WO2023155397A1 - 全任务场景消防员精确定位方法及系统 - Google Patents

全任务场景消防员精确定位方法及系统 Download PDF

Info

Publication number
WO2023155397A1
WO2023155397A1 PCT/CN2022/112645 CN2022112645W WO2023155397A1 WO 2023155397 A1 WO2023155397 A1 WO 2023155397A1 CN 2022112645 W CN2022112645 W CN 2022112645W WO 2023155397 A1 WO2023155397 A1 WO 2023155397A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
information
module
fire
monitoring
Prior art date
Application number
PCT/CN2022/112645
Other languages
English (en)
French (fr)
Inventor
曹熠峰
杨勇
Original Assignee
江苏德一佳安防科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏德一佳安防科技有限公司 filed Critical 江苏德一佳安防科技有限公司
Publication of WO2023155397A1 publication Critical patent/WO2023155397A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/06Electric actuation of the alarm, e.g. using a thermally-operated switch
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means

Definitions

  • the present invention relates to the technical field of firefighting equipment, in particular to a method and system for precise positioning of firefighters in all mission scenarios.
  • IMU inertial measurement unit
  • GNSS global satellite navigation system
  • indoor positioning technologies include inertial measurement unit (IMU), global satellite navigation system (GNSS), and various indoor positioning technologies.
  • IMU inertial measurement unit
  • GNSS global satellite navigation system
  • the indoor positioning of personnel is basically based on the IMU, but its shortcomings Yes: The error will accumulate over time, and eventually the error will become very large after a long time, so it needs to be corrected by other external navigation sources.
  • the global satellite navigation system (GNSS) obtains satellite signals and calculates the location information in real time.
  • the positioning data will not accumulate over time, but its disadvantages are: the signal is blocked in indoor and high-rise dense areas, and there will be multi-path phenomena in the urban environment. , These all affect the positioning accuracy and usability of the satellite navigation system. If the errored satellite navigation system data is used to fuse with the micro-inertial navigation system to correct the micro-inertial navigation output, the starting position of the micro-inertial navigation integration will be wrong.
  • RTK Real Time Kinematic
  • the base station collects satellite data, and transmits its observation value and site coordinate information to the mobile station through the data link, and the mobile station performs real-time carrier phase analysis on the collected satellite data and the received data link. Differential processing (less than one second) to obtain centimeter-level positioning results.
  • RTK like GNSS
  • GNSS is still affected by satellite conditions, ionosphere, data link transmission and air-to-air communication environment.
  • a large number of positioning beacons need to be pre-arranged, which increases the cost.
  • these beacons are very likely to be burned in the event of a fire, and eventually become unusable.
  • the environment of firefighting tasks is complex and changeable. Therefore, it is difficult to meet the precise positioning of firefighters in all task scenarios through the combination of one or more positioning technologies.
  • the present invention proposes a system and method for precise positioning of firefighting workers in the full-task scene of firefighting operations. Based on the designed intelligent fire hydrants and other fixed or mobile positioning beacons, combined with IMU, GNSS, RTK and indoor positioning technology realize the seamless connection of accurate positioning in various mission scenarios.
  • Patent document CN104305984B (application number: CN201410533425.9) provides a life monitoring transmission system for firefighters, which solves the problem of low monitoring accuracy of existing firefighting equipment, unsatisfactory transmission effect, cumbersome equipment, difficulty in use, low efficiency, and inability of firefighters to report to the rear in time.
  • Commanders cannot quickly locate it and miss the best time for rescue; the solution is to include a heart rate bracelet, a rescue device and a background receiving device.
  • the heart rate bracelet is worn on the firefighter's wrist to monitor the firefighter's heart rate in real time
  • the data monitored by the heart rate wristband is wirelessly transmitted to the wireless voice caller through Bluetooth
  • the data received by the wireless voice caller is then wirelessly transmitted to the background receiving device.
  • the background receiving device processes and analyzes the received signal and learns the firefighters' vital signs , the background receiving device triggers the wireless voice emergency device to alarm through the wireless signal.
  • this invention cannot accurately locate firefighters in the full-task scene of firefighting operations.
  • the object of the present invention is to provide a method and system for precise positioning of firefighters in all mission scenarios.
  • an accurate positioning system for firefighters in all mission scenarios includes:
  • Intelligent fire hydrant system module reference positioning beacon, monitor health status information, detect fire and predict situation, alarm and task guidance, power management;
  • Movable intelligent reference positioning system module refer to positioning beacons, obtain information through independent positioning through GNSS and RTK technology, obtain information through independent positioning through IMU unit, solve reference positioning, and power management;
  • Wearable individual positioning system system refer to the positioning label, calculate the precise position through the GNSS received signal, obtain information through the independent positioning of the IMU unit, task guidance, power management, and monitor physiological information;
  • Firefighting task monitoring command terminal system module monitor personnel positioning, monitor and predict fire situation, task optimization and command, monitor equipment status, display and control;
  • Central processing server module monitor information, optimize tasks, guide tasks, solve individual soldier positioning, equipment management, database management.
  • the intelligent fire hydrant system module Preferably, in the intelligent fire hydrant system module:
  • Communication module responsible for establishing and maintaining communication between intelligent fire hydrant systems, and between intelligent fire hydrant systems and individual soldier positioning systems, fire-fighting task monitoring command terminal systems, and central processing servers through free-style networking ;
  • Reference positioning beacon module Based on the position information of the fire hydrant itself as a positioning reference, determine the relative position of the positioned person through the corresponding positioning technology and provide positioning. Under different positioning technologies, the reference positioning beacon module will Be a reference beacon for the corresponding technology;
  • Health monitoring module it will collect and monitor the health status information of the fire hydrant equipped with the intelligent fire hydrant system, monitor the status information of the module itself, and transmit all the monitoring information to the central processing server through the communication module, so that for maintenance;
  • Fire detection and situation prediction module It includes sensor equipment that monitors the surrounding temperature, humidity, smoke concentration, flow direction, wind direction and wind speed, analyzes and predicts the situation through the monitored fire information, and passes the monitoring and prediction information through The communication module transmits to the central processing server.
  • Alarm and task guidance module it contains warning equipment, based on the fire detection information, the surrounding personnel are not limited to voice, alarm, light, text, graphics, and communicate with the central processing unit. Provide corresponding search and rescue and evacuation guidance for operators in the form of voice, alarm bell, light, text, and graphics;
  • Power management module provide power management for the intelligent fire hydrant system, control the working state and dormant state of the system based on the monitoring information of the surrounding environment, and manage the charging and power supply state of solar energy, building power supply and working battery;
  • the intelligent fire hydrant system is designed accordingly, and installed on the existing fire hydrant through various methods including pasting, inlaying, bracketing, and mounting, and monitors the status information of the fire hydrant;
  • the fire hydrant needs to determine the location information based on positioning, surveying and mapping, building information and geographic information.
  • the information will be recorded in the database of the intelligent fire hydrant system and reside in the central processing unit and other systems; the system can also be loaded in other similar
  • Other devices with long-term fixation and appropriate quantity including fire hydrants, safety exit signs, and characteristic positions of buildings.
  • the movable intelligent reference positioning system module Preferably, in the movable intelligent reference positioning system module:
  • the mobile intelligent reference positioning system includes the following modules:
  • Communication module establish and maintain each mobile intelligent reference positioning system, as well as the mobile intelligent reference positioning system and each individual positioning system, fire-fighting task monitoring command terminal system, and central processing through free-style networking. communication between servers;
  • Reference positioning beacon module Based on its own position information, as a positioning reference, determine the relative position of the positioned person through the corresponding positioning technology, and provide position, speed and direction information for positioning; under different positioning technologies, the reference positioning The beacon module will be a reference beacon for the corresponding technology;
  • GNSS and RTK module Obtain its own position, speed and direction information through independent positioning of GNSS and RTK technology, and integrate it with its own IMU module to provide position reference for operator positioning;
  • IMU module self-positioning through one or more IMU units, obtains its own position, speed and direction information, and integrates its own GNSS and IMU modules to provide position reference for operator positioning;
  • v) Reference positioning calculation module Based on the geometric characteristics and loading position of the carrier loaded with the mobile intelligent reference positioning system and the relative position of the operator and the mobile intelligent reference positioning system, the specific location of the firefighting personnel is calculated. position, movement speed and direction;
  • Power management module provide power management for the mobile intelligent reference positioning system, control the working state and sleep state of the system based on the monitoring information of the surrounding environment, and manage the charging and power supply state of the system and battery;
  • the mobile intelligent reference positioning system is loaded on the characteristic position including the target, and obtains the position information of the target through its own positioning module;
  • the geometric information of the loading platform loaded with the mobile intelligent reference positioning system including vehicles, buildings and road facilities, its known or resolvable precise position information, and the relative geometric relationship of the loading point on the loading platform. Will be recorded in the intelligent reference positioning system database and reside in the central processing unit and related systems.
  • the wearable individual positioning system includes the following modules:
  • Communication module establish and maintain communication between wearable individual soldier positioning systems, wearable individual soldier positioning systems and each intelligent fire hydrant system, mobile intelligent reference positioning system, fire fighting system through free networking. Communication between mission monitoring command terminal system and central processing server;
  • Reference positioning tag module According to the positioning technology adopted by the reference positioning beacon module in the intelligent fire hydrant system or the mobile intelligent reference positioning system, the reference positioning tag module of the located person is equipped with corresponding tags or nodes, corresponding to By transmitting or receiving signals of corresponding technologies, together with the reference positioning beacon module and the calculation module in the intelligent fire hydrant system or the mobile intelligent reference positioning system, it is possible to determine the position of the positioned person relative to the fire hydrant or the mobile intelligent reference positioning system.
  • the real-time position and motion state of the loading platform to determine the real-time absolute position and motion state of the positioned person under the inertial system;
  • GNSS module Receive the signal of the navigation satellite through the GNSS antenna to calculate the precise position of the person being positioned, and integrate it with the positioning module of other individual positioning systems to provide positioning accuracy.
  • IMU module through independent positioning of one or more IMU units, obtain its own position, speed and direction information, and integrate and calibrate the IMU through the positioning modules of other individual positioning systems;
  • Task guidance module through communication with the central processing unit, provide corresponding guidance for operators through methods not limited to voice, alarm bell, light, text, and graphics;
  • Power management module provide power management for the wearable individual soldier positioning system, control the working state and dormant state of the system based on the monitoring information of the surrounding environment and the wearing conditions of the operator, and control the charging and Power supply status management;
  • Physiological information monitoring module monitor and record the physiological state of the operator, including blood pressure, heart rate, and respiration.
  • the locator who performs the task is equipped with a wearable individual positioning system.
  • the wearable system and equipment are mounted on or built into the locator's helmet, clothing and boots, or worn on the locator's limbs and torso ;
  • the fire control task monitoring command terminal system includes the following modules:
  • Communication module establish and maintain various fire-fighting task monitoring and command terminal systems, as well as the fire-fighting task monitoring and command terminal system and each intelligent fire hydrant system, mobile intelligent reference positioning system, wearable Communication between individual soldier positioning system and central processing server;
  • Personnel positioning monitoring module Continuously track and monitor the location, moving speed and physiological condition information of the operator, and issue a warning for emergency situations;
  • Fire Situation Monitoring and Prediction Module Based on the fire-related information detected and monitored by the intelligent fire hydrant system, including ambient temperature, humidity, smoke concentration, flow direction, wind direction and wind speed, the fire situation is predicted to support tasks optimization and command;
  • Mission optimization and command module Based on the monitoring and prediction of the fire situation, combined with the position and status of the located person, optimize the search and rescue, fire fighting and evacuation tasks, and communicate the instructions to the operators;
  • Equipment status monitoring module collect and monitor the status information of each module and equipment consisting of the intelligent fire hydrant system, the mobile intelligent reference positioning system, the wearable individual soldier positioning system, and the central processing unit, and monitor them to ensure that the system effective operation of
  • Display and control module Integrate monitoring information, present information in a visual way, and provide corresponding control functions;
  • the fire-fighting task monitoring command terminal system resides on different platforms and operating systems, including servers, PCs, and handheld electronic devices;
  • the fire control task monitoring command terminal system is independent from the central processing server, or integrated with the central processing server.
  • Communication module establish and maintain the communication between the central processing server and each fire-fighting task monitoring and command terminal system, intelligent fire hydrant system, mobile intelligent reference positioning system, and wearable individual positioning system through free-style networking Communication;
  • Information monitoring module mainly monitor the surrounding environment, fire situation and situation information of each system, and assist each power management module to manage the working status of the system;
  • Task optimization module provide calculation support for the task optimization and command module of the fire control task monitoring command terminal system
  • Task guidance module provide calculation support for the task optimization and command module of the fire control task monitoring command terminal system, and transmit the guidance signal to the intelligent fire hydrant system and the wearable individual positioning system;
  • Individual soldier positioning calculation module collect relevant data of each positioning and navigation source in the individual soldier positioning system, and support the individual soldier positioning system to calculate the position and movement information;
  • Device management module monitor the running status and configuration information of other systems and devices
  • Database management module configure and manage database information required by other systems
  • the individual soldier positioning calculation module can reside in the wearable individual soldier positioning system; the task optimization and task guidance module can reside in the fire mission monitoring command terminal system.
  • a method for precise positioning of firefighters in all mission scenarios includes:
  • Step S1 The intelligent fire hydrant system performs fixed reference positioning, detects the fire situation and conducts tasks, and sends the information to the central processing server;
  • Step S2 The mobile intelligent positioning reference system performs mobile reference positioning, and communicates the state detection with the central server;
  • Step S3 The wearable individual positioning system system performs fixed reference positioning with the intelligent fire hydrant system, performs mobile reference positioning with the mobile intelligent positioning reference system, and transmits information to the central server;
  • Step S4 The fire monitoring and command terminal system and the intelligent fire hydrant system perform fire monitoring and task command, and transmit information on personnel positioning, fire monitoring, task command, and status detection to the central server.
  • i) Communication responsible for establishing and maintaining the communication among various intelligent fire hydrant systems, as well as between the intelligent fire hydrant system and each individual positioning system, fire-fighting task monitoring command terminal system, and central processing server through free-style networking;
  • Reference positioning beacon Based on the position information of the fire hydrant itself as a positioning reference, the relative position of the located person is determined through the corresponding positioning technology, and the positioning is provided. Under different positioning technologies, the reference signal of the corresponding technology will be used. mark;
  • Health monitoring collect and monitor the health status information of the fire hydrant equipped with the intelligent fire hydrant system, monitor its own status information, and transmit all monitoring information to the central processing server through communication for easy maintenance;
  • Fire detection and situation prediction It includes sensor equipment that monitors the surrounding temperature, humidity, smoke concentration, flow direction, wind direction and wind speed, analyzes and predicts the situation through the monitored fire information, and transmits the monitoring and prediction information through communication sent to the central processing server.
  • Alarm and task guidance including warning equipment, based on the fire detection information, the surrounding personnel are not limited to voice, alarm, light, text, graphics, and through communication with the central processor, through not limited to Provide corresponding search and rescue and evacuation guidance for operators in the form of voice, alarm bell, light, text and graphics;
  • Power management provide power management for the intelligent fire hydrant system, control the working status and dormant status of the system based on the monitoring information of the surrounding environment, and manage the charging and power supply status of solar energy, building power and working batteries;
  • the intelligent fire hydrant system is designed accordingly, and installed on the existing fire hydrant through various methods including pasting, inlaying, bracketing, and mounting, and monitors the status information of the fire hydrant;
  • the fire hydrant needs to determine the location information based on positioning, surveying and mapping, building information and geographic information.
  • the information will be recorded in the database of the intelligent fire hydrant system and reside in the central processing unit and other systems; the system can also be loaded in other similar
  • Other devices with long-term fixation and appropriate quantity including fire hydrants, safety exit signs, and characteristic positions of buildings.
  • the mobile intelligent reference positioning system includes the following steps:
  • Reference positioning beacon Based on its own position information, as a positioning reference, determine the relative position of the positioned person through the corresponding positioning technology, and provide position, speed and direction information for positioning; under different positioning technologies, it will do corresponding technical reference beacons;
  • GNSS and RTK Obtain its own position, speed and direction information through GNSS and RTK technology autonomous positioning, and work together with IMU to provide position reference for operator positioning;
  • IMU through one or more IMU units to locate independently, obtain its own position, speed and direction information, GNSS and IMU work together to provide position reference for operator positioning;
  • Power management provide power management for the mobile intelligent reference positioning system, control the working status and sleep status of the system based on the monitoring information of the surrounding environment, and manage the charging and power supply status of the system and battery;
  • the mobile intelligent reference positioning system is loaded on the characteristic position including the target, and obtains the position information of the target through its own positioning;
  • the geometric information of the loading platform loaded with the mobile intelligent reference positioning system including vehicles, buildings and road facilities, its known or resolvable precise position information, and the relative geometric relationship of the loading point on the loading platform. Will be recorded in the intelligent reference positioning system database and reside in the central processing unit and related systems.
  • the wearable individual soldier positioning system includes the following steps:
