described with reference to FIGS. 11 and 12.
  • a plurality of first protrusions 52 are formed on the first fitting surface 51 by satin finishing by a wire brush method, a blast method, a dispersion plating method, or the like.
  • a plurality of second protrusions 55 are formed on the second fitting surface 54 by satin finishing by wire brushing, blasting, dispersion plating, or the like.
  • the surface roughness of the first fitting surface 51 is the arithmetic average roughness (Ra), the maximum height (Ry), and the ten-point average roughness (Rz), and the surface roughness of the second fitting surface 54 is smaller than
  • the reference plane of the first fitting surface 51 is defined as the height of the lowest valley bottom
  • the projecting dimension of each first protrusion 52 from the reference plane is constant.
  • the reference plane of the second fitting surface 54 is defined as the height of the lowest valley bottom
  • the projection dimension of each second protrusion 55 from the reference plane is constant.
  • the projection dimension of the first projection 52 from the reference plane is set smaller than the projection dimension of the second projection 55 from the reference plane.
  • the plurality of first protrusions 52 on the first fitting surface 51 are regularly arranged at a constant pitch.
  • the plurality of second protrusions 55 on the second fitting surface 54 are also regularly arranged at a constant pitch.
  • the number of ridges PPI of the first protrusion 52 is smaller than the number of ridges PPI of the second protrusion 55 .
  • the top portion of the first projection 52 which has a small projection dimension from the reference plane and a small number of peaks PPI, forms a relatively gentle mountain shape.
  • the top portion of the second projection 55 which has a large projection dimension from the reference plane and a large number of peaks PPI, has a sharper peak shape than the first projection 52. As shown in FIG. Therefore, the strength and rigidity of the second protrusion 55 are smaller than those of the first protrusion 52 .
  • FIG. 11 is an enlarged cross-sectional view showing the state before the first part 50 and the second part 53 are fitted together.
  • FIG. 12 is an enlarged cross-sectional view showing a state in which the two parts 50 and 53 are fitted together, and the first fitting surface 51 and the second fitting surface 54 face each other closely. 11 and 12, the sizes and projection dimensions of the first protrusion 52 and the second protrusion 55 are exaggerated.
  • the top of the second protrusion 55 is plastically deformed by sliding contact with the first protrusion 52 so as to be scraped.
  • the first protrusion 52 is also plastically deformed so as to be scraped, but the amount of deformation is smaller than that of the second protrusion 55 .
  • the first part 50 and the second part 53 that are fitted to each other are combinations in which the number of peaks PPI of the plurality of protrusions 52 and 55 are different. According to this configuration, the first protrusion 52 of the first component 50 and the second protrusion 55 of the second component 53 are inevitably brought into contact with each other to cause plastic deformation, so that the contact reliability is high.
  • one of the first part and the second part may be a thick metal part and the other may be a plate-like metal part.
  • the protrusions may be formed on only one of the metal parts, or may be formed on both metal parts.
  • the projections may be arranged regularly, or the projection dimensions of the plurality of projections may be set to a constant dimension.
  • the protrusion is formed only on the first fitting surface of the assembly opening of the first part, but the protrusion may be formed only on the second fitting surface of the columnar part of the second part. good.
  • the surface roughness of the first component having a small number of peaks PPI of the first protrusions may be made smaller than the surface roughness of the second component having a large number of peaks PPI of the second protrusions. It may be made larger than the surface roughness of the second component having a large number of protrusions PPI.
  • the outer conductor may be configured by fitting three or more metal parts.

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)

Abstract

The present invention brings metal components forming an outer conductor into contact with each other in a wide area. A shield terminal (1) comprises an inner conductor (10), a dielectric (11) which encloses the inner conductor (10), and an outer conductor (15) which encloses the dielectric (11). The outer conductor (15) is formed of a first component (16) and a second component (24) to be fit to each other. On the first component (16), a plurality of protrusions (23) are formed on a first fitting surface (22) which comes slidingly in contact with the second component (24) in a fitting process. In a state in which the first component (16) and the second component (24) are fitted to each other, the plurality of protrusions (23) make contact with the second component (24) in a plastically deformed state.

