WO2023157064A1 - Station placement designing apparatus, station placement designing method, and program - Google Patents

Station placement designing apparatus, station placement designing method, and program Download PDF

Info

Publication number
WO2023157064A1
WO2023157064A1 PCT/JP2022/005901 JP2022005901W WO2023157064A1 WO 2023157064 A1 WO2023157064 A1 WO 2023157064A1 JP 2022005901 W JP2022005901 W JP 2022005901W WO 2023157064 A1 WO2023157064 A1 WO 2023157064A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
cluster
radio base
base station
clusters
Prior art date
Application number
PCT/JP2022/005901
Other languages
French (fr)
Japanese (ja)
Inventor
元晴 佐々木
俊朗 中平
貴庸 守山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/005901 priority Critical patent/WO2023157064A1/en
Publication of WO2023157064A1 publication Critical patent/WO2023157064A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a station placement design device, a station placement design method, and a program.
  • a station placement design device and a station placement design method for designing appropriate installation positions of wireless base stations for constructing a wireless area are known.
  • radio communication quality simulations such as received power at multiple terminal positions that are evaluation points within the radio area, for example, based on conditions such as the largest number of terminal positions that satisfy the required received power, radio
  • the location of the base station and the orientation of the antenna are derived.
  • the embodiment of the present invention has been made in view of the above problems, and is a station placement design device for designing the installation position of a wireless base station and the orientation of an antenna for constructing a wireless area. reduction in computation time and memory size.
  • a station placement design device for designing installation positions of wireless base stations for constructing a wireless area, a dividing unit that divides a plurality of terminal positions, which are evaluation points, into clusters of the number of radio base stations installed within the radio area; a number of the terminal positions that satisfy required reception power for each cluster; based on the evaluation result including at least one of the satisfaction level of the required received power at all the terminal positions within An evaluation unit that prioritizes the displayed candidates for the installation location of the radio base station, and a determination unit that determines the installation location of the radio base station for each cluster based on the priority.
  • FIG. 10 is a diagram for explaining a problem
  • 5 is a flow chart showing an example of processing of the station placement design device according to the first embodiment
  • FIG. 10 is a diagram showing an example of propagation characteristic estimation results according to the first embodiment
  • FIG. 4 is a diagram for explaining division of clusters according to the first embodiment
  • FIG. 4 is a diagram for explaining priority according to the first embodiment
  • FIG. 7 is a flowchart (1) showing an example of determination processing according to the first embodiment
  • FIG. 10 is a diagram illustrating an example of processing when there is no competition according to the first embodiment
  • 7 is a flowchart (2) showing an example of determination processing according to the first embodiment
  • FIG. 10 is a diagram for explaining a problem
  • 5 is a flow chart showing an example of processing of the station placement design device according to the first embodiment
  • FIG. 10 is a diagram showing an example of propagation characteristic estimation results according to the first embodiment
  • FIG. 4 is a diagram for explaining division of clusters according to the first embodiment
  • FIG. 4 is a
  • FIG. 10 is a diagram illustrating an example of processing when there is base station contention according to the first embodiment; 9 is a flowchart (3) showing an example of determination processing according to the first embodiment; FIG. 10 is a diagram showing an example of processing when there is cluster contention according to the first embodiment; 4 is a flowchart (4) showing an example of determination processing according to the first embodiment; FIG. 10 is a diagram showing an example of processing when there is base station contention and cluster contention according to the first embodiment; 10 is a flow chart showing an example of processing of the station placement design device according to the second embodiment; FIG. 10 is a diagram for explaining directions of existing wireless base stations according to the second embodiment; FIG. 10 is a flowchart showing an example of selection processing according to the second embodiment; FIG. FIG.
  • FIG. 11 is a diagram (1) showing a specific example of selection processing according to the second embodiment;
  • FIG. 11B is a diagram (2) showing a specific example of selection processing according to the second embodiment;
  • FIG. 11 is a diagram illustrating an application example of selection processing according to the second embodiment; It is a figure which shows the example of the hardware configuration of the station placement design apparatus which concerns on this embodiment. It is a figure for demonstrating the precondition of comparison with the conventional method.
  • FIG. 10 is a diagram showing an image of station placement design according to a conventional method; It is a figure which shows the image of the station placement design method which concerns on this embodiment.
  • FIG. 1 is a diagram showing a configuration example of a station placement design device according to this embodiment.
  • the station placement design device 100 is an information processing device having a computer configuration or a system including a plurality of computers.
  • the station placement design apparatus 100 performs station placement design for designing appropriate installation positions of wireless base stations for constructing wireless areas, for example, based on input design conditions.
  • the station placement design apparatus 100 executes a program stored in a storage medium or the like by a computer provided in the station placement design apparatus 100, so that a design condition input unit 101, a division unit 102, an evaluation unit 103, a determination unit 104, and the selection unit 105 and the like. Also, the station placement design apparatus 100 implements a design condition storage unit 111, a propagation estimation result storage unit 112, and the like by using, for example, a storage device of a computer included in the station placement design apparatus 100.
  • the design condition input unit 101 receives input of design conditions for station placement design, and stores the received design conditions in the design condition storage unit 111 and the like.
  • the design condition input unit 101 also receives an input of the propagation characteristic estimation result, and stores the received propagation characteristic estimation result in the propagation estimation result storage unit 112 or the like.
  • the design conditions received by the design condition input unit 101 include, for example, environmental information, station position candidates, multiple terminal positions, required received power, and the number of radio base stations installed within the radio area.
  • the station position candidate is, for example, the position of the radio base station or the candidate of the installation position of the radio base station represented by a combination of the position of the radio base station and the orientation of the antenna.
  • a plurality of terminal positions are evaluation points for evaluating received power and the like within a wireless area.
  • the required received power is a reference value (or threshold) of received power for determining whether or not sufficient received power can be obtained at a plurality of terminal positions.
  • the propagation characteristics estimation result is, for example, a simulation result of estimating the reception power at a plurality of terminal positions for each station position candidate by radio wave propagation characteristics simulation.
  • the propagation characteristics estimation result may be calculated by the station position design apparatus 100 by applying the conventional technique as disclosed in Patent Document 1, for example.
  • the design condition storage unit 111 stores the design conditions received by the design condition input unit 101.
  • the propagation estimation result storage unit 112 stores the propagation characteristic estimation result received by the design condition input unit 101 (or calculated by the station position design apparatus 100).
  • the division unit 102 executes division processing for dividing a plurality of terminal positions, which are evaluation points within the radio area, into clusters corresponding to the number of radio base stations installed within the radio area.
  • the dividing unit 102 for example, using a clustering method such as the k-means method, divides a plurality of terminal positions into clusters of the number N (N is an integer of 2 or more) of wireless base stations installed in the wireless area. Classify (divide).
  • the clustering method is not limited to the k-means method, and other clustering methods may be used.
  • evaluation section 103 determines the number of terminal positions that satisfy the required received power (hereinafter referred to as the number of terminals T) and the degree of satisfaction with the required received power at all terminal positions in the cluster ( An evaluation result including at least one of (hereinafter referred to as satisfaction level S) is obtained.
  • the evaluation unit 103 determines the position of the radio base station, or the candidate for the installation position of the radio base station represented by the combination of the position of the radio base station and the orientation of the antenna (hereinafter referred to as the position of the radio base station). perform an evaluation process that prioritizes candidate BSs).
  • the evaluation unit 103 sorts the station position candidate BSs in descending order of the number of terminals T that satisfy the required received power (eg, ⁇ 90 dBm, which may be different for each terminal position) for each cluster (first sort).
  • evaluation section 103 selects station position candidate BSs in descending order of satisfaction level S of required received power (negative if required received power is not satisfied) represented by the following formula for calculating satisfaction level S for each cluster. (second sort).
  • UE indicates the terminal position, which is the evaluation point within the wireless area.
  • the evaluation unit 103 sorts the station position candidate BSs for each cluster in the order of the first sort and the second sort, and gives priority to the station position candidate BSs in the cluster. The following description is provided.
  • the determining unit 104 determines the installation positions of the wireless base stations for each cluster based on the priority given by the evaluating unit 103 .
  • the installation position of the wireless position is as described above. It is represented by the position of the radio base station or a combination of the position of the radio base station and the orientation of the antenna.
  • the determination unit 104 determines the installation positions of the radio base stations in each cluster so that the positions of the radio base stations do not overlap between the clusters.
  • the selection unit 105 executes selection processing for selecting the direction of the existing radio base station when designing the station placement including the existing radio base station.
  • the functional configuration of the station placement design device 100 shown in FIG. 1 is an example.
  • the design condition storage unit 111 or the propagation estimation result storage unit 112 may be realized by a storage server or a classed service that the station placement design device 100 can access via a communication network.
  • each of the functional configurations described above is not limited to a physical machine (computer), and may be implemented by, for example, a program executed by a virtual machine on a cloud.
  • at least part of each of the functional configurations described above may be realized by hardware.
  • FIG. 2 is a diagram for explaining the problem.
  • the station position candidate BS is represented by the position 202 of the radio base station or the combination of the position 202 of the radio base station and the orientation 202 of the antenna, as described above.
  • a plurality of terminal positions which are evaluation points for evaluating received power and the like within the wireless area 200, are represented, for example, by dividing the wireless area 200 into a plurality of meshes and by center points 201 of the divided meshes.
  • the station placement design device uses the propagation characteristic estimation result 210 shown in FIG. 2 to determine the installation positions of the radio base stations so that the terminal positions that satisfy the required received power are the largest.
  • the conventional station placement design method uses the propagation characteristics estimation result 210 to determine the required received power (eg, ⁇ 70 dBm) for BS1 and BS2. Derive the combination of
  • the number of terminal positions N UE for example, the number of terminal positions N UE , the number of radio base station position candidates N BS , the radio base station antenna direction candidates N Ant , the number of radio base stations installed in the radio area M, etc.
  • the number increases, there arises a problem that the calculation time and the amount of memory required for station placement design become enormous.
  • the number of reception power points required for station placement design is N UE ⁇ N BS ⁇ N ant
  • the number of combinations is N_BS CM ⁇ N_Ant C 1 ⁇ M. Is required.
  • N UE 10,000 points
  • N BS 500 points
  • N Ant 20 directions
  • M 30 points
  • Number of received power points: 100000 x 500 x 20 20 8
  • Number of combinations: 500 C 30 ⁇ 20 C 1 ⁇ 30 ⁇ 8.6 ⁇ 10 50 Therefore, for station placement design, for example, 10 8 ⁇ 8.6 ⁇ 10 50 8.6 ⁇ 10 58 points of received power must be stored and processed.
  • the station placement design apparatus 100 includes the division unit 102, the evaluation unit 103, and the It has a decision unit 104 and the like.
  • FIG. 3 is a flowchart illustrating an example of processing of the station placement design device according to the first embodiment; This process represents an example of the station placement design process executed by the station placement design apparatus 100 described with reference to FIG. 1, for example.
  • the design condition input unit 101 has already stored the received design conditions in the design condition storage unit 111, and stores the received propagation characteristic estimation results in the propagation estimation result storage unit 112. shall have been completed.
  • the station placement design device 100 reads design conditions and propagation characteristic estimation results.
  • the station placement design apparatus 100 reads design conditions such as station placement position candidates, multiple terminal positions, required received power, and the number of wireless base stations installed in the wireless area from the design condition storage unit 111 .
  • Station position design apparatus 100 also reads the propagation characteristic estimation result from propagation estimation result storage section 112 .
  • FIG. 4 is a diagram showing an example of propagation characteristic estimation results according to the first embodiment.
  • FIG. 4 it is assumed that there are a plurality of terminal positions and a plurality of station position candidate BS positions (BS1, BS2, BS3, . . . ) in a radio area 400 .
  • BS1 has antenna orientation 1 and antenna orientation 2
  • the combination of BS1 and antenna orientation 1 is BS1-1
  • BS1 and antenna orientation 2 are combined.
  • the propagation characteristics estimation result 410 stores simulation results of received power from each station position candidate BS for each of a plurality of terminal positions. For example, in the example of FIG. 4, at the terminal position UE (1), the received power from the station position candidate BS1-1 is -120 dBm, and the received power from the station position candidate BS1-2 is -110 dBm. Something is remembered.
  • step S302 the division unit 102 of the station placement design apparatus 100 divides a plurality of terminal positions within the radio area into clusters corresponding to the number of radio base stations installed within the radio area. For example, when three wireless base stations are installed in the wireless area, multiple terminal positions in the wireless area 400 are divided into three clusters 1, 2, and 3, as shown in FIG.
  • dividing section 102 uses a known clustering method such as the k-means method to classify a plurality of terminal positions into clusters of "3" wireless base stations installed in the wireless area.
  • a known clustering method such as the k-means method to classify a plurality of terminal positions into clusters of "3" wireless base stations installed in the wireless area.
  • step S303 the station placement design device 100 initializes the variable n to "1" and executes the processes from step S304 onward.
  • step S304 the evaluation unit 103 of the station placement design apparatus 100 calculates the number of terminals T satisfying the required received power (eg, ⁇ 90 dBm) and the satisfaction level S for all BSs (station position candidates) of the cluster n. do.
  • the satisfaction level S is calculated using, for example, the formula for calculating the satisfaction level S described above.
  • step S305 the evaluation unit 103 prioritizes the BSs of cluster n using the calculation results.
  • FIG. 6 is a diagram for explaining the priority according to the first embodiment.
  • terminal positions UE(1) and UE(2) are included in cluster 1, for example. It is assumed that the terminal position UE(M) is included in cluster 3.
  • the evaluation unit 103 sorts in descending order of the number of terminals T in the cluster 1, so that the two terminal positions UE (1) and UE (12) are BSN priority that satisfies the required received power "-90 dBm" is set to "1".
  • evaluation section 103 sorts in descending order of satisfaction S, and sorts in descending order of satisfaction S, for example, , BS3 have a priority of "2", and BS2 has a priority of "3".
  • evaluation section 103 sets the priority of BS2 to "1".
  • the evaluation unit 103 sorts the BSNs in descending order of the satisfaction level S, and sets the priority of the BSNs in descending order of the satisfaction level S, for example, "2".
  • the priority of BS1-2 is set to "3".
  • station placement design apparatus 100 adds 1 to variable n, and repeats steps S304 to S307 until the value of n exceeds the number N of clusters. Also, when the value of n exceeds the number N of clusters, station placement design apparatus 100 shifts the process to step S308.
  • the determination unit 104 of the station placement design device 100 executes determination processing for determining the installation positions of the wireless base stations for each cluster based on the priority assigned by the evaluation unit 103.
  • (Decision process 1) 7, 9, 11, and 13 are flowcharts illustrating examples of determination processing according to the first embodiment.
  • This process shows an example of the determination process executed by the determination unit 104 in step S308 of FIG. 3, for example.
  • the processing shown in FIG. 7 will be described.
  • step S701 the determination unit 104 extracts the BS with the highest priority in each cluster from the evaluation result 800 by the evaluation unit 103.
  • the determining unit 104 extracts BS1 in cluster 1 and extracts BS3-2 in cluster 2.
  • the determining unit 104 extracts BS2 in cluster 3, and extracts BS5 in cluster 4.
  • step S702 the determination unit 104 initializes the variable n to 1, and executes the processing from step S703 onwards.
  • step S703 the determining unit 104 determines whether or not cluster conflict occurs in cluster n.
  • cluster contention means that a plurality of BSs with the highest priority exist within a cluster. In the example of FIG. 8, no cluster conflict occurs in any cluster.
  • step S706 If there is cluster conflict, the determining unit 104 shifts the process to step S706. On the other hand, if no cluster conflict has occurred, the determination unit 104 causes the process to proceed to step S704.
  • the determining unit 104 determines whether or not the BS with the highest priority in cluster n is in contention with the base station.
  • base station contention means that the position of the BS with the highest priority in cluster n and the position of the BS with the highest priority in another cluster are the same (conflict).
  • the BS with the highest priority in cluster 1 is BS3-1
  • the BS with the highest priority in cluster 2 is BS3-2.
  • BS3-1 and BS3-2 have different antenna directions, they are different BSs (station position candidates). determine that it has occurred.
  • no base station contention occurs in any cluster.
  • the determining unit 104 shifts the process to step S706. On the other hand, if there is no base station contention, the determining unit 104 shifts the process to step S705.
  • the determination unit 104 selects the BS with the highest priority in cluster n and determines the installation position of the radio base station in cluster n.
  • step S706 and S707 the station design device 100 adds 1 to the variable n, and repeats the processing of steps S703 to S707 until the value of n exceeds the number N of clusters. Also, when the value of n exceeds the number N of clusters, station placement design apparatus 100 shifts the process to step S708.
  • step S708 the determination unit 104 determines whether or not the installation positions of the radio base stations have been determined in all clusters. When the installation positions of the radio base stations have been determined in all clusters, the determination unit 104 terminates the determination process. On the other hand, when there is a cluster for which the installation position of the radio base station has not been determined, the determination unit 104 executes the processing of FIG.
  • the installation positions of wireless base stations are determined in all clusters by the processing of FIG.
  • the determining unit 104 determines the installation position of the base station of cluster 1 to be BS1, and the installation position of the base station of cluster 2 to be BS3-2. Further, the determining unit 104 determines the installation position of the base station of cluster 3 to be BS2, and the installation position of the base station of cluster 4 to be BS5.
  • This processing shows an example of determination processing executed by the determination unit 104 when it is determined in step S708 in FIG. 7 that there is a cluster for which the installation positions of the radio base stations have not been determined.
  • the evaluation unit 103 has created an evaluation result 1000 as shown in FIG. Also, here, detailed descriptions of the same processing contents as those described with reference to FIG. 7 will be omitted.
  • step S901 the determination unit 104 initializes the variable n to 1, and executes the processes from step S902 onward.
  • step S902 the determination unit 104 determines whether or not the installation positions of the wireless base stations have been determined in cluster n. If the installation positions of the wireless base stations have been determined in cluster n, the determining unit 104 causes the process to proceed to step S910. On the other hand, if the installation positions of the wireless base stations have not been determined in cluster n, the determining unit 104 causes the process to proceed to step S903.
  • the determining unit 104 determines whether or not cluster conflict occurs in cluster n. If cluster conflict occurs, the determining unit 104 causes the process to proceed to step S910. On the other hand, if no cluster conflict has occurred, the determining unit 104 causes the process to proceed to step S904.
  • the determination unit 104 determines whether or not the BS with the highest priority in cluster n has base station contention. In the evaluation result 1000 shown in FIG. 10, base station contention has occurred between clusters 2 and 4 .
  • the determining unit 104 shifts the process to step S910. On the other hand, if there is base station contention, the determining unit 104 causes the process to proceed to step S905.
  • the determining unit 104 determines whether or not there is another BS with the first priority in the competing cluster. If there is another BS with the first priority in the competing cluster, the determining unit 104 shifts the process to step S906. On the other hand, if there is no other BS with the first priority in the competing cluster, the determining unit 104 shifts the process to steps S907 and S908.
  • the determination unit 104 selects the BS with the highest priority in cluster n and determines the installation position of the radio base station in cluster n.
  • the determination unit 104 calculates the total score of BS set 1, which is a combination of the BS with the highest priority in cluster n and the BS with the next priority in the competing cluster.
  • the determining unit 104 calculates the total score of BS set 2, which is a combination of the next priority BS of cluster n and the priority 1 BS of the competing cluster.
