WO2023157057A1 - Head-mounted display, wearable terminal, and uv monitoring method - Google Patents

Head-mounted display, wearable terminal, and uv monitoring method Download PDF

Info

Publication number
WO2023157057A1
WO2023157057A1 PCT/JP2022/005861 JP2022005861W WO2023157057A1 WO 2023157057 A1 WO2023157057 A1 WO 2023157057A1 JP 2022005861 W JP2022005861 W JP 2022005861W WO 2023157057 A1 WO2023157057 A1 WO 2023157057A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet
amount
ultraviolet rays
integrated amount
upper limit
Prior art date
Application number
PCT/JP2022/005861
Other languages
French (fr)
Japanese (ja)
Inventor
眞弓 中出
康宣 橋本
仁 秋山
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Priority to PCT/JP2022/005861 priority Critical patent/WO2023157057A1/en
Publication of WO2023157057A1 publication Critical patent/WO2023157057A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details

Definitions

  • the present invention relates to head-mounted displays, wearable terminals, and ultraviolet monitoring methods.
  • Patent Document 1 discloses a portable information terminal that displays an alarm by obtaining the amount of ultraviolet rays that the user is exposed to from the current time based on the ultraviolet intensity measured by the ultraviolet intensity measuring means mounted on the portable information terminal.
  • the amount of ultraviolet rays in the facial area most desired to avoid is not measured, nor is the integrated amount considered to be the cause of wrinkles. Also, no consideration is given to providing adequate shielding in the direction of the ultraviolet rays.
  • the present invention has been made in view of the above circumstances, and aims to prevent photoaging of the face by making the user aware that the face is exposed to ultraviolet rays and taking avoidance actions.
  • a head-mounted display comprising at least one or more ultraviolet sensors, a display, a memory, and a processor, wherein the processor stores measured values of ultraviolet rays detected by the ultraviolet sensors.
  • an integrated amount of ultraviolet rays is calculated by integrating the measured values, and an upper limit of the integrated amount that is a permissible limit value of the integrated amount of ultraviolet rays that the user is exposed to within a predetermined predetermined measurement period with the accumulated amount of ultraviolet rays and a value, and when it is determined that the integrated amount of ultraviolet rays has increased to the upper limit value of the integrated amount or more, display control of a warning is performed on the display.
  • photoaging of the face can be reduced by making the user's face aware that it is exposed to ultraviolet rays and taking avoidance actions.
  • FIG. 2 is an external view of a transmissive HMD; The hardware block diagram of HMD.
  • FIG. 2 is a block diagram showing the functional configuration of the HMD; 4 is a flowchart showing the flow of processing of the HMD according to the first embodiment; The figure which shows the transition example of the amount of ultraviolet rays integrated. The figure which shows the example of a warning display. 8 is a flowchart showing the flow of processing of the ultraviolet monitoring system according to the second embodiment; The figure which shows the estimation curve example of the ultraviolet-ray integrated amount.
  • the flowchart which shows the flow of a process of the ultraviolet monitoring system which concerns on 3rd Embodiment. Explanatory drawing which shows the determination process of the amount of fluctuation integrations.
  • FIG. 4 is an explanatory diagram showing an example of a virtual reality object showing the irradiation direction of sunlight and the irradiation direction of ultraviolet rays;
  • the flowchart which shows the flow of a process of the ultraviolet monitoring system which concerns on 6th Embodiment.
  • This embodiment measures the amount of ultraviolet rays irradiated to the user's body with an ultraviolet sensor mounted on a wearable terminal, integrates the amount of ultraviolet rays for a day, and exceeds the upper limit of the accumulated amount, or when it is predicted that it will exceed
  • the present invention relates to wearable terminals that present warnings and avoidance methods.
  • a head-mounted display (hereinafter abbreviated as “HMD”) will be described as an example of a wearable terminal that is suitable for measuring the amount of ultraviolet rays hitting the face.
  • the present invention has an adverse effect on the skin when exposed to large amounts, and is expected to reduce the effects of ultraviolet rays that may cause diseases such as cancer. It can be expected to contribute to Goal 3 of Development Goals, "Good health and well-being for all.”
  • an ultraviolet sensor mounted on an HMD measures the integrated amount of ultraviolet irradiation applied to the user's face for a predetermined period of time, for example, one day, one week, or one month.
  • a warning is issued or an avoidance action is urged when the integrated amount becomes equal to or greater than the upper limit value N2 (see FIG. 5).
  • the integrated amount upper limit value N2 corresponds to the allowable limit value of ultraviolet rays that the user is exposed to within a predetermined measurement period (for example, one day from 00:00 to 24:00).
  • FIG. 1 is an external view of a transmissive HMD 10.
  • FIG. 1 is an external view of a transmissive HMD 10.
  • the HMD 10 has a display 119 , a right ultraviolet sensor 131 , a left ultraviolet sensor 132 (see FIG. 2), and a front ultraviolet sensor 133 mounted on the frame 11 .
  • the frame 11 is a member that keeps the HMD 10 mounted on the head of the user of the HMD 10 and holds other components of the HMD 10 .
  • the display 119 is a transmissive display 119. It is installed in front of both eyes of the user wearing the HMD 10 . The user sees the outside world through the display 119 .
  • the display 119 displays a warning message and the ultraviolet measurement result.
  • FIG. 2 is a hardware configuration diagram of the HMD 10.
  • the HMD 10 includes an out-camera 111, an in-camera 112, a ranging sensor 113, an illuminance sensor 114, an acceleration sensor 115, a gyro sensor 116, an orientation sensor 117, a GPS (Global Positioning System) sensor 118, a display 119, a network communication device 120, and a microphone. 121, a speaker 122, a timer 124, a processor 125, a memory 128, a power button 130, a right ultraviolet sensor 131, a left ultraviolet sensor 132, a front ultraviolet sensor 133, an RTC 134 (corresponding to a "clock circuit"), and a vibrator 135. They are connected to each other via a bus 140 that connects the components.
  • a GPS sensor is an example of a sensor used for position acquisition in a global satellite navigation system, and sensors with different names may be used depending on regions and countries.
  • the network communication device 120 is, for example, a short-range wireless communication device or a wireless LAN communication device.
  • Network communicator 120 is connected to antenna 123 .
  • the HMD 10 is connected to a communication network 9 such as a domestic LAN or the Internet through a network communication device 120 and an antenna 123 .
  • the network communication device 120 may also transmit and receive data to and from the server 2 via the communication network 9 .
  • the network communication device 120 may be a terminal for making a wired communication connection, such as a USB terminal.
  • the short-range wireless communication device is a wireless device such as Bluetooth (registered trademark), IrDA (Infrared Data Association, registered trademark), Zigbee (registered trademark), HomeRF (Home Radio Frequency, registered trademark), or Wi-Fi (registered trademark).
  • a communication device compatible with the LAN communication method may be used.
  • the memory 128 is composed of flash memory and non-volatile memory.
  • the memory 128 also stores programs 126 such as an OS (Operating System), an ultraviolet monitoring application, map navigation, and data 127 used by the processor 125 .
  • OS Operating System
  • UV monitoring application an ultraviolet monitoring application
  • map navigation an image navigation
  • data 127 used by the processor 125 .
  • the processor 125 is composed of, for example, a CPU.
  • the HMD 10 Since the amount of ultraviolet rays can be measured with one of the right ultraviolet sensor 131, the left ultraviolet sensor 132, and the front ultraviolet sensor 133, any one of them may be used in the first embodiment. However, in an embodiment in which the irradiation direction of ultraviolet rays is also detected, the HMD 10 is equipped with a plurality of ultraviolet sensors.
  • the out-camera 111 is used for photographing the surroundings.
  • the number and arrangement are not limited to this place.
  • the in-camera 112 is a camera that measures the line of sight of the user. The opening and closing of the eyes can also be detected from the in-camera image generated by the in-camera 112 .
  • control device including the processor 125 and the memory 128 is configured integrally with the HMD 10, but the control device is configured with a smart phone or a mobile information terminal (a personal computer is also acceptable at home) and configured separately from the HMD 10.
  • FIG. 3 is a block diagram showing the functional configuration of the HMD.
  • the processor 125 of the HMD 10 reads the operating system program, the ultraviolet monitoring program, and the map navigation application from the program 126 in the memory 128, develops them in the work area, and executes them, thereby obtaining a measurement data acquisition unit 125a, a target value setting unit 125b, Functional units such as an ultraviolet light analysis unit 125c, a sunlight direction analysis unit 125d, a navigation unit 125e, an action analysis unit 125f, an input sound processing unit 125g, an image analysis unit 125h, a display control unit 125i, and an output sound processing unit 125j are realized.
  • the input sound processing unit 125g analyzes the sound collected by the microphone 121 and constitutes the sound input device of the HMD 10.
  • the output audio processing unit 125j outputs audio from the speaker 122 and constitutes an audio output device for warnings and guidance.
  • Each storage area in which the data 127 of the memory 128 is stored includes a measurement data storage section 128a, a target value storage section 128b, and a map information storage section 128c.
  • the measurement data storage unit 128a stores measured values of ultraviolet rays obtained from the right ultraviolet sensor 131, the left ultraviolet sensor 132, and the front ultraviolet sensor 133, respectively. Information indicating the place of measurement and the date and time of measurement is added to the measured value as necessary.
  • the target value storage unit 128b stores various target values that the UV analysis unit 125c compares with the UV cumulative amount on the measurement target day, specifically, the cumulative amount lower limit value N1, the cumulative amount upper limit value N2, and the fluctuation cumulative amount upper limit value N3. remembered. Details of each target value will be described later.
  • the map information storage unit 128c stores map information that the navigation unit 125e refers to when searching for a route.
  • FIG. 4 is a flowchart showing the processing flow of the HMD 10 according to the first embodiment.
  • FIG. 5 is a diagram showing an example of transition of the integrated amount of ultraviolet rays.
  • the processor 125 reads out the ultraviolet monitoring program from the memory 128 and starts processing.
  • the user sets the lower limit value N1 (see FIG. 5) and the upper limit value N2 (see FIG. 5) of the integrated amount of ultraviolet light that are allowed in the measurement period T_count for measuring the integrated amount of ultraviolet light (S01).
  • the integrated amount lower limit value N1 is the necessary amount for producing vitamin D and is the minimum amount of ultraviolet rays that should be exposed, and corresponds to the recommended irradiation value.
  • the right ultraviolet sensor 131, left ultraviolet sensor 132, and front ultraviolet sensor 133 start measuring the amount of ultraviolet rays.
  • the ultraviolet analysis unit 125c acquires ultraviolet measurement values from the right ultraviolet sensor 131, the left ultraviolet sensor 132, and the front ultraviolet sensor 133, stores them in the measurement data storage unit 128a, and calculates an integrated ultraviolet amount U (S02 ).
  • the ultraviolet analysis unit 125c may calculate the integrated amount of any one of the measured values of the right ultraviolet sensor 131, the left ultraviolet sensor 132, and the front ultraviolet sensor 133. FIG. Further, the ultraviolet analysis unit 125c may add up the measured values of the respective ultraviolet sensors and divide the result by the number of sensors as the ultraviolet integrated amount U.
  • the ultraviolet ray analysis unit 125c compares the ultraviolet ray accumulated amount U and the accumulated amount upper limit value N2. If it is less than T_count (S05: No), the process returns to step S02 to continue the measurement of the amount of ultraviolet rays and the calculation of the integrated amount of ultraviolet rays U.
  • the ultraviolet analysis unit 125c displays a warning on the display 119 when the ultraviolet integrated amount U is equal to or greater than the integrated amount upper limit value N2 (S03: Yes) (S04). If the elapsed time T from the start of measurement is less than the measurement period T_count, the process returns to step S02, and the measurement of the amount of ultraviolet rays and the calculation of the integrated amount of ultraviolet rays U are continued.
  • the measurement period T_count is set to 24 hours
  • the measurement start time is set to 0:00
  • the measurement end time is set to 24:00
  • the lower limit value N1 and the upper limit value N2 of the cumulative amount of UV rays per day are set.
  • the UV integrated amount U increases, and after sunset, the UV integrated amount U does not increase. If the integrated amount of ultraviolet rays is less than N2, the warning display in step S04 is not performed.
  • the ultraviolet ray analysis unit 125c may provide information to the user when the daily ultraviolet ray accumulated amount U is less than the accumulated amount lower limit value (required amount) N1.
  • FIG. 6 is a diagram showing an example of warning display.
  • the ultraviolet analysis unit 125c performs display control (corresponding to one aspect of "warning output control") for displaying warning information on the display control unit 125i.
  • the display control unit 125i notifies the display 119 of text information 119a as warning information.
  • the ultraviolet analysis unit 125c may instruct the output sound processing unit 125j to output warning information by voice, and output the sound from the speaker 122.
  • a warning can be issued when the integrated amount of ultraviolet rays U becomes equal to or greater than the integrated amount upper limit value N2.
  • the adverse effects on the human body caused by overexposure to ultraviolet rays can be reduced.
  • an ultraviolet sensor in the HMD 10
  • the permissible deviation ratio is determined in advance.
  • the permissible deviation ratio may be changed for each hour. For example, a warning may be given loosely in the morning and even a small difference in the evening.
  • FIG. 7 is a flowchart showing the processing flow of the ultraviolet monitoring system according to the second embodiment.
  • the ultraviolet analysis unit 125c generates an estimated curve of the accumulated amount of ultraviolet rays and compares it with the current accumulated amount of ultraviolet rays U (S11).
  • the ultraviolet light analysis unit 125c may generate an estimated curve of the accumulated ultraviolet light amount on the day of measurement based on the moving average of the accumulated ultraviolet light amount U per day in the most recent past, for example, the past one week. Also, the transition of the accumulated amount of ultraviolet rays U on the same day of the same month in the past may be used as the estimated curve on the day of measurement.
  • the process of generating an estimated curve is not limited to the above example.
  • the ultraviolet analysis unit 125c compares the estimated amount on the estimated curve with the current integrated ultraviolet amount U (S11).
  • FIG. 8 is a diagram showing an example of an estimated curve of the integrated amount of ultraviolet rays.
  • the ultraviolet analysis unit 125c reads out the estimated amount on the estimated curve at the same time as the current time, and performs a comparison operation between the estimated amount and the current integrated ultraviolet amount U by the following equation (1).
  • step S11 If the result of determination in step S11 is affirmative (S12: Yes), a warning is displayed (S04). If the answer is negative (S12: No), the process proceeds to step S05, as in the first embodiment.
  • a warning is issued when the current integrated amount of ultraviolet rays U increases with respect to the estimated curve by more than the permissible divergence ratio.
  • the integrated amount of ultraviolet rays U rapidly increases (increases more than the permissible divergence ratio)
  • a warning is given before the integrated amount of ultraviolet rays U reaches the upper limit value N2 of the accumulated amount, thereby avoiding action from the ultraviolet rays. can be encouraged.
  • the third embodiment is an embodiment that sets an integrated amount upper limit value (referred to as “fluctuation integrated amount upper limit value”) N3 to be used in the next measurement period based on the ultraviolet ray integrated amount for a plurality of days.
  • the integrated amount upper limit value N2 is referred to as the fixed integrated amount upper limit value N2 in order to more clearly distinguish it from the variable integrated amount upper limit value N3.
  • FIG. 9 is a flowchart showing the processing flow of the ultraviolet monitoring system according to the third embodiment.
  • the target value setting unit 125b determines the fluctuation integrated amount upper limit value N3 and stores it in the target value storage unit 128b (S06). After that, the process ends.
  • the integrated fluctuation amount upper limit value N3 is set so that the total amount of ultraviolet rays that the user has been exposed to over multiple days does not exceed the fixed integrated amount upper limit value N2 x the number of days for multiple days. to decide. If the measurement period is from 0:00 to 24:00, the "next measurement period" can be rephrased as the next day.
  • FIG. 10 is an explanatory diagram showing the process of determining the integrated fluctuation amount.
  • the period of one week for determining the upper limit value N3 of the integrated fluctuation amount is merely an example, and a longer or shorter period may be used.
  • step S01 after the start of the next measurement, the target value setting unit 125b reads out the upper limit value N3 of integrated fluctuation amount from the target value storage unit 128b. Compare with then, in the next measurement period, the ultraviolet analysis unit 125c outputs a warning in step S04 when the integrated amount of ultraviolet light U becomes equal to or greater than the upper limit value N3 of integrated amount of fluctuation.
  • the upper limit value N3 of the accumulated amount of fluctuation is calculated based on the accumulated amount for a plurality of days, the accumulated amount of ultraviolet rays is analyzed, and a warning can be issued as necessary. It is possible to flexibly monitor the amount of UV irradiation.