  • Reference positioning tag According to the positioning technology adopted by the reference positioning beacon in the intelligent fire hydrant system or the mobile intelligent reference positioning system, the reference positioning tag of the located person is equipped with corresponding tags or nodes, and correspondingly transmits Or receive the signal of the corresponding technology, together with the reference positioning beacon and calculation in the intelligent fire hydrant system or the mobile intelligent reference positioning system, determine the real-time position of the positioned person relative to the fire hydrant or the loading platform of the mobile intelligent reference positioning system and motion state, to determine the real-time absolute position and motion state of the positioned person under the inertial system;
  • GNSS Receive the signal of the navigation satellite through the GNSS antenna to calculate the precise position of the person being positioned, and work together with the positioning of other individual positioning systems to provide positioning accuracy.
  • IMU through one or more IMU units to independently locate, obtain its own position, speed and direction information, and operate together through the positioning of other individual positioning systems to fuse and calibrate the IMU;
  • Task guidance through communication with the central processor, provide corresponding guidance to operators through methods not limited to voice, alarm bell, light, text, and graphics;
  • Power management provide power management for the wearable individual positioning system, control the working state and dormant state of the system based on the monitoring information of the surrounding environment and the wearing condition of the operator, and charge and supply power to the system and battery status management;
  • Physiological information monitoring monitor and record the physiological state of the operator, including blood pressure, heart rate, and respiration.
  • the locator who performs the task is equipped with a wearable individual positioning system.
  • the wearable system and equipment are mounted on or built into the locator's helmet, clothing and boots, or worn on the locator's limbs and torso ;
  • the fire control task monitoring command terminal system includes the following steps:
  • Personnel positioning monitoring continuous tracking and monitoring of the operator's location, moving speed and physiological condition information, and issuing a warning for emergency situations;
  • Fire situation monitoring and prediction Based on the fire-related information detected and monitored by the intelligent fire hydrant system, including ambient temperature, humidity, smoke concentration, flow direction, wind direction and speed, the fire situation is predicted to support the mission optimization and command;
  • Task optimization and command Based on the monitoring and prediction of the fire situation, combined with the location and status of the located person, optimize the search and rescue, fire fighting and evacuation tasks, and communicate the instructions to the operators;
  • Equipment status monitoring Collect and monitor the status information of each step and equipment from the intelligent fire hydrant system, the mobile intelligent reference positioning system, the wearable individual soldier positioning system, and the central processing unit, and monitor them to ensure the system effective operation;
  • the fire-fighting task monitoring command terminal system resides on different platforms and operating systems, including servers, PCs, and handheld electronic devices;
  • the fire control task monitoring command terminal system is independent from the central processing server, or integrated with the central processing server.
  • the central processing server includes the following steps:
  • Information monitoring mainly monitor the surrounding environment, fire situation and situation information of each system, and assist the working status of each power management system;
  • Task optimization provide calculation support for task optimization and command of the fire control task monitoring command terminal system
  • Task guidance provide calculation support for the task optimization and command of the fire control task monitoring command terminal system, and transmit the guidance signal to the intelligent fire hydrant system and the wearable individual soldier positioning system;
  • Database management configure and manage database information required by other systems
  • the individual soldier positioning calculation can reside in the wearable individual soldier positioning system; task optimization and task guidance can reside in the fire mission monitoring command terminal system.
  • Fig. 1 is a system diagram of an intelligent fire hydrant according to one embodiment of the present invention
  • Fig. 2 is a diagram of a mobile intelligent reference positioning system according to one embodiment of the present invention.
  • Fig. 3 is a diagram of a wearable individual soldier positioning system according to one embodiment of the present invention.
  • Fig. 4 is a system diagram of a fire-fighting task monitoring command terminal system according to one embodiment of the present invention.
  • Fig. 5 is a central processing server diagram of one of the embodiments of the present invention.
  • FIG. 6 is a schematic structural diagram of one embodiment of the present invention.
  • Fig. 7 is a schematic diagram of positioning function of one embodiment of the present invention.
  • Fig. 8 is a flow chart of positioning function of one embodiment of the present invention.
  • FIG. 9 is a schematic diagram of functions supported by communication between systems according to one embodiment of the present invention.
  • an accurate positioning system for firefighters in all mission scenarios includes:
  • Intelligent fire hydrant system module reference positioning beacon, monitor health status information, detect fire and predict situation, alarm and task guidance, power management;
  • Movable intelligent reference positioning system module refer to positioning beacons, obtain information through independent positioning through GNSS and RTK technology, obtain information through independent positioning through IMU unit, solve reference positioning, and power management;
  • Wearable individual positioning system system refer to the positioning label, calculate the precise position through the GNSS received signal, obtain information through the independent positioning of the IMU unit, task guidance, power management, and monitor physiological information;
  • Firefighting task monitoring command terminal system module monitor personnel positioning, monitor and predict fire situation, task optimization and command, monitor equipment status, display and control;
  • Central processing server module monitor information, optimize tasks, guide tasks, solve individual soldier positioning, equipment management, database management.
  • Communication module responsible for establishing and maintaining communication between intelligent fire hydrant systems, and between intelligent fire hydrant systems and individual soldier positioning systems, fire-fighting task monitoring command terminal systems, and central processing servers through free-style networking ;
  • Reference positioning beacon module Based on the position information of the fire hydrant itself as a positioning reference, determine the relative position of the positioned person through the corresponding positioning technology and provide positioning. Under different positioning technologies, the reference positioning beacon module will Be a reference beacon for the corresponding technology;
  • Health monitoring module it will collect and monitor the health status information of the fire hydrant equipped with the intelligent fire hydrant system, monitor the status information of the module itself, and transmit all the monitoring information to the central processing server through the communication module, so that for maintenance;
  • Fire detection and situation prediction module It includes sensor equipment that monitors the surrounding temperature, humidity, smoke concentration, flow direction, wind direction and wind speed, analyzes and predicts the situation through the monitored fire information, and passes the monitoring and prediction information through The communication module transmits to the central processing server.
  • Alarm and task guidance module it contains warning equipment, based on the fire detection information, the surrounding personnel are not limited to voice, alarm, light, text, graphics, and communicate with the central processing unit. Provide corresponding search and rescue and evacuation guidance for operators in the form of voice, alarm bell, light, text, and graphics;
  • Power management module provide power management for the intelligent fire hydrant system, control the working state and dormant state of the system based on the monitoring information of the surrounding environment, and manage the charging and power supply state of solar energy, building power supply and working battery;
  • the intelligent fire hydrant system is designed accordingly, and installed on the existing fire hydrant through various methods including pasting, inlaying, bracketing, and mounting, and monitors the status information of the fire hydrant;
  • the fire hydrant needs to determine the location information based on positioning, surveying and mapping, building information and geographic information.
  • the information will be recorded in the database of the intelligent fire hydrant system and reside in the central processing unit and other systems; the system can also be loaded in other similar
  • Other devices with long-term fixation and appropriate quantity including fire hydrants, safety exit signs, and characteristic positions of buildings.
  • movable intelligent reference positioning system module Specifically, in the movable intelligent reference positioning system module:
  • the mobile intelligent reference positioning system includes the following modules:
  • Communication module establish and maintain each mobile intelligent reference positioning system, as well as the mobile intelligent reference positioning system and each individual positioning system, fire-fighting task monitoring command terminal system, and central processing through free-style networking. communication between servers;
  • Reference positioning beacon module based on its own position information, as a positioning reference, determine the relative position of the located person through the corresponding positioning technology, and provide position, speed and direction information for positioning; under different positioning technologies, the reference positioning The beacon module will be a reference beacon for the corresponding technology;
  • GNSS and RTK module Obtain its own position, speed and direction information through independent positioning of GNSS and RTK technology, and integrate it with its own IMU module to provide position reference for operator positioning;
  • IMU module self-positioning through one or more IMU units, obtains its own position, speed and direction information, and integrates its own GNSS and IMU modules to provide position reference for operator positioning;
  • v) Reference positioning calculation module Based on the geometric characteristics and loading position of the carrier loaded with the mobile intelligent reference positioning system and the relative position of the operator and the mobile intelligent reference positioning system, the specific location of the firefighting personnel is calculated. position, movement speed and direction;
  • Power management module provide power management for the mobile intelligent reference positioning system, control the working state and sleep state of the system based on the monitoring information of the surrounding environment, and manage the charging and power supply state of the system and battery;
  • the mobile intelligent reference positioning system is loaded on the characteristic position including the target, and obtains the position information of the target through its own positioning module;
  • the geometric information of the loading platform loaded with the mobile intelligent reference positioning system including vehicles, buildings and road facilities, its known or resolvable precise position information, and the relative geometric relationship of the loading point on the loading platform. Will be recorded in the intelligent reference positioning system database and reside in the central processing unit and related systems.
  • the wearable individual positioning system includes the following modules:
  • Communication module establish and maintain communication between wearable individual soldier positioning systems, wearable individual soldier positioning systems and each intelligent fire hydrant system, mobile intelligent reference positioning system, fire fighting system through free networking. Communication between mission monitoring command terminal system and central processing server;
  • Reference positioning tag module According to the positioning technology adopted by the reference positioning beacon module in the intelligent fire hydrant system or the mobile intelligent reference positioning system, the reference positioning tag module of the located person is equipped with corresponding tags or nodes, corresponding to By transmitting or receiving signals of corresponding technologies, together with the reference positioning beacon module and the calculation module in the intelligent fire hydrant system or the mobile intelligent reference positioning system, it is possible to determine the position of the positioned person relative to the fire hydrant or the mobile intelligent reference positioning system.
  • the real-time position and motion state of the loading platform to determine the real-time absolute position and motion state of the positioned person under the inertial system;
  • GNSS module Receive the signal of the navigation satellite through the GNSS antenna to calculate the precise position of the person being positioned, and integrate it with the positioning module of other individual positioning systems to provide positioning accuracy.
  • IMU module through independent positioning of one or more IMU units, obtain its own position, speed and direction information, and integrate and calibrate the IMU through the positioning modules of other individual positioning systems;
  • Task guidance module through communication with the central processing unit, provide corresponding guidance for operators through methods not limited to voice, alarm bell, light, text, and graphics;
  • Power management module provide power management for the wearable individual soldier positioning system, control the working state and dormant state of the system based on the monitoring information of the surrounding environment and the wearing conditions of the operator, and control the charging and Power supply status management;
  • Physiological information monitoring module monitor and record the physiological state of the operator, including blood pressure, heart rate, and respiration.
  • the locator who performs the task is equipped with a wearable individual positioning system.
  • the wearable system and equipment are mounted on or built into the locator's helmet, clothing and boots, or worn on the locator's limbs and torso ;
  • the fire control task monitoring command terminal system includes the following modules:
  • Communication module establish and maintain various fire-fighting task monitoring and command terminal systems, as well as the fire-fighting task monitoring and command terminal system and each intelligent fire hydrant system, mobile intelligent reference positioning system, wearable Communication between individual soldier positioning system and central processing server;
  • Personnel positioning monitoring module Continuously track and monitor the location, moving speed and physiological condition information of the operator, and issue a warning for emergency situations;
  • Fire Situation Monitoring and Prediction Module Based on the fire-related information detected and monitored by the intelligent fire hydrant system, including ambient temperature, humidity, smoke concentration, flow direction, wind direction and wind speed, the fire situation is predicted to support tasks optimization and command;
  • Mission optimization and command module Based on the monitoring and prediction of the fire situation, combined with the position and status of the located person, optimize the search and rescue, fire fighting and evacuation tasks, and communicate the instructions to the operators;
  • Equipment status monitoring module collect and monitor the status information of each module and equipment consisting of the intelligent fire hydrant system, the mobile intelligent reference positioning system, the wearable individual soldier positioning system, and the central processing unit, and monitor them to ensure that the system effective operation of
  • Display and control module Integrate monitoring information, present information in a visual way, and provide corresponding control functions;
  • the fire-fighting task monitoring command terminal system resides on different platforms and operating systems, including servers, PCs, and handheld electronic devices;
  • the fire control task monitoring command terminal system is independent from the central processing server, or integrated with the central processing server.
  • Communication module establish and maintain the communication between the central processing server and each fire-fighting task monitoring and command terminal system, intelligent fire hydrant system, mobile intelligent reference positioning system, and wearable individual positioning system through free-style networking Communication;
  • Information monitoring module mainly monitor the surrounding environment, fire situation and situation information of each system, and assist each power management module to manage the working status of the system;
  • Task optimization module provide calculation support for the task optimization and command module of the fire control task monitoring command terminal system
  • Task guidance module provide calculation support for the task optimization and command module of the fire control task monitoring command terminal system, and transmit the guidance signal to the intelligent fire hydrant system and the wearable individual positioning system;
  • Individual soldier positioning calculation module collect relevant data of each positioning and navigation source in the individual soldier positioning system, and support the individual soldier positioning system to calculate the position and movement information;
  • Device management module monitor the running status and configuration information of other systems and devices
  • Database management module configure and manage database information required by other systems
  • the individual soldier positioning calculation module can reside in the wearable individual soldier positioning system; the task optimization and task guidance module can reside in the fire mission monitoring command terminal system.
  • Embodiment 2 is a preferred example of Embodiment 1 to describe the present invention more specifically.
  • a method for precise positioning of firefighters in a full mission scene includes:
  • Step S1 The intelligent fire hydrant system performs fixed reference positioning, detects the fire situation and conducts tasks, and sends the information to the central processing server;
  • Step S2 The mobile intelligent positioning reference system performs mobile reference positioning, and communicates the state detection with the central server;
  • Step S3 The wearable individual positioning system system performs fixed reference positioning with the intelligent fire hydrant system, performs mobile reference positioning with the mobile intelligent positioning reference system, and transmits information to the central server;
  • Step S4 The fire monitoring and command terminal system and the intelligent fire hydrant system perform fire monitoring and task command, and transmit information on personnel positioning, fire monitoring, task command, and status detection to the central server.
  • step S1 Specifically, in the step S1:
  • i) Communication responsible for establishing and maintaining the communication among various intelligent fire hydrant systems, as well as between the intelligent fire hydrant system and each individual positioning system, fire-fighting task monitoring command terminal system, and central processing server through free-style networking;
  • Reference positioning beacon Based on the position information of the fire hydrant itself as a positioning reference, the relative position of the located person is determined through the corresponding positioning technology, and the positioning is provided. Under different positioning technologies, the reference signal of the corresponding technology will be used. mark;
  • Health monitoring collect and monitor the health status information of the fire hydrant equipped with the intelligent fire hydrant system, monitor its own status information, and transmit all monitoring information to the central processing server through communication for easy maintenance;
  • Fire detection and situation prediction It includes sensor equipment that monitors the surrounding temperature, humidity, smoke concentration, flow direction, wind direction and wind speed, analyzes and predicts the situation through the monitored fire information, and transmits the monitoring and prediction information through communication sent to the central processing server.
  • Alarm and task guidance including warning equipment, based on the fire detection information, the surrounding personnel are not limited to voice, alarm, light, text, graphics, and through communication with the central processor, through not limited to Provide corresponding search and rescue and evacuation guidance for operators in the form of voice, alarm bell, light, text and graphics;
  • Power management provide power management for the intelligent fire hydrant system, control the working status and dormant status of the system based on the monitoring information of the surrounding environment, and manage the charging and power supply status of solar energy, building power and working batteries;
  • the intelligent fire hydrant system is designed accordingly, and installed on the existing fire hydrant through various methods including pasting, inlaying, bracketing, and mounting, and monitors the status information of the fire hydrant;
  • the fire hydrant needs to determine the location information based on positioning, surveying and mapping, building information and geographic information.
  • the information will be recorded in the database of the intelligent fire hydrant system and reside in the central processing unit and other systems; the system can also be loaded in other similar
  • Other devices with long-term fixation and appropriate quantity including fire hydrants, safety exit signs, and characteristic positions of buildings.
  • step S2 Specifically, in the step S2:
  • the mobile intelligent reference positioning system includes the following steps:
  • Reference positioning beacon Based on its own position information, as a positioning reference, determine the relative position of the positioned person through the corresponding positioning technology, and provide position, speed and direction information for positioning; under different positioning technologies, it will do corresponding technical reference beacons;
  • GNSS and RTK Obtain its own position, speed and direction information through GNSS and RTK technology autonomous positioning, and work together with IMU to provide position reference for operator positioning;
  • IMU through one or more IMU units to locate independently, obtain its own position, speed and direction information, GNSS and IMU work together to provide position reference for operator positioning;
  • Power management provide power management for the mobile intelligent reference positioning system, control the working status and sleep status of the system based on the monitoring information of the surrounding environment, and manage the charging and power supply status of the system and battery;
  • the mobile intelligent reference positioning system is loaded on the characteristic position including the target, and obtains the position information of the target through its own positioning;
