WO2023157314A1 - Energy management system, energy management method, and program - Google Patents

Energy management system, energy management method, and program Download PDF

Info

Publication number
WO2023157314A1
WO2023157314A1 PCT/JP2022/007031 JP2022007031W WO2023157314A1 WO 2023157314 A1 WO2023157314 A1 WO 2023157314A1 JP 2022007031 W JP2022007031 W JP 2022007031W WO 2023157314 A1 WO2023157314 A1 WO 2023157314A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage battery
procurement
pattern
management module
Prior art date
Application number
PCT/JP2022/007031
Other languages
French (fr)
Japanese (ja)
Inventor
良幸 伊藤
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2022580529A priority Critical patent/JP7279270B1/en
Priority to PCT/JP2022/007031 priority patent/WO2023157314A1/en
Priority to JP2023077971A priority patent/JP2023121751A/en
Publication of WO2023157314A1 publication Critical patent/WO2023157314A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the present invention relates to energy management that manages the supply of electricity procured by electricity retailers to consumers.
  • Electricity retailers procure electricity from power producers and wholesale electricity markets, and if they have their own power generation facilities such as solar power generation, biomass power generation, gas cogeneration, etc. The procured power is supplied to consumers. Efforts have also been made to reduce power procurement costs by incorporating storage batteries into energy management systems that manage power transactions of electricity retailers.
  • Patent Document 1 describes the prediction of the amount of power demand for each consumer (factory, company, general household), the prediction of the assumed output amount of PV50 (photovoltaic power generation device), and the power market It is disclosed that the profitability of the electricity retail business is evaluated by predicting the price of
  • Patent Document 2 in a storage battery connected to a power generation system that uses natural energy, by analyzing the past power price and power generation amount, it is possible to appropriately charge and discharge while satisfying the predetermined upper limit of the charge amount. A method for controlling timing is disclosed.
  • the object of this application is to provide an invention related to energy management that enables industrial storage batteries to be effectively used to control retail transactions of electric power.
  • the invention for achieving the above object is an energy management system for managing the supply of electric power procured by an electric power retailer to consumers, comprising a controller and a memory, wherein the controller records in the memory a computer system that executes a customized energy management program, wherein the controller includes a demand management module that manages the power demand of the consumer, a procurement management module that manages power procurement by the retailer, and the retail business a storage battery management module that manages an industrial storage battery that charges power procured by a retailer and discharges the charged power to the consumer; and a power generation management module that manages the power generator of the retailer.
  • the demand management module predicts a power demand pattern of the consumer; the power generation management module predicts a power generation pattern of the power generation device; and the procurement management module predicts the power demand pattern and the power generation pattern. Based on this, a power procurement pattern by the retailer is calculated, a shortage of power procurement is determined based on the power procurement pattern, and the storage battery management module performs discharge to compensate for the shortage of power procurement and discharge for the discharge.
  • An operation pattern of the storage battery is set so that the storage battery can perform charging, and the storage battery is operated when the procurement management module procures power based on the operation pattern.
  • the invention of the method according to the present application is an energy management method for managing the supply of electric power procured by an electric power retailer to consumers, wherein a computer system that implements the method controls the power demand of the consumers. , manages procurement of power by the retailer, charges the power procured by the retailer, and manages an industrial storage battery that discharges the charged power to the consumer, and the retailer managing a power generation device of a business operator, predicting a power demand pattern of the consumer, predicting a power generation pattern of the power generation device, and procuring power by the retailer based on the power demand pattern and the power generation pattern A pattern is calculated, a shortage of power procurement is determined based on the power procurement pattern, and an operation pattern of the storage battery is determined so that the storage battery can perform discharging to compensate for the shortage of power procurement and charging for the discharging. Then, based on the operation pattern, the storage battery is operated when power is procured.
  • the invention of the program according to the present application is a program for enabling a computer to realize energy management for managing the supply of electric power procured by an electric power retailer to consumers, wherein the computer is configured to control the electric power demand of the consumers.
  • a procurement management function for managing the procurement of power by said retailer; and charging the power procured by said retailer and discharging the charged power to said consumer.
  • a power generation management function that manages the power generation device of the retailer.
  • the demand management function predicts the power demand pattern of the consumer, and the power generation management function predicts the power generation pattern of the power generation device, the procurement management function calculates the power procurement pattern by the retailer based on the power demand pattern and the power generation pattern, and based on the power procurement pattern Determining a shortage of power procurement, the storage battery management function sets an operation pattern of the storage battery so that the storage battery can discharge and charge for the discharge to compensate for the shortage of power procurement, and sets the operation pattern. , the storage battery is operated when the procurement management function procures electric power.
  • FIG. 1 is a block diagram of a power handling system of a retail electricity supplier
  • FIG. FIG. 2 is a block diagram of a plurality of modules for power transaction management implemented by a controller of a computer system (energy management system) of the power handling system executing an EMS program recorded in a memory
  • 4 is a flow chart relating to an example of energy management by a controller
  • FIG. 4 is a waveform diagram showing daily fluctuations in combined demand, which is the sum of predicted power demands of all consumers
  • FIG. 10 is a waveform diagram showing a predicted one-day variation in photovoltaic power generation
  • FIG. 4 is a waveform diagram showing daily fluctuations in the amount of electric power to be procured by a retail electricity supplier
  • FIG. 7 is a diagram showing a power shortage in the waveform diagram of FIG. 6 ;
  • FIG. 4 is a waveform chart showing daily fluctuations in the spot price of electricity in the electricity trading market. It is an example of a charging/discharging pattern of a storage battery.
  • FIG. 4 is a waveform diagram showing an example of a storage battery operation pattern derived by a storage battery management module; 7 is a graph showing variations in SOC and battery temperature as a result of simulation; 10B is a waveform diagram according to a modified example of the operation pattern of FIG. 10A;
  • FIG. 10C is a graph showing variations in SOC and battery temperature in simulation results according to the modified example of FIG. 10C.
  • FIG. 11C is a graph showing a power shortage in the pattern of FIG. 11C
  • FIG. 11B is an operation pattern of a storage battery corresponding to a combination of the type of FIG. 11A and the type of FIG. 11B.
  • FIG. 5 is a graph illustrating a second type of pattern of the plurality of types of synthetic demand patterns
  • FIG. FIG. 4 is a graph showing a second type of pattern among the plurality of types of solar power generation patterns
  • FIG. 12C is a graph showing a power shortage in the pattern of FIG. 12C
  • FIG. 12B is an operation pattern of a storage battery corresponding to a combination of the type of FIG. 12A and the type of FIG. 12B.
  • FIG. 4 is a block diagram showing that the storage battery is composed of a plurality of storage battery units;
  • FIG. 4 is a block diagram showing ranking of multiple units;
  • FIG. 1 is a block diagram showing an outline of an electric power handling system 10 of a retail electric power company as an electric power retailer.
  • the electric power handling system 10 supplies electric power 10A procured by a retail electric power company from a power generation company 20 and electric power 10E procured from an electric power trading market 21 to electric power consumers 22, 24, and 26 (10B-10D).
  • the power trading market 21 may be the Japan Electric Power Exchange (JEPX).
  • Consumers include public facilities 22 such as schools, government offices, and hospitals, factories 24, disaster prevention base facilities 26, etc., and are not particularly limited in number or type.
  • NAS battery sodium sulfur battery
  • a NAS battery sodium sulfur battery is suitable as a stationary secondary battery that can exhibit a large output of megawatt class and can store a large amount of power for 6 to 7 hours.
  • the NAS battery exhibits an endothermic reaction during charging and an exothermic reaction during discharging.
  • the optimum temperature for the battery reaction is 280-340 degrees Celsius.
  • the NAS battery is kept in the temperature range by the heater, and when the temperature exceeds the temperature range, the discharge operation of the battery may be suppressed. It is also possible to have a function of supplying power from the industrial storage battery 14 to the disaster prevention base facility 26 in the event of a power failure.
  • EMS 16 is an energy management system (EMS) for electricity procurement, electricity retailing, and management of electricity retailers, and is equipped with a computer system.
  • a controller (processor such as a CPU) of the computer system 16 implements a plurality of modules for power transaction management by executing the EMS program recorded in the memory.
  • the memory may be of a non-portable type such as a hard disk or SSD. Note that the computer system 16 may be constructed on a cloud that connects to a plurality of electricity retailers.
  • a demand management module 16A that manages power demand of each of a plurality of consumers 22, 24, and 26, and a procurement module 16A that manages power procurement from the power generator 20 and JEPX 21
  • a management module 16B There are a management module 16B, a storage battery management module 16C that manages the storage battery 14, and a power generation management module 16D that manages the photovoltaic power generation device 12.
  • FIG. A "module” is a technical function achieved by a controller executing a program. You can paraphrase it. A plurality of modules, as described later, cooperate with each other to implement power trading. It should be noted that the module may be realized by dedicated hardware.
  • the demand management module 16A manages consumer information such as names and industries of each of a plurality of consumers, and also manages time-series data of power demand of each consumer.
  • the procurement management module 16B manages the formulation of power procurement plans between the power generator 20 and the power trading market 21, management of contract information, execution of procurement, and the like.
  • the storage battery management module 16C monitors battery status information such as the temperature of the storage battery, the number of equivalent cycles, SOC, and SOH, and controls charging and discharging of the storage battery, based on the time-series information from the sensor provided in the storage battery 14. do.
  • the power generation management module 16D manages device information of the photovoltaic power generation device 12, power generation information, and the like.
  • the controller executes this flowchart at a fixed time every day to formulate a power procurement plan for the next day.
  • the demand management module 16A refers to the power demand management table recorded in the memory. In the management table, time-series data of actual power demand is recorded for each of a plurality of consumers.
  • the power management module 16A predicts the next day's power demand for each of a plurality of consumers using a technique called time series analysis (S200). This method is an analysis method that creates a model from numerical sequences recorded over time and makes future predictions.
  • the demand management module 16A adds the predicted demands for each of the multiple consumers, and calculates a combined demand that is the sum of the predicted power demands of all consumers (S202).
  • FIG. 4 shows the pattern of synthetic demand, ie, the daily variation of synthetic demand.
  • the power generation management module 16D refers to the time-series information of the photovoltaic power generation recorded in the management table of the memory, and predicts the power of the photovoltaic power generation for the next day in the same manner as the power demand prediction (S204). .
  • FIG. 5 shows the predicted power generation pattern of photovoltaic power generation, that is, the fluctuation of photovoltaic power generation for one day.
  • the procurement management module 16B calculates the difference between the combined demand forecast pattern (Fig. 4) and the solar power generation forecast pattern (Fig. 5) (S206). This difference is the fluctuation pattern of the amount of electric power to be procured by the electricity retailer, that is, the necessary procurement amount. This pattern is shown in FIG.
  • the procurement management module 16B compares the content of the contract with the power generation company with the pattern of power to be procured (FIG. 6), and checks whether the amount to be procured is excessive or short of the contract ( S208). Therefore, the procurement management module 16B refers to the memory and reads the contract information.
  • the contract between the electricity retailer and the power generator is defined by kW (value of peak power), kWh (maximum value of power consumption), and supply pattern (fluctuation pattern of power consumption).
  • the procurement management module 16B determines that there is no excess or deficiency (S208: No), it concludes that there is no need to change the current operation pattern of the storage battery 14, and ends the flowchart.
  • the procurement management module 16B determines that there is an excess or deficiency (S208: Yes)
  • the required procurement amount (FIG. 6) is within the scope of the contract with the power generation company in order to change the operation pattern of the storage battery 14. , that is, if the power to be procured (FIG. 6) cannot be secured, the shortage is covered by discharging from the storage battery 14. is calculated (S210).
  • the power amount 62 exceeding the supply upper limit 60 from the power generation company is the power amount that is insufficient among the procurement amount.
  • Procurement of the shortfall of power from power producers through non-contractual transactions is generally more costly than procurement from the market, and will affect future contracts with power producers. may prefer to procure from the market.
  • the procurement management module 16B obtains the forecast information of the power price in the market for the next day, and formulates a plan to procure power during the time period when the price is low and to charge the storage battery to the discharged capacity (S212). .
  • 72 is the lowest price time slot
  • the procurement management module 16B procures extra power during this time slot 72
  • the storage battery management module 16C sets an operation pattern for charging the storage battery 14 with that power. set.
  • the storage battery management module 16C operates the storage battery so as to charge and discharge in the pattern shown in FIG. That is, the storage battery management module 16C operates the storage battery 14 so as to charge the battery in the time slots 70 and 72 and discharge the charged power amount in the time slot 62 when the power is insufficient.
  • the storage battery management module 16C sets an operation pattern associated with charging and discharging of the storage battery based on the plan created by the procurement management module 16B. Next, the storage battery management module 16C performs a simulation based on this operation pattern to check whether or not the storage battery has restrictions or restrictions that prevent this operation pattern from being realized (S214). Therefore, the storage battery management module 16C refers to the storage battery status information table in the memory, reads the output, temperature, SOC, SOH, and equivalent cycle number of the storage battery, and checks the feasibility of the operation pattern based on these. do.
  • the storage battery management module 16C determines that it is necessary to restrict the operation of the storage battery ( S214: Yes), in order to avoid a further rise in the temperature of the storage battery due to discharge, the parameters are reviewed so as to limit or suppress the operation pattern of the storage battery (S218), and discharge of the storage battery is canceled or Control the operation of the storage battery by, for example, reducing the amount of discharge.
  • Reasons for restricting the operation of the storage battery include the temperature rise of the storage battery 14, the degree of deterioration of the storage battery, and the lack of capacity of the storage battery.
  • the storage battery management module 16C automatically reviews the output (kW) and discharge time (h) of the storage battery according to the type of restriction (temperature, capacity). The electricity retailer may set which parameter, output or time, should be reviewed with priority.
  • FIG. 10A shows the operating pattern of the storage battery derived by the storage battery management module 16C, that is, the charging/discharging timing.
