WO2023155341A1 - 一种厚硬关键层条件沿空工作面合理宽度确定方法及系统 - Google Patents

一种厚硬关键层条件沿空工作面合理宽度确定方法及系统 Download PDF

Info

Publication number
WO2023155341A1
WO2023155341A1 PCT/CN2022/098304 CN2022098304W WO2023155341A1 WO 2023155341 A1 WO2023155341 A1 WO 2023155341A1 CN 2022098304 W CN2022098304 W CN 2022098304W WO 2023155341 A1 WO2023155341 A1 WO 2023155341A1
Authority
WO
WIPO (PCT)
Prior art keywords
width
working face
gob
side working
goaf
Prior art date
Application number
PCT/CN2022/098304
Other languages
English (en)
French (fr)
Inventor
张明
涂敏
张向阳
胡学龙
冯彬
张心亮
Original Assignee
安徽理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽理工大学 filed Critical 安徽理工大学
Publication of WO2023155341A1 publication Critical patent/WO2023155341A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C39/00Devices for testing in situ the hardness or other properties of minerals, e.g. for giving information as to the selection of suitable mining tools
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • G01V11/002Details, e.g. power supply systems for logging instruments, transmitting or recording data, specially adapted for well logging, also if the prospecting method is irrelevant

Definitions

  • the invention relates to the technical field of mining engineering, in particular to a method and system for determining a reasonable width of a gob-side working face with thick and hard critical layer conditions.
  • the proportion of underground mining in the gob-side working face exceeds 70%.
  • the width of the gob-side working face is a key index that affects the distribution of mine pressure and the appearance of dynamic disasters, and has a great impact on the safe mining of the gob-side working face. Therefore, a method for determining the width of the gob-side working face is needed to guide mining .
  • the purpose of the present invention is to provide a method and system for determining a reasonable width of a gob-side working face under conditions of thick and hard key layers, which can obtain a reasonable width of the gob-side working face, and then realize safe mining of the gob-side working face.
  • the present invention provides the following scheme:
  • a method for determining a reasonable width of a gob-side working face with thick and hard critical layers including:
  • a piecewise function is constructed with the width of the gob-side working face as an independent variable; the piecewise function represents the relationship between the width and the parameters of the gob-side working face, and the parameters include the width of the small coal pillar of the gob-side roadway, the width of the roadway, the rupture zone Width, width of plastic zone, uniaxial compressive strength of coal body, depth of coal seam burial, breaking angle, average capacity of overlying strata in goaf and width of goaf;
  • the piecewise function is specifically:
  • u(d') represents the piecewise function
  • d' represents the width
  • a represents the width of small coal pillars along the goaf
  • r represents the width of the roadway
  • represents the sum of the width of the rupture zone and the width of the plastic zone
  • n represents the different regions of the surrounding rock [ ⁇ ] represents the uniaxial compressive strength of the coal body
  • K represents the incremental coefficient of the dynamic load stress of the gob-side working face
  • P 1 represents the static load stress of the gob-side working face
  • H represents the burial depth of the coal seam
  • represents the breaking angle
  • represents the average capacity of the overlying strata in the goaf
  • represents the maximum stress increment transmitted from the stratum at all levels above the goaf to the working face along the goaf
  • D represents the width of the goaf.
  • the determining the solution set according to the parameters of the gob-side working face with the width to be determined, the segment function and the set function threshold specifically includes:
  • the solution set is obtained by making the function to be solved less than or equal to the set function threshold.
  • the mining of the gob-side working face according to the reasonable width specifically includes:
  • the gobside working face is mined according to the actual width.
  • a system for determining the reasonable width of a gob-side working face with thick and hard critical layers including:
  • the piecewise function building block is used to construct a piecewise function with the width of the gob-side working face as an independent variable; the piecewise function represents the relationship between the width and the gob-side working face parameters, and the parameters include the small coal in the gob-side roadway Column width, roadway width, rupture zone width, plastic zone width, uniaxial compressive strength of coal body, coal seam burial depth, breaking angle, average capacity of overlying strata in goaf and width of goaf;
  • Obtaining module used to obtain the parameters of the gob-side working face whose width is to be determined
  • a solution module configured to determine a solution set according to the parameters of the gob-side working face of the width to be determined, the segment function and the set function threshold;
  • a reasonable width determining module configured to determine that the value conforming to the solution set is a reasonable width, and mine the gob-side working face according to the reasonable width.
  • the piecewise function is specifically:
  • u(d') represents the piecewise function
  • d' represents the width
  • a represents the width of small coal pillars along the goaf
  • r represents the width of the roadway
  • represents the sum of the width of the rupture zone and the width of the plastic zone
