WO2023157396A1 - Lens device, information processing device, program, and method for manufacturing imaging device - Google Patents

Lens device, information processing device, program, and method for manufacturing imaging device Download PDF

Info

Publication number
WO2023157396A1
WO2023157396A1 PCT/JP2022/041531 JP2022041531W WO2023157396A1 WO 2023157396 A1 WO2023157396 A1 WO 2023157396A1 JP 2022041531 W JP2022041531 W JP 2022041531W WO 2023157396 A1 WO2023157396 A1 WO 2023157396A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging device
information
angle
lens
polarization
Prior art date
Application number
PCT/JP2022/041531
Other languages
French (fr)
Japanese (ja)
Inventor
睦 川中子
和佳 岡田
慶延 岸根
友也 平川
高志 椚瀬
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023157396A1 publication Critical patent/WO2023157396A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the technology of the present disclosure relates to a lens device, an information processing device, a program, and a method of manufacturing an imaging device.
  • Japanese Patent Application Laid-Open No. 2001-042380 discloses a photographing apparatus in which an optical filter is arranged in the optical path of a condensing optical system having at least one lens, wherein the optical filter covers the required angle of view on the imaging plane.
  • An imaging device is disclosed that is positioned near the most closed position.
  • Japanese Patent Application Laid-Open No. 2014-183516 discloses a camera having a polarizing filter, photographing means, detection means, photometry means, and control means.
  • the polarizing filter is rotatable on a rotation axis that includes and is parallel to the optical axis of the optical lens.
  • a photographing means photographs an image through an optical lens and a polarizing filter.
  • the detection means detects the rotation angle of the polarizing filter with respect to the reference angle.
  • the photometry means measures the luminance value of light incident through the optical lens and the polarizing filter.
  • the control means obtains a first rotation angle of the polarizing filter at which the luminance value measured by the photometry means is maximized, and the first rotation angle of the polarization filter photographed by the photographing means at the first rotation angle of the polarization filter at which the luminance value is maximized.
  • a difference image is created by obtaining a difference between the image and a second image captured by the imaging means at a second rotation angle of the polarizing filter designated in advance, and the first image and the difference image are stored in association with each other. Record on media.
  • an image sensor In International Publication No. 2019/102609 pamphlet, an image sensor, a first polarizing filter that is arranged in a light receiving path of the image sensor and allows linearly polarized light to pass through, and a first polarizing filter that changes the direction of the polarization axis of the first polarizing filter
  • a monitoring device comprising a device, a light source, a second polarizing filter disposed in the light projection path of the light source for passing linearly polarized light, and a second device for changing the direction of the polarization axis of the second polarizing filter.
  • a polarizer in which a plurality of types of polarizing members are arranged by rotating or symmetrically moving the polarizing members having the same internal structure, and a plurality of types of polarizing members.
  • An imaging device includes a photoelectric conversion element that converts the emitted light into an electric charge.
  • One embodiment according to the technology of the present disclosure reduces the error even if an error occurs in the angle of the transmission axis of the first polarizer due to, for example, variations in the mounting angle of the lens device with respect to the body of the imaging device.
  • a lens device an information processing device, a program, and a method for manufacturing an imaging device that can
  • a first aspect of the technology of the present disclosure is a lens apparatus having a polarizing unit arranged in an optical path, the polarizing unit having a plurality of apertures positioned in the optical path, at least of the plurality of apertures
  • a first polarizer is provided in one aperture
  • the lens device is a lens device having a changing mechanism for changing the angle of the transmission axis of the first polarizer.
  • a second aspect of the technology of the present disclosure is the lens device according to the first aspect, wherein the changing mechanism has a rotating member that rotates around the optical axis of the lens device, and the rotating member is coupled to the polarization unit. It is a lens device that has
  • a third aspect of the technology of the present disclosure is the lens device according to the second aspect, wherein the rotation member connects the first member and the polarization unit with the polarization unit arranged in the optical path. and a second member for providing a lens device.
  • a fourth aspect of the technology of the present disclosure is the lens device according to the third aspect, wherein the first member is a ring member having a slot in a partial region, and the second member is a slot It is a lens device that is assembled to the first member.
  • a fifth aspect of the technology of the present disclosure is a lens device according to any one of the second to fourth aspects, wherein a lens barrel that rotatably supports a rotating member; and a fixing member that fixes the rotating member.
  • a sixth aspect of the technology of the present disclosure is the lens device according to any one of the first to fifth aspects, wherein the lens device includes a first image sensor having a second polarizer.
  • 1 is a lens device having a first mount attached to a second mount provided on an imaging device body.
  • a seventh aspect of the technology of the present disclosure is the lens device according to the sixth aspect, wherein the first mount is formed with a first threaded portion that is screwed with the second threaded portion formed on the second mount. It is a lens device that has
  • An eighth aspect of the technology of the present disclosure is the lens device according to the sixth aspect or the seventh aspect, wherein the first mount and the second mount are C mounts.
  • a ninth aspect of the technology of the present disclosure is applied to an imaging device including the lens device according to any one of the first to eighth aspects and a second imaging device body, and a processor wherein the processor, when the lens device is attached to the second imaging device body, first information that is output data from a second image sensor provided in the second imaging device body is an information processing device that outputs second information about an angle based on .
  • a tenth aspect of the technology of the present disclosure is the information processing device according to the ninth aspect, wherein the processor outputs a signal indicating whether or not the angle is within the first predetermined angle range based on the second information. It is an information processing device that
  • An eleventh aspect of the technology of the present disclosure is the information processing device according to the ninth or tenth aspect, wherein the information processing device is an imaging device.
  • a twelfth aspect of the technology of the present disclosure is the information processing device according to any one of the ninth to eleventh aspects, wherein the first information is the spectrum of light incident on the second image sensor and It is an information processing device that is information based on the optical properties of the polarizing unit.
  • a thirteenth aspect of the technology of the present disclosure is the information processing device according to any one of the ninth to twelfth aspects, wherein the second information is the number of pixels included in the second image sensor. It is an information processing device that is information based on output data output from at least one specific pixel.
  • a fourteenth aspect of the technology of the present disclosure is the information processing device according to any one of the ninth to thirteenth aspects, wherein the second information is at least a luminance value, a degree of polarization, and a polarization angle. It is an information processing device including one.
  • a fifteenth aspect of the technology of the present disclosure is an information processing device according to any one of the ninth to fourteenth aspects, wherein the processor outputs the second information to the display. .
  • a sixteenth aspect of the technology of the present disclosure is an information processing device according to any one of the ninth to fifteenth aspects, further comprising a memory for storing second information.
  • a seventeenth aspect of the technology of the present disclosure is the information processing device according to any one of the ninth to sixteenth aspects, wherein the processor performs interference elimination processing on the output data.
  • the processor performs interference elimination processing on the output data.
  • An eighteenth aspect of the technology of the present disclosure is processing applied to an imaging device including the lens device according to any one of the first to eighth aspects and a second imaging device body wherein the processing is output data from the second image sensor provided in the second imaging device body when the lens device is attached to the second imaging device body
  • a program including outputting second information about an angle based on first information.
  • a nineteenth aspect of the technology of the present disclosure is an imaging device for assembling an imaging device including the lens device according to any one of the first to eighth aspects and a second imaging device body.
  • a manufacturing method of an imaging device comprising: attaching a lens device to a second imaging device body; and changing an angle with a changing mechanism while the lens device is attached to the second imaging device body. is.
  • a twentieth aspect of the technology of the present disclosure is the method of manufacturing an imaging device according to the nineteenth aspect, wherein the change of the angle is performed when focusing is performed using the lens device. manufacturing method.
  • a twenty-first aspect of the technology of the present disclosure is, in the imaging device manufacturing method according to the nineteenth aspect or the twentieth aspect, the output data from the second image sensor provided in the second imaging device body.
  • the imaging device manufacturing method further comprises acquiring second information about an angle based on the first information, and changing the angle based on the second information.
  • a twenty-second aspect of the technology of the present disclosure is the imaging device manufacturing method according to any one of the nineteenth to twenty-first aspects, wherein the angle falls within the first predetermined angle range based on the second information.
  • the imaging device manufacturing method further includes outputting a signal indicating whether or not the imaging device is settled.
  • a twenty-third aspect of the technology of the present disclosure is the method for manufacturing an imaging device according to any one of the nineteenth aspect to the twenty-second aspect, when the angle falls within the second predetermined angle range, A method of manufacturing an imaging device, further comprising fixing a polarizing unit to a barrel of a lens device.
  • FIG. 2 is an exploded side view showing an example of a lens device and an imaging device body;
  • FIG. It is an exploded perspective view showing an example of a lens device.
  • FIG. 4 is an exploded perspective view showing an example of a pupil division filter;
  • 1 is an exploded longitudinal sectional view showing an example of a lens device;
  • FIG. It is a longitudinal cross-sectional view showing an example of an assembled state of the lens device.
  • FIG. 10 is an explanatory diagram showing an example of a first operation of the processor of the imaging device;
  • FIG. 10 is an explanatory diagram showing an example of a second operation of the processor of the imaging device;
  • 4 is a flow chart showing an example of a flow of operations of a processor of an imaging device;
  • It is a block diagram which shows an example of the hardware constitutions of a determination assistance apparatus.
  • It is a block diagram which shows an example of a functional structure of a determination support apparatus.
  • FIG. 4 is an explanatory diagram showing an example of the operation of the processor of the determination support device;
  • 4 is a flow chart showing an example of the operation flow of the processor of the determination support device;
  • It is a block diagram which shows an example of the manufacturing system which concerns on a modification.
  • It is a block diagram which shows an example of the imaging device which concerns on a modification.
  • CMOS is an abbreviation for "Complementary Metal Oxide Semiconductor”.
  • CCD is an abbreviation for "Charge Coupled Device”.
  • NVM is an abbreviation for "Non-Volatile Memory”.
  • RAM is an abbreviation for "Random Access Memory”.
  • CPU is an abbreviation for "Central Processing Unit”.
  • GPU is an abbreviation for "Graphics Processing Unit”.
  • EEPROM is an abbreviation for "Electrically Erasable and Programmable Read Only Memory”.
  • HDD is an abbreviation for "Hard Disk Drive”.
  • TPU is an abbreviation for "Tensor processing unit”.
  • SSD is an abbreviation for "Solid State Drive”.
  • USB is an abbreviation for "Universal Serial Bus”.
  • ASIC is an abbreviation for "Application Specific Integrated Circuit”.
  • FPGA is an abbreviation for "Field-Programmable Gate Array”.
  • PLD is an abbreviation for "Programmable Logic Device”.
  • SoC is an abbreviation for "System-on-a-chip.”
  • IC is an abbreviation for "Integrated Circuit”.
  • the center is an error that is generally allowed in the technical field to which the technology of the present disclosure belongs, in addition to the perfect center, and is not contrary to the spirit of the technology of the present disclosure. It refers to the center in the sense of including the error of
  • “orthogonal” is an error that is generally allowed in the technical field to which the technology of the present disclosure belongs, in addition to perfect orthogonality, and is not contrary to the spirit of the technology of the present disclosure.
  • a straight line is an error that is generally allowed in the technical field to which the technology of the present disclosure belongs, in addition to a perfect straight line, and is not contrary to the spirit of the technology of the present disclosure. It refers to a straight line in the sense of including the error of
  • the imaging device 10 is a multispectral camera capable of outputting a multispectral image 128 and includes a lens device 12 and an imaging device body 14 .
  • the imaging device 10 is an example of an “imaging device” according to the technology of the present disclosure.
  • the lens device 12 is an example of a “lens device” according to the technology of the present disclosure.
  • the imaging device body 14 is an example of the "first imaging device body” according to the technology of the present disclosure.
  • Multispectral image 128 is an example of a “multispectral image” according to the technology of this disclosure.
  • the lens device 12 has a first mount 16 and the imaging device body 14 has a second mount 18 .
  • Each of the first mount 16 and the second mount 18 is a C-mount and is formed in an annular shape.
  • the first mount 16 is provided coaxially with the optical axis OA of the lens device 12 .
  • a screw 20 is formed on the outer peripheral surface of the first mount 16 , and a screw hole 22 is formed inside the second mount 18 .
  • the first mount 16 is attached to the second mount 18 by screwing the screw 20 into the screw hole 22 .
  • the lens device 12 is attached to the imaging device body 14 by attaching the first mount 16 to the second mount 18 .
  • the first mount 16 is an example of a "first mount” according to the technology of the present disclosure.
  • the second mount 18 is an example of a “second mount” according to the technology of the present disclosure.
  • the screw 20 is an example of the "first threaded portion" according to the technology of the present disclosure
  • the screw hole 22 is an example of the "second threaded portion” according to the technology of the present disclosure.
  • a screw hole 22 may be formed inside the first mount 16 and a screw 20 may be formed on the outer peripheral surface of the second mount 18 .
  • the screw hole 22 is an example of the "first screw portion” according to the technology of the present disclosure
  • the screw 20 is an example of the "second screw portion” according to the technology of the present disclosure.
  • the lens device 12 has a pupil division filter 24, a connecting pin 26, a lens barrel 28, a rotating member 30, an end frame 32, and a set screw 34.
  • the pupil division filter 24 has a frame 36, filters 38A to 38C, polarizers 40A to 40C, and a shielding member 42.
  • Pupil division filter 24 is an example of a “polarization unit” according to the technology of the present disclosure.
  • the frame 36 has openings 44A to 44D.
  • the openings 44A to 44D will be referred to as “openings 44" when there is no need to distinguish between the openings 44A to 44D.
  • a plurality of apertures 44 are arranged along the direction around the optical axis OA.
  • the opening 44 is an example of an "opening" according to the technology of the present disclosure.
  • the filters 38A to 38C are provided in the openings 44A to 44C, respectively, and the shielding member 42 is provided in the opening 44D.
  • Filter 38A has a first transmission wavelength band ⁇ 1
  • filter 38B has a second transmission wavelength band ⁇ 2
  • filter 38C has a third transmission wavelength band ⁇ 3 .
  • the first transmission wavelength band ⁇ 1 , the second transmission wavelength band ⁇ 2 , and the third transmission wavelength band ⁇ 3 are wavelength bands different from each other.
  • the first transmission wavelength band ⁇ 1 , the second transmission wavelength band ⁇ 2 , and the third transmission wavelength band ⁇ 3 may each be set to arbitrary bands.
  • the filters 38A to 38C will be referred to as "filters 38" when there is no need to distinguish between the filters 38A to 38C.
  • the polarizers 40A to 40C are provided in the openings 44A to 44C, respectively, and overlapped with the filters 38A to 38C.
  • the polarizer 40A is a polarizer whose transmission axis is set at an azimuth angle of 0°.
  • the polarizer 40B is a polarizer whose transmission axis is set at an azimuth angle of 45°.
  • the polarizer 40C is a polarizer whose transmission axis is set at an azimuth angle of 90°.
  • the polarizers 40A to 40C will be referred to as "polarizers 40" when there is no need to distinguish between the polarizers 40A to 40C.
  • the polarizer 40 is an example of the "first polarizer” according to the technology of the present disclosure.
  • the number of openings 44 is four in the example shown in FIG. 4, the number of openings 44 may be any number. Also, although the number of filters 38 is three in the example shown in FIG. 4, the number of filters 38 may be any number. Also, although the number of polarizers 40 is three in the example shown in FIG. 4, the number of polarizers 40 may be any number.
  • the number of filters 38 is less than the number of apertures 44 in the example shown in FIG.
  • the number of polarizers 40 is less than the number of apertures 44 in the example shown in FIG.
  • the polarizer 40 may be provided in at least one aperture 44 among the plurality of apertures 44 .
  • the lens device 12 has a first lens 46 and a second lens 48 .
  • the lens barrel 28 has a main body 50 , a lens frame 52 and an outer cylinder 54 .
  • the lens frame 52 is provided inside the body 50
  • the outer cylinder 54 is provided outside the body 50 .
  • the outer cylinder 54 and the lens frame 52 are connected.
  • the lens frame 52 holds the first lens 46 .
  • the first lens 46 is, for example, a focus lens.
  • a lever 56 is provided on the outer cylinder 54 .
  • a cam (not shown) and/or a helicoid (not shown) are provided between the lens frame 52 and the main body 50 .
  • the lens frame 52 rotates around the optical axis OA integrally with the outer cylinder 54 by moving the lever 56 in the direction around the optical axis OA
  • the lens frame 52 is integrated with the first lens 46 by the cam and/or the helicoid. , in the direction of the optical axis OA.
  • the focus of the lens device 12 is adjusted by moving the first lens 46 in the direction of the optical axis OA.
  • the lens barrel 28 is formed with an insertion opening 58 for inserting the pupil division filter 24 inside the lens barrel 28 .
  • the insertion opening 58 opens in a direction perpendicular to the optical axis OA.
  • a slit 60 is formed in the inner peripheral surface of the lens barrel 28 .
  • the slit 60 extends in an arc around the optical axis OA.
  • the pupil division filter 24 is inserted inside the lens barrel 28 through the insertion opening 58 .
  • the pupil division filter 24 is arranged in the optical path 62 provided inside the lens device 12 by being inserted inside the lens barrel 28 .
  • a plurality of apertures 44 are located in the optical path 62 when the pupil division filter 24 is placed in the optical path 62 .
  • the optical path 62 is an example of an "optical path" according to the technology of the present disclosure.
  • the frame 36 of the pupil division filter 24 is inserted into the slit 60 .
  • the pupil division filter 24 is rotatably supported by the lens barrel 28 around the optical axis OA with the frame 36 inserted into the slit 60 .
  • the connecting pin 26 is fixed to the upper portion of the frame 36 and extends above the frame 36 .
  • the pupil division filter 24 rotates about the optical axis OA with respect to the lens barrel 28 within the range in which the connecting pin 26 moves inside the insertion opening 58 .
  • the rotating member 30 is a member for changing the angle of the transmission axis of each polarizer 40 (see FIG. 4) provided in the pupil division filter 24.
  • the rotary member 30 is formed in an annular shape and provided outside the lens barrel 28 .
  • the rotating member 30 is rotatably supported by the lens barrel 28 around the optical axis OA.
  • the rotating member 30 is an example of a “changing mechanism” and a “rotating member” according to the technology of the present disclosure.
  • the lens barrel 28 is an example of a "lens barrel” according to the technology of the present disclosure.
  • the rotating member 30 specifically has a ring member 64 and a lid member 66 .
  • the ring member 64 is formed in an annular shape.
  • the ring member 64 is rotatably attached to the outer peripheral surface of the lens barrel 28 .
  • Ring member 64 has a notch 68 .
  • the cutout portion 68 is formed in a concave shape by cutting out a portion of the ring member 64 in the circumferential direction.
  • the notch portion 68 is an example of a “slot portion” according to the technology of the present disclosure.
  • the ring member 64 may be made of metal or resin.
  • the notch portion 68 may be formed by notching, or may be formed by molding using a mold.
  • the lid member 66 has a shape corresponding to the notch portion 68 and is attached to the notch portion 68 .
  • the lid member 66 is fixed to the ring member 64 by, for example, screws (not shown).
  • the cover member 66 is connected to the connecting pin 26 with the pupil division filter 24 arranged in the optical path 62 .
  • the rotating member 30 is connected to the pupil division filter 24 via a connecting pin 26 .
  • the rotary member 30 is connected to the pupil division filter 24 via a connection pin 26 to rotate integrally with the pupil division filter 24 .
  • the ring member 64 is an example of the "first member” and the “ring member” according to the technology of the present disclosure
  • the lid member 66 is an example of the "second member” according to the technology of the present disclosure.
  • the pupil division filter 24 rotates integrally with the rotating member 30, so that any one of the plurality of polarizers 40 provided in the pupil division filter 24 (hereinafter referred to as a "specific polarizer 40”) can be kept within a predetermined angle range.
  • a predetermined angle range for example, an interference removal matrix (hereinafter also referred to as "interference removal parameter") used when obtaining the multispectral image 128 based on the captured image data 96 as described later is commonly used for each imaging device 10. Even when it is used, it is set within a range where the image quality of the multispectral image 128 can be ensured by each imaging device 10 .
  • the predetermined angle range is an example of the "first predetermined angle range” and the "second predetermined angle range” according to the technology of the present disclosure.
  • a threaded hole 70 is formed in the ring member 64 , and the set screw 34 is screwed into the threaded hole 70 .
  • the set screw 34 is screwed into the screw hole 70 , and when the tip of the set screw 34 hits the outer peripheral surface of the lens barrel 28 , the rotating member 30 is fixed to the lens barrel 28 .
  • the set screw 34 is an example of a "fixing member" according to the technology of the present disclosure.
  • the set screw 34 is used to fix the rotating member 30 to the lens barrel 28, but the fixing member for fixing the rotating member 30 to the lens barrel 28 is a screw of a type other than the set screw 34. or other types of fasteners than screws.
  • the fixing member may be a fixing material such as solder or adhesive.
  • the end frame 32 is attached to the lens barrel 28.
  • the end frame 32 restricts the movement of the rotating member 30 along the direction of the optical axis OA.
  • the imaging device body 14 includes an image sensor 72, a control driver 74, an input/output I/F 76, a computer 78, a display 80, and a communication I/F 82.
  • the first lens 46, the pupil division filter 24, and the second lens 48 extend along the optical axis OA of the lens device 12 from the subject 4 side to the imaging device body 14 side.
  • a first lens 46, a pupil division filter 24, and a second lens 48 are arranged in this order along the line.
  • the first lens 46 transmits light obtained by reflecting the light emitted from the light source 2 by the subject 4 (hereinafter referred to as “subject light”) through the pupil division filter 24 .
  • the second lens 48 forms an image of the subject light that has passed through the pupil division filter 24 on the light receiving surface 84A of the photoelectric conversion element 84 provided in the image sensor 72 .
  • the plurality of apertures 44 provided in the pupil division filter 24 are shown arranged linearly along the direction perpendicular to the optical axis OA. , are arranged along the direction around the optical axis OA (see FIG. 4).
  • the image sensor 72 has a photoelectric conversion element 84 and a signal processing circuit 86 .
  • the image sensor 72 is, for example, a CMOS image sensor.
  • a CMOS image sensor is exemplified as the image sensor 72, but the technology of the present disclosure is not limited to this.
  • the technology of the present disclosure is established.
  • the image sensor 72 is an example of the "first image sensor" according to the technology of the present disclosure.
  • FIG. 7 shows a schematic configuration of the photoelectric conversion element 84 .
  • FIG. 8 specifically shows the configuration of part of the photoelectric conversion element 84 .
  • the photoelectric conversion element 84 has a pixel layer 88 , a polarizing filter layer 90 and a spectral filter layer 92 .
  • the pixel layer 88 has a plurality of pixels 94 .
  • a plurality of pixels 94 are arranged in a matrix and form a light receiving surface 84A of the photoelectric conversion element 84 .
  • Each pixel 94 is a physical pixel having a photodiode (not shown), photoelectrically converts received light, and outputs an electrical signal corresponding to the amount of received light.
  • the pixels 94 provided in the photoelectric conversion elements 84 are referred to as "physical pixels” in order to distinguish them from the pixels forming the multispectral image 128.
  • the pixels forming the multispectral image 128 are also referred to as "image pixels.”
  • the photoelectric conversion element 84 outputs electrical signals output from the plurality of physical pixels 94 to the signal processing circuit 86 as captured image data 96 .
  • the signal processing circuit 86 digitizes the analog captured image data 96 input from the photoelectric conversion element 84 .
  • a plurality of physical pixels 94 form a plurality of pixel blocks 98 .
  • Each pixel block 98 is formed by four physical pixels 94 .
  • the four physical pixels 94 forming each pixel block 98 are shown arranged linearly along the direction perpendicular to the optical axis OA. Also, the four physical pixels 94 are arranged adjacent to each other in the vertical and horizontal directions of the photoelectric conversion element 84 .
  • the polarizing filter layer 90 has polarizers 100A to 100D.
  • the polarizer 100A is a polarizer whose transmission axis is set at an azimuth angle of 90°.
  • the polarizer 100B is a polarizer whose transmission axis is set at an azimuth angle of 135°.
  • the polarizer 100C is a polarizer whose transmission axis is set at an azimuth angle of 0°.
  • the polarizer 100D is a polarizer whose transmission axis is set at an azimuth angle of 45°.
  • the polarizers 100A to 100D correspond to the four physical pixels 94, respectively, and are superimposed on the four physical pixels 94, respectively.
  • polarizers 100A to 100D will be referred to as "polarizers 100" when there is no need to distinguish between the polarizers 100A to 100D.
  • a polarizer 100 corresponding to each physical pixel 94 is an example of a “second polarizer” according to the technology of the present disclosure.
  • the spectral filter layer 92 has B filters 102A, G filters 102B, and R filters 102C.
  • the B filter 102A is a blue bandpass filter that transmits most of the light in the blue wavelength band among the light in the plurality of wavelength bands.
  • the G filter 102B is a green bandpass filter that transmits the light in the green wavelength band most among the light in the plurality of wavelength bands.
  • the R filter 102C is a red band filter that transmits most of the light in the red wavelength band among the light in the plurality of wavelength bands.
  • a B filter 102 A, G filter 102 B, and R filter 102 C are assigned to each pixel block 98 .
  • the B filter 102A, G filter 102B, and R filter 102C are shown arranged linearly along the direction perpendicular to the optical axis OA. Furthermore, the B filters 102A, G filters 102B, and R filters 102C are arranged in a matrix in a predetermined pattern arrangement. In the example shown in FIG. 8, the B filters 102A, G filters 102B, and R filters 102C are arranged in a matrix in a Bayer pattern as an example of a predetermined pattern arrangement.
  • the predetermined pattern arrangement may be an RGB stripe arrangement, an R/G checkered arrangement, an X-Trans (registered trademark) arrangement, a honeycomb arrangement, or the like, in addition to the Bayer arrangement.
  • the B filter 102A, the G filter 102B, and the R filter 102C are each referred to as the "filter 102" when it is not necessary to distinguish between the B filter 102A, the G filter 102B, and the R filter 102C.
  • the input/output I/F 76 is connected to a signal processing circuit 86, a control driver 74, a computer 78, a display 80, and a communication I/F 82.
  • the computer 78 has a processor 110 , NVM 112 and RAM 114 .
  • the processor 110 controls the imaging device 10 as a whole.
  • the processor 110 is, for example, an arithmetic processing device including a CPU and a GPU.
  • the GPU operates under the control of the CPU and is responsible for executing image processing.
  • processing units including CPUs and GPUs are mentioned here as an example of processor 110, this is merely an example, and processor 110 may be one or more CPUs that integrate GPU functionality. , may be one or more CPUs that do not integrate GPU functionality.
  • Processor 110 , NVM 112 , and RAM 114 are connected via bus 166 , which is connected to input/output I/F 76 .
  • the NVM 112 is a non-temporary storage medium and stores various parameters and various programs.
  • NVM 112 is flash memory (eg, EEPROM).
  • flash memory eg, EEPROM
  • a RAM 114 temporarily stores various information and is used as a work memory.
  • the processor 110 reads necessary programs from the NVM 112 and executes the read programs on the RAM 114 .
  • Processor 110 controls control driver 74 and signal processing circuit 86 according to a program executed in RAM 114 .
  • Control driver 74 controls photoelectric conversion element 84 under the control of processor 110 .
  • the display 80 is, for example, a liquid crystal display and displays various images including the multispectral image 128 .
  • the communication I/F 82 is communicably connected to a determination support device 140 (see FIG. 14), which will be described later.
  • the communication I/F 82 may be communicably connected to the determination support device 140 according to a predetermined wireless communication standard, or may be communicably connected to the determination support device 140 according to a predetermined wired communication standard. Examples of the default wireless communication standard include Bluetooth (registered trademark). Note that wireless communication standards other than this (for example, Wi-Fi, 5G, etc.) may be used.
  • the communication I/F 82 manages exchange of information with each of the determination support devices 140 . For example, communication I/F 82 transmits information in response to a request from processor 110 to determination support device 140 . Communication I/F 82 also receives information transmitted from determination support device 140 and outputs the received information to processor 110 via bus 116 .
  • FIG. 9 to 15 show an example of each process of the method for manufacturing the imaging device 10 according to this embodiment
  • FIG. 16 shows an example of the flow of the method for manufacturing the imaging device 10 according to this embodiment. It is shown.
  • step ST10 an operator (not shown) inserts the pupil division filter 24 to which the connecting pin 26 is attached into the lens barrel 28 through the insertion opening 58. (See FIG. 9). After the process of step ST10 is performed, the manufacturing method of the imaging device 10 proceeds to step ST12.
  • step ST12 the operator rotatably attaches the ring member 64 to the outer peripheral surface of the lens barrel 28 (see FIG. 10). Also, the operator attaches the end frame 32 to the outer peripheral surface of the lens barrel 28 (see FIG. 10). After the process of step ST12 is executed, the manufacturing method of the imaging device 10 proceeds to step ST14.
  • step ST14 the operator attaches the first mount 16 to the second mount 18 by screwing the screw 20 of the first mount 16 into the screw hole 22 of the second mount 18 (see FIG. 11). Thereby, the lens device 12 is attached to the imaging device body 14 .
  • step ST14 the manufacturing method of the imaging device 10 proceeds to step ST16.
  • step ST16 the operator focuses the lens device 12 by moving the lever 56 in the direction around the optical axis OA (see FIG. 12). After the process of step ST16 is performed, the manufacturing method of the imaging device 10 proceeds to step ST18.
  • step ST18 the operator connects the cover member 66 to the connecting pin 26 with the pupil division filter 24 placed in the optical path 62 (see FIG. 13). Also, the operator assembles the cover member 66 into the notch portion 68 of the ring member 64 (see FIG. 13). As a result, the rotary member 30 is connected to the pupil division filter 24 via the connection pin 26 , and the rotary member 30 rotates integrally with the pupil division filter 24 .
  • step ST18 the manufacturing method of the imaging device 10 proceeds to step ST20.
  • step ST20 the operator connects the imaging device 10 to the determination support device 140, and determines the captured image data 96 obtained by imaging the subject 4 with the image sensor 72 (see FIG. 7) of the imaging device 10. It is transmitted to the support device 140 (see FIG. 14).
  • the determination support device 140 displays angle information 186 regarding the angle of the transmission axis of the specific polarizer 40 on the display 150 based on the received captured image data 96, as will be described in detail later.
  • Angle information 186 includes, for example, luminance values, degrees of polarization, and polarization angles. The brightness value, the degree of polarization, and the polarization angle are displayed on the display 150 as specific numerical values.
  • step ST20 the manufacturing method of the imaging device 10 proceeds to step ST22.
  • step ST22 the operator looks at the brightness value, the degree of polarization, and the polarization angle displayed on the display 150 and/or the determination result displayed on the display 150, and moves the pupil division filter 24 integrally with the rotary member 30. is rotated (see FIG. 14). After the process of step ST22 is performed, the manufacturing method of the imaging device 10 proceeds to step ST24.
  • the operator determines whether or not the angle of the transmission axis of the specific polarizer 40 is within the predetermined angle range (see FIG. 14). For example, the operator determines whether each value of the luminance value, the degree of polarization, and the polarization angle is within a predetermined range, and/or whether each value of the luminance value, the degree of polarization, and the polarization angle is within the predetermined range. It is determined whether or not the angle of the transmission axis of the specific polarizer 40 is within the predetermined angle range based on whether or not the result of determination that the angle is within the range is obtained.
  • step ST24 if the angle of the transmission axis of the specific polarizer 40 does not fall within the predetermined angle range, the determination is negative, and the manufacturing method of the imaging device 10 proceeds to step ST20. In step ST24, when the angle of the transmission axis of the specific polarizer 40 is within the predetermined angle range, the determination is affirmative, and the manufacturing method of the imaging device 10 proceeds to step ST26.
  • step ST26 the operator screws the set screw 34 into the screw hole 70 (see FIG. 15).
  • the rotation member 30 is fixed to the lens barrel 28 , thereby fixing the pupil division filter 24 to the lens barrel 28 .
  • the manufacturing method of the imaging device 10 ends.
  • the imaging device 10 including the lens device 12 and the imaging device body 14 is assembled by the method of manufacturing the imaging device 10 described above.
  • the manufacturing method of the imaging device 10 is an example of the “imaging device manufacturing method” according to the technology of the present disclosure.
  • the NVM 112 stores a multispectral image generation program 120 .
