WO2023157116A1 - Light distribution control device for vehicle - Google Patents

Light distribution control device for vehicle Download PDF

Info

Publication number
WO2023157116A1
WO2023157116A1 PCT/JP2022/006126 JP2022006126W WO2023157116A1 WO 2023157116 A1 WO2023157116 A1 WO 2023157116A1 JP 2022006126 W JP2022006126 W JP 2022006126W WO 2023157116 A1 WO2023157116 A1 WO 2023157116A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
overtaking
light distribution
distribution control
corner
Prior art date
Application number
PCT/JP2022/006126
Other languages
French (fr)
Japanese (ja)
Inventor
元貴 堀口
悟 井上
光昭 岡田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/006126 priority Critical patent/WO2023157116A1/en
Priority to JP2024500760A priority patent/JP7462861B2/en
Publication of WO2023157116A1 publication Critical patent/WO2023157116A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means

Definitions

  • the present disclosure relates to a vehicle light distribution control device, and more specifically, to prevent glare from being given to an overtaking vehicle that is overtaking the own vehicle when the own vehicle is traveling with high beams. .
  • Patent Document 1 a detection sensor that detects the blind spots on the front side and the rear side of the own vehicle is provided, and when another vehicle is detected approaching the own vehicle from the blind spots, the low beam is changed from the high beam to the low beam in advance. or turning off a part of the area in advance.
  • Patent Document 1 switches from a high beam to a low beam when detecting another vehicle approaching from a blind spot, or extinguishes a part of the area in advance by extinguishing the lamp that illuminates the other vehicle side. It was designed to uniformly turn off predetermined lamps when another vehicle approaches from the blind spot. That is, since the predetermined lamps are uniformly turned off until the other vehicle disappears out of the detection range after the other vehicle in the blind spot is sensed, the driver's field of vision is greatly sacrificed for a long time. There was a problem of making
  • the present disclosure has been made to solve the above-described problems, and even when an overtaking vehicle approaching from a blind spot is detected, the driver of the own vehicle does not give glare to the overtaking vehicle.
  • the purpose is to ensure the visibility of
  • a vehicle light distribution control device includes a receiving unit that receives ranging information output by ranging sensors that are provided in front and behind a vehicle and detects an overtaking vehicle that overtakes the own vehicle, and based on the ranging information.
  • a position calculation unit that detects the widthwise separation between the own vehicle and the passing vehicle and the corners of the passing vehicle, a relative speed calculation unit that calculates the relative speed of the passing vehicle based on the corners, a separation distance and Equipped with a glare generation direction calculator that predicts the direction of the passing vehicle based on the relative speed, and a light distribution controller that instructs the headlights to block light so as not to illuminate the predicted direction.
  • FIG. 4 is a diagram showing an example of a situation when a right front ranging sensor has started to detect an overtaking vehicle and a right rear ranging sensor has detected a left rear corner of the passing vehicle in the first embodiment;
  • the right front ranging sensor detects the left front corner of the passing vehicle and then detects the left side of the passing vehicle, and the right rear ranging sensor detects the left rear corner of the passing vehicle. It is a figure which shows an example of the situation which stopped detecting.
  • FIG. 7 is a block diagram showing a configuration example of a vehicle light distribution control device according to Embodiment 2; 9 is a flowchart for explaining the operation of the vehicle light distribution control device according to Embodiment 2; 1 is a diagram showing an example of a hardware configuration of a vehicle light distribution control device according to Embodiments 1 and 2; FIG.
  • FIG. 1 is a diagram showing an example of a mode of light distribution control by a vehicle light distribution control device 1 according to the first embodiment.
  • a vehicle 2 is a vehicle equipped with the vehicle light distribution control device 1 according to the first embodiment (hereinafter referred to as "own vehicle”).
  • the vehicle 3 is another vehicle (hereinafter referred to as "overtaking vehicle") that runs at a speed higher than the own vehicle 2 and overtakes the own vehicle 2.
  • the passing vehicle 3 before overtaking the own vehicle 2 is indicated by the passing vehicle 3a with a dotted line.
  • the overtaking vehicle 3 after overtaking the own vehicle 2 is indicated by the overtaking vehicle 3b in solid lines.
  • the own vehicle 2 is provided with distance measuring sensors 4L, 4R, 5L, and 5R on the front, rear, left, and right of the vehicle.
  • the left front ranging sensor is 4L
  • the right front ranging sensor is 4R
  • the left rear ranging sensor is 5L
  • the right rear ranging sensor is 5R.
  • Symbols FSL, FSR, RSL, and RSR indicate detection ranges of the ranging sensors 4L, 4R, 5L, and 5R.
  • Symbol Hi indicates the light distribution area of the running lights illuminated by the headlights of the own vehicle 2 .
  • the range Gl surrounded by the dashed line and the solid line in the light distribution area Hi is the range in which the driver of the overtaking vehicle 3 is caused to glare (hereinafter referred to as the "glare generation range”), that is, the headlights should be dimmed.
  • a region (hereinafter referred to as a “light shielding region”) is shown.
  • An arrow TP1 indicates the traveling direction of the own vehicle 2 .
  • the side mirrors of the overtaking vehicle 3 are indicated by symbol SM.
  • a symbol FC indicates a front corner of the overtaking vehicle 3 .
  • the symbol RC indicates the rear corner of the overtaking vehicle 3 .
  • An arrow TP2 indicates the traveling direction of the overtaking vehicle 3 .
  • the overtaking vehicle 3 is traveling in the right lane at a faster speed than the own vehicle 2, and will overtake the own vehicle 2 from the right rear of the own vehicle 2.
  • side mirror SM will be described as a left side mirror. The illustration of the right side mirror is omitted. Further, it is assumed that the front corner FC of the overtaking vehicle 3 is the left front corner, and the rear corner RC is the left rear corner.
  • the x-axis direction is the traveling direction of the vehicle, the y-axis direction is the vehicle width direction, and the z-axis direction is the vertical direction of the vehicle.
  • the vehicle light distribution control device 1 calculates the relative speed between the host vehicle 2 and the passing vehicle 3 and the inter-vehicle distance between the host vehicle 2 and the passing vehicle 3 in the vehicle width direction (hereinafter referred to as , “separation processing”), the direction of the overtaking vehicle 3 that gives glare to the driver of the overtaking vehicle 3 in the light distribution area Hi of the host vehicle 2 is accurately predicted.
  • the vehicular light distribution control device 1 suppresses the generation of glare to the driver of the overtaking vehicle 3 by not illuminating the predicted direction and shielding the glare generation range Gl.
  • the direction and timing of the overtaking vehicle 3 that generates glare to the driver of the overtaking vehicle 3 can be accurately predicted, the range in which the glare is generated can be shaded, and the decrease in the light distribution area of the own vehicle 2 can be minimized. Since it can be suppressed, it is possible to achieve light distribution that does not sacrifice the field of view of the driver of the own vehicle 2 .
  • the symbol X1 indicates the distance in the x-axis direction from the own vehicle 2 to the left front corner FC of the overtaking vehicle 3b.
  • the symbol X1 indicates the distance in the x-axis direction from the center front end FR of the own vehicle 2 to the left front corner FC of the overtaking vehicle 3 .
  • a symbol X2 indicates the distance in the x-axis direction from the center front end FR of the own vehicle 2 to the side mirror SM of the overtaking vehicle 3 .
  • the symbol ⁇ X indicates the distance between the left front corner FC of the overtaking vehicle 3 and the left side mirror SM.
  • symbol Y1 indicates the separation distance between own vehicle 2 and overtaking vehicle 3.
  • symbol Y2 indicates the distance in the y-axis direction from the center front end FR of the own vehicle 2 to the left side mirror SM of the overtaking vehicle 3 .
  • Symbol W is the width of the own vehicle 2 and is a known value determined for each vehicle type.
  • the symbol SD indicates the distance between the right front ranging sensor 4R and the right rear ranging sensor 5R (hereinafter referred to as "distance between ranging sensors").
  • the distance between ranging sensors SD is a known value that is determined for each vehicle type.
  • Symbol D is the distance in the x-axis direction from the right front ranging sensor 4R to the central front end FR of the vehicle 2, and is a known value determined for each vehicle type.
  • the angle ⁇ indicates the direction of the passing vehicle 3 that causes glare to the driver of the passing vehicle 3 (hereinafter referred to as "shading angle").
  • the vehicular light distribution control device 1 calculates the light shielding angle ⁇ based on the direction of the left side mirror SM of the overtaking vehicle 3 . This is because the direction of the left side mirror SM is the limit direction for giving glare to the driver because the light irradiated to the left side mirror SM is reflected and gives glare to the driver.
  • the vehicular light distribution control device 1 blocks light in the direction indicated by the predicted light shielding angle ⁇ and shields the glare generation range Gl.
  • FIG. 2 is a block diagram showing a configuration example of the vehicle light distribution control device 1 according to the first embodiment.
  • a forward ranging sensor 4 , a rear ranging sensor 5 , an imaging device 6 and a headlight 7 are connected to the vehicle light distribution control device 1 .
  • the distance measurement sensor is an ultrasonic sensor, and transmits distance measurement information including information on the detection time and detection distance of the search wave to the receiving unit 11, which will be described later.
  • a forward ranging sensor 4 and a rear ranging sensor 5 detect an overtaking vehicle 3 overtaking the own vehicle 2 .
  • the forward ranging sensors 4 are ranging sensors 4R and 4L provided on the left and right sides in front of the vehicle 2 as shown in FIG.
  • the rear ranging sensors 5 are ranging sensors 5R and 5L provided on the left and right sides behind the vehicle 2 as shown in FIG.
  • the front ranging sensor 4 is the right front ranging sensor 4R
  • the rear ranging sensor 5 is the right rear ranging sensor 5R.
  • the ranging sensor may be a millimeter wave radar or LiDAR (Light Detection And Ranging).
  • the imaging device 6 is provided in the own vehicle 2 so as to photograph the vehicle traveling direction of the own vehicle 2 .
  • the imaging device 6 captures an image of the direction in which the vehicle is traveling, and also detects a vehicle ahead of the own vehicle 2, that is, an overtaking vehicle 3, based on the captured image.
  • the imaging device 6 transmits the detected direction of the passing vehicle 3 to the light distribution control unit 15, which will be described later.
  • the imaging device 6 detects the passing vehicle 3 by detecting the rear lamp (not shown) of the passing vehicle 3, but the present invention is not limited to this.
  • the headlights 7 include headlights for passing (low beam) and headlights for running (high beam).
  • the running headlamp is a variable light distribution lamp (hereinafter referred to as "ADB (Advanced Driving Beam)”) capable of controlling a light distribution pattern.
  • ADB Advanced Driving Beam
  • ADB can block certain areas and illuminate others.
  • the vehicle light distribution control device 1 includes a receiver 11 , a position calculator 12 , a relative velocity calculator 13 , a glare generation direction calculator 14 and a light distribution controller 15 .
  • the receiving unit 11 receives ranging information transmitted by the right front ranging sensor 4R and the right rear ranging sensor 5R. The receiving unit 11 then transmits the received ranging information to the position calculating unit 12 as time-series information.
  • the position calculation unit 12 detects the separation distance Y1 between the host vehicle 2 and the passing vehicle 3 and the corner of the passing vehicle 3 based on the distance measurement information transmitted by the receiving unit 11 .
  • the corner is the left front corner FC of the overtaking vehicle 3 .
  • the position calculation unit 12 specifies each distance measurement information when the right front distance measurement sensor 4R and the right rear distance measurement sensor 5R detect the left front corner FC of the overtaking vehicle 3, and transmits the information to the relative speed calculation unit 13. . Further, the position calculation unit 12 transmits the separation distance Y1 and distance measurement information when the right front distance measurement sensor 4R detects the left front corner FC to the glare generation direction calculation unit 14 .
  • the relative speed calculator 13 calculates the relative speed of the overtaking vehicle 3 based on the corner detected by the position calculator 12 . Specifically, the relative speed calculator 13 calculates the relative speed Vr of the overtaking vehicle 3 based on the detection time included in each distance measurement information transmitted from the position calculator 12 .
  • the relative speed calculator 13 detects the front left corner FC of the overtaking vehicle 3 at the time T1 included in the distance measurement information when the front right ranging sensor 4R detects the front left corner FC of the overtaking vehicle 3.
  • the relative speed Vr of the overtaking vehicle 3 is calculated by Equation (1) using the time T2 included in the distance measurement information when FC is detected and the distance SD between the distance measurement sensors.
  • the relative velocity calculator 13 then transmits the calculated relative velocity Vr to the glare generation direction calculator 14 .
  • the glare generation direction calculation unit 14 predicts the direction of the passing vehicle 3 based on the separation distance Y1 transmitted by the position calculation unit 12 and the relative speed Vr transmitted by the relative speed calculation unit 13 . Specifically, the glare generation direction calculator 14 calculates the light shielding angle ⁇ using the above-described equation (3) using the separation distance Y1 and the relative velocity Vr. The glare generation direction calculation unit 14 then transmits the predicted direction to the light distribution control unit 15 .
  • the light distribution control unit 15 instructs the headlights 7 to block part of the light distribution so as not to illuminate the direction of the passing vehicle 3 transmitted by the glare generation direction calculation unit 14 . Further, when the passing vehicle 3 is detected by the imaging device 6 , the light distribution control unit 15 controls the headlights 7 so as not to illuminate the passing vehicle 3 based on the direction of the passing vehicle 3 received from the imaging device 6 . instruct to block part of the light distribution. That is, until the passing vehicle 3 is detected by the imaging device 6, the light distribution control unit 15 performs light distribution control based on the direction calculated by the glare generation direction computing unit 14, and the overtaking vehicle 3 is detected by the imaging device. After detection by 6 , light distribution control is performed based on the information output by imaging device 6 .
  • FIG. 3 is a flow chart for explaining the operation of the vehicle light distribution control device 1 according to the first embodiment.
  • the overtaking vehicle 3 overtakes the own vehicle 2 from the right rear at a higher speed than the own vehicle 2.
  • FIG. 3 is a flow chart for explaining the operation of the vehicle light distribution control device 1 according to the first embodiment.
  • the overtaking vehicle 3 overtakes the own vehicle 2 from the right rear at a higher speed than the own vehicle 2.
  • the right front ranging sensor 4R and the right rear ranging sensor 5R are driven. Then, the right front ranging sensor 4R and the right rear ranging sensor 5R transmit ranging information to the receiving section 11 (step ST101).
  • the receiving unit 11 receives the ranging information transmitted by the right rear ranging sensor 5R ("YES" in step ST102), it determines that there is an overtaking vehicle 3, and converts the ranging information into time-series information. , to the position calculation unit 12 . After that, the processing of the vehicle light distribution control device 1 proceeds to step ST103.
  • step ST102 determines that there is no overtaking vehicle 3, and determines that there is no overtaking vehicle 3.
  • the light control device 1 repeats the process of step ST102.
  • FIG. 4 is a diagram showing an example of a situation in which the right rear ranging sensor 5R begins to detect the overtaking vehicle 3 approaching from the right rear of the own vehicle 2.
  • FIG. 4A is a diagram showing an example of the positional relationship between the own vehicle 2 and the passing vehicle 3 when the passing vehicle 3 enters the detection range RSR from the outside of the detection range RSR of the right rear ranging sensor 5R.
  • 4B shows distance measurement information output by the right rear distance measurement sensor 5R and the right front distance measurement sensor 4R until the overtaking vehicle 3 approaches from the right rear of the own vehicle 2 and the positional relationship shown in FIG. 4A is established.
  • the vertical axis is time and the horizontal axis is the detected distance output by the range finding sensor, and the results of detection by the range finding sensor are plotted.
  • plotted points t51 and t52 are ranging information output by the right rear ranging sensor 5R.
  • a plot point t51 indicates the detection distance and the detection time when the right rear ranging sensor 5R detects the passing vehicle 3 for the first time. In the following description, the time at which the right rear ranging sensor 5R first detects the overtaking vehicle 3 will be used as a reference.
  • a plot point t52 indicates distance measurement information when the right rear distance measurement sensor 5R detects the overtaking vehicle 3 approaching the host vehicle 2 thereafter.
  • the passing vehicle 3 is not within the detection range FSR of the front right ranging sensor 4R, there is no plotted point indicating the detection result of the front right ranging sensor 4R in FIG. 4B.
  • the right rear ranging sensor 5R transmits ranging information corresponding to the plot points t51 and t52 to the receiving section 11.
  • the receiving unit 11 receives the ranging information transmitted by the right rear ranging sensor 5R. Since the receiving unit 11 has received the ranging information transmitted by the right rear ranging sensor 5R ("YES" in step ST102), it determines that there is an overtaking vehicle 3, and converts the ranging information into time-series information. , to the position calculation unit 12 .
  • the position calculation unit 12 specifies the distance measurement information when the left front corner FC of the overtaking vehicle 3 is detected by the right rear distance measurement sensor 5R based on the distance measurement information transmitted by the reception unit 11. (Step ST103).
  • FIG. 5 is a diagram showing the situation when the overtaking vehicle 3 moves further forward from the situation shown in FIG.
  • FIG. 5 is a diagram showing an example of a situation in which the right rear ranging sensor 5R detects the left side of the overtaking vehicle 3 after detecting the left front corner FC of the overtaking vehicle 3.
  • FIG. 5A shows the positional relationship between the own vehicle 2 and the passing vehicle 3 when the right rear ranging sensor 5R detects the left front corner FC of the passing vehicle 3 and then detects the left side of the passing vehicle 3. It is a figure which shows an example.
  • FIG. 5B shows an example of ranging information output by the right rear ranging sensor 5R and the right front ranging sensor 4R from the time the overtaking vehicle 3 approaches from the right rear of the own vehicle 2 to the situation in FIG. 5A.
  • FIG. 4 is a diagram showing; In FIG. 5B, plotted points t53 to t55 are ranging information output by the right rear ranging sensor 5R from the situation in FIG. 4A to the situation in FIG. 5A.
  • a plot point t ⁇ b>53 indicates distance measurement information when the right rear distance measurement sensor 5 ⁇ /b>R detects the left front corner FC of the overtaking vehicle 3 .
  • Plot points t54 and t55 indicate distance measurement information when the right rear distance measurement sensor 5R detects the left side of the overtaking vehicle 3.
  • the position calculating unit 12 specifies ranging information when the left front corner FC of the overtaking vehicle 3 is detected by the right rear ranging sensor 5R. Specifically, the position calculation unit 12 selects the first ranging information among the plurality of ranging information in the range where the detection distance is almost constant with little variation in the ranging information of the right rear ranging sensor 5R. That is, the plot point t53 in FIG. 5B is specified as the distance measurement information when the left front corner FC is detected by the right rear distance measurement sensor 5R (step ST103). The position calculation unit 12 then transmits the specified distance measurement information t ⁇ b>53 to the relative speed calculation unit 13 .
  • step ST104 when the receiving unit 11 receives the ranging information transmitted by the right front ranging sensor 4R ("YES" in step ST104), the overtaking vehicle 3 is detected by the right front ranging sensor 4R. If so, it is determined that the overtaking vehicle 3 has advanced to the side of the own vehicle 2, and the processing of the vehicle light distribution control device 1 proceeds to step ST105. On the other hand, if the receiver 11 has not received the ranging information transmitted by the right front ranging sensor 4R ("NO" in step ST104), the overtaking vehicle 3 has advanced to the side of the own vehicle 2. The vehicular light distribution control device 1 repeats the process of step ST104.
  • FIG. 6 is a diagram showing a situation when the overtaking vehicle 3 moves further forward from the situation shown in FIG.
  • FIG. 6 is a diagram showing an example of a situation when the right front ranging sensor 4R has started to detect the passing vehicle 3 and the right rear ranging sensor 5R has detected the left rear corner RC of the passing vehicle 3.
  • FIG. 6A shows when the overtaking vehicle 3 moves from outside the detection range FSR of the right front ranging sensor 4R into the detection range FSR, and the right rear ranging sensor 5R detects the left rear corner RC of the overtaking vehicle 3.
  • FIG. 6A shows when the overtaking vehicle 3 moves from outside the detection range FSR of the right front ranging sensor 4R into the detection range FSR, and the right rear ranging sensor 5R detects the left rear corner RC of the overtaking vehicle 3.
  • FIG. 6A shows when the overtaking vehicle 3 moves from outside the detection range FSR of the right front ranging sensor 4R into the detection range FSR, and the right rear ranging sensor 5R detects the left rear corner
  • FIG. 6B shows an example of ranging information output by the right rear ranging sensor 5R and the right front ranging sensor 4R from the time the overtaking vehicle 3 approaches from the right rear of the own vehicle 2 to the situation in FIG. 6B.
  • FIG. 4 is a diagram showing;
  • plotted points t56 and t57 are ranging information output by the right rear ranging sensor 5R from the situation in FIG. 5A to the situation in FIG. 6A.
  • a plot point t41 and a plot point t42 are ranging information output by the right front ranging sensor 4R.