  • the storage battery management module 16C refers to the number of equivalent cycles, SOH, and SOC, and performs a driving simulation based on this driving pattern.
  • FIG. 10B shows variations in SOC 302 and battery temperature 304 as a result of simulation. In FIG. 10B, although the SOC is 100% or less and charging is possible, the battery temperature (T ° C.) 304 exceeds the upper limit value 304T of the battery temperature in the region of its maximum value (304A) as it discharges. ,It is shown that.
  • the storage battery management module 16C determines this excess temperature, it limits the parameters of the operation pattern (FIG. 10A) of the storage battery, and performs the operation simulation again based on the limited parameters. Therefore, the storage battery management module 16C limits the output (kW) and/or the discharge time (h), which are operation control parameters of the storage battery. For example, the storage battery management module 16C removes the discharge capacity in the range indicated by reference numeral 300 in FIG. 10A as shown in FIG. 10C, corrects the operation pattern so as to suppress the discharge power amount (S218), and then performs the simulation again.
  • FIG. 10D shows the results of the simulation.
  • FIG. 10A the parameters of the operation pattern of the storage battery
  • the storage battery management module 16C repeats operation pattern correction and operation pattern simulation until the attribute of the storage battery falls within the limits. In this way, the storage battery management module 16C controls the discharging mode of the storage battery so that the temperature of the storage battery 14 is within the above-described optimum temperature range. In addition, the storage battery management module 16C can suppress the charge amount as indicated by the dashed line 310 in FIG. 10C in accordance with the restriction on the discharge amount (FIG. 10A: 300).
  • the procurement management module 16B changes the power procurement plan so that the power that cannot be discharged can be procured from the market. If the storage battery 14 does not have enough chargeable capacity, the storage battery management module 16C may limit the charging and then discharge, or the procurement management module 16B may procure from the market the amount of power that is not discharged. .
  • the storage battery management module 16C determines the operating pattern for charging and discharging the storage battery 14.
  • the storage battery management module 16C operates the storage battery on the next day based on this operation pattern.
  • the storage battery management module 16C sets an operation pattern for charging the difference (excess) between the two, and the procurement management module 16B sets this The charged power should be sold to the market during the time zone when the market price is the highest.
  • the controller executes the flowchart of FIG. 3 before the market bidding time on the day before power is procured. If there is a difference between the predicted value and the forecasted value, the flowchart may be executed every 30 minutes on the day to correct this difference and power may be procured at the trading price in the early market instead of the spot market.
  • the charge capacity is a value obtained by dividing the discharge capacity by the charge/discharge efficiency of the storage battery.
  • step S208 when the procurement management module 16B detects the shortage 62 (FIG. 7), the procurement management module 16B reports the cost and the shortage to the market when the shortage is compensated for by charging and discharging the storage battery. It compares the cost with the cost when it is procured from , and decides to execute the method with the lower cost.
  • the procurement management module 16B calculates the operating cost of the storage battery as follows.
  • a procurement unit price is a unit price for procuring power from the power trading market 21 .
  • the charge/discharge efficiency varies depending on the degree of deterioration of the storage battery.
  • the procurement management module 16B calculates the latest charging/discharging efficiency based on the time-series data of the storage battery.
  • Auxiliary electric power is electric power procured mainly for devices, heaters, and fans as means for maintaining the temperature of the storage battery at the reaction optimum temperature described above.
  • the procurement unit price is an integrated value for one day.
  • the procurement management module 16B calculates the cost of procuring the shortfall from the market as follows. (Procurement unit price x Procurement volume) + (Auxiliary power consumption x Procurement unit price) Even when the storage battery is not used, auxiliary electric power is necessary to keep the storage battery warm with the heater. When the storage battery is discharged, the amount of electric power for the auxiliary equipment may be reduced due to heat generation. The procurement management module 16B also calculates the decrease in the amount of electric power for auxiliary equipment and compares the costs.
  • the procurement management module 16B selects a storage battery, it executes step S210 and subsequent steps in the flowchart of FIG. On the other hand, when the procurement management module 16B selects procurement, a plan is made to compensate for the shortage of power by procuring power, and the flow chart of FIG. 3 ends.
  • the computer system 16 in order for the computer system 16 to obtain the operation pattern (FIG. 9) of the storage battery 14, the prediction of the combined demand (FIG. 4) and the prediction of the photovoltaic power generation (FIG. 5) were calculated.
  • FIG. 3: S200-S204 in this embodiment, the computer system 16 categorizes the combined power demand pattern and the photovoltaic power generation pattern, respectively, and classifies the type of combined power demand pattern and the photovoltaic power generation pattern.
  • the calculation load of the computer system 16 is reduced by selecting the operation pattern of the storage battery 14 based on the combination with the type. In particular, when using a NAS battery that can store a large amount of power for 6 to 7 hours, the load on the computer system 16 (calculation load, maintenance load, etc.) can be further reduced by simplifying the operation pattern.
  • the computer system 16 predicts the forecast pattern of the combined power demand, (summer/winter (high demand season), spring/autumn (off-season)) x (weekdays, holidays)
  • the forecast pattern of photovoltaic power generation is It is classified into 9 types of (sunny, cloudy, rainy) x (summer, spring/autumn, winter).
  • the demand management module 16A refers to the time-series information on power demand stored in the consumer database in the memory, and classifies the patterns of combined demand for one day into four types.
  • the demand management module 16A averages a plurality of patterns of synthetic demand for each type to form a representative pattern (composite demand) for each type, and stores this in the management table of the memory.
  • the power generation management module 16D refers to the time-series information of the photovoltaic power generation stored in the photovoltaic power generation database in the memory, and classifies the power generation pattern of the day into each of nine types.
  • the power generation management module 16D averages a plurality of patterns for each type to form a representative pattern (photovoltaic power generation) for each type, and stores this in a memory management table.
  • the demand management module 16A and the power generation management module 16D may update their representative pattern settings periodically, for example, once a month.
  • the storage battery management module 16C sets a storage battery operation pattern in advance for each of 36 combinations of the combined demand pattern type and the photovoltaic power generation pattern type, and stores this in a memory management table. Once the combination of the synthetic demand pattern type and the photovoltaic power generation pattern type is determined, the required procurement pattern is determined. Once the required procurement pattern is determined, it is possible to determine the time periods in which there will be a shortfall in the procurement volume according to the terms of the contract with the power producer.
  • the storage battery management module 16C determines the timing of discharging from the storage battery 14 during the period of time when the shortage occurs, while the timing of charging the shortage may be the time period when the market price of electricity is low (see FIG. 8). ). Since it is known that trends in the market transaction price of electricity follow similar patterns depending on the season and weather, the procurement management module 16B controls charging for each combination of the type of synthetic demand pattern and the type of solar power generation pattern. can determine the timing of
  • the storage battery management module 16C can preset a storage battery operation pattern consisting of charging and discharging timings of the storage battery 14 for each combination of the combined demand pattern type and the photovoltaic power generation pattern type.
  • the procurement management module 16B performs statistical processing on the time-series data of the market transaction price pattern of electricity for each combination of the synthetic demand pattern type and the photovoltaic power generation pattern type, and represents the market price for each combination.
  • a regular pattern is created and periodically updated in the memory of the computer system 16 .
  • FIG. 11A shows a pattern of a type in which the season is a high demand period (summer/winter) and the classification of holiday weekdays is "weekdays" among a plurality of types of synthetic demand patterns.
  • FIG. 11B shows a pattern of cloudy weather and summer season among the plurality of types of photovoltaic power generation patterns.
  • the procurement management module 16B in step S208 in FIG. 3 described above, and as shown in FIG. 7, when it determines that the power pattern in FIG. Select and read the storage battery operation pattern (FIG. 11E) corresponding to the combination of the type of [high demand period (summer/winter), weekday] and the type of photovoltaic power generation pattern [cloudy, summer], It is set in the storage battery management module 16C.
  • FIG. 12A shows a pattern of a type in which the season is "between seasons (spring/autumn)" and the classification of holiday weekdays is “weekdays” among multiple types of synthetic demand patterns.
  • FIG. 12B shows a pattern of a type in which the weather is “sunny” and the season is “spring” among the plurality of types of photovoltaic power generation patterns.
  • the power pattern (forecast) that needs to be procured is calculated as shown in FIG. 12C.
  • the procurement management module 16B determines that there is a shortage (62 in FIG. 12D) in the power pattern in FIG.
  • the pattern (FIG. 12E) is read and set in the battery management module 16C.
  • the demand management module 16A retrieves the type of synthetic demand pattern (FIGS. 11A, 12A) from memory.
  • the power generation management module 16D reads the type of solar power generation pattern (FIGS. 11B and 12B) from memory based on the calendar information and the weather information. Note that the type may be set by the electricity retailer instead of the calendar information.
  • the procurement management module 16B determines the required procurement quantity (FIGS. 11C, 12B) based on the combination of the type of synthetic demand pattern and the type of solar power generation pattern (FIGS. 11A and 11B, FIGS. 12A and 12B), respectively. 12C) is calculated.
  • the procurement management module 16B compares the required procurement amount with the upper limit value 60 to determine whether there is a power shortage 62 (FIGS. 11D and 12D).
  • the procurement management module 16B determines that there is no shortage 62, it ends the operation of setting the operation pattern of the storage battery 14. Conversely, when it determines that there is a shortage 62, the procurement management module 16B accesses the memory to determine the type of the combined demand pattern and the sunlight.
  • the operation pattern (FIGS. 11E, 12E) of the storage battery 14 corresponding to the combination with the type of power generation pattern (FIGS. 11A and 11B, FIGS. 12A and 12B) is selected and read out.
  • the procurement management module 16B sets the selected operation pattern in the storage battery management module 16C.
  • Battery management module 16C then optimizes the operating pattern. That is, the storage battery management module 16C corrects the operation pattern based on storage battery attributes such as the degree of deterioration of the storage battery, temperature, and charge/discharge efficiency, and/or when there is a plan to charge/discharge the storage battery for other purposes. After taking this in and adjusting the amount of discharge, the amount of charge, and/or the timing of charge/discharge to optimize the operation pattern, the storage battery 14 is operated based on the operation pattern.
  • This embodiment is characterized in that the storage battery consists of a plurality of units, and the rated output and rated capacity of the storage battery are apportioned to each of the plurality of units based on the operation history of each of the plurality of units. If the operation history (equivalent cycle number, SOH, etc.) differs for each of the multiple units, in order to improve the conversion efficiency of the multiple units as a whole and avoid operational restrictions, multiple units according to the operation history of each of the multiple units of the unit operation must be apportioned.
  • the operation history equivalent cycle number, SOH, etc.
  • FIG. 13 is a functional block diagram of this embodiment, and the storage battery 14 includes a plurality of storage battery units (1 to X).
  • the storage battery management module 16C of the EMS 16 collects time-series data of battery information for each of a plurality of units. Record updates.
  • the storage battery management module 16C utilizes the number of equivalent cycles and SOH, which are indicators of battery soundness, as the operation history.
  • the storage battery management module 16C reads the equivalent cycle number and SOH of each of the plurality of units at predetermined timings, and calculates an index for comparing the soundness of the storage battery for each unit. For example, the index is less than or equal to "1" and greater than "0", and the closer to "1", the healthier the unit is, for example, the less deteriorated. For the sake of convenience, this index is called the soundness factor.
  • the storage battery management module 16C calculates health coefficients for each of a plurality of units at a predetermined timing, and updates and records the results in a memory management table.
  • a unit with a higher soundness coefficient can produce more capacity (kWh) with an output (kW) in a low-loss region, so the storage battery management module 16C operates by combining multiple units in descending order of the soundness coefficient. Therefore, the storage battery management module 16C accesses the management table at predetermined timings to read the soundness coefficients of each of the plurality of units. Next, the storage battery management module 16C ranks the plurality of units in descending order of health factor. FIG. 14 is an example of this ranking.
  • the storage battery management module 16C multiplies the rated output of each unit by the health factor for each unit and the rated capacity of each unit by the health factor for each unit for a plurality of units in order from the unit with the highest soundness factor. The plurality of units are selected in ranking order until the cumulative total of all the units exceeds the rated value of the storage battery. Next, the storage battery management module 16C sets a plan for the charging/discharging operation pattern of each of the plurality of units selected in this manner, and operates the plurality of units in combination based on the operation pattern during operation of the storage battery.
  • the storage battery management module 16C preferentially operates a unit with a high soundness factor, thereby averaging the operation history of the entire plurality of units, improving the conversion efficiency of the plurality of units as a whole, and It is possible to reduce the risk of restrictions on the operation of
  • the storage battery management module 16C arranges the plurality of units in descending order of health coefficients, and uses units with high health coefficients (close to "1") for base discharge (discharge of large capacity). Units with low health factors (close to '0') may be used for fine-tuning discharge. Avoid penalties due to the difference between the plan (prediction) and the actual performance because units with low soundness coefficients (close to "0") are not included in the operation pattern and are used to adjust the supply-demand gap (deviation in supply-demand forecast) for the day. can be done. Furthermore, by reducing the frequency of use of units with low soundness coefficients (close to "0”), it is possible to prolong the life of the unit and, as a result, delay the timing of equipment renewal.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Tourism & Hospitality (AREA)
  • General Health & Medical Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Public Health (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A computer system controller according to the present invention comprises: a demand management module that manages the power demand of consumers; a procurement management module that manages the procurement of power by retailers; a storage battery management module for power procured by retailers; and a power generation management module that manages a power generation device of a retailer. The demand management module predicts the power demand pattern of the consumer. The power generation management module predicts the power generation pattern of the power generation device. The procurement management module calculates a power procurement pattern of retailers on the basis of the power demand pattern and the power generation pattern and determines power procurement shortages on the basis of the power procurement pattern. The storage battery management module sets the operation pattern of the storage battery such that the storage battery can perform discharging and charging to compensate for a shortage in power procurement, and on the basis of the operation pattern, operates the storage battery when the procurement management module procures power.