  • step S909 the determining unit 104 selects the BS set with the highest total score from the BS set 1 and the BS set 2.
  • FIG. 10 is a diagram illustrating an example of processing when there is base station contention according to the first embodiment.
  • base station contention occurs between clusters 2 and 4 in which the position of the BS with the highest priority is in contention.
  • determining section 104 determines the total score of BS set 1 (the number of terminals T and the sum of satisfaction S).
  • BS3-2 which has the second priority in cluster 4 competes with BS3-2, which has the first priority in cluster 2. Therefore, in cluster 4, the priority is 3.
  • the BS4-2 with the highest priority is set as the BS with the next priority.
  • the determining unit 104 also calculates the total score 1001 of BS set 2, which is a combination of BS5, which has the second priority in cluster 2, and BS3-1, which has the first priority in cluster 4, which is the competitor. In the example of FIG. 10 , the total score 1001 is higher for BS set 2, so decision unit 104 selects BS set 2. As a result, determination section 104 determines the installation position of the radio base station in cluster 2 to be BS-5, and the installation position of the radio base station in cluster 4 to be BS3-1.
  • step S910 and S911 the station design apparatus 100 adds 1 to the variable n, and repeats the processing of steps S902 to S911 until the value of n exceeds the number N of clusters. Also, when the value of n exceeds the number N of clusters, station placement design apparatus 100 shifts the process to step S912.
  • the determination unit 104 determines whether or not the installation positions of the wireless base stations have been determined in all clusters. When the installation positions of the radio base stations have been determined in all clusters, the determination unit 104 terminates the determination process. On the other hand, when there is a cluster for which the installation position of the radio base station has not been determined, the determination unit 104 executes the processing of FIG. 11 .
  • FIG. 11 shows an example of the determination process performed by the determination unit 104 when it is determined in step S912 of FIG. 9 that there is a cluster for which the installation positions of the radio base stations have not been determined.
  • the evaluation unit 103 has created an evaluation result 1200 as shown in FIG. 12 . Also, here, detailed descriptions of the same processing contents as those described with reference to FIGS. 7 and 9 will be omitted.
  • step S1101 the determination unit 104 initializes the variable n to 1, and executes the processes from step S1102 onward.
  • step S1102 the determination unit 104 determines whether or not the installation positions of the wireless base stations have been determined in cluster n. If the installation positions of the wireless base stations have been determined in cluster n, the determining unit 104 causes the process to proceed to step S1106. On the other hand, if the installation positions of the wireless base stations have not been determined in cluster n, the determining unit 104 causes the process to proceed to step S1103.
  • the determination unit 104 determines whether or not cluster conflict occurs in cluster n. If no cluster conflict has occurred, the determining unit 104 causes the process to proceed to step S1106. On the other hand, when cluster conflict occurs, the determining unit 104 causes the process to proceed to step S1104.
  • the determining unit 104 determines whether or not there is a BS that is not in base station contention with other clusters among the BSs with the highest priority in cluster n. If there is no BS that satisfies the condition, the determining unit 104 causes the process to proceed to step S1106. On the other hand, if there is a BS that satisfies the condition, the determining unit 104 causes the process to proceed to step S1105.
  • the determination unit 104 selects the BS with the highest total score of all clusters among the BSs that have the highest priority in cluster n and are not in base station contention with other clusters.
  • determination section 104 calculates total score 1201 of all clusters in BS3-2, BS4-2, and BS6. For example, the determining unit 104 sums the number of terminals T in clusters 1 to 4 of BS3-2, calculates the total score of the number of terminals T in BS3-2, and satisfies S in clusters 1 to 4 of BS3-2. to calculate the total score of satisfaction S in BS3-2.
  • the determination unit 104 selects BS4-2, which has the highest total score of all clusters, and determines it as the installation position of the wireless base station to be installed in cluster n.
  • step S1106 and S1107 the station position design apparatus 100 adds 1 to the variable n, and repeats the processing of steps S1102 to S1107 until the value of n exceeds the number N of clusters. Also, when the value of n exceeds the number N of clusters, station placement design apparatus 100 shifts the process to step S1108.
  • the determining unit 104 determines whether or not the installation positions of the wireless base stations have been determined in all clusters. When the installation positions of the radio base stations have been determined in all clusters, the determination unit 104 terminates the determination process. On the other hand, when there is a cluster for which the installation position of the radio base station has not been determined, the determination unit 104 executes the processing of FIG. 13 .
  • Step 4 shows an example of the determination process performed by the determination unit 104 when it is determined in step S1108 of FIG. 11 that there is a cluster for which the installation positions of the wireless base stations have not been determined.
  • the evaluation unit 103 has created an evaluation result 1400 as shown in FIG. 14 . Further, here, detailed descriptions of the same processing contents as those described with reference to FIGS. 7, 9, and 11 are omitted.
  • step S1301 the determination unit 104 initializes the variable n to 1, and executes the processing from step S1302.
  • step S1302 the determining unit 104 determines whether or not the installation positions of the wireless base stations have been determined in cluster n. If the installation positions of the wireless base stations have been determined in cluster n, the determining unit 104 causes the process to proceed to step S1306. On the other hand, if the installation positions of the wireless base stations have not been determined in cluster n, the determining unit 104 causes the process to proceed to step S1303.
  • the determination unit 104 determines whether or not cluster conflict occurs in cluster n. If cluster conflict has not occurred, the determining unit 104 causes the process to proceed to step S1306. On the other hand, when cluster conflict occurs, the determining unit 104 causes the process to proceed to step S1304.
  • the determining unit 104 determines whether or not all the BSs with the highest priority that are in cluster conflict in cluster n are in base station conflict with other clusters. If there is no base station contention as described above, the determination unit 104 causes the process to proceed to step S1306. On the other hand, if the above base station contention is occurring, the determining unit 104 causes the process to proceed to step S1305.
  • the determination unit 104 selects a BS set of combinations of BSs that do not conflict with each other in the cluster n and the competing cluster.
  • cluster competition occurs in clusters 1, 3, and 4.
  • cluster 1 among the BSs with the highest priority, there are BS1 and BS4-2 that do not compete for base stations with other clusters. , to determine the installation positions of the radio stations in cluster 1 .
  • base station competition occurs between clusters 2 and 6, and there is no other BS with the highest priority in the competing cluster.
  • the installation positions of the wireless stations in the clusters 2 and 6 are determined by the processing of FIG. In cluster 5, BS5, which has the highest priority, has neither cluster conflict nor base station conflict.
  • the determination unit 104 determines the installation positions of the radio base stations in the clusters 3 and 4 by the processing of FIG. For example, since there is no difference whether priority is given to clusters 3 or 4, determination unit 104 determines BS2 as the wireless base station installation position in cluster 3 and BS6 as the wireless base station installation position in cluster 4 by ID ascending order or the like. Determine the installation position of the station. Note that the determination unit 104 may select BSs by any method such as score order, ID descending order, random, or the like, without being limited to the ID ascending order.
  • station placement design apparatus 100 adds 1 to variable n, and repeats steps S1302 to S1307 until the value of n exceeds the number N of clusters. Also, when the value of n exceeds the number N of clusters, station placement design apparatus 100 terminates the determination process.
  • the station placement design device 100 can determine the installation positions of the wireless base stations installed in each cluster with a smaller amount of calculation and memory than the conventional technique.
  • the station placement design apparatus 100 can also perform station placement design to add a new radio base station within a radio area where an existing radio base station is located.
  • station placement design apparatus 100 selects terminal positions excluding terminal positions that satisfy the required received power from existing radio base stations from a plurality of terminal positions within the radio area, It should be divided into clusters.
  • FIG. 15 is a flowchart illustrating an example of processing of the station placement design device according to the second embodiment. 15, steps S301 and S302 to S308 are the same as those of the station placement design apparatus according to the first embodiment described with reference to FIG. 3, so description thereof will be omitted here.
  • the station placement design device 100 determines whether or not to include existing wireless base stations in the station placement design.
  • the station placement design apparatus 100 refers to the read design conditions and the like, and determines whether or not to include the existing wireless base stations in the station placement design.
  • the station placement design apparatus 100 shifts the process to step S1502.
  • the station placement design apparatus 100 shifts the process to step S302.
  • the station placement design apparatus 100 excludes terminal positions that satisfy the required received power from existing wireless base stations from the plurality of terminal positions included in the design conditions, and advances the process to step S302.
  • the station placement design apparatus 100 can perform station placement design in the same manner as in the first embodiment by the processing of step S1502 when the existing wireless base stations are included in the station placement design.
  • the station placement design device 100 determines the direction of the existing radio base station used for station placement design.
  • FIG. 16 is a diagram for explaining directions of existing wireless base stations according to the second embodiment.
  • the coverage area represented by direction 2 (hereinafter simply referred to as “direction 2") covers more terminal positions than the coverage area represented by direction 1 (hereinafter simply referred to as “direction 1"). can be done.
  • FIG. 17 is a flowchart illustrating an example of selection processing according to the second embodiment. This process is an example of the selection process executed by station placement design apparatus 100 in step S1502 of FIG. showing.
  • step S1701 the dividing unit 102 of the station placement design device 100 divides a plurality of terminal positions within the wireless area into clusters corresponding to the number of wireless base stations to be installed within the wireless area, including existing wireless base stations.
  • step S1702 the evaluation unit 103 of the station placement design device 100 calculates the scores of the terminal position coverage U and the degree of satisfaction S in each direction in each cluster.
  • the terminal location coverage ratio U is defined as (the number of terminal locations satisfying the required received power in the cluster)/(the number of terminal locations in the cluster).
  • step S1703 the selection unit 105 of the station placement design apparatus 100 extracts the maximum score in each direction (for example, direction 1 and direction 2 in FIG. 16) of existing wireless base stations.
  • step S1704 the selection unit 105 determines whether the maximum scores in each direction calculated in step S1703 are the same value. If the maximum scores are the same value, the selection unit 105 causes the process to proceed to step S1706. On the other hand, if the maximum scores are not the same value, the selection unit 105 moves to processing step S1706.
  • the selection unit 105 selects a direction with a higher maximum score.
  • the selection unit 105 calculates the total score of all clusters in each direction.
  • step S1707 the selection unit 105 determines whether or not the calculated total score in each direction is the same value. If the total score values are the same, the selection unit 105 causes the process to proceed to step S1709. On the other hand, if the total score values are not the same, the selection unit 105 causes the process to proceed to step S1708.
  • the selection unit 105 selects a direction with a higher total score.
  • the selection unit 105 selects the direction by any method such as ascending ID order, descending ID order, or random.
  • FIG. 18 is a diagram (1) showing a specific example of selection processing executed by the station placement design device 100.
  • the station placement design apparatus 100 divides the radio area 1800 into two areas, for example, as shown in FIG. into two clusters (Cluster 1 and Cluster 2).
  • station placement design apparatus 100 calculates score 1811 of coverage ratio U and degree of satisfaction S in each direction (direction 1 and direction 2) in each divided cluster, as shown in FIG. Extract the maximum score 1812 in the direction.
  • station placement design device 100 selects direction 1. As a result, for example, the direction 1 of the existing radio base station 1601 described with reference to FIG. 16 is selected.
  • FIG. 19 is a diagram (2) showing a specific example of selection processing executed by the station placement design device 100.
  • the station placement design apparatus 100 divides the radio area 1900 into three areas, for example, as shown in FIG. divided into two clusters (clusters 1-3).
  • the station placement design apparatus 100 calculates a score 1911 for each direction (direction 1 and direction 2) coverage U and satisfaction S for each divided cluster, and Extract the maximum score 1912 in .
  • the station position design device 100 further calculates the total value 1913 of the scores for each direction.
  • the total score value for direction 2 is greater than the total score value for direction 1, station placement design apparatus 100 selects direction 2.
  • FIG. As a result, for example, the direction 2 of the existing radio base station 1601 described with reference to FIG. 16 is selected.
  • the station design apparatus 100 when installing a new radio base station in a radio area 2000 in which two existing radio base stations BS1 and BS2 are installed, the station design apparatus 100: For example, as shown in FIG. 20, wireless area 2000 is divided into three clusters (clusters 1 to 3).
  • the station placement design apparatus 100 calculates the coverage ratio U and the degree of satisfaction S , and the maximum score 2012 in each direction of each BS is extracted.
  • the maximum score in direction 1 of BS1 and the maximum score in direction 1 of BS2 are the maximum.
  • direction 1 of BS1 and direction 1 of BS2 are selected, there is a problem that the area covered by BS1 and the area covered by BS2 overlap as shown in FIG.
  • the station placement design device 100 selects the direction of BS1 and the direction of BS2 so that the coverage area of BS1 and the coverage area of BS2 do not overlap.
  • station placement design apparatus 100 selects a combination of direction 1 with the highest priority of BS1 and direction 2 with the second highest priority of BS2. As combination 1, the total score of the coverage rate U and the satisfaction level S is calculated. In addition, the station placement design device 100 sets the combination 2 of the direction 1 in which BS2 has the highest priority and the direction 3 in which BS1 has the second highest priority, and sets the total score of the coverage ratio U and the satisfaction level S as combination 2.
  • the station position design device 100 selects a combination with a higher total score (combination 2 in the example of FIG. 20) from the calculation result 2020 of the total score of combination 1 and the total score of combination 2. Thereby, station placement design apparatus 100 can select direction 2 of BS1 and direction 1 of BS2 so that the coverage area of BS1 and the coverage area of BS2 do not overlap.
  • the station placement design apparatus 100 determines the direction of the existing radio base station by the selection process described in FIGS. 17 to 20, and then executes the process of step S1502 in FIG.
  • FIG. 21 is a diagram showing an example of the hardware configuration of a station placement designing apparatus according to this embodiment.
  • a station placement designing apparatus 100 has, for example, the configuration of a computer 2100 as shown in FIG.
  • computer 2100 has processor 2101, memory 2102, storage device 2103, communication device 2104, input device 2105, output device 2106, bus B, and the like.
  • the processor 2101 is, for example, an arithmetic device such as a CPU (Central Processing Unit) that implements various functions by executing a predetermined program.
  • the memory 2102 is a storage medium readable by the computer 2100, and includes, for example, RAM (Random Access Memory), ROM (Read Only Memory), and the like.
  • the storage device 2103 is a computer-readable storage medium, and may include, for example, HDDs (Hard Disk Drives), SSDs (Solid State Drives), various optical discs, magneto-optical discs, and the like.
  • the communication device 2104 includes one or more pieces of hardware (communication devices) for communicating with other devices via a wireless or wired network.
  • the input device 2105 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 2106 is an output device (for example, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 2105 and the output device 2106 may be integrated (for example, an input/output device such as a touch panel display).
  • a bus B is commonly connected to each of the components described above, and transmits, for example, address signals, data signals, and various control signals.
  • the processor 2101 is not limited to a CPU, and may be, for example, a DSP (Digital Signal Processor), a PLD (Programmable Logic Device), or an FPGA (Field Programmable Gate Array).
  • the station placement design device 100 in this embodiment is not limited to being realized by a dedicated device, and may be realized by a general-purpose computer. In that case, a program for realizing this function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed. It should be noted that the "computer system" referred to here includes hardware such as an OS and peripheral devices.
  • “computer-readable recording medium” includes various storage devices such as portable media such as flexible disks, magneto-optical disks, ROMs and CD-ROMs, and hard disks built into computer systems.
  • “computer-readable recording medium” refers to a program that dynamically retains programs for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case.
  • the above program may be for realizing part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in a computer system, It may be implemented using hardware such as PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array).
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • FIG. 22 is a diagram for explaining preconditions for comparison with the conventional method.
  • UEs 36 terminal positions (hereinafter referred to as UEs) were randomly set in an area 2201 of 100 m ⁇ 100 m, and the number of BSs was set to 6 for comparative evaluation.
  • the received power between each BS and UE is calculated using the propagation loss in free space, and a propagation characteristic estimation result 2301 is created in which the received power at 6BS ⁇ 36 UE is calculated as shown in FIG.
  • the number of UEs 2303 that satisfies the required received power (for example, -60 dBm) in each BS combination is obtained, and the optimal design that maximizes the number of UEs that satisfy the required received power is the combination of BS2 and BS5. , or the pair of BS3 and BS4.
  • the station placement design apparatus 100 clusters a plurality of UEs in an area 2201 with two BSs installed and divides them into two clusters. Also, similarly to the conventional method, for example, data 2401 is created by adding a cluster number to the propagation characteristics estimation result obtained by calculating the reception power between each BS and the UE.
  • station placement design apparatus 100 executes the processing of the station placement design apparatus as shown in FIG. Obtain the evaluation result 2403 of each BS in . As a result, station placement design apparatus 100 selects a combination of BS2, which has the highest priority in cluster 1, and BS5, which has the highest priority in cluster 2, as an optimal design that maximizes the number of UEs that satisfy the required received power. can be asked for.
  • the station placement design method according to the present embodiment can derive the same optimal design result as the conventional round-robin method with less calculation and memory than the conventional station placement design method.
  • a station placement design device for designing the installation position of a wireless base station for building a wireless area, a division unit configured to divide a plurality of terminal positions, which are evaluation points within the radio area, into clusters of the number of radio base stations installed within the radio area; the radio base based on an evaluation result including at least one of the number of terminal positions that satisfy the required received power for each cluster and the level of satisfaction with the required received power at all the terminal positions in the cluster; an evaluation unit configured to prioritize candidate installation locations of said radio base station represented by a station location or a combination of said radio base station location and antenna orientation; a determination unit configured to determine the installation position of the radio base station for each cluster based on the priority; A station placement design device.
  • (Section 2) 2. The station placement design device according to claim 1, wherein the determination unit determines the installation positions of the radio base stations so that positions of the radio base stations do not overlap between the clusters.
  • (Section 3) The decision unit In the cluster, if the installation position of the radio base station is set in order from the candidate with the highest priority, and the position of the radio base station overlaps with another cluster, determining installation positions of the radio base stations in the cluster and the other clusters based on at least one of the evaluation results in the cluster and the other clusters and the evaluation results in the plurality of clusters; The station placement design device according to item 1.
  • the decision unit In the cluster, if there are multiple candidates with the highest priority, Selecting one candidate from among the plurality of candidates based on the evaluation results in the plurality of clusters; A station placement design device according to claim 3. (Section 5) When adding a new wireless base station in a wireless area where existing wireless base stations are located, The division unit newly installs a terminal position within the radio area after excluding, from the terminal positions within the radio area, a terminal position that satisfies a required received power by the existing radio base station. into a number of clusters, The station placement design device according to item 1.
  • (Section 7) A station placement design method for designing the installation position of a wireless base station for building a wireless area, A division process for dividing a plurality of terminal positions, which are evaluation points within the radio area, into clusters of the number of radio base stations installed within the radio area; the radio base based on an evaluation result including at least one of the number of terminal positions that satisfy the required received power for each cluster and the level of satisfaction with the required received power at all the terminal positions in the cluster; an evaluation process for prioritizing candidate installation positions of the radio base station represented by a station position or a combination of the position of the radio base station and the orientation of the antenna; a determination process of determining the installation position of the radio base station for each cluster based on the priority; A station design method in which a computer executes the (Section 8) A program that causes a computer to execute the station placement design method according to claim 7.