  • a plot point t56 is distance measurement information when the right rear distance measurement sensor 5R detects the left side of the overtaking vehicle 3.
  • FIG. A plot point t57 is distance measurement information when the right rear distance measurement sensor 5R detects the left rear corner RC of the overtaking vehicle 3.
  • FIG. Since the own vehicle 2 and the passing vehicle 3 are running side by side, the variation in the detection distance between the plotted points t56 and t57 decreases and becomes almost constant, like the plotted points t53 to t55.
  • a plot point t41 indicates distance measurement information when the right front distance measurement sensor 4R first detects the overtaking vehicle 3.
  • a plot point t42 indicates distance measurement information when the forward right distance measurement sensor 4R detects the overtaking vehicle 3 that has moved forward thereafter.
  • the receiving unit 11 receives the ranging information output by the right rear ranging sensor 5R and the right front ranging sensor 4R (step ST104).
  • the receiver 11 Since the receiver 11 has received the ranging information transmitted by the right front ranging sensor 4R ("YES" in step ST104), it determines that the overtaking vehicle 3 has advanced to the side of the own vehicle 2. Then, the distance measurement information output from the right rear distance measurement sensor 5R and the right front distance measurement sensor 4R is transmitted to the position calculation unit 12 as time-series information.
  • the position calculation unit 12 specifies the distance measurement information when the right front distance measurement sensor 4R detects the left front corner FC of the overtaking vehicle 3 based on the distance measurement information transmitted by the reception unit 11. (step ST105). After that, the position calculation section 12 calculates the separation distance Y1 between the own vehicle 2 and the overtaking vehicle 3 based on the distance measurement information of the right rear distance measurement sensor 5R (step ST106).
  • FIG. 7 is a diagram showing a situation when the overtaking vehicle 3 has moved further forward from the situation shown in FIG.
  • FIG. 7 shows that the right front ranging sensor 4R detects the left front corner FC of the overtaking vehicle 3 and then detects the left side of the overtaking vehicle 3, and the right rear ranging sensor 5R detects the left front corner FC of the overtaking vehicle 3.
  • FIG. 10 is a diagram showing an example of a situation in which the left rear corner RC is no longer detected;
  • FIG. 7A shows that the right front ranging sensor 4R detects the left front corner FC of the passing vehicle 3 and then detects the left side of the passing vehicle 3, and the left rear corner RC of the passing vehicle 3 is detected on the right side.
  • FIG. 4 is a diagram showing an example of the positional relationship between the own vehicle 2 and the overtaking vehicle 3 when the vehicle moves out of the detection range RSR of the rear ranging sensor 5R.
  • FIG. 7B shows an example of ranging information output by the right rear ranging sensor 5R and the right front ranging sensor 4R from the time the overtaking vehicle 3 approaches from the right rear of the own vehicle 2 to the situation in FIG. 7A.
  • FIG. 4 is a diagram showing;
  • plotted points t58 and t59 are ranging information output by the right rear ranging sensor 5R from the situation in FIG. 6A to the situation in FIG. 7A.
  • Plotted points t43 to t45 are ranging information output by the right front ranging sensor 4R.
  • Plotted points t58 and t59 are plotted when the overtaking vehicle 3 moves away from the right rear ranging sensor 5R, that is, when it moves out of the detection range RSR from within the detection range RSR. This is ranging information output by 5R. Since the overtaking vehicle 3 moves away from the right rear ranging sensor 5R, the detection distance increases as time elapses.
  • a plot point t43 indicates distance measurement information when the right front distance measurement sensor 4R detects the left front corner FC of the overtaking vehicle 3.
  • FIG. A plot point t44 and a plot point t45 indicate distance measurement information when the right front distance measurement sensor 4R detects the left side of the overtaking vehicle 3.
  • the position calculating unit 12 specifies ranging information when the front left corner FC of the overtaking vehicle 3 is detected by the forward right ranging sensor 4R. Specifically, the position calculation unit 12 selects the first distance measurement information among the plurality of distance measurement information in the range where the detection distance is almost constant with little variation in the distance measurement information of the right front distance measurement sensor 4R. That is, the plotted point t43 in FIG. 7B is specified as the distance measurement information in which the left front corner FC is detected by the right front distance measurement sensor 4R (step ST105). The position calculation unit 12 then transmits the specified distance measurement information t ⁇ b>43 to the relative speed calculation unit 13 .
  • the position calculation unit 12 calculates the distance Y1 between the own vehicle 2 and the overtaking vehicle 3 based on the distance measurement information output by the right rear distance measurement sensor 5R (step ST106). Specifically, when the right front ranging sensor 4R detects the left front corner FC of the overtaking vehicle 3, the position calculation unit 12 determines that the distance measurement information from the right rear ranging sensor 5R has variations in the detected distance.
  • the separation distance Y1 is calculated as an average value of a plurality of pieces of distance measurement information within a small and substantially constant range, for example, the detection distance from the plot point t54 to the plot point t56. Then, the position calculation unit 12 transmits distance measurement information t43 when the distance Y1 and the left front corner FC are detected by the right front distance measurement sensor 4R to the glare occurrence direction calculation unit 14 .
  • the relative speed calculator 13 calculates the relative speed of the overtaking vehicle 3 based on the corner detected by the position calculator 12 (step ST107). Specifically, the relative speed Vr of the passing vehicle 3 is calculated based on each time when the left front corner FC of the passing vehicle 3 is detected by the right front ranging sensor 4R and the right rear ranging sensor 5R (step ST107). ). Then, the overtaking vehicle 3 transmits the calculated relative velocity Vr to the glare generation direction calculator 14 .
  • the relative velocity calculation unit 13 receives from the position calculation unit 12 the detection time T1 included in the distance measurement information t43 when the right front distance measurement sensor 4R detects the left front corner FC, the right rear distance measurement The overtaking vehicle 3 is calculated (step ST107). The relative velocity calculator 13 then transmits the relative velocity Vr to the glare generation direction calculator 14 .
  • the glare generation direction calculation unit 14 predicts the direction of the passing vehicle based on the separation distance calculated by the position calculation unit 12 and the relative speed of the passing vehicle 3 calculated by the relative speed calculation unit 13 (step ST108). . Specifically, the light shielding angle ⁇ is calculated based on the formula (3) described above. Then, the light distribution control unit 15 instructs the headlight 7 to block part of the light distribution so as not to emit light in the glare generation direction calculated by the glare generation direction calculation unit 14 (step ST109).
  • the passing vehicle 3b indicated by the solid line is an example of the situation when the passing vehicle 3 overtakes the own vehicle 2, that is, the situation of the passing vehicle 3 predicted by the glare generation direction calculation unit 14.
  • the passing vehicle 3b is an example of the situation of the passing vehicle 3 T seconds after the left front corner FC of the passing vehicle 3 is detected by the right front ranging sensor 4R.
  • the glare generation direction calculation unit 14 receives distance measurement information from the position calculation unit 12 when the separation distance Y1 and the left front corner FC are detected by the right front distance measurement sensor 4R. Also, the glare generation direction calculation unit 14 receives the relative speed Vr from the relative speed calculation unit 13 . Then, the glare generation direction calculation unit 14 predicts the direction of the overtaking vehicle 3b after T seconds when the overtaking vehicle 3 continues traveling at the relative speed Vr after the detection of the left front corner FC. Specifically, the glare generation direction calculator 14 calculates the light shielding angle ⁇ by the above-described formula (3) (step ST108).
  • the light distribution control unit 15 instructs the headlight 7 to block part of the light distribution so as not to irradiate the glare generation direction transmitted by the glare generation direction calculation unit 14, that is, the direction of the blocking angle ⁇ . (Step ST109). Specifically, the light distribution control unit 15 instructs the headlight 7 to block light based on the blocking angle ⁇ so as not to irradiate the glare generation range Gl shown in FIG. 1 .
  • step ST110 When the passing vehicle 3 is detected by the imaging device 6 and the direction of the passing vehicle 3 transmitted by the imaging device 6 is received (“YES” in step ST110), the light distribution control unit 15 changes the received direction. The headlight 7 is instructed to shield part of the light distribution so as not to irradiate (step ST111). On the other hand, if the passing vehicle 3 is not detected by the imaging device 6 ("NO" in step ST110), the process returns to step ST108.
  • the glare generation range Gl changes according to the direction of the passing vehicle 3 that changes with the passage of time. This is for controlling the light shielding area based on information such as the relative velocity Vr. Specifically, the vehicular light distribution control device 1 predicts the direction of the passing vehicle 3 when the passing vehicle 3 continues traveling at the current relative speed Vr, and the glare of the passing vehicle 3 occurs in the predicted direction. Calculating the range Gl.
  • the light shielding control following the direction of the overtaking vehicle 3 described above is performed in a short period from when the overtaking vehicle 3 is positioned in front of the own vehicle 2 until it is detected by the imaging device 6. Even if the vehicle speed of the overtaking vehicle 3 changes, no large error occurs.
  • the vehicle light distribution control device 1 gives glare to the driver of the passing vehicle in the light distribution area of the own vehicle based on the relative speed and distance from the passing vehicle, and accurately determines the direction of the passing vehicle. predict to The vehicular light distribution control device 1 suppresses the occurrence of glare to the driver of the overtaking vehicle by not emitting the light in the predicted direction. In other words, it is possible to accurately predict the direction and timing of the overtaking vehicle that causes glare to the driver of the overtaking vehicle, shade the range in which glare is generated, and minimize the decrease in the light distribution area of the own vehicle. can.
  • the passing vehicle even if the passing vehicle overtakes the own vehicle from the blind spot of the imaging device that images the front of the own vehicle, the glare to the passing vehicle is suppressed and the visibility of the driver of the own vehicle is sacrificed for a long time. can be suppressed.
  • the direction of the overtaking vehicle 3, that is, the light shielding angle ⁇ is calculated based on the center front end FR of the own vehicle 2, it is not limited to this.
  • the light shielding angle ⁇ may be calculated based on the position of the right headlight of the own vehicle 2 .
  • the distance X2 is the distance from the right headlight of the own vehicle 2 to the left side mirror SM of the overtaking vehicle 3 in the x-axis direction.
  • the distance Y2 is the distance in the y-axis direction from the right headlight of the own vehicle 2 to the left side mirror SM of the overtaking vehicle 3 .
  • the distance D is the distance in the x-axis direction from the right front ranging sensor 4R to the right headlight, and a known value determined for each vehicle type may be used. Also, since the distance from the right side of the vehicle 2 to the right headlight is a known value that is determined for each vehicle type, the distance Y2 can be calculated by adding the distance Y1 to that distance.
  • FIG. 8 is a diagram showing a configuration example of a vehicle light distribution control device 1a according to Embodiment 2.
  • a vehicle light distribution control device 1a according to the second embodiment has a configuration in which a vehicle length calculation unit 16 is added to the vehicle light distribution control device 1 of the first embodiment shown in FIG.
  • FIG. 8 parts identical or corresponding to those in FIG.
  • the vehicle light distribution control device 1 determines the vehicle type of the overtaking vehicle 3 by calculating the vehicle length of the overtaking vehicle 3, and based on the vehicle type, the position of the left side mirror SM of the overtaking vehicle 3, specifically, estimates the distance ⁇ X between the left front corner FC and the left side mirror SM.
  • the vehicle type is information indicating whether the vehicle is a compact vehicle such as a light vehicle, a standard vehicle, or a large vehicle such as a truck. Since there is no great difference in the positions of the side mirrors in the same vehicle type, the predetermined distance ⁇ Xa is defined for each vehicle type.
  • the position calculation unit 12a specifies the distance measurement information when the left front corner FC and the left rear corner RC of the overtaking vehicle 3 are detected by the right rear distance measurement sensor 5R of the own vehicle 2, and outputs each distance measurement information to the vehicle. It is transmitted to the length calculation unit 16 . Also, the relative speed calculator 13 a transmits the calculated relative speed Vr to the vehicle length calculator 16 .
  • the vehicle length calculation unit 16 calculates the vehicle type of the overtaking vehicle 3 based on the vehicle length of the overtaking vehicle 3 calculated based on the detection time of the left front corner FC and the left rear corner RC of the overtaking vehicle 3 and the relative speed Vr. discriminate. Then, the vehicle length calculation unit 16 transmits the determined vehicle type to the glare occurrence direction calculation unit 14a.
  • the detection time of the left front corner FC and the left rear corner RC of the overtaking vehicle 3 is the detection time included in each distance measurement information transmitted by the position calculation unit 12a.
  • the vehicle length calculation unit 16 determines that the vehicle type of the overtaking vehicle 3 is a light vehicle. Further, when the vehicle length L is longer than the vehicle length L1 and shorter than the predetermined vehicle length L2, the vehicle length calculation unit 16 determines that the vehicle type of the overtaking vehicle 3 is an ordinary vehicle. Further, when the vehicle length L is longer than the vehicle length L2, the vehicle length calculation unit 16 determines that the vehicle type of the overtaking vehicle 3 is a large vehicle.
  • the glare generation direction calculation unit 14 a adjusts the predicted glare generation direction based on the vehicle type transmitted by the vehicle length calculation unit 16 .
  • the glare generation direction calculator 14a estimates the distance ⁇ Xa between the left front corner FC of the overtaking vehicle 3 and the left side mirror SM based on the vehicle type.
  • the glare generation direction calculator 14a stores the correspondence between the vehicle type and the distance ⁇ Xa in a memory (not shown), and estimates the distance ⁇ Xa corresponding to the vehicle type by referring to the correspondence. Then, the glare generation direction calculator 14a uses the estimated distance ⁇ Xa to adjust the glare generation direction.
  • the glare generation direction calculation unit 14a calculates the light blocking angle ⁇ using the distance ⁇ Xa estimated based on the vehicle type instead of the predetermined distance ⁇ X in the above-described formula (3).
  • FIG. 9 is a flow chart for explaining the operation of the vehicle light distribution control device 1a according to the second embodiment. Note that the processing from steps ST201 to ST207 and from steps ST211 to ST213 in FIG. 9 are the same as the processing from steps ST101 to ST107 and from steps ST109 to ST111 in FIG.
  • the passing vehicle 3 overtakes the own vehicle 2 from the right rear at a higher speed than the own vehicle 2.
  • FIG. 4A to 7A it is assumed that the passing vehicle 3 overtakes the own vehicle 2 from the right rear at a higher speed than the own vehicle 2.
  • step ST207 it is assumed that the positional relationship between own vehicle 2 and overtaking vehicle 3 is as shown in FIG. 7A.
  • the distance measurement information t53 when the left front corner FC is detected by the right rear distance measurement sensor 5R and the distance measurement when the left front corner FC is detected by the right front distance measurement sensor 4R are obtained by the position calculation unit 12a.
  • Information t43 is specified.
  • the separation distance Y1 is calculated by the position calculation unit 12a.
  • the relative velocity Vr is calculated by the relative velocity calculator 13a.
  • the position calculating unit 12a calculates the ranging information when the right rear ranging sensor 5R detects the left rear corner RC of the overtaking vehicle 3. Identify (step ST208). Specifically, the position calculation unit 12a selects the last ranging information among the plurality of ranging information in the range where the detection distance is almost constant with little variation in the ranging information of the right rear ranging sensor 5R. That is, the plotted point t57 in FIG. 7B is specified, and the plotted point t57 is specified as the distance measurement information when the left rear corner RC is detected. Then, the position calculation unit 12a calculates the vehicle length using the distance measurement information t53 when the left front corner FC is detected by the right rear distance measurement sensor 5R and the distance measurement information t57 when the left rear corner RC is detected. Send to unit 16 .
  • the vehicle length calculation unit 16 calculates the vehicle length of the overtaking vehicle 3 based on the distance measurement information transmitted by the position calculation unit 12a and the relative vehicle speed Vr calculated by the relative speed calculation unit 13a.
  • the vehicle type of the overtaking vehicle 3 is discriminated based on the length (step ST209).
  • the glare occurrence direction calculation unit 14a estimates the distance ⁇ Xa corresponding to the vehicle type calculated by the vehicle length calculation unit 16, and uses the distance ⁇ Xa to calculate the light shielding angle ⁇ based on the above-described formula (3). do. (Step ST210).
  • the vehicle length of the overtaking vehicle is calculated, and the direction of the left side mirror of the overtaking vehicle is estimated based on the vehicle type determined from the vehicle length.
  • the vehicle length calculation unit 16 detects the front left corner FC of the passing vehicle 3 by both the front right ranging sensor 4R and the rear right ranging sensor 5R, and detects the front left corner FC of the passing vehicle 3. After being detected by the distance sensor 4R, the overtaking vehicle 3 leads the own vehicle 2 by a predetermined distance, and the left rear corner RC of the overtaking vehicle 3 is detected by the right rear ranging sensor 5R. If not, it may be determined that the overtaking vehicle 3 is a large vehicle.
  • FIG. 10A and 10B are diagrams showing an example of the hardware configuration of the vehicle light distribution control devices 1 and 1a according to Embodiments 1 and 2.
  • FIG. The vehicle light distribution control device 1 according to the first embodiment and the vehicle light distribution control device 1a according to the second embodiment have the same hardware configuration.
  • the function of the vehicle length calculator 16 is implemented by the processing circuit 21 . That is, the vehicle light distribution control device 1, 1a predicts the direction of the overtaking vehicle based on the distance and relative speed between the own vehicle and the overtaking vehicle, and controls the headlights 7 so as not to illuminate the predicted direction.
  • a processing circuit 21 is provided for performing control to block part of the light distribution.
  • the processing circuit 21 may be dedicated hardware as shown in FIG. 10A, or may be a CPU (Central Processing Unit) 22 that executes a program stored in the memory 23 as shown in FIG. 10B.
  • CPU Central Processing Unit
  • the processing circuit 21 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the processing circuit 21 is a CPU 22, the receiving unit 11, the position calculation units 12 and 12a, the relative speed calculation units 13 and 13a, the glare generation direction calculation units 14 and 14a, the light distribution control unit 15, and the vehicle length calculation.
  • the functions of the unit 16 are implemented by software, firmware, or a combination of software and firmware. That is, the receiver 11, the position calculators 12 and 12a, the relative velocity calculators 13 and 13a, the glare generation direction calculators 14 and 14a, the light distribution controller 15, and the vehicle length calculator 16 are integrated into the memory 23. It is realized by a processing circuit such as a CPU 22 that executes a program stored in a system LSI (Large-Scale Integration) or the like.
  • LSI Large-Scale Integration
  • the programs stored in the memory 23 or the like include the receiving unit 11, the position calculation units 12 and 12a, the relative speed calculation units 13 and 13a, the glare generation direction calculation units 14 and 14a, and the light distribution control unit 15. , the procedure and method of the vehicle length calculation unit 16 can be said to be executed by a computer.
  • the memory 23 is, for example, a non-volatile or Volatile A semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), or the like is applicable.
  • a part may be realized by dedicated hardware and a part may be realized by software or firmware.
  • the vehicle light distribution control devices 1 and 1a also have an input interface device 24 and an output interface device 25 that communicate with the front ranging sensor 4, the rear ranging sensor 5, the imaging device 6, the headlights 7, or the like. have
  • the high beam is ADB, but the present invention is not limited to this, and the light distribution pattern may be uncontrollable.
  • the light distribution control unit 15 may switch to the low beam so as not to irradiate the direction indicated by the shielding angle ⁇ calculated by the glare generation direction calculation unit with the high beam.
  • Reference Signs List 1 1a vehicle light distribution control device 2 host vehicle 3, 3a, 3b passing vehicle 4, 4L, 4R forward ranging sensor 5, 5L, 5R rear ranging sensor 6 imaging device 7 headlight 11 receiver 12, 12a position Calculation units 13, 13a Relative velocity calculation units 14, 14a Glare generation direction calculation unit 15 Light distribution control unit 16 Vehicle length calculation unit 21 Processing circuit 22 CPU 23 Memory 24 Input interface device 25 Output interface device Hi Light distribution area of high beam Gl Range of glare occurrence FSL Detection range of range sensor 4L RSL Detection range of range sensor 5L FSR Detection range of range sensor 4R RSR Range sensor 5R Detection range FC Front corner of passing vehicle RC Rear corner of passing vehicle SM Side mirror TP1 Traveling direction of own vehicle TP2 Traveling direction of passing vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