Description

シールド端子及び外導体Shield terminal and outer conductor
 本開示は、シールド端子及び外導体に関するものである。 The present disclosure relates to shield terminals and outer conductors.
 特許文献1には、内導体と誘電体を外導体で包囲したコネクタが開示されている。外導体は、ダイキャスト製の外導体本体と、板状のカバーとを組み付けて構成されている。 Patent Document 1 discloses a connector in which an inner conductor and a dielectric are surrounded by an outer conductor. The outer conductor is configured by assembling a die-cast outer conductor main body and a plate-like cover.
再表2020/017572Re-table 2020/017572
 電気的な導通のみを目的として製造される金属部品は、一般に、表面処理において高い平面度が求められない。このような金属部品同士を嵌め合わせて1つの外導体を構成する場合、両金属部品の嵌合面同士の間に隙間が生じる。高速通信用の回路において、嵌合面同士の隙間は、不必要なキャパシタを発生させて共振現象を引き起こし、通信特性を低下させる原因となる。この対策としては、金属部品の接触面積を広く確保してインピーダンスを低下させることが考えられる。しかし、金属部品がダイキャスト製である場合は、プレス製品に比べると寸法精度や平面度が低いため、接触面積を広く確保することが難しい。 Metal parts that are manufactured solely for the purpose of electrical continuity generally do not require high flatness in surface treatment. When such metal parts are fitted together to form one outer conductor, a gap is generated between the mating surfaces of both metal parts. In a circuit for high-speed communication, a gap between mating surfaces generates an unnecessary capacitor, causes a resonance phenomenon, and deteriorates communication characteristics. As a countermeasure, it is conceivable to reduce the impedance by ensuring a wide contact area of the metal parts. However, when the metal parts are die-cast, it is difficult to secure a large contact area because the dimensional accuracy and flatness are lower than those of pressed products.
 本開示は、上記のような事情に基づいて完成されたものであって、外導体を構成する金属部品同士を、広い面積で接触させることを目的とする。 The present disclosure has been completed based on the circumstances as described above, and aims to bring the metal parts forming the outer conductor into contact with each other over a wide area.
 第1の開示のシールド端子は、
 内導体と、前記内導体を包囲する誘電体と、前記誘電体を包囲する外導体とを備え、
 前記外導体は、互いに嵌合される複数の金属部品を備えて構成され、
 少なくとも1つの前記金属部品のうち、嵌合過程において他の前記金属部品に摺接する嵌合面には、複数の突部が形成され、
 前記複数の金属部品が嵌合された状態では、前記複数の突部が塑性変形した状態で前記他の金属部品に接触している。
The shield terminal of the first disclosure includes:
comprising an inner conductor, a dielectric surrounding the inner conductor, and an outer conductor surrounding the dielectric;
The outer conductor is configured with a plurality of metal parts that are fitted together,
A plurality of protrusions are formed on a fitting surface of at least one of the metal parts that is in sliding contact with the other metal parts during the fitting process,
In the state in which the plurality of metal parts are fitted together, the plurality of protrusions are in contact with the other metal part in a state of being plastically deformed.
 第2の開示の外導体は、
 内導体が収容される誘電体を包囲する外導体であって、
 互いに嵌合される複数の金属部品を備えており、
 少なくとも1つの前記金属部品のうち、嵌合過程において他の前記金属部品に摺接する嵌合面には、複数の突部が形成され、
 前記複数の金属部品が嵌合された状態では、前記複数の突部が塑性変形した状態で前記他の金属部品に接触している。
The outer conductor of the second disclosure is
an outer conductor surrounding a dielectric in which the inner conductor is housed,
It has multiple metal parts that fit together,
A plurality of protrusions are formed on a fitting surface of at least one of the metal parts that is in sliding contact with the other metal parts during the fitting process,
In the state in which the plurality of metal parts are fitted together, the plurality of protrusions are in contact with the other metal part in a state of being plastically deformed.
 本開示によれば、外導体を構成する金属部品同士を、広い面積で接触させることができる。 According to the present disclosure, the metal parts forming the outer conductor can be brought into contact with each other over a wide area.
図1は、実施例1のシールド端子の斜視図である。FIG. 1 is a perspective view of the shield terminal of Example 1. FIG. 図2は、シールド端子の分解状態をあらわす斜視図である。FIG. 2 is a perspective view showing an exploded state of the shield terminal. 図3は、シールド端子の側断面図である。FIG. 3 is a side sectional view of the shield terminal. 図4は、図3のA-A線断面図である。4 is a cross-sectional view taken along line AA of FIG. 3. FIG. 図5は、外導体を構成する第1部品と第2部品の嵌合前の状態において、突部の大きさを誇張してあらわした部分拡大断面図である。FIG. 5 is a partially enlarged cross-sectional view exaggerating the size of the projection before the first and second parts forming the outer conductor are fitted together. 図6は、第1部品と第2部品の嵌合状態において、突部の大きさを誇張してあらわした部分拡大断面図である。FIG. 6 is a partially enlarged cross-sectional view exaggerating the size of the protrusion in the fitted state of the first part and the second part. 図7は、実施例2の外導体を構成する第1部品と第2部品の嵌合前の状態において、突部の大きさを誇張してあらわした部分拡大断面図である。FIG. 7 is a partially enlarged cross-sectional view exaggerating the size of the projection before the first and second parts forming the outer conductor of the second embodiment are fitted together. 図8は、実施例2の外導体を構成する第1部品と第2部品の嵌合状態において、突部の大きさを誇張してあらわした部分拡大断面図である。FIG. 8 is a partially enlarged cross-sectional view exaggerating the size of a protrusion in the fitted state of the first part and the second part that constitute the outer conductor of the second embodiment. 図9は、実施例3の外導体を構成する第1部品と第2部品の嵌合前の状態において、突部の大きさを誇張してあらわした部分拡大断面図である。FIG. 9 is a partially enlarged cross-sectional view exaggerating the size of a protrusion in a state before the first and second parts forming the outer conductor of Example 3 are fitted together. 図10は、実施例3の外導体を構成する第1部品と第2部品の嵌合状態において、突部の大きさを誇張してあらわした部分拡大断面図である。FIG. 10 is a partially enlarged cross-sectional view exaggerating the size of the protrusion in the fitted state of the first part and the second part that constitute the outer conductor of the third embodiment. 図11は、実施例4の外導体を構成する第1部品と第2部品の嵌合前の状態において、突部の大きさを誇張してあらわした部分拡大断面図である。FIG. 11 is a partially enlarged cross-sectional view exaggerating the size of the protrusion before fitting the first and second parts constituting the outer conductor of the fourth embodiment. 図12は、実施例4の外導体を構成する第1部品と第2部品の嵌合状態において、突部の大きさを誇張してあらわした部分拡大断面図である。FIG. 12 is a partially enlarged cross-sectional view exaggerating the size of the protrusion in the fitted state of the first part and the second part that constitute the outer conductor of the fourth embodiment.
 [本開示の実施形態の説明]
 最初に本開示の実施形態を列記して説明する。
 第1の開示のシールド端子は、
 (1)内導体と、前記内導体を包囲する誘電体と、前記誘電体を包囲する外導体とを備え、前記外導体は、互いに嵌合される複数の金属部品を備えて構成され、少なくとも1つの前記金属部品のうち、嵌合過程において他の前記金属部品に摺接する嵌合面には、複数の突部が形成され、前記複数の金属部品が嵌合された状態では、前記複数の突部が塑性変形した状態で前記他の金属部品に接触している。本開示の構成によれば、複数の金属部品を嵌合する過程で、1つの金属部品の嵌合面に形成された複数の突部が、他の金属部品に摺接しながら塑性変形する。この塑性変形した複数の突部の多点接触によって、外導体を構成する金属部品同士を、広い面積で接触させることができる。
[Description of Embodiments of the Present Disclosure]
First, the embodiments of the present disclosure will be listed and described.
The shield terminal of the first disclosure includes:
(1) An inner conductor, a dielectric surrounding the inner conductor, and an outer conductor surrounding the dielectric, wherein the outer conductor includes a plurality of metal parts that are fitted together, and at least A plurality of protrusions are formed on a fitting surface of one of the metal parts that comes into sliding contact with the other metal part during the fitting process. The protrusion is in contact with the other metal component in a plastically deformed state. According to the configuration of the present disclosure, in the process of fitting a plurality of metal parts, the plurality of protrusions formed on the fitting surface of one metal part are plastically deformed while being in sliding contact with other metal parts. The multi-point contact of the plurality of plastically deformed protrusions enables the metal parts forming the outer conductor to be brought into contact with each other over a wide area.
 (2)前記複数の突部が梨地加工によって形成されたものであることが好ましい。この構成によれば、所望の大きさや配置の突部を形成することができる。 (2) It is preferable that the plurality of protrusions are formed by satin finishing. According to this configuration, it is possible to form the projections of desired size and arrangement.
 (3)前記金属部品は、鋳造、鍛造又は切削によって成形されたものであることが好ましい。この構成によれば、金属部品の剛性が高いので、突部を確実に塑性変形させることができる。 (3) The metal parts are preferably formed by casting, forging or cutting. According to this configuration, since the rigidity of the metal part is high, the protrusion can be reliably deformed plastically.
 (4)互いに嵌合される2つの前記金属部品のうち、いずれか一方の前記金属部品のみに、前記突部が形成されていることが好ましい。この構成によれば、大多数の突部を塑性変形させて、相手側の金属部品の嵌合面に接触させることができる。 (4) It is preferable that the protrusion is formed only on one of the two metal parts that are fitted to each other. According to this configuration, most of the protrusions can be plastically deformed and brought into contact with the mating surface of the mating metal component.
 (5)(4)において、前記複数の突部の突出寸法がランダムに設定されていることが好ましい。この構成によれば、金属部品同士の嵌合過程では、複数の突部が塑性変形するタイミングが分散されるので、嵌合抵抗の最大値を低減することができる。 In (5) and (4), it is preferable that the projecting dimensions of the plurality of protrusions are set at random. According to this configuration, in the process of fitting the metal parts together, the timings of plastic deformation of the plurality of projections are dispersed, so that the maximum value of the fitting resistance can be reduced.
 (6)(4)又は(5)において、前記複数の突部が、前記嵌合面上においてランダムに配置されていることが好ましい。この構成によれば、精度の低いブラスト加工によって突部を形成することが可能である。 (6) In (4) or (5), it is preferable that the plurality of protrusions are randomly arranged on the fitting surface. According to this configuration, it is possible to form the projection by blasting with low accuracy.