Abstract

This station placement designing apparatus is for designing installation positions of wireless base stations for constructing a wireless area, and comprises: a division unit for dividing a plurality of terminal positions, serving as assessment points in the wireless area, into clusters, the number of which corresponds to the number of wireless base stations to be installed in the wireless area; an assessment unit that assigns priority orders, for the respective clusters, to wireless base station installation position candidates indicated by the wireless station positions or a combination of the wireless station positions and the orientation of antennas, on the basis of an assessment result including the number of the terminal positions where a required reception electric power is satisfied and/or the degree at which the required reception electric power is satisfied at each of the terminal positions in the cluster; and a determination unit for determining the installation position of the wireless base station for each of the clusters.

Description

置局設計装置、置局設計方法、及びプログラムStation placement design device, station placement design method, and program
 本発明は、置局設計装置、置局設計方法、及びプログラムに関する。 The present invention relates to a station placement design device, a station placement design method, and a program.
 無線エリアを構築するための適切な無線基地局の設置位置を設計する置局設計装置、及び置局設計方法が知られている。 A station placement design device and a station placement design method for designing appropriate installation positions of wireless base stations for constructing a wireless area are known.
特開2019-213148号公報JP 2019-213148 A
 従来の置局設計方法では、無線エリア内の評価地点である複数の端末位置における受信電力等の無線通信品質シミュレーション結果から、例えば、所要受信電力を満たす端末位置が最も多い等の条件により、無線基地局の設置位置及びアンテナの向き等を導出する。 In the conventional station placement design method, based on the results of radio communication quality simulations such as received power at multiple terminal positions that are evaluation points within the radio area, for example, based on conditions such as the largest number of terminal positions that satisfy the required received power, radio The location of the base station and the orientation of the antenna are derived.
 従って、例えば、上述した複数の端末位置、無線エリア内に設置する無線基地局の数、又はアンテナの向き等が多くなると、上記の全ての組合せの計算結果を比較評価するために、必要な計算時間及びメモリ量等が膨大になるという課題がある。 Therefore, for example, when the above-described multiple terminal positions, the number of wireless base stations installed in the wireless area, or the antenna orientation increases, the calculation required to compare and evaluate the calculation results of all the above combinations There is a problem that the time and memory amount become enormous.
 本発明の実施形態は、上記の問題点に鑑みてなされたものであって、無線エリアを構築するための無線基地局の設置位置及びアンテナの向きを設計する置局設計装置において、設計に必要な計算時間及びメモリ量等を削減する。 The embodiment of the present invention has been made in view of the above problems, and is a station placement design device for designing the installation position of a wireless base station and the orientation of an antenna for constructing a wireless area. reduction in computation time and memory size.
 上記の課題を解決するため、本発明の実施形態に係る置局設計装置は、無線エリアを構築するための無線基地局の設置位置を設計する置局設計装置であって、前記無線エリア内の評価地点である複数の端末位置を、前記無線エリア内に設置する無線基地局の数のクラスタに分割する分割部と、前記クラスタごとに、所要受信電力を満たす前記端末位置の数と、前記クラスタ内の全ての前記端末位置における前記所要受信電力の満足度とのうち少なくとも一方を含む評価結果に基づいて、前記無線基地局の位置、又は前記無線基地局の位置とアンテナの向きとの組合せで表される前記無線基地局の設置位置の候補に優先順位を付ける評価部と、前記優先順位に基づいて、前記クラスタごとに前記無線基地局の前記設置位置を決定する決定部と、を有する。 In order to solve the above problems, a station placement design device according to an embodiment of the present invention is a station placement design device for designing installation positions of wireless base stations for constructing a wireless area, a dividing unit that divides a plurality of terminal positions, which are evaluation points, into clusters of the number of radio base stations installed within the radio area; a number of the terminal positions that satisfy required reception power for each cluster; based on the evaluation result including at least one of the satisfaction level of the required received power at all the terminal positions within An evaluation unit that prioritizes the displayed candidates for the installation location of the radio base station, and a determination unit that determines the installation location of the radio base station for each cluster based on the priority.
 本発明の実施形態によれば、無線エリアを構築するための無線基地局の設置位置及びアンテナの向きを設計する置局設計装置において、設計に必要な計算時間及びメモリ量等を削減することができる。 According to the embodiment of the present invention, it is possible to reduce the calculation time and the amount of memory required for design in a station placement design device for designing the installation position of a wireless base station and the direction of an antenna for constructing a wireless area. can.
本実施形態に係る置局設計装置の構成例を示す図である。It is a figure which shows the structural example of the station placement design apparatus which concerns on this embodiment. 課題について説明するための図である。FIG. 10 is a diagram for explaining a problem; 実施例1に係る置局設計装置の処理の例を示すフローチャートである。5 is a flow chart showing an example of processing of the station placement design device according to the first embodiment; 実施例1に係る伝搬特性推定結果の例を示す図である。FIG. 10 is a diagram showing an example of propagation characteristic estimation results according to the first embodiment; 実施例1に係るクラスタの分割について説明するための図である。FIG. 4 is a diagram for explaining division of clusters according to the first embodiment; 実施例1に係る優先順位について説明するための図である。FIG. 4 is a diagram for explaining priority according to the first embodiment; FIG. 実施例1に係る決定処理の例を示すフローチャート(1)である。7 is a flowchart (1) showing an example of determination processing according to the first embodiment; 実施例1に係る競合がない場合の処理の例を示す図である。FIG. 10 is a diagram illustrating an example of processing when there is no competition according to the first embodiment; 実施例1に係る決定処理の例を示すフローチャート(2)である。7 is a flowchart (2) showing an example of determination processing according to the first embodiment; 実施例1に係る基地局競合がある場合の処理の例を示す図である。FIG. 10 is a diagram illustrating an example of processing when there is base station contention according to the first embodiment; 実施例1に係る決定処理の例を示すフローチャート(3)である。9 is a flowchart (3) showing an example of determination processing according to the first embodiment; 実施例1に係るクラスタ競合がある場合の処理の例を示す図である。FIG. 10 is a diagram showing an example of processing when there is cluster contention according to the first embodiment; 実施例1に係る決定処理の例を示すフローチャート(4)である。4 is a flowchart (4) showing an example of determination processing according to the first embodiment; 実施例1に係る基地局競合とクラスタ競合とがある場合の処理の例を示す図である。FIG. 10 is a diagram showing an example of processing when there is base station contention and cluster contention according to the first embodiment; 実施例2に係る置局設計装置の処理の例を示すフローチャートである。10 is a flow chart showing an example of processing of the station placement design device according to the second embodiment; 実施例2に係る既設の無線基地局の方向について説明するための図である。FIG. 10 is a diagram for explaining directions of existing wireless base stations according to the second embodiment; 実施例2に係る選択処理の例を示すフローチャートである。FIG. 10 is a flowchart showing an example of selection processing according to the second embodiment; FIG. 実施例2に係る選択処理の具体的な一例を示す図(1)である。FIG. 11 is a diagram (1) showing a specific example of selection processing according to the second embodiment; 実施例2に係る選択処理の具体的な一例を示す図(2)である。FIG. 11B is a diagram (2) showing a specific example of selection processing according to the second embodiment; 実施例2に係る選択処理の応用例を示す図である。FIG. 11 is a diagram illustrating an application example of selection processing according to the second embodiment; 本実施形態に係る置局設計装置のハードウェア構成の例を示す図である。It is a figure which shows the example of the hardware configuration of the station placement design apparatus which concerns on this embodiment. 従来の手法との比較の前提条件について説明するための図である。It is a figure for demonstrating the precondition of comparison with the conventional method. 従来の手法による置局設計のイメージを示す図である。FIG. 10 is a diagram showing an image of station placement design according to a conventional method; 本実施形態に係る置局設計方法のイメージを示す図である。It is a figure which shows the image of the station placement design method which concerns on this embodiment.
 以下、図面を参照して本発明の実施の形態(本実施形態)を説明する。以下で説明する実施形態は一例に過ぎず、本発明が適用される実施形態は、以下の実施形態に限られない。 An embodiment (this embodiment) of the present invention will be described below with reference to the drawings. The embodiments described below are merely examples, and embodiments to which the present invention is applied are not limited to the following embodiments.
 <置局設計装置の構成例>
 図1は、本実施形態に係る置局設計装置の構成例を示す図である。置局設計装置100は、コンピュータの構成を有する情報処理装置、又は複数のコンピュータを含むシステムである。置局設計装置100は、例えば、入力された設計条件に基づいて、無線エリアを構築するための適切な無線基地局の設置位置を設計する置局設計を行う。
<Configuration example of station placement design device>
FIG. 1 is a diagram showing a configuration example of a station placement design device according to this embodiment. The station placement design device 100 is an information processing device having a computer configuration or a system including a plurality of computers. The station placement design apparatus 100 performs station placement design for designing appropriate installation positions of wireless base stations for constructing wireless areas, for example, based on input design conditions.
 置局設計装置100は、例えば、置局設計装置100が備えるコンピュータが、記憶媒体等に記憶したプログラムを実行することにより、設計条件入力部101、分割部102、評価部103、決定部104、及び選択部105等を実現している。また置局設計装置100は、例えば、置局設計装置100が備えるコンピュータのストレージデバイス等により、設計条件記憶部111、及び伝搬推定結果記憶部112等を実現している。 The station placement design apparatus 100, for example, executes a program stored in a storage medium or the like by a computer provided in the station placement design apparatus 100, so that a design condition input unit 101, a division unit 102, an evaluation unit 103, a determination unit 104, and the selection unit 105 and the like. Also, the station placement design apparatus 100 implements a design condition storage unit 111, a propagation estimation result storage unit 112, and the like by using, for example, a storage device of a computer included in the station placement design apparatus 100. FIG.
 設計条件入力部101は、置局設計の設計条件の入力を受付し、受け付けた設計条件を設計条件記憶部111等に記憶する。また、設計条件入力部101は、伝搬特性推定結果の入力を受付し、受け付けた伝搬特性推定結果を伝搬推定結果記憶部112等に記憶する。 The design condition input unit 101 receives input of design conditions for station placement design, and stores the received design conditions in the design condition storage unit 111 and the like. The design condition input unit 101 also receives an input of the propagation characteristic estimation result, and stores the received propagation characteristic estimation result in the propagation estimation result storage unit 112 or the like.
 設計条件入力部101が受け付ける設計条件には、例えば、環境情報、置局位置候補、複数の端末位置、所要受信電力、及び無線エリア内に設置する無線基地局の数等が含まれる。置局位置候補は、例えば、無線基地局の位置、又は無線基地局の位置とアンテナの向きとの組合せで表される無線基地局の設置位置の候補である。複数の端末位置は、無線エリア内で受信電力等を評価する評価地点である。所要受信電力は、複数の端末位置で、十分な受信電力を得られるか否かを判断するための受信電力の基準値(又は閾値)である。 The design conditions received by the design condition input unit 101 include, for example, environmental information, station position candidates, multiple terminal positions, required received power, and the number of radio base stations installed within the radio area. The station position candidate is, for example, the position of the radio base station or the candidate of the installation position of the radio base station represented by a combination of the position of the radio base station and the orientation of the antenna. A plurality of terminal positions are evaluation points for evaluating received power and the like within a wireless area. The required received power is a reference value (or threshold) of received power for determining whether or not sufficient received power can be obtained at a plurality of terminal positions.
 伝搬特性推定結果は、例えば、電波伝搬特性シミュレーション等により、置局位置候補ごとに、複数の端末位置における受信電力を推定したシミュレーション結果である。伝搬特性推定結果は、例えば、特許文献1に示されるような従来の技術を適用して、置局設計装置100が算出してもよい。 The propagation characteristics estimation result is, for example, a simulation result of estimating the reception power at a plurality of terminal positions for each station position candidate by radio wave propagation characteristics simulation. The propagation characteristics estimation result may be calculated by the station position design apparatus 100 by applying the conventional technique as disclosed in Patent Document 1, for example.
 設計条件記憶部111は、設計条件入力部101が受け付けた設計条件を記憶する。伝搬推定結果記憶部112は、設計条件入力部101が受け付けた(又は置局設計装置100が算出した)伝搬特性推定結果を記憶する。 The design condition storage unit 111 stores the design conditions received by the design condition input unit 101. The propagation estimation result storage unit 112 stores the propagation characteristic estimation result received by the design condition input unit 101 (or calculated by the station position design apparatus 100).
 分割部102は、無線エリア内の評価地点である複数の端末位置を、無線エリア内に設置する無線基地局の数のクラスタに分割する分割処理を実行する。分割部102は、例えば、k-means法などのクラスタリングの手法を用いて、複数の端末位置を、無線エリア内に設置する無線基地局の数N(Nは、2以上の整数)のクラスタへ分類(分割)する。なお、クラスタリングの手法は、k-means法に限られず、他のクラスタリングの手法を用いてもよい。 The division unit 102 executes division processing for dividing a plurality of terminal positions, which are evaluation points within the radio area, into clusters corresponding to the number of radio base stations installed within the radio area. The dividing unit 102, for example, using a clustering method such as the k-means method, divides a plurality of terminal positions into clusters of the number N (N is an integer of 2 or more) of wireless base stations installed in the wireless area. Classify (divide). The clustering method is not limited to the k-means method, and other clustering methods may be used.
 評価部103は、分割部102が分割したクラスタごとに、所要受信電力を満たす端末位置の数(以下、端末数Tと呼ぶ)と、クラスタ内の全ての端末位置における所要受信電力の満足度(以下、満足度Sと呼ぶ)とのうち、少なくとも一方を含む評価結果を求める。また、評価部103は、評価結果に基づいて、無線基地局の位置、又は無線基地局の位置とアンテナの向きとの組合せで表される無線基地局の設置位置の候補(以下、置局位置候補BSと呼ぶ)に優先順位を付ける評価処理を実行する。 For each cluster divided by dividing section 102, evaluation section 103 determines the number of terminal positions that satisfy the required received power (hereinafter referred to as the number of terminals T) and the degree of satisfaction with the required received power at all terminal positions in the cluster ( An evaluation result including at least one of (hereinafter referred to as satisfaction level S) is obtained. In addition, based on the evaluation result, the evaluation unit 103 determines the position of the radio base station, or the candidate for the installation position of the radio base station represented by the combination of the position of the radio base station and the orientation of the antenna (hereinafter referred to as the position of the radio base station). perform an evaluation process that prioritizes candidate BSs).
 例えば、評価部103は、クラスタごとに、所要受信電力(例えば、-90dBm、端末位置ごとに異なる値でもよい)を満たす端末数Tが多い順に、置局位置候補BSをソートする(第1のソート)。また、評価部103は、クラスタごとに、次の満足度Sの算出式で表される所要受信電力の満足度S(所要受信電力を満たさない場合はマイナス)が大きい順に、置局位置候補BSをソートする(第2のソート)。 For example, the evaluation unit 103 sorts the station position candidate BSs in descending order of the number of terminals T that satisfy the required received power (eg, −90 dBm, which may be different for each terminal position) for each cluster (first sort). In addition, evaluation section 103 selects station position candidate BSs in descending order of satisfaction level S of required received power (negative if required received power is not satisfied) represented by the following formula for calculating satisfaction level S for each cluster. (second sort).
Figure JPOXMLDOC01-appb-M000001
 なお、満足度Sの算出式において、「UE」は、無線エリア内の評価地点である端末位置を示している。
Figure JPOXMLDOC01-appb-M000001
In the formula for calculating the satisfaction level S, "UE" indicates the terminal position, which is the evaluation point within the wireless area.
 ここでは、評価部103は、クラスタごとに、置局位置候補BSを、第1のソート、第2のソートの順にソートして、クラスタ内の置局位置候補BSに優先順位を付けるものとして、以下の説明を行う。 Assume here that the evaluation unit 103 sorts the station position candidate BSs for each cluster in the order of the first sort and the second sort, and gives priority to the station position candidate BSs in the cluster. The following description is provided.
 決定部104は、評価部103が付けた優先順位に基づいて、クラスタごとに無線基地局の設置位置を決定する。なお、無線位置の設置位置は、前述したように。無線基地局の位置、又は無線基地局の位置とアンテナの向きとの組合せで表される。好ましくは、決定部104は、クラスタ間で、無線基地局の位置が重複しないように、各クラスタの無線基地局の設置位置を決定する。 The determining unit 104 determines the installation positions of the wireless base stations for each cluster based on the priority given by the evaluating unit 103 . The installation position of the wireless position is as described above. It is represented by the position of the radio base station or a combination of the position of the radio base station and the orientation of the antenna. Preferably, the determination unit 104 determines the installation positions of the radio base stations in each cluster so that the positions of the radio base stations do not overlap between the clusters.
 選択部105は、既設の無線基地局を含めて置局設計を行う場合、既設の無線基地局の方向を選択する選択処理を実行する。 The selection unit 105 executes selection processing for selecting the direction of the existing radio base station when designing the station placement including the existing radio base station.
 なお、図1に示した置局設計装置100の機能構成は一例である。例えば、設計条件記憶部111、又は伝搬推定結果記憶部112は、置局設計装置100が通信ネットワークを介してアクセス可能なストレージサーバ、又はクラスドサービス等によって実現されるものであってもよい。また、上記の各機能構成は、物理マシン(コンピュータ)に限られず、例えば、クラウド上の仮想マシンが実行するプログラムにより実現されるものであっても良い。さらに、上記の各機能構成のうち、少なくとも一部は、ハードウェアによって実現されるものであってもよい。 Note that the functional configuration of the station placement design device 100 shown in FIG. 1 is an example. For example, the design condition storage unit 111 or the propagation estimation result storage unit 112 may be realized by a storage server or a classed service that the station placement design device 100 can access via a communication network. Moreover, each of the functional configurations described above is not limited to a physical machine (computer), and may be implemented by, for example, a program executed by a virtual machine on a cloud. Furthermore, at least part of each of the functional configurations described above may be realized by hardware.
 <課題について>
 図2は、課題について説明するための図である。図2において、BS1、BS2、・・・、BS10は、無線エリア200内の置局位置候補BSを表している。置局位置候補BSは、前述したように、無線基地局の位置202、又は無線基地局の位置202とアンテナの向き202との組合せによって表される。
<About assignments>
FIG. 2 is a diagram for explaining the problem. In FIG. 2, BS1, BS2, . The station position candidate BS is represented by the position 202 of the radio base station or the combination of the position 202 of the radio base station and the orientation 202 of the antenna, as described above.
 また、無線エリア200内で受信電力等を評価する評価地点である複数の端末位置は、例えば、無線エリア200を、複数のメッシュに分割し、分割したメッシュの中心点201等で表される。 A plurality of terminal positions, which are evaluation points for evaluating received power and the like within the wireless area 200, are represented, for example, by dividing the wireless area 200 into a plurality of meshes and by center points 201 of the divided meshes.
 置局設計では、例えば、図2に示すように、複数の端末位置において、各置局位置候補BSからの受信電力等の無線通信品質をシミュレーションした伝搬特性推定結果210を用いて、無線基地局の設置位置を決定する。例えば、置局設計装置は、図2に示すような伝搬特性推定結果210を用いて、所要受信電力を満たす端末位置が最も多くなるように無線基地局の設置位置を決定する。 In station placement design, for example, as shown in FIG. position. For example, the station placement design device uses the propagation characteristic estimation result 210 shown in FIG. 2 to determine the installation positions of the radio base stations so that the terminal positions that satisfy the required received power are the largest.
 例えば、無線エリア200に設置する無線基地局の数が2つである場合、従来の置局設計方法では、伝搬特性推定結果210を用いて、所要受信電力(例えば-70dBm)を満たすBS1とBS2の組合せを導出する。 For example, when the number of wireless base stations installed in the wireless area 200 is two, the conventional station placement design method uses the propagation characteristics estimation result 210 to determine the required received power (eg, −70 dBm) for BS1 and BS2. Derive the combination of
 この方法では、例えば、端末位置の数NUE、無線基地局の位置候補の数NBS、無線基地局のアンテナの向きの候補NAnt、及び無線エリアに設置する無線基地局の数M等が多くなると、置局設計に必要な計算時間、及びメモリ量が膨大になるという問題がある。 In this method, for example, the number of terminal positions N UE , the number of radio base station position candidates N BS , the radio base station antenna direction candidates N Ant , the number of radio base stations installed in the radio area M, etc. As the number increases, there arises a problem that the calculation time and the amount of memory required for station placement design become enormous.
 例えば、置局設計に必要な、受信電力点数は、NUE×NBS×Nantとなり、組合せ数は、N_BS×N_Ant×Mとなるため、この積の点数の受信電力の処理が必要となる。 For example, the number of reception power points required for station placement design is N UE ×N BS ×N ant , and the number of combinations is N_BS CM × N_Ant C 1 ×M. Is required.
 具体的な一例として、NUE=10,000点、NBS=500地点、NAnt=20方向、M=30地点とすると、
 受信電力点数:100000×500×20=20
 組合せ数:50030×20×30≒8.6×1050
となるので、置局設計のために、例えば、10×8.6×1050=8.6×1058の点数の受信電力の記憶、及び処理が必要になる。
As a specific example, if N UE =10,000 points, N BS =500 points, N Ant =20 directions, and M=30 points,
Number of received power points: 100000 x 500 x 20 = 20 8
Number of combinations: 500 C 30 × 20 C 1 × 30 ≈ 8.6 × 10 50
