WO2023155610A1 - 径向流冷阱 - Google Patents

径向流冷阱 Download PDF

Info

Publication number
WO2023155610A1
WO2023155610A1 PCT/CN2022/143112 CN2022143112W WO2023155610A1 WO 2023155610 A1 WO2023155610 A1 WO 2023155610A1 CN 2022143112 W CN2022143112 W CN 2022143112W WO 2023155610 A1 WO2023155610 A1 WO 2023155610A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
end plate
housing
cold trap
exchange tubes
Prior art date
Application number
PCT/CN2022/143112
Other languages
English (en)
French (fr)
Inventor
卢允庄
王一田
Original Assignee
卢允庄
王一田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 卢允庄, 王一田 filed Critical 卢允庄
Publication of WO2023155610A1 publication Critical patent/WO2023155610A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D8/00Cold traps; Cold baffles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the invention relates to a cold trap, in particular to a radial flow cold trap.
  • a cold trap also known as a steam trap, is a heat exchange device that uses a low-temperature surface to desublimate a gas with a low saturated vapor pressure such as water vapor in a vacuum environment.
  • Cold traps are widely used in vacuum freeze-drying equipment, edible oil deodorization equipment, fatty acid fractionation equipment and petrochemical industry.
  • the structural forms of the cold trap mainly include coil type (including spiral coil type and serpentine coil type), tube type and plate type.
  • coil type including spiral coil type and serpentine coil type
  • tube type including tube type and plate type.
  • the shell and tube cold trap is widely used in large and medium-sized steam trapping equipment due to its low cost, convenient processing and maintenance.
  • the heat exchange tubes in the tube-and-tube cold trap are generally arranged equidistantly for the convenience of processing, and the adjacent heat exchange tubes are arranged in a regular triangle or rectangle, that is, every three adjacent heat exchange tubes in the two rows of heat exchange tubes Every four heat exchange tubes arranged in a regular triangle or adjacent to each other are arranged in a rectangle.
  • the airflow at the inlet end of the cold trap contains a large amount of steam. As the steam is gradually trapped during the flow process, the steam content in the airflow at the outlet end is very small. Taking the vacuum freeze drying process as an example, the flow rate of the airflow at the inlet end is usually that of the outlet end. Hundreds of times. However, the size of the cross-sectional area of the air flow channel of the current cold trap is basically the same along the flow direction, resulting in a large resistance of the air flow at the inlet end, and a large amount of waste of flow channel space at the outlet end.
  • the present disclosure provides a radial flow cold trap, which has a compact structural design, can reduce the occupied space, and can solve the problem of heat exchange area in the prior art.
  • the utilization rate is low, and the technical problems of ice blockage and large airflow resistance are easy to occur.
  • An embodiment of the present disclosure provides a radial flow cold trap, including:
  • the casing has an open end and a central axis passing through the open end, and the casing is provided with a first end plate and a second end plate opposite to each other, the first end plate and the second end
  • the surface of the plate is perpendicular to the central axis of the housing, and the line connecting the center of the first end plate and the center of the second end plate constitutes a first center line, and the first center line is connected to the center axis of the housing.
  • the central axis is parallel or coincident;
  • the heat exchange assembly is arranged in the housing, the heat exchange assembly includes a plurality of sets of heat exchange tube bundles, the heat exchange tube bundle includes a plurality of heat exchange tubes connected in series, and the two ends of the heat exchange tubes respectively pass through the The first end plate and the second end plate, the axes of the heat exchange tubes are parallel to the first centerline, and the axes of a plurality of the heat exchange tubes are symmetrically arranged radially with respect to the first centerline,
  • the heat exchange component is used to desublimate the condensable gas in the shell;
  • a manifold set which is arranged in the housing and connected to the inlet of the heat exchange assembly, is used to supply heat exchange medium to the heat exchange tubes of the heat exchange assembly;
  • a manifold set which is arranged in the housing and connected to the outlet of the heat exchange component, is used to discharge the heat exchange medium in the heat exchange tube of the heat exchange component;
  • An air collecting pipe the axis of which is on the first center line, one end of which is arranged between the first end plate and the second end plate, and the other end of which passes through the second end plate and communicates with the vacuum pump, and A plurality of inlet holes are opened on the tube wall of the gas collecting pipe, so that the gas in the casing flows through the heat exchange assembly in the radial direction, and the non-condensable gas is drawn into the The air collecting pipe is exhausted by the vacuum pump.
  • the number of the heat exchange tube bundles is 2M groups, M is an integer between 6 and 32, and multiple groups of the heat exchange tube bundles are arranged symmetrically with respect to the first central line.
  • the multiple sets of heat exchange tube bundles include two parts symmetrically arranged along a vertical plane passing through the first centerline, and each part includes M sets of heat exchange tube bundles.
  • each group of heat exchange tube bundles includes 2N heat exchange tubes, N is an integer between 4 and 24, and the 2N heat exchange tubes are divided into Two parts symmetrically arranged up and down on the horizontal plane, each part includes N heat exchange tubes, the N heat exchange tubes are radially arranged relative to the first center line, and the adjacent heat exchange tubes of each group of heat exchange tube bundles The ends are connected through elbows.