  • Processor 110 reads multispectral image generation program 120 from NVM 112 and executes read multispectral image generation program 120 on RAM 114 .
  • Processor 110 performs multispectral image generation processing to generate multispectral image 128 according to multispectral image generation program 120 running on RAM 114 .
  • the multispectral image generation processing is realized by the processor 110 operating as the output value acquisition unit 122, the interference removal processing unit 124, and the multispectral image acquisition unit 126 according to the multispectral image generation program 120.
  • the output value acquisition unit 122 when captured image data 96 output from the image sensor 72 is input to the processor 110, the output value acquisition unit 122 outputs each physical pixel 94 based on the captured image data 96. Get the value Y.
  • the output value Y of each physical pixel 94 corresponds to the brightness value of each pixel included in the captured image indicated by the captured image data 96 .
  • the output value Y of each physical pixel 94 is a value including interference (that is, crosstalk). That is, since light in each transmission wavelength band ⁇ of the first transmission wavelength band ⁇ 1 , the second transmission wavelength band ⁇ 2 , and the third transmission wavelength band ⁇ 3 is incident on each physical pixel 94, the output value Y is , a value corresponding to the amount of light in the first transmission wavelength band ⁇ 1 , a value corresponding to the amount of light in the second transmission wavelength band ⁇ 2 , and a value corresponding to the amount of light in the third transmission wavelength band ⁇ 3 .
  • the processor 110 In order to acquire the multispectral image 128 (see FIG. 17), the processor 110 separates and extracts the value corresponding to each transmission wavelength band ⁇ from the output value Y for each physical pixel 94, that is, the interference
  • the output value Y needs to be subjected to interference removal processing, which is processing for removing . Therefore, in the present embodiment, the interference removal processing unit 124 performs interference removal processing on the output value Y of each physical pixel 94 acquired by the output value acquisition unit 122 .
  • the output value Y of each physical pixel 94 includes luminance values of red, green, and blue as output value Y components.
  • the output value Y of each physical pixel 94 is represented by Equation (1).
  • YR is the luminance value of red in the output value Y
  • YG is the luminance value of green in the output value Y
  • YB is the luminance value of blue in the output value Y. is.
  • the pixel value X of each image pixel forming the multispectral image 128 is the luminance value of light in the first transmission wavelength band ⁇ 1 , the luminance value of light in the second transmission wavelength band ⁇ 2 , and the third transmission wavelength band ⁇ 3 . , as a component of the pixel value X.
  • a pixel value X of each image pixel is represented by Equation (2).
  • the luminance value X ⁇ 1 is the luminance value of light in the first transmission wavelength band ⁇ 1 of the pixel value X
  • the luminance value X ⁇ 2 is the light of the second transmission wavelength band ⁇ 2 in the pixel value X
  • the luminance value X ⁇ 3 is the luminance value of the light in the third transmission wavelength band ⁇ 3 of the pixel value X.
  • Equation (3) the output value Y of each physical pixel 94 is represented by Equation (3).
  • the interference matrix A (not shown) is based on the spectrum of the subject light, the spectral transmittance of the first lens 46, the spectral transmittance of the second lens 48, the spectral transmittances of the plurality of filters 38, and the spectral sensitivity of the image sensor 72. is a matrix defined by
  • the pixel value X of each image pixel is represented by Equation (4).
  • the interference cancellation matrix A + also includes the spectrum of the subject light, the spectral transmittance of the first lens 46, the spectral transmittance of the second lens 48, the spectral transmittances of the plurality of filters 38, and the image sensor 72 is a matrix defined based on the spectral sensitivity of The interference cancellation matrix A + is pre-stored in NVM 112 .
  • the interference cancellation processing unit 124 acquires the interference cancellation matrix A + stored in the NVM 112 and the output value Y of each physical pixel 94 acquired by the output value acquisition unit 122, and combines the acquired interference cancellation matrix A + Based on the output value Y of each physical pixel 94, the pixel value X of each image pixel is output by Equation (4).
  • the pixel value X of each image pixel is the brightness value X ⁇ 1 of light in the first transmission wavelength band ⁇ 1 , the brightness value X ⁇ 2 of light in the second transmission wavelength band ⁇ 2 , and the brightness value X ⁇ 2 of light in the third transmission wavelength band ⁇ 2 .
  • the luminance value X ⁇ 3 of light in the wavelength band ⁇ 3 is included as a component of the pixel value X.
  • the brightness value X ⁇ 1 of the light in the first transmission wavelength band ⁇ 1 is indicated by the first image data of the captured image data 96 .
  • the brightness value X ⁇ 2 of light in the second transmission wavelength band ⁇ 2 is indicated by the second image data of the captured image data 96 .
  • the brightness value X ⁇ 3 of light in the third transmission wavelength band ⁇ 3 is indicated by the third image data of the captured image data 96 .
  • the interference removal processing is executed by the interference removal processing unit 124, so that the captured image data 96 is the first image data that is image data representing the luminance value X ⁇ 1 of the light in the first transmission wavelength band ⁇ 1 . , second image data representing the brightness value X ⁇ 2 of light in the second transmission wavelength band ⁇ 2 , and third image data representing the brightness value X ⁇ 3 of light in the third transmission wavelength band ⁇ 3. image data. That is, the captured image data 96 is separated into image data for each transmission wavelength band of the plurality of filters 38 . Interference removal processing is an example of "interference removal processing" according to the technology of the present disclosure.
  • the multispectral image acquisition unit 126 generates first image data, second image data, and third image data generated by the interference removal processing performed by the interference removal processing unit 124. to obtain multispectral image data.
  • Multispectral image data is image data representing a multispectral image 128 .
  • the multispectral image data is output to display 80, for example.
  • Display 80 displays multispectral image 128 based on the multispectral image data.
  • FIG. 20 shows an example of the flow of multispectral image generation processing according to this embodiment.
  • step ST30 the output value acquisition unit 122 acquires the output value Y of each physical pixel 94 based on the captured image data 96 output from the image sensor 72. (See Figure 18). After the process of step ST30 is executed, the multispectral image generation process proceeds to step ST32.
  • step ST32 the interference removal processing unit 124 obtains the interference removal matrix A + stored in the NVM 112 and the output value Y of each physical pixel 94 obtained in step ST30, and calculates the obtained interference removal matrix A + and the output value Y of each physical pixel 94, the pixel value X of each image pixel is output (see FIG. 18).
  • the captured image data 96 is changed from the first image data, which is the image data indicating the brightness value X ⁇ 1 of the light in the first transmission wavelength band ⁇ 1 , and the second transmission wavelength band
  • the second image data is image data representing the brightness value X ⁇ 2 of light of ⁇ 2
  • the third image data is image data representing the brightness value X ⁇ 3 of light of the third transmission wavelength band ⁇ 3 .
  • step ST34 the multispectral image acquisition unit 126 obtains the multispectral image 128 based on the first image data, the second image data, and the third image data generated by executing the interference removal process in step ST32. (see FIG. 19). After the process of step ST34 is executed, the multispectral image generation process proceeds to step ST36.
  • the processor 110 determines whether or not the condition for terminating the multispectral image generation process (that is, the termination condition) is satisfied.
  • the termination condition is a condition that the user has given an instruction to the imaging device 10 to terminate the multispectral image generation processing.
  • the termination condition is not met, the determination is negative, and the multispectral image generation process proceeds to step ST30.
  • the termination condition is met, the determination is affirmative and the multispectral image generation process is terminated.
  • the determination support device 140 is a device applied to the imaging device 10 . Specifically, as described above, the determination support device 140 determines whether the angle information 186 regarding the angle of the transmission axis of the specific polarizer 40 (see FIG. 4) and whether the angle of the transmission axis of the specific polarizer 40 falls within the predetermined angle range. By displaying on the display 150 the determination result information 188 regarding the determination of whether or not the (see FIG. 14))).
  • the determination support device 140 is an example of an “information processing device” according to the technology of the present disclosure.
  • the determination support device 140 includes a computer 148, a display 150, and a communication I/F 152.
  • the computer 148, the display 150, and the communication I/F 152 are realized by hardware resources similar to the computer 78, the display 80, and the communication I/F 82 provided in the imaging device 10, for example.
  • the communication I/F 152 is communicably connected to the imaging device 10 .
  • Computer 148 has a processor 160 , NVM 162 and RAM 164 .
  • Processor 160 is an example of a "processor" according to the technology of the present disclosure.
  • the NVM 162 stores a determination support program 170 .
  • the processor 160 reads the determination support program 170 from the NVM 162 and executes the read determination support program 170 on the RAM 164 .
  • the processor 160 executes determination support processing for assisting determination by the operator according to a determination support program 170 executed on the RAM 164 .
  • the determination support processing is realized by operating the processor 160 as an acquisition unit 172, a derivation unit 174, a storage control unit 176, a display control unit 178, a determination unit 180, and a determination result output unit 182 according to the determination support program 170.
  • the determination support program 170 is an example of a "program” according to the technology of the present disclosure.
  • Determination support processing is an example of “processing” according to the technology of the present disclosure.
  • the acquisition unit 172 acquires the image of the subject 4 (see FIG. 7) by the image sensor 72 of the imaging device 10 with the lens device 12 attached to the imaging device body 14 (see FIG. 14). Captured image data 96 obtained by capturing an image is acquired. The captured image data 96 includes output data 132 output from each physical pixel 94 . The obtaining unit 172 selects one physical pixel 94 from among the plurality of physical pixels 94 as the specific physical pixel 94A.
  • the obtaining unit 172 selects the physical pixel 94 arranged in the center of the light receiving surface 84A of the photoelectric conversion element 84 among the plurality of physical pixels 94 as the specific physical pixel 94A. Then, the acquisition unit 172 acquires the output data 132 output from the specific physical pixel 94A among the plurality of output data 132 included in the captured image data 96 .
  • the output data 132 output from the specific physical pixel 94 ⁇ /b>A is data output based on the spectrum of subject light incident on the image sensor 72 and the optical characteristics of the pupil division filter 24 .
  • the optical properties of the pupil division filter 24 unit include the transmittance of each filter 38, the angle of the transmission axis of each polarizer 40, and the like.
  • the imaging device body 14 is an example of a "second imaging device body” according to the technology of the present disclosure.
  • the image sensor 72 is an example of a “second image sensor” according to the technology of the present disclosure.
  • the specific physical pixel 94A is an example of a "specific pixel” according to the technology of the present disclosure.
  • the output data 132 output from the specific physical pixel 94A is an example of "first information" and "output data" according to the technology of the present disclosure.
  • Angle information 186 includes, for example, luminance values, degrees of polarization, and polarization angles.
  • the polarization angle refers to the angle of the polarization direction of subject light incident on the light receiving surface 84A of the photoelectric conversion element 84.
  • the degree of polarization refers to a ratio in which the total amount of subject light incident on the light receiving surface 84A of the photoelectric conversion element 84 is the denominator and the amount of the polarized component of the subject light is the numerator. The higher the degree of polarization, the better the separation when the captured image data 96 is separated into the first image data, the second image data, and the third image data (see FIG. 18).
  • the luminance value indicates the amount of subject light received by the light receiving surface 84A of the photoelectric conversion element 84.
  • the angle information 186 may include at least one of the brightness value, the degree of polarization, and the angle of polarization.
  • the angle information 186 is an example of "second information" according to the technology of the present disclosure.
  • the storage control unit 176 causes the NVM 162 to store the angle information 186 .
  • NVM 162 is an example of "memory” according to the technology of the present disclosure.
  • Display control unit 178 outputs angle information 186 to display 150 .
  • Display 150 displays angle information 186 .
  • the display 150 displays specific numerical values of the luminance value, the degree of polarization, and the angle of polarization included in the angle information 186 .
  • the display 150 is an example of a "display" according to the technology of the present disclosure.
  • the determination unit 180 determines whether each value of the luminance value, the degree of polarization, and the polarization angle falls within a predetermined range.
  • the above-described predetermined ranges for each value of luminance value, degree of polarization, and polarization angle are set corresponding to predetermined angle ranges (see FIG. 14).
  • the determination result output unit 182 outputs determination result information 188 indicating the determination result by the determination unit 180 to the display 150 .
  • the determination result output unit 182 outputs the luminance value, the degree of polarization, and the polarization angle are within the predetermined range (that is, a signal indicating affirmative information) is output to the display 150 .
  • the determination result output unit 182 determines that each value of the brightness value, the degree of polarization, and the polarization angle is within the predetermined range. output to display 150 determination result information 188 (that is, a signal indicating negative information) indicating the determination result that the values do not fall within the range.
  • the display 150 displays the judgment result as to whether or not each value of the luminance value, the degree of polarization, and the polarization angle is within the predetermined range. For example, if it is determined that the brightness value, the degree of polarization, and the polarization angle are within the predetermined ranges, the display 150 displays the characters "OK" as the determination result. On the other hand, when it is determined that the brightness value, the degree of polarization, and the polarization angle are not within the predetermined ranges, the display 150 displays "NG" as the determination result.
  • the determination result information 188 is an example of "a signal indicating whether or not the angle is within the first predetermined angle range".
  • FIG. 24 shows an example of the flow of determination support processing according to this embodiment.
  • step ST40 the acquisition unit 172 acquires an image of the subject by the image sensor 72 of the imaging device 10 with the lens device 12 attached to the imaging device body 14.
  • the obtained captured image data 96 is obtained, and the output data 132 output from the specific physical pixel 94A among the plurality of output data 132 included in the obtained captured image data 96 is obtained (see FIG. 23).
  • step ST42 the determination support process proceeds to step ST42.
  • step ST42 the derivation unit 174 obtains angle information about the angle of the transmission axis of the specific polarizer 40 among the plurality of polarizers 40 provided in the pupil division filter 24, based on the output data 132 acquired in step ST40. 186 (see FIG. 23).
  • step ST42 the determination support process proceeds to step ST44.
  • step ST44 the storage control unit 176 causes the NVM 162 to store the angle information 186 (see FIG. 23). After the process of step ST44 is executed, the determination support process proceeds to step ST46.
  • step ST46 the display control unit 178 outputs the angle information 186 to the display 150 (see FIG. 23).
  • the display 150 displays specific numerical values of the luminance value, the degree of polarization, and the angle of polarization included in the angle information 186 .
  • step ST48 the determination section 180 determines whether or not each value of the brightness value, degree of polarization, and polarization angle falls within a predetermined range (see FIG. 23). In step ST48, if the brightness value, the degree of polarization, and the polarization angle are all within the predetermined ranges, the determination is affirmative, and the determination support process proceeds to step ST50. In step ST48, if the luminance value, the degree of polarization, and the polarization angle do not fall within the predetermined ranges, the determination is negative, and the determination support processing proceeds to step ST52.
  • step ST50 the determination result output unit 182 displays determination result information 188 (that is, affirmative information) indicating that each value of the luminance value, the degree of polarization, and the polarization angle is within the predetermined range on the display 150. (see FIG. 23). As a result, the display 150 displays a determination result indicating that each value of the luminance value, the degree of polarization, and the polarization angle is within the predetermined range.
  • step ST52 the determination result output unit 182 displays the determination result information 188 (that is, negative information) indicating that each value of the luminance value, the degree of polarization, and the polarization angle does not fall within the predetermined ranges on the display 150. (see FIG. 23). As a result, the display 150 displays a judgment result indicating that each value of the luminance value, the degree of polarization, and the polarization angle is not within the predetermined range.
  • the determination support process proceeds to step ST54.
  • the processor 160 determines whether or not the condition for terminating the determination support process (that is, the termination condition) is satisfied.
  • An example of the termination condition is a condition that the user gives an instruction to the determination support device 140 to terminate the determination support process.
  • the termination condition is a condition that the user gives an instruction to the determination support device 140 to terminate the determination support process.
  • the termination condition is not met, the determination is negative, and the determination support process proceeds to step ST40.
  • the termination condition if the termination condition is met, the determination is affirmative and the determination support process is terminated.
  • the information processing method described as the action of the functional configuration of the determination support device 140 described above is an example of the "information processing method" according to the technology of the present disclosure.
  • the imaging device 10 includes the lens device 12 and the imaging device body 14 .
  • the lens device 12 has a first mount 16 and the imaging device body 14 has a second mount 18 .
  • the first mount 16 and the second mount 18 are each C mounts.
  • a screw 20 is formed on the outer peripheral surface of the first mount 16
  • a screw hole 22 is formed inside the second mount 18 . Therefore, by screwing the screw 20 into the screw hole 22 , the first mount 16 can be attached to the second mount 18 , and the lens device 12 can be attached to the imaging device body 14 .
  • the lens device 12 has the pupil division filter 24 arranged in the optical path 62, and the pupil division filter 24 is positioned in the optical path 62. It has a plurality of openings 44 through which it extends. A polarizer 40 is provided in each of the plurality of openings 44 .
  • the lens device 12 also includes a rotating member 30 for changing the angle of the transmission axis of the polarizer 40 . Therefore, for example, due to manufacturing errors in the screw 20 and/or the screw hole 22, the mounting angle of the lens device 12 with respect to the imaging device body 14 varies, resulting in an error in the angle of the transmission axis of the polarizer 40. Even in this case, by changing the angle of the transmission axis of the polarizer 40 with the rotating member 30, the error in the angle of the transmission axis can be reduced.
  • the rotating member 30 is connected to the pupil division filter 24 and rotates around the optical axis OA of the lens device 12 . Therefore, the angle of the transmission axis of the polarizer 40 can be changed more easily than, for example, when the pupil division filter 24 needs to be replaced in order to change the angle of the transmission axis of the polarizer 40 .
  • the rotating member 30 has a ring member 64 and a lid member 66 .
  • the lid member 66 connects the pupil division filter 24 to the ring member 64 while the pupil division filter 24 is arranged in the optical path 62 . Therefore, for example, even when the ring member 64 is rotatably supported by the lens barrel 28 , the pupil division filter 24 arranged in the optical path 62 can be connected to the ring member 64 by the lid member 66 .
  • the ring member 64 is a ring-shaped member having a cutout portion 68 in a partial region, and the lid member 66 is assembled to the cutout portion 68 . Therefore, for example, the circularity of the rotating member 30 can be ensured as compared with the case where the rotating member 30 is not provided with the ring member 64 and is divided into a plurality of members in the circumferential direction.
  • the rotating member 30 is rotatably supported with respect to the lens barrel 28 , and the rotating member 30 is fixed to the lens barrel 28 by a set screw 34 . Therefore, by fixing the rotation member 30 to the lens barrel 28 by the set screw 34, it is possible to maintain the state in which the angle of the transmission axis of the specific polarizer 40 among the plurality of polarizers 40 falls within the predetermined angle range. can.
  • the processor 160 (see FIG. 23) of the determination support device 140, when the lens device 12 is attached to the imaging device body 14, based on the output data 132 from the image sensor 72 provided in the imaging device body 14 to output angle information 186 regarding the angle of the transmission axis of the specific polarizer 40 . Therefore, based on the angle information 186 (see also FIG. 14), the operator can determine whether or not the angle of the transmission axis of the specific polarizer 40 is within the predetermined angle range.
  • the processor 160 outputs determination result information 188 indicating whether or not the angle of the transmission axis of the specific polarizer 40 is within the predetermined angle range based on the angle information 186 . Therefore, based on the determination result information 188 (see also FIG. 14), the operator can determine whether or not the angle of the transmission axis of the specific polarizer 40 is within the predetermined angle range.
  • the angle information 186 is information based on the spectrum of light incident on the image sensor 72 and the optical characteristics of the pupil division filter 24 . Therefore, based on the angle information 186, which is information based on the spectrum of light incident on the image sensor 72 and the optical characteristics of the pupil division filter 24, it is determined whether the angle of the transmission axis of the specific polarizer 40 is within the predetermined angle range. can be determined by the operator.
  • the angle information 186 is information based on the output data 132 output from at least one specific physical pixel 94A among the plurality of physical pixels 94 included in the image sensor 72. Therefore, for example, based on the output data 132 output from the specific physical pixel 94A, the operator can determine whether or not the angle of the transmission axis of the specific polarizer 40 is within the predetermined angle range.
  • the angle information 186 includes at least one of a luminance value, a degree of polarization, and a polarization angle. Therefore, based on at least one of the brightness value, the degree of polarization, and the polarization angle, the operator can determine whether or not the angle of the transmission axis of the specific polarizer 40 falls within the predetermined angle range.
  • Processor 160 also outputs angle information 186 to display 150 . Therefore, based on the angle information 186 (see also FIG. 14) displayed on the display 150, the operator can determine whether the angle of the transmission axis of the specific polarizer 40 is within the predetermined angle range.
  • the angle information 186 is stored in the NVM 162 . Therefore, even if the angle of the transmission axis of the polarizer 40 is changed by the rotating member 30, it is possible to grasp the error that occurred in the angle of the transmission axis before the change based on the angle information 186 stored in the NVM 162. .
  • the manufacturing method of the imaging device 10 according to the present embodiment includes attaching the lens device 12 to the imaging device body 14 and the state in which the lens device 12 is attached to the imaging device body 14 and changing the angle of the transmission axis of the polarizer 40 by the rotating member 30 . Therefore, for example, due to manufacturing errors in the screw 20 and/or the screw hole 22, the mounting angle of the lens device 12 with respect to the imaging device body 14 varies, resulting in an error in the angle of the transmission axis of the polarizer 40. Even in this case, by changing the angle of the transmission axis of the polarizer 40 with the rotating member 30, the error in the angle of the transmission axis can be reduced.
  • the method for manufacturing the imaging device 10 changes the angle of the transmission axis of the polarizer 40 when focusing using the lens device 12 is performed. Therefore, for example, compared to changing the angle of the transmission axis of the polarizer 40 before focusing using the lens device 12, errors in the angle of the transmission axis can be reduced.
  • the transmission axis of the specific polarizer 40 among the plurality of polarizers 40 is determined based on the output data 132 from the image sensor 72 provided in the imaging device body 14. obtaining angle information 186 about the angle of , and changing the angle of the transmission axis of the polarizer 40 is performed based on the angle information 186 . Therefore, based on the output data 132 from the image sensor 72, the angle of the transmission axis of the polarizer 40 can be changed.
  • the method for manufacturing the imaging device 10 outputs determination result information 188 indicating whether or not the angle of the transmission axis of the specific polarizer 40 is within the predetermined angle range based on the angle information 186. Further provide. Therefore, for example, the operator can easily determine whether or not the angle of the transmission axis of the specific polarizer 40 is within the predetermined angle range, compared to the case where the determination result information 188 is not output.
  • the pupil division filter 24 is attached to the lens barrel 28 of the lens device 12. Further comprising fixing. Therefore, by fixing the rotary member 30 to the lens barrel 28, it is possible to maintain a state in which the angle of the transmission axis of the specific polarizer 40 falls within the predetermined angle range.
  • the method for manufacturing the imaging device 10 is performed by an operator.
  • the manufacturing method of the imaging device 10 may be executed by a manufacturing system 200.
  • FIG. Manufacturing system 200 includes controller 202 , first device 204 , second device 206 , third device 208 , fourth device 210 , fifth device 212 , sixth device 214 , and seventh device 216 .
  • the controller 202 is, for example, a computer including a processor, NVM, and RAM (all of which are not shown).
  • a sixth device 214 and a seventh device 216 are controlled.
  • the first device 204, the second device 206, the third device 208, the fourth device 210, the fifth device 212, and the seventh device 216 are, for example, assembly devices including robot hands and/or actuators.
  • the first device 204 inserts the pupil division filter 24 to which the connecting pin 26 is attached inside the lens barrel 28 through the insertion port 58 (see FIG. 9).
  • the second device 206 rotatably attaches the ring member 64 to the outer peripheral surface of the lens barrel 28 (see FIG. 10).
  • the second device 206 attaches the end frame 32 to the outer peripheral surface of the lens barrel 28 (see FIG. 10).
  • the third device 208 attaches the first mount 16 to the second mount 18 by screwing the screws 20 of the first mount 16 into the screw holes 22 of the second mount 18 (see FIG. 11).
  • the fourth device 210 focuses the lens device 12 by moving the lever 56 (see FIG. 12).
  • the fifth device 212 connects the cover member 66 to the connecting pin 26 with the pupil division filter 24 arranged in the optical path 62 (see FIG. 13). Also, the fifth device 212 assembles the cover member 66 into the notch portion 68 of the ring member 64 (see FIG. 13).
  • the controller 202 outputs the angle information 186 regarding each value of the luminance value, the degree of polarization, and the polarization angle, and/or the determination result of whether or not each value of the luminance value, the degree of polarization, and the polarization angle falls within a predetermined range. is acquired from the determination support device 140 (see FIG. 25).
  • the sixth device 214 rotates the pupil division filter 24 integrally with the rotating member 30 based on the angle information 186 and/or the determination result information 188 (see FIG. 14).
  • the controller 202 acquires the angle information 186 and/or the determination result information 188 from the determination support device 140, and determines the angle of the transmission axis of the specific polarizer 40 based on the acquired angle information 186 and/or the determination result information 188. It is determined whether or not the angle is within the range (see FIG. 14).
  • the seventh device 216 fixes the rotation member 30 to the lens barrel 28 by screwing the set screw 34 into the screw hole 22 when the angle of the transmission axis of the specific polarizer 40 is within the predetermined angle range. (See FIG. 15). According to the manufacturing system 200 described above, it is possible to save work by the operator.
  • the determination support processing is executed by the processor 160 included in the determination support device 140, which is a device different from the imaging device 10 (see FIG. 23). However, as shown in FIG. 26 as an example, the determination support processing may be executed by the processor 110 included in the imaging device 10 . Then, the angle information 186 regarding each value of the luminance value, the degree of polarization, and the polarization angle, and/or the determination result of whether or not each value of the luminance value, the degree of polarization, and the polarization angle is within a predetermined range. Determination result information 188 may be displayed on display 80 .
  • the imaging device 10 is an example of the "information processing device” according to the technology of the present disclosure
  • the processor 110 is an example of the "processor” according to the technology of the present disclosure
  • the display 80 is an example of the “display” according to the technology of the present disclosure
  • the NVM 112 is an example of the memory according to the technology of the present disclosure.
  • a pupil division filter 24 having a plurality of filters 38 and a plurality of polarizers 40 is used. may be used.
  • the rotating member 30 is used as a changing mechanism for changing the angle of the transmission axis of the polarizer 40 . That is, the imaging device 10 has a rotary changing mechanism including the rotating member 30 .
  • the imaging device 10 may be provided with, for example, a slide-type change mechanism including a slide member, or a replacement-type change mechanism including a replacement member. may be provided.
  • the imaging device 10 may be a multispectral camera capable of imaging a subject with a higher wavelength resolution than a multispectral camera capable of imaging light split into three transmission wavelength bands ⁇ .
  • the processor 110 was illustrated for the imaging device 10, but instead of the processor 110 or together with the processor 110, at least one other CPU, at least one GPU, and/or at least one TPU may be used. may be used.
  • the NVM 112 stores the multispectral image generation program 120 as an example, but the technology of the present disclosure is not limited to this.
  • the multispectral image generation program 120 may be stored in a portable non-transitory computer-readable storage medium such as an SSD or USB memory (hereinafter simply referred to as "non-temporary storage medium").
  • a multispectral image generation program 120 stored in a non-transitory storage medium is installed in the computer 78 of the imaging device 10, and the processor 110 performs multispectral image generation processing according to the multispectral image generation program 120.
  • the multispectral image generation program 120 is stored in a storage device such as another computer or server device connected to the imaging device 10 via a network, and the multispectral image generation program 120 is stored in response to a request from the imaging device 10. may be downloaded and installed on computer 78 .
  • the multispectral image generation program 120 it is not necessary to store all of the multispectral image generation program 120 in a storage device such as another computer or server device connected to the imaging device 10, or in the NVM 112, and part of the multispectral image generation program 120 It may be stored.
  • the computer 78 is built into the imaging device 10 , the technology of the present disclosure is not limited to this, and the computer 78 may be provided outside the imaging device 10 , for example.
  • computer 78 including processor 110, NVM 112, and RAM 114
  • the technology of the present disclosure is not limited to this, and computer 78 may include an ASIC, FPGA, and/or PLD. device may be applied. Also, instead of the computer 78, a combination of hardware and software configurations may be used.
  • the processor 160 was illustrated for the determination support device 140, but instead of the processor 160 or together with the processor 160, at least one other CPU, at least one GPU, and/or at least one TPU may be used.
  • the determination support program 170 may be stored in a non-temporary storage medium such as SSD or USB memory.
  • a determination support program 170 stored in a non-temporary storage medium is installed in the computer 148 of the determination support device 140 , and the processor 160 executes determination support procedures according to the determination support program 170 .
  • the determination support program 170 is stored in a storage device such as another computer or server device connected to the determination support device 140 via a network, and the determination support program 170 is downloaded in response to a request from the determination support device 140. and may be installed on computer 148 .
  • determination support program 170 it is not necessary to store all of the determination support program 170 in another computer or a storage device such as a server device connected to the determination support device 140, or in the NVM 162, and a part of the determination support program 170 may be stored. You can leave it.
  • the computer 148 is built in the determination support device 140, the technology of the present disclosure is not limited to this, and the computer 148 may be provided outside the determination support device 140, for example.
  • computer 148 including processor 160, NVM 162, and RAM 164
  • the technology of the present disclosure is not limited thereto, and computer 148 may include an ASIC, FPGA, and/or PLD. device may be applied. Also, instead of the computer 148, a combination of hardware and software configurations may be used.
  • processors can be used as hardware resources for executing the various processes described in the above embodiments.
  • processors include CPUs, which are general-purpose processors that function as hardware resources that execute various processes by executing software, that is, programs.
  • processors include, for example, FPGAs, PLDs, ASICs, and other dedicated electric circuits that are processors having circuit configurations specially designed to execute specific processing.
  • a memory is built in or connected to each processor, and each processor uses the memory to perform various processes.
  • Hardware resources that perform various processes may be configured with one of these various processors, or a combination of two or more processors of the same or different types (for example, a combination of multiple FPGAs or CPUs). and FPGA). Also, the hardware resource for executing various processes may be one processor.
  • one processor is configured by combining one or more CPUs and software, and this processor functions as a hardware resource that executes various processes.
  • this processor functions as a hardware resource that executes various processes.
  • SoC SoC, etc.
  • a and/or B is synonymous with “at least one of A and B.” That is, “A and/or B” means that only A, only B, or a combination of A and B may be used. Also, in this specification, when three or more matters are expressed by connecting with “and/or”, the same idea as “A and/or B" is applied.