  • Modification 1 When the cumulative amount of ultraviolet rays U for a certain period of time (for example, one week, one month, etc.) is below the lower limit value N1 for a long period of time, the target value setting unit 125b sets the threshold value of damage to the skin.
  • the reference value+difference insufficient amount of ultraviolet rays may be determined as the upper limit of the integrated fluctuation amount.
  • the ultraviolet analysis unit 125c does not need to issue a daily warning when the integrated amount falls below the lower limit N1, but when the integrated amount lower limit N1 continues for too long, it displays a warning to the effect that the amount of ultraviolet light is low. You may encourage the action of basking in ultraviolet rays.
  • the fourth embodiment is an embodiment in which a virtual reality object is displayed by detecting the direction of irradiation of ultraviolet rays together with the integrated amount of ultraviolet rays.
  • FIG. 11 is a flowchart showing the processing flow of the ultraviolet monitoring system according to the fourth embodiment.
  • the UV analysis unit 125c determines that the UV integrated amount U has reached or exceeded the integrated amount upper limit value N2 (S03: Yes)
  • the UV analysis unit 125c analyzes the direction in which the UV irradiation amount is high (S21). At that time, the user may move his/her head so that the measurement can be performed with higher accuracy.
  • FIG. 12 is an explanatory diagram of the ultraviolet irradiation direction.
  • the ultraviolet analysis unit 125c compares the measured values measured at the same time by the right ultraviolet sensor 131, the left ultraviolet sensor 132, and the front ultraviolet sensor 133, and determines the direction with the highest intensity as the ultraviolet irradiation direction.
  • the display control unit 125i displays a virtual reality object consisting of an ultraviolet mark 119b indicating the irradiation direction of ultraviolet rays, a figure, a warning, etc. (S22). More specifically, the image analysis unit 125h performs subject detection processing on the real-world image captured by the out-camera 111, and detects objects that can block ultraviolet rays, such as curtains and parasols. The display control unit 125i displays information prompting closing of the curtains and a virtual reality object indicating the direction in which the parasol should be held so as to overlap the possible subjects on the display 119 .
  • FIG. 13 is an explanatory diagram showing an example of a virtual reality object indicating the ultraviolet irradiation direction.
  • the display control unit 125i displays on the display 119 text information 119a warning that ultraviolet rays are strong.
  • An ultraviolet mark 119b is displayed on the display 119 to indicate the direction in which stronger ultraviolet rays are irradiated. Since the display 119 is of a transmissive type, the user sees a mixed reality image in which the ultraviolet mark 119b is superimposed on the real world 119r (window in this example) that is actually viewed through the display 119 .
  • the ultraviolet analysis unit 125c detects the direction in which the intensity of the ultraviolet rays is high, and displays the irradiation direction on the display 119 as a virtual reality object, thereby avoiding ultraviolet rays, such as putting up a curtain or shielding objects. , making it easier to reduce the amount of UV exposure.
  • direct light from a window, the sun, etc. is easy for the user to notice, but it is difficult for the user to notice UV exposure due to reflected light from a white wall. can be expected to reduce
  • the fifth embodiment is an embodiment that displays the direction of the sun together with the direction of ultraviolet rays.
  • the parasol may not be properly used to block ultraviolet rays.
  • the reflected light may be strong. Therefore, in this embodiment, in order to cope with both, the direction of the sun is calculated based on the current location, the direction of the user, the date and time, etc., and if the amount of ultraviolet rays from the direction of the sun and other directions is strong, a virtual Show real objects.
  • FIG. 14 is a flowchart showing the processing flow of the ultraviolet monitoring system according to the fifth embodiment.
  • the sunlight direction analysis unit 125d determines that the integrated amount of ultraviolet rays U has reached or exceeded the integrated amount upper limit value N2 (S03: Yes), it acquires the direction of the sun (S31). Specifically, the sunlight direction analysis unit 125d acquires the direction in which the front of the HMD 10 faces (north, south, east, and west directions) from the direction sensor 117 mounted on the HMD 10, current position information from the GPS sensor 118, and time information from the RTC 134. . Then, the server 2 (see FIG. 2) is inquired about the direction of sunlight at the current time at the current position, and response information is obtained.
  • the sunlight direction analysis unit 125d calculates in which direction on the display 119 of the HMD 10 an arrow indicating the irradiation direction of sunlight should be drawn based on the direction of the sun in the absolute coordinate system and the direction in which the HMD 10 faces. Output to the display control unit 125i.
  • the ultraviolet analysis unit 125c calculates the irradiation direction of ultraviolet rays (S21). Steps S31 and S21 may be performed in reverse order.
  • the display control unit 125i displays a virtual reality object indicating the irradiation direction of sunlight and the irradiation direction of ultraviolet rays (S32).
  • a virtual reality object indicating the irradiation direction of sunlight and the irradiation direction of ultraviolet rays (S32).
  • the direct light when the direct light is strong, it may block the direct light or show a suggestion to turn the face, or even if the direct light is blocked, when the reflected light is strong, the reflected light may be blocked or the location may be changed.
  • a display suggesting movement may be provided.
  • FIG. 15 is an explanatory diagram showing an example of a virtual reality object showing the irradiation direction of sunlight and the direction of ultraviolet irradiation.
  • the display control unit 125i displays on the display 119 text information 119a warning that the ultraviolet rays are strong, an ultraviolet mark 119b indicating the direction in which the strong ultraviolet rays are emitted, and an arrow 119c indicating the irradiation direction of the sunlight. .
  • text information 119a information may be displayed that guides the person to turn the face in a direction where the amount of ultraviolet rays is low.
  • the user when the user is exposed to strong ultraviolet rays from a direction different from the irradiation direction of the sunlight, such as reflection from the ground, the user can be encouraged to avoid the ultraviolet rays in a direction different from the sunlight. , a reduction in the integrated amount of ultraviolet rays U can be expected.
  • the ultraviolet analysis unit 125c may estimate a direction in which the amount of ultraviolet rays is small (for example, a dark place on the same wall) from the ultraviolet image, and display it on the display 119 so that the face is turned to that direction.
  • the sixth embodiment is an embodiment that separates UV-A (ultraviolet A wave) and UV-B (ultraviolet B wave) and determines the type of warning based on each numerical value.
  • UV-B has the characteristic of making it easy to get sunburned in a short period of time, but the seasons when UV-A and UV-B are strong differ. Therefore, the allocation value is decided according to the actual measurement and the season.
  • FIG. 16 is a flow chart showing the processing flow of the ultraviolet monitoring system according to the sixth embodiment.
  • step S02 the ultraviolet analysis unit 125c performs frequency analysis on the ultraviolet rays detected by the right ultraviolet sensor 131, the left ultraviolet sensor 132, and the front ultraviolet sensor 133. Then, a measured value belonging to the UV-A frequency and a measured value belonging to the UV-B frequency are obtained for each sensor to calculate an integrated amount. As a result, integrated amounts of UV-A and UV-B are obtained for each sensor.
  • step S03 the UV analysis unit 125c compares the UV integrated amount U, which is the sum of the UV-A and UV-B integrated amounts, with the integrated amount upper limit value N2. If the result is affirmative, a warning is displayed (S04).
  • the UV analysis unit 125c compares the UV-A integrated amount upper limit value N2A set in advance with the UV-A integrated amount UA. Even if the UV integrated amount U is less than the integrated amount upper limit N2 (S02: No), if the UV-A integrated amount UA is equal to or greater than the UV-A integrated amount upper limit N2A (S41: Yes), a warning is displayed. (S04).
  • UV integrated amount U is less than the integrated amount upper limit value N2
  • a warning is issued if the UV-A is equal to or greater than the UV-A integrated amount upper limit value N2A.
  • Ultraviolet monitoring can be performed by focusing on high UV-A.
  • the seventh embodiment is an embodiment for predicting the amount of ultraviolet rays that the vehicle will be exposed to when passing through the route to the destination from the direction of sunlight and map information.
  • FIG. 17 is a flowchart showing the processing flow of the ultraviolet monitoring system according to the seventh embodiment.
  • navigation processing of steps S51 to S56 described below is executed in parallel with the ultraviolet monitoring processing described in the first to sixth embodiments.
  • step S01 an integrated amount lower limit value N1 and an integrated amount upper limit value N2 are set (S01).
  • step S02 in preparation for the next navigation process, the measurement data acquisition unit 125a adds the position information of the measurement point acquired from the GPS sensor 118 and the time information of the measurement date and time acquired from the RTC 134 to the measurement value. It is stored (associated) in the measurement data storage unit 128a.
  • the user activates the navigation process, for example, taps the navigation application icon to activate the navigation unit 125e (S51: Yes), and inputs the current location and destination (S52).
  • the navigation unit 125e searches for a route from the current location to the destination.
  • the behavior analysis unit 125f searches the measurement data storage unit 128a, extracts measurement data linked to points on each route, and further extracts measurement data included from the departure time to the arrival time. Then, the measurement values included in the extracted measurement data are integrated to calculate the predicted value of the integrated amount of ultraviolet rays when each route is passed (S53).
  • the navigation unit 125e displays on the display 119 at least one or more routes with the amount of UV light calculated by the behavior analysis unit 125f added to the route (S54).
  • the navigation unit 125e receives the current position from the GPS sensor 118 and updates the current position (S56). After that, the update of the current location is continued until the navigation application is stopped (S57: No).
  • step S51 If the user does not start navigation (S55: No), or if the user inputs to stop the navigation app (S57: Yes), stop the navigation app and return to step S51.
  • the measured values of ultraviolet rays linked to past measurement locations and measurement times are stored, and a route is searched when an instruction to search for a route to a destination is received.
  • the behavior analysis unit 125f refers to the past measurement data, calculates and presents a predicted value of the amount of ultraviolet rays that the driver will be exposed to when the searched route is taken. Seeing this, the user can select a route in consideration of the amount of ultraviolet rays.
  • the amount of UV rays varies depending on the height of the building and the reflection of sunlight from the surroundings, even if it is simply calculated based on the map information, it will deviate greatly from the actual amount of UV rays.
  • the amount of ultraviolet rays for each route is integrated based on the past action history, it is possible to predict the amount of ultraviolet rays that is more realistic.
  • the in-camera 112 detects whether the user's eyes are open or closed, the user takes a nap in a place where the amount of ultraviolet rays is relatively high, such as outdoors or near a window, and the amount of ultraviolet rays above a predetermined level is detected while the user is sleeping. may change the notification form of the warning from display to voice output or vibration by the vibrator 135 .
  • the content of the warning can be used not only when the amount of ultraviolet rays is exceeded or is predicted to be exceeded, such as when comparing the upper limit value N2 of the integrated amount, but also when the user wants to get a tan and want to stop at an appropriate point.
  • a warning may be issued based on the result of inputting a desired amount of ultraviolet rays and comparing that value with the accumulated amount of ultraviolet rays U.
  • the content of the warning not only when the amount of ultraviolet rays exceeds or is predicted to exceed, such as comparing the upper limit value N2 of the integrated amount, but also guidance such as shifting to the head so as not to leave a sunburn mark by the HMD 10 may be output. good. In this case, guidance for shifting the position of the HMD 10 may be output when, for example, the half value of the integrated amount upper limit value N2 is exceeded or the predetermined ultraviolet exposure time is exceeded.
  • the present embodiment may be realized by mounting an ultraviolet sensor on another wearable terminal and placing it in close proximity to the user's body.
  • it is a wearable terminal that has a frame that can hold an ultraviolet sensor near the user's face.
  • it is a wearable terminal having an output device that outputs warning information when the amount of ultraviolet rays increases, such as a speaker, vibrator, or display.
  • Typical examples include smart glasses, wireless earphones, wireless headphones, and wireless microphones.
  • the distance from the face to the part where the smartwatch or smartphone is worn is measured by the distance sensor 113, and the measured value of ultraviolet rays is corrected by the detected distance.
  • the distance sensor 113 can be used as a wearable terminal suitable for this embodiment.
  • a wearable terminal includes at least one ultraviolet sensor, an output device that outputs a warning, and a frame that holds the ultraviolet sensor near the face of a user wearing the wearable terminal and that holds the output device. and a communicator for communicating with a control device including a memory and a processor to transmit and receive data to and from the control device. That is, the frame holding the ultraviolet sensor and the control device may be configured separately.
  • the wearable terminal may hold an ultraviolet sensor near the face, measure the amount of ultraviolet rays hitting the face, send the measured value to a control device such as a smartphone using short-range wireless communication, and monitor the amount of ultraviolet rays.
  • a warning may be output from a wearable terminal, or may be output from a device equipped with a control device, such as a smart phone.
  • the ultraviolet irradiation amount of the user's face is monitored, but the ultraviolet irradiation amount of other parts including the user's face may be monitored in addition to the face.
  • the out-camera 111 captures the image of the user reflected in the mirror, and the image analysis unit 125h performs face recognition processing and skin color detection processing on the image.
  • the image analysis unit 125h calculates the exposed skin area S1 and the face area S2 of the user and outputs them to the ultraviolet analysis unit 125c.
  • the ultraviolet analysis unit 125c performs ultraviolet monitoring processing by converting the ultraviolet measurement value to (S1/S2) times.
  • the HMD 10 measures the UV integrated amount U near the face and corrects it by the exposure area ratio (S1/S2), thereby performing UV monitoring processing including the user's body area.
  • the embodiment includes the following forms.
  • Appendix 1 a head-mounted display, at least one ultraviolet sensor; a display; memory; a processor; The processor storing the measured value of ultraviolet rays detected by the ultraviolet sensor in the memory; Integrating the measured values to calculate an integrated amount of ultraviolet rays, comparing the cumulative amount of ultraviolet rays with an upper limit cumulative amount, which is a permissible limit value of the cumulative amount of ultraviolet rays that the user is exposed to within a predetermined measurement period; When it is determined that the integrated amount of ultraviolet rays has increased to the upper limit of the integrated amount or more, display control of a warning is performed on the display. head mounted display.
  • a wearable device at least one ultraviolet sensor; an output device that outputs a warning; a frame holding the ultraviolet sensor near the face of a user wearing the wearable terminal and holding the output device; a communicator that communicates with a controller that includes a memory and a processor;
  • the control device is storing the measured value of ultraviolet rays detected by the ultraviolet sensor in the memory; Integrating the measured values to calculate an integrated amount of ultraviolet rays, comparing the cumulative amount of ultraviolet rays with an upper limit cumulative amount, which is a permissible limit value of the cumulative amount of ultraviolet rays that the user is exposed to within a predetermined measurement period; when it is determined that the integrated amount of ultraviolet rays has increased to the upper limit of the integrated amount or more, sending warning information to the output device;
  • the output device outputs the received warning information, wearable device.
  • An ultraviolet monitoring method performed by a wearable terminal comprising at least one or more ultraviolet sensors, a memory, and a processor, the processor a step of storing the measured value of ultraviolet rays detected by the ultraviolet sensor in the memory; a step of calculating an integrated amount of ultraviolet rays by integrating the measured values; a step of comparing the integrated amount of ultraviolet rays with an integrated amount upper limit value that is a permissible limit value of the accumulated amount of ultraviolet rays that the user is exposed to within a predetermined measurement period; a step of controlling output of a warning when it is determined that the integrated amount of ultraviolet rays has increased to the upper limit of the integrated amount or more; Ultraviolet monitoring method comprising:
  • HMD 11 Frame 111 : Out camera 112 : In camera 113 : Ranging sensor 114 : Illuminance sensor 115 : Acceleration sensor 116 : Gyro sensor 117 : Orientation sensor 118 : GPS sensor 119 : Display 119a : Text information 119b : Ultraviolet mark 119c : Arrow 119g: sliding surface 119r: real world 120: network communication device 121: microphone 122: speaker 123: antenna 124: timer 125: processor 125a: measurement data acquisition unit 125b: target value setting unit 125c: ultraviolet analysis unit 125d: sunlight direction Analysis unit 125e: Navigation unit 125f: Behavior analysis unit 125g: Input sound processing unit 125h: Image analysis unit 125i: Display control unit 125j: Output sound processing unit 126: Program 127: Data 128: Memory 128a: Measurement data storage unit 128b: Target value storage unit 128c: map information storage unit 130: power button