 (7)2つの前記金属部品の嵌合方向に対して、前記嵌合面が斜めをなしていることが好ましい。この構成によれば、金属部品同士の嵌合過程では、複数の突部が塑性変形するタイミングが分散されるので、嵌合抵抗の最大値を低減することができる。 (7) It is preferable that the fitting surface is oblique with respect to the fitting direction of the two metal parts. According to this configuration, in the process of fitting the metal parts together, the timings of plastic deformation of the plurality of projections are dispersed, so that the maximum value of the fitting resistance can be reduced.
 (8)互いに嵌合される2つの前記金属部品は、前記複数の突部の山数PPIが異なる組合せであることが好ましい。この構成によれば、一方の金属部品の突部と他方の金属部品の突部が、必ず当接して塑性変形を生じるので、接触信頼性が高い。 (8) It is preferable that the two metal parts to be fitted to each other are a combination in which the number of peaks PPI of the plurality of protrusions is different. According to this configuration, the protrusion of one metal part and the protrusion of the other metal part always come into contact with each other to cause plastic deformation, so that the contact reliability is high.
 第2の開示の外導体は、
 (9)内導体が収容される誘電体を包囲する外導体であって、互いに嵌合される複数の金属部品を備えており、少なくとも1つの前記金属部品のうち、嵌合過程において他の前記金属部品に摺接する嵌合面には、複数の突部が形成され、前記複数の金属部品が嵌合された状態では、前記複数の突部が塑性変形した状態で前記他の金属部品に接触している。本開示の構成によれば、複数の金属部品を嵌合する過程で、1つの金属部品の嵌合面に形成された複数の突部が、他の金属部品に摺接しながら塑性変形する。この塑性変形した複数の突部によって、外導体を構成する金属部品同士を、広い面積で接触させることができる。
The outer conductor of the second disclosure is
(9) An outer conductor surrounding a dielectric in which an inner conductor is housed, comprising a plurality of metal parts to be fitted together, wherein at least one of the metal parts is A plurality of projections are formed on the fitting surface that is in sliding contact with the metal part, and when the plurality of metal parts are fitted together, the plurality of projections are plastically deformed and come into contact with the other metal part. are doing. According to the configuration of the present disclosure, in the process of fitting a plurality of metal parts, the plurality of protrusions formed on the fitting surface of one metal part are plastically deformed while being in sliding contact with other metal parts. The plurality of plastically deformed protrusions allows the metal parts forming the outer conductor to be brought into contact with each other over a wide area.
 [本開示の実施形態の詳細]
 [実施例1]
 本開示を具体化した実施例1のシールド端子1を、図1~図6を参照して説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。本実施例1において、前後の方向については、図1~3におけるX軸の正方向を前方と定義する。左右の方向については、図1,2,4におけるY軸の正方向を右方と定義する。上下の方向については、図1~4におけるZ軸の正方向を上方と定義する。
[Details of the embodiment of the present disclosure]
[Example 1]
A shield terminal 1 of Example 1 embodying the present disclosure will be described with reference to FIGS. 1 to 6. FIG. The present invention is not limited to these exemplifications, but is indicated by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims. In the first embodiment, regarding the front-rear direction, the positive direction of the X-axis in FIGS. 1 to 3 is defined as the front. Regarding the left-right direction, the positive direction of the Y-axis in FIGS. 1, 2 and 4 is defined as the right side. Regarding the vertical direction, the positive direction of the Z-axis in FIGS. 1 to 4 is defined as upward.
 本実施例1のシールド端子1は、図2に示すように、1つの内導体10と、1の誘電体11と、1つの外導体15とを組み付けて構成されている。内導体10は、細長い金属材料からなり、内導体10を側方から見た側面視において、L字形に屈曲した形状をなす。誘電体11は、側面視形状がL字形をなす部品である。図3に示すように、誘電体11の内部には、L字形をなすスリット状収容室12が形成されている。スリット状収容室12内には、誘電体11の後方から内導体10が挿入されている。 As shown in FIG. 2, the shield terminal 1 of Example 1 is constructed by assembling one inner conductor 10, one dielectric 11, and one outer conductor 15. The inner conductor 10 is made of an elongated metal material, and has an L-shaped bent shape when viewed from the side of the inner conductor 10 . The dielectric 11 is a component having an L-shape in side view. As shown in FIG. 3, an L-shaped slit-shaped accommodation chamber 12 is formed inside the dielectric 11 . The inner conductor 10 is inserted into the slit-shaped housing chamber 12 from behind the dielectric 11 .
 外導体15は、金属製の第1部品16と、金属製の第2部品24とを組み付けて構成されている。第1部品16は、直方形の本体部17と、本体部17から前方へ突出した円筒部18とを有する単一部品である。本体部17内及び円筒部18内には、誘電体11を収容するための収容空間19が形成されている。本体部17の後壁部20には、誘電体11を収容空間19内に組み付けるための組付用開口部21が形成されている。組付用開口部21は、本体部17の後面と下面に開口している。組付用開口部21の左右両内側面を、一対の第1嵌合面22と定義する。 The outer conductor 15 is configured by assembling a metal first part 16 and a metal second part 24 . The first component 16 is a single component having a rectangular body portion 17 and a cylindrical portion 18 projecting forward from the body portion 17 . A housing space 19 for housing the dielectric 11 is formed in the body portion 17 and the cylindrical portion 18 . A rear wall portion 20 of the body portion 17 is formed with an assembly opening 21 for assembling the dielectric 11 into the housing space 19 . The assembly openings 21 are opened on the rear surface and the bottom surface of the body portion 17 . The left and right inner side surfaces of the assembly opening 21 are defined as a pair of first fitting surfaces 22 .
 第2部品24は、本体部17に対して下から組み付けることによって、本体部17の外面における収容空間19の開口を閉塞する部品である。第2部品24は、底壁部25と、底壁部25の後端部から上方へ柱状に立ち上がった柱状部26とを有する単一部品である。柱状部26の左右両外側面を、一対の第2嵌合面27と定義する。 The second part 24 is a part that closes the opening of the accommodation space 19 on the outer surface of the body part 17 by being assembled to the body part 17 from below. The second part 24 is a single part having a bottom wall portion 25 and a columnar portion 26 rising upward from the rear end portion of the bottom wall portion 25 in a columnar shape. The left and right outer side surfaces of the columnar portion 26 are defined as a pair of second fitting surfaces 27 .
 第1部品16と第2部品24は、上下方向に平行移動させることによって組み付けられる。両部品16,24の嵌合方向は、底壁部25から柱状部26が立ち上がる方向と平行な方向である。第1部品16と第2部品24を組み付ける過程では、柱状部26が組付用開口部21内に対して相対的に下から嵌合され、第1嵌合面22と第2嵌合面27が上下方向に摺接する。第1部品16と第2部品24を組み付けた状態では、底壁部25が本体部17の下面の開口を閉塞し、柱状部26が組付用開口部21を閉塞する。 The first part 16 and the second part 24 are assembled by vertically translating them. The fitting direction of the two parts 16 and 24 is parallel to the direction in which the columnar portion 26 rises from the bottom wall portion 25 . In the process of assembling the first part 16 and the second part 24, the columnar part 26 is fitted into the assembly opening 21 from below, and the first fitting surface 22 and the second fitting surface 27 are fitted together. slides in the vertical direction. When the first part 16 and the second part 24 are assembled, the bottom wall part 25 closes the opening on the lower surface of the main body part 17 and the columnar part 26 closes the assembly opening 21 .
 第1部品16は、鋳造(ダイキャスト)、鍛造又は切削によって製造された部品であるため、板状の金属部材に比べると、剛性が高い。第2部品24も、鋳造(ダイキャスト)、鍛造又は切削によって製造された部品であるため、板状部材に比べると剛性が高い。そのため、柱状部26を組付用開口部21に嵌合したときに、第1嵌合面22と第2嵌合面27を弾性的に密着させることはできない。両嵌合面22,27の密着度を高めるために両部品16,24の寸法公差を小さくすると、柱状部26と組付用開口部21との間の摺動抵抗が大きくなり過ぎて、最悪の場合、嵌合不能となる。 The first part 16 is a part manufactured by casting (die casting), forging, or cutting, so it has higher rigidity than a plate-like metal member. The second part 24 is also a part manufactured by casting (die casting), forging, or cutting, so it has higher rigidity than the plate-like member. Therefore, when the columnar portion 26 is fitted into the assembly opening 21, the first fitting surface 22 and the second fitting surface 27 cannot be elastically brought into close contact with each other. If the dimensional tolerances of the parts 16 and 24 are reduced in order to increase the degree of close contact between the fitting surfaces 22 and 27, the sliding resistance between the columnar portion 26 and the assembly opening 21 becomes too large. In the case of , it becomes impossible to mate.
 この対策として、一対の第1嵌合面22を、両部品16,24の嵌合方向に対して傾斜させている。一対の第1嵌合面22の対向間隔は、第1嵌合面22の上端側(第2部品24の嵌合方向における先端側)に向かって次第に狭まっている。また、一対の第2嵌合面27の左右方向の距離も、第1嵌合面22と同様、第2嵌合面27の上端側(第1部品16に対する嵌合方向の先端側)に向かって次第に小さくなっている。第1嵌合面22と第2嵌合面27は、平行をなす。 As a countermeasure against this, the pair of first fitting surfaces 22 are inclined with respect to the fitting direction of the two parts 16 and 24 . The space between the pair of first fitting surfaces 22 facing each other gradually narrows toward the upper end side of the first fitting surfaces 22 (the tip side in the fitting direction of the second component 24). Further, the distance between the pair of second fitting surfaces 27 in the left-right direction is also the same as the first fitting surface 22, toward the upper end side of the second fitting surface 27 (toward the tip end side in the fitting direction with respect to the first component 16). gradually getting smaller. The first fitting surface 22 and the second fitting surface 27 are parallel.