Therefore, for station placement design, for example, 10 8 ×8.6×10 50 =8.6×10 58 points of received power must be stored and processed.
 そこで、本実施形態に係る置局設計装置100は、置局設計装置において、設計に必要な計算時間及びメモリ量等を削減するために、図1で説明した分割部102、評価部103、及び決定部104等を有している。 Therefore, the station placement design apparatus 100 according to the present embodiment includes the division unit 102, the evaluation unit 103, and the It has a decision unit 104 and the like.
 <処理の流れ>
 続いて、本実施形態に係る置局設計方法の処理の流れについて説明する。
<Process flow>
Next, the processing flow of the station placement design method according to this embodiment will be described.
 [実施例1]
 (置局設計装置の処理)
 図3は、実施例1に係る置局設計装置の処理の例を示すフローチャートである。この処理は、例えば、図1で説明した置局設計装置100が実行する置局設計処理の一例を示している。なお、図3に示す処理の開始時点において、設計条件入力部101は、受け付けた設計条件を設計条件記憶部111に記憶済であり、受け付けた伝搬特性推定結果を伝搬推定結果記憶部112に記憶済であるものとする。
[Example 1]
(Processing of station placement design device)
FIG. 3 is a flowchart illustrating an example of processing of the station placement design device according to the first embodiment; This process represents an example of the station placement design process executed by the station placement design apparatus 100 described with reference to FIG. 1, for example. At the start of the processing shown in FIG. 3, the design condition input unit 101 has already stored the received design conditions in the design condition storage unit 111, and stores the received propagation characteristic estimation results in the propagation estimation result storage unit 112. shall have been completed.
 ステップS301において、置局設計装置100は、設計条件、及び伝搬特性推定結果を読み込む。例えば、置局設計装置100は、設計条件記憶部111から、置局位置候補、複数の端末位置、所要受信電力、及び無線エリア内に設置する無線基地局の数等の設計条件を読み込む。また、置局設計装置100は、伝搬推定結果記憶部112から、伝搬特性推定結果を読み込む。 In step S301, the station placement design device 100 reads design conditions and propagation characteristic estimation results. For example, the station placement design apparatus 100 reads design conditions such as station placement position candidates, multiple terminal positions, required received power, and the number of wireless base stations installed in the wireless area from the design condition storage unit 111 . Station position design apparatus 100 also reads the propagation characteristic estimation result from propagation estimation result storage section 112 .
 図4は、実施例1に係る伝搬特性推定結果の例を示す図である。図4に示すように、無線エリア400内に、複数の端末位置と、複数の置局位置候補BSの位置(BS1、BS2、BS3、・・・)とがあるものとする。また、例えば、図4に示すように、BS1にアンテナの向き1と、アンテナの向き2とがある場合、BS1とアンテナの向き1との組合せをBS1-1とし、BS1とアンテナの向き2との組合せをBS1-2として、それぞれを別の置局位置候補BSとして扱うものとする。 FIG. 4 is a diagram showing an example of propagation characteristic estimation results according to the first embodiment. As shown in FIG. 4, it is assumed that there are a plurality of terminal positions and a plurality of station position candidate BS positions (BS1, BS2, BS3, . . . ) in a radio area 400 . Further, for example, as shown in FIG. 4, when BS1 has antenna orientation 1 and antenna orientation 2, the combination of BS1 and antenna orientation 1 is BS1-1, and BS1 and antenna orientation 2 are combined. are assumed to be BS1-2, and each of them is treated as a different station position candidate BS.
 伝搬特性推定結果410には、複数の端末位置ごとに、各置局位置候補BSからの受信電力のシミュレーション結果が格納されている。例えば、図4の例では、端末位置UE(1)において、置局位置候補のBS1-1からの受信電力が-120dBmであり、置局位置候補のBS1-2からの受信電力が-110dBmであること等が記憶されている。 The propagation characteristics estimation result 410 stores simulation results of received power from each station position candidate BS for each of a plurality of terminal positions. For example, in the example of FIG. 4, at the terminal position UE (1), the received power from the station position candidate BS1-1 is -120 dBm, and the received power from the station position candidate BS1-2 is -110 dBm. Something is remembered.
 ここで、図3に戻り、フローチャートの説明を続ける。ステップS302において、置局設計装置100の分割部102は、無線エリア内の複数の端末位置を、無線エリア内に設置する無線基地局の数のクラスタに分割する。例えば、無線エリア内に3つの無線基地局を設置する場合、図5に示すように、無線エリア400内の複数の端末位置を、3つのクラスタ1、クラスタ2、及びクラスタ3に分割する。 Here, returning to FIG. 3, the explanation of the flowchart is continued. In step S302, the division unit 102 of the station placement design apparatus 100 divides a plurality of terminal positions within the radio area into clusters corresponding to the number of radio base stations installed within the radio area. For example, when three wireless base stations are installed in the wireless area, multiple terminal positions in the wireless area 400 are divided into three clusters 1, 2, and 3, as shown in FIG.
 例えば、分割部102は、k-means法などの公知のクラスタリングの手法を用いて、複数の端末位置を、無線エリア内に設置する無線基地局の数「3」のクラスタへ分類する。 For example, dividing section 102 uses a known clustering method such as the k-means method to classify a plurality of terminal positions into clusters of "3" wireless base stations installed in the wireless area.
 ステップS303において、置局設計装置100は、変数nを「1」に初期化して、ステップS304以降の処理を実行する。 In step S303, the station placement design device 100 initializes the variable n to "1" and executes the processes from step S304 onward.
 ステップS304において、置局設計装置100の評価部103は、クラスタnの全BS(置局位置候補)について、所要受信電力(例えば、-90dBm)を満たす端末数Tと、満足度Sとを算出する。なお、満足度Sは、例えば、前述した満足度Sの算出式を用いて算出する。 In step S304, the evaluation unit 103 of the station placement design apparatus 100 calculates the number of terminals T satisfying the required received power (eg, −90 dBm) and the satisfaction level S for all BSs (station position candidates) of the cluster n. do. The satisfaction level S is calculated using, for example, the formula for calculating the satisfaction level S described above.
 ステップS305において、評価部103は、クラスタnのBSについて、算出結果を用いて優先順位付けを行う。 In step S305, the evaluation unit 103 prioritizes the BSs of cluster n using the calculation results.
 図6は、実施例1に係る優先順位について説明するための図である。図6において、例えば、端末位置UE(1)、UE(2)がクラスタ1に含まれており。端末位置UE(M)がクラスタ3に含まれているものとする。 FIG. 6 is a diagram for explaining the priority according to the first embodiment. In FIG. 6, terminal positions UE(1) and UE(2) are included in cluster 1, for example. It is assumed that the terminal position UE(M) is included in cluster 3.
 例えば、評価部103は、クラスタ1において、端末数Tが大きい順にソートすることにより、2つの端末位置UE(1)、UE(12)が、所要受信電力「-90dBm」を満たすBSNの優先順位を「1」とする。一方、評価部103は、BS1-1、BS3、BS2が、所要受信電力「-90dBm」を満たす端末位置が1つずつなので、満足度Sが大きい順にソートし、満足度Sが高い順に、例えば、BS3の優先順位を「2」とし、BS2の優先順位を「3」とする。 For example, the evaluation unit 103 sorts in descending order of the number of terminals T in the cluster 1, so that the two terminal positions UE (1) and UE (12) are BSN priority that satisfies the required received power "-90 dBm" is set to "1". On the other hand, since each of BS1-1, BS3, and BS2 has one terminal position that satisfies the required received power of “−90 dBm”, evaluation section 103 sorts in descending order of satisfaction S, and sorts in descending order of satisfaction S, for example, , BS3 have a priority of "2", and BS2 has a priority of "3".
 また、評価部103は、クラスタ3において、所要受信電力(例えば、-90dBm)を満たすBSは、BS2だけなので、BS2の優先順位を「1」とする。一方、評価部103は、他のBSが所要受信電力を満たしていないので、満足度Sが大きい順にソートして、満足度Sが高い順に、例えば、BSNの優先順位を「2」とし。BS1-2の優先順位を「3」とする。 In addition, since BS2 is the only BS that satisfies the required received power (eg, -90 dBm) in cluster 3, evaluation section 103 sets the priority of BS2 to "1". On the other hand, since the other BSs do not satisfy the required received power, the evaluation unit 103 sorts the BSNs in descending order of the satisfaction level S, and sets the priority of the BSNs in descending order of the satisfaction level S, for example, "2". The priority of BS1-2 is set to "3".
 ここで、再び図3に戻り、フローチャートの説明をさらに続ける。ステップS306、S307において、置局設計装置100は、変数nに1を加算して、nの値が、クラスタの数Nを超えるまで、ステップS304~S307の処理を繰り返し実行する。また、置局設計装置100は、nの値がクラスタの数Nを超えると、処理をステップS308に移行させる。 Here, return to FIG. 3 again and continue the explanation of the flowchart. In steps S306 and S307, station placement design apparatus 100 adds 1 to variable n, and repeats steps S304 to S307 until the value of n exceeds the number N of clusters. Also, when the value of n exceeds the number N of clusters, station placement design apparatus 100 shifts the process to step S308.
 ステップS308に移行すると、置局設計装置100の決定部104は、評価部103が付けた優先順位に基づいてクラスタごとに無線基地局の設置位置を決定する決定処理を実行する。 After moving to step S308, the determination unit 104 of the station placement design device 100 executes determination processing for determining the installation positions of the wireless base stations for each cluster based on the priority assigned by the evaluation unit 103.
 (決定処理1)
 図7、9、11、13は、実施例1に係る決定処理の例を示すフローチャートである。この処理は、例えば、図3のステップS308において、決定部104が実行する決定処理の例を示している。まず、図7に示す処理について説明する。なお、ここでは、説明用の一例として、評価部103が、図8に示すような評価結果800を作成済であるものとする。
(Decision process 1)
7, 9, 11, and 13 are flowcharts illustrating examples of determination processing according to the first embodiment. This process shows an example of the determination process executed by the determination unit 104 in step S308 of FIG. 3, for example. First, the processing shown in FIG. 7 will be described. Here, as an example for explanation, it is assumed that the evaluation unit 103 has created an evaluation result 800 as shown in FIG.
 ステップS701において、決定部104は、評価部103による評価結果800から、各クラスタで優先順位が1位のBSを抽出する。図8の例では、決定部104は、クラスタ1において、BS1を抽出し、クラスタ2において、BS3-2を抽出する。また、決定部104は、クラスタ3において、BS2を抽出し、クラスタ4において、BS5を抽出する。 In step S701, the determination unit 104 extracts the BS with the highest priority in each cluster from the evaluation result 800 by the evaluation unit 103. In the example of FIG. 8, the determining unit 104 extracts BS1 in cluster 1 and extracts BS3-2 in cluster 2. FIG. Further, the determining unit 104 extracts BS2 in cluster 3, and extracts BS5 in cluster 4. FIG.
 ステップS702において、決定部104は、変数nを1に初期化して、ステップS703以降の処理を実行する。 In step S702, the determination unit 104 initializes the variable n to 1, and executes the processing from step S703 onwards.
 ステップS703において、決定部104は、クラスタnで、クラスタ競合が起きているか否かを判断する。ここで、クラスタ競合とは、クラスタ内に、優先順位が最も高いBSが複数存在することをいう。図8の例では、いずれのクラスタでも、クラスタ競合は発生していない。 In step S703, the determining unit 104 determines whether or not cluster conflict occurs in cluster n. Here, cluster contention means that a plurality of BSs with the highest priority exist within a cluster. In the example of FIG. 8, no cluster conflict occurs in any cluster.
 クラスタ競合が起きている場合、決定部104は、処理をステップS706に移行させる。一方、クラスタ競合が起きていない場合、決定部104は、処理をステップS704に移行させる。 If there is cluster conflict, the determining unit 104 shifts the process to step S706. On the other hand, if no cluster conflict has occurred, the determination unit 104 causes the process to proceed to step S704.
 ステップS704に移行すると、決定部104は、クラスタnの優先順位が1位のBSで、基地局競合が起きているか否かを判断する。ここで、基地局競合とは、クラスタnの優先順位が1位のBSの位置と、他のクラスタの優先順位が1位のBSの位置とが同じ(競合する)ことをいう。 After moving to step S704, the determining unit 104 determines whether or not the BS with the highest priority in cluster n is in contention with the base station. Here, base station contention means that the position of the BS with the highest priority in cluster n and the position of the BS with the highest priority in another cluster are the same (conflict).
 具体的な一例として、クラスタ1の優先順位が1位のBSがBS3-1であり、クラスタ2の優先順位が1位のBSがBS3-2であるものとする。この場合、BS3-1と、BS3-2とは、アンテナの方向が異なるため、異なるBS(置局位置候補)であるが、BSの位置が同じため、クラスタ1とクラスタ2で基地局競合が発生していると判断する。図8の例では、いずれのクラスタでも、基地局競合は発生していない。 As a specific example, it is assumed that the BS with the highest priority in cluster 1 is BS3-1, and the BS with the highest priority in cluster 2 is BS3-2. In this case, since BS3-1 and BS3-2 have different antenna directions, they are different BSs (station position candidates). determine that it has occurred. In the example of FIG. 8, no base station contention occurs in any cluster.
 基地局競合が起きている場合、決定部104は、処理をステップS706に移行させる。一方、基地局競合が起きていない場合、決定部104は、処理をステップS705に移行させる。 If there is base station contention, the determining unit 104 shifts the process to step S706. On the other hand, if there is no base station contention, the determining unit 104 shifts the process to step S705.
 ステップS705に移行すると、決定部104は、クラスタnで優先順位が1位のBSを選出し、クラスタnにおける無線基地局の設置位置に決定する。 When the process moves to step S705, the determination unit 104 selects the BS with the highest priority in cluster n and determines the installation position of the radio base station in cluster n.
 ステップS706、S707において、置局設計装置100は、変数nに1を加算して、nの値が、クラスタの数Nを超えるまで、ステップS703~S707の処理を繰り返し実行する。また、置局設計装置100は、nの値がクラスタの数Nを超えると、処理をステップS708に移行させる。 In steps S706 and S707, the station design device 100 adds 1 to the variable n, and repeats the processing of steps S703 to S707 until the value of n exceeds the number N of clusters. Also, when the value of n exceeds the number N of clusters, station placement design apparatus 100 shifts the process to step S708.
 ステップS708において、決定部104は、全クラスタで、無線基地局の設置位置が決定されたか否かを判断する。全クラスタで無線基地局の設置位置が決定された場合、決定部104は、決定処理を終了する。一方、無線基地局の設置位置が決定されていないクラスタがある場合、決定部104は、図9の処理を実行する。 In step S708, the determination unit 104 determines whether or not the installation positions of the radio base stations have been determined in all clusters. When the installation positions of the radio base stations have been determined in all clusters, the determination unit 104 terminates the determination process. On the other hand, when there is a cluster for which the installation position of the radio base station has not been determined, the determination unit 104 executes the processing of FIG.
 なお、図8に示すように、クラスタ競合も、基地局競合も発生していない場合、図7の処理により、全てのクラスタで無線基地局の設置位置が決定される。例えば、図8の例では、決定部104は、クラスタ1の基地局の設置位置をBS1に決定し、クラスタ2の基地局の設置位置をBS3-2に決定する。また、決定部104は、クラスタ3の基地局の設置位置をBS2に決定し、クラスタ4の基地局の設置位置をBS5に決定する。 As shown in FIG. 8, when neither cluster conflict nor base station conflict occurs, the installation positions of wireless base stations are determined in all clusters by the processing of FIG. For example, in the example of FIG. 8, the determining unit 104 determines the installation position of the base station of cluster 1 to be BS1, and the installation position of the base station of cluster 2 to be BS3-2. Further, the determining unit 104 determines the installation position of the base station of cluster 3 to be BS2, and the installation position of the base station of cluster 4 to be BS5.
 (決定処理2)
 続いて、図9に示す処理について説明する。この処理は、例えば、図7のステップS708において、無線基地局の設置位置が決定されていないクラスタがあると判断された場合に、決定部104が実行する決定処理の例を示している。なお、ここでは、説明用の一例として、評価部103が、図10に示すような評価結果1000を作成済であるものとする。また、ここでは、図7で説明した処理と同様の処理内容に対する詳細な説明は省略する。
(Decision process 2)
Next, the processing shown in FIG. 9 will be described. This processing shows an example of determination processing executed by the determination unit 104 when it is determined in step S708 in FIG. 7 that there is a cluster for which the installation positions of the radio base stations have not been determined. Here, as an example for explanation, it is assumed that the evaluation unit 103 has created an evaluation result 1000 as shown in FIG. Also, here, detailed descriptions of the same processing contents as those described with reference to FIG. 7 will be omitted.
 ステップS901において、決定部104は、変数nを1に初期化して、ステップS902以降の処理を実行する。 In step S901, the determination unit 104 initializes the variable n to 1, and executes the processes from step S902 onward.
 ステップS902において、決定部104は、クラスタnで、無線基地局の設置位置を決定済であるか否かを判断する。クラスタnで無線基地局の設置位置を決定済である場合、決定部104は、処理をステップS910に移行させる。一方、クラスタnで無線基地局の設置位置を決定済でない場合、決定部104は、処理をステップS903に移行させる。 In step S902, the determination unit 104 determines whether or not the installation positions of the wireless base stations have been determined in cluster n. If the installation positions of the wireless base stations have been determined in cluster n, the determining unit 104 causes the process to proceed to step S910. On the other hand, if the installation positions of the wireless base stations have not been determined in cluster n, the determining unit 104 causes the process to proceed to step S903.
 ステップS903に移行すると、決定部104は、クラスタnで、クラスタ競合が起きているか否かを判断する。クラスタ競合が起きている場合、決定部104は、処理をステップS910に移行させる。一方、クラスタ競合が起きていない場合、決定部104は、処理をステップS904に移行させる。 After moving to step S903, the determining unit 104 determines whether or not cluster conflict occurs in cluster n. If cluster conflict occurs, the determining unit 104 causes the process to proceed to step S910. On the other hand, if no cluster conflict has occurred, the determining unit 104 causes the process to proceed to step S904.
 ステップS904に移行すると、決定部104は、クラスタnの優先順位が1位のBSで、基地局競合が起きているか否かを判断する。図10に示した評価結果1000では、クラスタ2と、クラスタ4との間で基地局競合が発生している。 When the process moves to step S904, the determination unit 104 determines whether or not the BS with the highest priority in cluster n has base station contention. In the evaluation result 1000 shown in FIG. 10, base station contention has occurred between clusters 2 and 4 .
 基地局競合が起きていない場合、決定部104は、処理をステップS910に移行させる。一方、基地局競合が起きている場合、決定部104は、処理をステップS905に移行させる。 When there is no base station contention, the determining unit 104 shifts the process to step S910. On the other hand, if there is base station contention, the determining unit 104 causes the process to proceed to step S905.
 ステップS905に移行すると、決定部104は、競合先のクラスタに優先順位が1位の別のBSがあるか否かを判断する。競合先のクラスタに優先順位が1位の別のBSがある場合、決定部104は、処理をステップS906に移行させる。一方、競合先のクラスタに優先順位が1位の別のBSがない場合、決定部104は、処理をステップS907とS908に移行させる。 After shifting to step S905, the determining unit 104 determines whether or not there is another BS with the first priority in the competing cluster. If there is another BS with the first priority in the competing cluster, the determining unit 104 shifts the process to step S906. On the other hand, if there is no other BS with the first priority in the competing cluster, the determining unit 104 shifts the process to steps S907 and S908.
 ステップS906に移行すると、決定部104は、クラスタnで優先順位が1位のBSを選出し、クラスタnにおける無線基地局の設置位置に決定する。 When the process moves to step S906, the determination unit 104 selects the BS with the highest priority in cluster n and determines the installation position of the radio base station in cluster n.
 ステップS907に移行すると、決定部104は、クラスタnの優先順位1位のBSと、競合先のクラスタの次の優先順位のBSとの組合せであるBSセット1の合計スコアを算出する。また、ステップS908に移行すると、決定部104は、クラスタnの次の優先順位のBSと、競合先のクラスタの優先順位1のBSとの組合せであるBSセット2の合計スコアを算出する。 After moving to step S907, the determination unit 104 calculates the total score of BS set 1, which is a combination of the BS with the highest priority in cluster n and the BS with the next priority in the competing cluster. In step S908, the determining unit 104 calculates the total score of BS set 2, which is a combination of the next priority BS of cluster n and the priority 1 BS of the competing cluster.
 ステップS909において、決定部104は、BSセット1とBSセット2とのうち、合計スコアが高いBSセットを選出する。 In step S909, the determining unit 104 selects the BS set with the highest total score from the BS set 1 and the BS set 2.
 図10は、実施例1に係る基地局競合がある場合の処理の例を示す図である。図10の例では、クラスタ2と、クラスタ4との間で、優先順位が1位のBSの位置が競合する基地局競合が発生している。 FIG. 10 is a diagram illustrating an example of processing when there is base station contention according to the first embodiment. In the example of FIG. 10, base station contention occurs between clusters 2 and 4 in which the position of the BS with the highest priority is in contention.
 この場合、決定部104は、クラスタ2で優先順位が1位のBS3-2と、競合先のクラスタ4で次の優先順位のBSとの組合せであるBSセット1の合計スコア(端末数Tの合計、及び満足度Sの合計)を算出する。 In this case, determining section 104 determines the total score of BS set 1 (the number of terminals T and the sum of satisfaction S).
 なお、図10の例では、クラスタ4において、優先順位が2位のBS3-2は、クラスタ2における優先順位が1位のBS3-2と競合しているので、クラスタ4において、優先順位が3位のBS4-2を、次の優先順位のBSとしている。 In the example of FIG. 10, BS3-2, which has the second priority in cluster 4, competes with BS3-2, which has the first priority in cluster 2. Therefore, in cluster 4, the priority is 3. The BS4-2 with the highest priority is set as the BS with the next priority.
 また、決定部104は、クラスタ2で優先順位が2位のBS5と、競合先のクラスタ4で優先順位が1位のBS3-1との組合せであるBSセット2の合計スコア1001を算出する。図10の例では、合計スコア1001は、BSセット2の方が高いので、決定部104は、BSセット2を選出する。これにより、決定部104は、クラスタ2における無線基地局の設置位置をBS-5に決定し、クラスタ4における無線基地局の設置位置をBS3-1に決定する。 The determining unit 104 also calculates the total score 1001 of BS set 2, which is a combination of BS5, which has the second priority in cluster 2, and BS3-1, which has the first priority in cluster 4, which is the competitor. In the example of FIG. 10 , the total score 1001 is higher for BS set 2, so decision unit 104 selects BS set 2. As a result, determination section 104 determines the installation position of the radio base station in cluster 2 to be BS-5, and the installation position of the radio base station in cluster 4 to be BS3-1.
 ここで、図9に戻り、フローチャートの説明を続ける。 Here, returning to FIG. 9, the explanation of the flowchart is continued.
 ステップS910、S911において、置局設計装置100は、変数nに1を加算して、nの値が、クラスタの数Nを超えるまで、ステップS902~S911の処理を繰り返し実行する。また、置局設計装置100は、nの値がクラスタの数Nを超えると、処理をステップS912に移行させる。 In steps S910 and S911, the station design apparatus 100 adds 1 to the variable n, and repeats the processing of steps S902 to S911 until the value of n exceeds the number N of clusters. Also, when the value of n exceeds the number N of clusters, station placement design apparatus 100 shifts the process to step S912.