Description

エネルギーマネジメントシステム、エネルギーマネジメント方法、およびプログラムENERGY MANAGEMENT SYSTEM, ENERGY MANAGEMENT METHOD AND PROGRAM
 本発明は、電気の小売事業者が調達する電力の需要家への供給を管理するエネルギーマネジメントに関する。 The present invention relates to energy management that manages the supply of electricity procured by electricity retailers to consumers.
 電気の小売事業者は、発電事業者や電力卸売市場から電力を調達し、自身で太陽光発電、バイオマス発電、ガスコジェネレーション等の発電設備を有する場合には、発電によって得られた電力と合わせて調達した電力を需要家に供給する。そして、電気の小売事業者の電力の取引を管理するエネルギーマネジメントシステムに、蓄電池を組み込むことによって電力の調達コストを抑制する取り組みも行われている。 Electricity retailers procure electricity from power producers and wholesale electricity markets, and if they have their own power generation facilities such as solar power generation, biomass power generation, gas cogeneration, etc. The procured power is supplied to consumers. Efforts have also been made to reduce power procurement costs by incorporating storage batteries into energy management systems that manage power transactions of electricity retailers.
 この種のエネルギーマネジメントシステムとして、特許文献1には、需要家(工場、企業、一般家庭)毎の需要電力量の予測と、PV50(太陽光発電装置)の想定出力量の予測と、電力市場の価格の予測とにより、電力小売り事業の収益性の評価を行うことが開示されている。 As an energy management system of this kind, Patent Document 1 describes the prediction of the amount of power demand for each consumer (factory, company, general household), the prediction of the assumed output amount of PV50 (photovoltaic power generation device), and the power market It is disclosed that the profitability of the electricity retail business is evaluated by predicting the price of
 また、特許文献2には、自然エネルギーを利用する発電システムに接続された蓄電池において、過去の電力価格・発電量を分析することで、定められた充電量の上限を満たしつつ、適切な充放電時期を制御する方法が開示されている。 In addition, in Patent Document 2, in a storage battery connected to a power generation system that uses natural energy, by analyzing the past power price and power generation amount, it is possible to appropriately charge and discharge while satisfying the predetermined upper limit of the charge amount. A method for controlling timing is disclosed.
特開2018-206027号公報JP 2018-206027 A 特開2015-156195号公報JP 2015-156195 A
 従来、電力の小売事業者のエネルギーマネジメントシステムには、蓄電池として家庭用蓄電池が利用されていたが、蓄電池の容量が小さいことと、複数の蓄電池を組み合わせて使用しなければならないことから、システム構成上、並びに、電池の制御上の煩雑さから、家庭用蓄電池の利用は現実的なものではなかった。一方、大出力、大容量の産業用蓄電池を利用しようとしても、これの特徴を活用しながらの電力の取引制御をエネルギーマネジメントシステムにおいて実現できていなかった。そこで、この出願は、産業用蓄電池を電力の小売取引の制御に有効利用可能なエネルギーマネジメントに係る発明を提供することを目的とする。 In the past, household storage batteries were used as storage batteries in the energy management systems of electric power retailers. Due to the above and the complexity of battery control, the use of domestic storage batteries has not been practical. On the other hand, even if an attempt was made to use a large-output, large-capacity industrial storage battery, the energy management system could not achieve power transaction control while utilizing the characteristics of this. Therefore, the object of this application is to provide an invention related to energy management that enables industrial storage batteries to be effectively used to control retail transactions of electric power.
 前記目的を達成するための発明は、電力の小売事業者が調達する電力の需要家への供給を管理するエネルギーマネジメントシステムであって、コントローラとメモリとを有し、当該コントローラが当該メモリに記録されたエネルギーマネジメントプログラムを実行する計算機システムを備え、前記コントローラは、前記需要家の電力需要を管理する需要管理モジュールと、前記小売事業者による電力の調達を管理する調達管理モジュールと、前記小売事業者が調達した電力を充電し、そして、充電された電力を前記需要家に放電する産業用蓄電池を管理する蓄電池管理モジュールと、前記小売事業者の発電装置を管理する発電管理モジュールと、を備え、前記需要管理モジュールは、前記需要家の電力需要パターンを予測し、前記発電管理モジュールは、前記発電装置の発電パターンを予測し、前記調達管理モジュールは、前記電力需要パターンと前記発電パターンとに基づいて、前記小売事業者による電力調達パターンを算出し、当該電力調達パターンに基づいて電力調達の不足を判定し、前記蓄電池管理モジュールは、当該電力調達の不足を補うための放電と当該放電に対する充電とを前記蓄電池が実行できるように当該蓄電池の運転パターンを設定し、当該運転パターンに基づいて、前記調達管理モジュールが電力を調達する際に、当該蓄電池を運転する、というものである。 The invention for achieving the above object is an energy management system for managing the supply of electric power procured by an electric power retailer to consumers, comprising a controller and a memory, wherein the controller records in the memory a computer system that executes a customized energy management program, wherein the controller includes a demand management module that manages the power demand of the consumer, a procurement management module that manages power procurement by the retailer, and the retail business a storage battery management module that manages an industrial storage battery that charges power procured by a retailer and discharges the charged power to the consumer; and a power generation management module that manages the power generator of the retailer. , the demand management module predicts a power demand pattern of the consumer; the power generation management module predicts a power generation pattern of the power generation device; and the procurement management module predicts the power demand pattern and the power generation pattern. Based on this, a power procurement pattern by the retailer is calculated, a shortage of power procurement is determined based on the power procurement pattern, and the storage battery management module performs discharge to compensate for the shortage of power procurement and discharge for the discharge. An operation pattern of the storage battery is set so that the storage battery can perform charging, and the storage battery is operated when the procurement management module procures power based on the operation pattern.
 さらに、本願に係る方法の発明は、電力の小売事業者が調達する電力の需要家への供給を管理するエネルギーマネジメント方法であって、当該方法を実施する計算機システムは、前記需要家の電力需要を管理し、前記小売事業者による電力の調達を管理し、前記小売事業者が調達した電力を充電し、そして、充電された電力を前記需要家に放電する産業用蓄電池を管理し、前記小売事業者の発電装置を管理し、前記需要家の電力需要パターンを予測し、前記発電装置の発電パターンを予測し、前記電力需要パターンと前記発電パターンとに基づいて、前記小売事業者による電力調達パターンを算出し、当該電力調達パターンに基づいて電力調達の不足を判定し、当該電力調達の不足を補うための放電と当該放電に対する充電とを前記蓄電池が実行できるように当該蓄電池の運転パターンを設定し、当該運転パターンに基づいて、電力を調達する際に当該蓄電池を運転する、というものである。 Further, the invention of the method according to the present application is an energy management method for managing the supply of electric power procured by an electric power retailer to consumers, wherein a computer system that implements the method controls the power demand of the consumers. , manages procurement of power by the retailer, charges the power procured by the retailer, and manages an industrial storage battery that discharges the charged power to the consumer, and the retailer managing a power generation device of a business operator, predicting a power demand pattern of the consumer, predicting a power generation pattern of the power generation device, and procuring power by the retailer based on the power demand pattern and the power generation pattern A pattern is calculated, a shortage of power procurement is determined based on the power procurement pattern, and an operation pattern of the storage battery is determined so that the storage battery can perform discharging to compensate for the shortage of power procurement and charging for the discharging. Then, based on the operation pattern, the storage battery is operated when power is procured.
 さらにまた、本願に係るプログラムの発明は、電力の小売事業者が調達する電力の需要家への供給を管理するエネルギーマネジメントをコンピュータに実現させるプログラムであって、コンピュータに、前記需要家の電力需要を管理する需要管理機能と、前記小売事業者による電力の調達を管理する調達管理機能と、前記小売事業者が調達した電力を充電し、そして、充電された電力を前記需要家に放電する産業用蓄電池を管理する蓄電池管理機能と、前記小売事業者の発電装置を管理する発電管理機能と、を実現させ、前記需要管理機能は、前記需要家の電力需要パターンを予測し、前記発電管理機能は、前記発電装置の発電パターンを予測し、前記調達管理機能は、前記電力需要パターンと前記発電パターンとに基づいて、前記小売事業者による電力調達パターンを算出し、当該電力調達パターンに基づいて電力調達の不足を判定し、前記蓄電池管理機能は、当該電力調達の不足を補うための放電と当該放電に対する充電とを前記蓄電池が実行できるように当該蓄電池の運転パターンを設定し、当該運転パターンに基づいて、前記調達管理機能が電力を調達する際に、当該蓄電池を運転する、というものである。 Furthermore, the invention of the program according to the present application is a program for enabling a computer to realize energy management for managing the supply of electric power procured by an electric power retailer to consumers, wherein the computer is configured to control the electric power demand of the consumers. a procurement management function for managing the procurement of power by said retailer; and charging the power procured by said retailer and discharging the charged power to said consumer. and a power generation management function that manages the power generation device of the retailer. The demand management function predicts the power demand pattern of the consumer, and the power generation management function predicts the power generation pattern of the power generation device, the procurement management function calculates the power procurement pattern by the retailer based on the power demand pattern and the power generation pattern, and based on the power procurement pattern Determining a shortage of power procurement, the storage battery management function sets an operation pattern of the storage battery so that the storage battery can discharge and charge for the discharge to compensate for the shortage of power procurement, and sets the operation pattern. , the storage battery is operated when the procurement management function procures electric power.
 この出願の発明によれば、産業用蓄電池を電力の小売取引の制御に有効利用可能なエネルギーマネジメントを実現することができる。 According to the invention of this application, it is possible to realize energy management in which industrial storage batteries can be effectively used to control retail transactions of electric power.
小売電気事業者の電力取扱システムのブロック図である。1 is a block diagram of a power handling system of a retail electricity supplier; FIG. 電力取扱システムの計算機システム(エネルギーマネジメントシステム)のコントローラがメモリに記録されたEMSプログラムを実行することによって実現される電力の取引管理のための複数のモジュールのブロック図である。FIG. 2 is a block diagram of a plurality of modules for power transaction management implemented by a controller of a computer system (energy management system) of the power handling system executing an EMS program recorded in a memory; コントローラによるエネルギーマネジメントの一例に係るフローチャートである。4 is a flow chart relating to an example of energy management by a controller; 全需要家の予測電力需要を合計した合成需要の一日の変動を示す波形図である。FIG. 4 is a waveform diagram showing daily fluctuations in combined demand, which is the sum of predicted power demands of all consumers; 予測された太陽光発電の一日の変動を示す波形図である。FIG. 10 is a waveform diagram showing a predicted one-day variation in photovoltaic power generation; 小売電気事業者が調達すべき電力量の一日の変動を示す波形図である。FIG. 4 is a waveform diagram showing daily fluctuations in the amount of electric power to be procured by a retail electricity supplier; 図6の波形図において、電力の不足分を示す図である。FIG. 7 is a diagram showing a power shortage in the waveform diagram of FIG. 6 ; 電力取引市場に於ける、電力のスポット価格の一日の変動を示す波形図である。FIG. 4 is a waveform chart showing daily fluctuations in the spot price of electricity in the electricity trading market. 蓄電池の充放電パターンの一例である。It is an example of a charging/discharging pattern of a storage battery. 蓄電池管理モジュールによって導出された蓄電池の運用パターンの一例を示す波形図である。FIG. 4 is a waveform diagram showing an example of a storage battery operation pattern derived by a storage battery management module; シミュレーションの結果のSOCと電池温度との変動を示すグラフである。7 is a graph showing variations in SOC and battery temperature as a result of simulation; 図10Aの運用パターンの修正例に係る波形図である。10B is a waveform diagram according to a modified example of the operation pattern of FIG. 10A; FIG. 図10Cの修正例に係るシミュレーションの結果のSOCと電池温度との変動を示すグラフである。FIG. 10C is a graph showing variations in SOC and battery temperature in simulation results according to the modified example of FIG. 10C. 合成需要パターンの複数のタイプのうち、第1のタイプのパターンを示すグラフである。1 is a graph illustrating a first type of pattern of a plurality of types of synthetic demand patterns; 太陽光発電パターンの複数のタイプのうち、第1のタイプのパターンを示すグラフである。1 is a graph showing a first type of pattern among a plurality of types of solar power generation patterns; 調達が必要な電力量のパターンを示すグラフである。It is a graph which shows the pattern of the amount of electric power which needs to be procured. 図11Cのパターンにおいて、電力の不足分を示すグラフである。FIG. 11C is a graph showing a power shortage in the pattern of FIG. 11C; FIG. 図11Aのタイプと図11Bのタイプとの組み合わせに対応する蓄電池の運転パターンである。FIG. 11B is an operation pattern of a storage battery corresponding to a combination of the type of FIG. 11A and the type of FIG. 11B. 合成需要パターンの複数のタイプのうち、第2のタイプのパターンを示すグラフである。FIG. 5 is a graph illustrating a second type of pattern of the plurality of types of synthetic demand patterns; FIG. 太陽光発電パターンの複数のタイプのうち、第2のタイプのパターンを示すグラフである。FIG. 4 is a graph showing a second type of pattern among the plurality of types of solar power generation patterns; FIG. 調達が必要な電力量のパターンを示すグラフである。It is a graph which shows the pattern of the amount of electric power which needs to be procured. 図12Cのパターンにおいて、電力の不足分を示すグラフである。FIG. 12C is a graph showing a power shortage in the pattern of FIG. 12C; FIG. 図12Aのタイプと図12Bのタイプとの組み合わせに対応する蓄電池の運転パターンである。FIG. 12B is an operation pattern of a storage battery corresponding to a combination of the type of FIG. 12A and the type of FIG. 12B. 蓄電池が複数の蓄電池ユニットから構成されていることを示すブロック図である。FIG. 4 is a block diagram showing that the storage battery is composed of a plurality of storage battery units; 複数のユニットのランキングを示すブロック図である。FIG. 4 is a block diagram showing ranking of multiple units;
 次に、本発明の実施形態について説明する。図1は、電力の小売事業者としての小売電気事業者の電力取扱システム10の概要を示すブロック図である。電力取扱システム10は、小売電気事業者が発電事業者20から調達する電力10A、そして、電力取引市場21から調達する電力10Eを電力の需要家22,24,26に供給する(10B-10D)。電力取引市場21としては日本卸電力取引所(JEPX)でよい。需要家としては、学校、官公庁、病院等の公共施設22、工場24、防災拠点施設26等、数、種類において特に限定されるものではない。 Next, an embodiment of the present invention will be described. FIG. 1 is a block diagram showing an outline of an electric power handling system 10 of a retail electric power company as an electric power retailer. The electric power handling system 10 supplies electric power 10A procured by a retail electric power company from a power generation company 20 and electric power 10E procured from an electric power trading market 21 to electric power consumers 22, 24, and 26 (10B-10D). . The power trading market 21 may be the Japan Electric Power Exchange (JEPX). Consumers include public facilities 22 such as schools, government offices, and hospitals, factories 24, disaster prevention base facilities 26, etc., and are not particularly limited in number or type.