Abstract

This lens device has a polarization unit disposed on an optical path. The polarization unit has a plurality of openings located on the optical path. A first polarizer is provided to at least one of the openings. The lens device has a changing mechanism for changing the angle of a transmission axis of the first polarizer.

Description

レンズ装置、情報処理装置、プログラム、及び撮像装置の製造方法LENS DEVICE, INFORMATION PROCESSING DEVICE, PROGRAM, AND IMAGE SENSING DEVICE MANUFACTURING METHOD
 本開示の技術は、レンズ装置、情報処理装置、プログラム、及び撮像装置の製造方法に関する。 The technology of the present disclosure relates to a lens device, an information processing device, a program, and a method of manufacturing an imaging device.
 特開2001-042380号公報には、少なくとも1つのレンズを有する集光光学系の光路内に光学フィルタを配置した撮影装置において、光学フィルタが結像面上の必要画角を網羅する光路内の最も絞られた位置近傍に配置されている撮影装置が開示されている。 Japanese Patent Application Laid-Open No. 2001-042380 discloses a photographing apparatus in which an optical filter is arranged in the optical path of a condensing optical system having at least one lens, wherein the optical filter covers the required angle of view on the imaging plane. An imaging device is disclosed that is positioned near the most closed position.
 国際公開第2019/155908号パンフレットには、透過率が連続的に可変のNDフィルタを含む複数のフィルタが設けられたディスクを有し、ディスクに設けられた複数のフィルタの内、ディスクの回転方向の姿勢に応じたフィルタが、イメージセンサへの入射光の光軸上に配置されるフィルタユニットが開示されている。 International Publication No. 2019/155908 pamphlet has a disk provided with a plurality of filters including an ND filter whose transmittance is continuously variable, and among the plurality of filters provided on the disk, the rotation direction of the disk A filter unit is disclosed in which a filter corresponding to the posture of is arranged on the optical axis of incident light to an image sensor.
 特開2014-183516号公報には、偏光フィルタと、撮影手段と、検出手段と、測光手段と、制御手段とを有するカメラが開示されている。偏光フィルタは、光学レンズの光軸を含み光軸と平行な回転軸で回転可能である。撮影手段は、光学レンズおよび偏光フィルタを通して画像を撮影する。検出手段は、偏光フィルタの基準角度に対する回転角度を検出する。測光手段は、光学レンズおよび偏光フィルタを通して入射する光の輝度値を計測する。制御手段は、測光手段により測光した輝度値が最大となる偏光フィルタの第1の回転角度を求め、輝度値が最大となる偏光フィルタの第1の回転角度で撮影手段により撮影された第1の画像と、予め指定された偏光フィルタの第2の回転角度で撮影手段により撮影された第2の画像との差を求めて差分画像を作成し、第1の画像と差分画像とを関連付けて記憶媒体に記録する。 Japanese Patent Application Laid-Open No. 2014-183516 discloses a camera having a polarizing filter, photographing means, detection means, photometry means, and control means. The polarizing filter is rotatable on a rotation axis that includes and is parallel to the optical axis of the optical lens. A photographing means photographs an image through an optical lens and a polarizing filter. The detection means detects the rotation angle of the polarizing filter with respect to the reference angle. The photometry means measures the luminance value of light incident through the optical lens and the polarizing filter. The control means obtains a first rotation angle of the polarizing filter at which the luminance value measured by the photometry means is maximized, and the first rotation angle of the polarization filter photographed by the photographing means at the first rotation angle of the polarization filter at which the luminance value is maximized. A difference image is created by obtaining a difference between the image and a second image captured by the imaging means at a second rotation angle of the polarizing filter designated in advance, and the first image and the difference image are stored in association with each other. Record on media.
 国際公開第2019/102609号パンフレットには、撮像素子と、撮像素子の受光路に配置され、直線偏光を通過させる第1偏光フィルタと、第1偏光フィルタの偏光軸の方向を変化させる第1の装置と、光源と、光源の投光路に配置され、直線偏光を通過させる第2偏光フィルタと、第2偏光フィルタの偏光軸の方向を変化させる第2の装置とを備える監視装置が開示されている。 In International Publication No. 2019/102609 pamphlet, an image sensor, a first polarizing filter that is arranged in a light receiving path of the image sensor and allows linearly polarized light to pass through, and a first polarizing filter that changes the direction of the polarization axis of the first polarizing filter A monitoring device is disclosed comprising a device, a light source, a second polarizing filter disposed in the light projection path of the light source for passing linearly polarized light, and a second device for changing the direction of the polarization axis of the second polarizing filter. there is
 国際公開第2019/116646号パンフレットには、内部構造が同一の偏光部材を回転移動または対称移動させてなる複数種類の偏光部材を配置した偏光子と、複数種類の偏光部材のそれぞれを介して入射した光を電荷に変換する光電変換素子とを具備する撮像素子が開示されている。 In International Publication No. 2019/116646 pamphlet, a polarizer in which a plurality of types of polarizing members are arranged by rotating or symmetrically moving the polarizing members having the same internal structure, and a plurality of types of polarizing members. An imaging device is disclosed that includes a photoelectric conversion element that converts the emitted light into an electric charge.
 本開示の技術に係る一つの実施形態は、例えば、撮像装置ボディに対するレンズ装置の取付角度にばらつきが生じることにより、第1偏光子の透過軸の角度に誤差が生じた場合でも、誤差を小さくすることができるレンズ装置、情報処理装置、プログラム、及び撮像装置の製造方法を提供する。 One embodiment according to the technology of the present disclosure reduces the error even if an error occurs in the angle of the transmission axis of the first polarizer due to, for example, variations in the mounting angle of the lens device with respect to the body of the imaging device. Provided are a lens device, an information processing device, a program, and a method for manufacturing an imaging device that can
 本開示の技術に係る第1の態様は、光路に偏光ユニットが配置されたレンズ装置であって、偏光ユニットは、光路に位置している複数の開口を有し、複数の開口のうちの少なくとも一つの開口には、第1偏光子が設けられ、レンズ装置は、第1偏光子の透過軸の角度を変更する変更機構を備えるレンズ装置である。 A first aspect of the technology of the present disclosure is a lens apparatus having a polarizing unit arranged in an optical path, the polarizing unit having a plurality of apertures positioned in the optical path, at least of the plurality of apertures A first polarizer is provided in one aperture, and the lens device is a lens device having a changing mechanism for changing the angle of the transmission axis of the first polarizer.
 本開示の技術に係る第2の態様は、第1の態様に係るレンズ装置において、変更機構は、レンズ装置の光軸周りに回転する回転部材を有し、回転部材は、偏光ユニットと連結されているレンズ装置である。 A second aspect of the technology of the present disclosure is the lens device according to the first aspect, wherein the changing mechanism has a rotating member that rotates around the optical axis of the lens device, and the rotating member is coupled to the polarization unit. It is a lens device that has
 本開示の技術に係る第3の態様は、第2の態様に係るレンズ装置において、回転部材は、第1部材と、光路に偏光ユニットが配置された状態で、第1部材に偏光ユニットを連結する第2部材と、を有するレンズ装置である。 A third aspect of the technology of the present disclosure is the lens device according to the second aspect, wherein the rotation member connects the first member and the polarization unit with the polarization unit arranged in the optical path. and a second member for providing a lens device.
 本開示の技術に係る第4の態様は、第3の態様に係るレンズ装置において、第1部材は、一部の領域に溝穴部を有するリング部材であり、第2部材は、溝穴部に組み付けられるレンズ装置である。 A fourth aspect of the technology of the present disclosure is the lens device according to the third aspect, wherein the first member is a ring member having a slot in a partial region, and the second member is a slot It is a lens device that is assembled to the
 本開示の技術に係る第5の態様は、第2の態様から第4の態様の何れか一つの態様に係るレンズ装置において、回転部材を回転可能に支持する鏡胴と、鏡胴に対して回転部材を固定する固定部材と、をさらに備えるレンズ装置である。 A fifth aspect of the technology of the present disclosure is a lens device according to any one of the second to fourth aspects, wherein a lens barrel that rotatably supports a rotating member; and a fixing member that fixes the rotating member.
 本開示の技術に係る第6の態様は、第1の態様から第5の態様の何れか一つの態様に係るレンズ装置において、レンズ装置は、第2偏光子を有する第1イメージセンサを備える第1撮像装置ボディに設けられた第2マウントに取り付けられる第1マウントを有するレンズ装置である。 A sixth aspect of the technology of the present disclosure is the lens device according to any one of the first to fifth aspects, wherein the lens device includes a first image sensor having a second polarizer. 1 is a lens device having a first mount attached to a second mount provided on an imaging device body.
 本開示の技術に係る第7の態様は、第6の態様に係るレンズ装置において、第1マウントには、第2マウントに形成された第2ネジ部と螺合する第1ネジ部が形成されているレンズ装置である。 A seventh aspect of the technology of the present disclosure is the lens device according to the sixth aspect, wherein the first mount is formed with a first threaded portion that is screwed with the second threaded portion formed on the second mount. It is a lens device that has
 本開示の技術に係る第8の態様は、第6の態様又は第7の態様に係るレンズ装置において、第1マウント及び第2マウントは、それぞれCマウントであるレンズ装置である。 An eighth aspect of the technology of the present disclosure is the lens device according to the sixth aspect or the seventh aspect, wherein the first mount and the second mount are C mounts.
 本開示の技術に係る第9の態様は、第1の態様から第8の態様の何れか一つの態様に係るレンズ装置と、第2撮像装置ボディとを備える撮像装置に対して適用され、プロセッサを備える情報処理装置であって、プロセッサは、レンズ装置が第2撮像装置ボディに取り付けられている場合に、第2撮像装置ボディに備えられた第2イメージセンサからの出力データである第1情報に基づいて、角度に関する第2情報を出力する情報処理装置である。 A ninth aspect of the technology of the present disclosure is applied to an imaging device including the lens device according to any one of the first to eighth aspects and a second imaging device body, and a processor wherein the processor, when the lens device is attached to the second imaging device body, first information that is output data from a second image sensor provided in the second imaging device body is an information processing device that outputs second information about an angle based on .
 本開示の技術に係る第10の態様は、第9の態様に係る情報処理装置において、プロセッサは、第2情報に基づいて角度が第1既定角度範囲に収まっているか否かを示す信号を出力する情報処理装置である。 A tenth aspect of the technology of the present disclosure is the information processing device according to the ninth aspect, wherein the processor outputs a signal indicating whether or not the angle is within the first predetermined angle range based on the second information. It is an information processing device that
 本開示の技術に係る第11の態様は、第9の態様又は第10の態様に係る情報処理装置において、情報処理装置は、撮像装置である情報処理装置である。 An eleventh aspect of the technology of the present disclosure is the information processing device according to the ninth or tenth aspect, wherein the information processing device is an imaging device.
 本開示の技術に係る第12の態様は、第9の態様から第11の態様の何れか一つの態様に係る情報処理装置において、第1情報は、第2イメージセンサに入射する光のスペクトル及び偏光ユニットの光学特性に基づく情報である情報処理装置である。 A twelfth aspect of the technology of the present disclosure is the information processing device according to any one of the ninth to eleventh aspects, wherein the first information is the spectrum of light incident on the second image sensor and It is an information processing device that is information based on the optical properties of the polarizing unit.
 本開示の技術に係る第13の態様は、第9の態様から第12の態様の何れか一つの態様に係る情報処理装置において、第2情報は、第2イメージセンサに含まれる複数の画素のうちの少なくとも一つの特定画素から出力された出力データに基づく情報である情報処理装置である。 A thirteenth aspect of the technology of the present disclosure is the information processing device according to any one of the ninth to twelfth aspects, wherein the second information is the number of pixels included in the second image sensor. It is an information processing device that is information based on output data output from at least one specific pixel.
 本開示の技術に係る第14の態様は、第9の態様から第13の態様の何れか一つの態様に係る情報処理装置において、第2情報は、輝度値、偏光度、及び偏光角の少なくとも一つを含む情報処理装置である。 A fourteenth aspect of the technology of the present disclosure is the information processing device according to any one of the ninth to thirteenth aspects, wherein the second information is at least a luminance value, a degree of polarization, and a polarization angle. It is an information processing device including one.
 本開示の技術に係る第15の態様は、第9の態様から第14の態様の何れか一つの態様に係る情報処理装置において、プロセッサは、第2情報をディスプレイに出力する情報処理装置である。 A fifteenth aspect of the technology of the present disclosure is an information processing device according to any one of the ninth to fourteenth aspects, wherein the processor outputs the second information to the display. .
 本開示の技術に係る第16の態様は、第9の態様から第15の態様の何れか一つの態様に係る情報処理装置において、第2情報を記憶するメモリをさらに備える情報処理装置である。 A sixteenth aspect of the technology of the present disclosure is an information processing device according to any one of the ninth to fifteenth aspects, further comprising a memory for storing second information.
 本開示の技術に係る第17の態様は、第9の態様から第16の態様の何れか一つの態様に係る情報処理装置において、プロセッサは、出力データに対して、混信除去処理を実行することにより、マルチスペクトル画像を取得する情報処理装置である。 A seventeenth aspect of the technology of the present disclosure is the information processing device according to any one of the ninth to sixteenth aspects, wherein the processor performs interference elimination processing on the output data. is an information processing device that acquires a multispectral image.
 本開示の技術に係る第18の態様は、第1の態様から第8の態様の何れか一つの態様に係るレンズ装置と、第2撮像装置ボディとを備える撮像装置に対して適用される処理をコンピュータに実行させるためのプログラムであって、処理は、レンズ装置が第2撮像装置ボディに取り付けられている場合に、第2撮像装置ボディに備えられた第2イメージセンサからの出力データである第1情報に基づいて、角度に関する第2情報を出力することを含むプログラムである。 An eighteenth aspect of the technology of the present disclosure is processing applied to an imaging device including the lens device according to any one of the first to eighth aspects and a second imaging device body wherein the processing is output data from the second image sensor provided in the second imaging device body when the lens device is attached to the second imaging device body A program including outputting second information about an angle based on first information.
 本開示の技術に係る第19の態様は、第1の態様から第8の態様の何れか一つの態様に係るレンズ装置と、第2撮像装置ボディとを備える撮像装置を組み立てるための撮像装置の製造方法であって、レンズ装置を第2撮像装置ボディに取り付けること、及び、レンズ装置が第2撮像装置ボディに取り付けられた状態で、変更機構によって角度を変更することを備える撮像装置の製造方法である。 A nineteenth aspect of the technology of the present disclosure is an imaging device for assembling an imaging device including the lens device according to any one of the first to eighth aspects and a second imaging device body. A manufacturing method of an imaging device, comprising: attaching a lens device to a second imaging device body; and changing an angle with a changing mechanism while the lens device is attached to the second imaging device body. is.
 本開示の技術に係る第20の態様は、第19の態様に係る撮像装置の製造方法において、角度を変更することを、レンズ装置を用いたピント合わせが行われた場合に実行する撮像装置の製造方法である。 A twentieth aspect of the technology of the present disclosure is the method of manufacturing an imaging device according to the nineteenth aspect, wherein the change of the angle is performed when focusing is performed using the lens device. manufacturing method.
 本開示の技術に係る第21の態様は、第19の態様又は第20の態様に係る撮像装置の製造方法において、第2撮像装置ボディに備えられた第2イメージセンサからの出力データである第1情報に基づいて、角度に関する第2情報を取得することをさらに備え、角度を変更することを、第2情報に基づいて実行する撮像装置の製造方法である。 A twenty-first aspect of the technology of the present disclosure is, in the imaging device manufacturing method according to the nineteenth aspect or the twentieth aspect, the output data from the second image sensor provided in the second imaging device body. The imaging device manufacturing method further comprises acquiring second information about an angle based on the first information, and changing the angle based on the second information.
 本開示の技術に係る第22の態様は、第19の態様から第21の態様の何れか一つの態様に係る撮像装置の製造方法において、第2情報に基づいて角度が第1既定角度範囲に収まっているか否かを示す信号を出力することをさらに備える撮像装置の製造方法である。 A twenty-second aspect of the technology of the present disclosure is the imaging device manufacturing method according to any one of the nineteenth to twenty-first aspects, wherein the angle falls within the first predetermined angle range based on the second information. The imaging device manufacturing method further includes outputting a signal indicating whether or not the imaging device is settled.
 本開示の技術に係る第23の態様は、第19の態様から第22の態様の何れか一つの態様に係る撮像装置の製造方法において、角度が第2既定角度範囲に収まっている場合に、レンズ装置の鏡胴に対して偏光ユニットを固定することをさらに備える撮像装置の製造方法である。 A twenty-third aspect of the technology of the present disclosure is the method for manufacturing an imaging device according to any one of the nineteenth aspect to the twenty-second aspect, when the angle falls within the second predetermined angle range, A method of manufacturing an imaging device, further comprising fixing a polarizing unit to a barrel of a lens device.
撮像装置の一例を示す斜視図である。It is a perspective view which shows an example of an imaging device. レンズ装置及び撮像装置ボディの一例を示す分解側面図である。2 is an exploded side view showing an example of a lens device and an imaging device body; FIG. レンズ装置の一例を示す分解斜視図である。It is an exploded perspective view showing an example of a lens device. 瞳分割フィルタの一例を示す分解斜視図である。FIG. 4 is an exploded perspective view showing an example of a pupil division filter; レンズ装置の一例を示す分解縦断面図である。1 is an exploded longitudinal sectional view showing an example of a lens device; FIG. レンズ装置の組立状態の一例を示す縦断面図である。It is a longitudinal cross-sectional view showing an example of an assembled state of the lens device. レンズ装置のハードウェア構成の一例を示すブロック図である。It is a block diagram which shows an example of the hardware constitutions of a lens apparatus. 光電変換素子の一例を示す説明図である。It is explanatory drawing which shows an example of a photoelectric conversion element. 撮像装置の製造方法の第1工程の一例を示す図である。It is a figure which shows an example of the 1st process of the manufacturing method of an imaging device. 撮像装置の製造方法の第2工程の一例を示す図である。It is a figure which shows an example of the 2nd process of the manufacturing method of an imaging device. 撮像装置の製造方法の第3工程の一例を示す図である。It is a figure which shows an example of the 3rd process of the manufacturing method of an imaging device. 撮像装置の製造方法の第4工程の一例を示す図である。It is a figure which shows an example of the 4th process of the manufacturing method of an imaging device. 撮像装置の製造方法の第5工程の一例を示す図である。It is a figure which shows an example of the 5th process of the manufacturing method of an imaging device. 撮像装置の製造方法の第6工程の一例を示す図である。It is a figure which shows an example of the 6th process of the manufacturing method of an imaging device. 撮像装置の製造方法の第7工程の一例を示す図である。It is a figure which shows an example of the 7th process of the manufacturing method of an imaging device. 撮像装置の製造方法の流れの一例を示すフローチャートである。4 is a flow chart showing an example of the flow of a method for manufacturing an imaging device; 撮像装置の機能的な構成の一例を示すブロック図である。2 is a block diagram showing an example of a functional configuration of an imaging device; FIG. 撮像装置のプロセッサの第1動作の一例を示す説明図である。FIG. 10 is an explanatory diagram showing an example of a first operation of the processor of the imaging device; 撮像装置のプロセッサの第2動作の一例を示す説明図である。FIG. 10 is an explanatory diagram showing an example of a second operation of the processor of the imaging device; 撮像装置のプロセッサの動作の流れの一例を示すフローチャートである。4 is a flow chart showing an example of a flow of operations of a processor of an imaging device; 判定支援装置のハードウェア構成の一例を示すブロック図である。It is a block diagram which shows an example of the hardware constitutions of a determination assistance apparatus. 判定支援装置の機能的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a functional structure of a determination support apparatus. 判定支援装置のプロセッサの動作の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of the operation of the processor of the determination support device; 判定支援装置のプロセッサの動作の流れの一例を示すフローチャートである。4 is a flow chart showing an example of the operation flow of the processor of the determination support device; 変形例に係る製造システムの一例を示すブロック図である。It is a block diagram which shows an example of the manufacturing system which concerns on a modification. 変形例に係る撮像装置の一例を示すブロック図である。It is a block diagram which shows an example of the imaging device which concerns on a modification.
 以下、添付図面に従って本開示の技術に係るレンズ装置、情報処理装置、プログラム、及び撮像装置の製造方法の実施形態の一例について説明する。 An example of an embodiment of a lens device, an information processing device, a program, and a method for manufacturing an imaging device according to the technology of the present disclosure will be described below with reference to the accompanying drawings.
 先ず、以下の説明で使用される文言について説明する。 First, the wording used in the following explanation will be explained.
 I/Fとは、“Interface”の略称を指す。CMOSとは、“Complementary Metal Oxide Semiconductor”の略称を指す。CCDとは、“Charge Coupled Device”の略称を指す。NVMとは、“Non-Volatile Memory”の略称を指す。RAMとは、“Random Access Memory”の略称を指す。CPUとは、“Central Processing Unit”の略称を指す。GPUとは、“Graphics Processing Unit”の略称を指す。EEPROMとは、“Electrically Erasable and Programmable Read Only Memory”の略称を指す。HDDとは、“Hard Disk Drive”の略称を指す。TPUとは、“Tensor processing unit”の略称を指す。SSDとは、“Solid State Drive”の略称を指す。USBとは、“Universal Serial Bus”の略称を指す。ASICとは、“Application Specific Integrated Circuit”の略称を指す。FPGAとは、“Field-Programmable Gate Array”の略称を指す。PLDとは、“Programmable Logic Device”の略称を指す。SoCとは、“System-on-a-chip”の略称を指す。ICとは、“Integrated Circuit”の略称を指す。  I/F is an abbreviation for "Interface". CMOS is an abbreviation for "Complementary Metal Oxide Semiconductor". CCD is an abbreviation for "Charge Coupled Device". NVM is an abbreviation for "Non-Volatile Memory". RAM is an abbreviation for "Random Access Memory". CPU is an abbreviation for "Central Processing Unit". GPU is an abbreviation for "Graphics Processing Unit". EEPROM is an abbreviation for "Electrically Erasable and Programmable Read Only Memory". HDD is an abbreviation for "Hard Disk Drive". TPU is an abbreviation for "Tensor processing unit". SSD is an abbreviation for "Solid State Drive". USB is an abbreviation for "Universal Serial Bus". ASIC is an abbreviation for "Application Specific Integrated Circuit". FPGA is an abbreviation for "Field-Programmable Gate Array". PLD is an abbreviation for "Programmable Logic Device". SoC is an abbreviation for "System-on-a-chip." IC is an abbreviation for "Integrated Circuit".
 本明細書の説明において、「中央」とは、完全な中央の他に、本開示の技術が属する技術分野で一般的に許容される誤差であって、本開示の技術の趣旨に反しない程度の誤差を含めた意味合いでの中央を指す。本明細書の説明において、「直交」とは、完全な直交の他に、本開示の技術が属する技術分野で一般的に許容される誤差であって、本開示の技術の趣旨に反しない程度の誤差を含めた意味合いでの直交を指す。本明細書の説明において、「直線」とは、完全な直線の他に、本開示の技術が属する技術分野で一般的に許容される誤差であって、本開示の技術の趣旨に反しない程度の誤差を含めた意味合いでの直線を指す。 In the description of this specification, the "center" is an error that is generally allowed in the technical field to which the technology of the present disclosure belongs, in addition to the perfect center, and is not contrary to the spirit of the technology of the present disclosure. It refers to the center in the sense of including the error of In the description of this specification, "orthogonal" is an error that is generally allowed in the technical field to which the technology of the present disclosure belongs, in addition to perfect orthogonality, and is not contrary to the spirit of the technology of the present disclosure. It refers to orthogonality in the sense of including the error of In the description of this specification, a "straight line" is an error that is generally allowed in the technical field to which the technology of the present disclosure belongs, in addition to a perfect straight line, and is not contrary to the spirit of the technology of the present disclosure. It refers to a straight line in the sense of including the error of
 次に、本実施形態に係る撮像装置10の構造的な構成について説明する。 Next, the structural configuration of the imaging device 10 according to this embodiment will be described.
 一例として図1に示すように、撮像装置10は、マルチスペクトル画像128を出力可能なマルチスペクトルカメラであり、レンズ装置12と、撮像装置ボディ14とを備える。撮像装置10は、本開示の技術に係る「撮像装置」の一例である。レンズ装置12は、本開示の技術に係る「レンズ装置」の一例である。撮像装置ボディ14は、本開示の技術に係る「第1撮像装置ボディ」の一例である。マルチスペクトル画像128は、本開示の技術に係る「マルチスペクトル画像」の一例である。 As shown in FIG. 1 as an example, the imaging device 10 is a multispectral camera capable of outputting a multispectral image 128 and includes a lens device 12 and an imaging device body 14 . The imaging device 10 is an example of an “imaging device” according to the technology of the present disclosure. The lens device 12 is an example of a “lens device” according to the technology of the present disclosure. The imaging device body 14 is an example of the "first imaging device body" according to the technology of the present disclosure. Multispectral image 128 is an example of a “multispectral image” according to the technology of this disclosure.
 一例として図2に示すように、レンズ装置12は、第1マウント16を有し、撮像装置ボディ14は、第2マウント18を有する。第1マウント16及び第2マウント18は、それぞれCマウントであり、円環状に形成されている。第1マウント16は、レンズ装置12の光軸OAと同軸上に設けられている。第1マウント16の外周面には、ネジ20が形成されており、第2マウント18の内側には、ネジ穴22が形成されている。 As shown in FIG. 2 as an example, the lens device 12 has a first mount 16 and the imaging device body 14 has a second mount 18 . Each of the first mount 16 and the second mount 18 is a C-mount and is formed in an annular shape. The first mount 16 is provided coaxially with the optical axis OA of the lens device 12 . A screw 20 is formed on the outer peripheral surface of the first mount 16 , and a screw hole 22 is formed inside the second mount 18 .
 ネジ20がネジ穴22に螺合されることにより、第1マウント16が第2マウント18に取り付けられる。レンズ装置12は、第1マウント16が第2マウント18に取り付けられることにより、撮像装置ボディ14に取り付けられる。第1マウント16は、本開示の技術に係る「第1マウント」の一例である。第2マウント18は、本開示の技術に係る「第2マウント」の一例である。ネジ20は、本開示の技術に係る「第1ネジ部」の一例であり、ネジ穴22は、本開示の技術に係る「第2ネジ部」の一例である。 The first mount 16 is attached to the second mount 18 by screwing the screw 20 into the screw hole 22 . The lens device 12 is attached to the imaging device body 14 by attaching the first mount 16 to the second mount 18 . The first mount 16 is an example of a "first mount" according to the technology of the present disclosure. The second mount 18 is an example of a "second mount" according to the technology of the present disclosure. The screw 20 is an example of the "first threaded portion" according to the technology of the present disclosure, and the screw hole 22 is an example of the "second threaded portion" according to the technology of the present disclosure.
 なお、第1マウント16の内側にネジ穴22が形成され、第2マウント18の外周面にネジ20が形成されてもよい。この場合、ネジ穴22は、本開示の技術に係る「第1ネジ部」の一例であり、ネジ20は、本開示の技術に係る「第2ネジ部」の一例である。 A screw hole 22 may be formed inside the first mount 16 and a screw 20 may be formed on the outer peripheral surface of the second mount 18 . In this case, the screw hole 22 is an example of the "first screw portion" according to the technology of the present disclosure, and the screw 20 is an example of the "second screw portion" according to the technology of the present disclosure.
 一例として図3に示すように、レンズ装置12は、瞳分割フィルタ24と、連結ピン26と、鏡胴28と、回転部材30と、エンドフレーム32と、イモネジ34とを有する。 As shown in FIG. 3 as an example, the lens device 12 has a pupil division filter 24, a connecting pin 26, a lens barrel 28, a rotating member 30, an end frame 32, and a set screw 34.
 一例として図4に示すように、瞳分割フィルタ24は、枠体36と、フィルタ38A~フィルタ38Cと、偏光子40A~偏光子40Cと、遮蔽部材42とを有する。瞳分割フィルタ24は、本開示の技術に係る「偏光ユニット」の一例である。 As shown in FIG. 4 as an example, the pupil division filter 24 has a frame 36, filters 38A to 38C, polarizers 40A to 40C, and a shielding member 42. Pupil division filter 24 is an example of a “polarization unit” according to the technology of the present disclosure.
 枠体36は、開口44A~開口44Dを有する。以下、開口44A~開口44Dを区別して説明する必要が無い場合には、開口44A~開口44Dを「開口44」と称する。複数の開口44は、光軸OA周りの方向に沿って配列されている。開口44は、本開示の技術に係る「開口」の一例である。 The frame 36 has openings 44A to 44D. Hereinafter, the openings 44A to 44D will be referred to as "openings 44" when there is no need to distinguish between the openings 44A to 44D. A plurality of apertures 44 are arranged along the direction around the optical axis OA. The opening 44 is an example of an "opening" according to the technology of the present disclosure.
 フィルタ38A~フィルタ38Cは、開口44A~開口44Cにそれぞれ設けられており、遮蔽部材42は、開口44Dに設けられている。フィルタ38Aは、第1透過波長帯域λを有しており、フィルタ38Bは、第2透過波長帯域λを有しており、フィルタ38Cは、第3透過波長帯域λを有する。第1透過波長帯域λ、第2透過波長帯域λ、及び第3透過波長帯域λは、互いに異なる波長帯域である。第1透過波長帯域λ、第2透過波長帯域λ、及び第3透過波長帯域λは、それぞれ任意の帯域に設定されてもよい。以下、フィルタ38A~フィルタ38Cを区別して説明する必要が無い場合には、フィルタ38A~フィルタ38Cを「フィルタ38」と称する。 The filters 38A to 38C are provided in the openings 44A to 44C, respectively, and the shielding member 42 is provided in the opening 44D. Filter 38A has a first transmission wavelength band λ 1 , filter 38B has a second transmission wavelength band λ 2 , and filter 38C has a third transmission wavelength band λ 3 . The first transmission wavelength band λ 1 , the second transmission wavelength band λ 2 , and the third transmission wavelength band λ 3 are wavelength bands different from each other. The first transmission wavelength band λ 1 , the second transmission wavelength band λ 2 , and the third transmission wavelength band λ 3 may each be set to arbitrary bands. Hereinafter, the filters 38A to 38C will be referred to as "filters 38" when there is no need to distinguish between the filters 38A to 38C.
 偏光子40A~偏光子40Cは、開口44A~開口44Cにそれぞれ設けられており、フィルタ38A~フィルタ38Cと重ね合わされている。偏光子40Aは、透過軸が方位角0°に設定された偏光子である。偏光子40Bは、透過軸が方位角45°に設定された偏光子である。偏光子40Cは、透過軸が方位角90°に設定された偏光子である。以下、偏光子40A~偏光子40Cを区別して説明する必要が無い場合には、偏光子40A~偏光子40Cを「偏光子40」と称する。偏光子40は、本開示の技術に係る「第1偏光子」の一例である。 The polarizers 40A to 40C are provided in the openings 44A to 44C, respectively, and overlapped with the filters 38A to 38C. The polarizer 40A is a polarizer whose transmission axis is set at an azimuth angle of 0°. The polarizer 40B is a polarizer whose transmission axis is set at an azimuth angle of 45°. The polarizer 40C is a polarizer whose transmission axis is set at an azimuth angle of 90°. Hereinafter, the polarizers 40A to 40C will be referred to as "polarizers 40" when there is no need to distinguish between the polarizers 40A to 40C. The polarizer 40 is an example of the "first polarizer" according to the technology of the present disclosure.
 図4に示される例では、開口44の数が4つとされているが、開口44の数はいくつでもよい。また、図4に示される例では、フィルタ38の数が3つとされているが、フィルタ38の数はいくつでもよい。また、図4に示される例では、偏光子40の数が3つとされているが、偏光子40の数はいくつでもよい。 Although the number of openings 44 is four in the example shown in FIG. 4, the number of openings 44 may be any number. Also, although the number of filters 38 is three in the example shown in FIG. 4, the number of filters 38 may be any number. Also, although the number of polarizers 40 is three in the example shown in FIG. 4, the number of polarizers 40 may be any number.
 図4に示される例では、フィルタ38の数が開口44の数よりも少ないが、フィルタ38の数が開口44の数と同じでもよい。また、図4に示される例では、偏光子40の数が開口44の数よりも少ないが、偏光子40の数が開口44の数と同じでもよい。瞳分割フィルタ24では、複数の開口44のうちの少なくとも一つの開口44に偏光子40が設けられていればよい。 Although the number of filters 38 is less than the number of apertures 44 in the example shown in FIG. Also, although the number of polarizers 40 is less than the number of apertures 44 in the example shown in FIG. In the pupil division filter 24 , the polarizer 40 may be provided in at least one aperture 44 among the plurality of apertures 44 .
 一例として図5及び図6に示すように、レンズ装置12は、第1レンズ46と、第2レンズ48とを有する。また、鏡胴28は、本体50と、レンズ枠52と、外筒54とを有する。レンズ枠52は、本体50の内側に設けられており、外筒54は、本体50の外側に設けられている。外筒54とレンズ枠52は、連結されている。レンズ枠52は、第1レンズ46を保持している。第1レンズ46は、例えば、フォーカスレンズである。外筒54には、レバー56が設けられている。レンズ枠52と本体50との間には、カム(図示省略)及び/又はヘリコイド(図示省略)が設けられている。 As shown in FIGS. 5 and 6 as an example, the lens device 12 has a first lens 46 and a second lens 48 . Also, the lens barrel 28 has a main body 50 , a lens frame 52 and an outer cylinder 54 . The lens frame 52 is provided inside the body 50 , and the outer cylinder 54 is provided outside the body 50 . The outer cylinder 54 and the lens frame 52 are connected. The lens frame 52 holds the first lens 46 . The first lens 46 is, for example, a focus lens. A lever 56 is provided on the outer cylinder 54 . A cam (not shown) and/or a helicoid (not shown) are provided between the lens frame 52 and the main body 50 .