 第1嵌合面22には、梨地加工が施されており、梨地加工によって複数の突部23が形成されている。梨地加工は、第1部品16を鋳造するための金型に細かい凹凸を形成することによって、鋳造工程において形成することができる。また、第1部品16を所定の形状に成形した後の後加工として、ワイヤブラシ法、ブラスト法、分散めっき法等によって行うことができる。第2嵌合面27には、梨地加工は施されておらず、第1嵌合面22の突部23に相当するような突出部位を形成していない。したがって、第1嵌合面22の面粗度は、第2嵌合面27の面粗度よりも大きい。第1嵌合面22の表面粗さは、算術平均粗さ(Ra)、最大高さ(Ry)、十点平均粗さ(Rz)のいずれにおいても、第2嵌合面27の表面粗さよりも大きい。第1嵌合面22における基準面を最も低い谷底の高さと定義したときに、その基準面からの各突部23の突出寸法は、ランダムである。第1嵌合面22における複数の突部23の分布については、複数の突部23は、一定ピッチで規則的に配置されているのではなく、ランダムに配置されている。 The first fitting surface 22 is satin finished, and a plurality of protrusions 23 are formed by the satin finish. The satin finish can be formed in the casting process by forming fine irregularities in the mold for casting the first component 16 . After forming the first component 16 into a predetermined shape, post-processing can be performed by a wire brush method, a blast method, a dispersion plating method, or the like. The second fitting surface 27 is not satin-finished and does not have a projecting portion corresponding to the projecting portion 23 of the first fitting surface 22 . Therefore, the surface roughness of the first fitting surface 22 is greater than the surface roughness of the second fitting surface 27 . The surface roughness of the first fitting surface 22 is higher than the surface roughness of the second fitting surface 27 in all of the arithmetic mean roughness (Ra), maximum height (Ry), and ten-point average roughness (Rz). is also big. When the reference plane of the first fitting surface 22 is defined as the height of the lowest valley bottom, the projecting dimension of each protrusion 23 from the reference plane is random. Regarding the distribution of the plurality of protrusions 23 on the first fitting surface 22, the plurality of protrusions 23 are not regularly arranged at a constant pitch, but are randomly arranged.
 図5は、第1部品16と第2部品24を嵌合する前の状態をあらわす拡大断面図であり、第5図には、第1嵌合面22における複数の突部23の大きさや突出寸法が誇張して描かれている。第1部品16と第2部品24を嵌合する過程では、突部23の頂上部が、第2嵌合面27に摺接することによって、削られるように塑性変形する。第2嵌合面27も、突部23との摺接によって削られるように塑性変形する。塑性変形するときには、両部品16,24の間に嵌合抵抗が生じる。両嵌合面22,27は、両部品16,24の嵌合方向に対して傾斜しているので、突部23と第2嵌合面27との接触によって嵌合抵抗が生じるのは、両部品16,24の嵌合過程の途中からである。したがって、嵌合開始時から嵌合抵抗が生じる場合に比べると、嵌合時の作業性が良好である。 FIG. 5 is an enlarged cross-sectional view showing a state before the first part 16 and the second part 24 are fitted together. FIG. Dimensions are exaggerated. In the process of fitting the first part 16 and the second part 24 together, the top of the projection 23 is plastically deformed by sliding contact with the second fitting surface 27 . The second fitting surface 27 is also plastically deformed so as to be scraped by sliding contact with the protrusion 23 . A mating resistance is generated between the parts 16 and 24 when they are plastically deformed. Since both fitting surfaces 22 and 27 are inclined with respect to the fitting direction of both parts 16 and 24, the reason why fitting resistance is generated by the contact between the protrusion 23 and the second fitting surface 27 is This is from the middle of the fitting process of the parts 16 and 24 . Therefore, workability during fitting is better than when fitting resistance occurs from the start of fitting.
 図6は、第1部品16と第2部品24が嵌合し、第1嵌合面22と第2嵌合面27が近接して対向している状態をあらわす拡大断面図である。図6には、第1嵌合面22における複数の突部23の大きさや突出寸法が誇張して描かれている。突部23を有しない平坦面同士を対向させて嵌合した場合、平坦面の一部のみが接触し、それ以外の広い領域では平坦面同士が非接触のままになることが懸念される。その点、本実施例1では、両部品16,24が嵌合して両嵌合面22,27が対向したときに、突出寸法の異なる複数の突部23が、第2嵌合面27の複数箇所に対して塑性変形した状態で接触する。したがって、第1部品16(第1嵌合面22)と第2部品24(第2嵌合面27)との接触面積が大きい。 FIG. 6 is an enlarged cross-sectional view showing a state in which the first part 16 and the second part 24 are fitted together, and the first fitting surface 22 and the second fitting surface 27 face each other closely. In FIG. 6, the sizes and projection dimensions of the plurality of protrusions 23 on the first fitting surface 22 are exaggerated. When the flat surfaces without the protrusion 23 are opposed to each other and fitted together, there is a concern that only part of the flat surfaces will come into contact with each other, and the flat surfaces will remain out of contact with each other in the other wide area. In this regard, in the first embodiment, when both parts 16 and 24 are fitted together and both fitting surfaces 22 and 27 are opposed to each other, the plurality of protrusions 23 having different projecting dimensions are formed on the second fitting surface 27. It comes into contact with multiple points in a state of being plastically deformed. Therefore, the contact area between the first part 16 (first fitting surface 22) and the second part 24 (second fitting surface 27) is large.
 本実施例1のシールド端子1は、内導体10と、内導体10を包囲する誘電体11と、誘電体11を包囲する外導体15とを備えている。外導体15は、互いに嵌合される複数の金属部品(第1部品16と第2部品24)を備えて構成されている。第1部品16は、第2部品24との嵌合過程において第2部品24に摺接する第1嵌合面22を有する。第1嵌合面22には、複数の突部23が形成されている。第1部品16と第2部品24が嵌合された状態では、複数の突部23が塑性変形した状態で第2嵌合面27に接触している。第1部品16と第2部品24を嵌合する過程では、第1嵌合面22に形成された複数の突部23が、第2部品24に摺接しながら塑性変形する。この塑性変形した複数の突部23による多点接触によって、外導体15を構成する第1部品16と第2部品24を、広い面積で接触させることができる。第1部品16と第2部品24が広い面積で接触すると、第1嵌合面22と第2嵌合面27の接触面積が広く確保されてインピーダンスが低下し、第1嵌合面22と第2嵌合面27との間に不必要なキャパシタが生じ難くなるので、共振現象が抑制され、高速通信における通信特性の低下を防止することができる。 The shield terminal 1 of Example 1 includes an inner conductor 10 , a dielectric 11 surrounding the inner conductor 10 , and an outer conductor 15 surrounding the dielectric 11 . The outer conductor 15 includes a plurality of metal parts (first part 16 and second part 24) that are fitted together. The first part 16 has a first fitting surface 22 that comes into sliding contact with the second part 24 during the fitting process with the second part 24 . A plurality of protrusions 23 are formed on the first fitting surface 22 . When the first part 16 and the second part 24 are fitted together, the protrusions 23 are in contact with the second fitting surface 27 while being plastically deformed. In the process of fitting the first part 16 and the second part 24 together, the plurality of protrusions 23 formed on the first fitting surface 22 are plastically deformed while being in sliding contact with the second part 24 . The multipoint contact by the plurality of plastically deformed protrusions 23 allows the first part 16 and the second part 24 forming the outer conductor 15 to be brought into contact over a wide area. When the first part 16 and the second part 24 are in contact with each other over a large area, a large contact area is secured between the first fitting surface 22 and the second fitting surface 27, and the impedance decreases. Since an unnecessary capacitor is less likely to be generated between the two fitting surfaces 27, the resonance phenomenon is suppressed, and deterioration of communication characteristics in high-speed communication can be prevented.
 第2部品24は、鋳造、鍛造又は切削によって成形されたものであり、剛性が高い。第2部品24に形成されている第2嵌合面27は、平坦面であるから変形し難い。第1部品16も、鋳造、鍛造又は切削によって成形されているため剛性が高いのであるが、突部23は、小さく突出した部位であるから、平坦状の第2嵌合面27に比べると、剛性が比較的低い。したがって、第2嵌合面27に突部23が接触したときに、突部23を確実に塑性変形させることができる。 The second part 24 is molded by casting, forging or cutting, and has high rigidity. Since the second fitting surface 27 formed on the second part 24 is a flat surface, it is difficult to deform. The first part 16 is also formed by casting, forging, or cutting, and thus has high rigidity. Relatively low stiffness. Therefore, when the protrusion 23 contacts the second fitting surface 27, the protrusion 23 can be reliably deformed plastically.
 互いに嵌合される第1部品16と第2部品24のうち、第1部品16のみに複数の突部23を形成した。この構成によれば、大多数の突部23を塑性変形させて、第2部品24との第2嵌合面27に接触させることができる。第1部品16と第2部品24の嵌合方向に対して、第1嵌合面22と第2嵌合面27が斜めをなしている。この構成によれば、第1部品16と第2部品24の嵌合過程では、複数の突部23が塑性変形するタイミングが分散されるので、嵌合抵抗の最大値を低減することができる。 Of the first part 16 and the second part 24 that are fitted together, only the first part 16 is provided with a plurality of protrusions 23 . According to this configuration, most of the protrusions 23 can be plastically deformed to come into contact with the second fitting surface 27 with the second component 24 . The first fitting surface 22 and the second fitting surface 27 are oblique to the fitting direction of the first part 16 and the second part 24 . According to this configuration, in the fitting process of the first part 16 and the second part 24, the timings of plastic deformation of the plurality of protrusions 23 are dispersed, so that the maximum fitting resistance can be reduced.
 複数の突部23の突出寸法がランダムに設定されているので、両部品16,24の嵌合過程では、複数の突部23が塑性変形するタイミングが分散される。したがって、突部23の塑性変形に起因する嵌合抵抗の最大値を、低減することができる。複数の突部23は、ワイヤブラシ法、ブラスト法、分散めっき法等によって施された梨地加工によって形成されたものであるから、所望の大きさや配置の突部23を形成することができる。複数の突部23は、第1嵌合面22上においてランダムに配置されているので、精度の低いブラスト加工によって突部23を形成することが可能である。 Since the projecting dimensions of the plurality of protrusions 23 are set at random, the timing of plastic deformation of the plurality of protrusions 23 is dispersed during the fitting process of the two parts 16 and 24 . Therefore, the maximum value of fitting resistance due to plastic deformation of the protrusion 23 can be reduced. Since the plurality of protrusions 23 are formed by satin finishing by a wire brush method, blasting method, dispersion plating method, or the like, the protrusions 23 can be formed in a desired size and arrangement. Since the plurality of projections 23 are randomly arranged on the first fitting surface 22, it is possible to form the projections 23 by blasting with low accuracy.
 [実施例2]
 本開示を具体化した実施例2のシールド端子2を、図7~図8を参照して説明する。本実施例2のシールド端子2は、第1部品30の第1嵌合面31と第2部品33の第2嵌合面34の両方に、突部32,35を形成したものである。その他の構成については上記実施例1と同じであるため、同じ構成については、同一符号を付し、構造、作用及び効果の説明は省略する。
[Example 2]
A shield terminal 2 of a second embodiment embodying the present disclosure will be described with reference to FIGS. 7 and 8. FIG. The shield terminal 2 of the second embodiment has protrusions 32 and 35 formed on both the first fitting surface 31 of the first component 30 and the second fitting surface 34 of the second component 33 . Since other configurations are the same as those of the first embodiment, the same configurations are denoted by the same reference numerals, and descriptions of the structures, actions and effects are omitted.