 12は小売電気事業者によって管理、運用される、自家消費型の再生可能エネルギー発電装置としての太陽光発電装置を示し、14は、小売電気事業者によって管理、運用される産業用蓄電池を示す。産業用蓄電池としては、メガワット級の大出力を発揮でき、そして、6-7時間にも及ぶ大容量の電力を貯蔵できる、定置型二次電池としてのNAS電池(ナトリウム硫黄電池)が好適である。  12 indicates a photovoltaic power generation device as a self-consumption type renewable energy power generation device managed and operated by a retail electric power company, and 14 indicates an industrial storage battery managed and operated by a retail electric power company. As an industrial storage battery, a NAS battery (sodium sulfur battery) is suitable as a stationary secondary battery that can exhibit a large output of megawatt class and can store a large amount of power for 6 to 7 hours. .
 NAS電池は充電時吸熱反応を呈し、放電時には発熱反応を呈する。電池反応に於ける至適温度は、摂氏280度-摂氏340度である。NAS電池はヒータによって当該温度範囲に保温され、一方、当該温度域を超える場合には、電池の放電運転を抑制すればよい。停電時には、産業用蓄電池14から防災拠点施設26に電力が供給する機能を具備することも可能である。 The NAS battery exhibits an endothermic reaction during charging and an exothermic reaction during discharging. The optimum temperature for the battery reaction is 280-340 degrees Celsius. The NAS battery is kept in the temperature range by the heater, and when the temperature exceeds the temperature range, the discharge operation of the battery may be suppressed. It is also possible to have a function of supplying power from the industrial storage battery 14 to the disaster prevention base facility 26 in the event of a power failure.
 16は、小売電気事業者の電力調達、電力の小売、そして、その管理のためのエネルギーマネジメントシステム(EMS)であって、計算機システムを備える。計算機システム16のコントローラ(CPU等のプロセッサ)はメモリに記録されたEMSプログラムを実行することによって電力取引の管理のための複数のモジュールを実現する。メモリは、ハードディスク、SSD等非可搬タイプのものでよい。なお、計算機システム16を複数の小売電気事業者に接続するクラウド上に構築してもよい。  16 is an energy management system (EMS) for electricity procurement, electricity retailing, and management of electricity retailers, and is equipped with a computer system. A controller (processor such as a CPU) of the computer system 16 implements a plurality of modules for power transaction management by executing the EMS program recorded in the memory. The memory may be of a non-portable type such as a hard disk or SSD. Note that the computer system 16 may be constructed on a cloud that connects to a plurality of electricity retailers.
 図2に示すように、複数のモジュールとして、複数の需要家22,24,26夫々の電力需要を管理する需要管理モジュール16Aと、発電事業者20とJEPX21とからの電力の調達を管理する調達管理モジュール16Bと、蓄電池14を管理する蓄電池管理モジュール16Cと、太陽光発電装置12を管理する発電管理モジュール16Dと、がある。「モジュール」とは、コントローラがプログラムを実行することによって達成される技術的な機能であり、「モジュール」を「手段」、「部」、「ユニット」、「パート」、又は、「機能」と言い換えてもよい。複数のモジュールは、後述のとおり、互いに連携して、電力取引を実現する。なお、モジュールを専用ハードウェアによって実現してもよい。 As shown in FIG. 2, as a plurality of modules, a demand management module 16A that manages power demand of each of a plurality of consumers 22, 24, and 26, and a procurement module 16A that manages power procurement from the power generator 20 and JEPX 21 There are a management module 16B, a storage battery management module 16C that manages the storage battery 14, and a power generation management module 16D that manages the photovoltaic power generation device 12. FIG. A "module" is a technical function achieved by a controller executing a program. You can paraphrase it. A plurality of modules, as described later, cooperate with each other to implement power trading. It should be noted that the module may be realized by dedicated hardware.
 需要管理モジュール16Aは、複数の需要家夫々の名称、業種等の需要家情報の管理、さらに、各需要家の電力需要の時系列データを管理する。調達管理モジュール16Bは、発電事業者20と電力取引市場21との電力調達のプランの策定、契約情報の管理、調達の実行等を管理する。蓄電池管理モジュール16Cは、蓄電池14に備わったセンサからの時系列情報に基づいて、蓄電池の温度、等価サイクル数、SOC、SOH等の電池の状態情報の監視、蓄電池の充放電の制御等を実行する。発電管理モジュール16Dは、太陽光発電装置12の装置情報の管理、発電情報等を管理する。 The demand management module 16A manages consumer information such as names and industries of each of a plurality of consumers, and also manages time-series data of power demand of each consumer. The procurement management module 16B manages the formulation of power procurement plans between the power generator 20 and the power trading market 21, management of contract information, execution of procurement, and the like. The storage battery management module 16C monitors battery status information such as the temperature of the storage battery, the number of equivalent cycles, SOC, and SOH, and controls charging and discharging of the storage battery, based on the time-series information from the sensor provided in the storage battery 14. do. The power generation management module 16D manages device information of the photovoltaic power generation device 12, power generation information, and the like.
 次に、コントローラによるエネルギーマネジメントの一例を図3のフローチャートを用いて説明する。コントローラは、毎日定時刻にこのフローチャートを実行して翌日の電力調達プランを策定する。需要管理モジュール16Aは、メモリに記録されている電力需要の管理テーブルを参照する。管理テーブルには、複数の需要家毎に、電力需要実績の時系列データが記録されている。電力管理モジュール16Aは、複数の需要家毎の翌日の電力需要を時系列解析という手法を用いて予測する(S200)。この手法は時間経過ごとに記録された数値列からモデルを作成し,将来の予測を行う分析手法である。 Next, an example of energy management by the controller will be explained using the flowchart in FIG. The controller executes this flowchart at a fixed time every day to formulate a power procurement plan for the next day. The demand management module 16A refers to the power demand management table recorded in the memory. In the management table, time-series data of actual power demand is recorded for each of a plurality of consumers. The power management module 16A predicts the next day's power demand for each of a plurality of consumers using a technique called time series analysis (S200). This method is an analysis method that creates a model from numerical sequences recorded over time and makes future predictions.
 需要管理モジュール16Aは、複数の需要家毎の予測需要を加算して、全需要家の予測電力需要を合計した合成需要を計算する(S202)。図4に合成需要のパターン、即ち、合成需要の一日の変動を示す。 The demand management module 16A adds the predicted demands for each of the multiple consumers, and calculates a combined demand that is the sum of the predicted power demands of all consumers (S202). FIG. 4 shows the pattern of synthetic demand, ie, the daily variation of synthetic demand.
 次に、発電管理モジュール16Dは、メモリの管理テーブルに記録された、太陽光発電の時系列情報を参照して、翌日の太陽光発電の電力を電力需要の予測と同様に予測する(S204)。図5に、予測された太陽光発電の発電パターン、即ち、太陽光発電一日の変動を示す。 Next, the power generation management module 16D refers to the time-series information of the photovoltaic power generation recorded in the management table of the memory, and predicts the power of the photovoltaic power generation for the next day in the same manner as the power demand prediction (S204). . FIG. 5 shows the predicted power generation pattern of photovoltaic power generation, that is, the fluctuation of photovoltaic power generation for one day.
 調達管理モジュール16Bは、合成需要の予測パターン(図4)と太陽光発電の予測パターン(図5)との差分を計算する(S206)。この差分が、小売電気事業者が調達すべき電力量、即ち、必要な調達量の変動パターンである。図6にこのパターンを示す。 The procurement management module 16B calculates the difference between the combined demand forecast pattern (Fig. 4) and the solar power generation forecast pattern (Fig. 5) (S206). This difference is the fluctuation pattern of the amount of electric power to be procured by the electricity retailer, that is, the necessary procurement amount. This pattern is shown in FIG.
 次に、調達管理モジュール16Bは、発電事業者との契約内容と調達すべき電力パターン(図6)とを比較して、調達量が契約に対して過不足があるか否かをチェックする(S208)。そこで、調達管理モジュール16Bは、メモリを参照して、契約情報を読み込む。小売電気事業者と発電事業者との契約は、kW(ピーク電力の値)、kWh(消費電力量の最大値)、供給パターン(消費電力の変動パターン)によって定められる。 Next, the procurement management module 16B compares the content of the contract with the power generation company with the pattern of power to be procured (FIG. 6), and checks whether the amount to be procured is excessive or short of the contract ( S208). Therefore, the procurement management module 16B refers to the memory and reads the contract information. The contract between the electricity retailer and the power generator is defined by kW (value of peak power), kWh (maximum value of power consumption), and supply pattern (fluctuation pattern of power consumption).
 調達管理モジュール16Bは、過不足が無いことを判定(S208:No)すると、蓄電池14の現在の運転パターンを変更する必要はないとしてフローチャートを終了する。一方、調達管理モジュール16Bは、過不足があることを判定(S208:Yes)すると、蓄電池14の運転パターンを変更するために、必要な調達量(図6)が発電事業者との契約の範囲を越えてしまう場合、即ち、調達しようとしている電力(図6)を確保できない場合には、蓄電池14からの放電によって不足分を賄うようにするため、不足分に必要な、即ち、放電量分の電力充電量を算出する(S210)。図7において、調達量のうち、発電事業者からの供給上限60を超える電力量62が不足する電力量である。 When the procurement management module 16B determines that there is no excess or deficiency (S208: No), it concludes that there is no need to change the current operation pattern of the storage battery 14, and ends the flowchart. On the other hand, when the procurement management module 16B determines that there is an excess or deficiency (S208: Yes), the required procurement amount (FIG. 6) is within the scope of the contract with the power generation company in order to change the operation pattern of the storage battery 14. , that is, if the power to be procured (FIG. 6) cannot be secured, the shortage is covered by discharging from the storage battery 14. is calculated (S210). In FIG. 7, the power amount 62 exceeding the supply upper limit 60 from the power generation company is the power amount that is insufficient among the procurement amount.
 不足分の電力を一般的に発電事業者から契約外の取引によって調達すると、市場から調達することよりもコストが高く、発電事業者との将来の契約にも影響が生じるために、計算機システム16は市場から調達することを優先してもよい。 Procurement of the shortfall of power from power producers through non-contractual transactions is generally more costly than procurement from the market, and will affect future contracts with power producers. may prefer to procure from the market.
 調達管理モジュール16Bは、翌日の市場での電力価格の予測情報を取得し、価格が低価格になる時間帯に電力を調達して蓄電池が放電分の容量を充電する計画を策定する(S212)。図8において、72が最低価格の時間帯であり、調達管理モジュール16Bは、この時間帯72の電力を余分に調達して、蓄電池管理モジュール16Cは、その電力を蓄電池14に充電する運転パターンを設定する。 The procurement management module 16B obtains the forecast information of the power price in the market for the next day, and formulates a plan to procure power during the time period when the price is low and to charge the storage battery to the discharged capacity (S212). . In FIG. 8, 72 is the lowest price time slot, the procurement management module 16B procures extra power during this time slot 72, and the storage battery management module 16C sets an operation pattern for charging the storage battery 14 with that power. set.
 蓄電池には出力値の制限があることから、必要な充電容量を電力の取引価格が最低価格である時間帯72での充電だけで達成できない場合は、調達管理モジュール16Bは、電力の取引価格が次に低い時間帯70でも充電する計画を作成する。したがって、蓄電池管理モジュール16Cは、図9に示すパターンで充放電を行うように蓄電池を運用する。即ち、蓄電池管理モジュール16Cは、符号70,72の時間帯で充電し、電力が不足する時間帯62で、充電した電力量を放電するように蓄電池14を運用する。 Since the storage battery has an output value limit, if the required charging capacity cannot be achieved only by charging during the time period 72 when the power transaction price is the lowest, the procurement management module 16B A plan for charging even in the next lowest time zone 70 is created. Therefore, the storage battery management module 16C operates the storage battery so as to charge and discharge in the pattern shown in FIG. That is, the storage battery management module 16C operates the storage battery 14 so as to charge the battery in the time slots 70 and 72 and discharge the charged power amount in the time slot 62 when the power is insufficient.
 蓄電池管理モジュール16Cは、調達管理モジュール16Bが作成した計画に基づいて蓄電池の充放電に伴う運転パターンを設定する。次いで、蓄電池管理モジュール16Cは、この運転パターンに基づいてシミュレーションを実行して、この運転パターンを実現できない制約、制限が蓄電池に存在するか否かチェックする(S214)。そこで、蓄電池管理モジュール16Cは、メモリの蓄電池状態情報テーブルを参照して、蓄電池の出力、温度、SOC、SOH、等価サイクル数をリードして、これ等に基づいて運転パターンの実現可能性をチェックする。 The storage battery management module 16C sets an operation pattern associated with charging and discharging of the storage battery based on the plan created by the procurement management module 16B. Next, the storage battery management module 16C performs a simulation based on this operation pattern to check whether or not the storage battery has restrictions or restrictions that prevent this operation pattern from being realized (S214). Therefore, the storage battery management module 16C refers to the storage battery status information table in the memory, reads the output, temperature, SOC, SOH, and equivalent cycle number of the storage battery, and checks the feasibility of the operation pattern based on these. do.
 例えば、蓄電池管理モジュール16Cは、蓄電池の温度が上限値を超えている場合、或いは、放電によって上限値を超えることが想定される場合には、蓄電池の運用の制限が必要であると判定し(S214:Yes)、放電によってさらに蓄電池の温度が上昇することを避けるために、蓄電池の運転パターンを制限、又は、抑制するようにパラメータを見直し(S218)、蓄電池の放電をキャンセルするか、蓄電池の放電量を少なくする等、蓄電池の運用を抑制する。蓄電池の運用の制限事由としては、蓄電池14の温度上昇の他、蓄電池の劣化度、蓄電池の容量の不足がある。蓄電池管理モジュール16Cは、制限の種類(温度、容量)により蓄電池の出力(kW)や放電時間(h)を自動で見直す。出力か時間のどちらのパラメータを優先的に見直すかを小売電気事業者が設定してもよい。 For example, when the temperature of the storage battery exceeds the upper limit value, or when it is assumed that the temperature of the storage battery exceeds the upper limit value due to discharge, the storage battery management module 16C determines that it is necessary to restrict the operation of the storage battery ( S214: Yes), in order to avoid a further rise in the temperature of the storage battery due to discharge, the parameters are reviewed so as to limit or suppress the operation pattern of the storage battery (S218), and discharge of the storage battery is canceled or Control the operation of the storage battery by, for example, reducing the amount of discharge. Reasons for restricting the operation of the storage battery include the temperature rise of the storage battery 14, the degree of deterioration of the storage battery, and the lack of capacity of the storage battery. The storage battery management module 16C automatically reviews the output (kW) and discharge time (h) of the storage battery according to the type of restriction (temperature, capacity). The electricity retailer may set which parameter, output or time, should be reviewed with priority.