 ステップS912に移行すると、決定部104は、全クラスタで、無線基地局の設置位置が決定されたか否かを判断する。全クラスタで無線基地局の設置位置が決定された場合、決定部104は、決定処理を終了する。一方、無線基地局の設置位置が決定されていないクラスタがある場合、決定部104は、図11の処理を実行する。 After moving to step S912, the determination unit 104 determines whether or not the installation positions of the wireless base stations have been determined in all clusters. When the installation positions of the radio base stations have been determined in all clusters, the determination unit 104 terminates the determination process. On the other hand, when there is a cluster for which the installation position of the radio base station has not been determined, the determination unit 104 executes the processing of FIG. 11 .
 (決定処理3)
 続いて、図11に示す処理について説明する。この処理は、例えば、図9のステップS912において、無線基地局の設置位置が決定されていないクラスタがあると判断された場合に、決定部104が実行する決定処理の例を示している。なお、ここでは、説明用の一例として、評価部103が、図12に示すような評価結果1200を作成済であるものとする。また、ここでは、図7、9で説明した処理と同様の処理内容に対する詳細な説明は省略する。
(Decision process 3)
Next, the processing shown in FIG. 11 will be described. This process shows an example of the determination process performed by the determination unit 104 when it is determined in step S912 of FIG. 9 that there is a cluster for which the installation positions of the radio base stations have not been determined. Here, as an example for explanation, it is assumed that the evaluation unit 103 has created an evaluation result 1200 as shown in FIG. 12 . Also, here, detailed descriptions of the same processing contents as those described with reference to FIGS. 7 and 9 will be omitted.
 ステップS1101において、決定部104は、変数nを1に初期化して、ステップS1102以降の処理を実行する。 In step S1101, the determination unit 104 initializes the variable n to 1, and executes the processes from step S1102 onward.
 ステップS1102において、決定部104は、クラスタnで、無線基地局の設置位置を決定済であるか否かを判断する。クラスタnで無線基地局の設置位置を決定済である場合、決定部104は、処理をステップS1106に移行させる。一方、クラスタnで無線基地局の設置位置を決定済でない場合、決定部104は、処理をステップS1103に移行させる。 In step S1102, the determination unit 104 determines whether or not the installation positions of the wireless base stations have been determined in cluster n. If the installation positions of the wireless base stations have been determined in cluster n, the determining unit 104 causes the process to proceed to step S1106. On the other hand, if the installation positions of the wireless base stations have not been determined in cluster n, the determining unit 104 causes the process to proceed to step S1103.
 ステップS1103に移行すると、決定部104は、クラスタnで、クラスタ競合が起きているか否かを判断する。クラスタ競合が起きていない場合、決定部104は、処理をステップS1106に移行させる。一方、クラスタ競合が起きている場合、決定部104は、処理をステップS1104に移行させる。 Upon moving to step S1103, the determination unit 104 determines whether or not cluster conflict occurs in cluster n. If no cluster conflict has occurred, the determining unit 104 causes the process to proceed to step S1106. On the other hand, when cluster conflict occurs, the determining unit 104 causes the process to proceed to step S1104.
 ステップS1104に移行すると、決定部104は、クラスタnの優先順位が1位のBSのうち、他のクラスタと基地局競合していないBSがあるか否かを判断する。当該条件を満たすBSがない場合、決定部104は、処理をステップS1106に移行させる。一方、当該条件を満たすBSがある場合、決定部104は、処理をステップS1105に移行させる。 After moving to step S1104, the determining unit 104 determines whether or not there is a BS that is not in base station contention with other clusters among the BSs with the highest priority in cluster n. If there is no BS that satisfies the condition, the determining unit 104 causes the process to proceed to step S1106. On the other hand, if there is a BS that satisfies the condition, the determining unit 104 causes the process to proceed to step S1105.
 ステップS1105に移行すると、決定部104は、クラスタnで優先順位が1位であり、かつ他のクラスタと基地局競合していないBSのうち、全クラスタの合計スコアが最も高いBSを選出する。 At step S1105, the determination unit 104 selects the BS with the highest total score of all clusters among the BSs that have the highest priority in cluster n and are not in base station contention with other clusters.
 例えば、図12に示した評価結果1200では、クラスタ2において、BS3-2、BS4-2、BS6の優先順位が1位となっており、クラスタ競合が発生している。また、競合しているBS3-2、BS4-2、BS6は、いずれも、他のクラスタと基地局競合していない。この場合、決定部104は、BS3-2、BS4-2、BS6における全クラスタの合計スコア1201を算出する。例えば、決定部104は、BS3-2のクラスタ1~4における端末数Tを合計して、BS3-2における端末数Tの合計スコアを算出し、BS3-2のクラスタ1~4における満足度Sを合計して、BS3-2における満足度Sの合計スコアを算出する。 For example, in the evaluation result 1200 shown in FIG. 12, BS3-2, BS4-2, and BS6 have the highest priority in cluster 2, and cluster conflict occurs. Also, none of the conflicting BS3-2, BS4-2, and BS6 have base station conflicts with other clusters. In this case, determination section 104 calculates total score 1201 of all clusters in BS3-2, BS4-2, and BS6. For example, the determining unit 104 sums the number of terminals T in clusters 1 to 4 of BS3-2, calculates the total score of the number of terminals T in BS3-2, and satisfies S in clusters 1 to 4 of BS3-2. to calculate the total score of satisfaction S in BS3-2.
 また、図12の例では、決定部104は、全クラスタの合計スコアが最も大きい、BS4-2を選出し、クラスタnに設置する無線基地局の設置位置に決定する。 Also, in the example of FIG. 12, the determination unit 104 selects BS4-2, which has the highest total score of all clusters, and determines it as the installation position of the wireless base station to be installed in cluster n.
 ステップS1106、S1107において、置局設計装置100は、変数nに1を加算して、nの値が、クラスタの数Nを超えるまで、ステップS1102~S1107の処理を繰り返し実行する。また、置局設計装置100は、nの値がクラスタの数Nを超えると、処理をステップS1108に移行させる。 In steps S1106 and S1107, the station position design apparatus 100 adds 1 to the variable n, and repeats the processing of steps S1102 to S1107 until the value of n exceeds the number N of clusters. Also, when the value of n exceeds the number N of clusters, station placement design apparatus 100 shifts the process to step S1108.
 ステップS1108に移行すると、決定部104は、全クラスタで、無線基地局の設置位置が決定されたか否かを判断する。全クラスタで無線基地局の設置位置が決定された場合、決定部104は、決定処理を終了する。一方、無線基地局の設置位置が決定されていないクラスタがある場合、決定部104は、図13の処理を実行する。 After moving to step S1108, the determining unit 104 determines whether or not the installation positions of the wireless base stations have been determined in all clusters. When the installation positions of the radio base stations have been determined in all clusters, the determination unit 104 terminates the determination process. On the other hand, when there is a cluster for which the installation position of the radio base station has not been determined, the determination unit 104 executes the processing of FIG. 13 .
 (決定処理4)
 続いて、図13に示す処理について説明する。この処理は、例えば、図11のステップS1108において、無線基地局の設置位置が決定されていないクラスタがあると判断された場合に、決定部104が実行する決定処理の例を示している。なお、ここでは、説明用の一例として、評価部103が、図14に示すような評価結果1400を作成済であるものとする。また、ここでは、図7、9、11で説明した処理と同様の処理内容に対する詳細な説明は省略する。
(Decision process 4)
Next, the processing shown in FIG. 13 will be described. This process shows an example of the determination process performed by the determination unit 104 when it is determined in step S1108 of FIG. 11 that there is a cluster for which the installation positions of the wireless base stations have not been determined. Here, as an example for explanation, it is assumed that the evaluation unit 103 has created an evaluation result 1400 as shown in FIG. 14 . Further, here, detailed descriptions of the same processing contents as those described with reference to FIGS. 7, 9, and 11 are omitted.
 ステップS1301において、決定部104は、変数nを1に初期化して、ステップS1302以降の処理を実行する。 In step S1301, the determination unit 104 initializes the variable n to 1, and executes the processing from step S1302.
 ステップS1302において、決定部104は、クラスタnで、無線基地局の設置位置を決定済であるか否かを判断する。クラスタnで無線基地局の設置位置を決定済である場合、決定部104は、処理をステップS1306に移行させる。一方、クラスタnで無線基地局の設置位置を決定済でない場合、決定部104は、処理をステップS1303に移行させる。 In step S1302, the determining unit 104 determines whether or not the installation positions of the wireless base stations have been determined in cluster n. If the installation positions of the wireless base stations have been determined in cluster n, the determining unit 104 causes the process to proceed to step S1306. On the other hand, if the installation positions of the wireless base stations have not been determined in cluster n, the determining unit 104 causes the process to proceed to step S1303.
 ステップS1303に移行すると、決定部104は、クラスタnで、クラスタ競合が起きているか否かを判断する。クラスタ競合が起きていない場合、決定部104は、処理をステップS1306に移行させる。一方、クラスタ競合が起きている場合、決定部104は、処理をステップS1304に移行させる。 Upon moving to step S1303, the determination unit 104 determines whether or not cluster conflict occurs in cluster n. If cluster conflict has not occurred, the determining unit 104 causes the process to proceed to step S1306. On the other hand, when cluster conflict occurs, the determining unit 104 causes the process to proceed to step S1304.
 ステップS1304に移行すると、決定部104は、クラスタnでクラスタ競合している、優先順位が1位の全てのBSで、他のクラスタと基地局競合しているか否かを判断する。上記の基地局競合をしていない場合、決定部104は、処理をステップS1306に移行させる。一方、上記の基地局競合をしている場合、決定部104は、処理をステップS1305に移行させる。 After moving to step S1304, the determining unit 104 determines whether or not all the BSs with the highest priority that are in cluster conflict in cluster n are in base station conflict with other clusters. If there is no base station contention as described above, the determination unit 104 causes the process to proceed to step S1306. On the other hand, if the above base station contention is occurring, the determining unit 104 causes the process to proceed to step S1305.
 ステップS1305に移行すると、決定部104は、クラスタnと競合先のクラスタで、基地局競合しないBSの組合せのBSセットを選出する。 After moving to step S1305, the determination unit 104 selects a BS set of combinations of BSs that do not conflict with each other in the cluster n and the competing cluster.
 例えば、図14に示した評価結果1400では、クラスタ1、クラスタ3、及びクラスタ4でクラスタ競合が発生している。このうち、クラスタ1は、優先順位が1位のBSのうち、他のクラスタと基地局競合していないBS1、BS4-2があるので、決定部104は、例えば、図13で説明した処理により、クラスタ1における無線局の設置位置を決定する。 For example, in the evaluation result 1400 shown in FIG. 14, cluster competition occurs in clusters 1, 3, and 4. Of these, in cluster 1, among the BSs with the highest priority, there are BS1 and BS4-2 that do not compete for base stations with other clusters. , to determine the installation positions of the radio stations in cluster 1 .
 また、図14に示した評価結果1400では、クラスタ2と、クラスタ6で基地局競合が発生しており、競合先のクラスタに優先順位が1位の別のBSがないため、決定部104は、例えば、図9の処理により、クラスタ2、6における無線局の設置位置を決定する。また、クラスタ5は、優先順位が1位のBS5が、クラスタ競合も基地局競合も発生していないため、決定部104は、BS5を、クラスタ4における無線局の設置位置に決定する。 Also, in the evaluation result 1400 shown in FIG. 14, base station competition occurs between clusters 2 and 6, and there is no other BS with the highest priority in the competing cluster. For example, the installation positions of the wireless stations in the clusters 2 and 6 are determined by the processing of FIG. In cluster 5, BS5, which has the highest priority, has neither cluster conflict nor base station conflict.
 さらに、図14に示した評価結果1400では、クラスタ3とクラスタ4でクラスタ競合が起きており、かつクラスタ競合している優先順位が1位の全てのBSで、他のクラスタと基地局競合している。従って、決定部104は、図13の処理により、クラスタ3、4における無線基地局の設置位置を決定する。例えば、決定部104は、クラスタ3、4のどちらを優先しても差がないため、ID昇順等により、BS2をクラスタ3における無線基地局の設置位置に決定し、BS6をクラスタ4における無線基地局の設置位置に決定する。なお、決定部104は、ID昇順に限られず、例えば、スコア順、ID降順、又はランダム等の任意の方法により、BSを選出してよい。 Furthermore, in the evaluation result 1400 shown in FIG. 14, cluster conflict occurs in clusters 3 and 4, and all the BSs with the highest priority that are in cluster conflict are base station conflicts with other clusters. ing. Therefore, the determination unit 104 determines the installation positions of the radio base stations in the clusters 3 and 4 by the processing of FIG. For example, since there is no difference whether priority is given to clusters 3 or 4, determination unit 104 determines BS2 as the wireless base station installation position in cluster 3 and BS6 as the wireless base station installation position in cluster 4 by ID ascending order or the like. Determine the installation position of the station. Note that the determination unit 104 may select BSs by any method such as score order, ID descending order, random, or the like, without being limited to the ID ascending order.
 ここで、図13に戻り、フローチャートの説明を続ける。ステップS1306、S1307において、置局設計装置100は、変数nに1を加算して、nの値が、クラスタの数Nを超えるまで、ステップS1302~S1307の処理を繰り返し実行する。また、置局設計装置100は、nの値がクラスタの数Nを超えると、決定処理を終了する。 Here, returning to FIG. 13, the explanation of the flowchart is continued. In steps S1306 and S1307, station placement design apparatus 100 adds 1 to variable n, and repeats steps S1302 to S1307 until the value of n exceeds the number N of clusters. Also, when the value of n exceeds the number N of clusters, station placement design apparatus 100 terminates the determination process.
 上記の各処理により、置局設計装置100は、従来の技術より少ない計算量、及びメモリ量で、各クラスタに設置する無線基地局の設置位置を決定することができる。 Through the above processes, the station placement design device 100 can determine the installation positions of the wireless base stations installed in each cluster with a smaller amount of calculation and memory than the conventional technique.
 [実施例2]
 置局設計装置100は、既設の無線基地局がある無線エリア内に、新たに無線基地局を追加する置局設計を行うこともできる。この場合、置局設計装置100は、無線エリア内の複数の端末位置から、既設の無線基地局によって所要受信電力を満たす端末位置を除外した端末位置を、新たに設置する無線基地局の数のクラスタに分割すればよい。
[Example 2]
The station placement design apparatus 100 can also perform station placement design to add a new radio base station within a radio area where an existing radio base station is located. In this case, station placement design apparatus 100 selects terminal positions excluding terminal positions that satisfy the required received power from existing radio base stations from a plurality of terminal positions within the radio area, It should be divided into clusters.
 <処理の流れ>
 (置局設計処理)
 図15は、実施例2に係る置局設計装置の処理の例を示すフローチャートである。なお、図15に示す処理のうち、ステップS301、S302~S308の処理は、図3で説明した実施例1に係る置局設計装置の処理と同様なので、ここでは説明を省略する。
<Process flow>
(Station placement design process)
FIG. 15 is a flowchart illustrating an example of processing of the station placement design device according to the second embodiment. 15, steps S301 and S302 to S308 are the same as those of the station placement design apparatus according to the first embodiment described with reference to FIG. 3, so description thereof will be omitted here.
 ステップS1501において、置局設計装置100は、既設の無線基地局を置局設計に含めるか否かを判断する。例えば、置局設計装置100は、読み込んだ設計条件等を参照して、既設の無線基地局を置局設計に含めるか否かを判断する。既設の無線基地局を置局設計に含める場合、置局設計装置100は、処理をステップS1502に移行させる。一方、既設の無線基地局を置局設計に含めない場合、置局設計装置100は、処理をステップS302に移行させる。 In step S1501, the station placement design device 100 determines whether or not to include existing wireless base stations in the station placement design. For example, the station placement design apparatus 100 refers to the read design conditions and the like, and determines whether or not to include the existing wireless base stations in the station placement design. When including an existing radio base station in the station placement design, the station placement design apparatus 100 shifts the process to step S1502. On the other hand, if the existing radio base station is not included in the station placement design, the station placement design apparatus 100 shifts the process to step S302.
 ステップS1502に移行すると、置局設計装置100は、既設の無線基地局によって所要受信電力を満たす端末位置を、設計条件に含まれる複数の端末位置から除外して、処理をステップS302に進める。 After proceeding to step S1502, the station placement design apparatus 100 excludes terminal positions that satisfy the required received power from existing wireless base stations from the plurality of terminal positions included in the design conditions, and advances the process to step S302.
 上記の処理により、置局設計装置100は、既設の無線基地局を置局設計に含める場合
ステップS1502の処理により、実施例1と同様にして、置局設計を行うことができる。
With the above processing, the station placement design apparatus 100 can perform station placement design in the same manner as in the first embodiment by the processing of step S1502 when the existing wireless base stations are included in the station placement design.
 ただし、既設の無線基地局が、アンテナの向きを変更可能である場合、置局設計装置100は、置局設計に用いる既設の無線基地局の方向を決定することが望ましい。 However, if the existing radio base station can change the direction of the antenna, it is desirable that the station placement design device 100 determines the direction of the existing radio base station used for station placement design.
 図16は、実施例2に係る既設の無線基地局の方向について説明するための図である。例えば、図16に示すように、無線エリア1600内に既設の無線基地局1601があり、無線基地局1601が備えるアンテナの向きにより、方向1で表すカバー範囲内、又は方向2で表すカバー範囲内の端末位置において、所要受信電力を満たすことができるものとする。 FIG. 16 is a diagram for explaining directions of existing wireless base stations according to the second embodiment. For example, as shown in FIG. 16, there is an existing wireless base station 1601 in a wireless area 1600, and depending on the orientation of the antenna provided in the wireless base station 1601, the coverage range indicated by direction 1 or the coverage range indicated by direction 2 It is assumed that the required received power can be satisfied at the terminal position.
 この場合、方向2で表すカバー範囲(以下、単に「方向2」と呼ぶ)の方が、方向1で表すカバー範囲(以下、単に「方向1」と呼ぶ)より多くの端末位置をカバーすることができる。 In this case, the coverage area represented by direction 2 (hereinafter simply referred to as "direction 2") covers more terminal positions than the coverage area represented by direction 1 (hereinafter simply referred to as "direction 1"). can be done.
 一方、無線エリア1600に、新たな無線基地局を1つ追加する場合、方向1は、2つの無線基地局で、無線エリア1600内の全ての端末位置をカバーすることができるが、方向2では、カバーできない端末位置が発生する。従って、アンテナの向きを変更可能な、既設の無線基地局を含めて置局設計を行う場合、図15のステップS1502において、既設の無線基地局の方向を、適切に選択することが望ましい。 On the other hand, when one new radio base station is added to the radio area 1600, two radio base stations can cover all terminal positions in the radio area 1600 in the direction 1, but in the direction 2 , a terminal position that cannot be covered occurs. Therefore, when designing a station including an existing radio base station whose antenna direction can be changed, it is desirable to appropriately select the direction of the existing radio base station in step S1502 of FIG.
 (選択処理)
 図17は、実施例2に係る選択処理の例を示すフローチャートである。この処理は、アンテナの向きを変更可能な、既設の無線基地局を含めて置局設計を行う場合に、例えば、図15のステップS1502において、置局設計装置100が実行する選択処理の一例を示している。
(selection process)
FIG. 17 is a flowchart illustrating an example of selection processing according to the second embodiment. This process is an example of the selection process executed by station placement design apparatus 100 in step S1502 of FIG. showing.
 ステップS1701において、置局設計装置100の分割部102は、無線エリア内の複数の端末位置を、既設の無線基地局を含む、無線エリア内に設置する無線基地局の数のクラスタに分割する。 In step S1701, the dividing unit 102 of the station placement design device 100 divides a plurality of terminal positions within the wireless area into clusters corresponding to the number of wireless base stations to be installed within the wireless area, including existing wireless base stations.
 ステップS1702において、置局設計装置100の評価部103は、各クラスタにおいて、各方向における、端末位置のカバー率Uと満足度Sのスコアを算出する。ここで、端末位置のカバー率Uを、(クラスタ内の所要受信電力を満たす端末位置の数)/(クラスタ内の端末位置の数)と定義する。 In step S1702, the evaluation unit 103 of the station placement design device 100 calculates the scores of the terminal position coverage U and the degree of satisfaction S in each direction in each cluster. Here, the terminal location coverage ratio U is defined as (the number of terminal locations satisfying the required received power in the cluster)/(the number of terminal locations in the cluster).
 ステップS1703において、置局設計装置100の選択部105は、既設の無線基地局の各方向(例えば、図16の方向1、及び方向2)における最大スコアを抽出する。 In step S1703, the selection unit 105 of the station placement design apparatus 100 extracts the maximum score in each direction (for example, direction 1 and direction 2 in FIG. 16) of existing wireless base stations.
 ステップS1704において、選択部105は、ステップS1703で算出した各方向の最大スコアが同じ値であるか否かを判断する。最大スコアが同じ値である場合、選択部105は、処理をステップS1706に移行させる。一方、最大スコアが同じ値でない場合、選択部105は、処理ステップS1706に移行させる。 In step S1704, the selection unit 105 determines whether the maximum scores in each direction calculated in step S1703 are the same value. If the maximum scores are the same value, the selection unit 105 causes the process to proceed to step S1706. On the other hand, if the maximum scores are not the same value, the selection unit 105 moves to processing step S1706.
 ステップS1705に移行すると、選択部105は、最大スコアがより高い方向を選択する。 After moving to step S1705, the selection unit 105 selects a direction with a higher maximum score.
 一方、ステップS1706に移行すると、選択部105は、各方向における全クラスタのスコアの合計値を算出する。 On the other hand, when proceeding to step S1706, the selection unit 105 calculates the total score of all clusters in each direction.
 ステップS1707において、選択部105は、算出した各方向におけるスコアの合計値が同じ値であるか否かを判断する。スコアの合計値が同じ値である場合、選択部105は、処理をステップS1709に移行させる。一方、スコアの合計値が同じ値でない場合、選択部105は、処理をステップS1708に移行させる。 In step S1707, the selection unit 105 determines whether or not the calculated total score in each direction is the same value. If the total score values are the same, the selection unit 105 causes the process to proceed to step S1709. On the other hand, if the total score values are not the same, the selection unit 105 causes the process to proceed to step S1708.
 ステップS1708に移行すると、選択部105は、スコアの合計値がより大きい方向を選択する。一方、ステップS1709に移行すると、選択部105は、例えば、ID昇順、ID降順、又はランダム等、任意の方法で方向を選択する。 When the process moves to step S1708, the selection unit 105 selects a direction with a higher total score. On the other hand, after proceeding to step S1709, the selection unit 105 selects the direction by any method such as ascending ID order, descending ID order, or random.
 図18は、置局設計装置100が実行する選択処理の具体的な一例を示す図(1)である。例えば、既設の無線基地局が設置されている無線エリア1800に、新たに1つの無線基地局を設置する場合、置局設計装置100は、例えば、図18に示すように、無線エリア1800を2つのクラスタ(クラスタ1、及びクラスタ2)に分割する。 FIG. 18 is a diagram (1) showing a specific example of selection processing executed by the station placement design device 100. FIG. For example, when installing a new radio base station in a radio area 1800 where existing radio base stations are installed, the station placement design apparatus 100 divides the radio area 1800 into two areas, for example, as shown in FIG. into two clusters (Cluster 1 and Cluster 2).