  • the geometric information of the loading platform loaded with the mobile intelligent reference positioning system including vehicles, buildings and road facilities, its known or resolvable precise position information, and the relative geometric relationship of the loading point on the loading platform. Will be recorded in the intelligent reference positioning system database and reside in the central processing unit and related systems.
  • step S3 Specifically, in the step S3:
  • the wearable individual soldier positioning system includes the following steps:
  • Reference positioning tag According to the positioning technology adopted by the reference positioning beacon in the intelligent fire hydrant system or the mobile intelligent reference positioning system, the reference positioning tag of the located person is equipped with corresponding tags or nodes, and correspondingly transmits Or receive the signal of the corresponding technology, together with the reference positioning beacon and calculation in the intelligent fire hydrant system or the mobile intelligent reference positioning system, determine the real-time position of the positioned person relative to the fire hydrant or the loading platform of the mobile intelligent reference positioning system and motion state, to determine the real-time absolute position and motion state of the positioned person under the inertial system;
  • GNSS Receive the signal of the navigation satellite through the GNSS antenna to calculate the precise position of the person being positioned, and work together with the positioning of other individual positioning systems to provide positioning accuracy.
  • IMU through one or more IMU units to independently locate, obtain its own position, speed and direction information, and operate together through the positioning of other individual positioning systems to fuse and calibrate the IMU;
  • Task guidance through communication with the central processor, provide corresponding guidance to operators through methods not limited to voice, alarm bell, light, text, and graphics;
  • Power management provide power management for the wearable individual positioning system, control the working state and dormant state of the system based on the monitoring information of the surrounding environment and the wearing condition of the operator, and charge and supply power to the system and battery status management;
  • Physiological information monitoring monitor and record the physiological state of the operator, including blood pressure, heart rate, and respiration.
  • the locator who performs the task is equipped with a wearable individual positioning system.
  • the wearable system and equipment are mounted on or built into the locator's helmet, clothing and boots, or worn on the locator's limbs and torso ;
  • step S4 Specifically, in the step S4:
  • the fire control task monitoring command terminal system includes the following steps:
  • i) Communication Establish and maintain various fire-fighting task monitoring and command terminal systems, as well as fire-fighting task monitoring and command terminal systems and various intelligent fire hydrant systems, mobile intelligent reference positioning systems, wearable single communication between the soldier positioning system and the central processing server;
  • Personnel positioning monitoring continuous tracking and monitoring of the operator's location, moving speed and physiological condition information, and issuing a warning for emergency situations;
  • Fire situation monitoring and prediction Based on the fire-related information detected and monitored by the intelligent fire hydrant system, including ambient temperature, humidity, smoke concentration, flow direction, wind direction and speed, the fire situation is predicted to support the mission optimization and command;
  • Task optimization and command Based on the monitoring and prediction of the fire situation, combined with the location and status of the located person, optimize the search and rescue, fire fighting and evacuation tasks, and communicate the instructions to the operators;
  • Equipment status monitoring Collect and monitor the status information of each step and equipment from the intelligent fire hydrant system, the mobile intelligent reference positioning system, the wearable individual soldier positioning system, and the central processing unit, and monitor them to ensure the system effective operation;
  • the fire-fighting task monitoring command terminal system resides on different platforms and operating systems, including servers, PCs, and handheld electronic devices;
  • the fire control task monitoring command terminal system is independent from the central processing server, or integrated with the central processing server.
  • the central processing server includes the following steps:
  • Information monitoring mainly monitor the surrounding environment, fire situation and situation information of each system, and assist the working status of each power management system;
  • Task optimization provide calculation support for task optimization and command of the fire control task monitoring command terminal system
  • Task guidance provide calculation support for the task optimization and command of the fire control task monitoring command terminal system, and transmit the guidance signal to the intelligent fire hydrant system and the wearable individual soldier positioning system;
  • Database management configure and manage database information required by other systems
  • the individual soldier positioning calculation can reside in the wearable individual soldier positioning system; task optimization and task guidance can reside in the fire mission monitoring command terminal system.
  • Embodiment 3 is a preferred example of Embodiment 1 to describe the present invention more specifically.
  • the system and method are composed of several intelligent fire hydrant systems, several movable intelligent reference positioning systems, several wearable individual soldier positioning systems, several monitoring command terminal systems and a central processing server.
  • the schematic diagram of the architecture is shown in Figure 6:
  • the intelligent fire hydrant system has the following characteristics:
  • the intelligent fire hydrant system includes the following modules:
  • Communication module This module is responsible for the establishment and maintenance of various intelligent fire hydrant systems through free-style networking, as well as between the intelligent fire hydrant system and each individual positioning system, fire control task monitoring command terminal system, and central processing server Communication. Communication methods include but are not limited to technologies and frequency bands such as Bluetooth, WiFi, LoRA, and telecommunications networks.
  • Reference positioning beacon module This module is based on the precise location information of the fire hydrant itself as a positioning reference, and determines the relative position of firefighters through corresponding positioning technology to provide accurate positioning for firefighters.
  • the technologies and options for personnel positioning using the reference positioning beacon module include but are not limited to Bluetooth Beacon positioning, Bluetooth AoA positioning, Bluetooth AoD positioning, Zigbee positioning, wifi positioning, infrared positioning, infrared web positioning, ultrasonic positioning, RFID positioning, UWB positioning, LED visible light positioning, etc. Under different positioning technologies, the reference positioning beacon module will be the reference beacon of the corresponding technology.
  • Health monitoring module This module will collect and monitor the health status information of the fire hydrant equipped with the intelligent fire hydrant system, such as water pressure, temperature, water flow, etc., and monitor the status information of the module itself, such as working mode, power supply, etc. status, etc., and transmit all monitoring information to the central processing server through the communication module for easy maintenance.
  • Fire detection and situation prediction module This module contains sensor equipment that monitors the surrounding temperature, humidity, smoke concentration, flow direction, wind direction and wind speed, etc. It analyzes and predicts its situation through the monitored fire information, and will The monitoring and prediction information is transmitted to the central processing server through the communication module.
  • Alarm and task guidance module This module includes warning devices such as speakers, lights, and display screens. Based on the fire detection information, the module warns surrounding personnel through voice, alarm bell, light, text, graphics, etc. And through the communication with the central processor, it provides firefighting personnel with corresponding search and rescue and evacuation guidance through not limited to voice, alarm bell, light, text, graphics and other methods.
  • Power management module This module provides power management for the intelligent fire hydrant system, controls the working state and sleep state of the system based on the monitoring information of the surrounding environment, and monitors the charging and power supply status of solar energy, building power supply and working battery manage.
  • the intelligent fire hydrant system can be installed on existing fire hydrants through various methods including but not limited to pasting, inlaying, bracketing, and mounting through corresponding design. It can also monitor the status information of fire hydrants.
  • the fire hydrant equipped with the intelligent fire hydrant system needs to determine its precise location information based on positioning, surveying and mapping, building information and geographic information. This information will be recorded in the intelligent fire hydrant system database and reside in the central processing devices and other systems.
  • the system can also be installed on other devices similar to fire hydrants, with long-term fixation and appropriate quantity, including but not limited to fire hydrants, safety exit signs, and building feature locations such as doors, windows, corners, corridors, and stairs wait.
  • the mobile intelligent reference positioning system has the following characteristics:
  • the mobile intelligent reference positioning system includes the following modules:
  • Communication module This module establishes and maintains the communication among various mobile intelligent reference positioning systems, as well as between the mobile intelligent reference positioning system and each individual soldier positioning system, fire-fighting task monitoring command terminal system, Centrally handles communication between servers. Communication methods include but are not limited to technologies and frequency bands such as Bluetooth, WiFi, LoRA, and telecommunications networks.
  • Reference positioning beacon module This module is based on its own precise location information as a positioning reference, and determines the relative position of firefighters through corresponding positioning technology, providing accurate position, speed and direction information for firefighters to locate.
  • the technologies and options for personnel positioning using the reference positioning beacon module include but are not limited to Bluetooth Beacon positioning, Bluetooth AoA positioning, Bluetooth AoD positioning, Zigbee positioning, wifi positioning, infrared positioning, infrared web positioning, ultrasonic positioning, RFID positioning, UWB positioning, LED visible light positioning, etc. Under different positioning technologies, the reference positioning beacon module will be the reference beacon of the corresponding technology.
  • GNSS and RTK module This module uses GNSS and RTK technology to independently locate and obtain its own precise position, speed and direction information. And it is integrated with its own IMU module to achieve higher accuracy and provide accurate position reference for the positioning of firefighters.
  • IMU module This module is positioned autonomously through one or more IMU units, and obtains its own precise position, speed and direction information. It is also integrated with its own GNSS and IMU modules to achieve higher accuracy and provide accurate position reference for firefighting personnel positioning.
  • Reference positioning calculation module This module calculates the fire-fighting system based on the geometric characteristics of the carrier loaded with the mobile intelligent reference positioning system, the loading position, and the relative position of the firefighting workers and the mobile intelligent reference positioning system. The specific location, movement speed and direction of the operator.
  • Power management module This module provides power management for the mobile intelligent reference positioning system, controls the working status and sleep status of the system based on the monitoring information of the surrounding environment, and manages the charging and power supply status of the system and battery .
  • the mobile intelligent reference positioning system can be loaded on characteristic locations including but not limited to vehicles, buildings, road facilities, etc., and obtain its precise location information through its own positioning module.
  • the wearable individual soldier positioning system has the following characteristics:
  • the wearable individual soldier positioning system includes the following modules:
  • Communication module This module establishes and maintains information between wearable individual soldier positioning systems, wearable individual soldier positioning systems and various intelligent fire hydrant systems, and mobile intelligent reference positioning systems through free networking. , The communication between the fire control task monitoring command terminal system and the central processing server. Communication methods include but are not limited to technologies and frequency bands such as Bluetooth, WiFi, LoRA, and telecommunications networks.
  • Reference positioning tag module This module is equipped with corresponding tags or nodes according to the positioning technology adopted by the reference positioning beacon module in the intelligent fire hydrant system or the mobile intelligent reference positioning system. Correspondingly, by transmitting or receiving signals of corresponding technologies, together with the reference positioning beacon module and the calculation module in the intelligent fire hydrant system or the mobile intelligent reference positioning system, it is determined that the firefighters are relative to the fire hydrant or the mobile intelligent reference positioning system. The real-time position and motion status of the loading platform. Further, determine the real-time absolute position and motion state of firefighters in the inertial system.
  • GNSS module This module receives signals from navigation satellites through GNSS antenna to calculate the precise position of firefighters, and integrates it with the positioning modules of other individual positioning systems to provide positioning accuracy.
  • IMU module This module independently locates through one or more IMU units, obtains its own precise position, speed and direction information, and fuses and calibrates the IMU through the positioning module fusion of other individual positioning systems.
  • Task guidance module This module provides corresponding search and rescue and evacuation guidance for firefighters through communication with the central processor, not limited to voice, alarm bell, light, text, graphics, etc.
  • Power management module This module provides power management for the wearable individual soldier positioning system. Based on the monitoring information of the surrounding environment and the wearing conditions of the firefighters, it controls the working state and sleep state of the system, and controls the power of the system and battery. Charging and power supply status are managed.
  • Physiological information monitoring module This module can monitor and record the physiological status of the firefighter such as blood pressure, heart rate, and respiration.
  • Firefighters who perform fire rescue tasks are equipped with wearable individual positioning systems.
  • the wearable system and equipment can be mounted on or built into the helmets, clothes and boots of firefighters, and can also be worn on the limbs and torso of firefighters.
  • the fire-fighting task monitoring command terminal system has the following characteristics:
  • the fire-fighting task monitoring command terminal system includes the following modules:
  • Communication module This module establishes and maintains various fire-fighting task monitoring and command terminal systems through free-style networking, as well as between the fire-fighting task monitoring and command terminal system and each intelligent fire hydrant system, and the mobile intelligent reference positioning system.
  • Personnel positioning monitoring module This module continuously tracks and monitors information such as the position, moving speed and physiological condition of firefighting personnel, and issues warnings for emergency situations.
  • Fire situation monitoring and prediction module This module predicts the fire situation based on the fire-related information detected and monitored by the intelligent fire hydrant system, including ambient temperature, humidity, smoke concentration, flow direction, wind direction and wind speed, etc. To support the optimization and command of firefighting tasks.
  • Task optimization and command module Based on the monitoring and prediction of the fire situation, this module optimizes the tasks of search and rescue, fire fighting and evacuation in combination with the position and status of firefighters, and communicates the instructions to firefighters.
  • Equipment status monitoring module This module collects the status information of each module and equipment consisting of the intelligent fire hydrant system, the mobile intelligent reference positioning system, the wearable individual soldier positioning system, and the central processing unit, and monitors them. Monitoring to ensure the effective operation of the system.
  • Display and control module This module integrates the above monitoring information, presents the information in a visual way, and provides corresponding control functions.
  • the fire-fighting task monitoring command terminal system can reside on different platforms and operating systems such as servers, PCs, and handheld electronic devices.
  • the fire-fighting task monitoring command terminal system can be independent from the central processing server, and can also be integrated with the central processing server.
  • the central processing server has the following characteristics:
  • the central processing server includes the following modules:
  • Communication module This module establishes and maintains the central processing server and each fire-fighting task monitoring command terminal system, intelligent fire hydrant system, mobile intelligent reference positioning system, and wearable individual soldier positioning system through free-style networking. communication between. Communication methods include but are not limited to technologies and frequency bands such as Bluetooth, WiFi, LoRA, and telecommunications networks.
  • Information monitoring module This module mainly monitors the surrounding environment, fire situation, situation and other information of each system, and assists each power management module to manage the working status of the system.
  • Task optimization module provide calculation support for the task optimization and command module of the fire control task monitoring command terminal system.
  • Task guidance module Provide calculation support for the task optimization and command module of the fire mission monitoring command terminal system, and transmit the guidance signal to the intelligent fire hydrant system and the wearable individual soldier positioning system.
  • Individual soldier positioning calculation module This module collects the relevant data of each positioning and navigation source in the individual soldier positioning system, and supports the individual soldier positioning system to calculate accurate position and movement information.
  • Device management module This module monitors the running status and configuration information of other systems and devices.
  • Database management module This module configures and manages the database information required by other systems.
  • the individual soldier positioning calculation module can also reside in the wearable individual soldier positioning system.
  • the task optimization and task guidance modules can also reside in the fire control task monitoring command terminal system.
  • the main function of the system and method proposed by one or more embodiments of the present invention is to accurately locate firefighters in all mission scenarios, and at the same time have communication, command and monitoring functions.
  • the system and method use IMU, GNSS, relative positioning technology based on fixed intelligent fire hydrant system (hereinafter referred to as fixed reference positioning), and relative positioning technology based on mobile intelligent reference positioning system (hereinafter referred to as Mobile reference positioning), etc., the positioning function of the system and method will judge and evaluate the usability and quality of each navigation source, and establish navigation calculation rules to calculate the precise position, speed and direction information of firefighters.
  • fixed reference positioning fixed intelligent fire hydrant system
  • Mobile reference positioning mobile intelligent reference positioning system
  • its positioning update mode includes:
  • the system and method take into account the positioning accuracy and the relationship of the positioning accuracy over time in each of the above positioning update modes, so as to ensure the influence of the positioning accuracy on task execution in different task scenarios.
  • the process is shown in Figure 8:
  • the communication function of the system and method adopts a free-style networking method to ensure the reliability of data transmission between any two communication nodes, thereby improving the robustness of communication.
  • the system and method optimize each task link of fire rescue and make command and control through fire monitoring, situation prediction and real-time positioning information of firefighters.
  • the system and method can monitor the real-time position and physiological state of the personnel, as well as the health state of the system and equipment, so as to more effectively ensure the effect of fire fighting and rescue.
  • the present invention has the following beneficial effects:
  • the present invention provides a system and method that can accurately locate firefighters at all stages of their tasks, and can detect fire conditions, predict fire situations, and provide task guidance for firefighters;
  • the present invention proposes a positioning system and method that can satisfy the seamless connection of firefighting workers in all tasks;
  • the present invention does not change the existing fire-fighting rescue process, and does not require additional training for fire-fighting workers;
  • the present invention can monitor the state of existing fire-fighting facilities at the same time, thereby reducing the cost of manual inspections, and can detect abnormal states in time to avoid delaying the timing of fire-fighting;
  • the present invention can optimize the rescue task, ensure the life and property safety of firefighters and people to the greatest extent, and improve the efficiency of fire fighting and rescue.
  • the system, device and each module thereof provided by the present invention can be completely programmed by logically programming the method steps.
  • the same program is implemented in the form of logic gates, switches, application specific integrated circuits, programmable logic controllers, and embedded microcontrollers, among others. Therefore, the system, device and each module provided by the present invention can be regarded as a hardware component, and the modules included in it for realizing various programs can also be regarded as the structure in the hardware component; A module for realizing various functions can be regarded as either a software program realizing a method or a structure within a hardware component.