  • n represents the different regions of the surrounding rock [ ⁇ ] represents the uniaxial compressive strength of the coal body
  • K represents the incremental coefficient of the dynamic load stress of the gob-side working face
  • P 1 represents the static load stress of the gob-side working face
  • H represents the burial depth of the coal seam
  • represents the breaking angle
  • represents the average capacity of the overlying strata in the goaf
  • represents the maximum stress increment transmitted from the stratum at all levels above the goaf to the working face along the goaf
  • D represents the width of the goaf.
  • the solving module specifically includes:
  • a function-to-be-solved determination unit configured to input parameters of the gob-side working face with a width to be determined into the piecewise function to obtain a function to be solved;
  • a solution set calculation unit configured to make the function to be solved less than or equal to the set function threshold and calculate the solution set.
  • the reasonable width determination module includes:
  • An actual width determining unit configured to calculate the actual width of the gob-side working face whose width is to be determined according to the reasonable width, the width of the small coal pillar of the gob-side roadway and the roadway width;
  • a mining unit configured to mine the gobside working face according to the actual width.
  • the present invention uses the width of the gob-side working face as an independent variable to construct a piecewise function; the piecewise function represents the relationship between the width and the parameters of the gob-side working face
  • the parameters include the width of the small coal pillar of the gob-side roadway, the width of the roadway, the width of the fracture zone, the width of the plastic zone, the uniaxial compressive strength of the coal body, the burial depth of the coal seam, the breaking angle, the average capacity of the overlying strata in the goaf and the mining area.
  • Width of the empty area obtain the parameters of the working face along the gob with the width to be determined; determine the solution set according to the parameters of the working face along the gob of the width to be determined, the segment function and the set function threshold; determine the solution set
  • the value of is the reasonable width and mining the gob-side working face according to the reasonable width can obtain the reasonable width of the gob-side working face, mining the gob-side working face according to the reasonable width can actively reduce the impact risk of the working face Grade and area, reduce anti-scouring engineering volume, and realize effective prevention and control of rock burst.
  • Fig. 1 is a flow chart of a method for determining a reasonable width of a gobside working face with thick and hard key layer conditions provided by an embodiment of the present invention
  • Figure 2 is a schematic diagram of the new classification of gob-side working faces related to rock burst
  • Fig. 3 is a schematic diagram of the overburden stress transfer model under the condition of insufficient mining
  • Figure 4 is a schematic diagram of the overburden stress transfer model under full mining conditions
  • Fig. 5 is a calculation model diagram of the static load stress before mining in the gob-side working face.
  • the embodiment of the present invention provides a method for determining the reasonable width of the gob-side working face with thick and hard critical layer conditions, as shown in Figure 1, the method includes:
  • Step 101 Construct a piecewise function with the width of the gob-side working face as an independent variable; the piecewise function represents the relationship between the width and the parameters of the gob-side working face, and the parameters include the width of the small coal pillar of the gob-side roadway, the width of the roadway , width of rupture zone, width of plastic zone, uniaxial compressive strength of coal body, depth of coal seam burial, break angle, average capacity of overlying strata in goaf and width of goaf.
  • Step 102 Obtain the parameters of the gob-side working face whose width is to be determined.
  • Step 103 Determine a solution set according to the parameters of the gob-side working face whose width is to be determined, the segment function and the set function threshold.
  • Step 104 Determine that the value conforming to the solution set is a reasonable width, and mine the gob-side working face according to the reasonable width.
  • the strength theory of rock burst believes that the local stress of coal body exceeding its ultimate strength is the critical condition for inducing shock. Therefore, when the coal body conditions (uniaxial compressive strength, etc.)
  • the distribution characteristics of the overlying rock spatial structure in the goaf before mining, and the formation-evolution-coordinated movement of the overlying rock spatial structure of the "goaf-working face" during the mining process largely determine the distribution of the supporting stress in the gob-along working face and impact risk.
  • the gob-side working face is mainly divided into three categories: “non-adequate goaf on one side ⁇ mining along the goaf ⁇ large-scale non-fully mined-out area” (NFM-NFM), "incomplete goaf on one side ⁇ along the Empty working face mining ⁇ large-scale full goaf” (NFM-FM) and "full goaf on one side ⁇ mining along the goaf ⁇ large-scale full goaf” (FM-FM).
  • NFM-NFM non-adequate goaf on one side ⁇ mining along the goaf ⁇ large-scale non-fully mined-out area
  • FM-FM full goaf on one side ⁇ mining along the goaf ⁇ large-scale full goaf