  • the heat exchange tubes are configured as metal circular tubes, and adjacent heat exchange tubes are connected through elbows; or
  • the heat exchange tube is configured as an annular finned tube or a spiral finned tube.
  • the heat exchange tubes are configured as U-shaped tubes, and adjacent heat exchange tubes are connected through elbows.
  • the housing includes a cylindrical body, the open end is located at the first end of the cylindrical body, and the second end of the cylindrical body is connected to a head or a flange,
  • the axis of the cylindrical body is configured as the housing central axis.
  • first end plate and the second end plate are square plates, and the first end plate and the second end plate are provided with a channel adapted to the heat exchange tube.
  • the second end plate is also provided with a through hole adapted to the air collecting pipe, and the second end plate is far away from the open end relative to the first end plate.
  • the branch manifold set includes a manifold support and a liquid inlet manifold, a liquid distributor, and a liquid branch pipe connected in sequence, the liquid branch pipe is connected to the inlet of the heat exchange component, and the liquid branch pipe is connected to the inlet of the heat exchange component.
  • the shell is provided with a heat exchange medium inlet communicating with the liquid inlet main pipe.
  • the collection manifold set includes a collection branch pipe, a collection header and a collection main pipe connected in sequence, the collection branch pipe is connected with the outlet of the heat exchange assembly, and the housing A heat exchange medium outlet communicated with the header is provided.
  • the beneficial effect of the embodiment of the present disclosure is that: the present disclosure adopts the heat exchange tubes arranged between the two end plates with the axis radially arranged relative to the first centerline and the axis coincides with the first centerline
  • the gas collection pipe, and the non-condensable gas in the shell is drawn out through the gas collection pipe by the vacuum pump, so that the gas flow containing steam flows inward in the radial direction from around the space surrounded by the two end plates in the radial flow cold trap, including
  • the air flow of the steam will not form an ice block on the inlet side of the heat exchange component; the flow channel is short and has no deflection, and the flow resistance is small; the heat exchange is uniform, there is no dead angle where the steam flow is not smooth in the heat exchange component, and the heat exchange area is fully utilized , high gas capture efficiency, can save energy consumption.
  • the structural design of the application is compact, and the distance between adjacent heat exchange tubes of each group of heat exchange tube bundles can be very small, so that the space occupied by the radial flow cold trap is small, and it can solve the low utilization rate of the heat exchange area in the prior art, which is easy to generate ice. Blockage and large technical problems of airflow resistance.
  • FIG. 1 is a cross-sectional view of a radial flow cold trap according to an embodiment of the present disclosure
  • FIG. 2 is a side view of a radial flow cold trap according to an embodiment of the present disclosure
  • FIG. 3 is an axial schematic diagram of a partial structure of a radial flow cold trap according to an embodiment of the present disclosure
  • Fig. 4 is a schematic structural diagram of a heat exchange assembly of a radial flow cold trap according to an embodiment of the present disclosure.
  • a specific device when it is described that a specific device is located between a first device and a second device, there may or may not be an intervening device between the specific device and the first device or the second device.
  • the specific device When it is described that a specific device is connected to other devices, the specific device may be directly connected to the other device without an intervening device, or may not be directly connected to the other device but has an intervening device.
  • An embodiment of the present disclosure provides a radial flow cold trap. As shown in FIG. 1 to FIG. And air collecting pipe 5.
  • the housing 1 has an open end 11 and a central axis passing through the open end 11, and the housing 1 is provided with a first end plate 12 and a second end plate 13 opposite to each other, the first end plate 12 and the surface of the second end plate 13 are perpendicular to the central axis, and the connecting line between the center of the first end plate 12 and the center of the second end plate 13 constitutes the first center line 1-1, The first central line coincides with the central axis of the housing.
  • the heat exchange assembly 2 is arranged in the housing 1, the heat exchange assembly 2 includes multiple sets of heat exchange tube bundles, the heat exchange tube bundles include a plurality of heat exchange tubes 21 connected in series, and the plurality of heat exchange tubes 21
  • the axis is parallel to the first center line, and the two ends of the plurality of heat exchange tubes 21 pass through the first end plate 12 and the second end plate 13 respectively, and the heat exchange assembly 2 is used to make the The condensable gas in the casing 1 desublimates.
  • the distribution manifold set 3 is arranged in the housing 1 and connected to the inlet of the heat exchange assembly 2 , for supplying heat exchange medium to the heat exchange tubes 21 of the heat exchange assembly 2 .
  • the manifold set 4 is arranged in the casing 1 and connected to the outlet of the heat exchange assembly 2 for discharging the heat exchange medium in the heat exchange tube 21 of the heat exchange assembly 2 .