Abstract

一种全任务场景消防员精确定位方法及系统,包括:智能消防栓系统模块:参考定位信标,监测健康状态,探测火情和预测态势,警报和任务指引;可移动式智能参考定位系统模块:参考定位信标,自主定位获取信息,通过IMU单元自主定位获取信息,解算参考定位;可穿戴式单兵定位系统系统:参考定位标签,接收信号解算出精确位置,自主定位获取信息,任务指引,监控生理信息;消防任务监控指挥终端系统模块:监控人员定位,监控和预测火情态势,任务优化和指挥,监控设备状态,显示与控制;中央处理服务器模块:监控信息,优化任务和指引,解算定位,数据库管理。

Description

全任务场景消防员精确定位方法及系统 技术领域
本发明涉及消防器材技术领域,具体地,涉及一种全任务场景消防员精确定位方法及系统。
背景技术
目前对于消防作业人员定位的方法多种多样,常用的定位方法包括惯性测量单元(IMU)、全球卫星导航系统(GNSS),以及各种室内定位技术。惯性测量单元(IMU)是一种不依赖外部信息,基于自身的加速度、角速度等传感器进行计算,从而确定运动速度、方向和位置等信息,人员室内定位基本都是以IMU为基础,但是其缺点是:误差会随着时间积累,经过长时间后最终误差会变的很大,所以需要外部其他导航源对其修正。全球卫星导航系统(GNSS)通过获取卫星信号,实时解算位置信息,定位数据不会随着时间积累,但是其缺点是:在室内和高楼密集区域信号被遮挡,城市环境还会有多径现象,这些都影响卫星导航系统定位精度和可用性,如果用有误差的卫星导航系统数据去跟微惯导系统融合从而修正微惯导输出,会导致微惯导积分开始的位置就是错误的。RTK(Real Time Kinematic),即载波相位差分技术,作为对GNSS的补充,它能够实时地提供测站点在指定坐标系中的三维定位结果,并达到厘米级精度。在RTK作业模式下,基站采集卫星数据,并通过数据链将其观测值和站点坐标信息一起传送给移动站,而移动站通过对所采集到的卫星数据和接收到的数据链进行实时载波相位差分处理(历时不足一秒),得出厘米级的定位结果。但RTK和GNSS一样,依旧受卫星状况、电离层、数据链传输和对空通视环境的影响。用室内定位的方法,需要预先布置大量的定位信标,增加了成本,同时火灾时这些信标极有可能被烧毁,最终导致无法使用。而消防任务环境复杂多变,因此,很难通过一种或多种定位技术的结合来满足消防作业人员全任务场景的精确定位。
为了解决以上问题,本发明提出了一种针对消防作业全任务场景下对消防作业 人员进行精确定位的系统和方法,基于设计的智能消防栓及其他固定或移动定位信标,结合IMU、GNSS、RTK和室内定位技术,实现在各个任务场景下精确定位的无缝连接。
专利文献CN104305984B(申请号:CN201410533425.9)提供消防员生命监测传输系统,解决现有消防器材监测精度低、传输效果不理想,设备繁琐、使用困难,效率较低、消防员无法及时报警和后方指挥人员不能对其进行快速定位而错过救护的最佳时机问题;其方案是,包括心率手环、呼救器和后台接收装置,心率手环佩戴在消防员手腕上,进行实时监测消防员的心率,心率手环监测的数据通过蓝牙无线传输至无线语音呼救器,无线语音呼救器接收的数据再经无线传输至后台接收装置,后台接收装置处理和分析接收到的信号,获悉消防员生命体征参数,后台接收装置经无线信号触发无线语音呼救器报警。但该发明不能针对消防作业全任务场景下对消防作业人员进行精确定位。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种全任务场景消防员精确定位方法及系统。
根据本发明提供的一种全任务场景消防员精确定位系统,包括:
智能消防栓系统模块:参考定位信标,监测健康状态信息,探测火情和预测态势,警报和任务指引,电源管理;
可移动式智能参考定位系统模块:参考定位信标,通过GNSS和RTK技术自主定位获取信息,通过IMU单元自主定位获取信息,解算参考定位,电源管理;
可穿戴式单兵定位系统系统:参考定位标签,通过GNSS接收信号解算出精确位置,通过IMU单元自主定位获取信息,任务指引,电源管理,监控生理信息;
消防任务监控指挥终端系统模块:监控人员定位,监控和预测火情态势,任务优化和指挥,监控设备状态,显示与控制;
中央处理服务器模块:监控信息,优化任务,任务指引,解算单兵定位,设备管理,数据库管理。
优选地,在所述智能消防栓系统模块中:
i)通信模块:负责通过自由式组网的方式建立和维持各个智能消防栓系统之间、以 及智能消防栓系统与各个单兵定位系统、消防任务监控指挥终端系统、中央处理服务器之间的通信;
ii)参考定位信标模块:基于所载消防栓自身位置信息作为定位参考,通过相应的定位技术确定被定位者的相对位置,提供定位,在采用不同的定位技术下,参考定位信标模块将做相应技术的参考信标;
iii)健康监测模块:将对装载有该智能消防栓系统的消防栓的健康状态信息进行采集和监控,并监测模块自身的状态信息,并将所有监控信息通过通信模块传送至中央处理服务器,以便于维护;
iv)火情探测和态势预测模块:包含有对周围温度、湿度、烟雾浓度及流向、风向风速进行监控的传感器设备,通过监控的火情信息对态势加以分析预测,并将监控和预测信息通过通信模块传送至中央处理服务器。
v)警报和任务指引模块:包含有警示设备,基于火情探测信息对周围人员通过不限于语音、警铃、灯光、文字、图形的方式进行警报,并通过与中央处理器的通信,通过不限于语音、警铃、灯光、文字、图形的方式为作业人员提供相应的搜救和撤离指引;
vi)电源管理模块:为智能消防栓系统提供电源管理,基于周边环境的监测信息,对系统的工作状态和休眠状态进行控制,并对太阳能、建筑电源和工作电池的充电和供电状态进行管理;
该智能消防栓系统通过相应地设计,通过包括粘贴、镶嵌、支架、挂载的多种方式安装于现有的消防栓上,并对消防栓的状态信息进行监控;装载该智能消防栓系统的消防栓需基于定位、测绘、建筑物信息和地理信息手段确定位置信息,信息将被记录于智能消防栓系统数据库,并驻留于中央处理器和其他系统中;该系统也能够装载于其他类似于消防栓,具备长期固定、数量适合的其他装置上,包括消防水龙头、安全出口标识、建筑物特征位置。
优选地,在所述可移动式智能参考定位系统模块中:
可移动式智能参考定位系统包含有如下模块:
i)通信模块:通过自由式组网的方式建立和维持各个可移动式智能参考定位系统之间、以及可移动式智能参考定位系统与各个单兵定位系统、消防任务监控指挥终端系统、中央处理服务器之间的通信;
ii)参考定位信标模块:基于自身位置信息,作为定位参考,通过相应的定位技术确定被定位者的相对位置,为定位提供位置、速度和方向信息;在采用不同的定位技术下, 参考定位信标模块将做相应技术的参考信标;
iii)GNSS与RTK模块:通过GNSS和RTK技术自主定位获取自身位置、速度和方向信息,并于自身的IMU模块融合,为作业人员定位提供位置参考;
iv)IMU模块:通过一个或多个IMU单元自主定位,获取自身位置、速度和方向信息,并于自身的GNSS与IMU模块融合,为作业人员定位提供位置参考;
v)参考定位解算模块:基于装载有该可移动式智能参考定位系统的载体的几何特征和装载位置以及作业人员与该可移动式智能参考定位系统的相对位置,解算出消防作业人员的具体位置、移动速度和方向;
vi)电源管理模块:为可移动式智能参考定位系统提供电源管理,基于周边环境的监测信息,对系统的工作状态和休眠状态进行控制,并对系统和电池的充电和供电状态进行管理;
可移动式智能参考定位系统装载于包括目标物的特征位置,并通过自身的定位模块获取目标物的位置信息;
装载有可移动式智能参考定位系统的包括车辆、建筑物和道路设施的装载平台的几何信息及其已知或可解算的精确位置信息、装载点在该装载平台上的相对几何关系这些信息将被记录于智能参考定位系统数据库,并驻留于中央处理器及相关系统。
进一步地,在所述可穿戴式单兵定位系统模块中:
可穿戴式单兵定位系统包含有如下模块:
i)通信模块:通过自由式组网的方式建立和维持各个可穿戴式单兵定位系统之间、以及可穿戴式单兵定位系统与各个智能消防栓系统、可移动式智能参考定位系统、消防任务监控指挥终端系统、中央处理服务器之间的通信;
ii)参考定位标签模块:根据智能消防栓系统或可移动式智能参考定位系统中的参考定位信标模块所采用的定位技术,被定位者参考定位标签模块配备相对应的标签或节点,相对应地通过发射或接收相应技术的信号,与智能消防栓系统或可移动式智能参考定位系统中的参考定位信标模块和解算模块共同确定被定位者相对于消防栓或可移动智能参考定位系统的装载平台的实时位置和运动状态,确定被定位者在惯性系下的实时绝对位置和运动状态;
iii)GNSS模块:通过GNSS天线接收导航卫星的信号解算出被定位者的精确位置,并于其他单兵定位系统的定位模块融合,提供定位精度。
iv)IMU模块:通过一个或多个IMU单元自主定位,获取自身位置、速度和方向信息, 并通过其他单兵定位系统的定位模块融合,对IMU进行融合和校准;
v)任务指引模块:通过与中央处理器的通信,通过不限于语音、警铃、灯光、文字、图形的方式为作业人员提供相应的指引;
vi)电源管理模块:为可穿戴式单兵定位系统提供电源管理,基于周边环境的监测信息和作业者的穿戴情况,对系统的工作状态和休眠状态进行控制,并对系统和电池的充电和供电状态进行管理;
vii)生理信息监控模块:对作业人员的生理状态包括血压、心率、呼吸进行监测和记录。
实施任务的被定位者配备有可穿戴式单兵定位系统,该可穿戴式系统及设备挂载于或内置于被定位者的头盔、衣服和靴子,或者戴在被定位者的四肢和躯干部位;
进一步地,在所述消防任务监控指挥终端系统模块中:
消防任务监控指挥终端系统包含如下模块:
i)通信模块:通过自由式组网的方式建立和维持各个消防任务监控指挥终端系统之间、以及消防任务监控指挥终端系统与各个智能消防栓系统、可移动式智能参考定位系统、可穿戴式单兵定位系统、中央处理服务器之间的通信;
ii)人员定位监控模块:对作业人员的位置、移动速度和生理状况信息进行持续的跟踪和监控,并对紧急情况发出警告;
iii)火情态势监控和预测模块:基于智能消防栓系统探测和监控的火情相关信息,包括周围温度、湿度、烟雾浓度及流向、风向风速,对火情态势加以预判,用以支持任务的优化和指挥;
iv)任务优化和指挥模块:基于火情态势的监控和预测,结合被定位者的位置和状态,优化搜救、灭火和撤离任务,并将指令传达至作业人员;
v)设备状态监控模块:集中搜集由智能消防栓系统、可移动式智能参考定位系统、可穿戴式单兵定位系统、以及中央处理器是各个模块和设备的状态信息,并加以监控,确保系统的有效运行;
vi)显示与控制模块:集成监控信息,通过可视化的方式将信息呈现,并提供相应的控制功能;
消防任务监控指挥终端系统驻留于不同的平台和操作系统上,包括服务器、PC机、掌上电子设备;
消防任务监控指挥终端系统独立于中央处理服务器,或者集成于中央处理服务器。
进一步地,在所述中央处理服务器模块中:
i)通信模块:通过自由式组网的方式建立和维持中央处理服务器与各个消防任务监控指挥终端系统、智能消防栓系统、可移动式智能参考定位系统、和可穿戴式单兵定位系统之间的通信;
ii)信息监控模块:主要对各个系统周围环境、火情、态势信息进行监控,并协助各个电源管理模块管理系统工作状态;
iii)任务优化模块:为消防任务监控指挥终端系统的任务优化和指挥模块提供解算支持;
iv)任务指引模块:为消防任务监控指挥终端系统的任务优化和指挥模块提供解算支持,并将指引信号传输至智能消防栓系统和可穿戴式单兵定位系统;
v)单兵定位解算模块:集中单兵定位系统中各个定位导航源的相关数据,支持单兵定位系统解算出位置和运动信息;
vi)设备管理模块:监控其他系统和设备的运行状态和配置信息;
vii)数据库管理模块:对其他系统所需的数据库信息进行配置和管理;
单兵定位解算模块能够驻留于可穿戴式单兵定位系统中;任务优化和任务指引模块能够驻留于消防任务监控指挥终端系统中。
根据本发明提供的一种全任务场景消防员精确定位方法,包括:
步骤S1:智能消防栓系统进行固定式参考定位,并对火情进行检测和任务指挥,将信息发送至中央处理服务器;
步骤S2:可移动式智能定位参考系统进行可移动式参考定位,并将状态检测与中央服务器进行通信;
步骤S3:可穿戴式单兵定位系统系统与智能消防栓系统进行固定式参考定位,与可移动式智能定位参考系统进行可移动式参考定位,并将信息与中央服务器进行传输;
步骤S4:消防任务监控指挥终端系统与智能消防栓系统进行火情监测和任务指挥,将人员定位和火情监测和任务指挥和状态检测与中央服务器进行信息传输。
进一步地,在所述步骤S1中:
i)通信:负责通过自由式组网的方式建立和维持各个智能消防栓系统之间、以及智能消防栓系统与各个单兵定位系统、消防任务监控指挥终端系统、中央处理服务器之间的通信;
ii)参考定位信标:基于所载消防栓自身位置信息作为定位参考,通过相应的定位技 术确定被定位者的相对位置,提供定位,在采用不同的定位技术下,将做相应技术的参考信标;
iii)健康监测:将对装载有该智能消防栓系统的消防栓的健康状态信息进行采集和监控,并监测自身的状态信息,并将所有监控信息通过通信传送至中央处理服务器,以便于维护;
iv)火情探测和态势预测:包含有对周围温度、湿度、烟雾浓度及流向、风向风速进行监控的传感器设备,通过监控的火情信息对态势加以分析预测,并将监控和预测信息通过通信传送至中央处理服务器。
v)警报和任务指引:包含有警示设备,基于火情探测信息对周围人员通过不限于语音、警铃、灯光、文字、图形的方式进行警报,并通过与中央处理器的通信,通过不限于语音、警铃、灯光、文字、图形的方式为作业人员提供相应的搜救和撤离指引;
vi)电源管理:为智能消防栓系统提供电源管理,基于周边环境的监测信息,对系统的工作状态和休眠状态进行控制,并对太阳能、建筑电源和工作电池的充电和供电状态进行管理;
该智能消防栓系统通过相应地设计,通过包括粘贴、镶嵌、支架、挂载的多种方式安装于现有的消防栓上,并对消防栓的状态信息进行监控;装载该智能消防栓系统的消防栓需基于定位、测绘、建筑物信息和地理信息手段确定位置信息,信息将被记录于智能消防栓系统数据库,并驻留于中央处理器和其他系统中;该系统也能够装载于其他类似于消防栓,具备长期固定、数量适合的其他装置上,包括消防水龙头、安全出口标识、建筑物特征位置。
进一步地,在所述步骤S2中:
可移动式智能参考定位系统包含有如下步骤:
i)通信:通过自由式组网的方式建立和维持各个可移动式智能参考定位系统之间、以及可移动式智能参考定位系统与各个单兵定位系统、消防任务监控指挥终端系统、中央处理服务器之间的通信;
ii)参考定位信标:基于自身位置信息,作为定位参考,通过相应的定位技术确定被定位者的相对位置,为定位提供位置、速度和方向信息;在采用不同的定位技术下,将做相应技术的参考信标;
iii)GNSS与RTK:通过GNSS和RTK技术自主定位获取自身位置、速度和方向信息,并与IMU共同运作,为作业人员定位提供位置参考;
iv)IMU:通过一个或多个IMU单元自主定位,获取自身位置、速度和方向信息,GNSS与IMU共同运作,为作业人员定位提供位置参考;
v)参考定位解算:基于装载有该可移动式智能参考定位系统的载体的几何特征和装载位置以及作业人员与该可移动式智能参考定位系统的相对位置,解算出消防作业人员的具体位置、移动速度和方向;
vi)电源管理:为可移动式智能参考定位系统提供电源管理,基于周边环境的监测信息,对系统的工作状态和休眠状态进行控制,并对系统和电池的充电和供电状态进行管理;
可移动式智能参考定位系统装载于包括目标物的特征位置,并通过自身的定位获取目标物的位置信息;
装载有可移动式智能参考定位系统的包括车辆、建筑物和道路设施的装载平台的几何信息及其已知或可解算的精确位置信息、装载点在该装载平台上的相对几何关系这些信息将被记录于智能参考定位系统数据库,并驻留于中央处理器及相关系统。
进一步地,在所述步骤S3中:
在所述可穿戴式单兵定位系统中:
可穿戴式单兵定位系统包含有如下步骤:
i)通信:通过自由式组网的方式建立和维持各个可穿戴式单兵定位系统之间、以及可穿戴式单兵定位系统与各个智能消防栓系统、可移动式智能参考定位系统、消防任务监控指挥终端系统、中央处理服务器之间的通信;
ii)参考定位标签:根据智能消防栓系统或可移动式智能参考定位系统中的参考定位信标所采用的定位技术,被定位者参考定位标签配备相对应的标签或节点,相对应地通过发射或接收相应技术的信号,与智能消防栓系统或可移动式智能参考定位系统中的参考定位信标和解算共同确定被定位者相对于消防栓或可移动智能参考定位系统的装载平台的实时位置和运动状态,确定被定位者在惯性系下的实时绝对位置和运动状态;