 レバー56が光軸OA周りの方向に移動することにより、外筒54と一体にレンズ枠52が光軸OA周りに回転すると、カム及び/又はヘリコイドにより、レンズ枠52が第1レンズ46と一体に光軸OAの方向に移動する。第1レンズ46が光軸OAの方向に移動することにより、レンズ装置12のピントが調節される。 When the lens frame 52 rotates around the optical axis OA integrally with the outer cylinder 54 by moving the lever 56 in the direction around the optical axis OA, the lens frame 52 is integrated with the first lens 46 by the cam and/or the helicoid. , in the direction of the optical axis OA. The focus of the lens device 12 is adjusted by moving the first lens 46 in the direction of the optical axis OA.
 鏡胴28には、瞳分割フィルタ24を鏡胴28の内側に挿入するための挿入口58が形成されている。挿入口58は、光軸OAと直交する方向に開口している。また、鏡胴28の内周面には、スリット60が形成されている。スリット60は、光軸OA周りに円弧状に延びている。 The lens barrel 28 is formed with an insertion opening 58 for inserting the pupil division filter 24 inside the lens barrel 28 . The insertion opening 58 opens in a direction perpendicular to the optical axis OA. A slit 60 is formed in the inner peripheral surface of the lens barrel 28 . The slit 60 extends in an arc around the optical axis OA.
 瞳分割フィルタ24は、挿入口58を通じて鏡胴28の内側に挿入される。瞳分割フィルタ24は、鏡胴28の内側に挿入されることにより、レンズ装置12の内部に設けられた光路62に配置される。瞳分割フィルタ24が光路62に配置された状態では、複数の開口44(図4参照)が光路62に位置する。光路62は、本開示の技術に係る「光路」の一例である。 The pupil division filter 24 is inserted inside the lens barrel 28 through the insertion opening 58 . The pupil division filter 24 is arranged in the optical path 62 provided inside the lens device 12 by being inserted inside the lens barrel 28 . A plurality of apertures 44 (see FIG. 4) are located in the optical path 62 when the pupil division filter 24 is placed in the optical path 62 . The optical path 62 is an example of an "optical path" according to the technology of the present disclosure.
 瞳分割フィルタ24が光路62に配置された状態では、瞳分割フィルタ24の枠体36がスリット60に挿入される。瞳分割フィルタ24は、枠体36がスリット60に挿入された状態で、鏡胴28に対して光軸OA周りに回転可能に支持される。連結ピン26は、枠体36の上部に固定されており、枠体36の上方に延びている。瞳分割フィルタ24は、連結ピン26が挿入口58の内部を移動する範囲で鏡胴28に対して光軸OA周りに回転する。 When the pupil division filter 24 is arranged in the optical path 62 , the frame 36 of the pupil division filter 24 is inserted into the slit 60 . The pupil division filter 24 is rotatably supported by the lens barrel 28 around the optical axis OA with the frame 36 inserted into the slit 60 . The connecting pin 26 is fixed to the upper portion of the frame 36 and extends above the frame 36 . The pupil division filter 24 rotates about the optical axis OA with respect to the lens barrel 28 within the range in which the connecting pin 26 moves inside the insertion opening 58 .
 回転部材30は、瞳分割フィルタ24に設けられた各偏光子40(図4参照)の透過軸の角度を変更するための部材である。回転部材30は、円環状に形成されており、鏡胴28の外側に設けられている。回転部材30は、鏡胴28に対して光軸OA周りに回転可能に支持されている。回転部材30は、本開示の技術に係る「変更機構」及び「回転部材」の一例である。鏡胴28は、本開示の技術に係る「鏡胴」の一例である。 The rotating member 30 is a member for changing the angle of the transmission axis of each polarizer 40 (see FIG. 4) provided in the pupil division filter 24. The rotary member 30 is formed in an annular shape and provided outside the lens barrel 28 . The rotating member 30 is rotatably supported by the lens barrel 28 around the optical axis OA. The rotating member 30 is an example of a “changing mechanism” and a “rotating member” according to the technology of the present disclosure. The lens barrel 28 is an example of a "lens barrel" according to the technology of the present disclosure.
 回転部材30は、具体的には、リング部材64と、蓋材66とを有する。リング部材64は、円環状に形成されている。リング部材64は、鏡胴28の外周面に回転可能に取り付けられる。リング部材64は、切り欠き部68を有する。切り欠き部68は、リング部材64の周方向の一部の領域が切り欠かれることにより凹状に形成されている。切り欠き部68は、本開示の技術に係る「溝穴部」の一例である。なお、リング部材64は、金属製でもよく、樹脂製でもよい。また、切り欠き部68は、切り欠き加工されることによって形成されてもよく、金型を用いた成形によって形成されてもよい。 The rotating member 30 specifically has a ring member 64 and a lid member 66 . The ring member 64 is formed in an annular shape. The ring member 64 is rotatably attached to the outer peripheral surface of the lens barrel 28 . Ring member 64 has a notch 68 . The cutout portion 68 is formed in a concave shape by cutting out a portion of the ring member 64 in the circumferential direction. The notch portion 68 is an example of a “slot portion” according to the technology of the present disclosure. The ring member 64 may be made of metal or resin. Moreover, the notch portion 68 may be formed by notching, or may be formed by molding using a mold.
 蓋材66は、切り欠き部68と対応する形状を有しており、切り欠き部68に組み付けられる。蓋材66は、例えば、図示しないネジによりリング部材64に固定される。蓋材66は、光路62に瞳分割フィルタ24が配置された状態で連結ピン26と接続される。回転部材30は、連結ピン26を介して瞳分割フィルタ24と連結される。回転部材30は、連結ピン26を介して瞳分割フィルタ24と連結されることにより、瞳分割フィルタ24と一体に回転する。リング部材64は、本開示の技術に係る「第1部材」及び「リング部材」の一例であり、蓋材66は、本開示の技術に係る「第2部材」の一例である。 The lid member 66 has a shape corresponding to the notch portion 68 and is attached to the notch portion 68 . The lid member 66 is fixed to the ring member 64 by, for example, screws (not shown). The cover member 66 is connected to the connecting pin 26 with the pupil division filter 24 arranged in the optical path 62 . The rotating member 30 is connected to the pupil division filter 24 via a connecting pin 26 . The rotary member 30 is connected to the pupil division filter 24 via a connection pin 26 to rotate integrally with the pupil division filter 24 . The ring member 64 is an example of the "first member" and the "ring member" according to the technology of the present disclosure, and the lid member 66 is an example of the "second member" according to the technology of the present disclosure.
 レンズ装置12では、回転部材30と一体に瞳分割フィルタ24が回転することにより、瞳分割フィルタ24に設けられた複数の偏光子40のうちのいずれかの偏光子40(以下、「特定偏光子40」と称する)の透過軸の角度を既定角度範囲に収めることが可能となっている。既定角度範囲は、例えば、後述するように撮像画像データ96に基づいてマルチスペクトル画像128を得る場合に用いられる混信除去行列(以下、「混信除去パラメータ」とも称する)を各撮像装置10で共通に用いる場合でも、各撮像装置10でマルチスペクトル画像128の画質を確保し得る範囲に設定される。既定角度範囲は、本開示の技術に係る「第1既定角度範囲」及び「第2既定角度範囲」の一例である。 In the lens device 12, the pupil division filter 24 rotates integrally with the rotating member 30, so that any one of the plurality of polarizers 40 provided in the pupil division filter 24 (hereinafter referred to as a "specific polarizer 40”) can be kept within a predetermined angle range. For the predetermined angle range, for example, an interference removal matrix (hereinafter also referred to as "interference removal parameter") used when obtaining the multispectral image 128 based on the captured image data 96 as described later is commonly used for each imaging device 10. Even when it is used, it is set within a range where the image quality of the multispectral image 128 can be ensured by each imaging device 10 . The predetermined angle range is an example of the "first predetermined angle range" and the "second predetermined angle range" according to the technology of the present disclosure.
 リング部材64には、ネジ穴70が形成されており、イモネジ34は、ネジ穴70に螺入される。イモネジ34がネジ穴70に螺入され、イモネジ34の先端部が鏡胴28の外周面に突き当たると、鏡胴28に対して回転部材30が固定される。イモネジ34は、本開示の技術に係る「固定部材」の一例である。 A threaded hole 70 is formed in the ring member 64 , and the set screw 34 is screwed into the threaded hole 70 . The set screw 34 is screwed into the screw hole 70 , and when the tip of the set screw 34 hits the outer peripheral surface of the lens barrel 28 , the rotating member 30 is fixed to the lens barrel 28 . The set screw 34 is an example of a "fixing member" according to the technology of the present disclosure.
 なお、鏡胴28に対して回転部材30を固定するためにイモネジ34が用いられているが、鏡胴28に対して回転部材30を固定するための固定部材は、イモネジ34以外の種類のネジでもよく、ネジ以外の種類の留め具でもよい。また、固定部材は、はんだ又は接着剤等の固定材料でもよい。 The set screw 34 is used to fix the rotating member 30 to the lens barrel 28, but the fixing member for fixing the rotating member 30 to the lens barrel 28 is a screw of a type other than the set screw 34. or other types of fasteners than screws. Alternatively, the fixing member may be a fixing material such as solder or adhesive.
 エンドフレーム32は、鏡胴28に装着される。エンドフレーム32が鏡胴28に装着された状態では、光軸OAの方向に沿った回転部材30の移動がエンドフレーム32によって制限される。 The end frame 32 is attached to the lens barrel 28. When the end frame 32 is attached to the lens barrel 28, the end frame 32 restricts the movement of the rotating member 30 along the direction of the optical axis OA.
 一例として図7に示すように、撮像装置ボディ14は、イメージセンサ72、制御ドライバ74、入出力I/F76、コンピュータ78、ディスプレイ80、及び通信I/F82を備える。 As shown in FIG. 7 as an example, the imaging device body 14 includes an image sensor 72, a control driver 74, an input/output I/F 76, a computer 78, a display 80, and a communication I/F 82.
 瞳分割フィルタ24が光路62に配置された状態では、第1レンズ46、瞳分割フィルタ24、及び第2レンズ48は、被写体4側から撮像装置ボディ14側にかけて、レンズ装置12の光軸OAに沿って第1レンズ46、瞳分割フィルタ24、及び第2レンズ48の順に配置される。第1レンズ46は、光源2から発せられた光が被写体4で反射することで得られた光(以下、「被写体光」と称する)を瞳分割フィルタ24に透過させる。第2レンズ48は、瞳分割フィルタ24を透過した被写体光をイメージセンサ72に設けられた光電変換素子84の受光面84A上に結像させる。 When the pupil division filter 24 is arranged in the optical path 62, the first lens 46, the pupil division filter 24, and the second lens 48 extend along the optical axis OA of the lens device 12 from the subject 4 side to the imaging device body 14 side. A first lens 46, a pupil division filter 24, and a second lens 48 are arranged in this order along the line. The first lens 46 transmits light obtained by reflecting the light emitted from the light source 2 by the subject 4 (hereinafter referred to as “subject light”) through the pupil division filter 24 . The second lens 48 forms an image of the subject light that has passed through the pupil division filter 24 on the light receiving surface 84A of the photoelectric conversion element 84 provided in the image sensor 72 .
 図7では、便宜上、瞳分割フィルタ24に設けられた複数の開口44が光軸OAと直交する方向に沿って直線状に配列された状態で示されているが、複数の開口44は、上述の通り、光軸OA周りの方向に沿って配列されている(図4参照)。 In FIG. 7, for convenience, the plurality of apertures 44 provided in the pupil division filter 24 are shown arranged linearly along the direction perpendicular to the optical axis OA. , are arranged along the direction around the optical axis OA (see FIG. 4).
 イメージセンサ72は、光電変換素子84及び信号処理回路86を備えている。イメージセンサ72は、一例として、CMOSイメージセンサである。本実施形態では、イメージセンサ72としてCMOSイメージセンサが例示されているが、本開示の技術はこれに限定されず、例えば、イメージセンサ72がCCDイメージセンサ等の他種類のイメージセンサであっても本開示の技術は成立する。イメージセンサ72は、本開示の技術に係る「第1イメージセンサ」の一例である。 The image sensor 72 has a photoelectric conversion element 84 and a signal processing circuit 86 . The image sensor 72 is, for example, a CMOS image sensor. In this embodiment, a CMOS image sensor is exemplified as the image sensor 72, but the technology of the present disclosure is not limited to this. The technology of the present disclosure is established. The image sensor 72 is an example of the "first image sensor" according to the technology of the present disclosure.
 一例として図7中には、光電変換素子84の模式的な構成が示されている。また、一例として図8には、光電変換素子84の一部の構成が具体的に示されている。光電変換素子84は、画素層88、偏光フィルタ層90、及び分光フィルタ層92を有する。 As an example, FIG. 7 shows a schematic configuration of the photoelectric conversion element 84 . As an example, FIG. 8 specifically shows the configuration of part of the photoelectric conversion element 84 . The photoelectric conversion element 84 has a pixel layer 88 , a polarizing filter layer 90 and a spectral filter layer 92 .
 画素層88は、複数の画素94を有する。複数の画素94は、マトリクス状に配置されており、光電変換素子84の受光面84Aを形成している。各画素94は、フォトダイオード(図示省略)を有する物理的な画素であり、受光した光を光電変換し、受光量に応じた電気信号を出力する。 The pixel layer 88 has a plurality of pixels 94 . A plurality of pixels 94 are arranged in a matrix and form a light receiving surface 84A of the photoelectric conversion element 84 . Each pixel 94 is a physical pixel having a photodiode (not shown), photoelectrically converts received light, and outputs an electrical signal corresponding to the amount of received light.
 以下、マルチスペクトル画像128を形成する画素と区別するために、光電変換素子84に設けられた画素94を「物理画素」と称する。また、マルチスペクトル画像128を形成する画素を「画像画素」と称する。 Hereinafter, the pixels 94 provided in the photoelectric conversion elements 84 are referred to as "physical pixels" in order to distinguish them from the pixels forming the multispectral image 128. The pixels forming the multispectral image 128 are also referred to as "image pixels."
 光電変換素子84は、複数の物理画素94から出力された電気信号を撮像画像データ96として信号処理回路86に対して出力する。信号処理回路86は、光電変換素子84から入力されたアナログの撮像画像データ96をデジタル化する。 The photoelectric conversion element 84 outputs electrical signals output from the plurality of physical pixels 94 to the signal processing circuit 86 as captured image data 96 . The signal processing circuit 86 digitizes the analog captured image data 96 input from the photoelectric conversion element 84 .
 複数の物理画素94は、複数の画素ブロック98を形成している。各画素ブロック98は、4つの物理画素94によって形成されている。図7では、便宜上、各画素ブロック98を形成する4つの物理画素94が光軸OAと直交する方向に沿って直線状に配列された状態で示されているが、一例として図8に示すように、4つの物理画素94は、光電変換素子84の縦方向及び横方向にそれぞれ隣接して配置されている。 A plurality of physical pixels 94 form a plurality of pixel blocks 98 . Each pixel block 98 is formed by four physical pixels 94 . In FIG. 7, for the sake of convenience, the four physical pixels 94 forming each pixel block 98 are shown arranged linearly along the direction perpendicular to the optical axis OA. Also, the four physical pixels 94 are arranged adjacent to each other in the vertical and horizontal directions of the photoelectric conversion element 84 .
 偏光フィルタ層90は、偏光子100A~偏光子100Dを有する。偏光子100Aは、透過軸が方位角90°に設定された偏光子である。偏光子100Bは、透過軸が方位角135°に設定された偏光子である。偏光子100Cは、透過軸が方位角0°に設定された偏光子である。偏光子100Dは、透過軸が方位角45°に設定された偏光子である。偏光子100A~偏光子100Dは、4つの物理画素94とそれぞれ対応しており、4つの物理画素94にそれぞれ重ね合わされている。以下、偏光子100A~偏光子100Dを区別して説明する必要がない場合には、偏光子100A~偏光子100Dをそれぞれ「偏光子100」と称する。各物理画素94に対応する偏光子100は、本開示の技術に係る「第2偏光子」の一例である。 The polarizing filter layer 90 has polarizers 100A to 100D. The polarizer 100A is a polarizer whose transmission axis is set at an azimuth angle of 90°. The polarizer 100B is a polarizer whose transmission axis is set at an azimuth angle of 135°. The polarizer 100C is a polarizer whose transmission axis is set at an azimuth angle of 0°. The polarizer 100D is a polarizer whose transmission axis is set at an azimuth angle of 45°. The polarizers 100A to 100D correspond to the four physical pixels 94, respectively, and are superimposed on the four physical pixels 94, respectively. Hereinafter, the polarizers 100A to 100D will be referred to as "polarizers 100" when there is no need to distinguish between the polarizers 100A to 100D. A polarizer 100 corresponding to each physical pixel 94 is an example of a “second polarizer” according to the technology of the present disclosure.
 分光フィルタ層92は、Bフィルタ102A、Gフィルタ102B、及びRフィルタ102Cを有する。Bフィルタ102Aは、複数の波長帯域の光のうちの青色の波長帯域の光を最も多く透過させる青色帯域フィルタである。Gフィルタ102Bは、複数の波長帯域の光のうちの緑色の波長帯域の光を最も多く透過させる緑色帯域フィルタである。Rフィルタ102Cは、複数の波長帯域の光のうちの赤色の波長帯域の光を最も多く透過させる赤色帯域フィルタである。Bフィルタ102A、Gフィルタ102B、及びRフィルタ102Cは、各画素ブロック98に割り当てられている。 The spectral filter layer 92 has B filters 102A, G filters 102B, and R filters 102C. The B filter 102A is a blue bandpass filter that transmits most of the light in the blue wavelength band among the light in the plurality of wavelength bands. The G filter 102B is a green bandpass filter that transmits the light in the green wavelength band most among the light in the plurality of wavelength bands. The R filter 102C is a red band filter that transmits most of the light in the red wavelength band among the light in the plurality of wavelength bands. A B filter 102 A, G filter 102 B, and R filter 102 C are assigned to each pixel block 98 .
 図7では、便宜上、Bフィルタ102A、Gフィルタ102B、及びRフィルタ102Cが光軸OAと直交する方向に沿って直線状に配列された状態で示されているが、一例として図8に示すように、Bフィルタ102A、Gフィルタ102B、及びRフィルタ102Cは既定のパターン配列でマトリクス状に配置されている。図8に示す例では、Bフィルタ102A、Gフィルタ102B、及びRフィルタ102Cは、既定のパターン配列の一例として、ベイヤ配列でマトリクス状に配置されている。なお、既定のパターン配列は、ベイヤ配列以外に、RGBストライプ配列、R/G市松配列、X-Trans(登録商標)配列、又はハニカム配列等でもよい。 In FIG. 7, for the sake of convenience, the B filter 102A, G filter 102B, and R filter 102C are shown arranged linearly along the direction perpendicular to the optical axis OA. Furthermore, the B filters 102A, G filters 102B, and R filters 102C are arranged in a matrix in a predetermined pattern arrangement. In the example shown in FIG. 8, the B filters 102A, G filters 102B, and R filters 102C are arranged in a matrix in a Bayer pattern as an example of a predetermined pattern arrangement. Note that the predetermined pattern arrangement may be an RGB stripe arrangement, an R/G checkered arrangement, an X-Trans (registered trademark) arrangement, a honeycomb arrangement, or the like, in addition to the Bayer arrangement.
 以下、Bフィルタ102A、Gフィルタ102B、及びRフィルタ102Cを区別して説明する必要がない場合には、Bフィルタ102A、Gフィルタ102B、及びRフィルタ102Cをそれぞれ「フィルタ102」と称する。 Hereinafter, the B filter 102A, the G filter 102B, and the R filter 102C are each referred to as the "filter 102" when it is not necessary to distinguish between the B filter 102A, the G filter 102B, and the R filter 102C.
 一例として図7に示すように、入出力I/F76には、信号処理回路86、制御ドライバ74、コンピュータ78、ディスプレイ80、及び通信I/F82が接続されている。 As shown in FIG. 7 as an example, the input/output I/F 76 is connected to a signal processing circuit 86, a control driver 74, a computer 78, a display 80, and a communication I/F 82.
 コンピュータ78は、プロセッサ110、NVM112、及びRAM114を有する。プロセッサ110は、撮像装置10の全体を制御する。プロセッサ110は、例えば、CPU及びGPUを含む演算処理装置であり、GPUは、CPUの制御下で動作し、画像に関する処理の実行を担う。ここでは、プロセッサ110の一例としてCPU及びGPUを含む演算処理装置を挙げているが、これはあくまでも一例に過ぎず、プロセッサ110は、GPU機能を統合した1つ以上のCPUであってもよいし、GPU機能を統合していない1つ以上のCPUであってもよい。プロセッサ110、NVM112、及びRAM114は、バス166を介して接続されており、バス116は、入出力I/F76に接続されている。 The computer 78 has a processor 110 , NVM 112 and RAM 114 . The processor 110 controls the imaging device 10 as a whole. The processor 110 is, for example, an arithmetic processing device including a CPU and a GPU. The GPU operates under the control of the CPU and is responsible for executing image processing. Although processing units including CPUs and GPUs are mentioned here as an example of processor 110, this is merely an example, and processor 110 may be one or more CPUs that integrate GPU functionality. , may be one or more CPUs that do not integrate GPU functionality. Processor 110 , NVM 112 , and RAM 114 are connected via bus 166 , which is connected to input/output I/F 76 .
 NVM112は、非一時的記憶媒体であり、各種パラメータ及び各種プログラムを記憶している。例えば、NVM112は、フラッシュメモリ(例えば、EEPROM)である。但し、これは、あくまでも一例に過ぎず、フラッシュメモリと共に、HDD等をNVM112として適用してもよい。RAM114は、各種情報を一時的に記憶し、ワークメモリとして用いられる。 The NVM 112 is a non-temporary storage medium and stores various parameters and various programs. For example, NVM 112 is flash memory (eg, EEPROM). However, this is merely an example, and an HDD or the like may be applied as the NVM 112 together with the flash memory. A RAM 114 temporarily stores various information and is used as a work memory.
 プロセッサ110は、NVM112から必要なプログラムを読み出し、読み出したプログラムをRAM114で実行する。プロセッサ110は、RAM114で実行するプログラムに従って、制御ドライバ74及び信号処理回路86を制御する。制御ドライバ74は、プロセッサ110の制御下で光電変換素子84を制御する。ディスプレイ80は、例えば液晶表示器であり、マルチスペクトル画像128を含む各種画像を表示する。 The processor 110 reads necessary programs from the NVM 112 and executes the read programs on the RAM 114 . Processor 110 controls control driver 74 and signal processing circuit 86 according to a program executed in RAM 114 . Control driver 74 controls photoelectric conversion element 84 under the control of processor 110 . The display 80 is, for example, a liquid crystal display and displays various images including the multispectral image 128 .
 通信I/F82は、後述する判定支援装置140(図14参照)と通信可能に接続される。通信I/F82は、既定の無線通信規格で判定支援装置140と通信可能に接続されてもよく、既定の有線通信規格で判定支援装置140と通信可能に接続されてもよい。既定の無線通信規格としては、例えば、Bluetooth(登録商標)等が挙げられる。なお、これ以外の無線通信規格(例えば、Wi-Fi又は5G等)であってもよい。通信I/F82は、判定支援装置140の各々との間の情報の授受を司る。例えば、通信I/F82は、プロセッサ110からの要求に応じた情報を判定支援装置140に送信する。また、通信I/F82は、判定支援装置140から送信された情報を受信し、受信した情報を、バス116を介してプロセッサ110に出力する。 The communication I/F 82 is communicably connected to a determination support device 140 (see FIG. 14), which will be described later. The communication I/F 82 may be communicably connected to the determination support device 140 according to a predetermined wireless communication standard, or may be communicably connected to the determination support device 140 according to a predetermined wired communication standard. Examples of the default wireless communication standard include Bluetooth (registered trademark). Note that wireless communication standards other than this (for example, Wi-Fi, 5G, etc.) may be used. The communication I/F 82 manages exchange of information with each of the determination support devices 140 . For example, communication I/F 82 transmits information in response to a request from processor 110 to determination support device 140 . Communication I/F 82 also receives information transmitted from determination support device 140 and outputs the received information to processor 110 via bus 116 .
 次に、本実施形態に係る撮像装置10の構造的な構成の作用について図9~図16を参照しながら説明する。図9~図15には、本実施形態に係る撮像装置10の製造方法の各工程の一例が示されており、図16には、本実施形態に係る撮像装置10の製造方法の流れの一例が示されている。 Next, the operation of the structural configuration of the imaging device 10 according to this embodiment will be described with reference to FIGS. 9 to 16. FIG. 9 to 15 show an example of each process of the method for manufacturing the imaging device 10 according to this embodiment, and FIG. 16 shows an example of the flow of the method for manufacturing the imaging device 10 according to this embodiment. It is shown.
 図16に示す撮像装置10の製造方法では、先ず、ステップST10で、作業者(図示省略)は、連結ピン26が取り付けられた瞳分割フィルタ24を、挿入口58を通じて鏡胴28の内側に挿入する(図9参照)。ステップST10の処理が実行された後、撮像装置10の製造方法は、ステップST12へ移行する。 In the manufacturing method of the imaging device 10 shown in FIG. 16, first, in step ST10, an operator (not shown) inserts the pupil division filter 24 to which the connecting pin 26 is attached into the lens barrel 28 through the insertion opening 58. (See FIG. 9). After the process of step ST10 is performed, the manufacturing method of the imaging device 10 proceeds to step ST12.
 ステップST12で、作業者は、リング部材64を鏡胴28の外周面に回転可能に取り付ける(図10参照)。また、作業者は、エンドフレーム32を鏡胴28の外周面に取り付ける(図10参照)。ステップST12の処理が実行された後、撮像装置10の製造方法は、ステップST14へ移行する。 At step ST12, the operator rotatably attaches the ring member 64 to the outer peripheral surface of the lens barrel 28 (see FIG. 10). Also, the operator attaches the end frame 32 to the outer peripheral surface of the lens barrel 28 (see FIG. 10). After the process of step ST12 is executed, the manufacturing method of the imaging device 10 proceeds to step ST14.
 ステップST14で、作業者は、第1マウント16のネジ20を第2マウント18のネジ穴22に螺合することにより、第1マウント16を第2マウント18に取り付ける(図11参照)。これにより、レンズ装置12が撮像装置ボディ14に取り付けられる。ステップST14の処理が実行された後、撮像装置10の製造方法は、ステップST16へ移行する。 At step ST14, the operator attaches the first mount 16 to the second mount 18 by screwing the screw 20 of the first mount 16 into the screw hole 22 of the second mount 18 (see FIG. 11). Thereby, the lens device 12 is attached to the imaging device body 14 . After the process of step ST14 is performed, the manufacturing method of the imaging device 10 proceeds to step ST16.
 ステップST16で、作業者は、レバー56を光軸OA周りの方向に移動させることにより、レンズ装置12のピント合わせを行う(図12参照)。ステップST16の処理が実行された後、撮像装置10の製造方法は、ステップST18へ移行する。 At step ST16, the operator focuses the lens device 12 by moving the lever 56 in the direction around the optical axis OA (see FIG. 12). After the process of step ST16 is performed, the manufacturing method of the imaging device 10 proceeds to step ST18.
 ステップST18で、作業者は、光路62に瞳分割フィルタ24を配置した状態で、蓋材66を連結ピン26と接続する(図13参照)。また、作業者は、蓋材66をリング部材64の切り欠き部68に組み付ける(図13参照)。これにより、回転部材30が連結ピン26を介して瞳分割フィルタ24と連結され、回転部材30が瞳分割フィルタ24と一体に回転する状態になる。ステップST18の処理が実行された後、撮像装置10の製造方法は、ステップST20へ移行する。 In step ST18, the operator connects the cover member 66 to the connecting pin 26 with the pupil division filter 24 placed in the optical path 62 (see FIG. 13). Also, the operator assembles the cover member 66 into the notch portion 68 of the ring member 64 (see FIG. 13). As a result, the rotary member 30 is connected to the pupil division filter 24 via the connection pin 26 , and the rotary member 30 rotates integrally with the pupil division filter 24 . After the process of step ST18 is performed, the manufacturing method of the imaging device 10 proceeds to step ST20.
 ステップST20で、作業者は、撮像装置10を判定支援装置140と接続し、撮像装置10のイメージセンサ72(図7参照)によって被写体4が撮像されることで得られた撮像画像データ96を判定支援装置140に対して送信させる(図14参照)。判定支援装置140は、後に詳述するように、受信した撮像画像データ96に基づいて、特定偏光子40の透過軸の角度に関する角度情報186をディスプレイ150に表示する。角度情報186は、例えば、輝度値、偏光度、及び偏光角を含む。輝度値、偏光度、及び偏光角は、具体的な数値としてディスプレイ150に表示される。また、判定支援装置140のディスプレイ150には、輝度値、偏光度、及び偏光角の各値が既定範囲(後述)にそれぞれ収まっているか否かの判定結果を示す判定結果情報188が表示される。ステップST20の処理が実行された後、撮像装置10の製造方法は、ステップST22へ移行する。 In step ST20, the operator connects the imaging device 10 to the determination support device 140, and determines the captured image data 96 obtained by imaging the subject 4 with the image sensor 72 (see FIG. 7) of the imaging device 10. It is transmitted to the support device 140 (see FIG. 14). The determination support device 140 displays angle information 186 regarding the angle of the transmission axis of the specific polarizer 40 on the display 150 based on the received captured image data 96, as will be described in detail later. Angle information 186 includes, for example, luminance values, degrees of polarization, and polarization angles. The brightness value, the degree of polarization, and the polarization angle are displayed on the display 150 as specific numerical values. Further, the display 150 of the determination support device 140 displays determination result information 188 indicating whether or not each value of the luminance value, the degree of polarization, and the polarization angle falls within a predetermined range (described later). . After the process of step ST20 is performed, the manufacturing method of the imaging device 10 proceeds to step ST22.
 ステップST22で、作業者は、ディスプレイ150に表示された輝度値、偏光度、及び偏光角、及び/又は、ディスプレイ150に表示された判定結果を見ながら、回転部材30と一体に瞳分割フィルタ24を回転させる(図14参照)。ステップST22の処理が実行された後、撮像装置10の製造方法は、ステップST24へ移行する。 In step ST22, the operator looks at the brightness value, the degree of polarization, and the polarization angle displayed on the display 150 and/or the determination result displayed on the display 150, and moves the pupil division filter 24 integrally with the rotary member 30. is rotated (see FIG. 14). After the process of step ST22 is performed, the manufacturing method of the imaging device 10 proceeds to step ST24.
 ステップST24で、作業者は、特定偏光子40の透過軸の角度が既定角度範囲に収まっているか否かを判定する(図14参照)。例えば、作業者は、輝度値、偏光度、及び偏光角の各値が既定範囲にそれぞれ収まっているか否か、及び/又は、輝度値、偏光度、及び偏光角の各値が既定範囲にそれぞれ収まっているとの判定結果が得られているか否かに基づいて、特定偏光子40の透過軸の角度が既定角度範囲に収まっているか否かを判定する。ステップST24において、特定偏光子40の透過軸の角度が既定角度範囲に収まっていない場合には、判定が否定されて、撮像装置10の製造方法は、ステップST20へ移行する。ステップST24において、特定偏光子40の透過軸の角度が既定角度範囲に収まっている場合には、判定が肯定されて、撮像装置10の製造方法は、ステップST26へ移行する。 At step ST24, the operator determines whether or not the angle of the transmission axis of the specific polarizer 40 is within the predetermined angle range (see FIG. 14). For example, the operator determines whether each value of the luminance value, the degree of polarization, and the polarization angle is within a predetermined range, and/or whether each value of the luminance value, the degree of polarization, and the polarization angle is within the predetermined range. It is determined whether or not the angle of the transmission axis of the specific polarizer 40 is within the predetermined angle range based on whether or not the result of determination that the angle is within the range is obtained. In step ST24, if the angle of the transmission axis of the specific polarizer 40 does not fall within the predetermined angle range, the determination is negative, and the manufacturing method of the imaging device 10 proceeds to step ST20. In step ST24, when the angle of the transmission axis of the specific polarizer 40 is within the predetermined angle range, the determination is affirmative, and the manufacturing method of the imaging device 10 proceeds to step ST26.
 ステップST26で、作業者は、イモネジ34をネジ穴70に螺入する(図15参照)。これにより、鏡胴28に対して回転部材30が固定されることにより、瞳分割フィルタ24が鏡胴28に対して固定される。ステップST26の処理が実行された後、撮像装置10の製造方法は終了する。以上説明した撮像装置10の製造方法により、レンズ装置12と撮像装置ボディ14とを備える撮像装置10が組み立てられる。撮像装置10の製造方法は、本開示の技術に係る「撮像装置の製造方法」の一例である。 At step ST26, the operator screws the set screw 34 into the screw hole 70 (see FIG. 15). As a result, the rotation member 30 is fixed to the lens barrel 28 , thereby fixing the pupil division filter 24 to the lens barrel 28 . After the process of step ST26 is performed, the manufacturing method of the imaging device 10 ends. The imaging device 10 including the lens device 12 and the imaging device body 14 is assembled by the method of manufacturing the imaging device 10 described above. The manufacturing method of the imaging device 10 is an example of the “imaging device manufacturing method” according to the technology of the present disclosure.
 次に、本実施形態に係る撮像装置10の機能的な構成について説明する。 Next, the functional configuration of the imaging device 10 according to this embodiment will be described.
 一例として図17に示すように、NVM112には、マルチスペクトル画像生成プログラム120が記憶されている。プロセッサ110は、NVM112からマルチスペクトル画像生成プログラム120を読み出し、読み出したマルチスペクトル画像生成プログラム120をRAM114上で実行する。プロセッサ110は、RAM114上で実行するマルチスペクトル画像生成プログラム120に従って、マルチスペクトル画像128を生成するためのマルチスペクトル画像生成処理を実行する。 As shown in FIG. 17 as an example, the NVM 112 stores a multispectral image generation program 120 . Processor 110 reads multispectral image generation program 120 from NVM 112 and executes read multispectral image generation program 120 on RAM 114 . Processor 110 performs multispectral image generation processing to generate multispectral image 128 according to multispectral image generation program 120 running on RAM 114 .
 マルチスペクトル画像生成処理は、プロセッサ110がマルチスペクトル画像生成プログラム120に従って、出力値取得部122、混信除去処理部124、及びマルチスペクトル画像取得部126として動作することで実現される。 The multispectral image generation processing is realized by the processor 110 operating as the output value acquisition unit 122, the interference removal processing unit 124, and the multispectral image acquisition unit 126 according to the multispectral image generation program 120.
 一例として図18に示すように、出力値取得部122は、イメージセンサ72から出力された撮像画像データ96がプロセッサ110に入力された場合、撮像画像データ96に基づいて、各物理画素94の出力値Yを取得する。各物理画素94の出力値Yは、撮像画像データ96によって示される撮像画像に含まれる各画素の輝度値に対応する。 As an example, as shown in FIG. 18, when captured image data 96 output from the image sensor 72 is input to the processor 110, the output value acquisition unit 122 outputs each physical pixel 94 based on the captured image data 96. Get the value Y. The output value Y of each physical pixel 94 corresponds to the brightness value of each pixel included in the captured image indicated by the captured image data 96 .