 蓄電池の運用制限を具体的に説明する。図10Aに、蓄電池管理モジュール16Cによって導出された蓄電池の運用パターン、即ち、充放電タイミングを示す。蓄電池管理モジュール16Cは、等価サイクル数、SOH、SOCを参照し、この運転パターンに基づいて運転シミュレーションを実施する。図10Bは、シミュレーションの結果のSOC302と電池温度304との変動を示す。図10Bは、SOCは100%以下であって充電が可能であるものの、放電に伴い電池温度(T℃)304は、その極大値(304A)の領域で電池温度の上限値304Tを超えてしまう、ことを示している。 Concretely explain the operation restrictions of the storage battery. FIG. 10A shows the operating pattern of the storage battery derived by the storage battery management module 16C, that is, the charging/discharging timing. The storage battery management module 16C refers to the number of equivalent cycles, SOH, and SOC, and performs a driving simulation based on this driving pattern. FIG. 10B shows variations in SOC 302 and battery temperature 304 as a result of simulation. In FIG. 10B, although the SOC is 100% or less and charging is possible, the battery temperature (T ° C.) 304 exceeds the upper limit value 304T of the battery temperature in the region of its maximum value (304A) as it discharges. ,It is shown that.
 蓄電池管理モジュール16Cはこの温度超過を判定すると、蓄電池の運転パターン(図10A)のパラメータを制限して、制限したパラメータに基づいて運転シミュレーションを再度実施する。そこで、蓄電池管理モジュール16Cは蓄電池の運転制御パラメータである、出力(kW)、及び/又は、放電時間(h)を制限する。例えば、蓄電池管理モジュール16Cは、図10Aの符号300の範囲の放電容量を図10Cに示す如く除いて、放電電力量を抑制するように運転パターンを修正(S218)した上で再度シミュレーションを行う。図10Dはシミュレーションの結果を示す。図10Dは、蓄電池の属性である蓄電池温度の最大値304Aが上限値304T未満であることを示している。蓄電池管理モジュール16Cは、蓄電池の属性が制限の範囲に収まるまで運転パターンの補正と運転パターンのシミュレーションを繰り返す。このように、蓄電池管理モジュール16Cは、蓄電池14の温度を既述の至適温度の範囲に収まるように蓄電池の放電の態様を制御する。なお、蓄電池管理モジュール16Cは、放電量(図10A:300)を制限するのに合わせて、図10Cの破線310に示すように充電量を抑制することができる。 When the storage battery management module 16C determines this excess temperature, it limits the parameters of the operation pattern (FIG. 10A) of the storage battery, and performs the operation simulation again based on the limited parameters. Therefore, the storage battery management module 16C limits the output (kW) and/or the discharge time (h), which are operation control parameters of the storage battery. For example, the storage battery management module 16C removes the discharge capacity in the range indicated by reference numeral 300 in FIG. 10A as shown in FIG. 10C, corrects the operation pattern so as to suppress the discharge power amount (S218), and then performs the simulation again. FIG. 10D shows the results of the simulation. FIG. 10D shows that the maximum value 304A of the storage battery temperature, which is an attribute of the storage battery, is less than the upper limit 304T. The storage battery management module 16C repeats operation pattern correction and operation pattern simulation until the attribute of the storage battery falls within the limits. In this way, the storage battery management module 16C controls the discharging mode of the storage battery so that the temperature of the storage battery 14 is within the above-described optimum temperature range. In addition, the storage battery management module 16C can suppress the charge amount as indicated by the dashed line 310 in FIG. 10C in accordance with the restriction on the discharge amount (FIG. 10A: 300).
 調達管理モジュール16Bは、放電できない分の電力を市場から調達できるように電力の調達計画を変更する。蓄電池14に不足分の充電可能容量がない場合には、蓄電池管理モジュール16Cは充電を制限した上で放電するか、或いは、調達管理モジュール16Bは放電しない分の電力を市場から調達してもよい。 The procurement management module 16B changes the power procurement plan so that the power that cannot be discharged can be procured from the market. If the storage battery 14 does not have enough chargeable capacity, the storage battery management module 16C may limit the charging and then discharge, or the procurement management module 16B may procure from the market the amount of power that is not discharged. .
 このように、S216では、蓄電池管理モジュール16Cが蓄電池14の充放電の運転パターンを決定する。蓄電池管理モジュール16Cは、この運転パターンに基づいて翌日に蓄電池を運転する。 Thus, in S216, the storage battery management module 16C determines the operating pattern for charging and discharging the storage battery 14. The storage battery management module 16C operates the storage battery on the next day based on this operation pattern.
 既述のフローチャートの説明では、需要家に必要な電力調達量(kW)が発電事業者からの供給上限を超えている場合について説明したが、必要な電力調達量(図5)が発電事業者からの供給下限を下回っている部分を有している場合(S208:Yes)には、蓄電池管理モジュール16Cは両者の差分(過剰分)を充電する運転パターンを設定し、調達管理モジュール16Bはこの充電分を市場価格が最も高い時間帯で市場に売電すればよい。 In the explanation of the flowchart mentioned above, we explained the case where the power procurement amount (kW) required by the consumer exceeds the upper limit of supply from the power generation company, but the necessary power procurement amount (Fig. 5) is If there is a portion below the supply lower limit from the source (S208: Yes), the storage battery management module 16C sets an operation pattern for charging the difference (excess) between the two, and the procurement management module 16B sets this The charged power should be sold to the market during the time zone when the market price is the highest.
 コントローラは、図3のフローチャートを、電力を調達する前日の市場入札時間前に実行するが、必要に応じて、例えば、電力需要の当日の実測値そして発電量の実測値と、これらの前日の予測値との間に差異が生じる場合、当日30分毎にフローチャートを実行して、この差異を補正しつつ、スポット市場ではなく時間前市場の取引価格で電力の調達を行ってもよい。なお、充電容量は放電容量を蓄電池の充放電効率で除した値になる。 The controller executes the flowchart of FIG. 3 before the market bidding time on the day before power is procured. If there is a difference between the predicted value and the forecasted value, the flowchart may be executed every 30 minutes on the day to correct this difference and power may be procured at the trading price in the early market instead of the spot market. Note that the charge capacity is a value obtained by dividing the discharge capacity by the charge/discharge efficiency of the storage battery.
 次に本発明の第2の実施形態について説明する。既述の実施形態は不足している調達量を蓄電池の活用によって補うことを説明したが、この実施形態は、蓄電池の活用の可否をEMS16が判断する、ことに特徴を有する。 Next, a second embodiment of the present invention will be described. In the above-described embodiment, it was explained that the shortage of procurement amount is supplemented by utilizing the storage battery, but this embodiment is characterized in that the EMS 16 determines whether or not the storage battery can be utilized.
 既述のステップS208(図3)において、調達管理モジュール16Bが不足分62(図7)を検出すると、調達管理モジュール16Bは蓄電池の充放電によって不足分を補った場合のコストと不足分を市場から調達した場合のコストとの大小を比較し、コストが小さい方の方式を実行することを判定する。調達管理モジュール16Bは蓄電池の運用コストを次のように計算する。調達単価とは、電力取引市場21から電力を調達する際の単価である。 In step S208 (FIG. 3) described above, when the procurement management module 16B detects the shortage 62 (FIG. 7), the procurement management module 16B reports the cost and the shortage to the market when the shortage is compensated for by charging and discharging the storage battery. It compares the cost with the cost when it is procured from , and decides to execute the method with the lower cost. The procurement management module 16B calculates the operating cost of the storage battery as follows. A procurement unit price is a unit price for procuring power from the power trading market 21 .
 (充電時の調達単価×放電量×充放電効率)+(補機電力量×調達単価)
 充放電効率は蓄電池の劣化具合によって変動する。調達管理モジュール16Bは蓄電池の時系列データに基づいて最新の充放電効率を計算する。補機電力とは、主に蓄電池の温度を既述の反応至適温度に維持する機器、手段としてのヒータ、ファンに対して調達された電力である。調達単価は1日分の積算値である。
(Procurement unit price during charging x discharge amount x charging/discharging efficiency) + (Auxiliary power consumption x procurement unit price)
The charge/discharge efficiency varies depending on the degree of deterioration of the storage battery. The procurement management module 16B calculates the latest charging/discharging efficiency based on the time-series data of the storage battery. Auxiliary electric power is electric power procured mainly for devices, heaters, and fans as means for maintaining the temperature of the storage battery at the reaction optimum temperature described above. The procurement unit price is an integrated value for one day.
 調達管理モジュール16Bは不足分を市場から調達した場合のコストを次のように計算する。
 (調達単価×調達量)+(補機電力量×調達単価)
 蓄電池が使用されない場合でも、蓄電池をヒータで保温するために補機電力は必要である。蓄電池に放電が伴う場合には発熱のために、その分補機電力量は少なくてよい。調達管理モジュール16Bはこの補機電力量の減少分も計算してコストを比較する。
The procurement management module 16B calculates the cost of procuring the shortfall from the market as follows.
(Procurement unit price x Procurement volume) + (Auxiliary power consumption x Procurement unit price)
Even when the storage battery is not used, auxiliary electric power is necessary to keep the storage battery warm with the heater. When the storage battery is discharged, the amount of electric power for the auxiliary equipment may be reduced due to heat generation. The procurement management module 16B also calculates the decrease in the amount of electric power for auxiliary equipment and compares the costs.
 調達管理モジュール16Bが蓄電池を選択すると、図3のフローチャートのステップS210以降を実行する。一方、調達管理モジュール16Bが調達を選択すると、電力の不足分を電力の調達で補う計画を立てて図3のフローチャートを終了する。 When the procurement management module 16B selects a storage battery, it executes step S210 and subsequent steps in the flowchart of FIG. On the other hand, when the procurement management module 16B selects procurement, a plan is made to compensate for the shortage of power by procuring power, and the flow chart of FIG. 3 ends.
 次に本発明の第3の実施形態について説明する。既述の実施形態では、計算機システム16が蓄電池14の運転パターン(図9)を得るために、合成需要の予測(図4)と太陽光発電の予測(図5)とを演算によって求めていたが(図3:S200-S204)、この実施形態は、計算機システム16が電力の合成需要のパターンと太陽光発電のパターンとを夫々類型化し、電力の合成需要パターンのタイプと太陽光発電パターンのタイプとの組み合わせに基づいて蓄電池14の運転パターンを選択することによって、計算機システム16の計算負荷を軽減するようにした。特に、6-7時間にも及ぶ大容量の電力を貯蔵できるNAS電池を用いる場合、運転パターンをシンプルにすることで、計算機システム16への負荷(計算負荷やメンテナンス負荷等)をより軽減できる。 Next, a third embodiment of the present invention will be described. In the above-described embodiment, in order for the computer system 16 to obtain the operation pattern (FIG. 9) of the storage battery 14, the prediction of the combined demand (FIG. 4) and the prediction of the photovoltaic power generation (FIG. 5) were calculated. (FIG. 3: S200-S204), in this embodiment, the computer system 16 categorizes the combined power demand pattern and the photovoltaic power generation pattern, respectively, and classifies the type of combined power demand pattern and the photovoltaic power generation pattern. The calculation load of the computer system 16 is reduced by selecting the operation pattern of the storage battery 14 based on the combination with the type. In particular, when using a NAS battery that can store a large amount of power for 6 to 7 hours, the load on the computer system 16 (calculation load, maintenance load, etc.) can be further reduced by simplifying the operation pattern.
 先ず、電力の合成需要パターンと太陽光発電パターンとの類型化の事例について説明する。計算機システム16は、例えば、電力の合成需要の予測パターンを、
 (夏・冬(高需要期),春・秋(端境期))×(平日,休日)の4タイプに分類し、
 太陽光発電の予測パターンを、
 (晴れ,曇り,雨)×(夏,春・秋,冬)の9タイプに分類する。
First, an example of categorization of a composite power demand pattern and a photovoltaic power generation pattern will be described. The computer system 16, for example, predicts the forecast pattern of the combined power demand,
(summer/winter (high demand season), spring/autumn (off-season)) x (weekdays, holidays)
The forecast pattern of photovoltaic power generation is
It is classified into 9 types of (sunny, cloudy, rainy) x (summer, spring/autumn, winter).
 需要管理モジュール16Aは、メモリの需要家データベースに格納されている、電力需要の時系列情報を参照して一日の合成需要のパターンを4タイプの夫々に分類する。需要管理モジュール16Aは、タイプ毎の合成需要の複数のパターンを平均してタイプ毎に代表パターン(合成需要)を構成しこれをメモリの管理テーブルに記憶させておく。 The demand management module 16A refers to the time-series information on power demand stored in the consumer database in the memory, and classifies the patterns of combined demand for one day into four types. The demand management module 16A averages a plurality of patterns of synthetic demand for each type to form a representative pattern (composite demand) for each type, and stores this in the management table of the memory.
 さらに、発電管理モジュール16Dは、メモリの太陽光発電データベースに格納されている、太陽光発電電力の時系列情報を参照して一日の発電パターンを9タイプの夫々に分類する。発電管理モジュール16Dは、タイプ毎の複数のパターンを平均してタイプ毎に代表パターン(太陽光発電)を構成し、これをメモリの管理テーブルに記憶する。需要管理モジュール16Aと発電管理モジュール16Dとは夫々の代表パターンの設定を、定期的、例えば、月一回の頻度で更新すればよい。 Furthermore, the power generation management module 16D refers to the time-series information of the photovoltaic power generation stored in the photovoltaic power generation database in the memory, and classifies the power generation pattern of the day into each of nine types. The power generation management module 16D averages a plurality of patterns for each type to form a representative pattern (photovoltaic power generation) for each type, and stores this in a memory management table. The demand management module 16A and the power generation management module 16D may update their representative pattern settings periodically, for example, once a month.
 さらに、また、蓄電池管理モジュール16Cは、合成需要パターンのタイプと太陽光発電パターンのタイプとの36通りの組み合わせ毎に、予め蓄電池の運転パターンを設定し、これをメモリの管理テーブルに保存する。合成需要パターンのタイプと太陽光発電パターンのタイプとの組み合わせが決まると、必要な調達量のパターンが定まる。必要な調達量のパターンが決まると、発電事業者との契約条件に応じて調達量の不足分が生じる時間帯が分かる。 Furthermore, the storage battery management module 16C sets a storage battery operation pattern in advance for each of 36 combinations of the combined demand pattern type and the photovoltaic power generation pattern type, and stores this in a memory management table. Once the combination of the synthetic demand pattern type and the photovoltaic power generation pattern type is determined, the required procurement pattern is determined. Once the required procurement pattern is determined, it is possible to determine the time periods in which there will be a shortfall in the procurement volume according to the terms of the contract with the power producer.