A light distribution control device (1) for a vehicle comprises: a reception unit (11) that receives range information outputted by range sensors which are provided in a front portion and a rear portion of the vehicle and which detect an overtaking vehicle that overtakes the own vehicle; a location computation unit (12) that detects, on the basis of the range information, a separation distance between the own vehicle and the overtaking vehicle in the vehicle width direction and a corner of the overtaking vehicle; a relative speed computation unit (13) that calculates a relative speed of the overtaking vehicle on the basis of the corner; a glare generation direction computation unit (14) that predicts the direction of the overtaking vehicle on the basis of the separation distance and the relative speed; and a light distribution control unit (15) that issues a light-shield instruction to a headlight so as not to emit light toward the predicted direction.

Description

車両用配光制御装置Vehicle light distribution control device
 本開示は、車両用配光制御装置に関するもので、より具体的には、自車両がハイビームで走行しているとき、自車両を追い越してゆく追い越し車両にグレアを与えないようにするものである。 TECHNICAL FIELD The present disclosure relates to a vehicle light distribution control device, and more specifically, to prevent glare from being given to an overtaking vehicle that is overtaking the own vehicle when the own vehicle is traveling with high beams. .
 従来、前方を撮影するフロントカメラとしての前方撮影部を備え、この前方撮影部によって検知した前方車両にグレアを与えないように配光制御するものがあった。しかしながら、フロントカメラの死角地帯から画角内に侵入する他車両があった場合、他車両が自車両の前照灯の照射領域に侵入してから、カメラが他車両を認識してグレアを抑制する制御を開始するまでに時間遅れを生じており、この間、他車両にグレアを与え続けることになる。そこで、例えば特許文献1には、自車両の前側方および後ろ側方の死角地帯を感知する感知センサを備え、自車両に対して死角地帯から近づく他車両を感知した場合に、予めハイビームからロービームに変更する、または、一部領域を予め消灯するという技術が開示されている。 Conventionally, there have been vehicles equipped with a forward imaging unit as a front camera that captures the forward direction, and controlling light distribution so as not to give glare to vehicles detected by this forward imaging unit. However, if another vehicle enters the field of view from the blind spot of the front camera, the camera recognizes the other vehicle and suppresses glare after the other vehicle enters the area illuminated by the headlights of the own vehicle. There is a time delay before the control is started, and during this time, glare continues to be given to other vehicles. Therefore, for example, in Patent Document 1, a detection sensor that detects the blind spots on the front side and the rear side of the own vehicle is provided, and when another vehicle is detected approaching the own vehicle from the blind spots, the low beam is changed from the high beam to the low beam in advance. or turning off a part of the area in advance.
特開2021-109644号公報JP 2021-109644 A
 しかしながら特許文献1に記載された従来技術は、死角地帯から近づく他車両を感知した場合、ハイビームからロービームに切り替える、または他車両側を照射するランプを消灯して一部領域を予め消すというものであり、死角地帯から他車両が近づいた場合に予め定められたランプを一律に消灯するというものであった。すなわち、死角地帯にいる他車両を感知してから当該他車両が感知範囲外に消失するまで予め定められたランプを一律に消灯するものであるから、長時間に亘ってドライバの視界を大きく犠牲にするという問題があった。 However, the conventional technology described in Patent Document 1 switches from a high beam to a low beam when detecting another vehicle approaching from a blind spot, or extinguishes a part of the area in advance by extinguishing the lamp that illuminates the other vehicle side. It was designed to uniformly turn off predetermined lamps when another vehicle approaches from the blind spot. That is, since the predetermined lamps are uniformly turned off until the other vehicle disappears out of the detection range after the other vehicle in the blind spot is sensed, the driver's field of vision is greatly sacrificed for a long time. There was a problem of making
 本開示は、上記のような課題を解決するためになされたもので、死角地帯から近づく追い越し車両を検知した場合であっても、追い越し車両へグレアを与えることなく、かつ、自車両の運転者の視界も確保することを目的とする。 The present disclosure has been made to solve the above-described problems, and even when an overtaking vehicle approaching from a blind spot is detected, the driver of the own vehicle does not give glare to the overtaking vehicle. The purpose is to ensure the visibility of
 本開示に係る車両用配光制御装置は、車両前方および後方に設けられ自車両を追い越す追い越し車両を検知する測距センサにより出力された測距情報を受信する受信部と、測距情報に基づいて自車両と追い越し車両との車幅方向の離隔距離および追い越し車両の角部を検知する位置演算部と、角部に基づいて追い越し車両の相対速度を算出する相対速度演算部と、離隔距離および相対速度に基づいて追い越し車両の方向を予測するグレア発生方向演算部と、予測した方向を照射しないようヘッドライトに対して遮光指示する配光制御部と、を備える A vehicle light distribution control device according to the present disclosure includes a receiving unit that receives ranging information output by ranging sensors that are provided in front and behind a vehicle and detects an overtaking vehicle that overtakes the own vehicle, and based on the ranging information. a position calculation unit that detects the widthwise separation between the own vehicle and the passing vehicle and the corners of the passing vehicle, a relative speed calculation unit that calculates the relative speed of the passing vehicle based on the corners, a separation distance and Equipped with a glare generation direction calculator that predicts the direction of the passing vehicle based on the relative speed, and a light distribution controller that instructs the headlights to block light so as not to illuminate the predicted direction.
 追い越し車両が自車両の前方を撮像する撮像装置の死角から接近して自車両を追い越していったとしても、追い越し車両へのグレアを抑制するとともに長時間に亘って自車両の運転者の視界を犠牲にすることを抑制することができる。 Even if the overtaking vehicle approaches from the blind spot of an imaging device for imaging the front of the own vehicle and overtakes the own vehicle, glare to the overtaking vehicle is suppressed and the driver's field of view of the own vehicle is maintained for a long time. Sacrifice can be restrained.
実施の形態1に係る車両用配光制御装置による配光制御の態様の一例を示す図である。FIG. 3 is a diagram showing an example of a mode of light distribution control by the vehicle light distribution control device according to Embodiment 1; 実施の形態1に係る車両用配光制御装置の構成例を示すブロック図である。1 is a block diagram showing a configuration example of a vehicle light distribution control device according to Embodiment 1; FIG. 実施の形態1に係る車両用配光制御装置の動作を説明するためのフローチャートである。4 is a flowchart for explaining the operation of the vehicle light distribution control device according to Embodiment 1; 実施の形態1において自車両の右後方から近づく追い越し車両を、右後方測距センサが検知し始めた状況の一例を示す図である。FIG. 4 is a diagram showing an example of a situation in which a right rear ranging sensor starts to detect an overtaking vehicle approaching from the right rear of the own vehicle in Embodiment 1; 実施の形態1において右後方測距センサが追い越し車両の左前方角部を検知した後、追い越し車両の左側部を検知している状況の一例を示す図である。FIG. 4 is a diagram showing an example of a situation in which the right rear ranging sensor detects the left front corner of the passing vehicle after detecting the left front corner of the passing vehicle in the first embodiment; 実施の形態1において右前方測距センサが追い越し車両を検知し始めており、かつ右後方測距センサが追い越し車両の左後方角部を検知したときの状況の一例を示す図である。FIG. 4 is a diagram showing an example of a situation when a right front ranging sensor has started to detect an overtaking vehicle and a right rear ranging sensor has detected a left rear corner of the passing vehicle in the first embodiment; 実施の形態1において右前方測距センサが、追い越し車両の左前方角部を検知した後、追い越し車両の左側部を検知しており、かつ右後方測距センサが、追い越し車両の左後方角部を検知しなくなった状況の一例を示す図である。In the first embodiment, the right front ranging sensor detects the left front corner of the passing vehicle and then detects the left side of the passing vehicle, and the right rear ranging sensor detects the left rear corner of the passing vehicle. It is a figure which shows an example of the situation which stopped detecting. 実施の形態2に係る車両用配光制御装置の構成例を示すブロック図である。FIG. 7 is a block diagram showing a configuration example of a vehicle light distribution control device according to Embodiment 2; 実施の形態2に係る車両用配光制御装置の動作を説明するためのフローチャートである。9 is a flowchart for explaining the operation of the vehicle light distribution control device according to Embodiment 2; 実施の形態1および実施の形態2に係る車両用配光制御装置のハードウェア構成の一例を示す図である。1 is a diagram showing an example of a hardware configuration of a vehicle light distribution control device according to Embodiments 1 and 2; FIG.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings.
実施の形態1.
 実施の形態1における車両用配光制御装置1について図1から図7を用いて説明する。 本実施の形態1における車両用配光制御装置1は車両に搭載され、追い越し車両の運転者に発生すると予想されるグレアを抑制するための配光制御を実施する。
 図1は、本実施の形態1における車両用配光制御装置1による配光制御の態様の一例を示す図である。図1において、車両2は、本実施の形態1における車両用配光制御装置1を搭載した車両である(以下、「自車両」と記載する。)。
 車両3は、自車両2より大きい速度で走行するとともに、自車両2を追い越す他車両(以下、「追い越し車両」と記載する。)である。自車両2を追い越す前の追い越し車両3を点線の追い越し車両3aで示す。また、自車両2を追い越した後の追い越し車両3を実線の追い越し車両3bで示す。
Embodiment 1.
A vehicle light distribution control device 1 according to Embodiment 1 will be described with reference to FIGS. 1 to 7. FIG. A vehicle light distribution control device 1 according to Embodiment 1 is mounted on a vehicle and performs light distribution control for suppressing glare that is expected to occur to the driver of an overtaking vehicle.
FIG. 1 is a diagram showing an example of a mode of light distribution control by a vehicle light distribution control device 1 according to the first embodiment. In FIG. 1, a vehicle 2 is a vehicle equipped with the vehicle light distribution control device 1 according to the first embodiment (hereinafter referred to as "own vehicle").
The vehicle 3 is another vehicle (hereinafter referred to as "overtaking vehicle") that runs at a speed higher than the own vehicle 2 and overtakes the own vehicle 2. The passing vehicle 3 before overtaking the own vehicle 2 is indicated by the passing vehicle 3a with a dotted line. Also, the overtaking vehicle 3 after overtaking the own vehicle 2 is indicated by the overtaking vehicle 3b in solid lines.
 自車両2には、車両の前後左右に測距センサ4L、4R、5L、5Rが設けられている。ここで、左前方測距センサを4L、右前方測距センサを4R、左後方測距センサを5L、右後方測距センサを5Rとする。
 記号FSL、FSR、RSL、RSRは、測距センサ4L、4R、5L、5Rの検知範囲を示す。また、記号Hiは、自車両2のヘッドライトによって照明される走行灯の配光エリアを示す。配光エリアHiにおいて破線と実線で囲まれた範囲Glは、追い越し車両3の運転者にグレアを発生させる範囲(以下、「グレア発生範囲」と記載する。)、即ちヘッドライトを減光すべき領域(以下、「遮光領域」と記載する。)を示す。矢印TP1は、自車両2の進行方向を示す。
The own vehicle 2 is provided with distance measuring sensors 4L, 4R, 5L, and 5R on the front, rear, left, and right of the vehicle. Here, the left front ranging sensor is 4L, the right front ranging sensor is 4R, the left rear ranging sensor is 5L, and the right rear ranging sensor is 5R.
Symbols FSL, FSR, RSL, and RSR indicate detection ranges of the ranging sensors 4L, 4R, 5L, and 5R. Symbol Hi indicates the light distribution area of the running lights illuminated by the headlights of the own vehicle 2 . The range Gl surrounded by the dashed line and the solid line in the light distribution area Hi is the range in which the driver of the overtaking vehicle 3 is caused to glare (hereinafter referred to as the "glare generation range"), that is, the headlights should be dimmed. A region (hereinafter referred to as a “light shielding region”) is shown. An arrow TP1 indicates the traveling direction of the own vehicle 2 .
 追い越し車両3のサイドミラーを記号SMで示す。また、記号FCは、追い越し車両3の前方角部を示す。記号RCは、追い越し車両3の後方角部を示す。矢印TP2は、追い越し車両3の進行方向を示す。 The side mirrors of the overtaking vehicle 3 are indicated by symbol SM. A symbol FC indicates a front corner of the overtaking vehicle 3 . The symbol RC indicates the rear corner of the overtaking vehicle 3 . An arrow TP2 indicates the traveling direction of the overtaking vehicle 3 .
 以降の説明において、図1に示すように、追い越し車両3は、右側車線を自車両2より大きい速度で走行しており、自車両2の右後方から自車両2を追い越すものとして説明する。ここで、サイドミラーSMは、左サイドミラーであるとして説明する。なお、右サイドミラーは図示を省略する。また、追い越し車両3の前方角部FCは左前方角部であり、後方角部RCは左後方角部であるとして説明する。また、x軸方向を車両の進行方向、y軸方向を車幅方向、z軸方向を車両の上下方向であるとして説明する。 In the following description, as shown in FIG. 1, the overtaking vehicle 3 is traveling in the right lane at a faster speed than the own vehicle 2, and will overtake the own vehicle 2 from the right rear of the own vehicle 2. Here, side mirror SM will be described as a left side mirror. The illustration of the right side mirror is omitted. Further, it is assumed that the front corner FC of the overtaking vehicle 3 is the left front corner, and the rear corner RC is the left rear corner. In addition, the x-axis direction is the traveling direction of the vehicle, the y-axis direction is the vehicle width direction, and the z-axis direction is the vertical direction of the vehicle.
 車両用配光制御装置1は、測距センサの検知結果を用いて算出した、自車両2と追い越し車両3との相対速度および自車両2と追い越し車両3との車幅方向の車間距離(以下、「離隔処理」と記載する。)に基づいて、自車両2の配光エリアHiにおいて追い越し車両3の運転者にグレアを与える追い越し車両3の方向を正確に予測する。そして、車両用配光制御装置1は、予測した方向を照射しないようにし、グレア発生範囲Glを遮光することによって、追い越し車両3の運転者へのグレア発生を抑制するものである。
 即ち、追い越し車両3の運転者にグレアを発生させる追い越し車両3の方向とタイミングを正確に予測して、グレアを発生させる範囲を遮光でき、自車両2の配光エリアの減少を必要最低限に抑えることができるため、自車両2の運転者の視界を犠牲にすることが少ない配光を可能とするものである。
The vehicle light distribution control device 1 calculates the relative speed between the host vehicle 2 and the passing vehicle 3 and the inter-vehicle distance between the host vehicle 2 and the passing vehicle 3 in the vehicle width direction (hereinafter referred to as , “separation processing”), the direction of the overtaking vehicle 3 that gives glare to the driver of the overtaking vehicle 3 in the light distribution area Hi of the host vehicle 2 is accurately predicted. The vehicular light distribution control device 1 suppresses the generation of glare to the driver of the overtaking vehicle 3 by not illuminating the predicted direction and shielding the glare generation range Gl.
That is, the direction and timing of the overtaking vehicle 3 that generates glare to the driver of the overtaking vehicle 3 can be accurately predicted, the range in which the glare is generated can be shaded, and the decrease in the light distribution area of the own vehicle 2 can be minimized. Since it can be suppressed, it is possible to achieve light distribution that does not sacrifice the field of view of the driver of the own vehicle 2 .
 ここで、車両用配光制御装置1が、追い越し車両3の運転者にグレアを発生させる追い越し車両3の方向を予測し、グレア発生範囲Glを遮光する処理について説明する。
 図1において、記号X1は、自車両2から追い越し車両3bの左前方角部FCまでのx軸方向の距離を示す。具体的には、本実施の形態1では、記号X1は、自車両2の中央前端部FRから追い越し車両3の左前方角部FCまでのx軸方向の距離を示す。
 記号X2は、自車両2の中央前端部FRから追い越し車両3のサイドミラーSMまでのx軸方向の距離を示す。
 記号ΔXは、追い越し車両3の左前方角部FCと左サイドミラーSMとの間の距離を示す。
Here, a process of estimating the direction of the passing vehicle 3 that causes glare to the driver of the passing vehicle 3 and shielding the glare generation range Gl by the vehicle light distribution control device 1 will be described.
In FIG. 1, the symbol X1 indicates the distance in the x-axis direction from the own vehicle 2 to the left front corner FC of the overtaking vehicle 3b. Specifically, in the first embodiment, the symbol X1 indicates the distance in the x-axis direction from the center front end FR of the own vehicle 2 to the left front corner FC of the overtaking vehicle 3 .
A symbol X2 indicates the distance in the x-axis direction from the center front end FR of the own vehicle 2 to the side mirror SM of the overtaking vehicle 3 .
The symbol ΔX indicates the distance between the left front corner FC of the overtaking vehicle 3 and the left side mirror SM.
 また、図1において、記号Y1は、自車両2と追い越し車両3との離隔距離を示す。記号Y2は、自車両2の中央前端部FRから追い越し車両3の左サイドミラーSMまでのy軸方向の距離を示す。 In addition, in FIG. 1, symbol Y1 indicates the separation distance between own vehicle 2 and overtaking vehicle 3. A symbol Y2 indicates the distance in the y-axis direction from the center front end FR of the own vehicle 2 to the left side mirror SM of the overtaking vehicle 3 .
 記号Wは、自車両2の車幅であり車種毎に決定される既知の値である。記号SDは、右前方測距センサ4Rと右後方測距センサ5Rとの距離(以下、「測距センサ間距離」と記載する。)を示す。測距センサ間距離SDは、車種ごとに決定される既知の値である。
 記号Dは、右前方測距センサ4Rから自車両2の中央前端部FRまでのx軸方向における距離であり車種毎に決定される既知の値である。
Symbol W is the width of the own vehicle 2 and is a known value determined for each vehicle type. The symbol SD indicates the distance between the right front ranging sensor 4R and the right rear ranging sensor 5R (hereinafter referred to as "distance between ranging sensors"). The distance between ranging sensors SD is a known value that is determined for each vehicle type.
Symbol D is the distance in the x-axis direction from the right front ranging sensor 4R to the central front end FR of the vehicle 2, and is a known value determined for each vehicle type.
 角度θは、追い越し車両3の運転者にグレアを発生させる追い越し車両3の方向を示す(以下、「遮光角度」と記載する。)。ここで、車両用配光制御装置1は、遮光角度θを追い越し車両3の左サイドミラーSMの方向を基準に演算する。これは、左サイドミラーSMに照射された光が反射し運転者にグレアを与えるため、左サイドミラーSMの方向が、運転者にグレアを与える限界方向であるからである。 The angle θ indicates the direction of the passing vehicle 3 that causes glare to the driver of the passing vehicle 3 (hereinafter referred to as "shading angle"). Here, the vehicular light distribution control device 1 calculates the light shielding angle θ based on the direction of the left side mirror SM of the overtaking vehicle 3 . This is because the direction of the left side mirror SM is the limit direction for giving glare to the driver because the light irradiated to the left side mirror SM is reflected and gives glare to the driver.
 車両用配光制御装置1は、測距センサ間距離SD、追い越し車両3aが自車両2を追い越すときに、左前方角部FCが右前方測距センサ4Rに検知された時刻T1、および左前方角部FCが右後方測距センサ5Rに検知された時刻T2を用いて、式(1)によって追い越し車両3aの相対速度Vrを算出する。