  • the air collecting pipe 5 is arranged in the housing 1 and its axis is on the first centerline.
  • the pipe wall of the air collecting pipe 5 is provided with a plurality of air inlet holes 51, and one end of the air collecting pipe 5 is arranged on the Between the first end plate and the second end plate, the other end passes through the second end plate and communicates with the vacuum pump, so that the gas in the housing 1 flows through the heat exchange assembly 2 in the radial direction and does not condense Inert gas is sucked into the gas collecting pipe 5 through the inlet hole 51 and discharged by the vacuum pump.
  • the direction of the arrow shown in Fig. 1 is the flow direction of the gas
  • the above-mentioned housing 1 is in sealing communication with the chamber to be dried through its open end 11, and the radial flow cold trap is used to trap the gas to be dried in the chamber to be dried.
  • Condensable gas, the vacuum pump connected to the radial flow cold trap is located at the exhaust port of the radial flow cold trap, and the above chamber to be dried is located at the inlet port of the radial flow cold trap.
  • the casing 1 may be cylindrical, and the outer wall of the casing 1 may be provided with reinforcing ribs 8 , and the bottom of the casing 1 may be provided with a casing bracket 7 .
  • a heat exchange support 6 for supporting the heat exchange assembly 2 can be provided in the housing 1, and multiple sets of heat exchange tube bundles are arranged in parallel, and each set of heat exchange tube bundles is connected with the splitter manifold group 3 and the collector manifold group. 4 are connected separately.
  • the heat exchange medium enters the heat exchange assembly 2 through the distribution manifold group 3, and flows to the collection manifold group 4 through the heat exchange assembly 2, wherein the heat exchange medium can be such as ammonia, carbon dioxide or Freon refrigerant, or low temperature Coolant, such as ethylene glycol solution, calcium chloride solution or sodium chloride solution, etc.
  • the heat exchange medium After the above-mentioned heat exchange medium enters the heat exchange assembly 2, it first flows through a plurality of heat exchange tubes 21 from the outside to the inside, and then from the inside to the outside, absorbing the heat generated by the steam condensation on the outer surface of the heat exchange tubes 21, and the heat exchange medium heats up or evaporates , the return liquid or return gas is collected into the collecting manifold group 4 and returned to the heat exchange medium heat exchange unit or refrigeration unit.
  • the gas collecting pipe 5 of the above-mentioned radial flow cold trap is connected to the vacuum pump through a pipeline, and under the suction of the vacuum pump, the gas with a relatively high relative pressure and a large vapor content from the inlet port of the housing 1 is drawn from the first end plate 12 and the air intake channel surrounded by the second end plate 13 enters, and generally flows in the radially inward direction to the middle of the lower pressure radial flow cold trap.
  • the air collecting pipe 5 can be a round pipe, the axis of which coincides with the first central line; the periphery of the air collecting pipe 5 has a plurality of evenly arranged round holes, and one end of the air collecting pipe 5 forms a closed air inlet, and It is located between the first end plate 12 and the second end plate 13, and the other end passes through the second end plate 13, and is connected to a vacuum pump arranged outside the radial flow cold trap through a pipeline.
  • the gas collecting pipe 5 is used to collect the non-condensable gas and then draw it out through a vacuum pump and discharge it into the atmosphere.
  • the number of the heat exchange tube bundles is 2M groups, M is an integer between 6 and 32, and multiple groups of the heat exchange tube bundles are relative to the first centerline Symmetrical arrangement.
  • the plurality of sets of heat exchange tube bundles include two parts symmetrically arranged left and right along a vertical plane passing through the first center line, and each part includes M sets of heat exchange tube bundles. heat bundle.
  • each part includes 14 groups Heat exchange tube bundle.
  • each group of heat exchange tube bundles includes 2N heat exchange tubes 21 , N is an integer between 4 and 24, and 2N heat exchange tubes 21 Divided into two parts symmetrically arranged up and down along the horizontal plane passing through the first center line, each part includes N heat exchange tubes 21, and the N heat exchange tubes 21 are arranged radially outward relative to the first center line, each Ends of adjacent heat exchange tubes 21 of a set of heat exchange tube bundles communicate through elbows 22 .
  • each group of heat exchange tube bundles includes 28 heat exchange tubes 21 , which are divided into two parts symmetrically arranged up and down relative to the horizontal plane passing through the first center line, and each part includes 14 heat exchange tubes 21 .
  • the axes of the heat exchange tubes 21 are arranged horizontally, and the ends of adjacent heat exchange tubes 21 of each group of heat exchange tube bundles are connected through 180° elbows 22, so that 28 heat exchange tubes 21 form a series structure.
  • the flow direction of the heat exchange medium inside each group of heat exchange tube bundles is first radially from outside to inside, and then along the radial direction from inside to outside, the inlet of adjacent heat exchange tube bundles or The angles formed between the flow directions of the outlets are equal.
  • the group of heat exchange tube bundles closest to the horizontal plane passing through the first center line is the first group
  • the adjacent group of heat exchange tube bundles is the second group
  • the heat exchange tubes 21 are configured as metal circular tubes, and adjacent heat exchange tubes 21 are connected through elbows 22; or the heat exchange tubes 21 are configured as annular fins Sheet tube or spiral finned tube.