 ここで、各物理画素94の出力値Yは、混信(すなわち、クロストーク)が含まれた値である。すなわち、各物理画素94には、第1透過波長帯域λ、第2透過波長帯域λ、及び第3透過波長帯域λの各透過波長帯域λの光が入射するため、出力値Yは、第1透過波長帯域λの光量に応じた値、第2透過波長帯域λの光量に応じた値、及び第3透過波長帯域λの光量に応じた値が混合した値となる。 Here, the output value Y of each physical pixel 94 is a value including interference (that is, crosstalk). That is, since light in each transmission wavelength band λ of the first transmission wavelength band λ 1 , the second transmission wavelength band λ 2 , and the third transmission wavelength band λ 3 is incident on each physical pixel 94, the output value Y is , a value corresponding to the amount of light in the first transmission wavelength band λ1 , a value corresponding to the amount of light in the second transmission wavelength band λ2 , and a value corresponding to the amount of light in the third transmission wavelength band λ3 .
 マルチスペクトル画像128(図17参照)を取得するためには、プロセッサ110が、物理画素94毎に、出力値Yから各透過波長帯域λに対応した値を分離して抽出する処理、すなわち、混信を除去する処理である混信除去処理を出力値Yに対して行う必要がある。そこで、本実施形態では、混信除去処理部124は、出力値取得部122によって取得された各物理画素94の出力値Yに対して混信除去処理を実行する。 In order to acquire the multispectral image 128 (see FIG. 17), the processor 110 separates and extracts the value corresponding to each transmission wavelength band λ from the output value Y for each physical pixel 94, that is, the interference The output value Y needs to be subjected to interference removal processing, which is processing for removing . Therefore, in the present embodiment, the interference removal processing unit 124 performs interference removal processing on the output value Y of each physical pixel 94 acquired by the output value acquisition unit 122 .
 ここで、混信除去処理について説明する。各物理画素94の出力値Yは、赤色、緑色、及び青色の各輝度値を出力値Yの成分として含む。各物理画素94の出力値Yは、式(1)によって表される。ただし、Yは、出力値Yのうちの赤色の輝度値であり、Yは、出力値Yのうちの緑色の輝度値であり、Yは、出力値Yのうちの青色の輝度値である。
Here, the interference removal processing will be described. The output value Y of each physical pixel 94 includes luminance values of red, green, and blue as output value Y components. The output value Y of each physical pixel 94 is represented by Equation (1). YR is the luminance value of red in the output value Y, YG is the luminance value of green in the output value Y, and YB is the luminance value of blue in the output value Y. is.
 マルチスペクトル画像128を形成する各画像画素の画素値Xは、第1透過波長帯域λの光の輝度値、第2透過波長帯域λの光の輝度値、及び第3透過波長帯域λの光の輝度値を画素値Xの成分として含む。各画像画素の画素値Xは、式(2)によって表される。ただし、輝度値Xλ1は、画素値Xのうちの第1透過波長帯域λの光の輝度値であり、輝度値Xλ2は、画素値Xのうちの第2透過波長帯域λの光の輝度値であり、輝度値Xλ3は、画素値Xのうちの第3透過波長帯域λの光の輝度値である。
The pixel value X of each image pixel forming the multispectral image 128 is the luminance value of light in the first transmission wavelength band λ 1 , the luminance value of light in the second transmission wavelength band λ 2 , and the third transmission wavelength band λ 3 . , as a component of the pixel value X. A pixel value X of each image pixel is represented by Equation (2). However, the luminance value X λ1 is the luminance value of light in the first transmission wavelength band λ 1 of the pixel value X, and the luminance value X λ2 is the light of the second transmission wavelength band λ 2 in the pixel value X. and the luminance value X λ3 is the luminance value of the light in the third transmission wavelength band λ 3 of the pixel value X.
 混信行列をAとした場合、各物理画素94の出力値Yは、式(3)によって表される。
Assuming that the interference matrix is A, the output value Y of each physical pixel 94 is represented by Equation (3).
 混信行列A(図示省略)は、被写体光のスペクトル、第1レンズ46の分光透過率、第2レンズ48の分光透過率、複数のフィルタ38の分光透過率、及びイメージセンサ72の分光感度に基づいて規定される行列である。 The interference matrix A (not shown) is based on the spectrum of the subject light, the spectral transmittance of the first lens 46, the spectral transmittance of the second lens 48, the spectral transmittances of the plurality of filters 38, and the spectral sensitivity of the image sensor 72. is a matrix defined by
 混信行列Aの一般逆行列である混信除去行列をAとした場合、各画像画素の画素値Xは、式(4)によって表される。
Assuming that the interference cancellation matrix, which is the general inverse matrix of the interference matrix A, is A + , the pixel value X of each image pixel is represented by Equation (4).
 混信除去行列Aも、混信行列Aと同様に、被写体光のスペクトル、第1レンズ46の分光透過率、第2レンズ48の分光透過率、複数のフィルタ38の分光透過率、及びイメージセンサ72の分光感度に基づいて規定される行列である。混信除去行列Aは、NVM112に予め記憶される。 Like the interference matrix A, the interference cancellation matrix A + also includes the spectrum of the subject light, the spectral transmittance of the first lens 46, the spectral transmittance of the second lens 48, the spectral transmittances of the plurality of filters 38, and the image sensor 72 is a matrix defined based on the spectral sensitivity of The interference cancellation matrix A + is pre-stored in NVM 112 .
 混信除去処理部124は、NVM112に記憶されている混信除去行列Aと、出力値取得部122によって取得された各物理画素94の出力値Yとを取得し、取得した混信除去行列Aと各物理画素94の出力値Yとに基づいて、式(4)により、各画像画素の画素値Xを出力する。 The interference cancellation processing unit 124 acquires the interference cancellation matrix A + stored in the NVM 112 and the output value Y of each physical pixel 94 acquired by the output value acquisition unit 122, and combines the acquired interference cancellation matrix A + Based on the output value Y of each physical pixel 94, the pixel value X of each image pixel is output by Equation (4).
 ここで、上述の通り、各画像画素の画素値Xは、第1透過波長帯域λの光の輝度値Xλ1、第2透過波長帯域λの光の輝度値Xλ2、及び第3透過波長帯域λの光の輝度値Xλ3を画素値Xの成分として含む。第1透過波長帯域λの光の輝度値Xλ1は、撮像画像データ96のうちの第1画像データによって示される。第2透過波長帯域λの光の輝度値Xλ2は、撮像画像データ96のうちの第2画像データによって示される。第3透過波長帯域λの光の輝度値Xλ3は、撮像画像データ96のうちの第3画像データによって示される。 Here, as described above, the pixel value X of each image pixel is the brightness value X λ1 of light in the first transmission wavelength band λ 1 , the brightness value X λ2 of light in the second transmission wavelength band λ 2 , and the brightness value X λ2 of light in the third transmission wavelength band λ 2 . The luminance value X λ3 of light in the wavelength band λ 3 is included as a component of the pixel value X. The brightness value X λ1 of the light in the first transmission wavelength band λ 1 is indicated by the first image data of the captured image data 96 . The brightness value X λ2 of light in the second transmission wavelength band λ 2 is indicated by the second image data of the captured image data 96 . The brightness value X λ3 of light in the third transmission wavelength band λ 3 is indicated by the third image data of the captured image data 96 .
 このように、混信除去処理部124によって混信除去処理が実行されることにより、撮像画像データ96が、第1透過波長帯域λの光の輝度値Xλ1を示す画像データである第1画像データと、第2透過波長帯域λの光の輝度値Xλ2を示す画像データである第2画像データと、第3透過波長帯域λの光の輝度値Xλ3を示す画像データである第3画像データとに分離される。すなわち、撮像画像データ96が、複数のフィルタ38の透過波長帯域毎の画像データに分離される。混信除去処理は、本開示の技術に係る「混信除去処理」の一例である。 As described above, the interference removal processing is executed by the interference removal processing unit 124, so that the captured image data 96 is the first image data that is image data representing the luminance value Xλ1 of the light in the first transmission wavelength band λ1 . , second image data representing the brightness value Xλ2 of light in the second transmission wavelength band λ2 , and third image data representing the brightness value Xλ3 of light in the third transmission wavelength band λ3. image data. That is, the captured image data 96 is separated into image data for each transmission wavelength band of the plurality of filters 38 . Interference removal processing is an example of "interference removal processing" according to the technology of the present disclosure.
 一例として図19に示すように、マルチスペクトル画像取得部126は、混信除去処理部124によって混信除去処理が実行されることにより生成された第1画像データ、第2画像データ、及び第3画像データを合成することにより、マルチスペクトル画像データを取得する。マルチスペクトル画像データは、マルチスペクトル画像128を示す画像データである。マルチスペクトル画像データは、例えば、ディスプレイ80に出力される。ディスプレイ80は、マルチスペクトル画像データに基づいてマルチスペクトル画像128を表示する。 As an example, as shown in FIG. 19 , the multispectral image acquisition unit 126 generates first image data, second image data, and third image data generated by the interference removal processing performed by the interference removal processing unit 124. to obtain multispectral image data. Multispectral image data is image data representing a multispectral image 128 . The multispectral image data is output to display 80, for example. Display 80 displays multispectral image 128 based on the multispectral image data.
 次に、本実施形態に係る撮像装置10の機能的な構成の作用について図20を参照しながら説明する。図20には、本実施形態に係るマルチスペクトル画像生成処理の流れの一例が示されている。 Next, the action of the functional configuration of the imaging device 10 according to this embodiment will be described with reference to FIG. FIG. 20 shows an example of the flow of multispectral image generation processing according to this embodiment.
 図20に示すマルチスペクトル画像生成処理では、先ず、ステップST30で、出力値取得部122は、イメージセンサ72から出力された撮像画像データ96に基づいて、各物理画素94の出力値Yを取得する(図18参照)。ステップST30の処理が実行された後、マルチスペクトル画像生成処理は、ステップST32へ移行する。 In the multispectral image generation process shown in FIG. 20, first, in step ST30, the output value acquisition unit 122 acquires the output value Y of each physical pixel 94 based on the captured image data 96 output from the image sensor 72. (See Figure 18). After the process of step ST30 is executed, the multispectral image generation process proceeds to step ST32.
 ステップST32で、混信除去処理部124は、NVM112に記憶されている混信除去行列Aと、ステップST30で取得された各物理画素94の出力値Yとを取得し、取得した混信除去行列Aと各物理画素94の出力値Yとに基づいて、各画像画素の画素値Xを出力する(図18参照)。ステップST32で混信除去処理が実行されることにより、撮像画像データ96が、第1透過波長帯域λの光の輝度値Xλ1を示す画像データである第1画像データと、第2透過波長帯域λの光の輝度値Xλ2を示す画像データである第2画像データと、第3透過波長帯域λの光の輝度値Xλ3を示す画像データである第3画像データとに分離される。ステップST32の処理が実行された後、マルチスペクトル画像生成処理は、ステップST34へ移行する。 In step ST32, the interference removal processing unit 124 obtains the interference removal matrix A + stored in the NVM 112 and the output value Y of each physical pixel 94 obtained in step ST30, and calculates the obtained interference removal matrix A + and the output value Y of each physical pixel 94, the pixel value X of each image pixel is output (see FIG. 18). By executing the interference elimination process in step ST32, the captured image data 96 is changed from the first image data, which is the image data indicating the brightness value Xλ1 of the light in the first transmission wavelength band λ1 , and the second transmission wavelength band The second image data is image data representing the brightness value Xλ2 of light of λ2, and the third image data is image data representing the brightness value Xλ3 of light of the third transmission wavelength band λ3 . . After the process of step ST32 is executed, the multispectral image generation process proceeds to step ST34.
 ステップST34で、マルチスペクトル画像取得部126は、ステップST32で混信除去処理が実行されることにより生成された第1画像データ、第2画像データ、及び第3画像データに基づいて、マルチスペクトル画像128を取得する(図19参照)。ステップST34の処理が実行された後、マルチスペクトル画像生成処理は、ステップST36へ移行する。 In step ST34, the multispectral image acquisition unit 126 obtains the multispectral image 128 based on the first image data, the second image data, and the third image data generated by executing the interference removal process in step ST32. (see FIG. 19). After the process of step ST34 is executed, the multispectral image generation process proceeds to step ST36.
 ステップST36で、プロセッサ110は、マルチスペクトル画像生成処理を終了する条件(すなわち、終了条件)が成立したか否かを判定する。終了条件の一例としては、ユーザがマルチスペクトル画像生成処理を終了させる指示を撮像装置10に対して付与したという条件等が挙げられる。ステップST36において、終了条件が成立していない場合には、判定が否定されて、マルチスペクトル画像生成処理は、ステップST30へ移行する。ステップST36において、終了条件が成立した場合には、判定が肯定されて、マルチスペクトル画像生成処理は終了する。 At step ST36, the processor 110 determines whether or not the condition for terminating the multispectral image generation process (that is, the termination condition) is satisfied. An example of the termination condition is a condition that the user has given an instruction to the imaging device 10 to terminate the multispectral image generation processing. In step ST36, if the termination condition is not met, the determination is negative, and the multispectral image generation process proceeds to step ST30. In step ST36, if the termination condition is met, the determination is affirmative and the multispectral image generation process is terminated.
 次に、本実施形態に係る判定支援装置140について説明する。 Next, the determination support device 140 according to this embodiment will be described.
 一例として図21に示すように、判定支援装置140は、撮像装置10に対して適用される装置である。具体的には、判定支援装置140は、上述の通り、特定偏光子40(図4参照)の透過軸の角度に関する角度情報186と、特定偏光子40の透過軸の角度が既定角度範囲に収まっているか否かの判定に関する判定結果情報188とをディスプレイ150に表示することにより、作業者による判定(すなわち、特定偏光子40の透過軸の角度が既定角度範囲に収まっているか否かの判定(図14参照))を支援する装置である。判定支援装置140は、本開示の技術に係る「情報処理装置」の一例である。 As shown in FIG. 21 as an example, the determination support device 140 is a device applied to the imaging device 10 . Specifically, as described above, the determination support device 140 determines whether the angle information 186 regarding the angle of the transmission axis of the specific polarizer 40 (see FIG. 4) and whether the angle of the transmission axis of the specific polarizer 40 falls within the predetermined angle range. By displaying on the display 150 the determination result information 188 regarding the determination of whether or not the (see FIG. 14))). The determination support device 140 is an example of an “information processing device” according to the technology of the present disclosure.
 判定支援装置140は、コンピュータ148、ディスプレイ150、及び通信I/F152を備える。コンピュータ148、ディスプレイ150、及び通信I/F152は、例えば、撮像装置10に備えられたコンピュータ78、ディスプレイ80、及び通信I/F82と同様のハードウェア資源によって実現される。通信I/F152は、撮像装置10と通信可能に接続される。コンピュータ148は、プロセッサ160、NVM162、及びRAM164を有する。プロセッサ160は、本開示の技術に係る「プロセッサ」の一例である。 The determination support device 140 includes a computer 148, a display 150, and a communication I/F 152. The computer 148, the display 150, and the communication I/F 152 are realized by hardware resources similar to the computer 78, the display 80, and the communication I/F 82 provided in the imaging device 10, for example. The communication I/F 152 is communicably connected to the imaging device 10 . Computer 148 has a processor 160 , NVM 162 and RAM 164 . Processor 160 is an example of a "processor" according to the technology of the present disclosure.
 一例として図22に示すように、NVM162には、判定支援プログラム170が記憶されている。プロセッサ160は、NVM162から判定支援プログラム170を読み出し、読み出した判定支援プログラム170をRAM164上で実行する。プロセッサ160は、RAM164上で実行する判定支援プログラム170に従って、作業者による判定を支援するための判定支援処理を実行する。 As shown in FIG. 22 as an example, the NVM 162 stores a determination support program 170 . The processor 160 reads the determination support program 170 from the NVM 162 and executes the read determination support program 170 on the RAM 164 . The processor 160 executes determination support processing for assisting determination by the operator according to a determination support program 170 executed on the RAM 164 .
 判定支援処理は、プロセッサ160が判定支援プログラム170に従って、取得部172、導出部174、記憶制御部176、表示制御部178、判定部180、及び判定結果出力部182として動作することで実現される。判定支援プログラム170は、本開示の技術に係る「プログラム」の一例である。判定支援処理は、本開示の技術に係る「処理」の一例である。 The determination support processing is realized by operating the processor 160 as an acquisition unit 172, a derivation unit 174, a storage control unit 176, a display control unit 178, a determination unit 180, and a determination result output unit 182 according to the determination support program 170. . The determination support program 170 is an example of a "program" according to the technology of the present disclosure. Determination support processing is an example of “processing” according to the technology of the present disclosure.
 一例として図23に示すように、取得部172は、レンズ装置12が撮像装置ボディ14に取り付けられた状態(図14参照)で、撮像装置10のイメージセンサ72によって被写体4(図7参照)が撮像されることで得られた撮像画像データ96を取得する。撮像画像データ96には、各物理画素94から出力された出力データ132が含まれる。取得部172は、複数の物理画素94のうちの一つの物理画素94を特定物理画素94Aとして選定する。 As an example, as shown in FIG. 23, the acquisition unit 172 acquires the image of the subject 4 (see FIG. 7) by the image sensor 72 of the imaging device 10 with the lens device 12 attached to the imaging device body 14 (see FIG. 14). Captured image data 96 obtained by capturing an image is acquired. The captured image data 96 includes output data 132 output from each physical pixel 94 . The obtaining unit 172 selects one physical pixel 94 from among the plurality of physical pixels 94 as the specific physical pixel 94A.
 例えば、取得部172は、複数の物理画素94のうちの光電変換素子84の受光面84Aの中央部に配置された物理画素94を特定物理画素94Aとして選定する。そして、取得部172は、撮像画像データ96に含まれる複数の出力データ132のうちの特定物理画素94Aから出力された出力データ132を取得する。特定物理画素94Aから出力される出力データ132は、イメージセンサ72に入射する被写体光のスペクトル及び瞳分割フィルタ24の光学特性に基づいて出力されたデータである。瞳分割フィルタ24ユニットの光学特性は、各フィルタ38の透過率及び各偏光子40の透過軸の角度等を含む。 For example, the obtaining unit 172 selects the physical pixel 94 arranged in the center of the light receiving surface 84A of the photoelectric conversion element 84 among the plurality of physical pixels 94 as the specific physical pixel 94A. Then, the acquisition unit 172 acquires the output data 132 output from the specific physical pixel 94A among the plurality of output data 132 included in the captured image data 96 . The output data 132 output from the specific physical pixel 94</b>A is data output based on the spectrum of subject light incident on the image sensor 72 and the optical characteristics of the pupil division filter 24 . The optical properties of the pupil division filter 24 unit include the transmittance of each filter 38, the angle of the transmission axis of each polarizer 40, and the like.
 撮像装置ボディ14は、本開示の技術に係る「第2撮像装置ボディ」の一例である。イメージセンサ72は、本開示の技術に係る「第2イメージセンサ」の一例である。特定物理画素94Aは、本開示の技術に係る「特定画素」の一例である。特定物理画素94Aから出力された出力データ132は、本開示の技術に係る「第1情報」及び「出力データ」の一例である。 The imaging device body 14 is an example of a "second imaging device body" according to the technology of the present disclosure. The image sensor 72 is an example of a "second image sensor" according to the technology of the present disclosure. The specific physical pixel 94A is an example of a "specific pixel" according to the technology of the present disclosure. The output data 132 output from the specific physical pixel 94A is an example of "first information" and "output data" according to the technology of the present disclosure.
 導出部174は、取得部172によって取得された出力データ132に基づいて、瞳分割フィルタ24に設けられた複数の偏光子40のうちの特定偏光子40の透過軸の角度に関する角度情報186を取得する。角度情報186は、例えば、輝度値、偏光度、及び偏光角を含む。 Based on the output data 132 acquired by the acquisition unit 172, the derivation unit 174 acquires the angle information 186 regarding the angle of the transmission axis of the specific polarizer 40 among the plurality of polarizers 40 provided in the pupil division filter 24. do. Angle information 186 includes, for example, luminance values, degrees of polarization, and polarization angles.
 偏光角とは、光電変換素子84の受光面84Aに入射する被写体光の偏光方向の角度を指す。偏光度とは、光電変換素子84の受光面84Aに入射する被写体光の全体量を分母とし、被写体光のうちの偏光成分の量を分子にとる割合を指す。偏光度が高いほど、撮像画像データ96が第1画像データ、第2画像データ、及び第3画像データに分離される場合(図18参照)の分離性に優れる。輝度値とは、光電変換素子84の受光面84Aで受光される被写体光の光量を指す。輝度値が高いほど、マルチスペクトル画像128(図19参照)の輝度が高くなる。なお、角度情報186は、輝度値、偏光度、及び偏光角の少なくとも一つを含んでいればよい。角度情報186は、本開示の技術に係る「第2情報」の一例である。 The polarization angle refers to the angle of the polarization direction of subject light incident on the light receiving surface 84A of the photoelectric conversion element 84. The degree of polarization refers to a ratio in which the total amount of subject light incident on the light receiving surface 84A of the photoelectric conversion element 84 is the denominator and the amount of the polarized component of the subject light is the numerator. The higher the degree of polarization, the better the separation when the captured image data 96 is separated into the first image data, the second image data, and the third image data (see FIG. 18). The luminance value indicates the amount of subject light received by the light receiving surface 84A of the photoelectric conversion element 84. FIG. The higher the brightness value, the brighter the multispectral image 128 (see FIG. 19). Note that the angle information 186 may include at least one of the brightness value, the degree of polarization, and the angle of polarization. The angle information 186 is an example of "second information" according to the technology of the present disclosure.
 記憶制御部176は、角度情報186をNVM162に記憶させる。NVM162は、本開示の技術に係る「メモリ」の一例である。表示制御部178は、角度情報186をディスプレイ150に対して出力する。ディスプレイ150は、角度情報186を表示する。これにより、角度情報186に含まれる輝度値、偏光度、及び偏光角の具体的な数値がディスプレイ150に表示される。ディスプレイ150は、本開示の技術に係る「ディスプレイ」の一例である。 The storage control unit 176 causes the NVM 162 to store the angle information 186 . NVM 162 is an example of "memory" according to the technology of the present disclosure. Display control unit 178 outputs angle information 186 to display 150 . Display 150 displays angle information 186 . As a result, the display 150 displays specific numerical values of the luminance value, the degree of polarization, and the angle of polarization included in the angle information 186 . The display 150 is an example of a "display" according to the technology of the present disclosure.
 判定部180は、輝度値、偏光度、及び偏光角の各値が既定範囲にそれぞれ収まっているか否かを判定する。輝度値、偏光度、及び偏光角の各値に対する上述の既定範囲は、既定角度範囲(図14参照)に対応して設定されている。判定結果出力部182は、判定部180による判定結果を示す判定結果情報188をディスプレイ150に出力する。 The determination unit 180 determines whether each value of the luminance value, the degree of polarization, and the polarization angle falls within a predetermined range. The above-described predetermined ranges for each value of luminance value, degree of polarization, and polarization angle are set corresponding to predetermined angle ranges (see FIG. 14). The determination result output unit 182 outputs determination result information 188 indicating the determination result by the determination unit 180 to the display 150 .
 具体的には、判定結果出力部182は、輝度値、偏光度、及び偏光角の各値が既定範囲にそれぞれ収まっていると判定部180によって判定された場合には、輝度値、偏光度、及び偏光角の各値が既定範囲にそれぞれ収まっている旨の判定結果を示す判定結果情報188(すなわち、肯定情報を示す信号)をディスプレイ150に出力する。一方、判定結果出力部182は、輝度値、偏光度、及び偏光角のうち少なくとも一つの値が既定範囲から外れている場合には、輝度値、偏光度、及び偏光角の各値が既定範囲にそれぞれ収まっていない旨の判定結果を示す判定結果情報188(すなわち、否定情報を示す信号)をディスプレイ150に出力する。 Specifically, when the determination unit 180 determines that each value of the luminance value, the degree of polarization, and the polarization angle falls within the predetermined range, the determination result output unit 182 outputs the luminance value, the degree of polarization, and the polarization angle are within the predetermined range (that is, a signal indicating affirmative information) is output to the display 150 . On the other hand, when at least one of the brightness value, the degree of polarization, and the polarization angle is out of the predetermined range, the determination result output unit 182 determines that each value of the brightness value, the degree of polarization, and the polarization angle is within the predetermined range. output to display 150 determination result information 188 (that is, a signal indicating negative information) indicating the determination result that the values do not fall within the range.
 これにより、輝度値、偏光度、及び偏光角の各値が既定範囲にそれぞれ収まっているか否かの判定結果がディスプレイ150に表示される。例えば、輝度値、偏光度、及び偏光角の各値が既定範囲にそれぞれ収まっていると判定された場合には、判定結果として「OK」の文字がディスプレイ150に表示される。一方、輝度値、偏光度、及び偏光角の各値が既定範囲にそれぞれ収まっていないと判定された場合には、判定結果として「NG」の文字がディスプレイ150に表示される。判定結果情報188は、「角度が第1既定角度範囲に収まっているか否かを示す信号」の一例である。 As a result, the display 150 displays the judgment result as to whether or not each value of the luminance value, the degree of polarization, and the polarization angle is within the predetermined range. For example, if it is determined that the brightness value, the degree of polarization, and the polarization angle are within the predetermined ranges, the display 150 displays the characters "OK" as the determination result. On the other hand, when it is determined that the brightness value, the degree of polarization, and the polarization angle are not within the predetermined ranges, the display 150 displays "NG" as the determination result. The determination result information 188 is an example of "a signal indicating whether or not the angle is within the first predetermined angle range".
 次に、本実施形態に係る判定支援装置140の機能的な構成の作用について図24を参照しながら説明する。図24には、本実施形態に係る判定支援処理の流れの一例が示されている。 Next, the action of the functional configuration of the determination support device 140 according to this embodiment will be described with reference to FIG. FIG. 24 shows an example of the flow of determination support processing according to this embodiment.
 図24に示す判定支援処理では、先ず、ステップST40で、取得部172は、レンズ装置12が撮像装置ボディ14に取り付けられた状態で、撮像装置10のイメージセンサ72によって被写体が撮像されることで得られた撮像画像データ96を取得し、取得した撮像画像データ96に含まれる複数の出力データ132のうちの特定物理画素94Aから出力された出力データ132を取得する(図23参照)。ステップST40の処理が実行された後、判定支援処理は、ステップST42へ移行する。 In the determination support process shown in FIG. 24 , first, in step ST40, the acquisition unit 172 acquires an image of the subject by the image sensor 72 of the imaging device 10 with the lens device 12 attached to the imaging device body 14. The obtained captured image data 96 is obtained, and the output data 132 output from the specific physical pixel 94A among the plurality of output data 132 included in the obtained captured image data 96 is obtained (see FIG. 23). After the process of step ST40 is executed, the determination support process proceeds to step ST42.
 ステップST42で、導出部174は、ステップST40で取得された出力データ132に基づいて、瞳分割フィルタ24に設けられた複数の偏光子40のうちの特定偏光子40の透過軸の角度に関する角度情報186を取得する(図23参照)。ステップST42の処理が実行された後、判定支援処理は、ステップST44へ移行する。 In step ST42, the derivation unit 174 obtains angle information about the angle of the transmission axis of the specific polarizer 40 among the plurality of polarizers 40 provided in the pupil division filter 24, based on the output data 132 acquired in step ST40. 186 (see FIG. 23). After the process of step ST42 is executed, the determination support process proceeds to step ST44.
 ステップST44で、記憶制御部176は、角度情報186をNVM162に記憶させる(図23参照)。ステップST44の処理が実行された後、判定支援処理は、ステップST46へ移行する。 At step ST44, the storage control unit 176 causes the NVM 162 to store the angle information 186 (see FIG. 23). After the process of step ST44 is executed, the determination support process proceeds to step ST46.
 ステップST46で、表示制御部178は、角度情報186をディスプレイ150に対して出力する(図23参照)。これにより、角度情報186に含まれる輝度値、偏光度、及び偏光角の具体的な数値がディスプレイ150に表示される。ステップST46の処理が実行された後、判定支援処理は、ステップST48へ移行する。 At step ST46, the display control unit 178 outputs the angle information 186 to the display 150 (see FIG. 23). As a result, the display 150 displays specific numerical values of the luminance value, the degree of polarization, and the angle of polarization included in the angle information 186 . After the process of step ST46 is executed, the determination support process proceeds to step ST48.
 ステップST48で、判定部180は、輝度値、偏光度、及び偏光角の各値が既定範囲にそれぞれ収まっているか否かを判定する(図23参照)。ステップST48において、輝度値、偏光度、及び偏光角の各値が既定範囲にそれぞれ収まっている場合には、判定が肯定されて、判定支援処理は、ステップST50へ移行する。ステップST48において、輝度値、偏光度、及び偏光角の各値が既定範囲にそれぞれ収まっていない場合には、判定が否定されて、判定支援処理は、ステップST52へ移行する。 In step ST48, the determination section 180 determines whether or not each value of the brightness value, degree of polarization, and polarization angle falls within a predetermined range (see FIG. 23). In step ST48, if the brightness value, the degree of polarization, and the polarization angle are all within the predetermined ranges, the determination is affirmative, and the determination support process proceeds to step ST50. In step ST48, if the luminance value, the degree of polarization, and the polarization angle do not fall within the predetermined ranges, the determination is negative, and the determination support processing proceeds to step ST52.
 ステップST50で、判定結果出力部182は、輝度値、偏光度、及び偏光角の各値が既定範囲にそれぞれ収まっている旨の判定結果を示す判定結果情報188(すなわち、肯定情報)をディスプレイ150に出力する(図23参照)。これにより、輝度値、偏光度、及び偏光角の各値が既定範囲にそれぞれ収まっている旨の判定結果がディスプレイ150に表示される。ステップST50の処理が実行された後、判定支援処理は、ステップST54へ移行する。 In step ST50, the determination result output unit 182 displays determination result information 188 (that is, affirmative information) indicating that each value of the luminance value, the degree of polarization, and the polarization angle is within the predetermined range on the display 150. (see FIG. 23). As a result, the display 150 displays a determination result indicating that each value of the luminance value, the degree of polarization, and the polarization angle is within the predetermined range. After the process of step ST50 is executed, the determination support process proceeds to step ST54.
 ステップST52で、判定結果出力部182は、輝度値、偏光度、及び偏光角の各値が既定範囲にそれぞれ収まっていない旨の判定結果を示す判定結果情報188(すなわち、否定情報)をディスプレイ150に出力する(図23参照)。これにより、輝度値、偏光度、及び偏光角の各値が既定範囲にそれぞれ収まっていない旨の判定結果がディスプレイ150に表示される。ステップST52の処理が実行された後、判定支援処理は、ステップST54へ移行する。 In step ST52, the determination result output unit 182 displays the determination result information 188 (that is, negative information) indicating that each value of the luminance value, the degree of polarization, and the polarization angle does not fall within the predetermined ranges on the display 150. (see FIG. 23). As a result, the display 150 displays a judgment result indicating that each value of the luminance value, the degree of polarization, and the polarization angle is not within the predetermined range. After the process of step ST52 is executed, the determination support process proceeds to step ST54.
 ステップST54で、プロセッサ160は、判定支援処理を終了する条件(すなわち、終了条件)が成立したか否かを判定する。終了条件の一例としては、ユーザが判定支援処理を終了させる指示を判定支援装置140に対して付与したという条件等が挙げられる。ステップST54において、終了条件が成立していない場合には、判定が否定されて、判定支援処理は、ステップST40へ移行する。ステップST54において、終了条件が成立した場合には、判定が肯定されて、判定支援処理は終了する。なお、上述の判定支援装置140の機能的な構成の作用として説明した情報処理方法は、本開示の技術に係る「情報処理方法」の一例である。 At step ST54, the processor 160 determines whether or not the condition for terminating the determination support process (that is, the termination condition) is satisfied. An example of the termination condition is a condition that the user gives an instruction to the determination support device 140 to terminate the determination support process. In step ST54, if the termination condition is not met, the determination is negative, and the determination support process proceeds to step ST40. In step ST54, if the termination condition is met, the determination is affirmative and the determination support process is terminated. The information processing method described as the action of the functional configuration of the determination support device 140 described above is an example of the "information processing method" according to the technology of the present disclosure.
 以上説明したように、本実施形態に係る撮像装置10(図11参照)は、レンズ装置12と、撮像装置ボディ14とを備えている。レンズ装置12は、第1マウント16を有しており、撮像装置ボディ14は、第2マウント18を有している。第1マウント16及び第2マウント18は、それぞれCマウントである。第1マウント16の外周面には、ネジ20が形成されており、第2マウント18の内側には、ネジ穴22が形成されている。したがって、ネジ20がネジ穴22に螺合されることにより、第1マウント16を第2マウント18に取り付けることができ、ひいては、レンズ装置12を撮像装置ボディ14に取り付けることができる。 As described above, the imaging device 10 (see FIG. 11) according to this embodiment includes the lens device 12 and the imaging device body 14 . The lens device 12 has a first mount 16 and the imaging device body 14 has a second mount 18 . The first mount 16 and the second mount 18 are each C mounts. A screw 20 is formed on the outer peripheral surface of the first mount 16 , and a screw hole 22 is formed inside the second mount 18 . Therefore, by screwing the screw 20 into the screw hole 22 , the first mount 16 can be attached to the second mount 18 , and the lens device 12 can be attached to the imaging device body 14 .