 Vr=SD/(T1-T2)・・・(1)

 また、車両用配光制御装置1は、右後方測距センサ5Rの検知結果に基づいて離隔距離Y1を算出する。離隔距離Y1の算出方法は後述する。
The vehicular light distribution control device 1 determines the inter-range sensor distance SD, the time T1 at which the left front corner FC is detected by the right front range sensor 4R when the overtaking vehicle 3a overtakes the own vehicle 2, and the left front corner Using the time T2 at which FC is detected by the right rear ranging sensor 5R, the relative speed Vr of the overtaking vehicle 3a is calculated by Equation (1).

Vr=SD/(T1-T2) (1)

In addition, the vehicle light distribution control device 1 calculates the separation distance Y1 based on the detection result of the right rear ranging sensor 5R. A method of calculating the separation distance Y1 will be described later.
 そして、車両用配光制御装置1は、左前方角部FCを検知してから追い越し車両3aが相対速度Vrで走行を続けた場合の、T秒後の追い越し車両3bの方向を、相対速度Vrおよび離隔距離Y1に基づいて予測する。
 具体的には、車両用配光制御装置1は、相対速度Vrおよび距離Dを用いて、式(2)によって、T秒後の距離X1を算出する。

 X1=T*Vr-D・・・(2)

 その後、車両用配光制御装置1は、式(3)によって追い越し車両3bの方向、即ち遮光角度θを予測する。

 θ=tan-1X2/Y2=tan-1(X1-ΔX)/(Y+W/2)・・・(3)

 そして、車両用配光制御装置1は、予測した遮光角度θが示す方向を照射しないようにし、グレア発生範囲Glを遮光する。
Then, the vehicular light distribution control device 1 determines the direction of the overtaking vehicle 3b after T seconds when the overtaking vehicle 3a continues traveling at the relative speed Vr after detecting the left front corner FC. Prediction is made based on the distance Y1.
Specifically, the vehicular light distribution control device 1 uses the relative velocity Vr and the distance D to calculate the distance X1 after T seconds by Equation (2).

X1=T*Vr-D (2)

After that, the vehicle light distribution control device 1 predicts the direction of the overtaking vehicle 3b, that is, the light shielding angle θ, using the equation (3).

θ=tan −1 X2/Y2=tan −1 (X1−ΔX)/(Y+W/2) (3)