  • the heat exchange tubes 21 are configured as U-shaped tubes, and adjacent heat exchange tubes 21 are connected through elbows 22 .
  • the housing 1 includes a cylindrical body, the open end 11 is located at the first end of the cylindrical body, and the cylindrical body A sealing head 16 is connected to the second end of the cylindrical body, and the axis of the cylindrical body is configured as the central axis of the housing.
  • the first end plate 12 and the second end plate 13 are square plates, and the first end plate 12 and the second end plate 13 A through hole adapted to the heat exchange tube 21 is opened on the top, and a through hole adapted to the air collector 5 is also opened on the second end plate 13, and the second end plate 13 is opposite to the first An end plate 12 is remote from said open end 11 .
  • first end plate 12 and second end plate 13 are square flat plates with edges folded around, and a plurality of through holes are opened on the flat plate, and the size and number of the through holes match the size and number of the heat exchange tubes 21 .
  • the center of the second end plate 13 also has a through hole matching with the air collecting pipe 5 .
  • the connecting line between the centers of the first end plate 12 and the second end plate 13 constitutes a first center line, and the first center line coincides with the central axis of the housing.
  • first end plate 12 and the second end plate 13 are vertically and parallelly arranged on both sides of the heat exchange tube bundle, and the peripheries of the first end plate 12 and the second end plate 13 are connected by several supporting beams 17 .
  • the first end plate 12 and the second end plate 13 support the heat exchange tube 21, and the space surrounded by the first end plate 12 and the second end plate 13 forms an air intake passage, and the air from the air intake port The steam-containing gas enters from this inlet channel and flows inwards approximately in the radial direction of the housing 1 .
  • first end plate 12 and second end plate 13 adopt a square flat plate instead of a circular flat plate to avoid the problem that the heat exchange tubes 21 near the middle of the heat exchange assembly 2 are too dense and cannot be arranged. .
  • the manifold set 3 includes a manifold support 34 and a liquid inlet manifold 31 , a liquid separator 32 , and a liquid branch pipe 33 that are sequentially connected.
  • the liquid branch pipe 33 is connected to the inlet of the heat exchange assembly 2 , and the shell 1 is provided with a heat exchange medium inlet 14 communicating with the liquid inlet main pipe 31 .
  • one end of the liquid distributor 32 is connected to the liquid inlet main pipe 31 , and several pipe holes are uniformly distributed on the other end, and the several pipe holes are respectively connected to one end of a plurality of liquid branch pipes 33 .
  • the other ends of the distribution branch pipes are connected to the inlets of the heat exchange tube bundles in a one-to-one correspondence, and the manifold support 34 fixes the distribution manifold group 3 to the first end plate 12 .
  • the distribution manifold group 3 evenly distributes the liquid supply of the heat exchange medium to each heat exchange tube bundle.
  • the collecting manifold group 4 includes a collecting branch pipe 43, a collecting header box 42 and a collecting main pipe 41 connected in sequence, and the collecting branch pipe 43 and The outlets of the heat exchange components 2 are connected, and the shell 1 is provided with a heat exchange medium outlet 15 communicating with the header 41 .
  • the middle part of the collecting header 42 is connected with the collecting main pipe 41, and several pipe holes are also provided on the collecting header 42 to be connected with one end of a plurality of collecting branch pipes 43;
  • the outlets of the heat exchange tube bundles are connected in one-to-one correspondence.
  • the collecting manifold group 4 collects the return liquid or return air of the heat exchange medium and then returns to the heat exchange unit or the refrigeration unit.
  • the heat exchange tubes 21 arranged radially between the first end plate 12 and the second end plate 13 in the longitudinal direction and the axis relative to the first center line and the gas collector 5 whose axis coincides with the first center line, And use the vacuum pump to extract the non-condensable gas in the shell 1 through the gas collecting pipe 5, so that the gas flow containing steam flows inward in the radial direction from the surrounding space surrounded by the two end plates in the radial flow cold trap, and the gas containing steam
  • the air flow will not form an ice block on the inlet side of the heat exchange component 2; the flow channel is short and has no deflection, so that the flow resistance is small; the air flow is radial flow, and the flow channel cross-section and path length in different flow directions are not much different.
  • the heat is uniform, there is no dead angle of poor steam circulation in the heat exchange component, the heat exchange area is fully utilized, the gas capture efficiency is high, and energy consumption can be saved; and the structure design of this application is compact, and the adjacent heat exchange tubes of each group of heat exchange tube bundles 21 spacing can be very small, so that the radial flow cold trap has a compact structure and occupies a small space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种径向流冷阱,包括壳体(1)、换热组件(2)、分流岐管组(3)、集流岐管组(4)及集气管(5)。壳体(1)具有敞口端(11),其内设有相对设置的第一端板(12)和第二端板(13),第一端板(12)和第二端板(13)的中心连线形成第一中心线(1-1),且第一中心线(1-1)与壳体(1)中轴线平行或重合。换热组件(2)设于壳体(1)内,换热组件(2)包括多组并联的换热管束,换热管束包括多个串联的换热管(21),且多个换热管(21)的轴线相对于第一中心线(1-1)呈放射状对称布置。径向流冷阱的结构使进到壳体(1)内的气流从第一端板(12)和第二端板(13)所围空间的四周进入并沿径向向内的方向流动,可凝性的蒸汽在换热管(21)表面凝华,不可凝气体汇集到集气管(5)中并被抽出,能够解决现有技术中冷阱占用空间大,换热面积利用率低,易产生冰堵和气流阻力大的技术问题。