iii)GNSS:通过GNSS天线接收导航卫星的信号解算出被定位者的精确位置,并于其他单兵定位系统的定位共同运作,提供定位精度。
iv)IMU:通过一个或多个IMU单元自主定位,获取自身位置、速度和方向信息,并通过其他单兵定位系统的定位共同运作,对IMU进行融合和校准;
v)任务指引:通过与中央处理器的通信,通过不限于语音、警铃、灯光、文字、图形的方式为作业人员提供相应的指引;
vi)电源管理:为可穿戴式单兵定位系统提供电源管理,基于周边环境的监测信息和作业者的穿戴情况,对系统的工作状态和休眠状态进行控制,并对系统和电池的充电和供电状态进行管理;
vii)生理信息监控:对作业人员的生理状态包括血压、心率、呼吸进行监测和记录。
实施任务的被定位者配备有可穿戴式单兵定位系统,该可穿戴式系统及设备挂载于或内置于被定位者的头盔、衣服和靴子,或者戴在被定位者的四肢和躯干部位;
进一步地,在所述步骤S4中:
消防任务监控指挥终端系统包含如下步骤:
i)通信:通过自由式组网的方式建立和维持各个消防任务监控指挥终端系统之间、以及消防任务监控指挥终端系统与各个智能消防栓系统、可移动式智能参考定位系统、可穿戴式单兵定位系统、中央处理服务器之间的通信;
ii)人员定位监控:对作业人员的位置、移动速度和生理状况信息进行持续的跟踪和监控,并对紧急情况发出警告;
iii)火情态势监控和预测:基于智能消防栓系统探测和监控的火情相关信息,包括周围温度、湿度、烟雾浓度及流向、风向风速,对火情态势加以预判,用以支持任务的优化和指挥;
iv)任务优化和指挥:基于火情态势的监控和预测,结合被定位者的位置和状态,优化搜救、灭火和撤离任务,并将指令传达至作业人员;
v)设备状态监控:集中搜集由智能消防栓系统、可移动式智能参考定位系统、可穿戴式单兵定位系统、以及中央处理器是各个步骤和设备的状态信息,并加以监控,确保系统的有效运行;
vi)显示与控制:集成监控信息,通过可视化的方式将信息呈现,并提供相应的控制功能;
消防任务监控指挥终端系统驻留于不同的平台和操作系统上,包括服务器、PC机、掌上电子设备;
消防任务监控指挥终端系统独立于中央处理服务器,或者集成于中央处理服务器。
进一步地,中央处理服务器包含如下步骤:
i)通信:通过自由式组网的方式建立和维持中央处理服务器与各个消防任务监控指挥终端系统、智能消防栓系统、可移动式智能参考定位系统、和可穿戴式单兵定位系统之间的通信;
ii)信息监控:主要对各个系统周围环境、火情、态势信息进行监控,并协助各个电源管理管理系统工作状态;
iii)任务优化:为消防任务监控指挥终端系统的任务优化和指挥提供解算支持;
iv)任务指引:为消防任务监控指挥终端系统的任务优化和指挥提供解算支持,并将指引信号传输至智能消防栓系统和可穿戴式单兵定位系统;
v)单兵定位解算:集中单兵定位系统中各个定位导航源的相关数据,支持单兵定位系统解算出位置和运动信息;
vi)设备管理:监控其他系统和设备的运行状态和配置信息;
vii)数据库管理:对其他系统所需的数据库信息进行配置和管理;
单兵定位解算能够驻留于可穿戴式单兵定位系统中;任务优化和任务指引能够驻留于消防任务监控指挥终端系统中。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明其中一个实施例的智能消防栓系统图;
图2为本发明其中一个实施例的可移动式智能参考定位系统图;
图3为本发明其中一个实施例的可穿戴式单兵定位系统图;
图4为本发明其中一个实施例的消防任务监控指挥终端系统图;
图5为本发明其中一个实施例的中央处理服务器图;
图6为本发明其中一个实施例的架构示意图;
图7为本发明其中一个实施例的定位功能示意图;
图8为本发明其中一个实施例的定位功能流程图;
图9为本发明其中一个实施例的系统之间的通信所支持的功能示意图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技 术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
实施例1:
根据本发明提供的一种全任务场景消防员精确定位系统,如图1-图9所示,包括:
智能消防栓系统模块:参考定位信标,监测健康状态信息,探测火情和预测态势,警报和任务指引,电源管理;
可移动式智能参考定位系统模块:参考定位信标,通过GNSS和RTK技术自主定位获取信息,通过IMU单元自主定位获取信息,解算参考定位,电源管理;
可穿戴式单兵定位系统系统:参考定位标签,通过GNSS接收信号解算出精确位置,通过IMU单元自主定位获取信息,任务指引,电源管理,监控生理信息;
消防任务监控指挥终端系统模块:监控人员定位,监控和预测火情态势,任务优化和指挥,监控设备状态,显示与控制;
中央处理服务器模块:监控信息,优化任务,任务指引,解算单兵定位,设备管理,数据库管理。
具体地,在所述智能消防栓系统模块中:
i)通信模块:负责通过自由式组网的方式建立和维持各个智能消防栓系统之间、以及智能消防栓系统与各个单兵定位系统、消防任务监控指挥终端系统、中央处理服务器之间的通信;
ii)参考定位信标模块:基于所载消防栓自身位置信息作为定位参考,通过相应的定位技术确定被定位者的相对位置,提供定位,在采用不同的定位技术下,参考定位信标模块将做相应技术的参考信标;
iii)健康监测模块:将对装载有该智能消防栓系统的消防栓的健康状态信息进行采集和监控,并监测模块自身的状态信息,并将所有监控信息通过通信模块传送至中央处理服务器,以便于维护;
iv)火情探测和态势预测模块:包含有对周围温度、湿度、烟雾浓度及流向、风向风速进行监控的传感器设备,通过监控的火情信息对态势加以分析预测,并将监控和预测信息通过通信模块传送至中央处理服务器。
v)警报和任务指引模块:包含有警示设备,基于火情探测信息对周围人员通过不限于语音、警铃、灯光、文字、图形的方式进行警报,并通过与中央处理器的通信,通过不限于语音、警铃、灯光、文字、图形的方式为作业人员提供相应的搜救和撤离指引;
vi)电源管理模块:为智能消防栓系统提供电源管理,基于周边环境的监测信息,对系统的工作状态和休眠状态进行控制,并对太阳能、建筑电源和工作电池的充电和供电状态进行管理;
该智能消防栓系统通过相应地设计,通过包括粘贴、镶嵌、支架、挂载的多种方式安装于现有的消防栓上,并对消防栓的状态信息进行监控;装载该智能消防栓系统的消防栓需基于定位、测绘、建筑物信息和地理信息手段确定位置信息,信息将被记录于智能消防栓系统数据库,并驻留于中央处理器和其他系统中;该系统也能够装载于其他类似于消防栓,具备长期固定、数量适合的其他装置上,包括消防水龙头、安全出口标识、建筑物特征位置。
具体地,在所述可移动式智能参考定位系统模块中:
可移动式智能参考定位系统包含有如下模块:
i)通信模块:通过自由式组网的方式建立和维持各个可移动式智能参考定位系统之间、以及可移动式智能参考定位系统与各个单兵定位系统、消防任务监控指挥终端系统、中央处理服务器之间的通信;
ii)参考定位信标模块:基于自身位置信息,作为定位参考,通过相应的定位技术确定被定位者的相对位置,为定位提供位置、速度和方向信息;在采用不同的定位技术下,参考定位信标模块将做相应技术的参考信标;
iii)GNSS与RTK模块:通过GNSS和RTK技术自主定位获取自身位置、速度和方向信息,并于自身的IMU模块融合,为作业人员定位提供位置参考;
iv)IMU模块:通过一个或多个IMU单元自主定位,获取自身位置、速度和方向信息,并于自身的GNSS与IMU模块融合,为作业人员定位提供位置参考;
v)参考定位解算模块:基于装载有该可移动式智能参考定位系统的载体的几何特征和装载位置以及作业人员与该可移动式智能参考定位系统的相对位置,解算出消防作业人员的具体位置、移动速度和方向;
vi)电源管理模块:为可移动式智能参考定位系统提供电源管理,基于周边环境的监测信息,对系统的工作状态和休眠状态进行控制,并对系统和电池的充电和供电状态进行管理;
可移动式智能参考定位系统装载于包括目标物的特征位置,并通过自身的定位模块获取目标物的位置信息;
装载有可移动式智能参考定位系统的包括车辆、建筑物和道路设施的装载平台的几 何信息及其已知或可解算的精确位置信息、装载点在该装载平台上的相对几何关系这些信息将被记录于智能参考定位系统数据库,并驻留于中央处理器及相关系统。
具体地,在所述可穿戴式单兵定位系统模块中:
可穿戴式单兵定位系统包含有如下模块:
i)通信模块:通过自由式组网的方式建立和维持各个可穿戴式单兵定位系统之间、以及可穿戴式单兵定位系统与各个智能消防栓系统、可移动式智能参考定位系统、消防任务监控指挥终端系统、中央处理服务器之间的通信;
ii)参考定位标签模块:根据智能消防栓系统或可移动式智能参考定位系统中的参考定位信标模块所采用的定位技术,被定位者参考定位标签模块配备相对应的标签或节点,相对应地通过发射或接收相应技术的信号,与智能消防栓系统或可移动式智能参考定位系统中的参考定位信标模块和解算模块共同确定被定位者相对于消防栓或可移动智能参考定位系统的装载平台的实时位置和运动状态,确定被定位者在惯性系下的实时绝对位置和运动状态;
iii)GNSS模块:通过GNSS天线接收导航卫星的信号解算出被定位者的精确位置,并于其他单兵定位系统的定位模块融合,提供定位精度。
iv)IMU模块:通过一个或多个IMU单元自主定位,获取自身位置、速度和方向信息,并通过其他单兵定位系统的定位模块融合,对IMU进行融合和校准;
v)任务指引模块:通过与中央处理器的通信,通过不限于语音、警铃、灯光、文字、图形的方式为作业人员提供相应的指引;
vi)电源管理模块:为可穿戴式单兵定位系统提供电源管理,基于周边环境的监测信息和作业者的穿戴情况,对系统的工作状态和休眠状态进行控制,并对系统和电池的充电和供电状态进行管理;
vii)生理信息监控模块:对作业人员的生理状态包括血压、心率、呼吸进行监测和记录。
实施任务的被定位者配备有可穿戴式单兵定位系统,该可穿戴式系统及设备挂载于或内置于被定位者的头盔、衣服和靴子,或者戴在被定位者的四肢和躯干部位;
具体地,在所述消防任务监控指挥终端系统模块中:
消防任务监控指挥终端系统包含如下模块:
i)通信模块:通过自由式组网的方式建立和维持各个消防任务监控指挥终端系统之间、以及消防任务监控指挥终端系统与各个智能消防栓系统、可移动式智能参考定位系 统、可穿戴式单兵定位系统、中央处理服务器之间的通信;
ii)人员定位监控模块:对作业人员的位置、移动速度和生理状况信息进行持续的跟踪和监控,并对紧急情况发出警告;
iii)火情态势监控和预测模块:基于智能消防栓系统探测和监控的火情相关信息,包括周围温度、湿度、烟雾浓度及流向、风向风速,对火情态势加以预判,用以支持任务的优化和指挥;
iv)任务优化和指挥模块:基于火情态势的监控和预测,结合被定位者的位置和状态,优化搜救、灭火和撤离任务,并将指令传达至作业人员;
v)设备状态监控模块:集中搜集由智能消防栓系统、可移动式智能参考定位系统、可穿戴式单兵定位系统、以及中央处理器是各个模块和设备的状态信息,并加以监控,确保系统的有效运行;
vi)显示与控制模块:集成监控信息,通过可视化的方式将信息呈现,并提供相应的控制功能;
消防任务监控指挥终端系统驻留于不同的平台和操作系统上,包括服务器、PC机、掌上电子设备;
消防任务监控指挥终端系统独立于中央处理服务器,或者集成于中央处理服务器。
具体地,在所述中央处理服务器模块中:
i)通信模块:通过自由式组网的方式建立和维持中央处理服务器与各个消防任务监控指挥终端系统、智能消防栓系统、可移动式智能参考定位系统、和可穿戴式单兵定位系统之间的通信;
ii)信息监控模块:主要对各个系统周围环境、火情、态势信息进行监控,并协助各个电源管理模块管理系统工作状态;
iii)任务优化模块:为消防任务监控指挥终端系统的任务优化和指挥模块提供解算支持;
iv)任务指引模块:为消防任务监控指挥终端系统的任务优化和指挥模块提供解算支持,并将指引信号传输至智能消防栓系统和可穿戴式单兵定位系统;
v)单兵定位解算模块:集中单兵定位系统中各个定位导航源的相关数据,支持单兵定位系统解算出位置和运动信息;
vi)设备管理模块:监控其他系统和设备的运行状态和配置信息;
vii)数据库管理模块:对其他系统所需的数据库信息进行配置和管理;
单兵定位解算模块能够驻留于可穿戴式单兵定位系统中;任务优化和任务指引模块能够驻留于消防任务监控指挥终端系统中。
实施例2:
实施例2为实施例1的优选例,以更为具体地对本发明进行说明。
本领域技术人员可以将本发明其中一个实施例提供的一种全任务场景消防员精确定位方法,理解为全任务场景消防员精确定位系统的具体实施方式,即所述全任务场景消防员精确定位系统可以通过执行所述全任务场景消防员精确定位方法的步骤流程予以实现。
根据本发明其中一个实施例提供的一种全任务场景消防员精确定位方法,包括:
步骤S1:智能消防栓系统进行固定式参考定位,并对火情进行检测和任务指挥,将信息发送至中央处理服务器;
步骤S2:可移动式智能定位参考系统进行可移动式参考定位,并将状态检测与中央服务器进行通信;
步骤S3:可穿戴式单兵定位系统系统与智能消防栓系统进行固定式参考定位,与可移动式智能定位参考系统进行可移动式参考定位,并将信息与中央服务器进行传输;
步骤S4:消防任务监控指挥终端系统与智能消防栓系统进行火情监测和任务指挥,将人员定位和火情监测和任务指挥和状态检测与中央服务器进行信息传输。
具体地,在所述步骤S1中:
i)通信:负责通过自由式组网的方式建立和维持各个智能消防栓系统之间、以及智能消防栓系统与各个单兵定位系统、消防任务监控指挥终端系统、中央处理服务器之间的通信;
ii)参考定位信标:基于所载消防栓自身位置信息作为定位参考,通过相应的定位技术确定被定位者的相对位置,提供定位,在采用不同的定位技术下,将做相应技术的参考信标;
iii)健康监测:将对装载有该智能消防栓系统的消防栓的健康状态信息进行采集和监控,并监测自身的状态信息,并将所有监控信息通过通信传送至中央处理服务器,以便于维护;
iv)火情探测和态势预测:包含有对周围温度、湿度、烟雾浓度及流向、风向风速进行监控的传感器设备,通过监控的火情信息对态势加以分析预测,并将监控和预测信息通过通信传送至中央处理服务器。
v)警报和任务指引:包含有警示设备,基于火情探测信息对周围人员通过不限于语音、警铃、灯光、文字、图形的方式进行警报,并通过与中央处理器的通信,通过不限于语音、警铃、灯光、文字、图形的方式为作业人员提供相应的搜救和撤离指引;
vi)电源管理:为智能消防栓系统提供电源管理,基于周边环境的监测信息,对系统的工作状态和休眠状态进行控制,并对太阳能、建筑电源和工作电池的充电和供电状态进行管理;
该智能消防栓系统通过相应地设计,通过包括粘贴、镶嵌、支架、挂载的多种方式安装于现有的消防栓上,并对消防栓的状态信息进行监控;装载该智能消防栓系统的消防栓需基于定位、测绘、建筑物信息和地理信息手段确定位置信息,信息将被记录于智能消防栓系统数据库,并驻留于中央处理器和其他系统中;该系统也能够装载于其他类似于消防栓,具备长期固定、数量适合的其他装置上,包括消防水龙头、安全出口标识、建筑物特征位置。
具体地,在所述步骤S2中:
可移动式智能参考定位系统包含有如下步骤:
i)通信:通过自由式组网的方式建立和维持各个可移动式智能参考定位系统之间、以及可移动式智能参考定位系统与各个单兵定位系统、消防任务监控指挥终端系统、中央处理服务器之间的通信;
ii)参考定位信标:基于自身位置信息,作为定位参考,通过相应的定位技术确定被定位者的相对位置,为定位提供位置、速度和方向信息;在采用不同的定位技术下,将做相应技术的参考信标;
iii)GNSS与RTK:通过GNSS和RTK技术自主定位获取自身位置、速度和方向信息,并与IMU共同运作,为作业人员定位提供位置参考;
iv)IMU:通过一个或多个IMU单元自主定位,获取自身位置、速度和方向信息,GNSS与IMU共同运作,为作业人员定位提供位置参考;
v)参考定位解算:基于装载有该可移动式智能参考定位系统的载体的几何特征和装载位置以及作业人员与该可移动式智能参考定位系统的相对位置,解算出消防作业人员的具体位置、移动速度和方向;
vi)电源管理:为可移动式智能参考定位系统提供电源管理,基于周边环境的监测信息,对系统的工作状态和休眠状态进行控制,并对系统和电池的充电和供电状态进行管理;
可移动式智能参考定位系统装载于包括目标物的特征位置,并通过自身的定位获取目标物的位置信息;