Then, the vehicular light distribution control device 1 blocks light in the direction indicated by the predicted light shielding angle θ and shields the glare generation range Gl.
 図2は本実施の形態1における車両用配光制御装置1の構成例を示すブロック図である。
 車両用配光制御装置1には、前方測距センサ4、後方測距センサ5、撮像装置6およびヘッドライト7が接続されている。
 測距センサは、超音波センサであり探査波の検知時間および検知距離の情報を含む測距情報を後述する受信部11へ送信する。
 前方測距センサ4および後方測距センサ5は、自車両2を追い越す追い越し車両3を検知する。前方測距センサ4は、図1に示すように自車両2の前方の左右側方に設けられた測距センサ4Rおよび4Lである。後方測距センサ5は、図1に示すように自車両2の後方の左右側方に設けられた測距センサ5Rおよび5Lである。
 以降の説明において、前方測距センサ4は右前方測距センサ4Rであり、後方測距センサ5は右後方測距センサ5Rであるする。なお、測距センサは、ミリ波レーダーまたはLiDAR(Light Detection And Ranging)であってもよい。
FIG. 2 is a block diagram showing a configuration example of the vehicle light distribution control device 1 according to the first embodiment.
A forward ranging sensor 4 , a rear ranging sensor 5 , an imaging device 6 and a headlight 7 are connected to the vehicle light distribution control device 1 .
The distance measurement sensor is an ultrasonic sensor, and transmits distance measurement information including information on the detection time and detection distance of the search wave to the receiving unit 11, which will be described later.
A forward ranging sensor 4 and a rear ranging sensor 5 detect an overtaking vehicle 3 overtaking the own vehicle 2 . The forward ranging sensors 4 are ranging sensors 4R and 4L provided on the left and right sides in front of the vehicle 2 as shown in FIG. The rear ranging sensors 5 are ranging sensors 5R and 5L provided on the left and right sides behind the vehicle 2 as shown in FIG.
In the following description, the front ranging sensor 4 is the right front ranging sensor 4R, and the rear ranging sensor 5 is the right rear ranging sensor 5R. Note that the ranging sensor may be a millimeter wave radar or LiDAR (Light Detection And Ranging).
 撮像装置6は、自車両2の車両進行方向を撮影するように自車両2に設けられている。撮像装置6は、車両進行方向を撮影するとともに、撮像画像に基づいて自車両2の前方車両、即ち追い越し車両3を検知する。撮像装置6は、検知した追い越し車両3の方向を後述する配光制御部15へ送信する。なお、以降の説明において、撮像装置6は、追い越し車両3のリアランプ(図示しない)を検知することによって、追い越し車両3を検知するものとするが、これに限られない。 The imaging device 6 is provided in the own vehicle 2 so as to photograph the vehicle traveling direction of the own vehicle 2 . The imaging device 6 captures an image of the direction in which the vehicle is traveling, and also detects a vehicle ahead of the own vehicle 2, that is, an overtaking vehicle 3, based on the captured image. The imaging device 6 transmits the detected direction of the passing vehicle 3 to the light distribution control unit 15, which will be described later. In the following description, it is assumed that the imaging device 6 detects the passing vehicle 3 by detecting the rear lamp (not shown) of the passing vehicle 3, but the present invention is not limited to this.
 ヘッドライト7は、すれ違い用前照灯(ロービーム)および走行用前照灯(ハイビーム)を含む。走行用前照灯は、配光パターンを制御することができる配光可変灯(以下、「ADB(Advanced Driving Beam)」と記載する。)である。ADBは、特定のエリアを遮光するとともに他のエリアは照射することが可能である。 The headlights 7 include headlights for passing (low beam) and headlights for running (high beam). The running headlamp is a variable light distribution lamp (hereinafter referred to as "ADB (Advanced Driving Beam)") capable of controlling a light distribution pattern. ADB can block certain areas and illuminate others.
 車両用配光制御装置1は、受信部11、位置演算部12、相対速度演算部13、グレア発生方向演算部14および配光制御部15を備える。
 受信部11は、右前方測距センサ4Rおよび右後方測距センサ5Rにより送信された測距情報を受信する。そして、受信部11は、受信した測距情報を時系列の情報として位置演算部12へ送信する。
The vehicle light distribution control device 1 includes a receiver 11 , a position calculator 12 , a relative velocity calculator 13 , a glare generation direction calculator 14 and a light distribution controller 15 .
The receiving unit 11 receives ranging information transmitted by the right front ranging sensor 4R and the right rear ranging sensor 5R. The receiving unit 11 then transmits the received ranging information to the position calculating unit 12 as time-series information.
 位置演算部12は、受信部11により送信された測距情報に基づいて自車両2と追い越し車両3との離隔距離Y1および追い越し車両3の角部を検知する。
 ここで、角部は、追い越し車両3の左前方角部FCである。位置演算部12は、右前方測距センサ4Rおよび右後方測距センサ5Rが、追い越し車両3の左前方角部FCを検知したときの各測距情報を特定するとともに相対速度演算部13へ送信する。
 また、位置演算部12は、離隔距離Y1および右前方測距センサ4Rが左前方角部FCを検知したときの測距情報を、グレア発生方向演算部14へ送信する。
The position calculation unit 12 detects the separation distance Y1 between the host vehicle 2 and the passing vehicle 3 and the corner of the passing vehicle 3 based on the distance measurement information transmitted by the receiving unit 11 .
Here, the corner is the left front corner FC of the overtaking vehicle 3 . The position calculation unit 12 specifies each distance measurement information when the right front distance measurement sensor 4R and the right rear distance measurement sensor 5R detect the left front corner FC of the overtaking vehicle 3, and transmits the information to the relative speed calculation unit 13. .
Further, the position calculation unit 12 transmits the separation distance Y1 and distance measurement information when the right front distance measurement sensor 4R detects the left front corner FC to the glare generation direction calculation unit 14 .
 相対速度演算部13は、位置演算部12により検知された角部に基づいて追い越し車両3の相対速度を算出する。具体的には、相対速度演算部13は、位置演算部12により送信された各測距情報に含まれる検知時刻に基づいて、追い越し車両3の相対速度Vrを算出する。 The relative speed calculator 13 calculates the relative speed of the overtaking vehicle 3 based on the corner detected by the position calculator 12 . Specifically, the relative speed calculator 13 calculates the relative speed Vr of the overtaking vehicle 3 based on the detection time included in each distance measurement information transmitted from the position calculator 12 .
 相対速度演算部13は、右前方測距センサ4Rが追い越し車両3の左前方角部FCを検知したときの測距情報に含まれる時刻T1、右後方測距センサ5Rが追い越し車両3の左前方角部FCを検知したときの測距情報に含まれる時刻T2、および測距センサ間距離SDを用いて、式(1)によって追い越し車両3の相対速度Vrを算出する。そして、相対速度演算部13は、算出した相対速度Vrをグレア発生方向演算部14へ送信する。 The relative speed calculator 13 detects the front left corner FC of the overtaking vehicle 3 at the time T1 included in the distance measurement information when the front right ranging sensor 4R detects the front left corner FC of the overtaking vehicle 3. The relative speed Vr of the overtaking vehicle 3 is calculated by Equation (1) using the time T2 included in the distance measurement information when FC is detected and the distance SD between the distance measurement sensors. The relative velocity calculator 13 then transmits the calculated relative velocity Vr to the glare generation direction calculator 14 .
 グレア発生方向演算部14は、位置演算部12によって送信された離隔距離Y1および相対速度演算部13によって送信された相対速度Vrに基づいて、追い越し車両3の方向を予測する。具体的には、グレア発生方向演算部14は、離隔距離Y1および相対速度Vrを用いて、上述した式(3)によって遮光角度θを算出する。そして、グレア発生方向演算部14は、予測した方向を配光制御部15に送信する。 The glare generation direction calculation unit 14 predicts the direction of the passing vehicle 3 based on the separation distance Y1 transmitted by the position calculation unit 12 and the relative speed Vr transmitted by the relative speed calculation unit 13 . Specifically, the glare generation direction calculator 14 calculates the light shielding angle θ using the above-described equation (3) using the separation distance Y1 and the relative velocity Vr. The glare generation direction calculation unit 14 then transmits the predicted direction to the light distribution control unit 15 .
 配光制御部15は、グレア発生方向演算部14により送信された追い越し車両3の方向を照射しないように、ヘッドライト7に対して配光の一部を遮光するよう指示する。
 また、配光制御部15は、撮像装置6により追い越し車両3が検知された場合、撮像装置6から受信した追い越し車両3の方向に基づいて、追い越し車両3を照射しないように、ヘッドライト7に対して配光の一部を遮光するよう指示する。
 即ち、配光制御部15は、追い越し車両3が撮像装置6によって検知されるまでは、グレア発生方向演算部14によって算出された方向に基づいて配光制御を行うとともに、追い越し車両3が撮像装置6により検知された後は、撮像装置6により出力された情報に基づいて配光制御を行う。
The light distribution control unit 15 instructs the headlights 7 to block part of the light distribution so as not to illuminate the direction of the passing vehicle 3 transmitted by the glare generation direction calculation unit 14 .
Further, when the passing vehicle 3 is detected by the imaging device 6 , the light distribution control unit 15 controls the headlights 7 so as not to illuminate the passing vehicle 3 based on the direction of the passing vehicle 3 received from the imaging device 6 . instruct to block part of the light distribution.
That is, until the passing vehicle 3 is detected by the imaging device 6, the light distribution control unit 15 performs light distribution control based on the direction calculated by the glare generation direction computing unit 14, and the overtaking vehicle 3 is detected by the imaging device. After detection by 6 , light distribution control is performed based on the information output by imaging device 6 .
 次に、実施の形態1に係る車両用配光制御装置1の動作について説明する。
 図3は、実施の形態1に係る車両用配光制御装置1の動作を説明するためのフローチャートである。
 ここでは、図1に示すように、追い越し車両3が自車両2よりも大きな速度で自車両2を右後方から追い越すものとして説明する。
Next, the operation of the vehicle light distribution control device 1 according to Embodiment 1 will be described.
FIG. 3 is a flow chart for explaining the operation of the vehicle light distribution control device 1 according to the first embodiment.
Here, as shown in FIG. 1, it is assumed that the overtaking vehicle 3 overtakes the own vehicle 2 from the right rear at a higher speed than the own vehicle 2. FIG.
 初めに、右前方測距センサ4Rおよび右後方測距センサ5Rが駆動する。そして、右前方測距センサ4Rおよび右後方測距センサ5Rは測距情報を受信部11に送信する(ステップST101)。
 受信部11が、右後方測距センサ5Rにより送信された測距情報を受信した場合(ステップST102の「YES」の場合)、追い越し車両3が存在すると判定し、測距情報を時系列の情報として位置演算部12へ送信する。その後、車両用配光制御装置1の処理は、ステップST103へ進む。一方、受信部11が、右後方測距センサ5Rにより送信された測距情報を受信していない場合(ステップST102の「NO」の場合)、追い越し車両3が存在しないと判定し、車両用配光制御装置1は、ステップST102の処理を繰り返す。
First, the right front ranging sensor 4R and the right rear ranging sensor 5R are driven. Then, the right front ranging sensor 4R and the right rear ranging sensor 5R transmit ranging information to the receiving section 11 (step ST101).
When the receiving unit 11 receives the ranging information transmitted by the right rear ranging sensor 5R ("YES" in step ST102), it determines that there is an overtaking vehicle 3, and converts the ranging information into time-series information. , to the position calculation unit 12 . After that, the processing of the vehicle light distribution control device 1 proceeds to step ST103. On the other hand, if the receiver 11 has not received the ranging information transmitted by the right rear ranging sensor 5R ("NO" in step ST102), it determines that there is no overtaking vehicle 3, and determines that there is no overtaking vehicle 3. The light control device 1 repeats the process of step ST102.
 図4は、自車両2の右後方から近づく追い越し車両3を、右後方測距センサ5Rが検知し始めた状況の一例を示す図である。
 図4Aは、追い越し車両3が、右後方測距センサ5Rの検知範囲RSRの外から検知範囲RSRの中に入ったときの、自車両2と追い越し車両3との位置関係の一例を示す図である。
 また、図4Bは、自車両2の右後方から追い越し車両3が近づき、図4Aの位置関係になるまでに、右後方測距センサ5Rおよび右前方測距センサ4Rによって出力される測距情報の一例を示す図である。図4Bにおいて、縦軸を時間、横軸を測距センサにより出力された検知距離とし、測距センサによる検知結果をプロットしている。
FIG. 4 is a diagram showing an example of a situation in which the right rear ranging sensor 5R begins to detect the overtaking vehicle 3 approaching from the right rear of the own vehicle 2. As shown in FIG.
FIG. 4A is a diagram showing an example of the positional relationship between the own vehicle 2 and the passing vehicle 3 when the passing vehicle 3 enters the detection range RSR from the outside of the detection range RSR of the right rear ranging sensor 5R. be.
4B shows distance measurement information output by the right rear distance measurement sensor 5R and the right front distance measurement sensor 4R until the overtaking vehicle 3 approaches from the right rear of the own vehicle 2 and the positional relationship shown in FIG. 4A is established. It is a figure which shows an example. In FIG. 4B, the vertical axis is time and the horizontal axis is the detected distance output by the range finding sensor, and the results of detection by the range finding sensor are plotted.
 図4Bにおいて、プロット点t51およびプロット点t52は、右後方測距センサ5Rにより出力された測距情報である。
 プロット点t51は、右後方測距センサ5Rが、追い越し車両3を最初に検知したときの検知距離および検知時刻を示す。以降の説明では、右後方測距センサ5Rが追い越し車両3を最初に検知した時刻を基準として説明する。
 プロット点t52は、その後、自車両2に近づいた追い越し車両3を、右後方測距センサ5Rが検知したときの測距情報を示す。
 ここで、追い越し車両3は、右前方測距センサ4Rの検知範囲FSRに入っていないので、図4Bにおいて、右前方測距センサ4Rの検知結果を示すプロット点はない。
In FIG. 4B, plotted points t51 and t52 are ranging information output by the right rear ranging sensor 5R.
A plot point t51 indicates the detection distance and the detection time when the right rear ranging sensor 5R detects the passing vehicle 3 for the first time. In the following description, the time at which the right rear ranging sensor 5R first detects the overtaking vehicle 3 will be used as a reference.
A plot point t52 indicates distance measurement information when the right rear distance measurement sensor 5R detects the overtaking vehicle 3 approaching the host vehicle 2 thereafter.
Here, since the passing vehicle 3 is not within the detection range FSR of the front right ranging sensor 4R, there is no plotted point indicating the detection result of the front right ranging sensor 4R in FIG. 4B.
 右後方測距センサ5Rは、プロット点t51及びプロット点t52に対応する測距情報を受信部11に送信する。そして、受信部11は、右後方測距センサ5Rにより送信された測距情報を受信する。受信部11は、右後方測距センサ5Rにより送信された測距情報を受信したので(ステップST102の「YES」の場合)、追い越し車両3が存在すると判定し、測距情報を時系列の情報として位置演算部12へ送信する。 The right rear ranging sensor 5R transmits ranging information corresponding to the plot points t51 and t52 to the receiving section 11. The receiving unit 11 receives the ranging information transmitted by the right rear ranging sensor 5R. Since the receiving unit 11 has received the ranging information transmitted by the right rear ranging sensor 5R ("YES" in step ST102), it determines that there is an overtaking vehicle 3, and converts the ranging information into time-series information. , to the position calculation unit 12 .
 続いて、位置演算部12は、受信部11により送信された測距情報に基づいて、右後方測距センサ5Rによって追い越し車両3の左前方角部FCが検知されたときの測距情報を特定する(ステップST103)。 Subsequently, the position calculation unit 12 specifies the distance measurement information when the left front corner FC of the overtaking vehicle 3 is detected by the right rear distance measurement sensor 5R based on the distance measurement information transmitted by the reception unit 11. (Step ST103).
 図5は、図4に示す状況から追い越し車両3が、さらに前進したときの状況を示す図である。図5は、右後方測距センサ5Rが、追い越し車両3の左前方角部FCを検知した後、追い越し車両3の左側部を検知している状況の一例を示す図である。図5Aは、右後方測距センサ5Rが、追い越し車両3の左前方角部FCを検知した後、追い越し車両3の左側部を検知しているときの、自車両2と追い越し車両3との位置関係の一例を示す図である。 FIG. 5 is a diagram showing the situation when the overtaking vehicle 3 moves further forward from the situation shown in FIG. FIG. 5 is a diagram showing an example of a situation in which the right rear ranging sensor 5R detects the left side of the overtaking vehicle 3 after detecting the left front corner FC of the overtaking vehicle 3. As shown in FIG. FIG. 5A shows the positional relationship between the own vehicle 2 and the passing vehicle 3 when the right rear ranging sensor 5R detects the left front corner FC of the passing vehicle 3 and then detects the left side of the passing vehicle 3. It is a figure which shows an example.
 図5Bは、自車両2の右後方から追い越し車両3が近づいてから図5Aの状況になるまでに、右後方測距センサ5Rおよび右前方測距センサ4Rによって出力される測距情報の一例を示す図である。図5Bにおいて、プロット点t53からプロット点t55は、図4Aの状況から図5Aの状況になるまでに、右後方測距センサ5Rにより出力された測距情報である。 FIG. 5B shows an example of ranging information output by the right rear ranging sensor 5R and the right front ranging sensor 4R from the time the overtaking vehicle 3 approaches from the right rear of the own vehicle 2 to the situation in FIG. 5A. FIG. 4 is a diagram showing; In FIG. 5B, plotted points t53 to t55 are ranging information output by the right rear ranging sensor 5R from the situation in FIG. 4A to the situation in FIG. 5A.
 プロット点t53は、右後方測距センサ5Rが、追い越し車両3の左前方角部FCを検知したときの測距情報を示す。また、プロット点t54およびt55は、右後方測距センサ5Rが、追い越し車両3の左側部を検知しているときの測距情報を示す。追い越し車両3が自車両2と並走しており、右後方測距センサ5Rは、追い越し車両3の左側部を検知しているため、右後方測距センサ5Rにより送信される検知距離は、プロット点t53からプロット点t55に示すようにばらつきが少なくなってほぼ一定となる。
 なお、追い越し車両3が、右前方測距センサ4Rの検知範囲FSRに入っていないので、図5Bにおいて、右前方測距センサ4Rの検知結果を示すプロット点はない。
A plot point t<b>53 indicates distance measurement information when the right rear distance measurement sensor 5</b>R detects the left front corner FC of the overtaking vehicle 3 . Plot points t54 and t55 indicate distance measurement information when the right rear distance measurement sensor 5R detects the left side of the overtaking vehicle 3. FIG. Since the overtaking vehicle 3 is running parallel to the own vehicle 2 and the right rear ranging sensor 5R detects the left side of the overtaking vehicle 3, the detection distance transmitted by the right rear ranging sensor 5R is plotted. As shown from point t53 to plotted point t55, the variation decreases and becomes almost constant.
Since the passing vehicle 3 is not within the detection range FSR of the front right ranging sensor 4R, there is no plotted point indicating the detection result of the front right ranging sensor 4R in FIG. 5B.
 ここで、位置演算部12は、図5Bに示す測距情報に基づいて、右後方測距センサ5Rによって、追い越し車両3の左前方角部FCが検知されたときの測距情報を特定する。具体的には、位置演算部12は、右後方測距センサ5Rの測距情報において、検知距離のばらつきが少なくほぼ一定となっている範囲の複数の測距情報のうち、最初の測距情報、即ち、図5Bのプロット点t53を、左前方角部FCが、右後方測距センサ5Rによって検知されたときの測距情報として特定する(ステップST103)。そして、位置演算部12は、特定した測距情報t53を相対速度演算部13へ送信する。 Here, based on the ranging information shown in FIG. 5B, the position calculating unit 12 specifies ranging information when the left front corner FC of the overtaking vehicle 3 is detected by the right rear ranging sensor 5R. Specifically, the position calculation unit 12 selects the first ranging information among the plurality of ranging information in the range where the detection distance is almost constant with little variation in the ranging information of the right rear ranging sensor 5R. That is, the plot point t53 in FIG. 5B is specified as the distance measurement information when the left front corner FC is detected by the right rear distance measurement sensor 5R (step ST103). The position calculation unit 12 then transmits the specified distance measurement information t<b>53 to the relative speed calculation unit 13 .
 続いて、受信部11が、右前方測距センサ4Rにより送信された測距情報を受信した場合(ステップST104の「YES」の場合)、即ち、右前方測距センサ4Rによって追い越し車両3が検知された場合、追い越し車両3が自車両2の側方まで進行してきたと判定し、車両用配光制御装置1の処理はステップST105へ進む。
 一方、受信部11が、右前方測距センサ4Rにより送信された測距情報を受信していない場合(ステップST104の「NO」の場合)、追い越し車両3が自車両2の側方まで進行していないと判定し、車両用配光制御装置1は、ステップST104の処理を繰り返す。
Subsequently, when the receiving unit 11 receives the ranging information transmitted by the right front ranging sensor 4R ("YES" in step ST104), the overtaking vehicle 3 is detected by the right front ranging sensor 4R. If so, it is determined that the overtaking vehicle 3 has advanced to the side of the own vehicle 2, and the processing of the vehicle light distribution control device 1 proceeds to step ST105.
On the other hand, if the receiver 11 has not received the ranging information transmitted by the right front ranging sensor 4R ("NO" in step ST104), the overtaking vehicle 3 has advanced to the side of the own vehicle 2. The vehicular light distribution control device 1 repeats the process of step ST104.
 図6は、図5に示す状況から追い越し車両3がさらに前進したときの状況を示す図である。図6は、右前方測距センサ4Rが追い越し車両3を検知し始めており、かつ右後方測距センサ5Rが、追い越し車両3の左後方角部RCを検知したときの状況の一例を示す図である。
 図6Aは、追い越し車両3が、右前方測距センサ4Rの検知範囲FSRの外から検知範囲FSRの中に入ったとき、かつ、右後方測距センサ5Rが追い越し車両3の左後方角部RCを検知したときの、自車両2と追い越し車両3との位置関係の一例を示す図である。
 図6Bは、自車両2の右後方から追い越し車両3が近づいてから図6Bの状況になるまでに、右後方測距センサ5Rおよび右前方測距センサ4Rによって出力される測距情報の一例を示す図である。
FIG. 6 is a diagram showing a situation when the overtaking vehicle 3 moves further forward from the situation shown in FIG. FIG. 6 is a diagram showing an example of a situation when the right front ranging sensor 4R has started to detect the passing vehicle 3 and the right rear ranging sensor 5R has detected the left rear corner RC of the passing vehicle 3. In FIG. be.
FIG. 6A shows when the overtaking vehicle 3 moves from outside the detection range FSR of the right front ranging sensor 4R into the detection range FSR, and the right rear ranging sensor 5R detects the left rear corner RC of the overtaking vehicle 3. is a diagram showing an example of the positional relationship between the own vehicle 2 and the overtaking vehicle 3 when is detected.
FIG. 6B shows an example of ranging information output by the right rear ranging sensor 5R and the right front ranging sensor 4R from the time the overtaking vehicle 3 approaches from the right rear of the own vehicle 2 to the situation in FIG. 6B. FIG. 4 is a diagram showing;
 図6Bにおいて、プロット点t56およびプロット点t57は、図5Aの状況から図6Aの状況になるまでに、右後方測距センサ5Rにより出力された測距情報である。また、プロット点t41およびプロット点t42は、右前方測距センサ4Rにより出力された測距情報である。
 プロット点t56は、右後方測距センサ5Rが、追い越し車両3の左側部を検知したときの測距情報である。そして、プロット点t57は、右後方測距センサ5Rが、追い越し車両3の左後方角部RCを検知したときの測距情報である。自車両2と追い越し車両3は並走しているため、プロット点t56およびプロット点t57は、プロット点t53からプロット点t55と同様に検知距離のばらつきが少なくなってほぼ一定となる。
In FIG. 6B, plotted points t56 and t57 are ranging information output by the right rear ranging sensor 5R from the situation in FIG. 5A to the situation in FIG. 6A. A plot point t41 and a plot point t42 are ranging information output by the right front ranging sensor 4R.
A plot point t56 is distance measurement information when the right rear distance measurement sensor 5R detects the left side of the overtaking vehicle 3. FIG. A plot point t57 is distance measurement information when the right rear distance measurement sensor 5R detects the left rear corner RC of the overtaking vehicle 3. FIG. Since the own vehicle 2 and the passing vehicle 3 are running side by side, the variation in the detection distance between the plotted points t56 and t57 decreases and becomes almost constant, like the plotted points t53 to t55.