 第1嵌合面31と第2嵌合面34は、実施例1と同様、第1部品30と第2部品33の嵌合方向に対して傾斜している。第1嵌合面31には、複数の第1突部32が、ワイヤブラシ法、ブラスト法、分散めっき法等によって施された梨地加工によって形成されている。第2嵌合面34には、複数の第2突部35が、ワイヤブラシ法、ブラスト法、分散めっき法等によって施された梨地加工によって形成されている。 The first fitting surface 31 and the second fitting surface 34 are inclined with respect to the fitting direction of the first part 30 and the second part 33 as in the first embodiment. A plurality of first protrusions 32 are formed on the first fitting surface 31 by satin finishing by a wire brush method, a blast method, a dispersion plating method, or the like. A plurality of second protrusions 35 are formed on the second fitting surface 34 by satin finishing by a wire brush method, a blast method, a dispersion plating method, or the like.
 第1嵌合面31の表面粗さと第2嵌合面34の表面粗さは、算術平均粗さ(Ra)、最大高さ(Ry)、十点平均粗さ(Rz)のいずれにおいても、同じである。第1嵌合面31における基準面を最も低い谷底の高さと定義したときに、その基準面からの各第1突部32の突出寸法は、一定である。第2嵌合面34における基準面を最も低い谷底の高さと定義したときに、その基準面からの各第2突部35の突出寸法は、一定である。第1突部32の基準面からの突出寸法と、第2突部35の基準面からの突出寸法とは、同じ寸法に設定されている。 The surface roughness of the first fitting surface 31 and the surface roughness of the second fitting surface 34 are the arithmetic average roughness (Ra), the maximum height (Ry), and the ten-point average roughness (Rz). are the same. When the reference plane of the first fitting surface 31 is defined as the height of the lowest valley bottom, the projecting dimension of each first protrusion 32 from the reference plane is constant. When the reference plane of the second fitting surface 34 is defined as the height of the lowest valley bottom, the projection dimension of each second protrusion 35 from the reference plane is constant. The projection dimension of the first projection 32 from the reference plane and the projection dimension of the second projection 35 from the reference plane are set to be the same dimension.
 第1嵌合面31における複数の第1突部32の分布については、複数の第1突部32は、一定ピッチで規則的に配置されている。第2嵌合面34における複数の第2突部35の分布については、複数の第2突部35も、一定ピッチで規則的に配置されている。第1突部32の山数PPIは、第2突部35の山数PPIよりも少ない。山数PPIの少ない第1突部32の頂上部は、比較的なだらかな山形をなす。これに対し、山数PPIの多い第2突部35の頂上部は、第1突部32に比べると尖った山形をなす。したがって、第1突部32の強度は第2突部35よりも大きい。 Regarding the distribution of the plurality of first protrusions 32 on the first fitting surface 31, the plurality of first protrusions 32 are regularly arranged at a constant pitch. Regarding the distribution of the plurality of second protrusions 35 on the second fitting surface 34, the plurality of second protrusions 35 are also regularly arranged at a constant pitch. The number of ridges PPI of the first protrusion 32 is less than the number of ridges PPI of the second protrusion 35 . The top portion of the first projection 32 having a small number of peaks PPI forms a relatively gentle mountain shape. On the other hand, the top portion of the second protrusion 35 having a large number of peaks PPI has a sharper peak than that of the first protrusion 32 . Therefore, the strength of the first protrusion 32 is greater than that of the second protrusion 35 .
 図7は、第1部品30と第2部品33を嵌合する前の状態をあらわす拡大断面図である。図8は、両部品30,33が嵌合し、第1嵌合面31と第2嵌合面34が近接して対向している状態をあらわす拡大断面図である。図7,8には、第1突部32と第2突部35の大きさや突出寸法が誇張して描かれている。 FIG. 7 is an enlarged sectional view showing the state before the first part 30 and the second part 33 are fitted together. FIG. 8 is an enlarged cross-sectional view showing a state in which the two parts 30 and 33 are fitted together and the first fitting surface 31 and the second fitting surface 34 face each other closely. In FIGS. 7 and 8, the sizes and projection dimensions of the first protrusion 32 and the second protrusion 35 are exaggerated.
 第1部品30と第2部品33を嵌合する過程では、第2突部35の頂上部が、第1突部32に摺接することによって、削られるように塑性変形する。第1突部32も削られるように塑性変形するが、その変形量は、第2突部35よりも小さい。両部品30,33が嵌合した状態では、複数の第2突部35が、複数の第1突部32に対して塑性変形した状態で接触する。したがって、第1部品30(第1嵌合面31)と第2部品33(第2嵌合面34)との接触面積が大きい。 In the process of fitting the first part 30 and the second part 33 together, the top of the second protrusion 35 is plastically deformed by sliding contact with the first protrusion 32 so as to be scraped. The first protrusion 32 is also plastically deformed so as to be scraped, but the amount of deformation is smaller than that of the second protrusion 35 . When the two parts 30 and 33 are fitted together, the plurality of second protrusions 35 are brought into contact with the plurality of first protrusions 32 while being plastically deformed. Therefore, the contact area between the first component 30 (first fitting surface 31) and the second component 33 (second fitting surface 34) is large.
 互いに嵌合される第1部品30と第2部品33は、複数の突部32,35の山数PPIが異なる組合せである。この構成によれば、第1部品30の第1突部32と第2部品33の第2突部35が、必ず当接して塑性変形を生じるので、接触信頼性が高い。 The first part 30 and the second part 33 that are fitted to each other are combinations in which the number of peaks PPI of the plurality of protrusions 32 and 35 are different. According to this configuration, the first projection 32 of the first component 30 and the second projection 35 of the second component 33 are inevitably brought into contact with each other to cause plastic deformation, so that contact reliability is high.
 [実施例3]
 本開示を具体化した実施例3のシールド端子3を、図9~図10を参照して説明する。本実施例3のシールド端子3は、第1部品40の第1嵌合面41と第2部品43の第2嵌合面44を、第1部品40と第2部品43の嵌合方向と平行に向けたものである。第1嵌合面41と第2嵌合面44の両方に、突部42,45が形成されている。その他の構成については上記実施例1,2と同じであるため、同じ構成については、同一符号を付し、構造、作用及び効果の説明は省略する。
[Example 3]
A shield terminal 3 of Example 3 embodying the present disclosure will be described with reference to FIGS. 9 to 10. FIG. The shield terminal 3 of the third embodiment has the first fitting surface 41 of the first part 40 and the second fitting surface 44 of the second part 43 parallel to the fitting direction of the first part 40 and the second part 43 . It is aimed at Protrusions 42 and 45 are formed on both the first fitting surface 41 and the second fitting surface 44 . Since other configurations are the same as those of the first and second embodiments, the same configurations are denoted by the same reference numerals, and descriptions of the structures, functions and effects are omitted.
 第1嵌合面41には、複数の第1突部42が、ワイヤブラシ法、ブラスト法、分散めっき法等によって施された梨地加工によって形成されている。第2嵌合面44には、複数の第2突部45が、ワイヤブラシ法、ブラスト法、分散めっき法等によって施された梨地加工によって形成されている。 A plurality of first protrusions 42 are formed on the first fitting surface 41 by satin finishing by wire brushing, blasting, dispersion plating, or the like. A plurality of second protrusions 45 are formed on the second fitting surface 44 by satin finishing by a wire brush method, a blast method, a dispersion plating method, or the like.
 本実施例3の第1嵌合面41の表面粗さと第2嵌合面44の表面粗さは、実施例2の第1嵌合面31及び第2嵌合面34と同じである。本実施例3の第1嵌合面41における複数の第1突部42の分布と配置は、実施例2の第1突部32と同じである。本実施例3の第2嵌合面44における複数の第2突部45の分布と配置は、実施例2の第2突部35と同じである。 The surface roughness of the first fitting surface 41 and the surface roughness of the second fitting surface 44 of the third embodiment are the same as those of the first fitting surface 31 and the second fitting surface 34 of the second embodiment. The distribution and arrangement of the plurality of first projections 42 on the first fitting surface 41 of the third embodiment are the same as those of the first projections 32 of the second embodiment. The distribution and arrangement of the plurality of second protrusions 45 on the second fitting surface 44 of the third embodiment are the same as the second protrusions 35 of the second embodiment.
 図9は、第1部品40と第2部品43を嵌合する前の状態をあらわす拡大断面図である。図10は、両部品40,43が嵌合し、第1嵌合面41と第2嵌合面44が近接して対向している状態をあらわす拡大断面図である。図9,10には、第1突部42と第2突部45の大きさや突出寸法が誇張して描かれている。 FIG. 9 is an enlarged sectional view showing the state before the first part 40 and the second part 43 are fitted. FIG. 10 is an enlarged cross-sectional view showing a state in which the two parts 40 and 43 are fitted together, and the first fitting surface 41 and the second fitting surface 44 face each other closely. 9 and 10, the sizes and projection dimensions of the first protrusion 42 and the second protrusion 45 are exaggerated.
 第1部品40と第2部品43を嵌合する過程では、第2突部45の頂上部が、第1突部42に摺接することによって、削られるように塑性変形する。第1突部42も削られるように塑性変形するが、その変形量は、第2突部45よりも小さい。両部品40,43が嵌合した状態では、複数の第2突部45が、複数の第1突部42に対して塑性変形した状態で接触する。したがって、第1部品40(第1嵌合面41)と第2部品43(第2嵌合面44)との接触面積が大きい。 In the process of fitting the first part 40 and the second part 43 together, the top of the second protrusion 45 is plastically deformed by sliding contact with the first protrusion 42 so as to be scraped. The first protrusion 42 is also plastically deformed so as to be scraped, but the amount of deformation is smaller than that of the second protrusion 45 . When both parts 40 and 43 are fitted together, the plurality of second projections 45 contact the plurality of first projections 42 while being plastically deformed. Therefore, the contact area between the first component 40 (first fitting surface 41) and the second component 43 (second fitting surface 44) is large.
 互いに嵌合される第1部品40と第2部品43は、複数の突部42,45の山数PPIが異なる組合せである。この構成によれば、第1部品40の第1突部42と第2部品43の第2突部45が、必ず当接して塑性変形を生じるので、接触信頼性が高い。 The first part 40 and the second part 43 that are fitted to each other are combinations in which the number of peaks PPI of the plurality of projections 42 and 45 are different. According to this configuration, the first protrusion 42 of the first component 40 and the second protrusion 45 of the second component 43 are inevitably brought into contact with each other to cause plastic deformation, so that the contact reliability is high.
 [実施例4]
 本開示を具体化した実施例4のシールド端子4を、図11~図12を参照して説明する。本実施例4のシールド端子4は、第1部品50の第1嵌合面51と第2部品53の第2嵌合面54を、第1部品50と第2部品53の嵌合方向と平行に向けたものである。第1嵌合面51と第2嵌合面54の両方に、突部52,55が形成されている。その他の構成については上記実施例1~3と同じであるため、同じ構成については、同一符号を付し、構造、作用及び効果の説明は省略する。
[Example 4]