 蓄電池管理モジュール16Cは、不足分が生じる時間帯を蓄電池14から放電するタイミングとし、一方、不足分に対する充電のタイミングは既述のとおり、電力の市場取引価格が低い時間帯でよい(図8参照)。電力の市場取引価格の動向は、季節・天候によって同様なパターンとなることが判っているために、調達管理モジュール16Bは、合成需要パターンのタイプと太陽光発電パターンのタイプとの組み合わせ毎に充電のタイミングを決定することができる。 The storage battery management module 16C determines the timing of discharging from the storage battery 14 during the period of time when the shortage occurs, while the timing of charging the shortage may be the time period when the market price of electricity is low (see FIG. 8). ). Since it is known that trends in the market transaction price of electricity follow similar patterns depending on the season and weather, the procurement management module 16B controls charging for each combination of the type of synthetic demand pattern and the type of solar power generation pattern. can determine the timing of
 したがって、蓄電池管理モジュール16Cは、合成需要パターンのタイプと太陽光発電パターンのタイプとの組み合わせ毎に、蓄電池14の充放電のタイミングからなる蓄電池の運転パターンを予め設定することができる。 Therefore, the storage battery management module 16C can preset a storage battery operation pattern consisting of charging and discharging timings of the storage battery 14 for each combination of the combined demand pattern type and the photovoltaic power generation pattern type.
 調達管理モジュール16Bは、電力の市場取引価格のパターンの時系列データを合成需要パターンのタイプと太陽光発電パターンのタイプとの組み合わせ毎に応じて統計的処理を行い、組み合わせ毎に市場価格の代表的パターンを作成し、これを計算機システム16のメモリ上で定期的に更新しておけばよい。 The procurement management module 16B performs statistical processing on the time-series data of the market transaction price pattern of electricity for each combination of the synthetic demand pattern type and the photovoltaic power generation pattern type, and represents the market price for each combination. A regular pattern is created and periodically updated in the memory of the computer system 16 .
 合成需要パターンのタイプと太陽光発電パターンのタイプとの組み合わせ、そして、蓄電池の運転パターンの割り当てについて図に基づいて説明する。図11Aは、合成需要パターンの複数のタイプのうち、季節が高需要期(夏・冬)であり、休平日の区別が「平日」のタイプのパターンを示す。図11Bは太陽光発電パターンの複数のタイプのうち、天候が曇りであり、季節が夏のタイプのパターンを示す。合成需要力パターンから太陽光発電パターンを減ずると、図11Cのように調達が必要な電力量のパターン(予測)が計算される。 The combination of the synthetic demand pattern type and the solar power generation pattern type, and the allocation of the storage battery operation pattern will be explained based on the diagram. FIG. 11A shows a pattern of a type in which the season is a high demand period (summer/winter) and the classification of holiday weekdays is "weekdays" among a plurality of types of synthetic demand patterns. FIG. 11B shows a pattern of cloudy weather and summer season among the plurality of types of photovoltaic power generation patterns. When the photovoltaic power generation pattern is subtracted from the composite demand pattern, the pattern (prediction) of the amount of power that needs to be procured is calculated as shown in FIG. 11C.
 調達管理モジュール16Bは、既述の図3のステップS208、そして、図7に示すように、図11Cの電力パターンに不足分(図11D:62)が生じることを判定するとメモリから、合成需要パターンのタイプが[高需要期(夏・冬),平日]であって、太陽光発電パターンのタイプが[曇り,夏]の組み合わせに対応する蓄電池の運転パターン(図11E)を選択して読み出し、蓄電池管理モジュール16Cにセットする。 The procurement management module 16B, in step S208 in FIG. 3 described above, and as shown in FIG. 7, when it determines that the power pattern in FIG. Select and read the storage battery operation pattern (FIG. 11E) corresponding to the combination of the type of [high demand period (summer/winter), weekday] and the type of photovoltaic power generation pattern [cloudy, summer], It is set in the storage battery management module 16C.
 図12Aは、合成需要パターンの複数のタイプのうち、季節が「端境期(春・秋)」であり、休平日の区別が「平日」のタイプのパターンを示す。図12Bは太陽光発電パターンの複数のタイプのうち、天候が「晴れ」であり、季節が「春」のタイプのパターンを示す。合成需要パターンから太陽光発電パターンを減ずると、図12Cのように調達が必要な電力パターン(予測)が計算される。調達管理モジュール16Bは、図12Cの電力パターンに不足分(図12D:62)が生じることを判定するとメモリから、合成需要パターンのタイプと太陽光発電パターンのタイプとの組み合わせに対応する蓄電池の運転パターン(図12E)を読み出して、蓄電池管理モジュール16Cにセットする。 FIG. 12A shows a pattern of a type in which the season is "between seasons (spring/autumn)" and the classification of holiday weekdays is "weekdays" among multiple types of synthetic demand patterns. FIG. 12B shows a pattern of a type in which the weather is "sunny" and the season is "spring" among the plurality of types of photovoltaic power generation patterns. By subtracting the photovoltaic power generation pattern from the composite demand pattern, the power pattern (forecast) that needs to be procured is calculated as shown in FIG. 12C. When the procurement management module 16B determines that there is a shortage (62 in FIG. 12D) in the power pattern in FIG. The pattern (FIG. 12E) is read and set in the battery management module 16C.
 次に、この実施形態の動作について説明する。需要管理モジュール16Aはカレンダー情報に基づいて、合成需要パターンのタイプ(図11A,図12A)をメモリから読み出す。次いで、発電管理モジュール16Dはカレンダー情報と気象情報に基づいて、太陽光発電パターンのタイプ(図11B,図12B)をメモリから読み出す。なお、カレンダー情報の代わりに、タイプを小売電気事業者が設定してもよい。 Next, the operation of this embodiment will be described. Based on the calendar information, the demand management module 16A retrieves the type of synthetic demand pattern (FIGS. 11A, 12A) from memory. Next, the power generation management module 16D reads the type of solar power generation pattern (FIGS. 11B and 12B) from memory based on the calendar information and the weather information. Note that the type may be set by the electricity retailer instead of the calendar information.
 次いで、調達管理モジュール16Bは、合成需要パターンのタイプと太陽光発電パターンのタイプとの組み合わせ(図11Aと図11B、図12Aと図12B)に基づいて、夫々必要な調達量(図11C,図12C)を計算する。調達管理モジュール16Bは、必要な調達量と上限値60とを比較して電力の不足分62(図11D、図12D)の有無を判定する。 Next, the procurement management module 16B determines the required procurement quantity (FIGS. 11C, 12B) based on the combination of the type of synthetic demand pattern and the type of solar power generation pattern (FIGS. 11A and 11B, FIGS. 12A and 12B), respectively. 12C) is calculated. The procurement management module 16B compares the required procurement amount with the upper limit value 60 to determine whether there is a power shortage 62 (FIGS. 11D and 12D).
 調達管理モジュール16Bは不足分62が無いと判定すると蓄電池14の運転パターンを設定する動作を終了し、反対に、不足分62を判定すると、メモリにアクセスして、合成需要パターンのタイプと太陽光発電パターンのタイプとの組み合わせ(図11Aと図11B、図12Aと図12B)に対応する、蓄電池14の運転パターン(図11E,図12E)を選択して読み出す。 When the procurement management module 16B determines that there is no shortage 62, it ends the operation of setting the operation pattern of the storage battery 14. Conversely, when it determines that there is a shortage 62, the procurement management module 16B accesses the memory to determine the type of the combined demand pattern and the sunlight. The operation pattern (FIGS. 11E, 12E) of the storage battery 14 corresponding to the combination with the type of power generation pattern (FIGS. 11A and 11B, FIGS. 12A and 12B) is selected and read out.
 調達管理モジュール16Bは選択した運転パターンを蓄電池管理モジュール16Cにセットする。次いで、蓄電池管理モジュール16Cは運転パターンを最適化する。即ち、蓄電池管理モジュール16Cは、蓄電池の劣化度、温度、充放電効率等蓄電池の属性に基づいて運転パターンを修正する、及び/また、蓄電池が他の目的で充放電の計画がある際にはこれを取り込んで、放電量、充電量、及び/又は、充放電のタイミングを調整して運転パターンを最適化した後、運転パターンに基づいて蓄電池14を動作させる。 The procurement management module 16B sets the selected operation pattern in the storage battery management module 16C. Battery management module 16C then optimizes the operating pattern. That is, the storage battery management module 16C corrects the operation pattern based on storage battery attributes such as the degree of deterioration of the storage battery, temperature, and charge/discharge efficiency, and/or when there is a plan to charge/discharge the storage battery for other purposes. After taking this in and adjusting the amount of discharge, the amount of charge, and/or the timing of charge/discharge to optimize the operation pattern, the storage battery 14 is operated based on the operation pattern.
 次に、本発明の第4の実施形態について説明する。この実施形態は、蓄電池が複数のユニットからなり、複数のユニット夫々の運転履歴に基づいて、蓄電池の定格出力、及び、定格容量を複数のユニット夫々に按分することに特徴を有する。複数のユニットごとに、運転履歴(等価サイクル数、SOH等)が異なる場合、複数のユニット全体としての転効率の向上や運用制限を回避するために、複数のユニット夫々の運転履歴に応じて複数のユニットの運転の割合が按分される必要がある。 Next, a fourth embodiment of the present invention will be described. This embodiment is characterized in that the storage battery consists of a plurality of units, and the rated output and rated capacity of the storage battery are apportioned to each of the plurality of units based on the operation history of each of the plurality of units. If the operation history (equivalent cycle number, SOH, etc.) differs for each of the multiple units, in order to improve the conversion efficiency of the multiple units as a whole and avoid operational restrictions, multiple units according to the operation history of each of the multiple units of the unit operation must be apportioned.
 図13は、本実施形態の機能ブロック図であり、蓄電池14は複数の蓄電池ユニット(1からX)を備えている。EMS16の蓄電池管理モジュール16Cは、複数のユニット夫々について、電池情報の時系列データを収集しており、時系列データに基づいて各ユニットの運転履歴を所定タイミング毎に計算してメモリの管理テーブルに更新記録する。蓄電池管理モジュール16Cは運転履歴として、電池の健全性の指標である、等価サイクル数とSOHを活用する。蓄電池管理モジュール16Cは、複数のユニット夫々の等価サイクル数とSOHとを所定タイミング毎に読み込んで、各ユニットについて蓄電池の健全さを比較する指標を計算する。この指標は、例えば、「1」以下で「0」より大きく、「1」に近いほどユニットが健全であること、例えば、劣化していないことを示すものである。この指標を便宜上健全係数と称することとする。蓄電池管理モジュール16Cは複数のユニット毎の健全係数を所定タイミングで計算し、結果をメモリの管理テーブルに更新記録する。 FIG. 13 is a functional block diagram of this embodiment, and the storage battery 14 includes a plurality of storage battery units (1 to X). The storage battery management module 16C of the EMS 16 collects time-series data of battery information for each of a plurality of units. Record updates. The storage battery management module 16C utilizes the number of equivalent cycles and SOH, which are indicators of battery soundness, as the operation history. The storage battery management module 16C reads the equivalent cycle number and SOH of each of the plurality of units at predetermined timings, and calculates an index for comparing the soundness of the storage battery for each unit. For example, the index is less than or equal to "1" and greater than "0", and the closer to "1", the healthier the unit is, for example, the less deteriorated. For the sake of convenience, this index is called the soundness factor. The storage battery management module 16C calculates health coefficients for each of a plurality of units at a predetermined timing, and updates and records the results in a memory management table.
 ユニットは健全係数が大きいほど低損失域の出力(kW)で容量(kWh)を出せるため、蓄電池管理モジュール16Cは健全係数の大きいユニットから順番に複数のユニットを組み合わせて運転する。そこで、蓄電池管理モジュール16Cは所定タイミング毎に管理テーブルにアクセスして、複数のユニット夫々の健全係数をリードする。次いで、蓄電池管理モジュール16Cは複数のユニットを健全係数の大きい順にランキングする。図14はこのランキングの一例である。 A unit with a higher soundness coefficient can produce more capacity (kWh) with an output (kW) in a low-loss region, so the storage battery management module 16C operates by combining multiple units in descending order of the soundness coefficient. Therefore, the storage battery management module 16C accesses the management table at predetermined timings to read the soundness coefficients of each of the plurality of units. Next, the storage battery management module 16C ranks the plurality of units in descending order of health factor. FIG. 14 is an example of this ranking.
 蓄電池管理モジュール16Cは、健全係数が上位のユニットから順に複数のユニットについて、ユニット毎の定格出力にユニット毎健全係数を乗じたものの累計と、ユニット毎の定格容量にユニット毎の健全係数を乗じたものの累計とが共に蓄電池の定格値を上回るまで、当該複数のユニットをランキング順に選択する。次いで、蓄電池管理モジュール16Cはこのように選択された複数のユニット夫々の充放電の運転パターンの計画を設定し、そして、蓄電池の運用時に当該複数のユニットを組み合わせて運転パターンに基づいて動作させる。このように、蓄電池管理モジュール16Cは、健全係数が高いユニットを優先して運転することにより、複数のユニット全体の運転履歴が平均化され、複数ユニット全体としての転効率を向上させ、複数ユニット全体の運用が制限されるおそれを少なくすることができる。 The storage battery management module 16C multiplies the rated output of each unit by the health factor for each unit and the rated capacity of each unit by the health factor for each unit for a plurality of units in order from the unit with the highest soundness factor. The plurality of units are selected in ranking order until the cumulative total of all the units exceeds the rated value of the storage battery. Next, the storage battery management module 16C sets a plan for the charging/discharging operation pattern of each of the plurality of units selected in this manner, and operates the plurality of units in combination based on the operation pattern during operation of the storage battery. In this way, the storage battery management module 16C preferentially operates a unit with a high soundness factor, thereby averaging the operation history of the entire plurality of units, improving the conversion efficiency of the plurality of units as a whole, and It is possible to reduce the risk of restrictions on the operation of
 また、蓄電池管理モジュール16Cは、複数のユニットを健全係数が上位のユニットから順に並べて、健全係数が高い(「1」に近い)ユニットはベース放電(大きな容量を放電)するものに使用する一方、健全係数が低い(「0」に近い)ユニットは微調整放電に使用しても良い。健全係数が低い(「0」に近い)ユニットを運転パターンに組み込まず、当日の需給ギャップ(需給予測のズレ)の調整に用いるため、計画(予測)と実績との差によるペナルティを回避することができる。更に、健全係数が低い(「0」に近い)ユニットの使用頻度を下げることで、寿命も延ばせて、その結果、設備更新時期を遅らせることもできる。 In addition, the storage battery management module 16C arranges the plurality of units in descending order of health coefficients, and uses units with high health coefficients (close to "1") for base discharge (discharge of large capacity). Units with low health factors (close to '0') may be used for fine-tuning discharge. Avoid penalties due to the difference between the plan (prediction) and the actual performance because units with low soundness coefficients (close to "0") are not included in the operation pattern and are used to adjust the supply-demand gap (deviation in supply-demand forecast) for the day. can be done. Furthermore, by reducing the frequency of use of units with low soundness coefficients (close to "0"), it is possible to prolong the life of the unit and, as a result, delay the timing of equipment renewal.
 本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.