  • Figure 2(a) is a schematic diagram of the structure of the goaf working face in which one side of the goaf is not sufficiently mined-out ⁇ the goaf is mined ⁇ a large-scale non-fully mined-out area (NFM-NFM)
  • Fig. 2(b ) is a schematic diagram of the structure of goaf working face with non-full mined-out area on one side ⁇ mining along goaf working face ⁇ large-scale fully mined-out area (NFM-FM).
  • the goaf is mainly divided into two types: non-full mining area (NFM) and full mining area (FM), non-full mining area A1, A2 and full goaf A3.
  • NFM non-full mining area
  • FM full mining area
  • A1 A2
  • full goaf A3 A3
  • the key layer overlying the new goaf may be broken for the first time, or the key layer overlying the gob along the gob will continue to be broken with the mining of the working face. Therefore, the new goaf can be divided into Incomplete goaf B1 and full goaf B2, B3.
  • the comprehensive break line the angle between the corresponding horizontal lines
  • the break angle expressed by ⁇
  • the angle between the line where the hinged rock blocks touch the gangue in the gob and the horizontal direction is called For the gangue angle, expressed by ⁇ .
  • the self-weight stress ⁇ z of the working face along the gob is a piecewise function with respect to the length of the working face, and the expression is:
  • is the average bulk density of the overlying strata, and ⁇ is generally taken as 2.5t/m 3 .
  • is the maximum value of the stress increment transmitted to the gob-side working face by the overlying strata at all levels in the goaf.
  • the supporting stress P of the coal body is mainly determined by external factors such as mining environment and mining conditions, which is called “external force”.
  • the bearing stress (strength) R is mainly determined by internal factors such as the physical and mechanical properties of the coal body and its surrounding rock conditions, which is called “internal force”.
  • the magnitude and relationship between "external force” and “internal force” together determine the Shock situation.
  • the source of P mainly includes static load stress and dynamic load stress.
  • the movement of key layers in face mining is related to the change of overlying rock structure.
  • R is also closely related to factors such as the length of the working face.
  • the size of the supporting stress P(P 1+ P 2 ) on the coal body of the gob-side working face includes the static load stress caused by the transfer of the overburden in the goaf and the self-weight stress of the overlying rock in the gob-side working face, and the mining key layer of the gob-side working face Movement and movement of overlying rock structure ready-made static load stresses.
  • the calculated static load stress P 1 of the working face is:
  • the calculated static load stress P 1 of the working face is:
  • the calculated static load stress P 1 of the working face is:
  • the dynamic load stress P2 mainly comes from the movement of the overlying strata during mining, which is determined by geological conditions (occurrence of key layers and physical and mechanical characteristics, etc.)
  • the movement state of the key layer and the change of the structural characteristics of the overlying strata are the main reasons for determining the scope and degree of influence of the mine earthquake and the large-scale roof movement.
  • the breaking movement of the main key layer can induce strong dynamic pressure in the stope.
  • the incremental coefficients K (relative to the static load stress) of the stope dynamic load stress of the gob-side working face are K1, K2, and K3 respectively, and generally K1, K2, and K3 are greater than 0, and the larger the value, the more intense the movement of the overlying rock and the more obvious the dynamic load effect of mining, and K1 ⁇ K2 ⁇ K3.
  • the length of the general mining face is 80-300m, which is far greater than the width of the plastic zone of the coal body (generally about 2-10m). Therefore, when the working face width When it is greater than 5-20m, the working face has a complete partition, starting from the edge of the goaf, and along the length direction of the working face, the coal body of the working face is roughly distributed in the form of "rupture zone-plastic zone-elastic zone-plastic zone-crack zone" According to the state of different coal surrounding rocks, the analysis of the ultimate bearing stress ⁇ S of the coal body in the working face is approximately a symmetrical "trapezoidal" distribution.
  • 3C is about n ⁇ 3 to 5 times of the uniaxial compressive strength [ ⁇ ] of the coal mass, with an average value of 4, that is, ⁇ 3C ⁇ n[ ⁇ ], the fracture at the edge of the working face and the coal mass in the plastic zone are in the “unconstrained-single Transition to -2D-3D state, the ultimate support strength increases linearly from 0 to ⁇ 3C , if the width of the fracture zone + plastic zone on one side of the working face is ⁇ , then the width of the elastic zone is d-2 ⁇ . Then the approximate expression of ⁇ S is:
  • the two "stress" supporting stress P, ultimate bearing stress (strength) R and The size relationship between them provides a mechanical basis and engineering criterion for determining the reasonable length of the gob-side working face. From the perspective of "stress", the satisfied requirements or conditions are approximately described as: the stress (indicated by P) on the coal body under load (including static load and dynamic load) is lower than the ultimate bearing stress (strength) of the coal mass itself.
  • u(d') represents the piecewise function
  • d' represents the width
  • a represents the width of small coal pillars along the goaf