 また、プロット点t41は、右前方測距センサ4Rが追い越し車両3を最初に検知したときの測距情報を示す。プロット点t42は、その後、前進した追い越し車両3を、右前方測距センサ4Rが検知したときの測距情報を示す。 A plot point t41 indicates distance measurement information when the right front distance measurement sensor 4R first detects the overtaking vehicle 3. A plot point t42 indicates distance measurement information when the forward right distance measurement sensor 4R detects the overtaking vehicle 3 that has moved forward thereafter.
 受信部11は、右後方測距センサ5Rおよび右前方測距センサ4Rによって出力された測距情報を受信する(ステップST104)。 The receiving unit 11 receives the ranging information output by the right rear ranging sensor 5R and the right front ranging sensor 4R (step ST104).
 そして、受信部11は、右前方測距センサ4Rにより送信された測距情報を受信したので(ステップST104の「YES」の場合)、追い越し車両3が自車両2の側方まで進行してきたと判定し、右後方測距センサ5Rおよび右前方測距センサ4Rによって出力された測距情報を時系列の情報として位置演算部12へ送信する。 Since the receiver 11 has received the ranging information transmitted by the right front ranging sensor 4R ("YES" in step ST104), it determines that the overtaking vehicle 3 has advanced to the side of the own vehicle 2. Then, the distance measurement information output from the right rear distance measurement sensor 5R and the right front distance measurement sensor 4R is transmitted to the position calculation unit 12 as time-series information.
 次に、位置演算部12は、受信部11により送信された測距情報に基づいて、右前方測距センサ4Rによって、追い越し車両3の左前方角部FCが検知されたときの測距情報を特定する(ステップST105)。その後、位置演算部12は、右後方測距センサ5Rの測距情報に基づいて、自車両2と追い越し車両3との離隔距離Y1を算出する(ステップST106)。 Next, the position calculation unit 12 specifies the distance measurement information when the right front distance measurement sensor 4R detects the left front corner FC of the overtaking vehicle 3 based on the distance measurement information transmitted by the reception unit 11. (step ST105). After that, the position calculation section 12 calculates the separation distance Y1 between the own vehicle 2 and the overtaking vehicle 3 based on the distance measurement information of the right rear distance measurement sensor 5R (step ST106).
 図7は、図6に示す状況から追い越し車両3がさらに前進したときの状況を示す図である。図7は、右前方測距センサ4Rが、追い越し車両3の左前方角部FCを検知した後、追い越し車両3の左側部を検知しており、かつ右後方測距センサ5Rが、追い越し車両3の左後方角部RCを検知しなくなった状況の一例を示す図である。
 図7Aは、右前方測距センサ4Rが、追い越し車両3の左前方角部FCを検知した後、追い越し車両3の左側部を検知しており、かつ追い越し車両3の左後方角部RCが、右後方測距センサ5Rの検知範囲RSRの中から検知範囲RSRの外に出たときの、自車両2と追い越し車両3との位置関係の一例を示す図である。
 図7Bは、自車両2の右後方から追い越し車両3が近づいてから図7Aの状況になるまでに、右後方測距センサ5Rおよび右前方測距センサ4Rによって出力される測距情報の一例を示す図である。
FIG. 7 is a diagram showing a situation when the overtaking vehicle 3 has moved further forward from the situation shown in FIG. FIG. 7 shows that the right front ranging sensor 4R detects the left front corner FC of the overtaking vehicle 3 and then detects the left side of the overtaking vehicle 3, and the right rear ranging sensor 5R detects the left front corner FC of the overtaking vehicle 3. FIG. 10 is a diagram showing an example of a situation in which the left rear corner RC is no longer detected;
FIG. 7A shows that the right front ranging sensor 4R detects the left front corner FC of the passing vehicle 3 and then detects the left side of the passing vehicle 3, and the left rear corner RC of the passing vehicle 3 is detected on the right side. 4 is a diagram showing an example of the positional relationship between the own vehicle 2 and the overtaking vehicle 3 when the vehicle moves out of the detection range RSR of the rear ranging sensor 5R. FIG.
FIG. 7B shows an example of ranging information output by the right rear ranging sensor 5R and the right front ranging sensor 4R from the time the overtaking vehicle 3 approaches from the right rear of the own vehicle 2 to the situation in FIG. 7A. FIG. 4 is a diagram showing;
 図7Bにおいて、プロット点t58およびプロット点t59は、図6Aの状況から図7Aの状況になるまでに、右後方測距センサ5Rにより出力された測距情報である。また、プロット点t43からプロット点t45は、右前方測距センサ4Rにより出力された測距情報である。
 プロット点t58およびプロット点t59は、追い越し車両3が、右後方測距センサ5Rから離れていくとき、即ち検知範囲RSRの中から検知範囲RSRの外へ出ていくときに、右後方測距センサ5Rにより出力される測距情報である。追い越し車両3が、右後方測距センサ5Rから離れていくため、時間経過とともに検知距離が長くなる。
In FIG. 7B, plotted points t58 and t59 are ranging information output by the right rear ranging sensor 5R from the situation in FIG. 6A to the situation in FIG. 7A. Plotted points t43 to t45 are ranging information output by the right front ranging sensor 4R.
Plotted points t58 and t59 are plotted when the overtaking vehicle 3 moves away from the right rear ranging sensor 5R, that is, when it moves out of the detection range RSR from within the detection range RSR. This is ranging information output by 5R. Since the overtaking vehicle 3 moves away from the right rear ranging sensor 5R, the detection distance increases as time elapses.
 プロット点t43は、右前方測距センサ4Rが、追い越し車両3の左前方角部FCを検知したときの測距情報を示す。また、プロット点t44およびプロット点t45は、右前方測距センサ4Rが、追い越し車両3の左側部を検知しているときの測距情報を示す。
 追い越し車両3が自車両2と並走しており、右前方測距センサ4Rが追い越し車両3の左側部を検知しているため、右前方測距センサ4Rにより送信される検知距離はt43からプロット点t45に示すようにばらつきが少なくなってほぼ一定となる。
A plot point t43 indicates distance measurement information when the right front distance measurement sensor 4R detects the left front corner FC of the overtaking vehicle 3. FIG. A plot point t44 and a plot point t45 indicate distance measurement information when the right front distance measurement sensor 4R detects the left side of the overtaking vehicle 3. FIG.
Since the overtaking vehicle 3 is running parallel to the own vehicle 2 and the right front ranging sensor 4R detects the left side of the overtaking vehicle 3, the detection distance transmitted by the right front ranging sensor 4R is plotted from t43. As shown at point t45, the variation is reduced and becomes almost constant.
 ここで、位置演算部12は、図7Bに示す測距情報に基づいて、右前方測距センサ4Rによって追い越し車両3の左前方角部FCが検知されたされたときの測距情報を特定する。具体的には、位置演算部12は、右前方測距センサ4Rの測距情報において、検知距離のばらつきが少なくほぼ一定となっている範囲の複数の測距情報のうち、最初の測距情報、即ち、図7Bのプロット点t43を、左前方角部FCが右前方測距センサ4Rによって検知された測距情報として特定する(ステップST105)。そして、位置演算部12は、特定した測距情報t43を相対速度演算部13へ送信する。 Here, based on the ranging information shown in FIG. 7B, the position calculating unit 12 specifies ranging information when the front left corner FC of the overtaking vehicle 3 is detected by the forward right ranging sensor 4R. Specifically, the position calculation unit 12 selects the first distance measurement information among the plurality of distance measurement information in the range where the detection distance is almost constant with little variation in the distance measurement information of the right front distance measurement sensor 4R. That is, the plotted point t43 in FIG. 7B is specified as the distance measurement information in which the left front corner FC is detected by the right front distance measurement sensor 4R (step ST105). The position calculation unit 12 then transmits the specified distance measurement information t<b>43 to the relative speed calculation unit 13 .
 また、位置演算部12は、右後方測距センサ5Rによって出力された測距情報に基づいて自車両2と追い越し車両3の離隔距離Y1を算出する(ステップST106)。具体的には、位置演算部12は、右前方測距センサ4Rによって追い越し車両3の左前方角部FCが検知された場合に、右後方測距センサ5Rの測距情報において、検知距離のばらつきが少なくほぼ一定となっている範囲の複数の測距情報、例えばプロット点t54からプロット点t56の検知距離の平均値を離隔距離Y1として算出する。
 そして、位置演算部12は、離隔距離Y1および左前方角部FCが右前方測距センサ4Rに検知されたときの測距情報t43を、グレア発生方向演算部14に送信する。
Further, the position calculation unit 12 calculates the distance Y1 between the own vehicle 2 and the overtaking vehicle 3 based on the distance measurement information output by the right rear distance measurement sensor 5R (step ST106). Specifically, when the right front ranging sensor 4R detects the left front corner FC of the overtaking vehicle 3, the position calculation unit 12 determines that the distance measurement information from the right rear ranging sensor 5R has variations in the detected distance. The separation distance Y1 is calculated as an average value of a plurality of pieces of distance measurement information within a small and substantially constant range, for example, the detection distance from the plot point t54 to the plot point t56.
Then, the position calculation unit 12 transmits distance measurement information t43 when the distance Y1 and the left front corner FC are detected by the right front distance measurement sensor 4R to the glare occurrence direction calculation unit 14 .
 続いて、相対速度演算部13は、位置演算部12により検知された角部に基づいて追い越し車両3の相対速度を算出する(ステップST107)。具体的には、右前方測距センサ4Rおよび右後方測距センサ5Rによって追い越し車両3の左前方角部FCが検知された各時刻に基づいて、追い越し車両3の相対速度Vrを算出する(ステップST107)。そして、追い越し車両3は、算出した相対速度Vrをグレア発生方向演算部14へ送信する。 Subsequently, the relative speed calculator 13 calculates the relative speed of the overtaking vehicle 3 based on the corner detected by the position calculator 12 (step ST107). Specifically, the relative speed Vr of the passing vehicle 3 is calculated based on each time when the left front corner FC of the passing vehicle 3 is detected by the right front ranging sensor 4R and the right rear ranging sensor 5R (step ST107). ). Then, the overtaking vehicle 3 transmits the calculated relative velocity Vr to the glare generation direction calculator 14 .
 ここでは、相対速度演算部13は、位置演算部12から受信した、右前方測距センサ4Rによって左前方角部FCが検知されたときの測距情報t43に含まれる検知時刻T1、右後方測距センサ5Rによって左前方角部FCが検知されたときの測距情報t53に含まれる検知時刻T2、および既知の値である測距センサ間距離SDを用いて、上述した式(1)によって追い越し車両3の相対速度Vrを算出する(ステップST107)。そして、相対速度演算部13は、相対速度Vrをグレア発生方向演算部14へ送信する。 Here, the relative velocity calculation unit 13 receives from the position calculation unit 12 the detection time T1 included in the distance measurement information t43 when the right front distance measurement sensor 4R detects the left front corner FC, the right rear distance measurement The overtaking vehicle 3 is calculated (step ST107). The relative velocity calculator 13 then transmits the relative velocity Vr to the glare generation direction calculator 14 .
 その後、グレア発生方向演算部14は、位置演算部12によって算出された離隔距離および相対速度演算部13によって算出された追い越し車両3の相対速度に基づいて追い越し車両の方向を予測する(ステップST108)。具体的には、上述した式(3)に基づいて遮光角度θを算出する。
 そして、配光制御部15は、グレア発生方向演算部14により算出されたグレア発生方向を照射しないようヘッドライト7に対して配光の一部を遮光するよう指示する(ステップST109)。
Thereafter, the glare generation direction calculation unit 14 predicts the direction of the passing vehicle based on the separation distance calculated by the position calculation unit 12 and the relative speed of the passing vehicle 3 calculated by the relative speed calculation unit 13 (step ST108). . Specifically, the light shielding angle θ is calculated based on the formula (3) described above.
Then, the light distribution control unit 15 instructs the headlight 7 to block part of the light distribution so as not to emit light in the glare generation direction calculated by the glare generation direction calculation unit 14 (step ST109).
 図1において、実線で示した追い越し車両3bは、追い越し車両3が自車両2を追い越したときの状況、即ちグレア発生方向演算部14が予測した追い越し車両3の状況の一例である。具体的には、追い越し車両3bは、追い越し車両3の左前方角部FCが右前方測距センサ4Rに検知されてからT秒後の追い越し車両3の状況の一例である。 In FIG. 1, the passing vehicle 3b indicated by the solid line is an example of the situation when the passing vehicle 3 overtakes the own vehicle 2, that is, the situation of the passing vehicle 3 predicted by the glare generation direction calculation unit 14. Specifically, the passing vehicle 3b is an example of the situation of the passing vehicle 3 T seconds after the left front corner FC of the passing vehicle 3 is detected by the right front ranging sensor 4R.
 グレア発生方向演算部14は、位置演算部12から離隔距離Y1および左前方角部FCが右前方測距センサ4Rに検知されたときの測距情報を受信する。また、グレア発生方向演算部14は、相対速度演算部13から相対速度Vrを受信する。そして、グレア発生方向演算部14は、左前方角部FCが検出されてから追い越し車両3が相対速度Vrで走行を続けた場合のT秒後の追い越し車両3bの方向を予測する。具体的には、グレア発生方向演算部14は、上述した式(3)によって、遮光角度θを算出する(ステップST108)。 The glare generation direction calculation unit 14 receives distance measurement information from the position calculation unit 12 when the separation distance Y1 and the left front corner FC are detected by the right front distance measurement sensor 4R. Also, the glare generation direction calculation unit 14 receives the relative speed Vr from the relative speed calculation unit 13 . Then, the glare generation direction calculation unit 14 predicts the direction of the overtaking vehicle 3b after T seconds when the overtaking vehicle 3 continues traveling at the relative speed Vr after the detection of the left front corner FC. Specifically, the glare generation direction calculator 14 calculates the light shielding angle θ by the above-described formula (3) (step ST108).
 配光制御部15は、グレア発生方向演算部14によって送信されたグレア発生方向、即ち遮光角度θの方向を照射しないように、ヘッドライト7に対して配光の一部を遮光する指示を行う(ステップST109)。具体的には、配光制御部15は、遮光角度θに基づいて、図1に示すグレア発生範囲Glを照射しないように、ヘッドライト7に対して遮光指示を行う。 The light distribution control unit 15 instructs the headlight 7 to block part of the light distribution so as not to irradiate the glare generation direction transmitted by the glare generation direction calculation unit 14, that is, the direction of the blocking angle θ. (Step ST109). Specifically, the light distribution control unit 15 instructs the headlight 7 to block light based on the blocking angle θ so as not to irradiate the glare generation range Gl shown in FIG. 1 .
 配光制御部15は、撮像装置6によって追い越し車両3が検知され、撮像装置6によって送信された追い越し車両3の方向を受信した場合、(ステップST110の「YES」の場合)、受信した方向を照射しないようヘッドライト7に対して配光の一部を遮光するよう指示する(ステップST111)。一方、撮像装置6によって追い越し車両3が検知されていない場合(ステップST110の「NO」の場合)、ステップST108の処理へ戻る。 When the passing vehicle 3 is detected by the imaging device 6 and the direction of the passing vehicle 3 transmitted by the imaging device 6 is received (“YES” in step ST110), the light distribution control unit 15 changes the received direction. The headlight 7 is instructed to shield part of the light distribution so as not to irradiate (step ST111). On the other hand, if the passing vehicle 3 is not detected by the imaging device 6 ("NO" in step ST110), the process returns to step ST108.
 これは、時間の経過に伴い変化する追い越し車両3の方向に応じて、グレア発生範囲Glが変化するため、車両用配光制御装置1が、そのグレア発生範囲Glの変化に追従するように、相対速度Vr等の情報に基づいて、遮光領域を制御するためである。具体的には、車両用配光制御装置1は、追い越し車両3が現在の相対速度Vrで走行を続けた場合の追い越し車両3の方向を予測し、予測した方向での追い越し車両3のグレア発生範囲Glを演算している。 This is because the glare generation range Gl changes according to the direction of the passing vehicle 3 that changes with the passage of time. This is for controlling the light shielding area based on information such as the relative velocity Vr. Specifically, the vehicular light distribution control device 1 predicts the direction of the passing vehicle 3 when the passing vehicle 3 continues traveling at the current relative speed Vr, and the glare of the passing vehicle 3 occurs in the predicted direction. Calculating the range Gl.
 なお、上述した追い越し車両3の方向に追従した遮光制御は、追い越し車両3が自車両2の前方に位置したときから、撮像装置6によって検知されるまでの短期間になされるものであるから、追い越し車両3の車速が変化した場合であっても大きな誤差は生じない。 The light shielding control following the direction of the overtaking vehicle 3 described above is performed in a short period from when the overtaking vehicle 3 is positioned in front of the own vehicle 2 until it is detected by the imaging device 6. Even if the vehicle speed of the overtaking vehicle 3 changes, no large error occurs.
 以上のように、車両用配光制御装置1は、追い越し車両との相対速度および離隔距離に基づいて、自車両の配光エリアにおいて追い越し車両の運転者にグレアを与える、追い越し車両の方向を正確に予測する。そして、車両用配光制御装置1は、予測した方向を照射しないようにすることによって、追い越し車両の運転者へのグレア発生を抑制するものである。
 即ち、追い越し車両の運転者にグレアを発生させる追い越し車両の方向とタイミングを正確に予測して、グレアを発生させる範囲を遮光でき、自車両の配光エリアの減少を必要最低限に抑えることができる。
 そのため、追い越し車両が自車両の前方を撮像する撮像装置の死角から自車両を追い越していったとしても、追い越し車両へのグレアを抑制するとともに長時間に亘って自車両の運転者の視界を犠牲にすることを抑制することができる。
As described above, the vehicle light distribution control device 1 gives glare to the driver of the passing vehicle in the light distribution area of the own vehicle based on the relative speed and distance from the passing vehicle, and accurately determines the direction of the passing vehicle. predict to The vehicular light distribution control device 1 suppresses the occurrence of glare to the driver of the overtaking vehicle by not emitting the light in the predicted direction.
In other words, it is possible to accurately predict the direction and timing of the overtaking vehicle that causes glare to the driver of the overtaking vehicle, shade the range in which glare is generated, and minimize the decrease in the light distribution area of the own vehicle. can.
Therefore, even if the passing vehicle overtakes the own vehicle from the blind spot of the imaging device that images the front of the own vehicle, the glare to the passing vehicle is suppressed and the visibility of the driver of the own vehicle is sacrificed for a long time. can be suppressed.
 なお、追い越し車両3の方向、即ち遮光角度θを自車両2の中央前端部FRを基準に算出するものとして説明したが、これに限られない。例えば、自車両2の右ヘッドライトの位置を基準に遮光角度θを算出するとしてもよい。この場合、距離X2は、自車両2の右ヘッドライトから追い越し車両3の左サイドミラーSMまでのx軸方向の距離となる。また、距離Y2は、自車両2の右ヘッドライトから追い越し車両3の左サイドミラーSMまでのy軸方向の距離となる。
 ここで、距離Dは、右前方測距センサ4Rから右ヘッドライトまでのx軸方向における距離であり、車種毎に決定される既知の値を用いればよい。また、自車両2の右側面から右ヘッドライトまでの距離は、車種ごとに決定される既知の値であるため、その距離に離隔距離Y1を加算することで、距離Y2を算出すればよい。
Although the direction of the overtaking vehicle 3, that is, the light shielding angle θ is calculated based on the center front end FR of the own vehicle 2, it is not limited to this. For example, the light shielding angle θ may be calculated based on the position of the right headlight of the own vehicle 2 . In this case, the distance X2 is the distance from the right headlight of the own vehicle 2 to the left side mirror SM of the overtaking vehicle 3 in the x-axis direction. Further, the distance Y2 is the distance in the y-axis direction from the right headlight of the own vehicle 2 to the left side mirror SM of the overtaking vehicle 3 .
Here, the distance D is the distance in the x-axis direction from the right front ranging sensor 4R to the right headlight, and a known value determined for each vehicle type may be used. Also, since the distance from the right side of the vehicle 2 to the right headlight is a known value that is determined for each vehicle type, the distance Y2 can be calculated by adding the distance Y1 to that distance.
実施の形態2.
 図8は、実施の形態2に係る車両用配光制御装置1aの構成例を示す図である。実施の形態2に係る車両用配光制御装置1aは、図2に示された実施の形態1の車両用配光制御装置1に車両長演算部16が追加された構成である。図8において図2と同一または相当する部分は、同一の符号を付し説明を省略する。
Embodiment 2.
FIG. 8 is a diagram showing a configuration example of a vehicle light distribution control device 1a according to Embodiment 2. As shown in FIG. A vehicle light distribution control device 1a according to the second embodiment has a configuration in which a vehicle length calculation unit 16 is added to the vehicle light distribution control device 1 of the first embodiment shown in FIG. In FIG. 8, parts identical or corresponding to those in FIG.
 実施の形態1に係る車両用配光制御装置1では、追い越し車両3の左前方角部FCと左サイドミラーSMとの間の距離が一定であるとして説明した。しかし、追い越し車両3の車種によってその距離は異なる。
 そこで、車両用配光制御装置1aは、追い越し車両3の車両長を算出することによって追い越し車両3の車種を判別し、その車種に基づいて追い越し車両3の左サイドミラーSMの位置、具体的には、左前方角部FCと左サイドミラーSMとの間の距離ΔXを推定する。
In the vehicle light distribution control device 1 according to Embodiment 1, the distance between the left front corner FC of the passing vehicle 3 and the left side mirror SM is constant. However, the distance differs depending on the vehicle type of the overtaking vehicle 3 .
Therefore, the vehicle light distribution control device 1a determines the vehicle type of the overtaking vehicle 3 by calculating the vehicle length of the overtaking vehicle 3, and based on the vehicle type, the position of the left side mirror SM of the overtaking vehicle 3, specifically, estimates the distance ΔX between the left front corner FC and the left side mirror SM.
 これにより、追い越し車両3の車種に応じて、追い越し車両3の運転者にグレアを発生させる方向を予測することが可能となるため、他車両へのグレアを抑制するとともに長時間に亘って自車両2の運転者の視界を犠牲にすることを抑制することができる。
 ここで、車種とは、車両が軽自動車等の小型車、普通車またはトラック等の大型車であるかを示す情報である。そして、同一の車種であれば車両におけるサイドミラーの位置に大きな差異がないことから、車種毎に予め定められた距離ΔXaを定義している。
As a result, it is possible to predict the direction in which the driver of the overtaking vehicle 3 will experience glare according to the vehicle type of the overtaking vehicle 3, so that the glare to other vehicles can be suppressed and the own vehicle can be illuminated for a long period of time. 2, sacrificing the driver's field of view can be suppressed.
Here, the vehicle type is information indicating whether the vehicle is a compact vehicle such as a light vehicle, a standard vehicle, or a large vehicle such as a truck. Since there is no great difference in the positions of the side mirrors in the same vehicle type, the predetermined distance ΔXa is defined for each vehicle type.
 位置演算部12aは、追い越し車両3の左前方角部FCおよび左後方角部RCが自車両2の右後方測距センサ5Rによって検知されたときの測距情報を特定し、各測距情報を車両長演算部16へ送信する。
 また、相対速度演算部13aは、算出した相対速度Vrを車両長演算部16へ送信する。
The position calculation unit 12a specifies the distance measurement information when the left front corner FC and the left rear corner RC of the overtaking vehicle 3 are detected by the right rear distance measurement sensor 5R of the own vehicle 2, and outputs each distance measurement information to the vehicle. It is transmitted to the length calculation unit 16 .
Also, the relative speed calculator 13 a transmits the calculated relative speed Vr to the vehicle length calculator 16 .
 車両長演算部16は、追い越し車両3の左前方角部FCおよび左後方角部RCの検知時刻と相対速度Vrとに基づいて算出した追い越し車両3の車両長に基づいて、追い越し車両3の車種を判別する。そして、車両長演算部16は、判別した車種をグレア発生方向演算部14aへ送信する。
 ここで、追い越し車両3の左前方角部FCおよび左後方角部RCの検知時刻は、位置演算部12aによって送信された各測距情報に含まれる検知時刻である。
The vehicle length calculation unit 16 calculates the vehicle type of the overtaking vehicle 3 based on the vehicle length of the overtaking vehicle 3 calculated based on the detection time of the left front corner FC and the left rear corner RC of the overtaking vehicle 3 and the relative speed Vr. discriminate. Then, the vehicle length calculation unit 16 transmits the determined vehicle type to the glare occurrence direction calculation unit 14a.
Here, the detection time of the left front corner FC and the left rear corner RC of the overtaking vehicle 3 is the detection time included in each distance measurement information transmitted by the position calculation unit 12a.
 車両長演算部16は、位置演算部12aによって送信された各測距情報に含まれる検知時刻の差Δtを算出する。Δtは、追い越し車両3の左前方角部FCが右後方測距測距センサ5Rによって検知されてから、左後方角部RCが右後方測距センサ5Rによって検知されるまでに要した時間である。
 そして、車両長演算部16は、相対速度Vrおよび検知時刻の差Δtに基づいて、式(4)によって追い越し車両3の車両長Lを算出する。