Claims (12)

  1.  電力の小売事業者が調達する電力の需要家への供給を管理するエネルギーマネジメントシステムであって、
     コントローラとメモリとを有し、当該コントローラが当該メモリに記録されたエネルギーマネジメントプログラムを実行する計算機システムを備え、
     前記コントローラは、
     前記需要家の電力需要を管理する需要管理モジュールと、
     前記小売事業者による電力の調達を管理する調達管理モジュールと、
     前記小売事業者が調達した電力を充電し、そして、充電された電力を前記需要家に放電する産業用蓄電池を管理する蓄電池管理モジュールと、
     前記小売事業者の発電装置を管理する発電管理モジュールと、
     を備え、
     前記需要管理モジュールは、前記需要家の電力需要パターンを予測し、
     前記発電管理モジュールは、前記発電装置の発電パターンを予測し、
     前記調達管理モジュールは、前記電力需要パターンと前記発電パターンとに基づいて、前記小売事業者による電力調達パターンを算出し、当該電力調達パターンに基づいて電力調達の不足を判定し、
     前記蓄電池管理モジュールは、当該電力調達の不足を補うための放電と当該放電に対する充電とを前記蓄電池が実行できるように当該蓄電池の運転パターンを設定し、当該運転パターンに基づいて、前記調達管理モジュールが電力を調達する際に、当該蓄電池を運転する、
     エネルギーマネジメントシステム。
    An energy management system that manages the supply of electricity procured by an electricity retailer to consumers,
    A computer system having a controller and a memory, wherein the controller executes an energy management program recorded in the memory,
    The controller is
    a demand management module that manages the power demand of the consumer;
    a procurement management module that manages procurement of electricity by the retailer;
    a storage battery management module that manages an industrial storage battery that charges power procured by the retailer and discharges the charged power to the consumer;
    a power generation management module that manages the retailer's power generation equipment;
    with
    the demand management module predicts power demand patterns of the consumer;
    The power generation management module predicts a power generation pattern of the power generation device,
    The procurement management module calculates a power procurement pattern by the retailer based on the power demand pattern and the power generation pattern, determines a shortage of power procurement based on the power procurement pattern,
    The storage battery management module sets an operation pattern of the storage battery so that the storage battery can discharge to compensate for the shortage of power procurement and charge for the discharge, and based on the operation pattern, the procurement management module operates the storage battery when procuring power,
    Energy management system.
  2.  前記調達管理モジュールは、
     前記需要家の電力需要と前記発電装置の発電量との差分を発電事業者から調達し、
     当該差分のうち、前記発電事業者からの調達できない不足分を電力取引市場から調達する、
     請求項1記載のエネルギーマネジメントシステム。
    The procurement management module includes:
    Procure the difference between the power demand of the consumer and the power generation amount of the power generation device from a power generation business operator,
    Of the difference, procure from the power trading market the shortfall that cannot be procured from the power generation business operator;
    The energy management system according to claim 1.
  3.  前記蓄電池管理モジュールは、前記運転パターンに基づいて前記蓄電池の運転シミュレーションを実行し、当該蓄電池の属性が所定の制限値を超える場合には当該運転パターンを制限する、
     請求項2記載のエネルギーマネジメントシステム。
    The storage battery management module executes an operation simulation of the storage battery based on the operation pattern, and limits the operation pattern when the attribute of the storage battery exceeds a predetermined limit value.
    The energy management system according to claim 2.
  4.  前記調達管理モジュールは前記運転パターンの制限に基づいて電力を前記電力取引市場から調達する、
     請求項3記載のエネルギーマネジメントシステム。
    the procurement management module procures electricity from the electricity market based on the operating pattern restrictions;
    The energy management system according to claim 3.
  5.  前記蓄電池は放電時に発熱反応を伴うナトリウム硫黄電池であり、
     前記蓄電池管理モジュールは、当該蓄電池の温度を至適温度の範囲に収めるように当該蓄電池の放電の態様を制御する、
     請求項3、又は、4記載のエネルギーマネジメントシステム。
    The storage battery is a sodium-sulfur battery with an exothermic reaction during discharge,
    The storage battery management module controls the discharge mode of the storage battery so that the temperature of the storage battery is within an optimum temperature range.
    The energy management system according to claim 3 or 4.
  6.  前記調達管理モジュールは、
     前記電力調達の不足を判定すると、
     不足した電力を前記蓄電池からの充放電によって補う場合での前記電力取引市場からの電力調達コストと、当該不足した電力を当該蓄電池を利用せずに当該電力取引市場から調達する際の電力調達コストと、を比較し、
     前者の電力調達コストが後者の電力調達コストより低い場合に、前記蓄電池管理モジュールによって前記蓄電池の運転パターンが策定されるようにする、
     請求項1乃至5の何れか一項に記載のエネルギーマネジメントシステム。
    The procurement management module includes:
    When determining the shortage of power procurement,
    The power procurement cost from the power trading market when supplementing the power shortage by charging/discharging from the storage battery, and the power procurement cost when the power shortage is procured from the power trading market without using the storage battery. and compare
    When the former power procurement cost is lower than the latter power procurement cost, the operation pattern of the storage battery is formulated by the storage battery management module.
    The energy management system according to any one of claims 1 to 5.
  7.  前記前記調達管理モジュールは、前記蓄電池の補機電力量に対する電力を含めて前記電力調達コストを算出する、
     請求項6記載のエネルギーマネジメントシステム。
    The procurement management module calculates the power procurement cost including the power for the auxiliary power amount of the storage battery.
    The energy management system according to claim 6.
  8.  前記需要管理モジュールは前記メモリから前記需要家の電力需要パターンを選択し、
     前記発電管理モジュールは当該メモリから前記発電装置の発電パターンを選択し、
     前記調達管理モジュールは当該電力需要パターンと当該発電パターンとに基づいて、前記メモリから前記蓄電池の運転パターンを選択する、
     請求項1乃至7の何れか一項記載のエネルギーマネジメントシステム。
    the demand management module selects a power demand pattern of the consumer from the memory;
    The power generation management module selects a power generation pattern of the power generation device from the memory,
    The procurement management module selects an operation pattern of the storage battery from the memory based on the power demand pattern and the power generation pattern.
    The energy management system according to any one of claims 1-7.
  9.  前記蓄電池は複数のユニットから構成され、
     前記蓄電池管理モジュールは、
     当該複数のユニット夫々の運転履歴に基づいて、当該複数のユニットの中から所定数のユニットを選択し、
     当該所定数のユニットを組み合わせて前記運転パターンに基づいて運転する、
     請求項1乃至8の何れか一項記載のエネルギーマネジメントシステム。
    The storage battery is composed of a plurality of units,
    The storage battery management module
    selecting a predetermined number of units from among the plurality of units based on the operation history of each of the plurality of units;
    Combining the predetermined number of units and operating based on the operation pattern,
    The energy management system according to any one of claims 1 to 8.
  10.  前記蓄電池は複数のユニットから構成され、
     前記蓄電池管理モジュールは、
     当該複数のユニット夫々の運転履歴に基づいて、当該複数のユニットの健全係数を夫々算出し、
     当該健全係数の高い当該複数のユニットを組み合わせて前記運転パターンを設定する一方、当該健全係数の低いユニットは前記運転パターンに組み込まない、
     請求項1乃至8の何れか一項記載のエネルギーマネジメントシステム。
    The storage battery is composed of a plurality of units,
    The storage battery management module
    calculating the soundness factor of each of the plurality of units based on the operation history of each of the plurality of units;
    While setting the operation pattern by combining the plurality of units with the high health factor, units with the low health factor are not included in the operation pattern,
    The energy management system according to any one of claims 1 to 8.
  11.  電力の小売事業者が調達する電力の需要家への供給を管理するエネルギーマネジメント方法であって、当該方法を実施する計算機システムは、
     前記需要家の電力需要を管理し、
     前記小売事業者による電力の調達を管理し、
     前記小売事業者が調達した電力を充電し、そして、充電された電力を前記需要家に放電する産業用蓄電池を管理し、
     前記小売事業者の発電装置を管理し、
     前記需要家の電力需要パターンを予測し、
     前記発電装置の発電パターンを予測し、
     前記電力需要パターンと前記発電パターンとに基づいて、前記小売事業者による電力調達パターンを算出し、当該電力調達パターンに基づいて電力調達の不足を判定し、
     当該電力調達の不足を補うための放電と当該放電に対する充電とを前記蓄電池が実行できるように当該蓄電池の運転パターンを設定し、当該運転パターンに基づいて、電力を調達する際に当該蓄電池を運転する、
     エネルギーマネジメント方法。
    An energy management method for managing the supply of electric power procured by an electric power retailer to consumers, the computer system implementing the method comprising:
    managing the power demand of the consumer;
    manage the procurement of electricity by said retailer;
    manages an industrial storage battery that charges power procured by the retailer and discharges the charged power to the consumer;
    manage the retailer's power generation equipment;
    Predicting the power demand pattern of the consumer,
    Predicting the power generation pattern of the power generation device,
    calculating a power procurement pattern by the retailer based on the power demand pattern and the power generation pattern, and determining a shortage of power procurement based on the power procurement pattern;
    An operation pattern of the storage battery is set so that the storage battery can discharge to compensate for the shortage of power procurement and charge for the discharge, and the storage battery is operated when power is procured based on the operation pattern. do,
    Energy management method.
  12.  電力の小売事業者が調達する電力の需要家への供給を管理するエネルギーマネジメントをコンピュータに実現させるプログラムであって、コンピュータに、
     前記需要家の電力需要を管理する需要管理機能と、
     前記小売事業者による電力の調達を管理する調達管理機能と、
     前記小売事業者が調達した電力を充電し、そして、充電された電力を前記需要家に放電する産業用蓄電池を管理する蓄電池管理機能と、
     前記小売事業者の発電装置を管理する発電管理機能と、
     を実現させ、
     前記需要管理機能は、前記需要家の電力需要パターンを予測し、
     前記発電管理機能は、前記発電装置の発電パターンを予測し、
     前記調達管理機能は、前記電力需要パターンと前記発電パターンとに基づいて、前記小売事業者による電力調達パターンを算出し、当該電力調達パターンに基づいて電力調達の不足を判定し、
     前記蓄電池管理機能は、当該電力調達の不足を補うための放電と当該放電に対する充電とを前記蓄電池が実行できるように当該蓄電池の運転パターンを設定し、当該運転パターンに基づいて、前記調達管理機能が電力を調達する際に、当該蓄電池を運転する、
     プログラム。
    A program that enables a computer to realize energy management for managing the supply of electricity procured by an electricity retailer to consumers, the computer comprising:
    a demand management function that manages the power demand of the consumer;
    a procurement management function for managing power procurement by the retailer;
    A storage battery management function that manages an industrial storage battery that charges power procured by the retailer and discharges the charged power to the consumer;
    a power generation management function that manages the retailer's power generation device;
    to realize
    The demand management function predicts the power demand pattern of the consumer,
    The power generation management function predicts a power generation pattern of the power generation device,
    The procurement management function calculates a power procurement pattern by the retailer based on the power demand pattern and the power generation pattern, determines a shortage of power procurement based on the power procurement pattern,
    The storage battery management function sets an operation pattern of the storage battery so that the storage battery can discharge to compensate for the shortage of power procurement and charge for the discharge, and based on the operation pattern, the procurement management function operates the storage battery when procuring power,
    program.
PCT/JP2022/007031 2022-02-21 2022-02-21 Energy management system, energy management method, and program WO2023157314A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022580529A JP7279270B1 (en) 2022-02-21 2022-02-21 ENERGY MANAGEMENT SYSTEM, ENERGY MANAGEMENT METHOD AND PROGRAM
PCT/JP2022/007031 WO2023157314A1 (en) 2022-02-21 2022-02-21 Energy management system, energy management method, and program
JP2023077971A JP2023121751A (en) 2022-02-21 2023-05-10 Energy management system, energy management method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/007031 WO2023157314A1 (en) 2022-02-21 2022-02-21 Energy management system, energy management method, and program