A shield terminal 4 according to a fourth embodiment embodying the present disclosure will be described with reference to FIGS. 11 and 12. FIG. In the shield terminal 4 of the fourth embodiment, the first fitting surface 51 of the first part 50 and the second fitting surface 54 of the second part 53 are parallel to the fitting direction of the first part 50 and the second part 53 . It is aimed at Protrusions 52 and 55 are formed on both the first fitting surface 51 and the second fitting surface 54 . Since other configurations are the same as those of the first to third embodiments, the same configurations are denoted by the same reference numerals, and descriptions of the structures, functions and effects are omitted.
 第1嵌合面51には、複数の第1突部52が、ワイヤブラシ法、ブラスト法、分散めっき法等によって施された梨地加工によって形成されている。第2嵌合面54には、複数の第2突部55が、ワイヤブラシ法、ブラスト法、分散めっき法等によって施された梨地加工によって形成されている。 A plurality of first protrusions 52 are formed on the first fitting surface 51 by satin finishing by a wire brush method, a blast method, a dispersion plating method, or the like. A plurality of second protrusions 55 are formed on the second fitting surface 54 by satin finishing by wire brushing, blasting, dispersion plating, or the like.
 第1嵌合面51の表面粗さは、算術平均粗さ(Ra)、最大高さ(Ry)、十点平均粗さ(Rz)のいずれにおいても、と第2嵌合面54の表面粗さよりも小さい。第1嵌合面51における基準面を最も低い谷底の高さと定義したときに、その基準面からの各第1突部52の突出寸法は、一定である。第2嵌合面54における基準面を最も低い谷底の高さと定義したときに、その基準面からの各第2突部55の突出寸法は、一定である。第1突部52の基準面からの突出寸法は、第2突部55の基準面からの突出寸法よりも小さく設定されている。 The surface roughness of the first fitting surface 51 is the arithmetic average roughness (Ra), the maximum height (Ry), and the ten-point average roughness (Rz), and the surface roughness of the second fitting surface 54 is smaller than When the reference plane of the first fitting surface 51 is defined as the height of the lowest valley bottom, the projecting dimension of each first protrusion 52 from the reference plane is constant. When the reference plane of the second fitting surface 54 is defined as the height of the lowest valley bottom, the projection dimension of each second protrusion 55 from the reference plane is constant. The projection dimension of the first projection 52 from the reference plane is set smaller than the projection dimension of the second projection 55 from the reference plane.
 第1嵌合面51における複数の第1突部52の分布については、複数の第1突部52は一定ピッチで規則的に配置されている。第2嵌合面54における複数の第2突部55の分布についても、複数の第2突部55は一定ピッチで規則的に配置されている。第1突部52の山数PPIは、第2突部55の山数PPIよりも少ない。基準面からの突出寸法が小さく、山数PPIの少ない第1突部52の頂上部は、比較的なだらかな山形をなす。これに対し、基準面からの突出寸法が大きく、山数PPIの多い第2突部55の頂上部は、第1突部52に比べると尖った山形をなす。したがって、第2突部55の強度と剛性は第1突部52よりも小さい。 Regarding the distribution of the plurality of first protrusions 52 on the first fitting surface 51, the plurality of first protrusions 52 are regularly arranged at a constant pitch. Regarding the distribution of the plurality of second protrusions 55 on the second fitting surface 54, the plurality of second protrusions 55 are also regularly arranged at a constant pitch. The number of ridges PPI of the first protrusion 52 is smaller than the number of ridges PPI of the second protrusion 55 . The top portion of the first projection 52, which has a small projection dimension from the reference plane and a small number of peaks PPI, forms a relatively gentle mountain shape. On the other hand, the top portion of the second projection 55, which has a large projection dimension from the reference plane and a large number of peaks PPI, has a sharper peak shape than the first projection 52. As shown in FIG. Therefore, the strength and rigidity of the second protrusion 55 are smaller than those of the first protrusion 52 .
 図11は、第1部品50と第2部品53を嵌合する前の状態をあらわす拡大断面図である。図12は、両部品50,53が嵌合し、第1嵌合面51と第2嵌合面54が近接して対向している状態をあらわす拡大断面図である。図11,12には、第1突部52と第2突部55の大きさや突出寸法が誇張して描かれている。 FIG. 11 is an enlarged cross-sectional view showing the state before the first part 50 and the second part 53 are fitted together. FIG. 12 is an enlarged cross-sectional view showing a state in which the two parts 50 and 53 are fitted together, and the first fitting surface 51 and the second fitting surface 54 face each other closely. 11 and 12, the sizes and projection dimensions of the first protrusion 52 and the second protrusion 55 are exaggerated.
 第1部品50と第2部品53を嵌合する過程では、第2突部55の頂上部が、第1突部52に摺接することによって、削られるように塑性変形する。第1突部52も削られるように塑性変形するが、その変形量は、第2突部55よりも小さい。両部品50,53が嵌合した状態では、複数の第2突部55が、複数の第1突部52に対して塑性変形した状態で接触する。したがって、第1部品50(第1嵌合面51)と第2部品53(第2嵌合面54)との接触面積が大きい。 In the process of fitting the first part 50 and the second part 53 together, the top of the second protrusion 55 is plastically deformed by sliding contact with the first protrusion 52 so as to be scraped. The first protrusion 52 is also plastically deformed so as to be scraped, but the amount of deformation is smaller than that of the second protrusion 55 . When the two parts 50 and 53 are fitted together, the plurality of second projections 55 come into contact with the plurality of first projections 52 while being plastically deformed. Therefore, the contact area between the first component 50 (first fitting surface 51) and the second component 53 (second fitting surface 54) is large.
 互いに嵌合される第1部品50と第2部品53は、複数の突部52,55の山数PPIが異なる組合せである。この構成によれば、第1部品50の第1突部52と第2部品53の第2突部55が、必ず当接して塑性変形を生じるので、接触信頼性が高い。 The first part 50 and the second part 53 that are fitted to each other are combinations in which the number of peaks PPI of the plurality of protrusions 52 and 55 are different. According to this configuration, the first protrusion 52 of the first component 50 and the second protrusion 55 of the second component 53 are inevitably brought into contact with each other to cause plastic deformation, so that the contact reliability is high.
 [他の実施例]
 本発明は、上記記述及び図面によって説明した実施例に限定されるものではなく、請求の範囲によって示される。本発明には、請求の範囲と均等の意味及び請求の範囲内でのすべての変更が含まれ、下記の実施形態も含まれることが意図される。
 実施例1~3において、第1部品と第2部品のうち、一方が厚肉の金属部品であり、他方が板状の金属部品であってもよい。この場合、突部は、いずれか一方の金属部品のみに形成してもよく、両方の金属部品に形成してもよい。
 第1部品のみに突部を形成した実施例1において、突部の配置を規則的にしてもよく、複数の突部の突出寸法を一定の寸法にとしてもよい。
 実施例1では、第1部品の組付用開口部の第1嵌合面のみに突部を形成したが、第2部品の柱状部の第2嵌合面のみに突部を形成してもよい。
 実施例2において、第1突部の山数PPIが少ない第1部品の面粗度を、第2突部の山数PPIが多い第2部品の面粗度より小さくしてもよく、第2突部の山数PPIが多い第2部品の面粗度より大きくしてもよい。
 実施例1~3において、外導体は、3つ以上の金属部品を嵌合して構成されるものでもよい。
[Other embodiments]
The invention is not limited to the embodiments illustrated by the above description and drawings, but is indicated by the claims. The present invention includes all modifications within the meaning and equivalents of the claims and the scope of the claims, and is intended to include the following embodiments.
In Examples 1 to 3, one of the first part and the second part may be a thick metal part and the other may be a plate-like metal part. In this case, the protrusions may be formed on only one of the metal parts, or may be formed on both metal parts.
In the first embodiment in which the projections are formed only on the first component, the projections may be arranged regularly, or the projection dimensions of the plurality of projections may be set to a constant dimension.
In the first embodiment, the protrusion is formed only on the first fitting surface of the assembly opening of the first part, but the protrusion may be formed only on the second fitting surface of the columnar part of the second part. good.
In the second embodiment, the surface roughness of the first component having a small number of peaks PPI of the first protrusions may be made smaller than the surface roughness of the second component having a large number of peaks PPI of the second protrusions. It may be made larger than the surface roughness of the second component having a large number of protrusions PPI.
In Examples 1 to 3, the outer conductor may be configured by fitting three or more metal parts.
1…シールド端子
2…シールド端子
3…シールド端子
4…シールド端子
10…内導体
11…誘電体
12…スリット状収容室
15…外導体
16…第1部品(金属部品)
17…本体部
18…円筒部
19…収容空間
20…後壁部
21…組付用開口部
22…第1嵌合面(嵌合面)
23…突部
24…第2部品(金属部品)
25…底壁部
26…柱状部
27…第2嵌合面(嵌合面)
30…第1部品(金属部品)
31…第1嵌合面(嵌合面)
32…第1突部(突部)
33…第2部品(金属部品)
34…第2嵌合面(嵌合面)
35…第2突部(突部)
40…第1部品(金属部品)
41…第1嵌合面(嵌合面)
42…第1突部(突部)
43…第2部品(金属部品)
44…第2嵌合面(嵌合面)
45…第2突部(突部)
50…第1部品(金属部品)
51…第1嵌合面(嵌合面)
52…第1突部(突部)
53…第2部品(金属部品)
54…第2嵌合面(嵌合面)
55…第2突部(突部)
DESCRIPTION OF SYMBOLS 1... Shield terminal 2... Shield terminal 3... Shield terminal 4... Shield terminal 10... Inner conductor 11... Dielectric 12... Slit-shaped accommodation chamber 15... Outer conductor 16... First part (metal part)
REFERENCE SIGNS LIST 17 Main body portion 18 Cylindrical portion 19 Accommodating space 20 Rear wall portion 21 Assembly opening 22 First fitting surface (fitting surface)
23...Protrusion 24...Second part (metal part)
25 Bottom wall portion 26 Columnar portion 27 Second fitting surface (fitting surface)
30... First part (metal part)
31... First fitting surface (fitting surface)
32... First protrusion (protrusion)
33... Second part (metal part)
34 . . . Second mating surface (fitting surface)
35... Second protrusion (protrusion)
40... First part (metal part)
41... First fitting surface (fitting surface)
42... First protrusion (protrusion)
43... Second part (metal part)
44 . . . Second fitting surface (fitting surface)
45... Second protrusion (protrusion)
50... First part (metal part)
51... First fitting surface (fitting surface)
52... First protrusion (protrusion)
53... Second part (metal part)
54 . . . Second mating surface (fitting surface)
55... Second protrusion (protrusion)