 また、本実施形態に係る撮像装置10(図7参照)では、レンズ装置12は、光路62に配置された瞳分割フィルタ24を有しており、瞳分割フィルタ24は、光路62に位置している複数の開口44を有している。複数の開口44には、偏光子40がそれぞれ設けられている。また、レンズ装置12は、偏光子40の透過軸の角度を変更するための回転部材30を備える。したがって、例えば、ネジ20及び/又はネジ穴22の製造誤差に起因して撮像装置ボディ14に対するレンズ装置12の取付角度にばらつきが生じることにより、偏光子40の透過軸の角度に誤差が生じた場合でも、回転部材30によって偏光子40の透過軸の角度を変更することにより、透過軸の角度の誤差を小さくすることができる。 Further, in the imaging apparatus 10 (see FIG. 7) according to the present embodiment, the lens device 12 has the pupil division filter 24 arranged in the optical path 62, and the pupil division filter 24 is positioned in the optical path 62. It has a plurality of openings 44 through which it extends. A polarizer 40 is provided in each of the plurality of openings 44 . The lens device 12 also includes a rotating member 30 for changing the angle of the transmission axis of the polarizer 40 . Therefore, for example, due to manufacturing errors in the screw 20 and/or the screw hole 22, the mounting angle of the lens device 12 with respect to the imaging device body 14 varies, resulting in an error in the angle of the transmission axis of the polarizer 40. Even in this case, by changing the angle of the transmission axis of the polarizer 40 with the rotating member 30, the error in the angle of the transmission axis can be reduced.
 また、回転部材30は、瞳分割フィルタ24と連結されており、レンズ装置12の光軸OA周りに回転する。したがって、例えば、偏光子40の透過軸の角度を変更するために瞳分割フィルタ24を交換する必要がある場合に比して、偏光子40の透過軸の角度を容易に変更することができる。 Also, the rotating member 30 is connected to the pupil division filter 24 and rotates around the optical axis OA of the lens device 12 . Therefore, the angle of the transmission axis of the polarizer 40 can be changed more easily than, for example, when the pupil division filter 24 needs to be replaced in order to change the angle of the transmission axis of the polarizer 40 .
 また、回転部材30は、リング部材64と、蓋材66とを有する。蓋材66は、光路62に瞳分割フィルタ24が配置された状態で、リング部材64に瞳分割フィルタ24を連結する。したがって、例えば、リング部材64が鏡胴28に回転可能に支持されている状態でも、光路62に配置された瞳分割フィルタ24を、蓋材66によってリング部材64に連結することができる。 Also, the rotating member 30 has a ring member 64 and a lid member 66 . The lid member 66 connects the pupil division filter 24 to the ring member 64 while the pupil division filter 24 is arranged in the optical path 62 . Therefore, for example, even when the ring member 64 is rotatably supported by the lens barrel 28 , the pupil division filter 24 arranged in the optical path 62 can be connected to the ring member 64 by the lid member 66 .
 また、リング部材64は、一部の領域に切り欠き部68を有するリング状の部材であり、蓋材66は、切り欠き部68に組み付けられる。したがって、例えば、回転部材30がリング部材64を備えずに周方向に複数の部材に分割された構成である場合に比して、回転部材30の真円度を確保することができる。 Also, the ring member 64 is a ring-shaped member having a cutout portion 68 in a partial region, and the lid member 66 is assembled to the cutout portion 68 . Therefore, for example, the circularity of the rotating member 30 can be ensured as compared with the case where the rotating member 30 is not provided with the ring member 64 and is divided into a plurality of members in the circumferential direction.
 また、回転部材30は、鏡胴28に対して回転可能に支持されており、回転部材30は、イモネジ34によって鏡胴28に対して固定される。したがって、イモネジ34によって回転部材30が鏡胴28に対して固定されることにより、複数の偏光子40のうちの特定偏光子40の透過軸の角度が既定角度範囲に収まる状態を維持することができる。 Also, the rotating member 30 is rotatably supported with respect to the lens barrel 28 , and the rotating member 30 is fixed to the lens barrel 28 by a set screw 34 . Therefore, by fixing the rotation member 30 to the lens barrel 28 by the set screw 34, it is possible to maintain the state in which the angle of the transmission axis of the specific polarizer 40 among the plurality of polarizers 40 falls within the predetermined angle range. can.
 また、判定支援装置140のプロセッサ160(図23参照)は、レンズ装置12が撮像装置ボディ14に取り付けられている場合に、撮像装置ボディ14に備えられたイメージセンサ72からの出力データ132に基づいて、特定偏光子40の透過軸の角度に関する角度情報186を出力する。したがって、角度情報186(図14も参照)に基づいて、特定偏光子40の透過軸の角度が既定角度範囲に収まっているか否かを作業者が判定することができる。 Further, the processor 160 (see FIG. 23) of the determination support device 140, when the lens device 12 is attached to the imaging device body 14, based on the output data 132 from the image sensor 72 provided in the imaging device body 14 to output angle information 186 regarding the angle of the transmission axis of the specific polarizer 40 . Therefore, based on the angle information 186 (see also FIG. 14), the operator can determine whether or not the angle of the transmission axis of the specific polarizer 40 is within the predetermined angle range.
 また、プロセッサ160は、角度情報186に基づいて特定偏光子40の透過軸の角度が既定角度範囲に収まっているか否かを示す判定結果情報188を出力する。したがって、判定結果情報188(図14も参照)に基づいて、特定偏光子40の透過軸の角度が既定角度範囲に収まっているか否かを作業者が判定することができる。 Also, the processor 160 outputs determination result information 188 indicating whether or not the angle of the transmission axis of the specific polarizer 40 is within the predetermined angle range based on the angle information 186 . Therefore, based on the determination result information 188 (see also FIG. 14), the operator can determine whether or not the angle of the transmission axis of the specific polarizer 40 is within the predetermined angle range.
 また、角度情報186は、イメージセンサ72に入射する光のスペクトル及び瞳分割フィルタ24の光学特性に基づく情報である。したがって、イメージセンサ72に入射する光のスペクトル及び瞳分割フィルタ24の光学特性に基づく情報である角度情報186に基づいて、特定偏光子40の透過軸の角度が既定角度範囲に収まっているか否かを作業者が判定することができる。 Also, the angle information 186 is information based on the spectrum of light incident on the image sensor 72 and the optical characteristics of the pupil division filter 24 . Therefore, based on the angle information 186, which is information based on the spectrum of light incident on the image sensor 72 and the optical characteristics of the pupil division filter 24, it is determined whether the angle of the transmission axis of the specific polarizer 40 is within the predetermined angle range. can be determined by the operator.
 また、角度情報186は、イメージセンサ72に含まれる複数の物理画素94のうちの少なくとも一つの特定物理画素94Aから出力された出力データ132に基づく情報である。したがって、例えば、特定物理画素94Aから出力された出力データ132に基づいて、特定偏光子40の透過軸の角度が既定角度範囲に収まっているか否かを作業者が判定することができる。 Also, the angle information 186 is information based on the output data 132 output from at least one specific physical pixel 94A among the plurality of physical pixels 94 included in the image sensor 72. Therefore, for example, based on the output data 132 output from the specific physical pixel 94A, the operator can determine whether or not the angle of the transmission axis of the specific polarizer 40 is within the predetermined angle range.
 また、角度情報186は、輝度値、偏光度、及び偏光角の少なくとも一つを含む。したがって、輝度値、偏光度、及び偏光角の少なくとも一つに基づいて、特定偏光子40の透過軸の角度が既定角度範囲に収まっているか否かを作業者が判定することができる。 Also, the angle information 186 includes at least one of a luminance value, a degree of polarization, and a polarization angle. Therefore, based on at least one of the brightness value, the degree of polarization, and the polarization angle, the operator can determine whether or not the angle of the transmission axis of the specific polarizer 40 falls within the predetermined angle range.
 また、プロセッサ160は、角度情報186をディスプレイ150に出力する。したがって、ディスプレイ150に表示された角度情報186(図14も参照)に基づいて、特定偏光子40の透過軸の角度が既定角度範囲に収まっているか否かを作業者が判定することができる。 Processor 160 also outputs angle information 186 to display 150 . Therefore, based on the angle information 186 (see also FIG. 14) displayed on the display 150, the operator can determine whether the angle of the transmission axis of the specific polarizer 40 is within the predetermined angle range.
 また、角度情報186は、NVM162に記憶される。したがって、回転部材30によって偏光子40の透過軸の角度を変更した場合でも、NVM162に記憶された角度情報186に基づいて、変更前の透過軸の角度に生じていた誤差を把握することができる。 Also, the angle information 186 is stored in the NVM 162 . Therefore, even if the angle of the transmission axis of the polarizer 40 is changed by the rotating member 30, it is possible to grasp the error that occurred in the angle of the transmission axis before the change based on the angle information 186 stored in the NVM 162. .
 また、本実施形態に係る撮像装置10の製造方法(図9~図16参照)は、レンズ装置12を撮像装置ボディ14に取り付けること、及び、レンズ装置12が撮像装置ボディ14に取り付けられた状態で、回転部材30によって偏光子40の透過軸の角度を変更することを備える。したがって、例えば、ネジ20及び/又はネジ穴22の製造誤差に起因して撮像装置ボディ14に対するレンズ装置12の取付角度にばらつきが生じることにより、偏光子40の透過軸の角度に誤差が生じた場合でも、回転部材30によって偏光子40の透過軸の角度を変更することにより、透過軸の角度の誤差を小さくすることができる。 In addition, the manufacturing method of the imaging device 10 according to the present embodiment (see FIGS. 9 to 16) includes attaching the lens device 12 to the imaging device body 14 and the state in which the lens device 12 is attached to the imaging device body 14 and changing the angle of the transmission axis of the polarizer 40 by the rotating member 30 . Therefore, for example, due to manufacturing errors in the screw 20 and/or the screw hole 22, the mounting angle of the lens device 12 with respect to the imaging device body 14 varies, resulting in an error in the angle of the transmission axis of the polarizer 40. Even in this case, by changing the angle of the transmission axis of the polarizer 40 with the rotating member 30, the error in the angle of the transmission axis can be reduced.
 また、本実施形態に係る撮像装置10の製造方法は、偏光子40の透過軸の角度を変更することを、レンズ装置12を用いたピント合わせが行われた場合に実行する。したがって、例えば、レンズ装置12を用いたピント合わせが行われる前に偏光子40の透過軸の角度を変更する場合に比して、透過軸の角度の誤差を小さくすることができる。 Further, the method for manufacturing the imaging device 10 according to the present embodiment changes the angle of the transmission axis of the polarizer 40 when focusing using the lens device 12 is performed. Therefore, for example, compared to changing the angle of the transmission axis of the polarizer 40 before focusing using the lens device 12, errors in the angle of the transmission axis can be reduced.
 また、本実施形態に係る撮像装置10の製造方法は、撮像装置ボディ14に備えられたイメージセンサ72からの出力データ132に基づいて、複数の偏光子40のうちの特定偏光子40の透過軸の角度に関する角度情報186を取得することをさらに備えており、偏光子40の透過軸の角度を変更することを、角度情報186に基づいて実行する。したがって、イメージセンサ72からの出力データ132に基づいて、偏光子40の透過軸の角度を変更することができる。 Further, in the method for manufacturing the imaging device 10 according to the present embodiment, the transmission axis of the specific polarizer 40 among the plurality of polarizers 40 is determined based on the output data 132 from the image sensor 72 provided in the imaging device body 14. obtaining angle information 186 about the angle of , and changing the angle of the transmission axis of the polarizer 40 is performed based on the angle information 186 . Therefore, based on the output data 132 from the image sensor 72, the angle of the transmission axis of the polarizer 40 can be changed.
 また、本実施形態に係る撮像装置10の製造方法は、角度情報186に基づいて特定偏光子40の透過軸の角度が既定角度範囲に収まっているか否かを示す判定結果情報188を出力することをさらに備える。したがって、例えば、判定結果情報188が出力されない場合に比して、特定偏光子40の透過軸の角度が既定角度範囲に収まっているか否かを作業者が容易に判定することができる。 Further, the method for manufacturing the imaging device 10 according to the present embodiment outputs determination result information 188 indicating whether or not the angle of the transmission axis of the specific polarizer 40 is within the predetermined angle range based on the angle information 186. further provide. Therefore, for example, the operator can easily determine whether or not the angle of the transmission axis of the specific polarizer 40 is within the predetermined angle range, compared to the case where the determination result information 188 is not output.
 また、本実施形態に係る撮像装置10の製造方法は、特定偏光子40の透過軸の角度が既定角度範囲に収まっている場合に、レンズ装置12の鏡胴28に対して瞳分割フィルタ24を固定することをさらに備える。したがって、回転部材30が鏡胴28に対して固定されることにより、特定偏光子40の透過軸の角度が既定角度範囲に収まる状態を維持することができる。 Further, in the manufacturing method of the imaging device 10 according to the present embodiment, when the angle of the transmission axis of the specific polarizer 40 is within the predetermined angle range, the pupil division filter 24 is attached to the lens barrel 28 of the lens device 12. Further comprising fixing. Therefore, by fixing the rotary member 30 to the lens barrel 28, it is possible to maintain a state in which the angle of the transmission axis of the specific polarizer 40 falls within the predetermined angle range.
 なお、上記実施形態では、撮像装置10の製造方法が作業者によって実行されている。しかしながら、一例として図25に示すように、撮像装置10の製造方法が製造システム200によって実行されてもよい。製造システム200は、コントローラ202、第1装置204、第2装置206、第3装置208、第4装置210、第5装置212、第6装置214、及び第7装置216を備える。 It should be noted that, in the above-described embodiment, the method for manufacturing the imaging device 10 is performed by an operator. However, as shown in FIG. 25 as an example, the manufacturing method of the imaging device 10 may be executed by a manufacturing system 200. FIG. Manufacturing system 200 includes controller 202 , first device 204 , second device 206 , third device 208 , fourth device 210 , fifth device 212 , sixth device 214 , and seventh device 216 .
 コントローラ202は、例えば、プロセッサ、NVM、及びRAM(いずれも図示省略)等を備えるコンピュータであり、第1装置204、第2装置206、第3装置208、第4装置210、第5装置212、第6装置214、及び第7装置216を制御する。第1装置204、第2装置206、第3装置208、第4装置210、第5装置212、及び第7装置216は、例えば、ロボットハンド及び/又はアクチュエータ等を備える組立装置である。 The controller 202 is, for example, a computer including a processor, NVM, and RAM (all of which are not shown). A sixth device 214 and a seventh device 216 are controlled. The first device 204, the second device 206, the third device 208, the fourth device 210, the fifth device 212, and the seventh device 216 are, for example, assembly devices including robot hands and/or actuators.
 第1装置204は、連結ピン26が取り付けられた瞳分割フィルタ24を、挿入口58を通じて鏡胴28の内側に挿入する(図9参照)。第2装置206は、リング部材64を鏡胴28の外周面に回転可能に取り付ける(図10参照)。第2装置206は、エンドフレーム32を鏡胴28の外周面に取り付ける(図10参照)。第3装置208は、第1マウント16のネジ20を第2マウント18のネジ穴22に螺合することにより、第1マウント16を第2マウント18に取り付ける(図11参照)。 The first device 204 inserts the pupil division filter 24 to which the connecting pin 26 is attached inside the lens barrel 28 through the insertion port 58 (see FIG. 9). The second device 206 rotatably attaches the ring member 64 to the outer peripheral surface of the lens barrel 28 (see FIG. 10). The second device 206 attaches the end frame 32 to the outer peripheral surface of the lens barrel 28 (see FIG. 10). The third device 208 attaches the first mount 16 to the second mount 18 by screwing the screws 20 of the first mount 16 into the screw holes 22 of the second mount 18 (see FIG. 11).
 第4装置210は、レバー56を移動させることにより、レンズ装置12のピント合わせを行う(図12参照)。第5装置212は、光路62に瞳分割フィルタ24を配置した状態で、蓋材66を連結ピン26と接続する(図13参照)。また、第5装置212は、蓋材66をリング部材64の切り欠き部68に組み付ける(図13参照)。 The fourth device 210 focuses the lens device 12 by moving the lever 56 (see FIG. 12). The fifth device 212 connects the cover member 66 to the connecting pin 26 with the pupil division filter 24 arranged in the optical path 62 (see FIG. 13). Also, the fifth device 212 assembles the cover member 66 into the notch portion 68 of the ring member 64 (see FIG. 13).
 コントローラ202は、輝度値、偏光度、及び偏光角の各値に関する角度情報186、及び/又は、輝度値、偏光度、及び偏光角の各値が既定範囲にそれぞれ収まっているか否かの判定結果を示す判定結果情報188を判定支援装置140から取得する(図25参照)。 The controller 202 outputs the angle information 186 regarding each value of the luminance value, the degree of polarization, and the polarization angle, and/or the determination result of whether or not each value of the luminance value, the degree of polarization, and the polarization angle falls within a predetermined range. is acquired from the determination support device 140 (see FIG. 25).
 第6装置214は、角度情報186及び/又は判定結果情報188に基づいて、回転部材30と一体に瞳分割フィルタ24を回転させる(図14参照)。コントローラ202は、角度情報186及び/又は判定結果情報188を判定支援装置140から取得し、取得した角度情報186及び/又は判定結果情報188に基づいて、特定偏光子40の透過軸の角度が既定角度範囲に収まっているか否かを判定する(図14参照)。 The sixth device 214 rotates the pupil division filter 24 integrally with the rotating member 30 based on the angle information 186 and/or the determination result information 188 (see FIG. 14). The controller 202 acquires the angle information 186 and/or the determination result information 188 from the determination support device 140, and determines the angle of the transmission axis of the specific polarizer 40 based on the acquired angle information 186 and/or the determination result information 188. It is determined whether or not the angle is within the range (see FIG. 14).
 第7装置216は、特定偏光子40の透過軸の角度が既定角度範囲に収まっている場合に、イモネジ34をネジ穴22に螺入することにより、鏡胴28に対して回転部材30を固定する(図15参照)。以上の製造システム200によれば、作業者による作業を省くことができる。 The seventh device 216 fixes the rotation member 30 to the lens barrel 28 by screwing the set screw 34 into the screw hole 22 when the angle of the transmission axis of the specific polarizer 40 is within the predetermined angle range. (See FIG. 15). According to the manufacturing system 200 described above, it is possible to save work by the operator.
 上記実施形態では、撮像装置10とは別の装置である判定支援装置140が備えるプロセッサ160によって判定支援処理が実行される(図23参照)。しかしながら、一例として図26に示すように、撮像装置10が備えるプロセッサ110によって判定支援処理が実行されてもよい。そして、輝度値、偏光度、及び偏光角の各値に関する角度情報186、及び/又は、輝度値、偏光度、及び偏光角の各値が既定範囲にそれぞれ収まっているか否かの判定結果を示す判定結果情報188がディスプレイ80に表示されてもよい。 In the above embodiment, the determination support processing is executed by the processor 160 included in the determination support device 140, which is a device different from the imaging device 10 (see FIG. 23). However, as shown in FIG. 26 as an example, the determination support processing may be executed by the processor 110 included in the imaging device 10 . Then, the angle information 186 regarding each value of the luminance value, the degree of polarization, and the polarization angle, and/or the determination result of whether or not each value of the luminance value, the degree of polarization, and the polarization angle is within a predetermined range. Determination result information 188 may be displayed on display 80 .
 図26に示す例では、撮像装置10は、本開示の技術に係る「情報処理装置」の一例であり、プロセッサ110は、本開示の技術に係る「プロセッサ」の一例である。また、図26に示す例では、ディスプレイ80は、本開示の技術に係る「ディスプレイ」の一例であり、NVM112は、本開示の技術に係るメモリの一例である。 In the example shown in FIG. 26, the imaging device 10 is an example of the "information processing device" according to the technology of the present disclosure, and the processor 110 is an example of the "processor" according to the technology of the present disclosure. Also, in the example illustrated in FIG. 26 , the display 80 is an example of the “display” according to the technology of the present disclosure, and the NVM 112 is an example of the memory according to the technology of the present disclosure.
 上記実施形態では、複数のフィルタ38及び複数の偏光子40を有する瞳分割フィルタ24が用いられているが、瞳分割フィルタ24の代わりに、複数のフィルタ38を有さずに複数の偏光子40を有する偏光ユニットが用いられてもよい。 In the above embodiment, a pupil division filter 24 having a plurality of filters 38 and a plurality of polarizers 40 is used. may be used.
 上記実施形態では、偏光子40の透過軸の角度を変更する変更機構として、回転部材30が用いられている。すなわち、撮像装置10は、回転部材30を含む回転式の変更機構を備える。しかしながら、撮像装置10は、偏光子40の透過軸の角度を変更するために、例えばスライド部材を含むスライド式の変更機構を備えていてもよいし、取替部材を含む取替式の変更機構を備えていてもよい。 In the above embodiment, the rotating member 30 is used as a changing mechanism for changing the angle of the transmission axis of the polarizer 40 . That is, the imaging device 10 has a rotary changing mechanism including the rotating member 30 . However, in order to change the angle of the transmission axis of the polarizer 40, the imaging device 10 may be provided with, for example, a slide-type change mechanism including a slide member, or a replacement-type change mechanism including a replacement member. may be provided.
 上記実施形態では、一例として、マルチスペクトル画像128として、3つの透過波長帯域λに分光された光に基づいて生成されるマルチスペクトル画像を例に挙げて説明したが、3つの透過波長帯域λは、あくまでも一例に過ぎず、4つ以上の透過波長帯域λであってもよい。すなわち、撮像装置10は、3つの透過波長帯域λに分光された光を撮像可能なマルチスペクトルカメラよりも高い波長分解能で被写体を撮像可能なマルチスペクトルカメラであってもよい。 In the above embodiment, as an example of the multispectral image 128, a multispectral image generated based on light split into three transmission wavelength bands λ was described as an example, but the three transmission wavelength bands λ are , is merely an example, and may be four or more transmission wavelength bands λ. That is, the imaging device 10 may be a multispectral camera capable of imaging a subject with a higher wavelength resolution than a multispectral camera capable of imaging light split into three transmission wavelength bands λ.
 上記実施形態では、撮像装置10について、プロセッサ110を例示したが、プロセッサ110に代えて、又は、プロセッサ110と共に、他の少なくとも1つのCPU、少なくとも1つのGPU、及び/又は、少なくとも1つのTPUを用いるようにしてもよい。 In the above embodiment, the processor 110 was illustrated for the imaging device 10, but instead of the processor 110 or together with the processor 110, at least one other CPU, at least one GPU, and/or at least one TPU may be used. may be used.
 上記実施形態では、NVM112にマルチスペクトル画像生成プログラム120が記憶されている形態例を挙げて説明したが、本開示の技術はこれに限定されない。例えば、マルチスペクトル画像生成プログラム120がSSD又はUSBメモリなどの可搬型の非一時的なコンピュータ読取可能な記憶媒体(以下、単に「非一時的記憶媒体」と称する)に記憶されていてもよい。非一時的記憶媒体に記憶されているマルチスペクトル画像生成プログラム120は、撮像装置10のコンピュータ78にインストールされ、プロセッサ110は、マルチスペクトル画像生成プログラム120に従ってマルチスペクトル画像生成処理を実行する。 In the above embodiment, the NVM 112 stores the multispectral image generation program 120 as an example, but the technology of the present disclosure is not limited to this. For example, the multispectral image generation program 120 may be stored in a portable non-transitory computer-readable storage medium such as an SSD or USB memory (hereinafter simply referred to as "non-temporary storage medium"). A multispectral image generation program 120 stored in a non-transitory storage medium is installed in the computer 78 of the imaging device 10, and the processor 110 performs multispectral image generation processing according to the multispectral image generation program 120. FIG.
 また、ネットワークを介して撮像装置10に接続される他のコンピュータ又はサーバ装置等の記憶装置にマルチスペクトル画像生成プログラム120を記憶させておき、撮像装置10の要求に応じてマルチスペクトル画像生成プログラム120がダウンロードされ、コンピュータ78にインストールされてもよい。 In addition, the multispectral image generation program 120 is stored in a storage device such as another computer or server device connected to the imaging device 10 via a network, and the multispectral image generation program 120 is stored in response to a request from the imaging device 10. may be downloaded and installed on computer 78 .
 また、撮像装置10に接続される他のコンピュータ又はサーバ装置等の記憶装置、又はNVM112にマルチスペクトル画像生成プログラム120の全てを記憶させておく必要はなく、マルチスペクトル画像生成プログラム120の一部を記憶させておいてもよい。 In addition, it is not necessary to store all of the multispectral image generation program 120 in a storage device such as another computer or server device connected to the imaging device 10, or in the NVM 112, and part of the multispectral image generation program 120 It may be stored.
 また、撮像装置10には、コンピュータ78が内蔵されているが、本開示の技術はこれに限定されず、例えば、コンピュータ78が撮像装置10の外部に設けられるようにしてもよい。 In addition, although the computer 78 is built into the imaging device 10 , the technology of the present disclosure is not limited to this, and the computer 78 may be provided outside the imaging device 10 , for example.
 上記実施形態では、プロセッサ110、NVM112、及びRAM114を含むコンピュータ78が例示されているが、本開示の技術はこれに限定されず、コンピュータ78に代えて、ASIC、FPGA、及び/又はPLDを含むデバイスを適用してもよい。また、コンピュータ78に代えて、ハードウェア構成及びソフトウェア構成の組み合わせを用いてもよい。 Although the above embodiment illustrates computer 78 including processor 110, NVM 112, and RAM 114, the technology of the present disclosure is not limited to this, and computer 78 may include an ASIC, FPGA, and/or PLD. device may be applied. Also, instead of the computer 78, a combination of hardware and software configurations may be used.
 上記実施形態では、判定支援装置140について、プロセッサ160を例示したが、プロセッサ160に代えて、又は、プロセッサ160と共に、他の少なくとも1つのCPU、少なくとも1つのGPU、及び/又は、少なくとも1つのTPUを用いるようにしてもよい。 In the above embodiment, the processor 160 was illustrated for the determination support device 140, but instead of the processor 160 or together with the processor 160, at least one other CPU, at least one GPU, and/or at least one TPU may be used.
 上記実施形態では、NVM162に判定支援プログラム170が記憶されている形態例を挙げて説明したが、本開示の技術はこれに限定されない。例えば、判定支援プログラム170がSSD又はUSBメモリなどの非一時的記憶媒体に記憶されていてもよい。非一時的記憶媒体に記憶されている判定支援プログラム170は、判定支援装置140のコンピュータ148にインストールされ、プロセッサ160は、判定支援プログラム170に従って判定支援処置を実行する。 In the above embodiment, an example of the form in which the determination support program 170 is stored in the NVM 162 has been described, but the technology of the present disclosure is not limited to this. For example, the determination support program 170 may be stored in a non-temporary storage medium such as SSD or USB memory. A determination support program 170 stored in a non-temporary storage medium is installed in the computer 148 of the determination support device 140 , and the processor 160 executes determination support procedures according to the determination support program 170 .
 また、ネットワークを介して判定支援装置140に接続される他のコンピュータ又はサーバ装置等の記憶装置に判定支援プログラム170を記憶させておき、判定支援装置140の要求に応じて判定支援プログラム170がダウンロードされ、コンピュータ148にインストールされてもよい。 Further, the determination support program 170 is stored in a storage device such as another computer or server device connected to the determination support device 140 via a network, and the determination support program 170 is downloaded in response to a request from the determination support device 140. and may be installed on computer 148 .
 また、判定支援装置140に接続される他のコンピュータ又はサーバ装置等の記憶装置、又はNVM162に判定支援プログラム170の全てを記憶させておく必要はなく、判定支援プログラム170の一部を記憶させておいてもよい。 In addition, it is not necessary to store all of the determination support program 170 in another computer or a storage device such as a server device connected to the determination support device 140, or in the NVM 162, and a part of the determination support program 170 may be stored. You can leave it.
 また、判定支援装置140には、コンピュータ148が内蔵されているが、本開示の技術はこれに限定されず、例えば、コンピュータ148が判定支援装置140の外部に設けられるようにしてもよい。 In addition, although the computer 148 is built in the determination support device 140, the technology of the present disclosure is not limited to this, and the computer 148 may be provided outside the determination support device 140, for example.
 上記実施形態では、プロセッサ160、NVM162、及びRAM164を含むコンピュータ148が例示されているが、本開示の技術はこれに限定されず、コンピュータ148に代えて、ASIC、FPGA、及び/又はPLDを含むデバイスを適用してもよい。また、コンピュータ148に代えて、ハードウェア構成及びソフトウェア構成の組み合わせを用いてもよい。 Although the above embodiment illustrates computer 148 including processor 160, NVM 162, and RAM 164, the technology of the present disclosure is not limited thereto, and computer 148 may include an ASIC, FPGA, and/or PLD. device may be applied. Also, instead of the computer 148, a combination of hardware and software configurations may be used.
 また、上記実施形態で説明した各種処理を実行するハードウェア資源としては、次に示す各種のプロセッサを用いることができる。プロセッサとしては、例えば、ソフトウェア、すなわち、プログラムを実行することで、各種処理を実行するハードウェア資源として機能する汎用的なプロセッサであるCPUが挙げられる。また、プロセッサとしては、例えば、FPGA、PLD、又はASICなどの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路が挙げられる。何れのプロセッサにもメモリが内蔵又は接続されており、何れのプロセッサもメモリを使用することで各種処理を実行する。 Also, the following various processors can be used as hardware resources for executing the various processes described in the above embodiments. Examples of processors include CPUs, which are general-purpose processors that function as hardware resources that execute various processes by executing software, that is, programs. Also, processors include, for example, FPGAs, PLDs, ASICs, and other dedicated electric circuits that are processors having circuit configurations specially designed to execute specific processing. A memory is built in or connected to each processor, and each processor uses the memory to perform various processes.
 各種処理を実行するハードウェア資源は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせ、又はCPUとFPGAとの組み合わせ)で構成されてもよい。また、各種処理を実行するハードウェア資源は1つのプロセッサであってもよい。 Hardware resources that perform various processes may be configured with one of these various processors, or a combination of two or more processors of the same or different types (for example, a combination of multiple FPGAs or CPUs). and FPGA). Also, the hardware resource for executing various processes may be one processor.
 1つのプロセッサで構成する例としては、第1に、1つ以上のCPUとソフトウェアの組み合わせで1つのプロセッサを構成し、このプロセッサが、各種処理を実行するハードウェア資源として機能する形態がある。第2に、SoCなどに代表されるように、各種処理を実行する複数のハードウェア資源を含むシステム全体の機能を1つのICチップで実現するプロセッサを使用する形態がある。このように、各種処理は、ハードウェア資源として、上記各種のプロセッサの1つ以上を用いて実現される。 As an example of configuration with one processor, first, there is a form in which one processor is configured by combining one or more CPUs and software, and this processor functions as a hardware resource that executes various processes. Secondly, as typified by SoC, etc., there is a mode of using a processor that implements the function of the entire system including a plurality of hardware resources for executing various processes with a single IC chip. In this way, various processes are realized using one or more of the above various processors as hardware resources.
 更に、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子などの回路素子を組み合わせた電気回路を用いることができる。また、上記の視線検出処理はあくまでも一例である。したがって、主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよいことは言うまでもない。 Furthermore, as the hardware structure of these various processors, more specifically, an electric circuit in which circuit elements such as semiconductor elements are combined can be used. Also, the line-of-sight detection process described above is merely an example. Therefore, it goes without saying that unnecessary steps may be deleted, new steps added, and the order of processing may be changed without departing from the scope of the invention.
 以上に示した記載内容及び図示内容は、本開示の技術に係る部分についての詳細な説明であり、本開示の技術の一例に過ぎない。例えば、上記の構成、機能、作用、及び効果に関する説明は、本開示の技術に係る部分の構成、機能、作用、及び効果の一例に関する説明である。よって、本開示の技術の主旨を逸脱しない範囲内において、以上に示した記載内容及び図示内容に対して、不要な部分を削除したり、新たな要素を追加したり、置き換えたりしてもよいことは言うまでもない。また、錯綜を回避し、本開示の技術に係る部分の理解を容易にするために、以上に示した記載内容及び図示内容では、本開示の技術の実施を可能にする上で特に説明を要しない技術常識等に関する説明は省略されている。 The descriptions and illustrations shown above are detailed descriptions of the parts related to the technology of the present disclosure, and are merely examples of the technology of the present disclosure. For example, the above descriptions of configurations, functions, actions, and effects are descriptions of examples of configurations, functions, actions, and effects of portions related to the technology of the present disclosure. Therefore, unnecessary parts may be deleted, new elements added, or replaced with respect to the above-described description and illustration without departing from the gist of the technology of the present disclosure. Needless to say. In addition, in order to avoid complication and facilitate understanding of the portion related to the technology of the present disclosure, the descriptions and illustrations shown above require particular explanation in order to enable implementation of the technology of the present disclosure. Descriptions of common technical knowledge, etc., that are not used are omitted.
 本明細書において、「A及び/又はB」は、「A及びBのうちの少なくとも1つ」と同義である。つまり、「A及び/又はB」は、Aだけであってもよいし、Bだけであってもよいし、A及びBの組み合わせであってもよい、という意味である。また、本明細書において、3つ以上の事柄を「及び/又は」で結び付けて表現する場合も、「A及び/又はB」と同様の考え方が適用される。 In this specification, "A and/or B" is synonymous with "at least one of A and B." That is, "A and/or B" means that only A, only B, or a combination of A and B may be used. Also, in this specification, when three or more matters are expressed by connecting with "and/or", the same idea as "A and/or B" is applied.
 本明細書に記載された全ての文献、特許出願及び技術規格は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All publications, patent applications and technical standards mentioned herein are expressly incorporated herein by reference to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. incorporated by reference into the book.