Description

径向流冷阱 技术领域
本发明涉及一种冷阱,尤其是一种径向流冷阱。
背景技术
冷阱,也叫蒸汽捕集器,是一种在真空环境下利用低温表面使水蒸气等饱和蒸汽压力较低的气体凝华而进行捕集的换热装置。冷阱广泛地应用于真空冷冻干燥装置、食用油除臭装置、脂肪酸分馏装置以及石油化工工业中。
冷阱的结构形式主要有盘管式(包括螺旋盘管式和蛇形盘管式)、列管式和板式。其中,列管式冷阱因成本低、加工和维护方便等原因,在大中型的蒸汽捕集设备中被广泛使用。
列管式冷阱中的换热管为了加工方便一般都是等距排列的,相邻换热管以正三角形或长方形方式布置,即两排换热管中相邻的每三个换热管以正三角形布置或相邻的每四个换热管以长方形布置。这种布置存在下述不足:
(1)冷阱在气流入口端的表面结冰量大,容易在入口端产生冰堵。为保证顺畅的气流通道,需要根据入口端冰层的厚度来布置管距,因此管距较大,使得冷阱占用空间大且成本高。
(2)冷阱入口端气流中含有大量蒸汽,随着蒸汽在流动过程中逐渐被捕集,出口端气流中蒸汽含量很小,以真空冷冻干燥过程为例,入口端的气流流量通常是出口端的数百倍。而目前的冷阱的气流通道截面积的大小沿流动方向基本相同,造成气流在入口端阻力大,而出口端的流道空间大量浪费。
(3)目前的冷阱结构存在使气流从入口端到出口端流动阻力最小的最佳路径,此路径一般在冷阱的中部。靠近此路径处的蒸汽流量大,捕集量也大,沿此路径周边距离越远处捕集量越少,造成冷阱换热不均匀,换热面积利用率低。
发明内容
针对现有技术中存在的上述技术问题,本公开提供了一种径向流冷阱,该径向流冷阱的结构设计紧凑,能够减小占用空间,且能够解决现有技术中换热面积利用率低,易产生冰堵以及气流阻力大的技术问题。
本公开实施例提供了一种径向流冷阱,包括:
壳体,其具有敞口端以及贯穿所述敞口端的中轴线,且所述壳体内设有相对设置的第一端板和第二端板,所述第一端板和所述第二端板的板面与所述壳体中轴线垂直,所述第一端板的中心和所述第二端板的中心的连线构成第一中心线,所述第一中心线与所述壳体中轴线平行或重合;
换热组件,其设于所述壳体内,所述换热组件包括多组换热管束,所述换热管束包括多个串联的换热管,所述换热管的两端分别穿过所述第一端板和第二端板,所述换热管的轴线与所述第一中心线平行,且多个所述换热管的轴线相对于所述第一中心线呈放射状对称设置,所述换热组件用于使所述壳体内的可凝性气体凝华;
分流岐管组,其设于所述壳体内且与所述换热组件的进口相连,用于向所述换热组件的换热管供入换热介质;
集流岐管组,其设于所述壳体内且与所述换热组件的出口相连,用于将所述换热组件的换热管内的换热介质排出;
集气管,其轴线在所述第一中心线上,其一端设于所述第一端板和所述第二端板之间,其另一端穿过所述第二端板与真空泵连通,且所述集气管的管壁上开设有多个进气孔,以使所述壳体内的气体沿径向流经所述换热组件后不凝性气体经由所述进气孔被抽至所述集气管并被真空泵排出。
在一些实施例中,所述换热管束的数量为2M组,M为6至32之间的整数,多组所述换热管束相对所述第一中心线对称布设。
在一些实施例中,多组所述换热管束包括沿通过所述第一中心线的竖直平面呈左右对称布设的两个部分,每部分包括M组换热管束。
在一些实施例中,每组所述换热管束包括2N个所述换热管,N为4至24之间的整数,2N个所述换热管分为沿通过所述第一中心线的水平平面上下对称布设的两个部分,每部分包括N个换热管,这N个换热管相对于第一中心线呈向外放射状布置,每组所述换热管束的相邻换热管的端部通过弯头连通。
在一些实施例中,所述换热管构造为金属圆管,相邻的所述换热管通过弯头连通;或
所述换热管构造为环形翅片管或螺旋形翅片管。
在一些实施例中,所述换热管构造为U形管,相邻的所述换热管通过弯头连通。
在一些实施例中,所述壳体包括圆筒状本体,所述敞口端位于所述圆筒状本体的第一端,所述圆筒状本体的第二端连接封头或法兰,所述圆筒状本体的轴线构造为所述壳体中轴线。
在一些实施例中,所述第一端板和所述第二端板为方形板,且所述第一端板和所述第二端板上开设有与所述换热管适配的通孔,所述第二端板上还开设有与所述集气管适配的通孔,所述第二端板相对所述第一端板远离所述敞口端。
在一些实施例中,所述分流岐管组包括岐管支撑件以及依次连接的进液总管、分液器以及分液支管,所述分液支管与所述换热组件的进口相连,所述壳体上设有与所述进液总管连通的换热介质进口。
在一些实施例中,所述集流岐管组包括依次连接的集流支管、集流联箱以及集流总管,所述集流支管与所述换热组件的出口相连,所述壳体上设有与所述集流总管连通的换热介质出口。
与现有技术相比,本公开实施例的有益效果在于:本公开通过设置于两个端板之间的轴线相对于第一中心线呈放射状布置的换热管以及轴线与第一中心线重合的集气管,以及通过真空泵经由集气管将壳体内的不可凝气体抽出,使得含蒸汽的气流在径向流冷阱内从两个端板所围空间的四周大致沿径向向内流动,含蒸汽的气流不会在换热组件的入口侧形成冰堵;流道短且无折流,流动阻力小;换热均匀,换热组件内没有蒸汽流通不畅的死角,换热面积得到充分利用,捕气效率高,能够节省能耗。且本申请结构设计紧凑,每组换热管束的相邻换热管间距可以很小,使径向流冷阱占用空间小,且能够解决现有技术中换热面积利用率低,易产生冰堵和气流阻力大的技术问题。
附图说明
在不一定按比例绘制的附图中,相同的附图标记可以在不同的视图中描述相似的部件。具有字母后缀或不同字母后缀的相同附图标记可以表示相似部件的不同实例。附图大体上通过举例而不是限制的方式示出各种实施例,并且与说明书以及权利要求书一起用于对所公开的实施例进行说明。在适当的时候,在所有附图中使用相同的附图标记指代同一或相似的部分。这样的实施例是例证性的,而并非旨在作为本装置或方法的穷尽或排他实施例。