Claims (9)

  1.  内導体と、前記内導体を包囲する誘電体と、前記誘電体を包囲する外導体とを備え、
     前記外導体は、互いに嵌合される複数の金属部品を備えて構成され、
     少なくとも1つの前記金属部品のうち、嵌合過程において他の前記金属部品に摺接する嵌合面には、複数の突部が形成され、
     前記複数の金属部品が嵌合された状態では、前記複数の突部が塑性変形した状態で前記他の金属部品に接触しているシールド端子。
    comprising an inner conductor, a dielectric surrounding the inner conductor, and an outer conductor surrounding the dielectric;
    The outer conductor is configured with a plurality of metal parts that are fitted together,
    A plurality of protrusions are formed on a fitting surface of at least one of the metal parts that is in sliding contact with the other metal parts during the fitting process,
    A shield terminal in which, when the plurality of metal parts are fitted together, the plurality of projections are in contact with the other metal part in a state of being plastically deformed.
  2.  前記複数の突部が梨地加工によって形成されたものである請求項1に記載のシールド端子。 The shield terminal according to claim 1, wherein the plurality of projections are formed by satin finishing.
  3.  前記金属部品は、鋳造、鍛造又は切削によって成形されたものである請求項1又は請求項2に記載のシールド端子。  The shield terminal according to claim 1 or claim 2, wherein the metal part is formed by casting, forging or cutting.
  4.  互いに嵌合される2つの前記金属部品のうち、いずれか一方の前記金属部品のみに、前記突部が形成されている請求項1から請求項3のいずれか1項に記載のシールド端子。 The shield terminal according to any one of claims 1 to 3, wherein the protrusion is formed only on one of the two metal parts that are fitted to each other.
  5.  前記複数の突部の突出寸法がランダムに設定されている請求項4に記載のシールド端子。 The shield terminal according to claim 4, wherein the projecting dimensions of the plurality of protrusions are set at random.
  6.  前記複数の突部が、前記嵌合面上においてランダムに配置されている請求項4又は請求項5に記載のシールド端子。 The shield terminal according to claim 4 or 5, wherein the plurality of protrusions are randomly arranged on the fitting surface.
  7.  2つの前記金属部品の嵌合方向に対して、前記嵌合面が斜めをなしている請求項1から請求項6のいずれか1項に記載のシールド端子。 The shield terminal according to any one of claims 1 to 6, wherein the fitting surface is oblique with respect to the fitting direction of the two metal parts.
  8.  互いに嵌合される2つの前記金属部品は、前記複数の突部の山数PPIが異なる組合せである請求項1から請求項7のいずれか1項に記載のシールド端子。 The shield terminal according to any one of claims 1 to 7, wherein the two metal parts to be fitted to each other are a combination in which the number of peaks PPI of the plurality of protrusions is different.
  9.  内導体が収容される誘電体を包囲する外導体であって、
     互いに嵌合される複数の金属部品を備えており、
     少なくとも1つの前記金属部品のうち、嵌合過程において他の前記金属部品に摺接する嵌合面には、複数の突部が形成され、
     前記複数の金属部品が嵌合された状態では、前記複数の突部が塑性変形した状態で前記他の金属部品に接触している外導体。
    an outer conductor surrounding a dielectric in which the inner conductor is housed,
    It has multiple metal parts that fit together,
    A plurality of protrusions are formed on a fitting surface of at least one of the metal parts that is in sliding contact with the other metal parts during the fitting process,
    The outer conductor is in contact with the other metal part in a state in which the plurality of protrusions are plastically deformed when the plurality of metal parts are fitted together.
PCT/JP2022/047273 2022-02-21 2022-12-22 Shield terminal and outer conductor WO2023157465A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022024628A JP2023121346A (en) 2022-02-21 2022-02-21 Shield terminal and outer conductor
JP2022-024628 2022-02-21