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

This head-mounted display comprises at least one UV sensor, a display, a memory element, and a processor. The processor: stores, in the memory, measured values for UV light detected by the UV sensor; adds up the measured values and calculates a cumulative UV light amount; makes a comparison between the cumulative UV light amount with a cumulative upper limit value that is the permissible limit value of the cumulative amount of UV light that a user can be exposed to within a predetermined measurement period defined in advance; and upon determining that the cumulative UV light amount has increased to or beyond the cumulative upper limit value, performs control for displaying a warning on the display.

Description

ヘッドマウントディスプレイ、ウェアラブル端末、及び紫外線監視方法Head-mounted display, wearable terminal, and ultraviolet monitoring method
 本発明は、ヘッドマウントディスプレイ、ウェアラブル端末、及び紫外線監視方法に関する。 The present invention relates to head-mounted displays, wearable terminals, and ultraviolet monitoring methods.
 紫外線は、メラニンを増やして日焼けを起こし、シミの原因となるだけではなく、光老化と呼ばれるしわ、たるみ等の肌老化の原因になる。直接光を浴びやすい部分の肌トラブルは、ほとんどが紫外線が原因とされている。特にUVーA波は、UVーB波に比べて肌への浸透力が高く、肌の炎症も起こさないので、気が付かないうちに肌へダメージを与える。特許文献1では、携帯情報端末に搭載した紫外線強度測定手段で測定した紫外線強度に基づいて、利用者が現在時刻から曝露する紫外線量を求めてアラームを表示する携帯情報端末が開示されている。 UV rays not only cause sunburn by increasing melanin and cause spots, but also cause skin aging such as wrinkles and sagging called photoaging. Most of the skin troubles in areas that are exposed to direct sunlight are caused by UV rays. In particular, UV-A waves have a higher ability to penetrate the skin than UV-B waves and do not cause skin inflammation, so they damage the skin without being noticed. Patent Document 1 discloses a portable information terminal that displays an alarm by obtaining the amount of ultraviolet rays that the user is exposed to from the current time based on the ultraviolet intensity measured by the ultraviolet intensity measuring means mounted on the portable information terminal.
特開2005-266170号公報JP 2005-266170 A
 上記従来例では、最も紫外線を回避したい顔部分の紫外線量を計測しておらず、しわの原因とされる積算量についても考慮されていない。また、紫外線の方向に適切な遮蔽を施すことについても考慮されていない。 In the above conventional example, the amount of ultraviolet rays in the facial area most desired to avoid is not measured, nor is the integrated amount considered to be the cause of wrinkles. Also, no consideration is given to providing adequate shielding in the direction of the ultraviolet rays.
 本発明は上記実情に鑑みてなされたものであり、ユーザの顔に紫外線を浴びていることを認知させ、回避行動をとらせることで、顔の光老化を防ぐことを目的とする。 The present invention has been made in view of the above circumstances, and aims to prevent photoaging of the face by making the user aware that the face is exposed to ultraviolet rays and taking avoidance actions.
 上記課題を解決するために、本発明は、特許請求の範囲に記載の構成を備える。その一例をあげるならば、ヘッドマウントディスプレイであって、少なくとも1つ以上の紫外線センサと、ディスプレイと、メモリと、プロセッサと、を備え、前記プロセッサは、前記紫外線センサが検出した紫外線の計測値を前記メモリに記憶し、前記計測値を積算して紫外線積算量を演算し、前記紫外線積算量と予め定めた所定の計測期間内にユーザが浴びる紫外線の積算量の許容限界値である積算量上限値とを比較し、前記紫外線積算量が前記積算量上限値以上に増加したと判断すると、前記ディスプレイに対して警告の表示制御を行う、ヘッドマウントディスプレイである。 In order to solve the above problems, the present invention has the configuration described in the claims. One example is a head-mounted display, comprising at least one or more ultraviolet sensors, a display, a memory, and a processor, wherein the processor stores measured values of ultraviolet rays detected by the ultraviolet sensors. Stored in the memory, an integrated amount of ultraviolet rays is calculated by integrating the measured values, and an upper limit of the integrated amount that is a permissible limit value of the integrated amount of ultraviolet rays that the user is exposed to within a predetermined predetermined measurement period with the accumulated amount of ultraviolet rays and a value, and when it is determined that the integrated amount of ultraviolet rays has increased to the upper limit value of the integrated amount or more, display control of a warning is performed on the display.
 本発明によれば、ユーザの顔に紫外線を浴びていることを認知させ、回避行動をとらせることで、顔の光老化を軽減させることができる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, photoaging of the face can be reduced by making the user's face aware that it is exposed to ultraviolet rays and taking avoidance actions. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
透過型のHMDの外観図。FIG. 2 is an external view of a transmissive HMD; HMDのハードウェア構成図。The hardware block diagram of HMD. HMDの機能構成を示すブロック図。FIG. 2 is a block diagram showing the functional configuration of the HMD; 第1実施形態に係るHMDの処理の流れを示すフローチャート。4 is a flowchart showing the flow of processing of the HMD according to the first embodiment; 紫外線積算量の推移例を示す図。The figure which shows the transition example of the amount of ultraviolet rays integrated. 警告表示例を示す図。The figure which shows the example of a warning display. 第2実施形態に係る紫外線監視システムの処理の流れを示すフローチャート。8 is a flowchart showing the flow of processing of the ultraviolet monitoring system according to the second embodiment; 紫外線積算量の推定曲線例を示す図。The figure which shows the estimation curve example of the ultraviolet-ray integrated amount. 第3実施形態に係る紫外線監視システムの処理の流れを示すフローチャート。The flowchart which shows the flow of a process of the ultraviolet monitoring system which concerns on 3rd Embodiment. 変動積算量の決定処理を示す説明図。Explanatory drawing which shows the determination process of the amount of fluctuation integrations. 第4実施形態に係る紫外線監視システムの処理の流れを示すフローチャート。The flowchart which shows the flow of a process of the ultraviolet monitoring system which concerns on 4th Embodiment. 紫外線照射方向の説明図。Explanatory drawing of an ultraviolet irradiation direction. 紫外線照射方向を示す仮想現実オブジェクト例を示す説明図。Explanatory drawing which shows the example of the virtual reality object which shows an ultraviolet irradiation direction. 第5実施形態に係る紫外線監視システムの処理の流れを示すフローチャート。The flowchart which shows the flow of a process of the ultraviolet monitoring system which concerns on 5th Embodiment. 太陽光の照射方向及び紫外線照射方向を示す仮想現実オブジェクト例を示す説明図。FIG. 4 is an explanatory diagram showing an example of a virtual reality object showing the irradiation direction of sunlight and the irradiation direction of ultraviolet rays; 第6実施形態に係る紫外線監視システムの処理の流れを示すフローチャート。The flowchart which shows the flow of a process of the ultraviolet monitoring system which concerns on 6th Embodiment. 第7実施形態に係る紫外線監視システムの処理の流れを示すフローチャート。The flowchart which shows the flow of a process of the ultraviolet monitoring system which concerns on 7th Embodiment.
 本実施形態は、ウェアラブル端末に搭載された紫外線センサでユーザの体に照射される紫外線量を計測し、1日の紫外線量を積算し、積算量上限値を超える、あるいは超えると予測した場合は警告、回避方法の提示をするウェアラブル端末に関する。 This embodiment measures the amount of ultraviolet rays irradiated to the user's body with an ultraviolet sensor mounted on a wearable terminal, integrates the amount of ultraviolet rays for a day, and exceeds the upper limit of the accumulated amount, or when it is predicted that it will exceed The present invention relates to wearable terminals that present warnings and avoidance methods.
 以下では、ユーザの体のうち、特に、顔にあたる紫外線量を監視する。また顔に当たる紫外線量の計測に適したウェアラブル端末としてヘッドマウントディスプレイ(以下「HMD」と略記する)を例に挙げて説明する。 Below, we will monitor the amount of UV rays that hit the face, especially the user's body. A head-mounted display (hereinafter abbreviated as “HMD”) will be described as an example of a wearable terminal that is suitable for measuring the amount of ultraviolet rays hitting the face.
 本発明は、大量に浴びることで肌に悪影響があり、癌等の病気の原因となる可能性がある紫外線の影響の軽減が見込めることから、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の目標3の「すべての人に健康と福祉を」に貢献することが期待できる。 The present invention has an adverse effect on the skin when exposed to large amounts, and is expected to reduce the effects of ultraviolet rays that may cause diseases such as cancer. It can be expected to contribute to Goal 3 of Development Goals, "Good health and well-being for all."
 以下、本発明の実施形態について図面を参照して説明する。実施形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In principle, the same members are denoted by the same reference numerals in all the drawings for describing the embodiments, and repeated description thereof will be omitted.
<第1実施形態>
 第1実施形態は、HMDに搭載した紫外線センサで所定期間、例えば1日、1週間、1か月間にユーザの顔に照射された紫外線照射量の積算量を計測し、予め定めた積算量の積算量上限値N2(図5参照)以上となると警告を発したり回避行動を促したりする実施形態である。積算量上限値N2は、所定の計測期間(例えば0時から24時までの1日)内にユーザが浴びる紫外線の許容限界値に相当する。
<First Embodiment>
In the first embodiment, an ultraviolet sensor mounted on an HMD measures the integrated amount of ultraviolet irradiation applied to the user's face for a predetermined period of time, for example, one day, one week, or one month. In this embodiment, a warning is issued or an avoidance action is urged when the integrated amount becomes equal to or greater than the upper limit value N2 (see FIG. 5). The integrated amount upper limit value N2 corresponds to the allowable limit value of ultraviolet rays that the user is exposed to within a predetermined measurement period (for example, one day from 00:00 to 24:00).
 図1は、透過型のHMD10の外観図である。 FIG. 1 is an external view of a transmissive HMD 10. FIG.
 HMD10は、フレーム11に、ディスプレイ119、右紫外線センサ131、左紫外線センサ132(図2参照)、及び正面紫外線センサ133を搭載する。 The HMD 10 has a display 119 , a right ultraviolet sensor 131 , a left ultraviolet sensor 132 (see FIG. 2), and a front ultraviolet sensor 133 mounted on the frame 11 .
 フレーム11は、HMD10のユーザの頭部にHMD10を装着させた状態を維持し、他のHMD10のコンポーネントを保持する部材である。 The frame 11 is a member that keeps the HMD 10 mounted on the head of the user of the HMD 10 and holds other components of the HMD 10 .
 ディスプレイ119は、透過型のディスプレイ119である。HMD10を装着したユーザの両眼の前方に設置される。ユーザはディスプレイ119を透過して外界を視認する。ディスプレイ119は、警告メッセージを表示したり、紫外線の計測結果を表示したりする。 The display 119 is a transmissive display 119. It is installed in front of both eyes of the user wearing the HMD 10 . The user sees the outside world through the display 119 . The display 119 displays a warning message and the ultraviolet measurement result.
 図2はHMD10のハードウェア構成図である。 FIG. 2 is a hardware configuration diagram of the HMD 10.
 HMD10は、アウトカメラ111、インカメラ112、測距センサ113、照度センサ114、加速度センサ115、ジャイロセンサ116、方位センサ117、GPS(Global Positioning System)センサ118、ディスプレイ119、ネットワーク通信器120、マイク121、スピーカ122、タイマー124、プロセッサ125、メモリ128、電源ボタン130、右紫外線センサ131、左紫外線センサ132、正面紫外線センサ133、RTC134(「時計回路」に相当する)、及びバイブレータ135が、各構成要素を接続するバス140を介して互いに接続される。なお、GPSセンサは、全地球衛星ナビゲーションシステムで位置取得に使用されるセンサの一例であり、地域や国により違う名称のセンサが使用される場合がある。 The HMD 10 includes an out-camera 111, an in-camera 112, a ranging sensor 113, an illuminance sensor 114, an acceleration sensor 115, a gyro sensor 116, an orientation sensor 117, a GPS (Global Positioning System) sensor 118, a display 119, a network communication device 120, and a microphone. 121, a speaker 122, a timer 124, a processor 125, a memory 128, a power button 130, a right ultraviolet sensor 131, a left ultraviolet sensor 132, a front ultraviolet sensor 133, an RTC 134 (corresponding to a "clock circuit"), and a vibrator 135. They are connected to each other via a bus 140 that connects the components. A GPS sensor is an example of a sensor used for position acquisition in a global satellite navigation system, and sensors with different names may be used depending on regions and countries.
 ネットワーク通信器120は、例えば近距離無線通信器や無線LAN通信器である。ネットワーク通信器120は、アンテナ123に接続される。HMD10は、ネットワーク通信器120及びアンテナ123から家庭内LANやインターネットなどの通信ネットワーク9に接続される。またネットワーク通信器120は、通信ネットワーク9を介してサーバ2とデータの送受信を行ってもよい。ネットワーク通信器120は、有線による通信接続を行うための端子、例えばUSB端子でもよい。 The network communication device 120 is, for example, a short-range wireless communication device or a wireless LAN communication device. Network communicator 120 is connected to antenna 123 . The HMD 10 is connected to a communication network 9 such as a domestic LAN or the Internet through a network communication device 120 and an antenna 123 . The network communication device 120 may also transmit and receive data to and from the server 2 via the communication network 9 . The network communication device 120 may be a terminal for making a wired communication connection, such as a USB terminal.
 近距離無線通信器は、Bluetooth(登録商標)、IrDA(Infrared Data Association、登録商標)、Zigbee(登録商標)、HomeRF(Home Radio Frequency、登録商標)、又はWi-Fi(登録商標)などの無線LANの通信方式に適合した通信器を用いてもよい。 The short-range wireless communication device is a wireless device such as Bluetooth (registered trademark), IrDA (Infrared Data Association, registered trademark), Zigbee (registered trademark), HomeRF (Home Radio Frequency, registered trademark), or Wi-Fi (registered trademark). A communication device compatible with the LAN communication method may be used.
 メモリ128は、フラッシュメモリ、不揮発性メモリにより構成される。メモリ128はOS(Operating System)、紫外線監視アプリケーション、地図ナビゲーションなどのプログラム126や、プロセッサ125が使用するデータ127も記憶する。 The memory 128 is composed of flash memory and non-volatile memory. The memory 128 also stores programs 126 such as an OS (Operating System), an ultraviolet monitoring application, map navigation, and data 127 used by the processor 125 .
 プロセッサ125は、例えばCPUにより構成される。 The processor 125 is composed of, for example, a CPU.
 右紫外線センサ131、左紫外線センサ132、及び正面紫外線センサ133のうち1つあれば紫外線量の計測は行えるので、第1実施形態ではいずれか一つでもよい。但し、紫外線の照射方向も検出する実施形態では、HMD10に複数の紫外線センサを搭載する。 Since the amount of ultraviolet rays can be measured with one of the right ultraviolet sensor 131, the left ultraviolet sensor 132, and the front ultraviolet sensor 133, any one of them may be used in the first embodiment. However, in an embodiment in which the irradiation direction of ultraviolet rays is also detected, the HMD 10 is equipped with a plurality of ultraviolet sensors.
 アウトカメラ111は、周囲等の撮影用に用いる。個数、配置はこの場所に限らない。 The out-camera 111 is used for photographing the surroundings. The number and arrangement are not limited to this place.
 インカメラ112は、ユーザの視線を測定するカメラである。インカメラ112が生成するインカメラ画像から目の開閉も検出できる。 The in-camera 112 is a camera that measures the line of sight of the user. The opening and closing of the eyes can also be detected from the in-camera image generated by the in-camera 112 .
 本実施形態ではプロセッサ125及びメモリ128を含む制御装置をHMD10と一体に構成したが、制御装置はスマートフォンや携帯情報端末(家庭内ならパーソナルコンピュータでも可)により構成しHMD10とは別体に構成してもよい。 In this embodiment, the control device including the processor 125 and the memory 128 is configured integrally with the HMD 10, but the control device is configured with a smart phone or a mobile information terminal (a personal computer is also acceptable at home) and configured separately from the HMD 10. may
 図3は、HMDの機能構成を示すブロック図である。 FIG. 3 is a block diagram showing the functional configuration of the HMD.
 HMD10のプロセッサ125は、オペレーションシステムプログラム、紫外線監視プログラム、及び地図ナビゲーションアプリをメモリ128のプログラム126から読み出し、ワーク領域に展開して実行することにより、計測データ取得部125a、目標値設定部125b、紫外線解析部125c、太陽光方向解析部125d、ナビゲーション部125e、行動解析部125f、入力音声処理部125g、画像解析部125h、表示制御部125i、出力音声処理部125jの各機能部が実現する。 The processor 125 of the HMD 10 reads the operating system program, the ultraviolet monitoring program, and the map navigation application from the program 126 in the memory 128, develops them in the work area, and executes them, thereby obtaining a measurement data acquisition unit 125a, a target value setting unit 125b, Functional units such as an ultraviolet light analysis unit 125c, a sunlight direction analysis unit 125d, a navigation unit 125e, an action analysis unit 125f, an input sound processing unit 125g, an image analysis unit 125h, a display control unit 125i, and an output sound processing unit 125j are realized.
 入力音声処理部125gは、マイク121が集音した音声を解析してHMD10の音声入力デバイスを構成する。 The input sound processing unit 125g analyzes the sound collected by the microphone 121 and constitutes the sound input device of the HMD 10.
 出力音声処理部125jは、スピーカ122から音声を出力し、警告やガイダンスの音声出力デバイスを構成する。 The output audio processing unit 125j outputs audio from the speaker 122 and constitutes an audio output device for warnings and guidance.