图1为本公开实施例径向流冷阱的剖视图;
图2为本公开实施例径向流冷阱的侧视图;
图3为本公开实施例径向流冷阱的局部结构的轴侧示意图;
图4为本公开实施例径向流冷阱的换热组件的结构示意图。
图中的附图标记所表示的构件:
1-壳体;11-敞口端;12-第一端板;13-第二端板;14-换热介质进口;15-换热介质出口;16-封头;17-支撑横梁;2-换热组件;21-换热管;22-弯头;3-分流岐管组;31-进液总管;32-分液器;33-分液支管;34-岐管支撑件;4-集流岐管组;41-集流总管;42-集流联箱;43-集流支管;5-集气管;51-进气孔;6-换热支撑件;7-壳支架;8-加强筋。
具体实施方式
为使本领域技术人员更好的理解本公开的技术方案,下面结合附图和具体实施方式对本公开作详细说明。下面结合附图和具体实施例对本公开的实施例作进一步详细描述,但不作为对本公开的限定。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开中,当描述到特定器件位于第一器件和第二器件之间时,在该特定器件与第一器件或第二器件之间可以存在居间器件,也可以不存在居间器件。当描述到特定器件连接其它器件时,该特定器件可以与所述其它器件直接连接而不具有居间器件,也可以不与所述其它器件直接连接而具有居间器件。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
本公开实施例提供了一种径向流冷阱,如图1至图4所示,径向流冷阱包括壳体1、换热组件2、分流岐管组3、集流岐管组4以及集气管5。壳体 1具有敞口端11以及贯穿所述敞口端11的中轴线,且所述壳体1内设有相对设置的第一端板12和第二端板13,所述第一端板12和所述第二端板13的板面与所述中轴线垂直,所述第一端板12的中心和所述第二端板13的中心的连线构成第一中心线1-1,所述第一中心线与所述壳体中轴线重合。换热组件2设于所述壳体1内,所述换热组件2包括多组换热管束,所述换热管束包括多个串联的换热管21,多个所述换热管21的轴线与所述第一中心线平行,且多个所述换热管21的两端分别穿过所述第一端板12和第二端板13,所述换热组件2用于使所述壳体1内的可凝性气体凝华。分流岐管组3设于所述壳体1内且与所述换热组件2的进口相连,用于向所述换热组件2的换热管21供入换热介质。集流岐管组4设于所述壳体1内且与所述换热组件2的出口相连,用于将所述换热组件2的换热管21内的换热介质排出。集气管5设于所述壳体1内且轴线在所述第一中心线上,所述集气管5的管壁上开设有多个进气孔51,且所述集气管5的一端设置于第一端板和第二端板之间,另一端穿过所述第二端板与真空泵连通,以使所述壳体1内的气体沿径向流经所述换热组件2后不凝性气体经由所述进气孔51被抽至所述集气管5并被真空泵排出。
具体地,图1中示出的箭头方向为气体的流动方向,上述壳体1通过其敞口端11与待干燥腔室密封连通,径向流冷阱用于为待干燥腔室捕集可凝性气体,与径向流冷阱连接的真空泵位于径向流冷阱的排气端口,上述待干燥腔室位于径向流冷阱的进气端口。且上述壳体1可为圆筒状,壳体1的外壁上可设有加强筋8,且壳体1的底部可设有壳支架7。
具体地,上述壳体1内可设置用于支撑换热组件2的换热支撑件6,多组换热管束并联布置,每组换热管束均与分流岐管组3和集流岐管组4分别连接。换热介质经由分流岐管组3进入换热组件2内,并经由换热组件2流向集流岐管组4,其中,换热介质可以是如氨、二氧化碳或氟利昂制冷剂,也可以是低温载冷剂,如乙二醇溶液、氯化钙溶液或氯化钠溶液等。
上述换热介质进入换热组件2后,先由外向内、再由内向外依次流经多个换热管21,吸收换热管21外表面蒸汽凝华产生的热量,换热介质升温或蒸发,回液或回气汇集到集流岐管组4中返回换热介质换热机组或制冷机组。
上述径向流冷阱的集气管5通过管道与真空泵相连,在真空泵的抽吸作用下,将来自壳体1进气端口的相对压力较高的含蒸汽量大的气体从第一端 板12和第二端板13四周所围成的进气通道进入,大致沿径向向内的方向流向较低压力的径向流冷阱中部,在此过程中,因换热管21的外表面温度低于气体压力对应的蒸汽饱和温度,大部分蒸汽在换热管21的外表面凝华,余下的少量蒸汽和不可凝性气体汇集在集气管5中,通过真空泵抽出并排放到大气中。
在一些实施例中,集气管5可为圆管,其轴线与第一中心线重合;集气管5的周边开有多个均匀布置的圆孔,集气管5一端形成封闭的进气口,且位于第一端板12和第二端板13之间,另一端穿过第二端板13后,通过管道与设置于径向流冷阱外部的真空泵相连。集气管5用于将不凝结性气体汇集后通过真空泵抽出并排放到大气中。
在一些实施例中,如图1至图4所示,所述换热管束的数量为2M组,M为6至32之间的整数,多组所述换热管束相对所述第一中心线对称布设。
在一些实施例中,如图1至图4所示,多组所述换热管束包括沿通过所述第一中心线的竖直平面呈左右对称布设的两个部分,每部分包括M组换热管束。
具体地,图3中示出的换热管束为28组,28组换热管束为并联布置,相对于通过第一中心线的竖直平面呈左右对称布设的两个部分,每部分包括14组换热管束。
在一些实施例中,如图1至图4所示,每组所述换热管束包括2N个所述换热管21,N为4至24之间的整数,2N个所述换热管21分为沿通过所述第一中心线的水平平面上下对称布设的两个部分,每部分包括N个换热管21,N个换热管21相对于第一中心线呈向外放射状布置,每组所述换热管束的相邻换热管21的端部通过弯头22连通。