 また、置局設計装置100は、分割した各クラスタにおいて、例えば、図18に示すように、各方向(方向1、及び方向2)のカバー率Uと満足度Sのスコア1811を算出し、各方向における最大スコア1812を抽出する。 Further, station placement design apparatus 100 calculates score 1811 of coverage ratio U and degree of satisfaction S in each direction (direction 1 and direction 2) in each divided cluster, as shown in FIG. Extract the maximum score 1812 in the direction.
 ここでは、方向1の最大スコアの方が、方向2の最大スコアより高いので、置局設計装置100は、方向1を選択する。これにより、例えば、図16で説明した、既設の無線基地局1601の方向1が選択される。 Here, since the maximum score for direction 1 is higher than the maximum score for direction 2, station placement design device 100 selects direction 1. As a result, for example, the direction 1 of the existing radio base station 1601 described with reference to FIG. 16 is selected.
 図19は、置局設計装置100が実行する選択処理の具体的な一例を示す図(2)である。例えば、既設の無線基地局が設置されている無線エリア1900に、新たに2つの無線基地局を設置する場合、置局設計装置100は、例えば、図19に示すように、無線エリア1900を3つのクラスタ(クラスタ1~3)に分割する。 FIG. 19 is a diagram (2) showing a specific example of selection processing executed by the station placement design device 100. FIG. For example, when installing two new radio base stations in a radio area 1900 in which an existing radio base station is installed, the station placement design apparatus 100 divides the radio area 1900 into three areas, for example, as shown in FIG. divided into two clusters (clusters 1-3).
 また、置局設計装置100は、分割した各クラスタにおいて、例えば、図19に示すように、各方向(方向1、及び方向2)カバー率Uと満足度Sのスコア1911を算出し、各方向における最大スコア1912を抽出する。 19, the station placement design apparatus 100 calculates a score 1911 for each direction (direction 1 and direction 2) coverage U and satisfaction S for each divided cluster, and Extract the maximum score 1912 in .
 ここでは、方向1の最大スコアと、方向2の最大スコアが同じスコアなので、置局設計装置100は、各方向のスコアの合計値1913をさらに算出する。また、図19の例では、方向2のスコア合計値の方が、方向1のスコア合計値より大きいので、置局設計装置100は、方向2を選択する。これにより、例えば、図16で説明した、既設の無線基地局1601の方向2が選択される。 Here, since the maximum score for direction 1 and the maximum score for direction 2 are the same score, the station position design device 100 further calculates the total value 1913 of the scores for each direction. In addition, in the example of FIG. 19, since the total score value for direction 2 is greater than the total score value for direction 1, station placement design apparatus 100 selects direction 2. FIG. As a result, for example, the direction 2 of the existing radio base station 1601 described with reference to FIG. 16 is selected.
 (応用例)
 上記の説明では、既設の無線基地局の数が1つの場合について説明したが、既設の無線基地局の数は、例えば、図20に示すように、2つであってもよい。例えば、図20に示すように、2つの既設の無線基地局であるBS1、BS2が設置されている無線エリア2000に、新たに1つの無線基地局を設置する場合、置局設計装置100は、例えば、図20に示すように、無線エリア2000を3つのクラスタ(クラスタ1~3)に分割する。
(Application example)
In the above description, the case where the number of existing wireless base stations is one has been described, but the number of existing wireless base stations may be two as shown in FIG. 20, for example. For example, as shown in FIG. 20, when installing a new radio base station in a radio area 2000 in which two existing radio base stations BS1 and BS2 are installed, the station design apparatus 100: For example, as shown in FIG. 20, wireless area 2000 is divided into three clusters (clusters 1 to 3).
 また、置局設計装置100は、分割した各クラスタにおいて、例えば、図20に示すように、各BS(BS1、BS2)の各方向(方向1、及び方向2)のカバー率Uと満足度Sのスコア2011を算出し、各BSの各方向における最大スコア2012を抽出する。 20, the station placement design apparatus 100 calculates the coverage ratio U and the degree of satisfaction S , and the maximum score 2012 in each direction of each BS is extracted.
 ここでは、BS1の方向1における最大スコアと、BS2の方向1の最大スコアとが最大となっている。しかし、BS1の方向1と、BS2の方向1を選択した場合、図20に示すように、BS1によるカバーエリアとBS2のカバーエリアとが重複してしまうという問題がある。 Here, the maximum score in direction 1 of BS1 and the maximum score in direction 1 of BS2 are the maximum. However, when direction 1 of BS1 and direction 1 of BS2 are selected, there is a problem that the area covered by BS1 and the area covered by BS2 overlap as shown in FIG.
 置局設計装置100は、このように、BS1によるカバーエリアと、BS2によるカバーエリアが重複しないように、BS1の方向と、BS2の方向とを選択することが望ましい。 It is desirable that the station placement design device 100 selects the direction of BS1 and the direction of BS2 so that the coverage area of BS1 and the coverage area of BS2 do not overlap.
 例えば、置局設計装置100は、BS1によるカバーエリアとBS2によるカバーエリアとが重複する場合、BS1の優先順位が1位の方向1と、BS2の優先順位が2位の方向2との組合せを組合せ1として、カバー率Uと満足度Sとの合計スコアを算出する。また、置局設計装置100は、BS2の優先順位が1位の方向1と、BS1の優先順位が2位の方向3との組合せを組合せ2として、カバー率Uと満足度Sとの合計スコアを算出する。 For example, when the area covered by BS1 and the area covered by BS2 overlap, station placement design apparatus 100 selects a combination of direction 1 with the highest priority of BS1 and direction 2 with the second highest priority of BS2. As combination 1, the total score of the coverage rate U and the satisfaction level S is calculated. In addition, the station placement design device 100 sets the combination 2 of the direction 1 in which BS2 has the highest priority and the direction 3 in which BS1 has the second highest priority, and sets the total score of the coverage ratio U and the satisfaction level S as combination 2. Calculate
 また、置局設計装置100は、組合せ1の合計スコアと、組合せ2の合計スコアとの算出結果2020から、より合計スコアが高い組合せ(図20の例では、組合せ2)を選択する。これにより、置局設計装置100は、BS1によるカバーエリアと、BS2によるカバーエリアが重複しないように、BS1の方向2、及びBS2の方向1を選択することができる。 Also, the station position design device 100 selects a combination with a higher total score (combination 2 in the example of FIG. 20) from the calculation result 2020 of the total score of combination 1 and the total score of combination 2. Thereby, station placement design apparatus 100 can select direction 2 of BS1 and direction 1 of BS2 so that the coverage area of BS1 and the coverage area of BS2 do not overlap.
 置局設計装置100は、例えば、図17~20で説明した選択処理により、既設の無線基地局の方向を決定した上で、図16のステップS1502の処理を実行する。 For example, the station placement design apparatus 100 determines the direction of the existing radio base station by the selection process described in FIGS. 17 to 20, and then executes the process of step S1502 in FIG.
 <ハードウェア構成例>
 (置局設計装置のハードウェア構成)
 図21は、本実施形態に係る置局設計装置のハードウェア構成の例を示す図である置局設計装置100は、例えば、図21に示すようなコンピュータ2100の構成を備えている。図21の例では、コンピュータ2100は、プロセッサ2101、メモリ2102、ストレージデバイス2103、通信装置2104、入力装置2105、出力装置2106、及びバスB等を有する。
<Hardware configuration example>
(Hardware configuration of station placement design device)
FIG. 21 is a diagram showing an example of the hardware configuration of a station placement designing apparatus according to this embodiment. A station placement designing apparatus 100 has, for example, the configuration of a computer 2100 as shown in FIG. In the example of FIG. 21, computer 2100 has processor 2101, memory 2102, storage device 2103, communication device 2104, input device 2105, output device 2106, bus B, and the like.
 プロセッサ2101は、例えば、所定のプログラムを実行することにより、様々な機能を実現するCPU(Central Processing Unit)等の演算装置である。メモリ2102は、コンピュータ2100が読み取り可能な記憶媒体であり、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)等を含む。ストレージデバイス2103は、コンピュータ読み取り可能な記憶媒体であり、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、各種の光ディスク、及び光磁気ディスク等を含み得る。 The processor 2101 is, for example, an arithmetic device such as a CPU (Central Processing Unit) that implements various functions by executing a predetermined program. The memory 2102 is a storage medium readable by the computer 2100, and includes, for example, RAM (Random Access Memory), ROM (Read Only Memory), and the like. The storage device 2103 is a computer-readable storage medium, and may include, for example, HDDs (Hard Disk Drives), SSDs (Solid State Drives), various optical discs, magneto-optical discs, and the like.
 通信装置2104は、無線、又は有線のネットワークを介して他の装置と通信を行うための1つ以上のハードウェア(通信デバイス)を含む。入力装置2105は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置2106は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカ、LEDランプ等)である。なお、入力装置2105と出力装置2106とは、一体となった構成(例えば、タッチパネルディスプレイ等の入出力装置)であってもよい。 The communication device 2104 includes one or more pieces of hardware (communication devices) for communicating with other devices via a wireless or wired network. The input device 2105 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside. The output device 2106 is an output device (for example, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 2105 and the output device 2106 may be integrated (for example, an input/output device such as a touch panel display).
 バスBは、上記の各構成要素に共通に接続され、例えば、アドレス信号、データ信号、及び各種の制御信号等を伝送する。なお、プロセッサ2101は、CPUに限られず、例えば、DSP(Digital Signal Processor)、PLD(Programmable Logic Device)、又はFPGA(Field Programmable Gate Array)等であってもよい。 A bus B is commonly connected to each of the components described above, and transmits, for example, address signals, data signals, and various control signals. Note that the processor 2101 is not limited to a CPU, and may be, for example, a DSP (Digital Signal Processor), a PLD (Programmable Logic Device), or an FPGA (Field Programmable Gate Array).
 (補足)
 本実施形態における置局設計装置100は専用装置による実現に限らず、汎用コンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
(supplement)
The station placement design device 100 in this embodiment is not limited to being realized by a dedicated device, and may be realized by a general-purpose computer. In that case, a program for realizing this function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed. It should be noted that the "computer system" referred to here includes hardware such as an OS and peripheral devices.
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の様々な記憶装置を含む。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。 In addition, "computer-readable recording medium" includes various storage devices such as portable media such as flexible disks, magneto-optical disks, ROMs and CD-ROMs, and hard disks built into computer systems. Furthermore, "computer-readable recording medium" refers to a program that dynamically retains programs for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case.
 また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良く、PLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されるものであってもよい。 Further, the above program may be for realizing part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in a computer system, It may be implemented using hardware such as PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array).
 <実施形態の効果>
 無線エリアを構築するための無線基地局の設置位置及びアンテナの向きを設計する置局設計装置において、設計に必要な計算時間及びメモリ量等を削減することができる。
<Effects of Embodiment>
In a station placement design device for designing installation positions of wireless base stations and directions of antennas for constructing wireless areas, it is possible to reduce calculation time, memory size, etc. required for design.
 <従来手法との比較>
 ここでは、従来の置局設計方法(以下、従来手法と呼ぶ)と、本実施形態に係る置局設計方法とを比較する。
<Comparison with conventional method>
Here, a conventional station position design method (hereinafter referred to as a conventional method) and a station position design method according to this embodiment will be compared.
 (前提条件)
 図22は、従来手法との比較の前提条件について説明するための図である。前提条件として、図22に示すように、100m×100mのエリア2201内に、ランダムに端末位置(以下、UEと呼ぶ)を36個所設定し、BSの数を6として、比較評価を行った。
(prerequisite)
FIG. 22 is a diagram for explaining preconditions for comparison with the conventional method. As a prerequisite, as shown in FIG. 22, 36 terminal positions (hereinafter referred to as UEs) were randomly set in an area 2201 of 100 m×100 m, and the number of BSs was set to 6 for comparative evaluation.
 (従来手法)
 各BSとUEとの間の受信電力を、自由空間における伝搬損失にて算出し、図23に示すような、6BS×36UEにおける受信電力を算出した伝搬特性推定結果2301を作成する。
(conventional method)
The received power between each BS and UE is calculated using the propagation loss in free space, and a propagation characteristic estimation result 2301 is created in which the received power at 6BS×36 UE is calculated as shown in FIG.
 従来手法の置局設計では、エリア2201内に2つの無線基地局を設置するものとして、例えば、図23に示すような、各BSの組合せにおける各UEの受信電力のMAX値2302を求める。なお、この表において、「BS12」は、BS1とBS2との組合せを示し。「BS13」は、BS1とBS3との組合せを示す。他の組合せについても同様である。 In the station placement design of the conventional method, assuming that two radio base stations are installed in area 2201, for example, as shown in FIG. In this table, "BS12" indicates a combination of BS1 and BS2. "BS13" indicates a combination of BS1 and BS3. The same applies to other combinations.
 従来手法の置局設計では、各BSの組合せにおける所要受信電力(例えば、-60dBm)を満たすUE数2303を求め、所要受信電力を満たすUE数が最大となる最適設計として、BS2とBS5の組、又はBS3とBS4の組を求めることができる。 In the station placement design of the conventional method, the number of UEs 2303 that satisfies the required received power (for example, -60 dBm) in each BS combination is obtained, and the optimal design that maximizes the number of UEs that satisfy the required received power is the combination of BS2 and BS5. , or the pair of BS3 and BS4.
 (本実施形態)
 本実施形態にかかる置局設計装置100は、例えば、図22の右図に示すように、エリア2201内の複数のUEを、BS設置数2でクラスタリングし、2つのクラスタに分割する。また、従来手法と同様に、例えば、各BSとUEとの間の受信電力を算出した伝搬特性推定結果にクラスタ番号を追加したデータ2401を作成する。
(this embodiment)
For example, as shown in the right diagram of FIG. 22, the station placement design apparatus 100 according to the present embodiment clusters a plurality of UEs in an area 2201 with two BSs installed and divides them into two clusters. Also, similarly to the conventional method, for example, data 2401 is created by adding a cluster number to the propagation characteristics estimation result obtained by calculating the reception power between each BS and the UE.
 また、置局設計装置100は、例えば、図3に示すような、置局設計装置の処理を実行することにより、図24に示すように、クラスタ1における各BSの評価結果2402、及びクラスタ2における各BSの評価結果2403を求める。これにより、置局設計装置100は、所要受信電力を満たすUE数が最大となる最適設計として、クラスタ1で優先順位が1位のBS2と、クラスタ2で優先順位が1位のBS5との組を求めることができる。 24, station placement design apparatus 100 executes the processing of the station placement design apparatus as shown in FIG. Obtain the evaluation result 2403 of each BS in . As a result, station placement design apparatus 100 selects a combination of BS2, which has the highest priority in cluster 1, and BS5, which has the highest priority in cluster 2, as an optimal design that maximizes the number of UEs that satisfy the required received power. can be asked for.
 このように、本実施形態に係る置局設計方法は、従来の置局設計方法より少ない計算量、及びメモリ量で、総当たりを行う従来手法と同様の最適設計結果を導出できる。 In this way, the station placement design method according to the present embodiment can derive the same optimal design result as the conventional round-robin method with less calculation and memory than the conventional station placement design method.
 <実施形態のまとめ>
 本明細書には、少なくとも下記各項の無線通信方法、及び無線通信システムが開示されている。
(第1項)
 無線エリアを構築するための無線基地局の設置位置を設計する置局設計装置であって、
 前記無線エリア内の評価地点である複数の端末位置を、前記無線エリア内に設置する無線基地局の数のクラスタに分割するように構成されている分割部と、
 前記クラスタごとに、所要受信電力を満たす前記端末位置の数と、前記クラスタ内の全ての前記端末位置における前記所要受信電力の満足度とのうち少なくとも一方を含む評価結果に基づいて、前記無線基地局の位置、又は前記無線基地局の位置とアンテナの向きとの組合せで表される前記無線基地局の設置位置の候補に優先順位を付けるように構成されている評価部と、
 前記優先順位に基づいて、前記クラスタごとに前記無線基地局の前記設置位置を決定するように構成されている決定部と、
 を有する、置局設計装置。
(第2項)
 前記決定部は、前記クラスタ間で前記無線基地局の位置が重複しないように、前記無線基地局の前記設置位置を決定する、第1項に記載の置局設計装置。
(第3項)
 前記決定部は、
 前記クラスタにおいて、前記優先順位が高い候補から順に、前記無線基地局の設置位置とし、他のクラスタと前記無線基地局の位置が重複する場合、
 前記クラスタ及び前記他のクラスタにおける前記評価結果と、前記複数のクラスタにおける前記評価結果とのうち少なくとも一方に基づいて、前記クラスタ及び前記他のクラスタにおける前記無線基地局の設置位置を決定する、
 第1項に記載の置局設計装置。
(第4項)
 前記決定部は、
 前記クラスタにおいて、前記優先順位が最も高い複数の候補がある場合、
 前記複数のクラスタにおける前記評価結果に基づいて、前記複数の候補の中から一つの候補を選択する、
 第3項に記載の置局設計装置。
(第5項)
 既設の無線基地局がある無線エリア内に、新たに無線基地局を追加する場合、
 前記分割部は、前記無線エリア内の前記複数の端末位置から、前記既設の無線基地局によって所要受信電力を満たす端末位置を除外した端末位置を、前記無線エリア内に新たに設置する無線基地局の数のクラスタに分割する、
 第1項に記載の置局設計装置。
(第6項)
 前記既設の無線基地局が複数のアンテナを有する場合、
 前記無線エリア内の前記複数の端末位置を、前記既設の無線基地局を含む前記無線エリア内に設置する無線基地局の数のクラスタに分割し、
 前記クラスタごとに、所要受信電力を満たす前記端末位置の割合と、クラスタ内の全ての端末位置における前記所要受信電力の満足度とのうち少なくとも一方を含む前記評価結果を算出し、
 前記評価結果に基づいて、前記既設の無線基地局のアンテナの方向を選択する、
 ように構成されている選択部を有する、第5項に記載の置局設計装置。
(第7項)
 無線エリアを構築するための無線基地局の設置位置を設計する置局設計方法であって、
 前記無線エリア内の評価地点である複数の端末位置を、前記無線エリア内に設置する無線基地局の数のクラスタに分割する分割処理と、
 前記クラスタごとに、所要受信電力を満たす前記端末位置の数と、前記クラスタ内の全ての前記端末位置における前記所要受信電力の満足度とのうち少なくとも一方を含む評価結果に基づいて、前記無線基地局の位置、又は前記無線基地局の位置とアンテナの向きとの組合せで表される前記無線基地局の設置位置の候補に優先順位を付ける評価処理と、
 前記優先順位に基づいて、前記クラスタごとに前記無線基地局の前記設置位置を決定する決定処理と、
 をコンピュータが実行する、置局設計方法。
(第8項)
 第7項に記載の置局設計方法をコンピュータに実行させる、プログラム。
<Summary of embodiment>
This specification discloses at least the following wireless communication methods and wireless communication systems.
(Section 1)
A station placement design device for designing the installation position of a wireless base station for building a wireless area,
a division unit configured to divide a plurality of terminal positions, which are evaluation points within the radio area, into clusters of the number of radio base stations installed within the radio area;
the radio base based on an evaluation result including at least one of the number of terminal positions that satisfy the required received power for each cluster and the level of satisfaction with the required received power at all the terminal positions in the cluster; an evaluation unit configured to prioritize candidate installation locations of said radio base station represented by a station location or a combination of said radio base station location and antenna orientation;
a determination unit configured to determine the installation position of the radio base station for each cluster based on the priority;
A station placement design device.
(Section 2)
2. The station placement design device according to claim 1, wherein the determination unit determines the installation positions of the radio base stations so that positions of the radio base stations do not overlap between the clusters.
(Section 3)
The decision unit
In the cluster, if the installation position of the radio base station is set in order from the candidate with the highest priority, and the position of the radio base station overlaps with another cluster,
determining installation positions of the radio base stations in the cluster and the other clusters based on at least one of the evaluation results in the cluster and the other clusters and the evaluation results in the plurality of clusters;
The station placement design device according to item 1.
(Section 4)
The decision unit
In the cluster, if there are multiple candidates with the highest priority,
Selecting one candidate from among the plurality of candidates based on the evaluation results in the plurality of clusters;
A station placement design device according to claim 3.
(Section 5)
When adding a new wireless base station in a wireless area where existing wireless base stations are located,
The division unit newly installs a terminal position within the radio area after excluding, from the terminal positions within the radio area, a terminal position that satisfies a required received power by the existing radio base station. into a number of clusters,
The station placement design device according to item 1.
(Section 6)
When the existing radio base station has a plurality of antennas,
dividing the plurality of terminal positions within the radio area into clusters of the number of radio base stations to be installed within the radio area including the existing radio base station;
calculating, for each cluster, the evaluation result including at least one of the proportion of the terminal positions that satisfy the required received power and the degree of satisfaction with the required received power at all terminal positions in the cluster;
selecting the direction of the antenna of the existing radio base station based on the evaluation result;
6. The station placement design device according to claim 5, having a selection unit configured as follows.
(Section 7)
A station placement design method for designing the installation position of a wireless base station for building a wireless area,
A division process for dividing a plurality of terminal positions, which are evaluation points within the radio area, into clusters of the number of radio base stations installed within the radio area;
the radio base based on an evaluation result including at least one of the number of terminal positions that satisfy the required received power for each cluster and the level of satisfaction with the required received power at all the terminal positions in the cluster; an evaluation process for prioritizing candidate installation positions of the radio base station represented by a station position or a combination of the position of the radio base station and the orientation of the antenna;
a determination process of determining the installation position of the radio base station for each cluster based on the priority;
A station design method in which a computer executes the
(Section 8)
A program that causes a computer to execute the station placement design method according to claim 7.
 以上、本実施形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the present embodiment has been described above, the present invention is not limited to such a specific embodiment, and various modifications and changes are possible within the scope of the gist of the present invention described in the claims. is.
 100 置局設計装置
 102 分割部
 103 評価部
 104 決定部
 105 選択部
 2100 コンピュータ
100 station placement design device 102 division unit 103 evaluation unit 104 determination unit 105 selection unit 2100 computer