 その他各部の機能については、フローチャートを参照しつつ後述する。上記各機能部は全て備える必要はなく、各実施形態で必要な機能部を備えていればよい。 The functions of other parts will be described later with reference to the flowchart. It is not necessary to include all of the functional units described above, and it is only necessary to include the functional units necessary for each embodiment.
 メモリ128のデータ127が記憶された各記憶領域には、計測データ記憶部128a、目標値記憶部128b、及び地図情報記憶部128cが含まれる。 Each storage area in which the data 127 of the memory 128 is stored includes a measurement data storage section 128a, a target value storage section 128b, and a map information storage section 128c.
 計測データ記憶部128aは、右紫外線センサ131、左紫外線センサ132、及び正面紫外線センサ133のそれぞれから取得した紫外線の計測値が記憶される。必要に応じて計測値には、計測場所、計測日時を示す情報が付加される。 The measurement data storage unit 128a stores measured values of ultraviolet rays obtained from the right ultraviolet sensor 131, the left ultraviolet sensor 132, and the front ultraviolet sensor 133, respectively. Information indicating the place of measurement and the date and time of measurement is added to the measured value as necessary.
 目標値記憶部128bは、紫外線解析部125cが計測対象日の紫外線の積算量と比較する各種目標値、具体的には積算量下限値N1、積算量上限値N2、変動積算量上限値N3が記憶される。各目標値の詳細は後述する。 The target value storage unit 128b stores various target values that the UV analysis unit 125c compares with the UV cumulative amount on the measurement target day, specifically, the cumulative amount lower limit value N1, the cumulative amount upper limit value N2, and the fluctuation cumulative amount upper limit value N3. remembered. Details of each target value will be described later.
 地図情報記憶部128cは、ナビゲーション部125eがルート探索の際に参照する地図情報を記憶する。 The map information storage unit 128c stores map information that the navigation unit 125e refers to when searching for a route.
 図4は、第1実施形態に係るHMD10の処理の流れを示すフローチャートである。図5は、紫外線積算量の推移例を示す図である。 FIG. 4 is a flowchart showing the processing flow of the HMD 10 according to the first embodiment. FIG. 5 is a diagram showing an example of transition of the integrated amount of ultraviolet rays.
 HMD10が起動すると、プロセッサ125は、メモリ128から紫外線監視プログラムを読み出し、処理を開始する。 When the HMD 10 starts up, the processor 125 reads out the ultraviolet monitoring program from the memory 128 and starts processing.
 まず、ユーザが、紫外線の積算量を計測する計測期間T_countにおいて許容する紫外線の積算量下限値N1(図5参照)及び積算量上限値N2(図5参照)を設定する(S01)。積算量下限値N1は、ビタミンDを生成するための必要量であり最低限浴びた方がいい紫外線量であり、照射推奨値に相当する。積算量上限値N2は、許容紫外線量の上限値に相当する。できるだけ日焼けしたくない人はN1=N2と設定してもよい。 First, the user sets the lower limit value N1 (see FIG. 5) and the upper limit value N2 (see FIG. 5) of the integrated amount of ultraviolet light that are allowed in the measurement period T_count for measuring the integrated amount of ultraviolet light (S01). The integrated amount lower limit value N1 is the necessary amount for producing vitamin D and is the minimum amount of ultraviolet rays that should be exposed, and corresponds to the recommended irradiation value. The integrated amount upper limit value N2 corresponds to the upper limit value of the allowable amount of ultraviolet rays. A person who does not want to tan as much as possible may set N1=N2.
 右紫外線センサ131、左紫外線センサ132、正面紫外線センサ133は、紫外線量の計測を開始する。紫外線解析部125cは、右紫外線センサ131、左紫外線センサ132、正面紫外線センサ133のそれぞれから紫外線の計測値を取得し、計測データ記憶部128aに記憶すると共に、紫外線積算量Uを演算する(S02)。 The right ultraviolet sensor 131, left ultraviolet sensor 132, and front ultraviolet sensor 133 start measuring the amount of ultraviolet rays. The ultraviolet analysis unit 125c acquires ultraviolet measurement values from the right ultraviolet sensor 131, the left ultraviolet sensor 132, and the front ultraviolet sensor 133, stores them in the measurement data storage unit 128a, and calculates an integrated ultraviolet amount U (S02 ).
 右紫外線センサ131、左紫外線センサ132、正面紫外線センサ133の計測値を合算して積算量を演算すると、センサ数が増えるほど積算量が増加して積算量下限値N1及び積算量上限値N2との比較精度が低下する。そこで、紫外線解析部125cは、右紫外線センサ131、左紫外線センサ132、正面紫外線センサ133の計測値のいずれか一つの積算量を演算してもよい。また紫外線解析部125cは、各紫外線センサの計測値を合計し、センサ数で除した値を紫外線積算量Uとしてもよい。 When the integrated amount is calculated by adding the measured values of the right ultraviolet sensor 131, the left ultraviolet sensor 132, and the front ultraviolet sensor 133, the integrated amount increases as the number of sensors increases. The accuracy of the comparison of Therefore, the ultraviolet analysis unit 125c may calculate the integrated amount of any one of the measured values of the right ultraviolet sensor 131, the left ultraviolet sensor 132, and the front ultraviolet sensor 133. FIG. Further, the ultraviolet analysis unit 125c may add up the measured values of the respective ultraviolet sensors and divide the result by the number of sensors as the ultraviolet integrated amount U.
 紫外線解析部125cは、紫外線積算量Uと積算量上限値N2とを比較し、紫外線積算量Uが積算量上限値N2未満であり(S03:No)、計測開始からの経過時間Tが計測期間T_count未満であれば(S05:No)、ステップS02へ戻り紫外線量の計測と紫外線積算量Uの演算を継続する。 The ultraviolet ray analysis unit 125c compares the ultraviolet ray accumulated amount U and the accumulated amount upper limit value N2. If it is less than T_count (S05: No), the process returns to step S02 to continue the measurement of the amount of ultraviolet rays and the calculation of the integrated amount of ultraviolet rays U.
 一方紫外線解析部125cは、紫外線積算量Uが積算量上限値N2以上であれば(S03:Yes)、警告をディスプレイ119に表示する(S04)。計測開始からの経過時間Tが計測期間T_count未満であれば、ステップS02へ戻り、更に紫外線量の計測と紫外線積算量Uの演算を継続する。 On the other hand, the ultraviolet analysis unit 125c displays a warning on the display 119 when the ultraviolet integrated amount U is equal to or greater than the integrated amount upper limit value N2 (S03: Yes) (S04). If the elapsed time T from the start of measurement is less than the measurement period T_count, the process returns to step S02, and the measurement of the amount of ultraviolet rays and the calculation of the integrated amount of ultraviolet rays U are continued.
 計測開始からの経過時間Tが計測期間T_countに至ると(S05:Yes)処理を終了する。 When the elapsed time T from the start of measurement reaches the measurement period T_count (S05: Yes), the process ends.
 図5では、計測期間T_countを24時間とし、計測開始時間を0時、計測終了時間を24時とし、1日当たりの紫外線の積算量下限値N1及び積算量上限値N2が設定されている。日の出後、紫外線積算量Uが増加し、日の入からは紫外線積算量Uは増加しない。紫外線積算量がN2未満であれば、ステップS04の警告表示は行われない。 In FIG. 5, the measurement period T_count is set to 24 hours, the measurement start time is set to 0:00, the measurement end time is set to 24:00, and the lower limit value N1 and the upper limit value N2 of the cumulative amount of UV rays per day are set. After sunrise, the UV integrated amount U increases, and after sunset, the UV integrated amount U does not increase. If the integrated amount of ultraviolet rays is less than N2, the warning display in step S04 is not performed.
 紫外線解析部125cは1日の紫外線積算量Uが積算量下限値(必要量)N1未満である場合に、ユーザに対して情報提供を行ってもよい。 The ultraviolet ray analysis unit 125c may provide information to the user when the daily ultraviolet ray accumulated amount U is less than the accumulated amount lower limit value (required amount) N1.
 図6は、警告表示例を示す図である。 FIG. 6 is a diagram showing an example of warning display.
 紫外線解析部125cは、表示制御部125iに警告情報の表示させるための表示制御(「警告の出力制御」の一態様に相当する。)を行う。それを受けて表示制御部125iはディスプレイ119に警告情報としてのテキスト情報119aを通知する。 The ultraviolet analysis unit 125c performs display control (corresponding to one aspect of "warning output control") for displaying warning information on the display control unit 125i. In response, the display control unit 125i notifies the display 119 of text information 119a as warning information.
 「警告の出力制御」の別例として、紫外線解析部125cは、出力音声処理部125jに対して警告情報の音声出力指示を行い、スピーカ122から音声出力を行ってもよい。 As another example of "warning output control", the ultraviolet analysis unit 125c may instruct the output sound processing unit 125j to output warning information by voice, and output the sound from the speaker 122.
 本実施形態によれば、紫外線積算量Uが積算量上限値N2以上となった場合に警告を発することができる。これにより、紫外線を浴びすぎることによる人体への悪影響を軽減できる。特に、HMD10に紫外線センサを搭載することで、顔への紫外線積算量Uを監視できるので、紫外線に起因する顔の日焼け、シミ、しわの予防効果が期待できる。 According to the present embodiment, a warning can be issued when the integrated amount of ultraviolet rays U becomes equal to or greater than the integrated amount upper limit value N2. As a result, the adverse effects on the human body caused by overexposure to ultraviolet rays can be reduced. In particular, by installing an ultraviolet sensor in the HMD 10, it is possible to monitor the integrated amount of ultraviolet rays U on the face, so that it is possible to anticipate the effect of preventing sunburn, blemishes, and wrinkles on the face caused by ultraviolet rays.
<第2実施形態>
 第2実施形態は、紫外線積算量の推定値の時間推移を示す推定曲線を求め、推定曲線における計測時点の紫外線推定量に対して紫外線積算量U(実測値)が所定の割合(「乖離許容割合」という)以上となった場合に警告表示をする実施形態である。
<Second embodiment>
In the second embodiment, an estimated curve indicating the temporal transition of the estimated value of the integrated amount of ultraviolet light is obtained, and the integrated amount of ultraviolet light U (actually measured value) is a predetermined ratio (“permissible divergence This is an embodiment in which a warning is displayed when the ratio is equal to or greater than the ratio.
 乖離許容割合は予め定められる。乖離許容割合は時間毎に変えてもよい。例えば朝はゆるく、夕方には小さな差でも警告を出すようにしてもよい。 The permissible deviation ratio is determined in advance. The permissible deviation ratio may be changed for each hour. For example, a warning may be given loosely in the morning and even a small difference in the evening.
 図7は、第2実施形態に係る紫外線監視システムの処理の流れを示すフローチャートである。 FIG. 7 is a flowchart showing the processing flow of the ultraviolet monitoring system according to the second embodiment.
 ステップS2に続いて、紫外線解析部125cは紫外線積算量の推定曲線を生成し、現在の紫外線積算量Uと比較する(S11)。 Following step S2, the ultraviolet analysis unit 125c generates an estimated curve of the accumulated amount of ultraviolet rays and compares it with the current accumulated amount of ultraviolet rays U (S11).
 紫外線解析部125cは、直近の過去、例えば過去1週間における1日当たりの紫外線積算量Uの移動平均を基に、計測当日の紫外線積算量の推定曲線を生成してもよい。また、過去の同月同日の紫外線積算量Uの推移を計測当日の推定曲線として用いてもよい。推定曲線の生成処理は上記例に限定されない。 The ultraviolet light analysis unit 125c may generate an estimated curve of the accumulated ultraviolet light amount on the day of measurement based on the moving average of the accumulated ultraviolet light amount U per day in the most recent past, for example, the past one week. Also, the transition of the accumulated amount of ultraviolet rays U on the same day of the same month in the past may be used as the estimated curve on the day of measurement. The process of generating an estimated curve is not limited to the above example.
 紫外線解析部125cは、推定曲線上の推定量と現在の紫外線積算量Uとを比較する(S11)。 The ultraviolet analysis unit 125c compares the estimated amount on the estimated curve with the current integrated ultraviolet amount U (S11).
 図8は、紫外線積算量の推定曲線例を示す図である。 FIG. 8 is a diagram showing an example of an estimated curve of the integrated amount of ultraviolet rays.
 紫外線解析部125cは現在と同時刻の推定曲線上の推定量を読み出し、下式(1)により推定量と現在の紫外線積算量Uとの比較演算を行う。
紫外線積算量U/推定曲線上の推定量≧乖離許容割合・・・(1)
The ultraviolet analysis unit 125c reads out the estimated amount on the estimated curve at the same time as the current time, and performs a comparison operation between the estimated amount and the current integrated ultraviolet amount U by the following equation (1).
UV integrated amount U/estimated amount on the estimated curve≧permissible divergence ratio (1)
 ステップS11の判断の結果が肯定であれば(S12:Yes)、警告を表示する(S04)。否定であれば(S12:No)、第1実施形態と同様、ステップS05へ進む。 If the result of determination in step S11 is affirmative (S12: Yes), a warning is displayed (S04). If the answer is negative (S12: No), the process proceeds to step S05, as in the first embodiment.
 本実施形態によれば、現在の紫外線積算量Uが推定曲線に対して乖離許容割合以上に増加した場合は警告を出す。これにより、紫外線積算量Uが急増(乖離許容割合以上に増加)している場合は、紫外線積算量Uが積算量上限値N2に到達する前に警告をすることで、紫外線からの回避行動を促すことができる。 According to the present embodiment, a warning is issued when the current integrated amount of ultraviolet rays U increases with respect to the estimated curve by more than the permissible divergence ratio. As a result, when the integrated amount of ultraviolet rays U rapidly increases (increases more than the permissible divergence ratio), a warning is given before the integrated amount of ultraviolet rays U reaches the upper limit value N2 of the accumulated amount, thereby avoiding action from the ultraviolet rays. can be encouraged.
<第3実施形態>
 第3実施形態は、複数日の紫外線積算量を基に次の計測期間に用いる積算量上限値(「変動積算量上限値」という。)N3を設定する実施形態である。変動積算量上限値N3との区別をより明確にするために第3実施形態の説明では、積算量上限値N2を固定積算量上限値N2と記載する。
<Third Embodiment>
The third embodiment is an embodiment that sets an integrated amount upper limit value (referred to as “fluctuation integrated amount upper limit value”) N3 to be used in the next measurement period based on the ultraviolet ray integrated amount for a plurality of days. In the description of the third embodiment, the integrated amount upper limit value N2 is referred to as the fixed integrated amount upper limit value N2 in order to more clearly distinguish it from the variable integrated amount upper limit value N3.
 図9は、第3実施形態に係る紫外線監視システムの処理の流れを示すフローチャートである。 FIG. 9 is a flowchart showing the processing flow of the ultraviolet monitoring system according to the third embodiment.
 ステップS05の後、目標値設定部125bは変動積算量上限値N3を決定し、目標値記憶部128bに記憶する(S06)。その後処理を終了する。 After step S05, the target value setting unit 125b determines the fluctuation integrated amount upper limit value N3 and stores it in the target value storage unit 128b (S06). After that, the process ends.
 変動積算量上限値N3は、複数日においてユーザが浴びた紫外線積算量の合計が固定積算量上限値N2×複数日の日数分を超えないように次の計測期間に用いる変動積算量上限値N3を決定する。計測期間が0時から24時とすると、「次の計測期間」とは次の日と言い換えられる。 The integrated fluctuation amount upper limit value N3 is set so that the total amount of ultraviolet rays that the user has been exposed to over multiple days does not exceed the fixed integrated amount upper limit value N2 x the number of days for multiple days. to decide. If the measurement period is from 0:00 to 24:00, the "next measurement period" can be rephrased as the next day.
 図10は、変動積算量の決定処理を示す説明図である。本例では、複数日を7日間とし、1週間の紫外線積算量が固定積算量上限値N2の7倍を超えないことを目標とする。そこで、目標値設定部125bは、変動積算量上限値N3を前5日間の紫外線積算量の合計値から積算量上限値N2の5倍量を減算して超過量Δ1を求める。目標値設定部125bは、6日目の1日のみで超過量Δ1を相殺する場合は、下式(2)にて変動積算量上限値N3を定めてもよい。
N3=N2-Δ1・・・(2)
FIG. 10 is an explanatory diagram showing the process of determining the integrated fluctuation amount. In this example, the number of days is set to seven days, and the target is that the integrated amount of ultraviolet light for one week does not exceed seven times the fixed upper limit N2 of integrated amount. Therefore, the target value setting unit 125b obtains the excess amount Δ1 by subtracting five times the integrated amount upper limit value N2 from the total value of the UV integrated amounts for the previous five days, as the fluctuation integrated amount upper limit value N3. If the excess amount Δ1 is offset only on the sixth day, the target value setting unit 125b may determine the upper limit value N3 of the integrated fluctuation amount using the following equation (2).
N3=N2-Δ1 (2)
 また別例として目標値設定部125bは、6日目及び7日目の二日間で超過量Δ1を相殺する場合は、下式(3)にて変動積算量上限値N3を定めてもよい。
N3=N2-(Δ1/2)・・・(3)
As another example, the target value setting unit 125b may determine the upper limit value N3 of the integrated fluctuation amount using the following equation (3) when the excess amount Δ1 is offset in two days, the sixth day and the seventh day.
N3=N2-(Δ1/2) (3)
 変動積算量上限値N3を決める期間として1週間としたのは一例にすぎず、より長い期間、又はより短い期間でもよい。 The period of one week for determining the upper limit value N3 of the integrated fluctuation amount is merely an example, and a longer or shorter period may be used.