Publications (1)

Publication Number Publication Date
WO2023157314A1 true WO2023157314A1 (en) 2023-08-24

Family

ID=86395848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007031 WO2023157314A1 (en) 2022-02-21 2022-02-21 Energy management system, energy management method, and program

Country Status (2)

Country Link
JP (2) JP7279270B1 (en)
WO (1) WO2023157314A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105105A1 (en) * 2011-01-31 2012-08-09 日本電気株式会社 Electrical power management system and electrical power management method
JP2014195346A (en) * 2013-03-28 2014-10-09 Daiwa House Industry Co Ltd Trial calculation device trial calculation method
JP2017070159A (en) * 2015-10-02 2017-04-06 株式会社日立製作所 Communication facility power demand management device and power demand management method
JP2017224208A (en) * 2016-06-16 2017-12-21 株式会社東芝 Storage battery control system, method and program
JP2018093652A (en) * 2016-12-06 2018-06-14 株式会社東芝 Charge/discharge planning device, method and program
JP2021039699A (en) * 2019-09-05 2021-03-11 株式会社日立製作所 Electric power procurement support method and system
JP2021051574A (en) * 2019-09-25 2021-04-01 京セラ株式会社 Consignment system and consignment method
JP2021087248A (en) * 2019-11-26 2021-06-03 ネクストエナジー・アンド・リソース株式会社 Information processing device and information processing method
JP2021087278A (en) * 2019-11-27 2021-06-03 京セラ株式会社 Self-consignment system and self-consignment method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017093193A (en) * 2015-11-12 2017-05-25 富士通株式会社 Power procurement adjustment program, power procurement adjustment device, and power procurement adjustment method
JP7216632B2 (en) * 2019-11-29 2023-02-01 Kddi株式会社 power management system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105105A1 (en) * 2011-01-31 2012-08-09 日本電気株式会社 Electrical power management system and electrical power management method
JP2014195346A (en) * 2013-03-28 2014-10-09 Daiwa House Industry Co Ltd Trial calculation device trial calculation method
JP2017070159A (en) * 2015-10-02 2017-04-06 株式会社日立製作所 Communication facility power demand management device and power demand management method
JP2017224208A (en) * 2016-06-16 2017-12-21 株式会社東芝 Storage battery control system, method and program
JP2018093652A (en) * 2016-12-06 2018-06-14 株式会社東芝 Charge/discharge planning device, method and program
JP2021039699A (en) * 2019-09-05 2021-03-11 株式会社日立製作所 Electric power procurement support method and system
JP2021051574A (en) * 2019-09-25 2021-04-01 京セラ株式会社 Consignment system and consignment method
JP2021087248A (en) * 2019-11-26 2021-06-03 ネクストエナジー・アンド・リソース株式会社 Information processing device and information processing method
JP2021087278A (en) * 2019-11-27 2021-06-03 京セラ株式会社 Self-consignment system and self-consignment method

Also Published As

Publication number Publication date
JPWO2023157314A1 (en) 2023-08-24
JP7279270B1 (en) 2023-05-22
JP2023121751A (en) 2023-08-31

Similar Documents

Publication Publication Date Title
US10509374B2 (en) Systems and methods for managing power generation and storage resources
Chen et al. Smart energy management system for optimal microgrid economic operation
Chen et al. Optimal allocation and economic analysis of energy storage system in microgrids
Wille-Haussmann et al. Decentralised optimisation of cogeneration in virtual power plants
Gupta et al. Modelling of hybrid energy system—Part II: Combined dispatch strategies and solution algorithm
CN111355265B (en) Micro-grid energy two-stage robust optimization method and system
Song et al. Energy storage modeling of inverter air conditioning for output optimizing of wind generation in the electricity market
Zhang et al. The performance of a grid-tied microgrid with hydrogen storage and a hydrogen fuel cell stack
US11916422B2 (en) Battery charge and discharge power control in a power grid
Ma et al. Comprehensive stochastic optimal scheduling in residential micro energy grid considering pumped-storage unit and demand response
Wakui et al. Predictive management for energy supply networks using photovoltaics, heat pumps, and battery by two-stage stochastic programming and rule-based control
JP2012205490A (en) Management system for composite storage battery energy and method
Wang et al. Operation of residential hybrid renewable energy systems: Integrating forecasting, optimization and demand response
KR20190105173A (en) Virtual power plant using energy storage system
Eshraghi et al. An assessment of the effect of different energy storage technologies on solar power generators for different power sale scenarios: The case of Iran
CN111049170B (en) Peak-shaving energy storage system considering temperature loss, operation optimization method and device
CN104901314A (en) Consumer apparatus operation management system and method
JP2021184682A (en) Storage battery management device, storage battery management method, and storage battery management program
US10742037B2 (en) Managing consumer energy demand
Mahani et al. Economic and operational evaluation of PV and CHP combined with energy storage systems considering energy and regulation markets
CN117200299B (en) Power control method and device of energy storage battery and electronic equipment
CN113746105A (en) Optimal control method, device, equipment and storage medium for power demand response
JP6903531B2 (en) Distributed power control device, distributed power control system and distributed power control method
JP7279270B1 (en) ENERGY MANAGEMENT SYSTEM, ENERGY MANAGEMENT METHOD AND PROGRAM
Vijayan et al. Residential demand side management using artificial intelligence

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022580529

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927212

Country of ref document: EP

Kind code of ref document: A1