 L=Vr*Δt・・・(4)
The vehicle length calculator 16 calculates the difference Δt between the detection times included in the distance measurement information transmitted by the position calculator 12a. Δt is the time required from the detection of the left front corner FC of the overtaking vehicle 3 by the right rear ranging sensor 5R to the detection of the left rear corner RC by the right rear ranging sensor 5R.
Then, the vehicle length calculation unit 16 calculates the vehicle length L of the overtaking vehicle 3 using the equation (4) based on the relative speed Vr and the difference Δt between the detection times.

L=Vr*Δt (4)
 車両長演算部16は、例えば、車両長Lが予め定められた車両長L1より短い場合、追い越し車両3の車種が軽自動車であると判別する。また、車両長演算部16は、車両長Lが、車両長L1より長く、かつ予め定められた車両長L2より短い場合、追い越し車両3の車種が普通車であると判別する。また、車両長演算部16は、車両長Lが車両長L2より長い場合、追い越し車両3の車種が大型車であると判別する。 For example, when the vehicle length L is shorter than a predetermined vehicle length L1, the vehicle length calculation unit 16 determines that the vehicle type of the overtaking vehicle 3 is a light vehicle. Further, when the vehicle length L is longer than the vehicle length L1 and shorter than the predetermined vehicle length L2, the vehicle length calculation unit 16 determines that the vehicle type of the overtaking vehicle 3 is an ordinary vehicle. Further, when the vehicle length L is longer than the vehicle length L2, the vehicle length calculation unit 16 determines that the vehicle type of the overtaking vehicle 3 is a large vehicle.
 グレア発生方向演算部14aは、車両長演算部16によって送信された車種に基づいて予測したグレア発生方向を調整する。
 グレア発生方向演算部14aは、車種に基づいて追い越し車両3の左前方角部FCと左サイドミラーSMとの間の距離ΔXaを推定する。例えば、グレア発生方向演算部14aは、車種と距離ΔXaとの対応関係を図示しないメモリに記憶しており、その対応関係を参照することによって車種に対応する距離ΔXaを推定する。そして、グレア発生方向演算部14aは推定した距離ΔXaを用いて、グレア発生方向を調整する。
 具体的には、グレア発生方向演算部14aは、上述した式(3)において、予め定められた距離ΔXに替えて、車種に基づいて推定した距離ΔXaを用いて遮光角度θを算出する。
The glare generation direction calculation unit 14 a adjusts the predicted glare generation direction based on the vehicle type transmitted by the vehicle length calculation unit 16 .
The glare generation direction calculator 14a estimates the distance ΔXa between the left front corner FC of the overtaking vehicle 3 and the left side mirror SM based on the vehicle type. For example, the glare generation direction calculator 14a stores the correspondence between the vehicle type and the distance ΔXa in a memory (not shown), and estimates the distance ΔXa corresponding to the vehicle type by referring to the correspondence. Then, the glare generation direction calculator 14a uses the estimated distance ΔXa to adjust the glare generation direction.
Specifically, the glare generation direction calculation unit 14a calculates the light blocking angle θ using the distance ΔXa estimated based on the vehicle type instead of the predetermined distance ΔX in the above-described formula (3).
 次に、実施の形態2に係る車両用配光制御装置1aの動作について説明する。
 図9は、実施の形態2に係る車両用配光制御装置1aの動作を説明するためのフローチャートである。なお、図9のステップST201からステップST207、およびステップST211からステップST213の処理は、図3のステップST101からステップST107、およびステップST109からステップST111の処理と同じであるため説明を省略する。
 ここでは、実施の形態1と同様に図4Aから図7Aに示すように、追い越し車両3が自車両2よりも大きな速度で自車両2を右後方から追い越すものとして説明する。
Next, the operation of the vehicle light distribution control device 1a according to the second embodiment will be described.
FIG. 9 is a flow chart for explaining the operation of the vehicle light distribution control device 1a according to the second embodiment. Note that the processing from steps ST201 to ST207 and from steps ST211 to ST213 in FIG. 9 are the same as the processing from steps ST101 to ST107 and from steps ST109 to ST111 in FIG.
Here, as in the first embodiment, as shown in FIGS. 4A to 7A, it is assumed that the passing vehicle 3 overtakes the own vehicle 2 from the right rear at a higher speed than the own vehicle 2. FIG.
 また、ステップST201からステップST207の処理の結果、自車両2と追い越し車両3との位置関係は図7Aとなっているものとする。このとき、位置演算部12aによって、右後方測距センサ5Rによって左前方角部FCが検知されたときの測距情報t53、右前方測距センサ4Rによって左前方角部FCが検知されたときの測距情報t43が特定されている。また、位置演算部12aによって、離隔距離Y1が算出されている。
また、相対速度演算部13aによって、相対速度Vrが算出されている。
Also, as a result of the processing from step ST201 to step ST207, it is assumed that the positional relationship between own vehicle 2 and overtaking vehicle 3 is as shown in FIG. 7A. At this time, the distance measurement information t53 when the left front corner FC is detected by the right rear distance measurement sensor 5R and the distance measurement when the left front corner FC is detected by the right front distance measurement sensor 4R are obtained by the position calculation unit 12a. Information t43 is specified. Also, the separation distance Y1 is calculated by the position calculation unit 12a.
Also, the relative velocity Vr is calculated by the relative velocity calculator 13a.
 位置演算部12aは、受信部11により送信された図7Bに示す測距情報に基づいて、右後方測距センサ5Rによって追い越し車両3の左後方角部RCが検知されたときの測距情報を特定する(ステップST208)。
 具体的には、位置演算部12aは、右後方測距センサ5Rの測距情報において、検知距離のばらつきが少なくほぼ一定となっている範囲の複数の測距情報のうち、最後の測距情報、即ち図7Bのプロット点t57を特定し、プロット点t57を左後方角部RCが検知されたときの測距情報として特定する。
 そして、位置演算部12aは、右後方測距センサ5Rによって左前方角部FCが検知されたときの測距情報t53および左後方角部RCが検知されたときの測距情報t57を、車両長演算部16へ送信する。
Based on the ranging information shown in FIG. 7B transmitted by the receiving unit 11, the position calculating unit 12a calculates the ranging information when the right rear ranging sensor 5R detects the left rear corner RC of the overtaking vehicle 3. Identify (step ST208).
Specifically, the position calculation unit 12a selects the last ranging information among the plurality of ranging information in the range where the detection distance is almost constant with little variation in the ranging information of the right rear ranging sensor 5R. That is, the plotted point t57 in FIG. 7B is specified, and the plotted point t57 is specified as the distance measurement information when the left rear corner RC is detected.
Then, the position calculation unit 12a calculates the vehicle length using the distance measurement information t53 when the left front corner FC is detected by the right rear distance measurement sensor 5R and the distance measurement information t57 when the left rear corner RC is detected. Send to unit 16 .
 車両長演算部16は、位置演算部12aによって送信された各測距情報と、相対速度演算部13aによって算出された相対車速Vrに基づいて、追い越し車両3の車両長を算出するとともに、その車両長に基づいて追い越し車両3の車種を判別する(ステップST209)。
 ここでは、車両長演算部16は、測距情報t57に含まれる検知時刻T57、測距情報t53に含まれる検知時刻T53、相対速度Vrに基づいて、上述した式(4)により、車両長L=Vr*(T57-T53)を算出する。そして、算出した車両長Lに基づいて追い越し車両3の車種を判別する。
The vehicle length calculation unit 16 calculates the vehicle length of the overtaking vehicle 3 based on the distance measurement information transmitted by the position calculation unit 12a and the relative vehicle speed Vr calculated by the relative speed calculation unit 13a. The vehicle type of the overtaking vehicle 3 is discriminated based on the length (step ST209).
Here, the vehicle length calculation unit 16 calculates the vehicle length L by the above-described formula (4) based on the detection time T57 included in the ranging information t57, the detection time T53 included in the ranging information t53, and the relative speed Vr. = Vr*(T57-T53) is calculated. Then, based on the calculated vehicle length L, the vehicle type of the overtaking vehicle 3 is determined.
 そして、グレア発生方向演算部14aは、車両長演算部16によって算出された車種に対応した距離ΔXaを推定するとともに、その距離ΔXaを用いて上述した式(3)に基づいて遮光角度θを算出する。(ステップST210)。 Then, the glare occurrence direction calculation unit 14a estimates the distance ΔXa corresponding to the vehicle type calculated by the vehicle length calculation unit 16, and uses the distance ΔXa to calculate the light shielding angle θ based on the above-described formula (3). do. (Step ST210).
 以上のように、追い越し車両の車両長を算出し、その車両長により判別した車種に基づいて、追い越し車両の左サイドミラーの方向を推定することとした。
 これにより、追い越し車両の車種に応じて、追い越し車両の運転者にグレアを発生させる方向およびタイミングを予測することが可能となるため、追い越し車両へのグレアを抑制するとともに長時間に亘って自車両の運転者の視界を犠牲にすることを抑制することができる。
As described above, the vehicle length of the overtaking vehicle is calculated, and the direction of the left side mirror of the overtaking vehicle is estimated based on the vehicle type determined from the vehicle length.
As a result, it is possible to predict the direction and timing of generating glare to the driver of the passing vehicle according to the vehicle type of the passing vehicle. It is possible to suppress sacrificing the driver's field of view.
 なお、追い越し車両3が大型車である場合、右後方測距センサ5Rによって追い越し車両3の左後方角部RCが検知されたとき、すでに追い越し車両3が運転者にグレアを発生させる位置まで進行している状況が想定される。
 そこで、車両長演算部16は、右前方測距センサ4Rおよび右後方測距センサ5Rの両方によって追い越し車両3の左前方角部FCが検知され、かつ追い越し車両3の左前方角部FCが右前方測距センサ4Rによって検知された後、追い越し車両3が自車両2よりも予め定められた距離先行した場合であって、右後方測距センサ5Rによって追い越し車両3の左後方角部RCが検知されていない場合は、追い越し車両3が大型車であると判断するとしてもよい。
If the overtaking vehicle 3 is a large vehicle, when the left rear corner RC of the overtaking vehicle 3 is detected by the right rear ranging sensor 5R, the overtaking vehicle 3 has already advanced to a position where glare is generated for the driver. It is assumed that
Therefore, the vehicle length calculation unit 16 detects the front left corner FC of the passing vehicle 3 by both the front right ranging sensor 4R and the rear right ranging sensor 5R, and detects the front left corner FC of the passing vehicle 3. After being detected by the distance sensor 4R, the overtaking vehicle 3 leads the own vehicle 2 by a predetermined distance, and the left rear corner RC of the overtaking vehicle 3 is detected by the right rear ranging sensor 5R. If not, it may be determined that the overtaking vehicle 3 is a large vehicle.
 図10A、図10Bは、実施の形態1および実施の形態2に係る車両用配光制御装置1、1aのハードウェア構成の一例を示す図である。実施の形態1に係る車両用配光制御装置1と、実施の形態2に係る車両用配光制御装置1aとは、同様のハードウェア構成を有する。
 実施の形態1および実施の形態2において、受信部11と、位置演算部12、12aと、相対速度演算部13、13aと、グレア発生方向演算部14、14aと、配光制御部15と、車両長演算部16の機能は、処理回路21により実現される。すなわち、車両用配光制御装置1、1aが、自車両と追い越し車両との離隔距離および相対速度に基づいて追い越し車両の方向を予測し、その予測した方向を照射しないように、ヘッドライト7に対して配光の一部を遮光する制御を行うための処理回路21を備える。
10A and 10B are diagrams showing an example of the hardware configuration of the vehicle light distribution control devices 1 and 1a according to Embodiments 1 and 2. FIG. The vehicle light distribution control device 1 according to the first embodiment and the vehicle light distribution control device 1a according to the second embodiment have the same hardware configuration.
In Embodiments 1 and 2, the receiver 11, the position calculators 12 and 12a, the relative velocity calculators 13 and 13a, the glare generation direction calculators 14 and 14a, the light distribution controller 15, The function of the vehicle length calculator 16 is implemented by the processing circuit 21 . That is, the vehicle light distribution control device 1, 1a predicts the direction of the overtaking vehicle based on the distance and relative speed between the own vehicle and the overtaking vehicle, and controls the headlights 7 so as not to illuminate the predicted direction. A processing circuit 21 is provided for performing control to block part of the light distribution.
 処理回路21は、図10Aに示すように専用のハードウェアであっても、図10Bに示すようにメモリ23に格納されるプログラムを実行するCPU(Central Processing Unit)22であってもよい。 The processing circuit 21 may be dedicated hardware as shown in FIG. 10A, or may be a CPU (Central Processing Unit) 22 that executes a program stored in the memory 23 as shown in FIG. 10B.
 処理回路21が専用のハードウェアである場合、処理回路21は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものが該当する。 When the processing circuit 21 is dedicated hardware, the processing circuit 21 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
 処理回路21がCPU22の場合、受信部11と、位置演算部12、12aと、相対速度演算部13、13aと、グレア発生方向演算部14、14aと、配光制御部15と、車両長演算部16の機能は、ソフトウェア、ファームウェア、または、ソフトウェアとファームウェアとの組み合わせにより実現される。すなわち、受信部11と、位置演算部12、12aと、相対速度演算部13、13aと、グレア発生方向演算部14、14aと、配光制御部15と、車両長演算部16は、メモリ23等に記憶されたプログラムを実行するCPU22、またはシステムLSI(Large-Scale Integration)等の処理回路により実現される。また、メモリ23等に記憶されたプログラムは、受信部11と、位置演算部12、12aと、相対速度演算部13、13aと、グレア発生方向演算部14、14aと、配光制御部15と、車両長演算部16の手順や方法をコンピュータに実行させるものであるとも言える。ここで、メモリ23とは、例えば、RAM、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)等の、不揮発性もしくは揮発性の半導体メモリ、または、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)等が該当する。 When the processing circuit 21 is a CPU 22, the receiving unit 11, the position calculation units 12 and 12a, the relative speed calculation units 13 and 13a, the glare generation direction calculation units 14 and 14a, the light distribution control unit 15, and the vehicle length calculation. The functions of the unit 16 are implemented by software, firmware, or a combination of software and firmware. That is, the receiver 11, the position calculators 12 and 12a, the relative velocity calculators 13 and 13a, the glare generation direction calculators 14 and 14a, the light distribution controller 15, and the vehicle length calculator 16 are integrated into the memory 23. It is realized by a processing circuit such as a CPU 22 that executes a program stored in a system LSI (Large-Scale Integration) or the like. The programs stored in the memory 23 or the like include the receiving unit 11, the position calculation units 12 and 12a, the relative speed calculation units 13 and 13a, the glare generation direction calculation units 14 and 14a, and the light distribution control unit 15. , the procedure and method of the vehicle length calculation unit 16 can be said to be executed by a computer. Here, the memory 23 is, for example, a non-volatile or Volatile A semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), or the like is applicable.
 なお、受信部11と、位置演算部12、12aと、相対速度演算部13、13aと、グレア発生方向演算部14、14aと、配光制御部15と、車両長演算部16の機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。 Regarding the functions of the receiver 11, the position calculators 12 and 12a, the relative speed calculators 13 and 13a, the glare generation direction calculators 14 and 14a, the light distribution controller 15, and the vehicle length calculator 16, A part may be realized by dedicated hardware and a part may be realized by software or firmware.
 また、車両用配光制御装置1、1aは、前方測距センサ4、後方測距センサ5、撮像装置6またはヘッドライト7等との通信を行う、入力インタフェース装置24、および、出力インタフェース装置25を有する。 The vehicle light distribution control devices 1 and 1a also have an input interface device 24 and an output interface device 25 that communicate with the front ranging sensor 4, the rear ranging sensor 5, the imaging device 6, the headlights 7, or the like. have
 なお、以上の実施の形態1および実施の形態2では、ハイビームがADBであるとして説明したが、これに限られず配光パターンを制御できないものであってもよい。この場合、配光制御部15は、グレア発生方向演算部によって算出された遮光角度θが示す方向をハイビームで照射しないように、ロービームに切り替えればよい。 It should be noted that in the first and second embodiments described above, the high beam is ADB, but the present invention is not limited to this, and the light distribution pattern may be uncontrollable. In this case, the light distribution control unit 15 may switch to the low beam so as not to irradiate the direction indicated by the shielding angle θ calculated by the glare generation direction calculation unit with the high beam.
 なお、本開示は、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。 It should be noted that the present disclosure allows modification of any component of the embodiment or omission of any component of the embodiment.
 1、1a 車両用配光制御装置
 2 自車両
 3、3a、3b 追い越し車両
 4、4L、4R 前方測距センサ
 5、5L、5R 後方測距センサ
 6 撮像装置
 7 ヘッドライト
 11 受信部
 12、12a 位置演算部
 13、13a 相対速度演算部
 14、14a グレア発生方向演算部
 15 配光制御部
 16 車両長演算部
 21 処理回路
 22 CPU
 23 メモリ
 24 入力インタフェース装置
 25 出力インタフェース装置
 Hi ハイビームの配光エリア
 Gl グレア発生範囲
 FSL 測距センサ4Lの検知範囲
 RSL 測距センサ5Lの検知範囲
 FSR 測距センサ4Rの検知範囲
 RSR 測距センサ5Rの検知範囲
 FC 追い越し車両の前方角部
 RC 追い越し車両の後方角部
 SM サイドミラー
 TP1 自車両の進行方向
 TP2 追い越し車両の進行方向
Reference Signs List 1, 1a vehicle light distribution control device 2 host vehicle 3, 3a, 3b passing vehicle 4, 4L, 4R forward ranging sensor 5, 5L, 5R rear ranging sensor 6 imaging device 7 headlight 11 receiver 12, 12a position Calculation units 13, 13a Relative velocity calculation units 14, 14a Glare generation direction calculation unit 15 Light distribution control unit 16 Vehicle length calculation unit 21 Processing circuit 22 CPU
23 Memory 24 Input interface device 25 Output interface device Hi Light distribution area of high beam Gl Range of glare occurrence FSL Detection range of range sensor 4L RSL Detection range of range sensor 5L FSR Detection range of range sensor 4R RSR Range sensor 5R Detection range FC Front corner of passing vehicle RC Rear corner of passing vehicle SM Side mirror TP1 Traveling direction of own vehicle TP2 Traveling direction of passing vehicle