 次の計測開始後のステップS01において、目標値設定部125bは目標値記憶部128bから変動積算量上限値N3を読み出し、次回の計測期間ではステップS03において紫外線積算量Uと変動積算量上限値N3とを比較する。そして次回の計測期間では紫外線解析部125cは、紫外線積算量Uが変動積算量上限値N3以上となるとステップS04において警告を出力させる。 In step S01 after the start of the next measurement, the target value setting unit 125b reads out the upper limit value N3 of integrated fluctuation amount from the target value storage unit 128b. Compare with Then, in the next measurement period, the ultraviolet analysis unit 125c outputs a warning in step S04 when the integrated amount of ultraviolet light U becomes equal to or greater than the upper limit value N3 of integrated amount of fluctuation.
 本実施形態によれば、複数日の積算量を基に変動積算量上限値N3を演算して紫外線積算量の解析を行い、必要に応じて警告をできるので直近に浴びた紫外線量に応じて柔軟に紫外線照射量の監視が行える。 According to the present embodiment, the upper limit value N3 of the accumulated amount of fluctuation is calculated based on the accumulated amount for a plurality of days, the accumulated amount of ultraviolet rays is analyzed, and a warning can be issued as necessary. It is possible to flexibly monitor the amount of UV irradiation.
(変形例1)
 一定期間(例えば1週間、1ヵ月等)の紫外線積算量Uから長期にわたって紫外線積算量Uが積算量下限値N1を下回っている場合は、目標値設定部125bは、肌にダメージがある閾値を上限として基準値+差分(不足している紫外線量)を変動積算量上限値として決定してもよい。
(Modification 1)
When the cumulative amount of ultraviolet rays U for a certain period of time (for example, one week, one month, etc.) is below the lower limit value N1 for a long period of time, the target value setting unit 125b sets the threshold value of damage to the skin. As the upper limit, the reference value+difference (insufficient amount of ultraviolet rays) may be determined as the upper limit of the integrated fluctuation amount.
(変形例2)
 紫外線解析部125cは、積算量下限値N1を下回る場合は日ごとの警告を行わなくてもよいが、あまりにも積算量下限値N1が続く場合は、紫外線量が少ない旨の警告表示を行い、紫外線を浴びる行動を促してもよい。
(Modification 2)
The ultraviolet analysis unit 125c does not need to issue a daily warning when the integrated amount falls below the lower limit N1, but when the integrated amount lower limit N1 continues for too long, it displays a warning to the effect that the amount of ultraviolet light is low. You may encourage the action of basking in ultraviolet rays.
<第4実施形態>
 第4実施形態は、紫外線積算量と共に紫外線照射方向を検出して仮想現実オブジェクトを表示する実施形態である。
<Fourth Embodiment>
The fourth embodiment is an embodiment in which a virtual reality object is displayed by detecting the direction of irradiation of ultraviolet rays together with the integrated amount of ultraviolet rays.
 図11は、第4実施形態に係る紫外線監視システムの処理の流れを示すフローチャートである。 FIG. 11 is a flowchart showing the processing flow of the ultraviolet monitoring system according to the fourth embodiment.
 紫外線解析部125cは紫外線積算量Uが積算量上限値N2以上となったと判断すると(S03:Yes)、紫外線解析部125cは紫外線の照射量が多い方向を解析する(S21)。その際、ユーザが頭を動かすことにより更に精度良く計測できるようにしてもよい。 When the UV analysis unit 125c determines that the UV integrated amount U has reached or exceeded the integrated amount upper limit value N2 (S03: Yes), the UV analysis unit 125c analyzes the direction in which the UV irradiation amount is high (S21). At that time, the user may move his/her head so that the measurement can be performed with higher accuracy.
 図12は、紫外線照射方向の説明図である。 FIG. 12 is an explanatory diagram of the ultraviolet irradiation direction.
 紫外線解析部125cは、右紫外線センサ131、左紫外線センサ132、正面紫外線センサ133が同時刻に計測した計測値を比較し、最も強度が強い方向を紫外線の照射方向として決定する。 The ultraviolet analysis unit 125c compares the measured values measured at the same time by the right ultraviolet sensor 131, the left ultraviolet sensor 132, and the front ultraviolet sensor 133, and determines the direction with the highest intensity as the ultraviolet irradiation direction.
 それを基に、表示制御部125iは紫外線の照射方向を示す紫外線マーク119b、図形、警告等からなる仮想現実オブジェクトを表示する(S22)。より具体的には、画像解析部125hは、アウトカメラ111が撮像した現実世界の画像の被写体検出処理を行い、紫外線を遮蔽するための対処可能なもの、例えばカーテンや、日傘を検出する。表示制御部125iは、ディスプレイ119において対象可能な被写体に重複するように、カーテンを閉めたることを促す情報や日傘をさす方向を示す仮想現実オブジェクトを表示する。 Based on this, the display control unit 125i displays a virtual reality object consisting of an ultraviolet mark 119b indicating the irradiation direction of ultraviolet rays, a figure, a warning, etc. (S22). More specifically, the image analysis unit 125h performs subject detection processing on the real-world image captured by the out-camera 111, and detects objects that can block ultraviolet rays, such as curtains and parasols. The display control unit 125i displays information prompting closing of the curtains and a virtual reality object indicating the direction in which the parasol should be held so as to overlap the possible subjects on the display 119 .
 図13は、紫外線照射方向を示す仮想現実オブジェクト例を示す説明図である。 FIG. 13 is an explanatory diagram showing an example of a virtual reality object indicating the ultraviolet irradiation direction.
 表示制御部125iはディスプレイ119に紫外線が強いことを警告するテキスト情報119aを表示する。更に強い紫外線が照射される方向を示す紫外線マーク119bをディスプレイ119に表示する。ディスプレイ119は透過型であるため、ユーザは、ディスプレイ119を介して実際に視認した現実世界119r(本例では窓)に紫外線マーク119bが重ねて表示された複合現実画像を視認する。 The display control unit 125i displays on the display 119 text information 119a warning that ultraviolet rays are strong. An ultraviolet mark 119b is displayed on the display 119 to indicate the direction in which stronger ultraviolet rays are irradiated. Since the display 119 is of a transmissive type, the user sees a mixed reality image in which the ultraviolet mark 119b is superimposed on the real world 119r (window in this example) that is actually viewed through the display 119 .
 本実施形態によれば紫外線解析部125cが紫外線の強度が高い方向を検出し、ディスプレイ119にその照射方向を仮想現実オブジェクトで表示することで、紫外線からの回避行動、例えばカーテンをかけたり遮蔽物を設置したりしやすくなり、紫外線を浴びる量を軽減しやすくなる。特に、窓、太陽等からの直接光はユーザが気付きやすいが、白い壁等の反射光による紫外線の曝露は気づきにくいので、紫外線の照射方向を示すことでユーザが無意識のうちに紫外線を浴びる量を減らす効果が期待できる。 According to this embodiment, the ultraviolet analysis unit 125c detects the direction in which the intensity of the ultraviolet rays is high, and displays the irradiation direction on the display 119 as a virtual reality object, thereby avoiding ultraviolet rays, such as putting up a curtain or shielding objects. , making it easier to reduce the amount of UV exposure. In particular, direct light from a window, the sun, etc. is easy for the user to notice, but it is difficult for the user to notice UV exposure due to reflected light from a white wall. can be expected to reduce
<第5実施形態>
 第5実施形態は、紫外線方向と共に太陽の方向を表示する実施形態である。例えば外で日傘をさす場合に、日傘をさすことで太陽の方向がよくわからない、また、曇りの日等、うまく紫外線を遮るように日傘をさせていない場合がある。更に、太陽光をブロックしても反射光が強い場合がある。そこで本実施形態では両方に対応するために、現在地、ユーザの向き、日時などを基に太陽の方向を算出し、太陽の方向及び他の方向からの紫外線量が強い場合はその方向を示す仮想現実オブジェクトを表示する。
<Fifth Embodiment>
The fifth embodiment is an embodiment that displays the direction of the sun together with the direction of ultraviolet rays. For example, when using a parasol outdoors, it may be difficult to see the direction of the sun, and on cloudy days, the parasol may not be properly used to block ultraviolet rays. Furthermore, even if sunlight is blocked, the reflected light may be strong. Therefore, in this embodiment, in order to cope with both, the direction of the sun is calculated based on the current location, the direction of the user, the date and time, etc., and if the amount of ultraviolet rays from the direction of the sun and other directions is strong, a virtual Show real objects.
 図14は、第5実施形態に係る紫外線監視システムの処理の流れを示すフローチャートである。 FIG. 14 is a flowchart showing the processing flow of the ultraviolet monitoring system according to the fifth embodiment.
 太陽光方向解析部125dは紫外線積算量Uが積算量上限値N2以上となったと判断すると(S03:Yes)、太陽の方向を取得する(S31)。具体的には、太陽光方向解析部125dはHMD10に搭載された方位センサ117からHMD10の正面が向いている方向(東西南北方向)、GPSセンサ118から現在位置情報、RTC134から時刻情報を取得する。そしてサーバ2(図2参照)に対して、現在位置の現在時刻における太陽光方向を照会し、応答情報を得る。 When the sunlight direction analysis unit 125d determines that the integrated amount of ultraviolet rays U has reached or exceeded the integrated amount upper limit value N2 (S03: Yes), it acquires the direction of the sun (S31). Specifically, the sunlight direction analysis unit 125d acquires the direction in which the front of the HMD 10 faces (north, south, east, and west directions) from the direction sensor 117 mounted on the HMD 10, current position information from the GPS sensor 118, and time information from the RTC 134. . Then, the server 2 (see FIG. 2) is inquired about the direction of sunlight at the current time at the current position, and response information is obtained.
 太陽光方向解析部125dは、太陽の絶対座標系における方向と、HMD10が向いている方向とを基にHMD10のディスプレイ119のどの方向に太陽光の照射方向を示す矢印を描画するかを演算し表示制御部125iに出力する。 The sunlight direction analysis unit 125d calculates in which direction on the display 119 of the HMD 10 an arrow indicating the irradiation direction of sunlight should be drawn based on the direction of the sun in the absolute coordinate system and the direction in which the HMD 10 faces. Output to the display control unit 125i.
 一方、紫外線解析部125cは、紫外線の照射方向を演算する(S21)。ステップS31とS21とは逆順でもよい。 On the other hand, the ultraviolet analysis unit 125c calculates the irradiation direction of ultraviolet rays (S21). Steps S31 and S21 may be performed in reverse order.
 表示制御部125iは、太陽光の照射方向と紫外線の照射方向との其々を示す仮想現実オブジェクトを表示する(S32)。一例として、直接光が強い時は直接光のブロックもしくは顔の向きを変える提案を表示してもよいし、直接光をブロックしても、反射光が強い場合は反射光をブロックしたり場所の移動を提案する表示を行ってもよい。 The display control unit 125i displays a virtual reality object indicating the irradiation direction of sunlight and the irradiation direction of ultraviolet rays (S32). As an example, when the direct light is strong, it may block the direct light or show a suggestion to turn the face, or even if the direct light is blocked, when the reflected light is strong, the reflected light may be blocked or the location may be changed. A display suggesting movement may be provided.
 図15は、太陽光の照射方向及び紫外線照射方向を示す仮想現実オブジェクト例を示す説明図である。 FIG. 15 is an explanatory diagram showing an example of a virtual reality object showing the irradiation direction of sunlight and the direction of ultraviolet irradiation.
 表示制御部125iは、ディスプレイ119に紫外線が強いことを警告するテキスト情報119aと、強い紫外線が照射される方向を示す紫外線マーク119b、及び太陽光の照射方向を示す矢印119cをディスプレイ119に表示する。図15の例は、アスファルトやスキー場のように地面からの照り返しによる紫外線の照射が強い場合に、太陽光の照射方向とは異なる方向、具体的には路面やゲレンデの滑走面119gに紫外線マーク119bが仮想現実オブジェクトされる。テキスト情報119aでは、紫外線量の少ない方向に顔の向きを誘導する情報を表示してもよい。 The display control unit 125i displays on the display 119 text information 119a warning that the ultraviolet rays are strong, an ultraviolet mark 119b indicating the direction in which the strong ultraviolet rays are emitted, and an arrow 119c indicating the irradiation direction of the sunlight. . In the example of FIG. 15, when the irradiation of ultraviolet rays due to reflection from the ground is strong, such as asphalt or a ski resort, a direction different from the irradiation direction of sunlight, specifically, an ultraviolet mark on the running surface 119g of the road surface or the slope 119b is a virtual reality object. In the text information 119a, information may be displayed that guides the person to turn the face in a direction where the amount of ultraviolet rays is low.
 本実施形態では、地面からの照り返しのように、太陽光の照射方向とは異なる方向から強い紫外線を浴びている場合に、ユーザに太陽光とは異なる方向への紫外線の回避行動を促せるので、紫外線積算量Uの低減が期待できる。 In this embodiment, when the user is exposed to strong ultraviolet rays from a direction different from the irradiation direction of the sunlight, such as reflection from the ground, the user can be encouraged to avoid the ultraviolet rays in a direction different from the sunlight. , a reduction in the integrated amount of ultraviolet rays U can be expected.
(変形例3)
 紫外線解析部125cは、紫外線画像から紫外線量が少ない方向(例えば、同じ壁でも暗い場所)を推定してその向きに顔を向けるようにディスプレイ119に表示してもよい。
(Modification 3)
The ultraviolet analysis unit 125c may estimate a direction in which the amount of ultraviolet rays is small (for example, a dark place on the same wall) from the ultraviolet image, and display it on the display 119 so that the face is turned to that direction.
<第6実施形態>
 第6実施形態は、UV-A(紫外線A波)、UV-B(紫外線B波)を分離して、各々の数値で警告の種類を判断する実施形態である。UV-Bは短時間で日焼けをしやすい特性があるが、季節によりUV-A、UV-Bが強い時期が各々違う。そこで、実際に計測、季節により配分値を決める。
<Sixth Embodiment>
The sixth embodiment is an embodiment that separates UV-A (ultraviolet A wave) and UV-B (ultraviolet B wave) and determines the type of warning based on each numerical value. UV-B has the characteristic of making it easy to get sunburned in a short period of time, but the seasons when UV-A and UV-B are strong differ. Therefore, the allocation value is decided according to the actual measurement and the season.
 図16は、第6実施形態に係る紫外線監視システムの処理の流れを示すフローチャートである。 FIG. 16 is a flow chart showing the processing flow of the ultraviolet monitoring system according to the sixth embodiment.
 ステップS02において、紫外線解析部125cは、右紫外線センサ131、左紫外線センサ132、正面紫外線センサ133が検出した紫外線に対して周波数解析を行う。そしてセンサごとにUV-Aの周波数に属する計測値とUV-Bの周波数に属する計測値を求めて積算量を演算する。これにより、センサごとにUV-A、UV-Bの各積算量を求める。 In step S02, the ultraviolet analysis unit 125c performs frequency analysis on the ultraviolet rays detected by the right ultraviolet sensor 131, the left ultraviolet sensor 132, and the front ultraviolet sensor 133. Then, a measured value belonging to the UV-A frequency and a measured value belonging to the UV-B frequency are obtained for each sensor to calculate an integrated amount. As a result, integrated amounts of UV-A and UV-B are obtained for each sensor.
 ステップS03では、紫外線解析部125cはUV-A、UV-Bの積算量を合計した紫外線積算量Uを積算量上限値N2と比較する。肯定であれば警告を表示する(S04)。 In step S03, the UV analysis unit 125c compares the UV integrated amount U, which is the sum of the UV-A and UV-B integrated amounts, with the integrated amount upper limit value N2. If the result is affirmative, a warning is displayed (S04).
 否定の場合、紫外線解析部125cは、予め設定されたUV-A積算量上限値N2Aと、UV-A積算量UAとを比較する。紫外線積算量Uが積算量上限値N2未満であっても(S02:No)、UV-A積算量UAがUV-A積算量上限値N2A以上であれば(S41:Yes)、警告を表示する(S04)。 If not, the UV analysis unit 125c compares the UV-A integrated amount upper limit value N2A set in advance with the UV-A integrated amount UA. Even if the UV integrated amount U is less than the integrated amount upper limit N2 (S02: No), if the UV-A integrated amount UA is equal to or greater than the UV-A integrated amount upper limit N2A (S41: Yes), a warning is displayed. (S04).
 このように、本実施形態では、紫外線積算量Uが積算量上限値N2未満であっても、UV-AがUV-A積算量上限値N2A以上であれば警告を発するので、より危険度が高いUV-Aに着目して紫外線の監視が行える。 As described above, in the present embodiment, even if the UV integrated amount U is less than the integrated amount upper limit value N2, a warning is issued if the UV-A is equal to or greater than the UV-A integrated amount upper limit value N2A. Ultraviolet monitoring can be performed by focusing on high UV-A.
<第7実施形態>
 第7実施形態は、太陽光の方向と地図情報から、目的地までのルートを通過した場合に浴びる紫外線量を予測する実施形態である。
<Seventh Embodiment>
The seventh embodiment is an embodiment for predicting the amount of ultraviolet rays that the vehicle will be exposed to when passing through the route to the destination from the direction of sunlight and map information.
 図17は、第7実施形態に係る紫外線監視システムの処理の流れを示すフローチャートである。 FIG. 17 is a flowchart showing the processing flow of the ultraviolet monitoring system according to the seventh embodiment.
 第7実施形態では、上記第1~第6実施形態で説明した紫外線監視処理と並行して、下記で述べるステップS51~S56のナビゲーション処理を並行して実行する。 In the seventh embodiment, navigation processing of steps S51 to S56 described below is executed in parallel with the ultraviolet monitoring processing described in the first to sixth embodiments.
 まず、ステップS01にて積算量下限値N1、積算量上限値N2を設定する(S01)。 First, in step S01, an integrated amount lower limit value N1 and an integrated amount upper limit value N2 are set (S01).