Claims (23)

  1.  光路に偏光ユニットが配置されたレンズ装置であって、
     前記偏光ユニットは、前記光路に位置している複数の開口を有し、
     前記複数の開口のうちの少なくとも一つの開口には、第1偏光子が設けられ、
     前記レンズ装置は、前記第1偏光子の透過軸の角度を変更する変更機構を備える
     レンズ装置。
    A lens device in which a polarization unit is arranged in an optical path,
    the polarization unit has a plurality of apertures positioned in the optical path;
    At least one of the plurality of openings is provided with a first polarizer,
    A lens device, wherein the lens device includes a change mechanism that changes an angle of the transmission axis of the first polarizer.
  2.  前記変更機構は、前記レンズ装置の光軸周りに回転する回転部材を有し、
     前記回転部材は、前記偏光ユニットと連結されている
     請求項1に記載のレンズ装置。
    The changing mechanism has a rotating member that rotates around the optical axis of the lens device,
    The lens device according to claim 1, wherein the rotating member is connected with the polarization unit.
  3.  前記回転部材は、
     第1部材と、
     前記光路に前記偏光ユニットが配置された状態で、前記第1部材に前記偏光ユニットを連結する第2部材と、
     を有する
     請求項2に記載のレンズ装置。
    The rotating member is
    a first member;
    a second member that connects the polarization unit to the first member with the polarization unit arranged in the optical path;
    The lens device according to claim 2, comprising:
  4.  前記第1部材は、一部の領域に溝穴部を有するリング部材であり、
     前記第2部材は、前記溝穴部に組み付けられる
     請求項3に記載のレンズ装置。
    The first member is a ring member having a slot in a partial area,
    The lens device according to claim 3, wherein the second member is attached to the slot portion.
  5.  前記回転部材を回転可能に支持する鏡胴と、
     前記鏡胴に対して前記回転部材を固定する固定部材と、
     をさらに備える
     請求項2から請求項4の何れか一項に記載のレンズ装置。
    a lens barrel that rotatably supports the rotating member;
    a fixing member that fixes the rotating member to the lens barrel;
    The lens device according to any one of claims 2 to 4, further comprising: a.
  6.  前記レンズ装置は、第2偏光子を有する第1イメージセンサを備える第1撮像装置ボディに設けられた第2マウントに取り付けられる第1マウントを有する
     請求項1から請求項5の何れか一項に記載のレンズ装置。
    6. The lens arrangement according to any one of claims 1 to 5, wherein the lens arrangement comprises a first mount attached to a second mount provided on a first imaging device body comprising a first image sensor with a second polarizer. The lens device as described.
  7.  前記第1マウントには、前記第2マウントに形成された第2ネジ部と螺合する第1ネジ部が形成されている
     請求項6に記載のレンズ装置。
    7. The lens device according to claim 6, wherein the first mount has a first threaded portion that screws together with a second threaded portion formed on the second mount.
  8.  前記第1マウント及び前記第2マウントは、それぞれCマウントである
     請求項6又は請求項7に記載のレンズ装置。
    8. The lens device according to claim 6, wherein the first mount and the second mount are C mounts, respectively.
  9.  請求項1から請求項8の何れか一項に記載のレンズ装置と、第2撮像装置ボディとを備える撮像装置に対して適用され、プロセッサを備える情報処理装置であって、
     前記プロセッサは、前記レンズ装置が前記第2撮像装置ボディに取り付けられている場合に、前記第2撮像装置ボディに備えられた第2イメージセンサからの出力データである第1情報に基づいて、前記角度に関する第2情報を出力する
     情報処理装置。
    An information processing device that is applied to an imaging device that includes the lens device according to any one of claims 1 to 8 and a second imaging device body and that includes a processor,
    The processor, when the lens device is attached to the second imaging device body, based on first information that is output data from a second image sensor provided in the second imaging device body, An information processing device that outputs second information about an angle.
  10.  前記プロセッサは、前記第2情報に基づいて前記角度が第1既定角度範囲に収まっているか否かを示す信号を出力する
     請求項9に記載の情報処理装置。
    The information processing apparatus according to claim 9, wherein the processor outputs a signal indicating whether or not the angle is within a first predetermined angle range based on the second information.
  11.  前記情報処理装置は、前記撮像装置である
     請求項9又は請求項10に記載の情報処理装置。
    The information processing device according to claim 9 or 10, wherein the information processing device is the imaging device.
  12.  前記第1情報は、前記第2イメージセンサに入射する光のスペクトル及び前記偏光ユニットの光学特性に基づく情報である
     請求項9から請求項11の何れか一項に記載の情報処理装置。
    The information processing apparatus according to any one of claims 9 to 11, wherein the first information is information based on a spectrum of light incident on the second image sensor and optical characteristics of the polarizing unit.
  13.  前記第2情報は、前記第2イメージセンサに含まれる複数の画素のうちの少なくとも一つの特定画素から出力された出力データに基づく情報である
     請求項9から請求項12の何れか一項に記載の情報処理装置。
    The second information according to any one of claims 9 to 12, wherein the second information is information based on output data output from at least one specific pixel among a plurality of pixels included in the second image sensor. information processing equipment.
  14.  前記第2情報は、輝度値、偏光度、及び偏光角の少なくとも一つを含む
     請求項9から請求項13の何れか一項に記載の情報処理装置。
    The information processing device according to any one of claims 9 to 13, wherein the second information includes at least one of a luminance value, a degree of polarization, and a polarization angle.
  15.  前記プロセッサは、前記第2情報をディスプレイに出力する
     請求項9から請求項14の何れか一項に記載の情報処理装置。
    The information processing apparatus according to any one of claims 9 to 14, wherein the processor outputs the second information to a display.
  16.  前記第2情報を記憶するメモリをさらに備える
     請求項9から請求項15の何れか一項に記載の情報処理装置。
    The information processing apparatus according to any one of claims 9 to 15, further comprising a memory that stores the second information.
  17.  前記プロセッサは、前記出力データに対して、混信除去処理を実行することにより、マルチスペクトル画像を取得する
     請求項9から請求項16の何れか一項に記載の情報処理装置。
    The information processing apparatus according to any one of claims 9 to 16, wherein the processor acquires a multispectral image by performing interference cancellation processing on the output data.
  18.  請求項1から請求項8の何れか一項に記載のレンズ装置と、第2撮像装置ボディとを備える撮像装置に対して適用される処理をコンピュータに実行させるためのプログラムであって、
     前記処理は、前記レンズ装置が前記第2撮像装置ボディに取り付けられている場合に、前記第2撮像装置ボディに備えられた第2イメージセンサからの出力データである第1情報に基づいて、前記角度に関する第2情報を出力することを含む
     プログラム。
    A program for causing a computer to execute processing applied to an imaging device comprising the lens device according to any one of claims 1 to 8 and a second imaging device body,
    The processing is based on first information, which is output data from a second image sensor provided in the second imaging device body, when the lens device is attached to the second imaging device body. A program comprising outputting second information about an angle.
  19.  請求項1から請求項8の何れか一項に記載のレンズ装置と、第2撮像装置ボディとを備える撮像装置を組み立てるための撮像装置の製造方法であって、
     前記レンズ装置を前記第2撮像装置ボディに取り付けること、及び、
     前記レンズ装置が前記第2撮像装置ボディに取り付けられた状態で、前記変更機構によって前記角度を変更すること
     を備える撮像装置の製造方法。
    A manufacturing method of an imaging device for assembling an imaging device comprising the lens device according to any one of claims 1 to 8 and a second imaging device body, comprising:
    attaching the lens device to the second imaging device body; and
    A method of manufacturing an imaging device, comprising: changing the angle by the changing mechanism while the lens device is attached to the second imaging device body.
  20.  前記角度を変更することを、前記レンズ装置を用いたピント合わせが行われた場合に実行する
     請求項19に記載の撮像装置の製造方法。
    20. The method of manufacturing an imaging device according to claim 19, wherein changing the angle is performed when focusing is performed using the lens device.
  21.  前記第2撮像装置ボディに備えられた第2イメージセンサからの出力データである第1情報に基づいて、前記角度に関する第2情報を取得することをさらに備え、
     前記角度を変更することを、前記第2情報に基づいて実行する
     請求項19又は請求項20に記載の撮像装置の製造方法。
    Further comprising acquiring second information about the angle based on first information that is output data from a second image sensor provided in the second imaging device body,
    21. The method of manufacturing an imaging device according to claim 19, wherein changing the angle is performed based on the second information.
  22.  前記第2情報に基づいて前記角度が第1既定角度範囲に収まっているか否かを示す信号を出力することをさらに備える
     請求項21に記載の撮像装置の製造方法。
    22. The method of manufacturing an imaging device according to claim 21, further comprising outputting a signal indicating whether the angle is within a first predetermined angle range based on the second information.
  23.  前記角度が第2既定角度範囲に収まっている場合に、前記レンズ装置の鏡胴に対して前記偏光ユニットを固定することをさらに備える
     請求項19から請求項22の何れか一項に記載の撮像装置の製造方法。
    23. The imaging according to any one of claims 19 to 22, further comprising fixing the polarization unit with respect to the lens barrel of the lens device when the angle is within a second predetermined angle range. Method of manufacturing the device.
PCT/JP2022/041531 2022-02-15 2022-11-08 Lens device, information processing device, program, and method for manufacturing imaging device WO2023157396A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-021602 2022-02-15
JP2022021602 2022-02-15