装载有可移动式智能参考定位系统的包括车辆、建筑物和道路设施的装载平台的几何信息及其已知或可解算的精确位置信息、装载点在该装载平台上的相对几何关系这些信息将被记录于智能参考定位系统数据库,并驻留于中央处理器及相关系统。
具体地,在所述步骤S3中:
在所述可穿戴式单兵定位系统中:
可穿戴式单兵定位系统包含有如下步骤:
i)通信:通过自由式组网的方式建立和维持各个可穿戴式单兵定位系统之间、以及可穿戴式单兵定位系统与各个智能消防栓系统、可移动式智能参考定位系统、消防任务监控指挥终端系统、中央处理服务器之间的通信;
ii)参考定位标签:根据智能消防栓系统或可移动式智能参考定位系统中的参考定位信标所采用的定位技术,被定位者参考定位标签配备相对应的标签或节点,相对应地通过发射或接收相应技术的信号,与智能消防栓系统或可移动式智能参考定位系统中的参考定位信标和解算共同确定被定位者相对于消防栓或可移动智能参考定位系统的装载平台的实时位置和运动状态,确定被定位者在惯性系下的实时绝对位置和运动状态;
iii)GNSS:通过GNSS天线接收导航卫星的信号解算出被定位者的精确位置,并于其他单兵定位系统的定位共同运作,提供定位精度。
iv)IMU:通过一个或多个IMU单元自主定位,获取自身位置、速度和方向信息,并通过其他单兵定位系统的定位共同运作,对IMU进行融合和校准;
v)任务指引:通过与中央处理器的通信,通过不限于语音、警铃、灯光、文字、图形的方式为作业人员提供相应的指引;
vi)电源管理:为可穿戴式单兵定位系统提供电源管理,基于周边环境的监测信息和作业者的穿戴情况,对系统的工作状态和休眠状态进行控制,并对系统和电池的充电和供电状态进行管理;
vii)生理信息监控:对作业人员的生理状态包括血压、心率、呼吸进行监测和记录。
实施任务的被定位者配备有可穿戴式单兵定位系统,该可穿戴式系统及设备挂载于或内置于被定位者的头盔、衣服和靴子,或者戴在被定位者的四肢和躯干部位;
具体地,在所述步骤S4中:
消防任务监控指挥终端系统包含如下步骤:
i)通信:通过自由式组网的方式建立和维持各个消防任务监控指挥终端系统之间、以及消防任务监控指挥终端系统与各个智能消防栓系统、可移动式智能参考定位系统、可穿戴式单兵定位系统、中央处理服务器之间的通信;
ii)人员定位监控:对作业人员的位置、移动速度和生理状况信息进行持续的跟踪和监控,并对紧急情况发出警告;
iii)火情态势监控和预测:基于智能消防栓系统探测和监控的火情相关信息,包括周围温度、湿度、烟雾浓度及流向、风向风速,对火情态势加以预判,用以支持任务的优化和指挥;
iv)任务优化和指挥:基于火情态势的监控和预测,结合被定位者的位置和状态,优化搜救、灭火和撤离任务,并将指令传达至作业人员;
v)设备状态监控:集中搜集由智能消防栓系统、可移动式智能参考定位系统、可穿戴式单兵定位系统、以及中央处理器是各个步骤和设备的状态信息,并加以监控,确保系统的有效运行;
vi)显示与控制:集成监控信息,通过可视化的方式将信息呈现,并提供相应的控制功能;
消防任务监控指挥终端系统驻留于不同的平台和操作系统上,包括服务器、PC机、掌上电子设备;
消防任务监控指挥终端系统独立于中央处理服务器,或者集成于中央处理服务器。
具体地,中央处理服务器包含如下步骤:
i)通信:通过自由式组网的方式建立和维持中央处理服务器与各个消防任务监控指挥终端系统、智能消防栓系统、可移动式智能参考定位系统、和可穿戴式单兵定位系统之间的通信;
ii)信息监控:主要对各个系统周围环境、火情、态势信息进行监控,并协助各个电源管理管理系统工作状态;
iii)任务优化:为消防任务监控指挥终端系统的任务优化和指挥提供解算支持;
iv)任务指引:为消防任务监控指挥终端系统的任务优化和指挥提供解算支持,并将指引信号传输至智能消防栓系统和可穿戴式单兵定位系统;
v)单兵定位解算:集中单兵定位系统中各个定位导航源的相关数据,支持单兵定位系统解算出位置和运动信息;
vi)设备管理:监控其他系统和设备的运行状态和配置信息;
vii)数据库管理:对其他系统所需的数据库信息进行配置和管理;
单兵定位解算能够驻留于可穿戴式单兵定位系统中;任务优化和任务指引能够驻留于消防任务监控指挥终端系统中。
实施例3:
实施例3为实施例1的优选例,以更为具体地对本发明进行说明。
该系统和方法由若干个智能消防栓系统、若干个可移动式智能参考定位系统、若干个可穿戴式单兵定位系统、若干个监控指挥终端系统和一个中央处理服务器组成。架构示意图如图6:
其中:
1)智能消防栓系统具备如下特征:
a)智能消防栓系统包括有如下模块:
i)通信模块:该模块负责通过自由式组网的方式建立和维持各个智能消防栓系统之间、以及智能消防栓系统与各个单兵定位系统、消防任务监控指挥终端系统、中央处理服务器之间的通信。通信方式包括但不限于蓝牙、WiFi、LoRA、电信网络等技术和频段。
ii)参考定位信标模块:该模块基于所载消防栓自身精确的位置信息,作为定位参考,通过相应的定位技术确定消防人员的相对位置,为消防人员提供精确的定位。采用该参考定位信标模块进行人员定位的技术和选项包括但不限于蓝牙Beacon定位、蓝牙AoA定位、蓝牙AoD定位、Zigbee定位、wifi定位、红外定位、红外织网定位、超声波定位、RFID定位、UWB定位、LED可见光定位等。在采用不同的定位技术下,该参考定位信标模块将做相应技术的参考信标。
iii)健康监测模块:该模块将对装载有该智能消防栓系统的消防栓的健康状态信息如水压、温度、水流等加以采集和监控,并监测模块自身的状态信息,如工作模式、电源状态等,并将所有监控信息通过通信模块传送至中央处理服务器,以便于维护。
iv)火情探测和态势预测模块:该模块包含有对周围温度、湿度、烟雾浓度及流向、风向风速等进行监控的传感器设备,其通过监控的火情信息对其态势加以分析预测,并将监控和预测信息通过通信模块传送至中央处理服务器。
v)警报和任务指引模块:该模块包含有扬声器、灯、显示屏等警示设备,该模块基于火情探测信息对周围人员通过不限于语音、警铃、灯光、文字、图形等方式进行警报,并通过与中央处理器的通信,通过不限于语音、警铃、灯光、文字、图形等方式为消防作业人员提供相应的搜救和撤离指引。
vi)电源管理模块:该模块为智能消防栓系统提供电源管理,基于周边环境的监测信息,对系统的工作状态和休眠状态进行控制,并对太阳能、建筑电源和工作电池的充电和供电状态进行管理。
b)该智能消防栓系统通过相应地设计,可通过包括且不限于粘贴、镶嵌、支架、挂载等多种方式安装于现有的消防栓上。并可对消防栓的状态信息进行监控。
c)装载该智能消防栓系统的消防栓需基于定位、测绘、建筑物信息和地理信息等手段确定其精确的位置信息,该信息将被记录于智能消防栓系统数据库,并驻留于中央处理器和其他系统中。
d)该系统亦可装载于其他类似于消防栓,具备长期固定、数量适合的其他装置上,包括且不限于消防水龙头、安全出口标识、建筑物特征位置如门、窗、角、楼道、楼梯等。
2)可移动式智能参考定位系统具备如下特征:
a)可移动式智能参考定位系统包含有如下模块:
i)通信模块:该模块通过自由式组网的方式建立和维持各个可移动式智能参考定位系统之间、以及可移动式智能参考定位系统与各个单兵定位系统、消防任务监控指挥终端系统、中央处理服务器之间的通信。通信方式包括但不限于蓝牙、WiFi、LoRA、电信网络等技术和频段。
ii)参考定位信标模块:该模块基于自身精确的位置信息,作为定位参考,通过相应的定位技术确定消防人员的相对位置,为消防人员定位提供精确的位置、速度和方向信息。采用该参考定位信标模块进行人员定位的技术和选项包括但不限于蓝牙Beacon定位、蓝牙AoA定位、蓝牙AoD定位、Zigbee定位、wifi定位、红外定位、红外织网定位、超声波定位、RFID定位、UWB定位、LED可见光定位等。在采用不同的定位技术下,该参考定位信标模块将做相应技术的参考信标。
iii)GNSS与RTK模块:该模块通过GNSS和RTK技术自主定位,获取自身精确的位置、速度和方向信息。并于自身的IMU模块融合,以达到更高的精度,为消防作业人员定位提供精确的位置参考。
iv)IMU模块:该模块通过一个或多个IMU单元自主定位,获取自身精确的位置、速度和方向信息。并于自身的GNSS与IMU模块融合,以达到更高的精度,为消防作业人员定位提供精确的位置参考。
v)参考定位解算模块:该模块基于装载有该可移动式智能参考定位系统的载体的几 何特征、装载位置、以及消防作业人员与该可移动式智能参考定位系统的相对位置来解算出消防作业人员的具体位置、移动速度和方向。
vi)电源管理模块:该模块为可移动式智能参考定位系统提供电源管理,基于周边环境的监测信息,对系统的工作状态和休眠状态进行控制,并对系统和电池的充电和供电状态进行管理。
b)该可移动式智能参考定位系统可装载于包括且不限于车辆、建筑物、道路设施等的特征位置,并通过自身的定位模块获取其精确的位置信息。
c)可装载有可移动式智能参考定位系统的包括且不限于车辆、建筑物和道路设施等装载平台的几何信息及其已知或可解算的精确位置信息、装载点在该装载平台上的相对几何关系等信息将被记录于智能参考定位系统数据库,并驻留于中央处理器及相关系统。
3)可穿戴式单兵定位系统具备如下特征:
a)可穿戴式单兵定位系统包含有如下模块:
i)通信模块:该模块通过自由式组网的方式建立和维持各个可穿戴式单兵定位系统之间、以及可穿戴式单兵定位系统与各个智能消防栓系统、可移动式智能参考定位系统、消防任务监控指挥终端系统、中央处理服务器之间的通信。通信方式包括但不限于蓝牙、WiFi、LoRA、电信网络等技术和频段。
ii)参考定位标签模块:该模块根据智能消防栓系统或可移动式智能参考定位系统中的参考定位信标模块所采用的定位技术,该消防人员参考定位标签模块配备相对应的标签或节点,相对应地通过发射或接收相应技术的信号,与智能消防栓系统或可移动式智能参考定位系统中的参考定位信标模块和解算模块共同确定消防人员相对于消防栓或可移动智能参考定位系统的装载平台的实时位置和运动状态。进一步,确定消防人员在惯性系下的实时绝对位置和运动状态。
iii)GNSS模块:该模块通过GNSS天线接收导航卫星的信号解算出消防人员的精确位置,并于其他单兵定位系统的定位模块融合,提供定位精度。
iv)IMU模块:该模块通过一个或多个IMU单元自主定位,获取自身精确的位置、速度和方向信息,并通过其他单兵定位系统的定位模块融合,对IMU进行融合和校准。
v)任务指引模块:该模块通过与中央处理器的通信,通过不限于语音、警铃、灯光、文字、图形等方式为消防作业人员提供相应的搜救和撤离指引。
vi)电源管理模块:该模块为可穿戴式单兵定位系统提供电源管理,基于周边环境的监测信息和消防员的穿戴情况,对系统的工作状态和休眠状态进行控制,并对系统和电 池的充电和供电状态进行管理。
vii)生理信息监控模块:该模块可对该消防作业人员的血压、心率、呼吸等生理状态进行监测和记录。
b)实施消防救援任务的消防人员配备有可穿戴式单兵定位系统。该可穿戴式系统及设备可挂载于或内置于消防人员的头盔、衣服和靴子,也可戴在消防人员的四肢和躯干部位。
4)消防任务监控指挥终端系统具备如下特征:
a)消防任务监控指挥终端系统包含如下模块:
i)通信模块:该模块通过自由式组网的方式建立和维持各个消防任务监控指挥终端系统之间、以及消防任务监控指挥终端系统与各个智能消防栓系统、可移动式智能参考定位系统、可穿戴式单兵定位系统、中央处理服务器之间的通信。通信方式包括但不限于蓝牙、WiFi、LoRA、电信网络等技术和频段。
ii)人员定位监控模块:该模块对消防作业人员的位置、移动速度和生理状况等信息进行持续的跟踪和监控,并对紧急情况发出警告。
iii)火情态势监控和预测模块:该模块基于智能消防栓系统探测和监控的火情相关信息,包括周围温度、湿度、烟雾浓度及流向、风向风速等,对火情态势加以预判,用以支持消防任务的优化和指挥。
iv)任务优化和指挥模块:该模块基于火情态势的监控和预测,结合消防人员的位置和状态,优化搜救、灭火和撤离任务,并将指令传达至消防作业人员。
v)设备状态监控模块:该模块集中搜集由智能消防栓系统、可移动式智能参考定位系统、可穿戴式单兵定位系统、以及中央处理器是各个模块和设备的状态信息,并对其加以监控,确保系统的有效运行。
vi)显示与控制模块:该模块集成以上监控信息,通过可视化的方式将信息呈现,并提供相应的控制功能。
b)消防任务监控指挥终端系统可驻留于服务器、PC机、掌上电子设备等不同的平台和操作系统上。
c)消防任务监控指挥终端系统可独立于中央处理服务器,也可以集成于中央处理服务器。
5)中央处理服务器具备如下特征:
a)中央处理服务器包含如下模块:
i)通信模块:该模块通过自由式组网的方式建立和维持中央处理服务器与各个消防任务监控指挥终端系统、智能消防栓系统、可移动式智能参考定位系统、和可穿戴式单兵定位系统之间的通信。通信方式包括但不限于蓝牙、WiFi、LoRA、电信网络等技术和频段。
ii)信息监控模块:该模块主要对各个系统周围环境、火情、态势等信息进行监控,并协助各个电源管理模块管理系统工作状态。
iii)任务优化模块:为消防任务监控指挥终端系统的任务优化和指挥模块提供解算支持。
iv)任务指引模块:为消防任务监控指挥终端系统的任务优化和指挥模块提供解算支持,并将指引信号传输至智能消防栓系统和可穿戴式单兵定位系统。
v)单兵定位解算模块:该模块集中单兵定位系统中各个定位导航源的相关数据,支持单兵定位系统解算出精确的位置和运动信息。
vi)设备管理模块:该模块监控其他系统和设备的运行状态和配置信息。
vii)数据库管理模块:该模块对其他系统所需的数据库信息进行配置和管理。
b)单兵定位解算模块亦可驻留于可穿戴式单兵定位系统中。
c)任务优化和任务指引模块亦可驻留于消防任务监控指挥终端系统中。
在上述所列的各个系统和模块的相互作用下,本发明的一个或多个实施例所提的系统和方法的主要功能是在全任务场景下对消防员进行精确定位,同时具备通信、指挥和监控的功能。
1)定位功能
该系统和方法针对消防员的定位用到了IMU、GNSS、基于固定式智能消防栓系统的相对定位技术(以下简称固定式参考定位)、基于可移动式智能参考定位系统的相对定位技术(以下简称移动式参考定位)等,该系统和方法的定位功能将判断和评估各个导航源的可用性和质量,建立导航解算规则,来计算出消防作业人员的精确位置、速度和方向信息。
具体地,其定位更新模式包括:
固定式参考定位+移动式参考定位+GNSS+IMU
固定式参考定位+移动式参考定位+IMU
移动式参考定位+GNSS+IMU
固定式参考定位+GNSS+IMU
移动式参考定位+IMU
固定式参考定位+IMU
GNSS+IMU
IMU
该系统和方法考虑了对以上各个定位更新模式下定位精度以及定位精度随时间的变化关系,以保证在不同任务场景下定位精度对任务执行的影响。其流程如图8所示:
2)通信功能
该系统和方法的通信功能采用自由式组网的方式,以保证任意两个通信节点之间的数据传输的可靠性,从而提高了通信的鲁棒性。
各个系统之间的通信所支持的功能如图9所示:
3)指挥功能
该系统和方法通过火情监测、态势预测以及消防人员实时定位的信息,优化消防救援的各个任务环节,并做出指挥和控制。
4)监控功能
该系统和方法可对人员的实时位置和生理状态、以及系统和设备的健康状态加以监控,更加有效地保证消防救援的效果。
与现有技术相比,本发明具有如下的有益效果:
1、本发明提供了一种可对消防人员全任务阶段进行精确定位的系统和方法,并可探测火灾状况、预测火灾态势,为消防作业人员提供任务指引;
2、本发明通过判断导航源的可用性和性能,提出了一种可满足消防作业人员全任务场景下无缝连接的定位系统和方法;
3、本发明不改变现有的消防救援流程,也不需要对消防作业人员进行额外的培训;
4、本发明同时可以监控现有的消防设施的状态,从而降低了人工巡查成本,能够及时发现不正常状态,避免延误救火时机;
5、本发明在消火救援过程中,可优化救援任务,最大程度上保证消防人员和人民的生命和财产安全,提高消火救援效率。
本领域技术人员知道,除了以纯计算机可读程序代码方式实现本发明提供的系统、装置及其各个模块以外,完全可以通过将方法步骤进行逻辑编程来使得本发明提供的系统、装置及其各个模块以逻辑门、开关、专用集成电路、可编程逻辑控制器以及嵌入式 微控制器等的形式来实现相同程序。所以,本发明提供的系统、装置及其各个模块可以被认为是一种硬件部件,而对其内包括的用于实现各种程序的模块也可以视为硬件部件内的结构;也可以将用于实现各种功能的模块视为既可以是实现方法的软件程序又可以是硬件部件内的结构。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (10)