 その後、ステップS02からステップS05の紫外線監視処理を実行する。なお、ステップS02では、次回のナビゲーション処理に備えて、計測データ取得部125aがGPSセンサ118から取得した計測地点の位置情報と、RTC134から取得した計測日時の時刻情報とを計測値に付加して(紐づけて)計測データ記憶部128aに記憶する。 After that, the ultraviolet monitoring process from step S02 to step S05 is executed. In step S02, in preparation for the next navigation process, the measurement data acquisition unit 125a adds the position information of the measurement point acquired from the GPS sensor 118 and the time information of the measurement date and time acquired from the RTC 134 to the measurement value. It is stored (associated) in the measurement data storage unit 128a.
 ナビゲーション処理が起動するまでは(S51:No)待機する。 Wait until the navigation process starts (S51: No).
 外出前、ユーザがナビゲーション処理を起動させる、例えばナビゲーションアプリアイコンをタップしてナビゲーション部125eを起動させ(S51:Yes)、現在地と目的地を入力する(S52)。 Before going out, the user activates the navigation process, for example, taps the navigation application icon to activate the navigation unit 125e (S51: Yes), and inputs the current location and destination (S52).
 ナビゲーション部125eは現在地から目的地までのルートを検索する。行動解析部125fは、計測データ記憶部128aを検索し、各ルート上の地点に紐づけられた計測データを抽出し、そのうち、出発時刻から到着時刻に含まれる計測データを更に抽出する。そして、抽出した計測データに含まれる計測値を積算して各ルートを通ったときの紫外線積算量の予測値を演算する(S53)。 The navigation unit 125e searches for a route from the current location to the destination. The behavior analysis unit 125f searches the measurement data storage unit 128a, extracts measurement data linked to points on each route, and further extracts measurement data included from the departure time to the arrival time. Then, the measurement values included in the extracted measurement data are integrated to calculate the predicted value of the integrated amount of ultraviolet rays when each route is passed (S53).
 ナビゲーション部125eは、少なくとも1つ以上のルートに行動解析部125fが算出した当該ルートの紫外線量を付記してディスプレイ119に表示する(S54)。 The navigation unit 125e displays on the display 119 at least one or more routes with the amount of UV light calculated by the behavior analysis unit 125f added to the route (S54).
 ユーザがナビゲーションの開始の入力指示をすると(S55:Yes)、ナビゲーション部125eはGPSセンサ118から現在位置を受信して現在地を更新する(S56)。その後、ナビゲーションアプリを停止するまでは(S57:No)、現在地の更新を継続する。 When the user gives an input instruction to start navigation (S55: Yes), the navigation unit 125e receives the current position from the GPS sensor 118 and updates the current position (S56). After that, the update of the current location is continued until the navigation application is stopped (S57: No).
 ユーザがナビゲーションの開始しない場合(S55:No)、又はユーザがナビゲーションアプリの停止を入力した場合は(S57:Yes)、ナビゲーションアプリを停止してステップS51へ戻る。 If the user does not start navigation (S55: No), or if the user inputs to stop the navigation app (S57: Yes), stop the navigation app and return to step S51.
 本実施形態によれば、過去にした計測場所及び計測時刻に紐づけられた紫外線の計測値を記憶しておき、目的地へのルートの検索指示を受け付けるとルートを探索する。そして行動解析部125fが過去の計測データを参照して探索されたルートを通ったときに浴びる紫外線量の予測値を演算して提示する。これをみてユーザは紫外線量を考慮してルートを選択できる。 According to this embodiment, the measured values of ultraviolet rays linked to past measurement locations and measurement times are stored, and a route is searched when an instruction to search for a route to a destination is received. Then, the behavior analysis unit 125f refers to the past measurement data, calculates and presents a predicted value of the amount of ultraviolet rays that the driver will be exposed to when the searched route is taken. Seeing this, the user can select a route in consideration of the amount of ultraviolet rays.
 紫外線量は建物の高さや周囲からの太陽光の反射などにより計測値が変わるので、単に地図情報をもとに積算しても実際の紫外線量とから大きく外れる。これに対し、本実施形態では過去の行動履歴を基に各ルートの紫外線量を積算するので、より実態に即した紫外線量の予測が可能となる。  Since the amount of UV rays varies depending on the height of the building and the reflection of sunlight from the surroundings, even if it is simply calculated based on the map information, it will deviate greatly from the actual amount of UV rays. On the other hand, in the present embodiment, since the amount of ultraviolet rays for each route is integrated based on the past action history, it is possible to predict the amount of ultraviolet rays that is more realistic.
 以上、本発明者によってなされた発明をその実施形態に基づき具体的に説明したが、本発明は前記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変化可能であることは言うまでもない。 The invention made by the present inventor has been specifically described above based on the embodiment, but the present invention is not limited to the above embodiment, and various changes can be made without departing from the gist of the invention. Needless to say.
 例えば、インカメラ112でユーザの目の開閉状態を検出し、ユーザが戸外や窓辺のように比較的紫外線量が高いところで昼寝をし、ユーザが寝ている時に所定以上の紫外線量を検知した場合は、警告の通知形態を表示から音声の出力やバイブレータ135による振動に変更してもよい。 For example, when the in-camera 112 detects whether the user's eyes are open or closed, the user takes a nap in a place where the amount of ultraviolet rays is relatively high, such as outdoors or near a window, and the amount of ultraviolet rays above a predetermined level is detected while the user is sleeping. may change the notification form of the warning from display to voice output or vibration by the vibrator 135 .
 また、警告内容は、積算量上限値N2の比較等、紫外線量の超過又は超過が予測される場合だけではなく、ユーザが日焼けしたいときに適切なところで止めておきたいときにも使用できる。例えば、所望する紫外線量を入力してその値と紫外線積算量Uとを比較した結果に基づいて警告を発してもよい。 In addition, the content of the warning can be used not only when the amount of ultraviolet rays is exceeded or is predicted to be exceeded, such as when comparing the upper limit value N2 of the integrated amount, but also when the user wants to get a tan and want to stop at an appropriate point. For example, a warning may be issued based on the result of inputting a desired amount of ultraviolet rays and comparing that value with the accumulated amount of ultraviolet rays U. FIG.
 また、警告内容として、積算量上限値N2の比較等、紫外線量の超過又は超過が予測される場合だけではなく、HMD10による日焼け跡が残らないように頭にずらすようなガイダンスを出力してもよい。その場合は、例えば積算量上限値N2の半値を超えたり、予め定めた紫外線の曝露時間を超えた場合に、HMD10の位置をずらすガイダンスを出力するとよい。 In addition, as the content of the warning, not only when the amount of ultraviolet rays exceeds or is predicted to exceed, such as comparing the upper limit value N2 of the integrated amount, but also guidance such as shifting to the head so as not to leave a sunburn mark by the HMD 10 may be output. good. In this case, guidance for shifting the position of the HMD 10 may be output when, for example, the half value of the integrated amount upper limit value N2 is exceeded or the predetermined ultraviolet exposure time is exceeded.
 またHMD10に限らず、他のウェアラブル端末に紫外線センサを搭載し、ユーザの身体に近接して本実施形態を実現してもよい。 In addition to the HMD 10, the present embodiment may be realized by mounting an ultraviolet sensor on another wearable terminal and placing it in close proximity to the user's body.
 好ましくはユーザの顔付近に紫外線センサを保持できるフレームを有するウェアラブル端末であるとよい。  Preferably, it is a wearable terminal that has a frame that can hold an ultraviolet sensor near the user's face.
 更に好ましくは、紫外線量が増加した際の警告情報を出力する出力器、例えばスピーカやバイブレータ、ディスプレイを有するウェアラブル端末であるとよい。 More preferably, it is a wearable terminal having an output device that outputs warning information when the amount of ultraviolet rays increases, such as a speaker, vibrator, or display.
 代表的な例として、スマートグラス、ワイヤレスイヤフォン、ワイヤレスヘッドフォン、ワイヤレスマイクがある。また、スマートウォッチやスマートフォンは顔に近接させづらいものの、顔からスマートウォッチやスマートフォンを身に着ける部位までの距離を測距センサ113で計測し、検出した距離で紫外線の計測値を補正することで、本実施形態に好適なウェアラブル端末として用いることができる。 Typical examples include smart glasses, wireless earphones, wireless headphones, and wireless microphones. In addition, although it is difficult to bring a smartwatch or smartphone close to the face, the distance from the face to the part where the smartwatch or smartphone is worn is measured by the distance sensor 113, and the measured value of ultraviolet rays is corrected by the detected distance. , can be used as a wearable terminal suitable for this embodiment.
 本実施形態に係るウェアラブル端末は、少なくとも1つ以上の紫外線センサと、警告を出力する出力器と、ウェアラブル端末を装着するユーザの顔付近に紫外線センサを保持し、かつ前記出力器を保持するフレームと、メモリ及びプロセッサを含む制御装置との間で通信を行う通信器と、を備え、制御装置との間でデータの送受信を行ってもよい。すなわち、紫外線センサを保持するフレームと制御装置とを別体に構成してもよい。 A wearable terminal according to this embodiment includes at least one ultraviolet sensor, an output device that outputs a warning, and a frame that holds the ultraviolet sensor near the face of a user wearing the wearable terminal and that holds the output device. and a communicator for communicating with a control device including a memory and a processor to transmit and receive data to and from the control device. That is, the frame holding the ultraviolet sensor and the control device may be configured separately.
 そして、ウェアラブル端末により顔付近に紫外線センサを保持し、顔に当たる紫外線量を計測し、計測値を例えば近距離無線通信を用いてスマートフォンなどの制御装置におくり、紫外線量を監視してもよい。警告は、ウェアラブル端末から出力してもよいし、制御装置を備えたデバイス、例えばスマートフォン出力してもよい。 Then, the wearable terminal may hold an ultraviolet sensor near the face, measure the amount of ultraviolet rays hitting the face, send the measured value to a control device such as a smartphone using short-range wireless communication, and monitor the amount of ultraviolet rays. A warning may be output from a wearable terminal, or may be output from a device equipped with a control device, such as a smart phone.
 また上記各実施形態では、ユーザの顔への紫外線照射量の監視を行ったが、顔だけでなく、ユーザの顔を含む他の部分の紫外線照射量を監視してもよい。 In addition, in each of the above-described embodiments, the ultraviolet irradiation amount of the user's face is monitored, but the ultraviolet irradiation amount of other parts including the user's face may be monitored in addition to the face.
 例えば、外出時にアウトカメラ111で鏡に映ったユーザ像を撮像し画像解析部125hがその画像に対して顔認識処理及び肌色検出処理を行う。 For example, when the user goes out, the out-camera 111 captures the image of the user reflected in the mirror, and the image analysis unit 125h performs face recognition processing and skin color detection processing on the image.
 次いで画像解析部125hは、ユーザの肌が露出している面積S1及び顔の面積S2を算出して紫外線解析部125cに出力する。紫外線解析部125cは、紫外線計測値を(S1/S2)倍に換算して紫外線監視処理を行う。これにより、HMD10で顔近く紫外線積算量Uを計測し、それを露出面積比(S1/S2)で修正をすることで、ユーザの体領域を含めた紫外線監視処理が行える。 Next, the image analysis unit 125h calculates the exposed skin area S1 and the face area S2 of the user and outputs them to the ultraviolet analysis unit 125c. The ultraviolet analysis unit 125c performs ultraviolet monitoring processing by converting the ultraviolet measurement value to (S1/S2) times. As a result, the HMD 10 measures the UV integrated amount U near the face and corrects it by the exposure area ratio (S1/S2), thereby performing UV monitoring processing including the user's body area.
 前記実施形態は、以下の形態を含む。
 (付記1)
 ヘッドマウントディスプレイであって、
 少なくとも1つ以上の紫外線センサと、
 ディスプレイと、
 メモリと、
 プロセッサと、を備え、
 前記プロセッサは、
 前記紫外線センサが検出した紫外線の計測値を前記メモリに記憶し、
 前記計測値を積算して紫外線積算量を演算し、
 前記紫外線積算量と予め定めた所定の計測期間内にユーザが浴びる紫外線の積算量の許容限界値である積算量上限値とを比較し、
 前記紫外線積算量が前記積算量上限値以上に増加したと判断すると、前記ディスプレイに対して警告の表示制御を行う、
 ヘッドマウントディスプレイ。
The embodiment includes the following forms.
(Appendix 1)
a head-mounted display,
at least one ultraviolet sensor;
a display;
memory;
a processor;
The processor
storing the measured value of ultraviolet rays detected by the ultraviolet sensor in the memory;
Integrating the measured values to calculate an integrated amount of ultraviolet rays,
comparing the cumulative amount of ultraviolet rays with an upper limit cumulative amount, which is a permissible limit value of the cumulative amount of ultraviolet rays that the user is exposed to within a predetermined measurement period;
When it is determined that the integrated amount of ultraviolet rays has increased to the upper limit of the integrated amount or more, display control of a warning is performed on the display.
head mounted display.
 (付記2)
 ウェアラブル端末であって、
 少なくとも1つ以上の紫外線センサと、
 警告を出力する出力器と、
 ウェアラブル端末を装着するユーザの顔付近に前記紫外線センサを保持し、かつ前記出力器を保持するフレームと、
 メモリ及びプロセッサを含む制御装置との間で通信を行う通信器と、を備え、
 前記制御装置は、
 前記紫外線センサが検出した紫外線の計測値を前記メモリに記憶し、
 前記計測値を積算して紫外線積算量を演算し、
 前記紫外線積算量と予め定めた所定の計測期間内にユーザが浴びる紫外線の積算量の許容限界値である積算量上限値とを比較し、
 前記紫外線積算量が前記積算量上限値以上に増加したと判断すると、警告情報を前記出力器に送信し、
 前記出力器は、受信した前記警告情報を出力する、
 ウェアラブル端末。
(Appendix 2)
A wearable device,
at least one ultraviolet sensor;
an output device that outputs a warning;
a frame holding the ultraviolet sensor near the face of a user wearing the wearable terminal and holding the output device;
a communicator that communicates with a controller that includes a memory and a processor;
The control device is
storing the measured value of ultraviolet rays detected by the ultraviolet sensor in the memory;
Integrating the measured values to calculate an integrated amount of ultraviolet rays,
comparing the cumulative amount of ultraviolet rays with an upper limit cumulative amount, which is a permissible limit value of the cumulative amount of ultraviolet rays that the user is exposed to within a predetermined measurement period;
when it is determined that the integrated amount of ultraviolet rays has increased to the upper limit of the integrated amount or more, sending warning information to the output device;
The output device outputs the received warning information,
wearable device.
 (付記3)
 少なくとも1つ以上の紫外線センサと、メモリと、プロセッサと、を備えたウェアラブル端末で実行される紫外線監視方法であって、
 前記プロセッサが、
 前記紫外線センサが検出した紫外線の計測値を前記メモリに記憶するステップと、
 前記計測値を積算して紫外線積算量を演算するステップと、
 前記紫外線積算量と予め定めた所定の計測期間内にユーザが浴びる紫外線の積算量の許容限界値である積算量上限値とを比較するステップと、
 前記紫外線積算量が前記積算量上限値以上に増加したと判断すると、警告の出力制御を行うステップと、
 を含む紫外線監視方法。
(Appendix 3)
An ultraviolet monitoring method performed by a wearable terminal comprising at least one or more ultraviolet sensors, a memory, and a processor,
the processor
a step of storing the measured value of ultraviolet rays detected by the ultraviolet sensor in the memory;
a step of calculating an integrated amount of ultraviolet rays by integrating the measured values;
a step of comparing the integrated amount of ultraviolet rays with an integrated amount upper limit value that is a permissible limit value of the accumulated amount of ultraviolet rays that the user is exposed to within a predetermined measurement period;
a step of controlling output of a warning when it is determined that the integrated amount of ultraviolet rays has increased to the upper limit of the integrated amount or more;
Ultraviolet monitoring method comprising:
2       :サーバ
9       :通信ネットワーク
10      :HMD
11      :フレーム
111     :アウトカメラ
112     :インカメラ
113     :測距センサ
114     :照度センサ
115     :加速度センサ
116     :ジャイロセンサ
117     :方位センサ
118     :GPSセンサ
119     :ディスプレイ
119a    :テキスト情報
119b    :紫外線マーク
119c    :矢印
119g    :滑走面
119r    :現実世界
120     :ネットワーク通信器
121     :マイク
122     :スピーカ
123     :アンテナ
124     :タイマー
125     :プロセッサ
125a    :計測データ取得部
125b    :目標値設定部
125c    :紫外線解析部
125d    :太陽光方向解析部
125e    :ナビゲーション部
125f    :行動解析部
125g    :入力音声処理部
125h    :画像解析部
125i    :表示制御部
125j    :出力音声処理部
126     :プログラム
127     :データ
128     :メモリ
128a    :計測データ記憶部
128b    :目標値記憶部
128c    :地図情報記憶部
130     :電源ボタン
131     :右紫外線センサ
132     :左紫外線センサ
133     :正面紫外線センサ
134     :RTC
135     :バイブレータ
140     :バス
2: Server 9: Communication network 10: HMD
11 : Frame 111 : Out camera 112 : In camera 113 : Ranging sensor 114 : Illuminance sensor 115 : Acceleration sensor 116 : Gyro sensor 117 : Orientation sensor 118 : GPS sensor 119 : Display 119a : Text information 119b : Ultraviolet mark 119c : Arrow 119g: sliding surface 119r: real world 120: network communication device 121: microphone 122: speaker 123: antenna 124: timer 125: processor 125a: measurement data acquisition unit 125b: target value setting unit 125c: ultraviolet analysis unit 125d: sunlight direction Analysis unit 125e: Navigation unit 125f: Behavior analysis unit 125g: Input sound processing unit 125h: Image analysis unit 125i: Display control unit 125j: Output sound processing unit 126: Program 127: Data 128: Memory 128a: Measurement data storage unit 128b: Target value storage unit 128c: map information storage unit 130: power button 131: right ultraviolet sensor 132: left ultraviolet sensor 133: front ultraviolet sensor 134: RTC
135: Vibrator 140: Bus