Publications (1)

Publication Number Publication Date
WO2023157465A1 true WO2023157465A1 (en) 2023-08-24

Family

ID=87577976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047273 WO2023157465A1 (en) 2022-02-21 2022-12-22 Shield terminal and outer conductor

Country Status (2)

Country Link
JP (1) JP2023121346A (en)
WO (1) WO2023157465A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019029204A (en) * 2017-07-31 2019-02-21 株式会社オートネットワーク技術研究所 Pressure-bonding structure of electric wire and shield conductive path
WO2020017572A1 (en) * 2018-07-20 2020-01-23 株式会社オートネットワーク技術研究所 Connector and outer conductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019029204A (en) * 2017-07-31 2019-02-21 株式会社オートネットワーク技術研究所 Pressure-bonding structure of electric wire and shield conductive path
WO2020017572A1 (en) * 2018-07-20 2020-01-23 株式会社オートネットワーク技術研究所 Connector and outer conductor

Also Published As

Publication number Publication date
JP2023121346A (en) 2023-08-31

Similar Documents

Publication Publication Date Title
US9812827B2 (en) Connector having tongue portion with peripheral support unitarily formed with metallic shell
US8858237B2 (en) Receptacle connector having improved contact modules
JP5582893B2 (en) Multi-connector for surface mounting and electronic equipment
US9225089B2 (en) Electrical connector
US7497700B2 (en) Electrical connector
US9246283B2 (en) Connector terminal and electrical connector
JP2022063355A (en) Connector and electronic apparatus
JP2020161258A (en) connector
US20160049751A1 (en) Electrical connector having latches and method of making the same
US7670178B2 (en) Electrical connectors with improved engaging arms
US9502816B2 (en) Connector terminal
JP6941131B2 (en) Connector and electronics
JP5419077B2 (en) connector
WO2023157465A1 (en) Shield terminal and outer conductor
CN111903017B (en) Connector with a locking member
JP2018156772A (en) Female terminal, and male connector
JP2021114441A (en) Electrical connection component
US20100248538A1 (en) Electrical connector having a shell defining a pair of wings at opposite sides thereof
US7726986B2 (en) Electrical connector having metal shell equipped with a pair of outwardly protruding resilent arms offset from each other
JP4830738B2 (en) connector
JP2013143286A (en) Board connector
US20140187098A1 (en) Connector
JP2021039843A (en) Joint connector
US20230261423A1 (en) Shield connector
JP7454001B2 (en) shield connector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927348

Country of ref document: EP

Kind code of ref document: A1