  1. 一种全任务场景消防员精确定位系统,其特征在于,包括:
    智能消防栓系统模块:参考定位信标,监测健康状态信息,探测火情和预测态势,警报和任务指引,电源管理;
    可移动式智能参考定位系统模块:参考定位信标,通过GNSS和RTK技术自主定位获取信息,通过IMU单元自主定位获取信息,解算参考定位,电源管理;
    可穿戴式单兵定位系统系统:参考定位标签,通过GNSS接收信号解算出精确位置,通过IMU单元自主定位获取信息,任务指引,电源管理,监控生理信息;
    消防任务监控指挥终端系统模块:监控人员定位,监控和预测火情态势,任务优化和指挥,监控设备状态,显示与控制;
    中央处理服务器模块:监控信息,优化任务,任务指引,解算单兵定位,设备管理,数据库管理。
  2. 根据权利要求1所述的全任务场景消防员精确定位系统,其特征在于,在所述智能消防栓系统模块中:
    i)通信模块:负责通过自由式组网的方式建立和维持各个智能消防栓系统之间、以及智能消防栓系统与各个单兵定位系统、消防任务监控指挥终端系统、中央处理服务器之间的通信;
    ii)参考定位信标模块:基于所载消防栓自身位置信息作为定位参考,通过相应的定位技术确定被定位者的相对位置,提供定位,在采用不同的定位技术下,参考定位信标模块将做相应技术的参考信标;
    iii)健康监测模块:将对装载有该智能消防栓系统的消防栓的健康状态信息进行采集和监控,并监测模块自身的状态信息,并将所有监控信息通过通信模块传送至中央处理服务器,以便于维护;
    iv)火情探测和态势预测模块:包含有对周围温度、湿度、烟雾浓度及流向、风向风速进行监控的传感器设备,通过监控的火情信息对态势加以分析预测,并将监控和预测信息通过通信模块传送至中央处理服务器。
    v)警报和任务指引模块:包含有警示设备,基于火情探测信息对周围人员通过不限于语音、警铃、灯光、文字、图形的方式进行警报,并通过与中央处理器的通信,通过不限于语音、警铃、灯光、文字、图形的方式为作业人员提供相应的搜救和撤离指引;
    vi)电源管理模块:为智能消防栓系统提供电源管理,基于周边环境的监测信息,对系统的工作状态和休眠状态进行控制,并对太阳能、建筑电源和工作电池的充电和供电状态进行管理;
    该智能消防栓系统通过相应地设计,通过包括粘贴、镶嵌、支架、挂载的多种方式安装于现有的消防栓上,并对消防栓的状态信息进行监控;装载该智能消防栓系统的消防栓需基于定位、测绘、建筑物信息和地理信息手段确定位置信息,信息将被记录于智能消防栓系统数据库,并驻留于中央处理器和其他系统中;该系统也能够装载于其他类似于消防栓,具备长期固定、数量适合的其他装置上,包括消防水龙头、安全出口标识、建筑物特征位置。
  3. 根据权利要求1所述的全任务场景消防员精确定位系统,其特征在于,在所述可移动式智能参考定位系统模块中:
    可移动式智能参考定位系统包含有如下模块:
    i)通信模块:通过自由式组网的方式建立和维持各个可移动式智能参考定位系统之间、以及可移动式智能参考定位系统与各个单兵定位系统、消防任务监控指挥终端系统、中央处理服务器之间的通信;
    ii)参考定位信标模块:基于自身位置信息,作为定位参考,通过相应的定位技术确定被定位者的相对位置,为定位提供位置、速度和方向信息;在采用不同的定位技术下,参考定位信标模块将做相应技术的参考信标;
    iii)GNSS与RTK模块:通过GNSS和RTK技术自主定位获取自身位置、速度和方向信息,并于自身的IMU模块融合,为作业人员定位提供位置参考;
    iv)IMU模块:通过一个或多个IMU单元自主定位,获取自身位置、速度和方向信息,并于自身的GNSS与IMU模块融合,为作业人员定位提供位置参考;
    v)参考定位解算模块:基于装载有该可移动式智能参考定位系统的载体的几何特征和装载位置以及作业人员与该可移动式智能参考定位系统的相对位置,解算出消防作业人员的具体位置、移动速度和方向;
    vi)电源管理模块:为可移动式智能参考定位系统提供电源管理,基于周边环境的监测信息,对系统的工作状态和休眠状态进行控制,并对系统和电池的充电和供电状态进行管理;
    可移动式智能参考定位系统装载于包括目标物的特征位置,并通过自身的定位模块获取目标物的位置信息;
    装载有可移动式智能参考定位系统的包括车辆、建筑物和道路设施的装载平台的几何信息及其已知或可解算的精确位置信息、装载点在该装载平台上的相对几何关系这些信息将被记录于智能参考定位系统数据库,并驻留于中央处理器及相关系统。
  4. 根据权利要求1所述的全任务场景消防员精确定位系统,其特征在于:
    在所述可穿戴式单兵定位系统模块中:
    可穿戴式单兵定位系统包含有如下模块:
    i)通信模块:通过自由式组网的方式建立和维持各个可穿戴式单兵定位系统之间、以及可穿戴式单兵定位系统与各个智能消防栓系统、可移动式智能参考定位系统、消防任务监控指挥终端系统、中央处理服务器之间的通信;
    ii)参考定位标签模块:根据智能消防栓系统或可移动式智能参考定位系统中的参考定位信标模块所采用的定位技术,被定位者参考定位标签模块配备相对应的标签或节点,相对应地通过发射或接收相应技术的信号,与智能消防栓系统或可移动式智能参考定位系统中的参考定位信标模块和解算模块共同确定被定位者相对于消防栓或可移动智能参考定位系统的装载平台的实时位置和运动状态,确定被定位者在惯性系下的实时绝对位置和运动状态;
    iii)GNSS模块:通过GNSS天线接收导航卫星的信号解算出被定位者的精确位置,并于其他单兵定位系统的定位模块融合,提供定位精度。
    iv)IMU模块:通过一个或多个IMU单元自主定位,获取自身位置、速度和方向信息,并通过其他单兵定位系统的定位模块融合,对IMU进行融合和校准;
    v)任务指引模块:通过与中央处理器的通信,通过不限于语音、警铃、灯光、文字、图形的方式为作业人员提供相应的指引;
    vi)电源管理模块:为可穿戴式单兵定位系统提供电源管理,基于周边环境的监测信息和作业者的穿戴情况,对系统的工作状态和休眠状态进行控制,并对系统和电池的充电和供电状态进行管理;
    vii)生理信息监控模块:对作业人员的生理状态包括血压、心率、呼吸进行监测和记录。
    实施任务的被定位者配备有可穿戴式单兵定位系统,该可穿戴式系统及设备挂载于或内置于被定位者的头盔、衣服和靴子,或者戴在被定位者的四肢和躯干部位;
    在所述消防任务监控指挥终端系统模块中:
    消防任务监控指挥终端系统包含如下模块:
    i)通信模块:通过自由式组网的方式建立和维持各个消防任务监控指挥终端系统之间、以及消防任务监控指挥终端系统与各个智能消防栓系统、可移动式智能参考定位系统、可穿戴式单兵定位系统、中央处理服务器之间的通信;
    ii)人员定位监控模块:对作业人员的位置、移动速度和生理状况信息进行持续的跟踪和监控,并对紧急情况发出警告;
    iii)火情态势监控和预测模块:基于智能消防栓系统探测和监控的火情相关信息,包括周围温度、湿度、烟雾浓度及流向、风向风速,对火情态势加以预判,用以支持任务的优化和指挥;
    iv)任务优化和指挥模块:基于火情态势的监控和预测,结合被定位者的位置和状态,优化搜救、灭火和撤离任务,并将指令传达至作业人员;
    v)设备状态监控模块:集中搜集由智能消防栓系统、可移动式智能参考定位系统、可穿戴式单兵定位系统、以及中央处理器是各个模块和设备的状态信息,并加以监控,确保系统的有效运行;
    vi)显示与控制模块:集成监控信息,通过可视化的方式将信息呈现,并提供相应的控制功能;
    消防任务监控指挥终端系统驻留于不同的平台和操作系统上,包括服务器、PC机、掌上电子设备;
    消防任务监控指挥终端系统独立于中央处理服务器,或者集成于中央处理服务器。
  5. 根据权利要求1所述的全任务场景消防员精确定位系统,其特征在于,在所述中央处理服务器模块中:
    i)通信模块:通过自由式组网的方式建立和维持中央处理服务器与各个消防任务监控指挥终端系统、智能消防栓系统、可移动式智能参考定位系统、和可穿戴式单兵定位系统之间的通信;
    ii)信息监控模块:主要对各个系统周围环境、火情、态势信息进行监控,并协助各个电源管理模块管理系统工作状态;
    iii)任务优化模块:为消防任务监控指挥终端系统的任务优化和指挥模块提供解算支持;
    iv)任务指引模块:为消防任务监控指挥终端系统的任务优化和指挥模块提供解算支持,并将指引信号传输至智能消防栓系统和可穿戴式单兵定位系统;
    v)单兵定位解算模块:集中单兵定位系统中各个定位导航源的相关数据,支持单兵 定位系统解算出位置和运动信息;
    vi)设备管理模块:监控其他系统和设备的运行状态和配置信息;
    vii)数据库管理模块:对其他系统所需的数据库信息进行配置和管理;
    单兵定位解算模块能够驻留于可穿戴式单兵定位系统中;任务优化和任务指引模块能够驻留于消防任务监控指挥终端系统中。
  6. 一种全任务场景消防员精确定位方法,其特征在于,包括:
    步骤S1:智能消防栓系统进行固定式参考定位,并对火情进行检测和任务指挥,将信息发送至中央处理服务器;
    步骤S2:可移动式智能定位参考系统进行可移动式参考定位,并将状态检测与中央服务器进行通信;
    步骤S3:可穿戴式单兵定位系统系统与智能消防栓系统进行固定式参考定位,与可移动式智能定位参考系统进行可移动式参考定位,并将信息与中央服务器进行传输;
    步骤S4:消防任务监控指挥终端系统与智能消防栓系统进行火情监测和任务指挥,将人员定位和火情监测和任务指挥和状态检测与中央服务器进行信息传输。
  7. 根据权利要求6所述的全任务场景消防员精确定位方法,其特征在于,在所述步骤S1中:
    i)通信:负责通过自由式组网的方式建立和维持各个智能消防栓系统之间、以及智能消防栓系统与各个单兵定位系统、消防任务监控指挥终端系统、中央处理服务器之间的通信;
    ii)参考定位信标:基于所载消防栓自身位置信息作为定位参考,通过相应的定位技术确定被定位者的相对位置,提供定位,在采用不同的定位技术下,将做相应技术的参考信标;
    iii)健康监测:将对装载有该智能消防栓系统的消防栓的健康状态信息进行采集和监控,并监测自身的状态信息,并将所有监控信息通过通信传送至中央处理服务器,以便于维护;
    iv)火情探测和态势预测:包含有对周围温度、湿度、烟雾浓度及流向、风向风速进行监控的传感器设备,通过监控的火情信息对态势加以分析预测,并将监控和预测信息通过通信传送至中央处理服务器。
    v)警报和任务指引:包含有警示设备,基于火情探测信息对周围人员通过不限于语音、警铃、灯光、文字、图形的方式进行警报,并通过与中央处理器的通信,通过不限 于语音、警铃、灯光、文字、图形的方式为作业人员提供相应的搜救和撤离指引;
    vi)电源管理:为智能消防栓系统提供电源管理,基于周边环境的监测信息,对系统的工作状态和休眠状态进行控制,并对太阳能、建筑电源和工作电池的充电和供电状态进行管理;
    该智能消防栓系统通过相应地设计,通过包括粘贴、镶嵌、支架、挂载的多种方式安装于现有的消防栓上,并对消防栓的状态信息进行监控;装载该智能消防栓系统的消防栓需基于定位、测绘、建筑物信息和地理信息手段确定位置信息,信息将被记录于智能消防栓系统数据库,并驻留于中央处理器和其他系统中;该系统也能够装载于其他类似于消防栓,具备长期固定、数量适合的其他装置上,包括消防水龙头、安全出口标识、建筑物特征位置。
  8. 根据权利要求6所述的全任务场景消防员精确定位方法,其特征在于,在所述步骤S2中:
    可移动式智能参考定位系统包含有如下步骤:
    i)通信:通过自由式组网的方式建立和维持各个可移动式智能参考定位系统之间、以及可移动式智能参考定位系统与各个单兵定位系统、消防任务监控指挥终端系统、中央处理服务器之间的通信;
    ii)参考定位信标:基于自身位置信息,作为定位参考,通过相应的定位技术确定被定位者的相对位置,为定位提供位置、速度和方向信息;在采用不同的定位技术下,将做相应技术的参考信标;
    iii)GNSS与RTK:通过GNSS和RTK技术自主定位获取自身位置、速度和方向信息,并与IMU共同运作,为作业人员定位提供位置参考;
    iv)IMU:通过一个或多个IMU单元自主定位,获取自身位置、速度和方向信息,GNSS与IMU共同运作,为作业人员定位提供位置参考;
    v)参考定位解算:基于装载有该可移动式智能参考定位系统的载体的几何特征和装载位置以及作业人员与该可移动式智能参考定位系统的相对位置,解算出消防作业人员的具体位置、移动速度和方向;
    vi)电源管理:为可移动式智能参考定位系统提供电源管理,基于周边环境的监测信息,对系统的工作状态和休眠状态进行控制,并对系统和电池的充电和供电状态进行管理;
    可移动式智能参考定位系统装载于包括目标物的特征位置,并通过自身的定位获取 目标物的位置信息;
    装载有可移动式智能参考定位系统的包括车辆、建筑物和道路设施的装载平台的几何信息及其已知或可解算的精确位置信息、装载点在该装载平台上的相对几何关系这些信息将被记录于智能参考定位系统数据库,并驻留于中央处理器及相关系统。
  9. 根据权利要求6所述的全任务场景消防员精确定位方法,其特征在于:
    在所述步骤S3中:
    在所述可穿戴式单兵定位系统中:
    可穿戴式单兵定位系统包含有如下步骤:
    i)通信:通过自由式组网的方式建立和维持各个可穿戴式单兵定位系统之间、以及可穿戴式单兵定位系统与各个智能消防栓系统、可移动式智能参考定位系统、消防任务监控指挥终端系统、中央处理服务器之间的通信;
    ii)参考定位标签:根据智能消防栓系统或可移动式智能参考定位系统中的参考定位信标所采用的定位技术,被定位者参考定位标签配备相对应的标签或节点,相对应地通过发射或接收相应技术的信号,与智能消防栓系统或可移动式智能参考定位系统中的参考定位信标和解算共同确定被定位者相对于消防栓或可移动智能参考定位系统的装载平台的实时位置和运动状态,确定被定位者在惯性系下的实时绝对位置和运动状态;
    iii)GNSS:通过GNSS天线接收导航卫星的信号解算出被定位者的精确位置,并于其他单兵定位系统的定位共同运作,提供定位精度。
    iv)IMU:通过一个或多个IMU单元自主定位,获取自身位置、速度和方向信息,并通过其他单兵定位系统的定位共同运作,对IMU进行融合和校准;
    v)任务指引:通过与中央处理器的通信,通过不限于语音、警铃、灯光、文字、图形的方式为作业人员提供相应的指引;
    vi)电源管理:为可穿戴式单兵定位系统提供电源管理,基于周边环境的监测信息和作业者的穿戴情况,对系统的工作状态和休眠状态进行控制,并对系统和电池的充电和供电状态进行管理;
    vii)生理信息监控:对作业人员的生理状态包括血压、心率、呼吸进行监测和记录。
    实施任务的被定位者配备有可穿戴式单兵定位系统,该可穿戴式系统及设备挂载于或内置于被定位者的头盔、衣服和靴子,或者戴在被定位者的四肢和躯干部位;
    在所述步骤S4中:
    消防任务监控指挥终端系统包含如下步骤:
    i)通信:通过自由式组网的方式建立和维持各个消防任务监控指挥终端系统之间、以及消防任务监控指挥终端系统与各个智能消防栓系统、可移动式智能参考定位系统、可穿戴式单兵定位系统、中央处理服务器之间的通信;
    ii)人员定位监控:对作业人员的位置、移动速度和生理状况信息进行持续的跟踪和监控,并对紧急情况发出警告;
    iii)火情态势监控和预测:基于智能消防栓系统探测和监控的火情相关信息,包括周围温度、湿度、烟雾浓度及流向、风向风速,对火情态势加以预判,用以支持任务的优化和指挥;
    iv)任务优化和指挥:基于火情态势的监控和预测,结合被定位者的位置和状态,优化搜救、灭火和撤离任务,并将指令传达至作业人员;
    v)设备状态监控:集中搜集由智能消防栓系统、可移动式智能参考定位系统、可穿戴式单兵定位系统、以及中央处理器是各个步骤和设备的状态信息,并加以监控,确保系统的有效运行;
    vi)显示与控制:集成监控信息,通过可视化的方式将信息呈现,并提供相应的控制功能;
    消防任务监控指挥终端系统驻留于不同的平台和操作系统上,包括服务器、PC机、掌上电子设备;
    消防任务监控指挥终端系统独立于中央处理服务器,或者集成于中央处理服务器。
  10. 根据权利要求6所述的全任务场景消防员精确定位方法,其特征在于:
    中央处理服务器包含如下步骤:
    i)通信:通过自由式组网的方式建立和维持中央处理服务器与各个消防任务监控指挥终端系统、智能消防栓系统、可移动式智能参考定位系统、和可穿戴式单兵定位系统之间的通信;
    ii)信息监控:主要对各个系统周围环境、火情、态势信息进行监控,并协助各个电源管理管理系统工作状态;
    iii)任务优化:为消防任务监控指挥终端系统的任务优化和指挥提供解算支持;
    iv)任务指引:为消防任务监控指挥终端系统的任务优化和指挥提供解算支持,并将指引信号传输至智能消防栓系统和可穿戴式单兵定位系统;
    v)单兵定位解算:集中单兵定位系统中各个定位导航源的相关数据,支持单兵定位系统解算出位置和运动信息;
    vi)设备管理:监控其他系统和设备的运行状态和配置信息;
    vii)数据库管理:对其他系统所需的数据库信息进行配置和管理;
    单兵定位解算能够驻留于可穿戴式单兵定位系统中;任务优化和任务指引能够驻留于消防任务监控指挥终端系统中。
PCT/CN2022/112645 2022-02-17 2022-08-16 全任务场景消防员精确定位方法及系统 WO2023155397A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210143889.3 2022-02-17
CN202210143889.3A CN114200495B (zh) 2022-02-17 2022-02-17 全任务场景消防员精确定位方法及系统