Publications (1)

Publication Number Publication Date
WO2023157396A1 true WO2023157396A1 (en) 2023-08-24

Family

ID=87577893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041531 WO2023157396A1 (en) 2022-02-15 2022-11-08 Lens device, information processing device, program, and method for manufacturing imaging device

Country Status (1)

Country Link
WO (1) WO2023157396A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249888A (en) * 1999-02-26 2000-09-14 Canon Inc Optical instrument
JP2011191468A (en) * 2010-03-15 2011-09-29 Panasonic Corp Lens barrel
WO2016190459A1 (en) * 2015-05-26 2016-12-01 솔브레인이엔지 주식회사 Display panel inspection camera
WO2021172284A1 (en) * 2020-02-28 2021-09-02 富士フイルム株式会社 Image capturing apparatus and method
WO2022024917A1 (en) * 2020-07-28 2022-02-03 富士フイルム株式会社 Imaging device, adjustment method, and adjustment program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249888A (en) * 1999-02-26 2000-09-14 Canon Inc Optical instrument
JP2011191468A (en) * 2010-03-15 2011-09-29 Panasonic Corp Lens barrel
WO2016190459A1 (en) * 2015-05-26 2016-12-01 솔브레인이엔지 주식회사 Display panel inspection camera
WO2021172284A1 (en) * 2020-02-28 2021-09-02 富士フイルム株式会社 Image capturing apparatus and method
WO2022024917A1 (en) * 2020-07-28 2022-02-03 富士フイルム株式会社 Imaging device, adjustment method, and adjustment program

Similar Documents

Publication Publication Date Title
KR102394823B1 (en) Hybrid Spectral Imager
CN106456070B (en) Image forming apparatus and method
CA2902675C (en) Imaging system and method for concurrent multiview multispectral polarimetric light-field high dynamic range imaging
JP6536877B2 (en) Imaging device and imaging system
JP6803355B2 (en) Color image expansion method and execution mechanism of the method
JP2017208585A (en) Imaging apparatus and image data generation program
US20140204200A1 (en) Methods and systems for speed calibration in spectral imaging systems
WO2023157396A1 (en) Lens device, information processing device, program, and method for manufacturing imaging device
JP2018513964A5 (en) Snapshot polarization hyperspectral camera and imaging method
JP7355008B2 (en) Spectroscopic measurement device and spectroscopic measurement method
JPWO2006075581A1 (en) Imaging device
WO2022181749A1 (en) Data processing device, method, and program, and optical element, imaging optical system, and imaging device
JP2017058559A (en) Optical device and imaging device
WO2024047944A1 (en) Member for calibration, housing device, calibration device, calibration method, and program
WO2024024174A1 (en) Lens device, multispectral camera, control device, control method, and program
JP4660777B2 (en) Imaging apparatus and imaging method
WO2023188512A1 (en) Information processing device, information processing method, and program
US11750940B2 (en) Imaging apparatus, operation method thereof, and operation program thereof
WO2024090134A1 (en) Optical member, processing device, processing method, and program
JP2008211418A (en) Multi-band image capturing method
WO2023145188A1 (en) Imaging device, processing device, processing method, program, and optical filter
WO2023047794A1 (en) Information processing method, information processing device, information processing program, and information processing system
WO2023053767A1 (en) Data processing device, method, program, and multispectral camera
WO2021153472A1 (en) Image processing device, imaging device, image processing method, and image processing program
JP3246261U (en) Imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926351

Country of ref document: EP

Kind code of ref document: A1