具体地,每组换热管束包括28个换热管21,相对于通过第一中心线的水平平面分为上下对称布置的两个部分,每部分包括14个换热管21。换热管21的轴线水平布置,每组换热管束的相邻换热管21的端部通过180°弯头22连通,使28个换热管21形成串联结构。
沿与第一中心线平行的方向看,每组换热管束内部的换热介质的流动方向是先沿径向由外向内,再沿径向由内向外,相邻的换热管束的进口或出口的流动方向之间形成的夹角相等。具体可结合图4,以最靠近通过第一中心 线的水平平面的那一组换热管束为第1组,其相邻的那一组换热管束为第2组,以此类推,图4中共示出14组,则沿与第一中心线平行的方向看,第m组(m=1~14)换热管束内换热介质进口14流动方向和换热介质出口15流动方向形成的角度为
Figure PCTCN2022143112-appb-000001
式中m为换热管束组别的序号(m=1~M),M为换热管束数量的一半,在一些实施例中,如图4所示,M=14。
在一些实施例中,如图3所示,所述换热管21构造为金属圆管,相邻的所述换热管21通过弯头22连通;或所述换热管21构造为环形翅片管或螺旋形翅片管。
在一些实施例中,所述换热管21构造为U形管,相邻的所述换热管21通过弯头22连通。
在一些实施例中,如图1和图2所示,所述壳体1包括圆筒状本体,所述敞口端11位于所述圆筒状本体的第一端,所述圆筒状本体的第二端连接有封头16,所述圆筒状本体的轴线构造为所述壳体中轴线。
在一些实施例中,如图1至图3所示,所述第一端板12和所述第二端板13为方形板,且所述第一端板12和所述第二端板13上开设有与所述换热管21适配的通孔,所述第二端板13上还开设有与所述集气管5适配的通孔,所述第二端板13相对所述第一端板12远离所述敞口端11。
具体地,上述第一端板12和第二端板13均为四周折边的方形平板,平板上开有多个通孔,通孔的大小和数量与换热管21的大小和数量相匹配。第二端板13的中心还开有与集气管5相匹配的通孔。第一端板12和第二端板13的中心的连线构成第一中心线,第一中心线与壳体中轴线重合。
具体地,第一端板12和第二端板13竖直且平行布置于换热管束的两侧,第一端板12和第二端板13的周边通过数个支撑横梁17连接。第一端板12和第二端板13对换热管21起支撑作用,且第一端板12和第二端板13的四周所围成的空间形成进气通道,从进气端口来的含蒸汽的气体从该进气通道进入并大致沿壳体1的径向方向向内流动。
上述第一端板12和第二端板13采用方形平板,而非圆形平板的目的是可以避免在靠近换热组件2的中部位置的换热管21过于密集而导致无法布管的问题出现。
在一些实施例中,如图1至图3所示,所述分流岐管组3包括岐管支撑件34以及依次连接的进液总管31、分液器32以及分液支管33,所述分液支管33与所述换热组件2的进口相连,所述壳体1上设有与所述进液总管31连通的换热介质进口14。
具体地,分液器32的一端与进液总管31相连,另一端上开有均匀分布的数个管孔,数个管孔分别与多个分液支管33的一端相连。分流支管的另一端与换热管束的进口分别一一对应地相连,岐管支撑34将分流岐管组3固定到第一端板12上。分流岐管组3将换热介质的供液均匀地分配到各换热管束上。
在一些实施例中,如图1至图3所示,所述集流岐管组4包括依次连接的集流支管43、集流联箱42以及集流总管41,所述集流支管43与所述换热组件2的出口相连,所述壳体1上设有与所述集流总管41连通的换热介质出口15。
具体地,集流联箱42的中部与集流总管41相连,集流联箱42上还开设有数个管孔与多个集流支管43的一端相连;集流支管43的另一端与多组换热管束的出口分别一一对应地相连。集流岐管组4将换热介质回液或回气汇集后返回换热机组或制冷机组。
本公开通过设置于第一端板12和第二端板13之间的长度方向与轴线相对于第一中心线呈放射状布置的换热管21以及轴线与第一中心线重合的集气管5,以及通过真空泵经由集气管5将壳体1内的不可凝气体抽出,使得含蒸汽的气流在径向流冷阱内从两个端板所围空间的四周大致沿径向向内流动,含蒸汽的气流不会在换热组件2的入口侧形成冰堵;流道短且无折流,使得流动阻力小;气流为径向流动,不同流动方向的流道截面和路径长短相差不大,换热均匀,换热组件内没有蒸汽流通不畅的死角,换热面积得到充分利用,捕气效率高,能够节省能耗;且本申请结构设计紧凑,每组换热管束的相邻换热管21间距可以很小,使径向流冷阱结构紧凑,占用空间小。
此外,尽管已经在本文中描述了示例性实施例,其范围包括任何和所有基于本公开的具有等同元件、修改、省略、组合(例如,各种实施例交叉的方案)、改编或改变的实施例。权利要求书中的元件将被基于权利要求中采用的语言宽泛地解释,并不限于在本说明书中或本申请的实施期间所描述的示 例,其示例将被解释为非排他性的。因此,本说明书和示例旨在仅被认为是示例,真正的范围和精神由以下权利要求以及其等同物的全部范围所指示。
以上描述旨在是说明性的而不是限制性的。例如,上述示例(或其一个或更多方案)可以彼此组合使用。例如本领域普通技术人员在阅读上述描述时可以使用其它实施例。另外,在上述具体实施方式中,各种特征可以被分组在一起以简单化本公开。这不应解释为一种不要求保护的公开的特征对于任一权利要求是必要的意图。相反,本公开的主题可以少于特定的公开的实施例的全部特征。从而,以下权利要求书作为示例或实施例在此并入具体实施方式中,其中每个权利要求独立地作为单独的实施例,并且考虑这些实施例可以以各种组合或排列彼此组合。本公开的范围应参照所附权利要求以及这些权利要求赋权的等同形式的全部范围来确定。
以上实施例仅为本公开的示例性实施例,不用于限制本公开,本公开的保护范围由权利要求书限定。本领域技术人员可以在本公开的实质和保护范围内,对本公开做出各种修改或等同替换,这种修改或等同替换也应视为落在本公开的保护范围内。