Claims (9)

  1.  ヘッドマウントディスプレイであって、
     少なくとも1つ以上の紫外線センサと、
     ディスプレイと、
     メモリと、
     プロセッサと、を備え、
     前記プロセッサは、
     前記紫外線センサが検出した紫外線の計測値を前記メモリに記憶し、
     前記計測値を積算して紫外線積算量を演算し、
     前記紫外線積算量と予め定めた所定の計測期間内にユーザが浴びる紫外線の積算量の許容限界値である積算量上限値とを比較し、
     前記紫外線積算量が前記積算量上限値以上に増加したと判断すると、前記ディスプレイに対して警告の表示制御を行う、
     ヘッドマウントディスプレイ。
    a head-mounted display,
    at least one ultraviolet sensor;
    a display;
    memory;
    a processor;
    The processor
    storing the measured value of ultraviolet rays detected by the ultraviolet sensor in the memory;
    Integrating the measured values to calculate an integrated amount of ultraviolet rays,
    comparing the cumulative amount of ultraviolet rays with an upper limit cumulative amount, which is a permissible limit value of the cumulative amount of ultraviolet rays that the user is exposed to within a predetermined measurement period;
    When it is determined that the integrated amount of ultraviolet rays has increased to the upper limit of the integrated amount or more, display control of a warning is performed on the display.
    head mounted display.
  2.  請求項1に記載のヘッドマウントディスプレイであって、
     前記プロセッサは、前記メモリに記憶された過去の紫外線の計測値を基に、計測期間中の紫外線積算量の時間推移を示す推定曲線を演算し、
     前記紫外線センサから取得した前記計測値と、前記推定曲線における計測時点の紫外線推定量とを比較し、
     前記計測値が前記紫外線推定量に対して予め定めた乖離許容割合以上に増加したと判断すると、前記警告の表示制御を行う、
     ヘッドマウントディスプレイ。
    The head mounted display according to claim 1,
    The processor calculates an estimated curve showing the temporal transition of the integrated amount of ultraviolet rays during the measurement period based on the past measured values of ultraviolet rays stored in the memory,
    Compare the measured value obtained from the ultraviolet sensor and the estimated amount of ultraviolet light at the time of measurement on the estimated curve,
    When it is determined that the measured value has increased by a predetermined allowable divergence ratio or more with respect to the estimated amount of ultraviolet rays, display control of the warning is performed.
    head mounted display.
  3.  請求項1に記載のヘッドマウントディスプレイであって、
     前記計測期間は1日であって、
     前記プロセッサは、計測対象日よりも過去の複数日の紫外線積算量を基に、前記計測対象日の1日の積算量上限値である変動積算量上限値を決定し、
     前記計測対象日に前記紫外線センサから取得した前記計測値の積算量と前記変動積算量上限値とを比較し、
     前記計測値の積算量が前記変動積算量上限値以上に増加したと判断すると、前記警告の表示制御を行う、
     ヘッドマウントディスプレイ。
    The head mounted display according to claim 1,
    The measurement period is one day,
    The processor determines an upper limit value of integrated amount of change, which is an upper limit value of integrated amount for one day on the measurement target day, based on the accumulated ultraviolet light amount for a plurality of days past the measurement target day,
    Comparing the integrated amount of the measured value obtained from the ultraviolet sensor on the measurement target day and the upper limit of the integrated fluctuation amount,
    When it is determined that the integrated amount of the measured value has increased to the upper limit of the integrated variation amount or more, display control of the warning is performed.
    head mounted display.
  4.  請求項1に記載のヘッドマウントディスプレイであって、
     前記ヘッドマウントディスプレイは、複数の前記紫外線センサを備え、
     前記プロセッサは、前記複数の紫外線センサの其々から取得した前記計測値に基づいて前記ヘッドマウントディスプレイにあたる紫外線の強度が相対的に強い照射方向を決定し、
     前記ディスプレイに前記照射方向を示す仮想現実オブジェクトを表示する、
     ヘッドマウントディスプレイ。
    The head mounted display according to claim 1,
    The head mounted display comprises a plurality of the ultraviolet sensors,
    The processor determines an irradiation direction in which the intensity of ultraviolet rays striking the head-mounted display is relatively strong based on the measured values obtained from each of the plurality of ultraviolet sensors;
    displaying a virtual reality object indicating the irradiation direction on the display;
    head mounted display.
  5.  請求項4に記載のヘッドマウントディスプレイであって、
     前記プロセッサは、太陽の方向を検出し、
     前記ディスプレイに前記太陽の方向を示す仮想現実オブジェクトを更に表示する、
     ヘッドマウントディスプレイ。
    The head mounted display according to claim 4,
    the processor detects the direction of the sun;
    further displaying a virtual reality object indicating the direction of the sun on the display;
    head mounted display.
  6.  請求項1に記載のヘッドマウントディスプレイであって、
     前記プロセッサは、前記紫外線センサが検出した紫外線に対して周波数解析を行い、
     紫外線A波及び紫外線B波を弁別して紫外線A波の積算量及び紫外線B波の積算量を演算し、
     前記紫外線A波の積算量と予め定めた紫外線A波の積算量上限値とを比較し、
     前記紫外線A波の積算量が前記紫外線A波の積算量上限値以上に増加したと判断すると、前記警告の表示制御を行う、
     ヘッドマウントディスプレイ。
    The head mounted display according to claim 1,
    The processor performs frequency analysis on the ultraviolet rays detected by the ultraviolet sensor,
    calculating the integrated amount of ultraviolet A waves and the integrated amount of ultraviolet B waves by discriminating between ultraviolet A waves and ultraviolet B waves;
    Comparing the integrated amount of the ultraviolet A wave with a predetermined upper limit of the integrated amount of the ultraviolet A wave,
    When it is determined that the integrated amount of the ultraviolet A wave has increased to the upper limit of the integrated amount of the ultraviolet A wave or more, the display control of the warning is performed.
    head mounted display.
  7.  請求項1に記載のヘッドマウントディスプレイであって、
     GPSセンサと、
     時計回路と、を更に備え、
     前記プロセッサは、前記計測値を計測した場所の位置情報を前記GPSセンサから受信し、前記計測値を計測した時刻情報を前記時計回路から受信し、前記計測値に前記位置情報及び前記時刻情報を紐づけた計測データを前記メモリに記憶し、
     現在地及び目的地の入力及び前記現在地から前記目的地までのルートの検索指示を受け付けると、ルートの探索を実行し、前記計測データに基づいて探索されたルートを通った場合の紫外線積算量の予測値を演算して、前記探索されたルートと共に前記ディスプレイに表示する、
     ヘッドマウントディスプレイ。
    The head mounted display according to claim 1,
    a GPS sensor;
    a clock circuit;
    The processor receives from the GPS sensor position information of the place where the measured value was measured, receives time information at which the measured value was measured from the clock circuit, and adds the position information and the time information to the measured value. Store the linked measurement data in the memory,
    When the input of the current location and the destination and the search instruction of the route from the current location to the destination are received, the route is searched, and based on the measurement data, the integrated amount of ultraviolet rays is predicted when the searched route is taken. calculating a value and displaying it on the display along with the searched route;
    head mounted display.
  8.  ウェアラブル端末であって、
     少なくとも1つ以上の紫外線センサと、
     警告を出力する出力器と、
     ウェアラブル端末を装着するユーザの顔付近に前記紫外線センサを保持し、かつ前記出力器を保持するフレームと、
     メモリ及びプロセッサを含む制御装置との間で通信を行う通信器と、を備え、
     前記制御装置は、
     前記紫外線センサが検出した紫外線の計測値を前記メモリに記憶し、
     前記計測値を積算して紫外線積算量を演算し、
     前記紫外線積算量と予め定めた所定の計測期間内にユーザが浴びる紫外線の積算量の許容限界値である積算量上限値とを比較し、
     前記紫外線積算量が前記積算量上限値以上に増加したと判断すると、警告情報を前記出力器に送信し、
     前記出力器は、受信した前記警告情報を出力する、
     ウェアラブル端末。
    A wearable device,
    at least one ultraviolet sensor;
    an output device that outputs a warning;
    a frame holding the ultraviolet sensor near the face of a user wearing the wearable terminal and holding the output device;
    a communicator that communicates with a controller that includes a memory and a processor;
    The control device is
    storing the measured value of ultraviolet rays detected by the ultraviolet sensor in the memory;
    Integrating the measured values to calculate an integrated amount of ultraviolet rays,
    comparing the cumulative amount of ultraviolet rays with an upper limit cumulative amount, which is a permissible limit value of the cumulative amount of ultraviolet rays that the user is exposed to within a predetermined measurement period;
    when it is determined that the integrated amount of ultraviolet rays has increased to the upper limit of the integrated amount or more, sending warning information to the output device;
    The output device outputs the received warning information,
    wearable device.
  9.  少なくとも1つ以上の紫外線センサと、メモリと、プロセッサと、を備えたウェアラブル端末で実行される紫外線監視方法であって、
     前記プロセッサが、
     前記紫外線センサが検出した紫外線の計測値を前記メモリに記憶するステップと、
     前記計測値を積算して紫外線積算量を演算するステップと、
     前記紫外線積算量と予め定めた所定の計測期間内にユーザが浴びる紫外線の積算量の許容限界値である積算量上限値とを比較するステップと、
     前記紫外線積算量が前記積算量上限値以上に増加したと判断すると、警告の出力制御を行うステップと、
     を含む紫外線監視方法。
    An ultraviolet monitoring method performed by a wearable terminal comprising at least one or more ultraviolet sensors, a memory, and a processor,
    the processor
    a step of storing the measured value of ultraviolet rays detected by the ultraviolet sensor in the memory;
    a step of calculating an integrated amount of ultraviolet rays by integrating the measured values;
    a step of comparing the integrated amount of ultraviolet rays with an integrated amount upper limit value that is a permissible limit value of the accumulated amount of ultraviolet rays that the user is exposed to within a predetermined measurement period;
    a step of controlling output of a warning when it is determined that the integrated amount of ultraviolet rays has increased to the upper limit of the integrated amount or more;
    Ultraviolet monitoring method comprising:
PCT/JP2022/005861 2022-02-15 2022-02-15 Head-mounted display, wearable terminal, and uv monitoring method WO2023157057A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/005861 WO2023157057A1 (en) 2022-02-15 2022-02-15 Head-mounted display, wearable terminal, and uv monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/005861 WO2023157057A1 (en) 2022-02-15 2022-02-15 Head-mounted display, wearable terminal, and uv monitoring method