Publications (1)

Publication Number Publication Date
WO2023155397A1 true WO2023155397A1 (zh) 2023-08-24

Family

ID=80645464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112645 WO2023155397A1 (zh) 2022-02-17 2022-08-16 全任务场景消防员精确定位方法及系统

Country Status (2)

Country Link
CN (1) CN114200495B (zh)
WO (1) WO2023155397A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114200495B (zh) * 2022-02-17 2022-04-29 江苏德一佳安防科技有限公司 全任务场景消防员精确定位方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592621A (zh) * 2013-11-26 2014-02-19 重庆源北安防科技有限公司 一种定位信标以及消防物联网定位系统
CN104155670A (zh) * 2014-08-01 2014-11-19 中国矿业大学 一种针对火场消防队员的作战跟踪系统及其方法
CN106950536A (zh) * 2017-03-17 2017-07-14 河南航飞光电科技有限公司 基于可移动定位信标的定位方法
KR102128946B1 (ko) * 2019-11-15 2020-07-01 한국소방산업기술원 화재 현장에서의 신뢰성 있는 정보전송을 위한 네트워크 구조
CN111391784A (zh) * 2020-03-13 2020-07-10 Oppo广东移动通信有限公司 信息提示方法、装置、存储介质及相关设备
CN114200495A (zh) * 2022-02-17 2022-03-18 江苏德一佳安防科技有限公司 全任务场景消防员精确定位方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ830600A0 (en) * 2000-06-23 2000-07-13 Hancock, John Comunet - a people networking system
CN106730555A (zh) * 2016-11-23 2017-05-31 扬州大学 一种用于消防机器人消防灭火空间一体化的监控方法
CN207677775U (zh) * 2017-11-20 2018-07-31 上海网罗电子科技有限公司 一种智能消防作战指挥系统
CN109543919A (zh) * 2018-12-03 2019-03-29 公安部天津消防研究所 一种基于事故演化的消防动态应急决策系统及其实现方法
CN110234075A (zh) * 2019-06-17 2019-09-13 滁州学院 一种复杂应急救援环境下消防员定位和生命体征监控方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592621A (zh) * 2013-11-26 2014-02-19 重庆源北安防科技有限公司 一种定位信标以及消防物联网定位系统
CN104155670A (zh) * 2014-08-01 2014-11-19 中国矿业大学 一种针对火场消防队员的作战跟踪系统及其方法
CN106950536A (zh) * 2017-03-17 2017-07-14 河南航飞光电科技有限公司 基于可移动定位信标的定位方法
KR102128946B1 (ko) * 2019-11-15 2020-07-01 한국소방산업기술원 화재 현장에서의 신뢰성 있는 정보전송을 위한 네트워크 구조
CN111391784A (zh) * 2020-03-13 2020-07-10 Oppo广东移动通信有限公司 信息提示方法、装置、存储介质及相关设备
CN114200495A (zh) * 2022-02-17 2022-03-18 江苏德一佳安防科技有限公司 全任务场景消防员精确定位方法及系统

Also Published As

Publication number Publication date
CN114200495B (zh) 2022-04-29
CN114200495A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
Ferreira et al. Localization and positioning systems for emergency responders: A survey
CN104989452B (zh) 无线井下矿工定位及施工区域环境安全智能监测系统
CN203552406U (zh) 一种消防员综合监测指挥系统
CN102104991A (zh) 一种基于无线Mesh网状网架构的消防员单兵系统
CN104457750B (zh) 一种应急救援的人员定位系统及方法
CN101990157A (zh) 一种基于无线Mesh网状网架构的消防员火场定位系统
AU2017395024A1 (en) Tracking and accountability device and system
KR20190101356A (ko) 소방관 팀의 자동화된 감지
CN104394589A (zh) 一种单兵作战定位基站
WO2008033794A2 (en) A cost effective communication infrastructure for location sensing
CA2851143A1 (en) Emergency services system and method
GB2560392B (en) Geofencing system
CN104155670A (zh) 一种针对火场消防队员的作战跟踪系统及其方法
WO2023155397A1 (zh) 全任务场景消防员精确定位方法及系统
CN108769918A (zh) 一种结合物联网的深部精准开采井上下人员定位导航系统
WO2010096772A2 (en) System and method for tracking a person
CN108413958A (zh) 应用于消防人员灾害现场实时跟踪的定位系统和方法
KR20160126118A (ko) 안전 관제 시스템
CN112911514A (zh) 基于蓝牙定位的疏散导航方法、装置和计算机设备
Harris The way through the flames
CN103954284A (zh) 一种用于消防救援现场的惯性测量单元
CN112423225A (zh) 基于uwb技术的铁路客站内目标对象的定位方法
KR101906324B1 (ko) 무선통신을 이용한 실내 재난환경에서의 위험에 처한 구조대원의 위치파악 및 모니터링 장치 및 방법
CN108388986A (zh) 一种用于gil管廊的人员定位管理系统
CN208636677U (zh) 一种单兵消防作战保护装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926703

Country of ref document: EP

Kind code of ref document: A1