Claims (8)

  1.  無線エリアを構築するための無線基地局の設置位置を設計する置局設計装置であって、
     前記無線エリア内の評価地点である複数の端末位置を、前記無線エリア内に設置する無線基地局の数のクラスタに分割するように構成されている分割部と、
     前記クラスタごとに、所要受信電力を満たす前記端末位置の数と、前記クラスタ内の全ての前記端末位置における前記所要受信電力の満足度とのうち少なくとも一方を含む評価結果に基づいて、前記無線基地局の位置、又は前記無線基地局の位置とアンテナの向きとの組合せで表される前記無線基地局の設置位置の候補に優先順位を付けるように構成されている評価部と、
     前記優先順位に基づいて、前記クラスタごとに前記無線基地局の前記設置位置を決定するように構成されている決定部と、
     を有する、置局設計装置。
    A station placement design device for designing the installation position of a wireless base station for building a wireless area,
    a division unit configured to divide a plurality of terminal positions, which are evaluation points within the radio area, into clusters of the number of radio base stations installed within the radio area;
    the radio base based on an evaluation result including at least one of the number of terminal positions that satisfy the required received power for each cluster and the level of satisfaction with the required received power at all the terminal positions in the cluster; an evaluation unit configured to prioritize candidate installation locations of said radio base station represented by a station location or a combination of said radio base station location and antenna orientation;
    a determination unit configured to determine the installation position of the radio base station for each cluster based on the priority;
    A station placement design device.
  2.  前記決定部は、前記クラスタ間で前記無線基地局の位置が重複しないように、前記無線基地局の前記設置位置を決定する、請求項1に記載の置局設計装置。 The station placement design device according to claim 1, wherein the determining unit determines the installation positions of the radio base stations so that the positions of the radio base stations do not overlap between the clusters.
  3.  前記決定部は、
     前記クラスタにおいて、前記優先順位が高い候補から順に、前記無線基地局の設置位置とし、他のクラスタと前記無線基地局の位置が重複する場合、
     前記クラスタ及び前記他のクラスタにおける前記評価結果と、前記複数のクラスタにおける前記評価結果とのうち少なくとも一方に基づいて、前記クラスタ及び前記他のクラスタにおける前記無線基地局の設置位置を決定する、
     請求項1に記載の置局設計装置。
    The decision unit
    In the cluster, if the installation position of the radio base station is set in order from the candidate with the highest priority, and the position of the radio base station overlaps with another cluster,
    determining installation positions of the radio base stations in the cluster and the other clusters based on at least one of the evaluation results in the cluster and the other clusters and the evaluation results in the plurality of clusters;
    The station placement design device according to claim 1.
  4.  前記決定部は、
     前記クラスタにおいて、前記優先順位が最も高い複数の候補がある場合、
     前記複数のクラスタにおける前記評価結果に基づいて、前記複数の候補の中から一つの候補を選択する、
     請求項3に記載の置局設計装置。
    The decision unit
    In the cluster, if there are multiple candidates with the highest priority,
    Selecting one candidate from among the plurality of candidates based on the evaluation results in the plurality of clusters;
    4. The station placement design device according to claim 3.
  5.  既設の無線基地局がある無線エリア内に、新たに無線基地局を追加する場合、
     前記分割部は、前記無線エリア内の前記複数の端末位置から、前記既設の無線基地局によって所要受信電力を満たす端末位置を除外した端末位置を、前記無線エリア内に新たに設置する無線基地局の数のクラスタに分割する、
     請求項1に記載の置局設計装置。
    When adding a new wireless base station in a wireless area where existing wireless base stations are located,
    The division unit newly installs a terminal position within the radio area after excluding, from the terminal positions within the radio area, a terminal position that satisfies a required received power by the existing radio base station. into a number of clusters,
    The station placement design device according to claim 1.
  6.  前記既設の無線基地局が複数のアンテナを有する場合、
     前記無線エリア内の前記複数の端末位置を、前記既設の無線基地局を含む前記無線エリア内に設置する無線基地局の数のクラスタに分割し、
     前記クラスタごとに、所要受信電力を満たす前記端末位置の割合と、クラスタ内の全ての端末位置における前記所要受信電力の満足度とのうち少なくとも一方を含む前記評価結果を算出し、
     前記評価結果に基づいて、前記既設の無線基地局のアンテナの方向を選択する、
     ように構成されている選択部を有する、請求項5に記載の置局設計装置。
    When the existing radio base station has a plurality of antennas,
    dividing the plurality of terminal positions within the radio area into clusters of the number of radio base stations to be installed within the radio area including the existing radio base station;
    calculating, for each cluster, the evaluation result including at least one of the proportion of the terminal positions that satisfy the required received power and the degree of satisfaction with the required received power at all terminal positions in the cluster;
    selecting the direction of the antenna of the existing radio base station based on the evaluation result;
    6. The station placement design device according to claim 5, comprising a selection unit configured as follows.
  7.  無線エリアを構築するための無線基地局の設置位置を設計する置局設計方法であって、
     前記無線エリア内の評価地点である複数の端末位置を、前記無線エリア内に設置する無線基地局の数のクラスタに分割する分割処理と、
     前記クラスタごとに、所要受信電力を満たす前記端末位置の数と、前記クラスタ内の全ての前記端末位置における前記所要受信電力の満足度とのうち少なくとも一方を含む評価結果に基づいて、前記無線基地局の位置、又は前記無線基地局の位置とアンテナの向きとの組合せで表される前記無線基地局の設置位置の候補に優先順位を付ける評価処理と、
     前記優先順位に基づいて、前記クラスタごとに前記無線基地局の前記設置位置を決定する決定処理と、
     をコンピュータが実行する、置局設計方法。
    A station placement design method for designing the installation position of a wireless base station for building a wireless area,
    A division process for dividing a plurality of terminal positions, which are evaluation points within the radio area, into clusters of the number of radio base stations installed within the radio area;
    the radio base based on an evaluation result including at least one of the number of terminal positions that satisfy the required received power for each cluster and the level of satisfaction with the required received power at all the terminal positions in the cluster; an evaluation process for prioritizing candidate installation positions of the radio base station represented by a station position or a combination of the position of the radio base station and the orientation of the antenna;
    a determination process of determining the installation position of the radio base station for each cluster based on the priority;
    A station design method in which a computer executes the
  8.  請求項7に記載の置局設計方法をコンピュータに実行させる、プログラム。 A program that causes a computer to execute the station placement design method according to claim 7.
PCT/JP2022/005901 2022-02-15 2022-02-15 Station placement designing apparatus, station placement designing method, and program WO2023157064A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/005901 WO2023157064A1 (en) 2022-02-15 2022-02-15 Station placement designing apparatus, station placement designing method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/005901 WO2023157064A1 (en) 2022-02-15 2022-02-15 Station placement designing apparatus, station placement designing method, and program