Claims (4)

  1.  車両前方および後方に設けられ自車両を追い越す追い越し車両を検知する測距センサにより出力された測距情報を受信する受信部と、
     前記測距情報に基づいて前記自車両と前記追い越し車両との車幅方向の離隔距離および前記追い越し車両の角部を検知する位置演算部と、
     前記角部に基づいて前記追い越し車両の相対速度を算出する相対速度演算部と、
     前記離隔距離および前記相対速度に基づいて前記追い越し車両の方向を予測するグレア発生方向演算部と、
     前記予測した方向を照射しないようヘッドライトに対して遮光指示する配光制御部と、
     を備えることを特徴とする車両用配光制御装置。
    a receiver for receiving distance measurement information output by distance measurement sensors provided in front and rear of the vehicle for detecting an overtaking vehicle overtaking the own vehicle;
    a position calculation unit that detects a separation distance in the vehicle width direction between the own vehicle and the overtaking vehicle and a corner portion of the overtaking vehicle based on the distance measurement information;
    a relative speed calculator that calculates the relative speed of the overtaking vehicle based on the corner;
    a glare occurrence direction calculator that predicts the direction of the overtaking vehicle based on the separation distance and the relative speed;
    a light distribution control unit that instructs the headlight to block light so as not to illuminate the predicted direction;
    A vehicle light distribution control device comprising:
  2.  前記追い越し車両の前方角部および後方角部の検知時刻と前記相対速度とに基づいて算出した前記追い越し車両の車両長に基づいて前記追い越し車両の車種を判別する車両長演算部を備え、
     前記グレア発生方向演算部は前記車種に応じて前記予測した方向を調整することを特徴とする請求項1記載の車両用配光制御装置。
    a vehicle length calculation unit that determines the vehicle type of the overtaking vehicle based on the vehicle length of the overtaking vehicle calculated based on the detection time of the front corner and the rear corner of the overtaking vehicle and the relative speed;
    2. The vehicle light distribution control device according to claim 1, wherein the glare occurrence direction calculation unit adjusts the predicted direction according to the vehicle type.
  3.  前記車両長演算部は前記自車両前方および後方の測距センサの両方で前記追い越し車両の前方角部を検知し、かつ前記追い越し車両の前方角部を検知した後前記追い越し車両が前記自車両よりも予め定めた距離先行した場合であって、前記車両後方の測距センサによって前記追い越し車両の後方角部を検知できていない場合は、前記追い越し車両が大型車であると判断することを特徴とする請求項1記載の車両用配光制御装置。 The vehicle length calculation unit detects a front corner of the overtaking vehicle with both the front and rear ranging sensors of the own vehicle, and after detecting the front corner of the overtaking vehicle, the overtaking vehicle moves from the own vehicle. is a predetermined distance ahead of the vehicle, and if the rear corner of the overtaking vehicle cannot be detected by the ranging sensor at the rear of the vehicle, it is determined that the overtaking vehicle is a large vehicle. 2. The vehicle light distribution control device according to claim 1.
  4.  前記配光制御部は車両進行方向を撮影するとともに前記追い越し車両を検知する撮像装置からの情報を受信し前記撮像装置が前記追い越し車両を検知した場合に前記撮像装置から受信した前記追い越し車両の方向を照射しないようヘッドライトに対して遮光指示することを特徴とする請求項1記載の車両用配光制御装置。 The light distribution control unit captures an image of the traveling direction of the vehicle, receives information from an imaging device that detects the passing vehicle, and receives the direction of the passing vehicle from the imaging device when the imaging device detects the passing vehicle. 2. A light distribution control device for a vehicle according to claim 1, wherein a light shielding instruction is given to the headlight so as not to irradiate the light.
PCT/JP2022/006126 2022-02-16 2022-02-16 Light distribution control device for vehicle WO2023157116A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/006126 WO2023157116A1 (en) 2022-02-16 2022-02-16 Light distribution control device for vehicle
JP2024500760A JP7462861B2 (en) 2022-02-16 2022-02-16 Vehicle light distribution control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/006126 WO2023157116A1 (en) 2022-02-16 2022-02-16 Light distribution control device for vehicle

Publications (1)

Publication Number Publication Date
WO2023157116A1 true WO2023157116A1 (en) 2023-08-24

Family

ID=87577805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006126 WO2023157116A1 (en) 2022-02-16 2022-02-16 Light distribution control device for vehicle

Country Status (2)

Country Link
JP (1) JP7462861B2 (en)
WO (1) WO2023157116A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012101586A (en) * 2010-11-08 2012-05-31 Mazda Motor Corp Headlamp control device of vehicle
JP2019166971A (en) * 2018-03-23 2019-10-03 スタンレー電気株式会社 Headlight control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012101586A (en) * 2010-11-08 2012-05-31 Mazda Motor Corp Headlamp control device of vehicle
JP2019166971A (en) * 2018-03-23 2019-10-03 スタンレー電気株式会社 Headlight control device

Also Published As

Publication number Publication date
JP7462861B2 (en) 2024-04-05
JPWO2023157116A1 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
US10239440B2 (en) Illumination apparatus for vehicle
US8827514B2 (en) Vehicle light distribution control apparatus and method
JP6453669B2 (en) Vehicle headlamp control device
EP3489086B1 (en) Controlling device for vehicle headlight, lighting system and method of controlling vehicle headlight
JP5500265B2 (en) Vehicle light distribution control system and vehicle light distribution control method
JP5680573B2 (en) Vehicle driving environment recognition device
US20080231195A1 (en) Headlight control device
JP4538468B2 (en) Image processing apparatus, image processing method, and image processing system
US10596953B2 (en) Display device for vehicle
EP2731825B1 (en) Vehicle light distribution control device and vehicle light distribution control method
JP2006343198A (en) Image processing system for vehicle and drive assist device
RU2713262C1 (en) Device for displaying image on display
JP2019077204A (en) Vehicular lamp fitting system, control device of vehicular lamp fitting, and control method of vehicular lamp fitting
CN112896035A (en) Vehicle light projection control device and method, and vehicle light projection system
WO2013180111A1 (en) Device and method for controlling illumination range of vehicle light
WO2023157116A1 (en) Light distribution control device for vehicle
US10870386B2 (en) Vehicle lamp
KR101895167B1 (en) Apparatus and method for controlling headlamp of vehicle
JP5897920B2 (en) Approaching vehicle detection device, lighting control device for vehicle headlamp, vehicle headlamp system
US20230042933A1 (en) Method for controlling a motor vehicle lighting system
JP2013060108A (en) Headlight control device
JP2023063737A (en) Vehicle lamp system
JP2021109644A (en) Prediction control system for intelligence type head lamp and method
JP2021011198A (en) Control system of vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927019

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024500760

Country of ref document: JP