Publications (1)

Publication Number Publication Date
WO2023157057A1 true WO2023157057A1 (en) 2023-08-24

Family

ID=87577731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005861 WO2023157057A1 (en) 2022-02-15 2022-02-15 Head-mounted display, wearable terminal, and uv monitoring method

Country Status (1)

Country Link
WO (1) WO2023157057A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262426A (en) * 1988-04-13 1989-10-19 Yamatake Honeywell Co Ltd Ultraviolet-ray quantity integrating method for sunlight
US5151600A (en) * 1992-04-13 1992-09-29 Reliant Laser Corporation Noseshade for monitoring exposure to ultraviolet radiation
JPH0719956A (en) * 1992-11-04 1995-01-20 Reliant Technol Inc Liquid crystal sunglasses that show excessive irradiation of ultraviolet ray
JP2002041959A (en) * 2000-07-28 2002-02-08 Fuji Xerox Co Ltd System for advising and obtaining skin care method
US20050078274A1 (en) * 2003-04-15 2005-04-14 Ipventure, Inc. Tethered electrical components for eyeglasses
US20090135003A1 (en) * 2007-11-28 2009-05-28 Motorola, Inc. Wireless sensor and system that determines exposure based on local conditions
WO2014045683A1 (en) * 2012-09-21 2014-03-27 ソニー株式会社 Control device and recording medium
JP2014202690A (en) * 2013-04-09 2014-10-27 ソニー株式会社 Navigation device and storage medium
US20170122655A1 (en) * 2015-10-28 2017-05-04 Sk Planet Co., Ltd. System and method for controlling temperature of user
JP2018109580A (en) * 2017-01-05 2018-07-12 セイコーエプソン株式会社 Ultraviolet ray measurement system
CN211857061U (en) * 2020-01-22 2020-11-03 Oppo广东移动通信有限公司 Head-mounted device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262426A (en) * 1988-04-13 1989-10-19 Yamatake Honeywell Co Ltd Ultraviolet-ray quantity integrating method for sunlight
US5151600A (en) * 1992-04-13 1992-09-29 Reliant Laser Corporation Noseshade for monitoring exposure to ultraviolet radiation
JPH0719956A (en) * 1992-11-04 1995-01-20 Reliant Technol Inc Liquid crystal sunglasses that show excessive irradiation of ultraviolet ray
JP2002041959A (en) * 2000-07-28 2002-02-08 Fuji Xerox Co Ltd System for advising and obtaining skin care method
US20050078274A1 (en) * 2003-04-15 2005-04-14 Ipventure, Inc. Tethered electrical components for eyeglasses
US20090135003A1 (en) * 2007-11-28 2009-05-28 Motorola, Inc. Wireless sensor and system that determines exposure based on local conditions
WO2014045683A1 (en) * 2012-09-21 2014-03-27 ソニー株式会社 Control device and recording medium
JP2014202690A (en) * 2013-04-09 2014-10-27 ソニー株式会社 Navigation device and storage medium
US20170122655A1 (en) * 2015-10-28 2017-05-04 Sk Planet Co., Ltd. System and method for controlling temperature of user
JP2018109580A (en) * 2017-01-05 2018-07-12 セイコーエプソン株式会社 Ultraviolet ray measurement system
CN211857061U (en) * 2020-01-22 2020-11-03 Oppo广东移动通信有限公司 Head-mounted device

Similar Documents

Publication Publication Date Title
JP7173126B2 (en) Information processing device, information processing method, and recording medium
JP6674791B2 (en) Congestion degree estimation method, number of persons estimation method, congestion degree estimation program, number of persons estimation program, and number of persons estimation system
US10204595B2 (en) Methods and devices for adjusting screen brightness
US9262696B2 (en) Image capture feedback
CN107111314B (en) Control system, control method, and storage medium
US20110222375A1 (en) Ultraviolet ray measuring apparatus and electronic wristwatch equipped with ultraviolet ray measuring function
EP2568266A1 (en) Mobile UV-intensity indicator
CN109166141A (en) Dangerous based reminding method, device, storage medium and mobile terminal
US11234656B2 (en) Information processing apparatus and information processing method
EP2410253A2 (en) Energy consumption management system and energy consumption management apparatus
US20110224925A1 (en) Altimeter
CN105682539A (en) Portable eye tracking device
US10209126B2 (en) Ultraviolet radiation monitoring apparatus, system having the same, and method thereof
CN103968824A (en) Method for discovering augmented reality target, and terminal
US9606357B2 (en) Image display device, image display method, storage medium, and image display system
CN106469288A (en) A kind of reminding method and terminal
JPWO2018061791A1 (en) Shading device, shading method, and program
EP3674854A1 (en) Information processing device, information processing method, and program
US20180247340A1 (en) Information processing device, evaluation method and program storage medium
WO2023157057A1 (en) Head-mounted display, wearable terminal, and uv monitoring method
US10782542B2 (en) Method for controlling an ophthalmic system on the basis of a measurement and information obtained by an external electronic device
CN112558777B (en) Screen on-off control method and device of wearable equipment and equipment
CN107580292B (en) Electronic device, selection control system, selection method, and recording medium
EP3759444B1 (en) A computer-implemented method and system for preventing sight deterioration caused by prolonged use of electronic visual displays in low-light conditions
KR20200041648A (en) System for analyzing state of guide dog

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926962

Country of ref document: EP

Kind code of ref document: A1