Publications (1)

Publication Number Publication Date
WO2023157064A1 true WO2023157064A1 (en) 2023-08-24

Family

ID=87577744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005901 WO2023157064A1 (en) 2022-02-15 2022-02-15 Station placement designing apparatus, station placement designing method, and program

Country Status (1)

Country Link
WO (1) WO2023157064A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001285923A (en) * 2000-03-31 2001-10-12 Mitsubishi Electric Corp Method for deciding base station arrangement pattern
JP2004201269A (en) * 2002-10-23 2004-07-15 Nec Corp Method, device, and program for establishing and designing base station of mobile communication system
JP2013046362A (en) * 2011-08-26 2013-03-04 Nippon Telegr & Teleph Corp <Ntt> Cell site design method, cell site design program and cell site design apparatus
WO2020250366A1 (en) * 2019-06-13 2020-12-17 日本電信電話株式会社 Station installation assistance design device, station installation assistance design method, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001285923A (en) * 2000-03-31 2001-10-12 Mitsubishi Electric Corp Method for deciding base station arrangement pattern
JP2004201269A (en) * 2002-10-23 2004-07-15 Nec Corp Method, device, and program for establishing and designing base station of mobile communication system
JP2013046362A (en) * 2011-08-26 2013-03-04 Nippon Telegr & Teleph Corp <Ntt> Cell site design method, cell site design program and cell site design apparatus
WO2020250366A1 (en) * 2019-06-13 2020-12-17 日本電信電話株式会社 Station installation assistance design device, station installation assistance design method, and program

Similar Documents

Publication Publication Date Title
CN107281753B (en) Scene sound effect reverberation control method and device, storage medium and electronic equipment
JP2018508885A (en) Information push method and apparatus
KR20170097535A (en) Item recommendation method and apparatus thereof utilizing uninteresting item and apparatus
CN103377174A (en) Method and device for copying text formats
CN111737473B (en) Text classification method, device and equipment
US20220374601A1 (en) Deep learning-based method for filtering out similar text, and apparatus using same
CN114728204A (en) Visual extension of sound data for applications/services including gaming applications/services
JP2024500464A (en) Dynamic facet ranking
WO2023157064A1 (en) Station placement designing apparatus, station placement designing method, and program
KR20190125840A (en) Method for providing disease associated gene ranking information
CN106598409A (en) Text replication method and device, and intelligent terminal
CN113543117A (en) Prediction method and device for number portability user and computing equipment
US20070204249A1 (en) A method, apparatus and computer program product for optimizing an integrated circuit layout
CN111695047B (en) User clustering method and device, electronic equipment and storage medium
CN106910093A (en) The method and device that dining room is recommended
CN104809207A (en) Search method and device
JP4779743B2 (en) Digital content editing apparatus and program
WO2017069945A1 (en) A/b experiment validation of webpages
US20230315781A1 (en) Web-scale personalized visual search recommendation service
JP6844143B2 (en) Information processing device
US20210319074A1 (en) Method and system for providing trending search terms
US11694102B2 (en) Explanation-driven reasoning engine
KR102205467B1 (en) Method and computer program for providing control communication history
US20200226528A1 (en) Information processing apparatus and non-transitory computer readable medium storing program
JP2016058089A (en) Interfacing method for user feedback

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926968

Country of ref document: EP

Kind code of ref document: A1