Claims (10)

  1. 一种径向流冷阱,其特征在于,包括:
    壳体,其具有敞口端以及贯穿所述敞口端的中轴线,且所述壳体内设有相对设置的第一端板和第二端板,所述第一端板和所述第二端板的板面与所述壳体中轴线垂直,所述第一端板的中心和所述第二端板的中心的连线构成第一中心线,所述第一中心线与所述壳体中轴线平行或重合;
    换热组件,其设于所述壳体内,所述换热组件包括多组换热管束,所述换热管束包括多个串联的换热管,所述换热管的两端分别穿过所述第一端板和第二端板,所述换热管的轴线与所述第一中心线平行,且多个所述换热管的轴线相对于所述第一中心线呈放射状对称设置,所述换热组件用于使所述壳体内的可凝性气体凝华;
    分流岐管组,其设于所述壳体内且与所述换热组件的进口相连,用于向所述换热组件的换热管供入换热介质;
    集流岐管组,其设于所述壳体内且与所述换热组件的出口相连,用于将所述换热组件的换热管内的换热介质排出;
    集气管,其轴线在所述第一中心线上,其一端设于所述第一端板和所述第二端板之间,其另一端穿过所述第二端板与真空泵连通,且所述集气管的管壁上开设有多个进气孔,以使所述壳体内的气体沿径向流经所述换热组件后不凝性气体经由所述进气孔被抽至所述集气管并被真空泵排出。
  2. 根据权利要求1所述的径向流冷阱,其特征在于,所述换热管束的数量为2M组,M为6至32之间的整数,多组所述换热管束相对所述第一中心线对称布设。
  3. 根据权利要求2所述的径向流冷阱,其特征在于,多组所述换热管束包括沿通过所述第一中心线的竖直平面呈左右对称布设的两个部分,每部分包括M组换热管束。
  4. 根据权利要求2所述的径向流冷阱,其特征在于,每组所述换热管束包括2N个所述换热管,N为4至24之间的整数,2N个所述换热管分为沿通过所述第一中心线的水平平面上下对称布设的两个部分,每部分包括N个换热管,N个换热管相对于第一中心线呈向外放射状布置,每组所述换热管束的相邻换热管的端部通过弯头连通。
  5. 根据权利要求1所述的径向流冷阱,其特征在于,所述换热管构造为金属圆管,相邻的所述换热管通过弯头连通;或
    所述换热管构造为环形翅片管或螺旋形翅片管。
  6. 根据权利要求1所述的径向流冷阱,其特征在于,所述换热管构造为U形管,相邻的所述换热管通过弯头连通。
  7. 根据权利要求1所述的径向流冷阱,其特征在于,所述壳体包括圆筒状本体,所述敞口端位于所述圆筒状本体的第一端,所述圆筒状本体的第二端连接封头或法兰,所述圆筒状本体的轴线构造为所述壳体中轴线。
  8. 根据权利要求1所述的径向流冷阱,其特征在于,所述第一端板和所述第二端板为方形板,且所述第一端板和所述第二端板上开设有与所述换热管适配的通孔,所述第二端板上还开设有与所述集气管适配的通孔,所述第二端板相对所述第一端板远离所述敞口端。
  9. 根据权利要求1所述的径向流冷阱,其特征在于,所述分流岐管组包括岐管支撑件以及依次连接的进液总管、分液器以及分液支管,所述分液支管与所述换热组件的进口相连,所述壳体上设有与所述进液总管连通的换热介质进口。
  10. 根据权利要求1所述的径向流冷阱,其特征在于,所述集流岐管组包括依次连接的集流支管、集流联箱以及集流总管,所述集流支管与所述换热组件的出口相连,所述壳体上设有与所述集流总管连通的换热介质出口。
PCT/CN2022/143112 2022-02-15 2022-12-29 径向流冷阱 WO2023155610A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210151232.1A CN115837170A (zh) 2022-02-15 2022-02-15 径向流冷阱
CN202210151232.1 2022-02-15

Publications (1)

Publication Number Publication Date
WO2023155610A1 true WO2023155610A1 (zh) 2023-08-24

Family

ID=85574644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143112 WO2023155610A1 (zh) 2022-02-15 2022-12-29 径向流冷阱

Country Status (2)

Country Link
CN (1) CN115837170A (zh)
WO (1) WO2023155610A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201551867U (zh) * 2009-11-16 2010-08-18 沈阳航天新阳速冻设备制造有限公司 一种板束式冷阱
WO2016166079A1 (de) * 2015-04-13 2016-10-20 Aixtron Se Kühlfalle
CN110595160A (zh) * 2019-09-18 2019-12-20 江苏博莱客冷冻科技发展有限公司 用于冻干机的冷阱
CN215538550U (zh) * 2021-09-22 2022-01-18 大连海事大学 一种用于实验教学的高效冷阱
CN216986361U (zh) * 2022-02-15 2022-07-19 卢允庄 径向流冷阱

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201551867U (zh) * 2009-11-16 2010-08-18 沈阳航天新阳速冻设备制造有限公司 一种板束式冷阱
WO2016166079A1 (de) * 2015-04-13 2016-10-20 Aixtron Se Kühlfalle
CN110595160A (zh) * 2019-09-18 2019-12-20 江苏博莱客冷冻科技发展有限公司 用于冻干机的冷阱
CN215538550U (zh) * 2021-09-22 2022-01-18 大连海事大学 一种用于实验教学的高效冷阱
CN216986361U (zh) * 2022-02-15 2022-07-19 卢允庄 径向流冷阱

Also Published As

Publication number Publication date
CN115837170A (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
RU2734089C2 (ru) Промышленный конденсатор пара с полностью вторичным воздушным охлаждением
TWI470180B (zh) 模組化氣冷式冷凝器設備及其冷卻方法
CN102427874B (zh) 自然通风型气冷式蒸汽冷凝器及其方法
CN101846477A (zh) 蒸发式换热器强化传热方法及换热盘管组件
CN104383792A (zh) 三合一板换式冷干机及工作方法
WO2023155610A1 (zh) 径向流冷阱
CN216986361U (zh) 径向流冷阱
CN207472085U (zh) 一种换热高效的冷凝器
WO2009009928A1 (fr) Procédé de condensation et de transfert thermique ayant une fonction de division de liquide automatique et appareil apparenté
CN108373930A (zh) 一种组合式液化分离器
JPS6349154B2 (zh)
CN204107292U (zh) 三合一板换式冷干机
CN203240915U (zh) 复合式管束空冷器换热装置
CN201382706Y (zh) 侧向凝汽器向心抽气结构
RU2769608C2 (ru) Конденсатор с каналом потока текучей среды с несколькими поперечными сечениями
US4417619A (en) Air-cooled heat exchanger
CN212645407U (zh) 一种多流程管束布置的凝汽器
RU96418U1 (ru) Аппарат воздушного охлаждения секционный типа abc gi с газоохладителем
US3677338A (en) Surface condenser
CN109357542B (zh) 一种低排汽凝结阻力的凝汽器布管方法
CN202928390U (zh) 一种新型结构的蒸发式冷凝器
CN205481960U (zh) 一种用于复叠式超低温制冷系统的双级冷凝器
CN113090526A (zh) 一种带盘管冷凝筒体的水环真空系统
CN215002399U (zh) 一种管内蒸发式冷凝器
CN111442657A (zh) 一种低压真空冷凝器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926907

Country of ref document: EP

Kind code of ref document: A1