  • r represents the width of the roadway
  • represents the sum of the width of the rupture zone and the width of the plastic zone
  • n represents the different regions of the surrounding rock
  • [ ⁇ ] represents the uniaxial compressive strength of the coal body
  • K represents the incremental coefficient of the dynamic load stress of the gob-side working face
  • P 1 represents the static load stress of the gob-side working face
  • H represents the burial depth of the coal seam
  • represents the breaking angle
  • represents the average capacity of the overlying strata in the goaf
  • represents the maximum value of the stress increment transmitted to the working face along the gob by the strata at all levels above the goaf
  • D represents the goaf zone width.
  • the determination of the solution set according to the parameters of the gob-side working face of the width to be determined, the segmentation function and the set function threshold specifically includes:
  • the solution set is obtained by making the function to be solved less than or equal to the set function threshold.
  • R/P ⁇ 1.5 is used as the "stress" index for judging whether the overall stability of the working face is stable. If R/P ⁇ 1.5, it means that the working face has the possibility of overall impact instability, the greater the R/P, the working face may be unacceptable, and the function to be solved is less than or equal to the threshold calculation of the set function
  • the solution set obtained is specifically:
  • the mining of the gob-side working face according to the reasonable width specifically includes:
  • the actual width of the gob-side working face whose width is to be determined is calculated according to the reasonable width, the width of the small coal pillar of the gob-side roadway and the roadway width.
  • the gobside working face is mined according to the actual width.
  • the present invention also provides a system for determining the reasonable width of gobside working face with thick and hard key layer conditions corresponding to the above method, including:
  • the piecewise function building block is used to construct a piecewise function with the width of the gob-side working face as an independent variable; the piecewise function represents the relationship between the width and the gob-side working face parameters, and the parameters include the small coal in the gob-side roadway Column width, roadway width, rupture zone width, plastic zone width, uniaxial compressive strength of coal body, coal seam burial depth, breaking angle, average capacity of overlying strata in goaf and width of goaf.
  • the obtaining module is used to obtain the parameters of the gob-side working face whose width is to be determined.
  • a solution module is used to determine a solution set according to the parameters of the gob-side working face of the width to be determined, the segment function and the set function threshold.
  • a reasonable width determining module configured to determine that the value conforming to the solution set is a reasonable width, and mine the gob-side working face according to the reasonable width.
  • the segmentation function is specifically:
  • u(d') represents the piecewise function
  • d' represents the width
  • a represents the width of small coal pillars along the goaf
  • r represents the width of the roadway
  • represents the sum of the width of the rupture zone and the width of the plastic zone
  • n represents the different regions of the surrounding rock [ ⁇ ] represents the uniaxial compressive strength of the coal body
  • K represents the incremental coefficient of the dynamic load stress of the gob-side working face
  • P 1 represents the static load stress of the gob-side working face
  • H represents the burial depth of the coal seam
  • represents the breaking angle
  • represents the average capacity of the overlying strata in the goaf
  • represents the maximum stress increment transmitted from the stratum at all levels above the goaf to the working face along the goaf
  • D represents the width of the goaf.
  • the solving module specifically includes:
  • the function-to-be-solved determination unit is configured to input the parameters of the gob-side working face with a width to be determined into the piecewise function to obtain the function to be solved.
  • a solution set calculation unit configured to make the function to be solved less than or equal to the set function threshold and calculate the solution set.
  • the reasonable width determination module includes:
  • the actual width determination unit is configured to calculate the actual width of the gob-side working face whose width is to be determined according to the reasonable width, the width of the small coal pillar of the gob-side roadway and the roadway width.
  • a mining unit configured to mine the gobside working face according to the actual width.
  • the invention can obtain the reasonable width of the gob-side working face, mine the gob-side working face according to the reasonable width, can actively reduce the impact risk level and area of the working face, reduce the amount of anti-scouring work, and realize effective prevention and control of rock burst.
  • each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other.
  • the description is relatively simple, and for the related information, please refer to the description of the method part.

Abstract

本发明涉及一种厚硬关键层条件沿空工作面合理宽度确定方法及系统。所述方法以沿空工作面的宽度为自变量构建分段函数;分段函数表示宽度与沿空工作面参数之间的关系,参数包括沿空巷道小煤柱宽度、巷道宽度、破裂区宽度、塑性区宽度、煤体单轴抗压强度、煤层埋藏深度、破断角、采空区上覆岩层平均容量和采空区宽度;获取待确定宽度的沿空工作面的参数;根据待确定宽度的沿空工作面的参数、分段函数和设定函数阈值确定解集;确定符合解集的数值为合理宽度并根据合理宽度对沿空工作面进行开采。本发明可以根据合理宽度对沿空工作面进行开采,能够主动减小工作面冲击危险等级和区域,降低防冲工程量,实现冲击地压的有效防治。

Description

一种厚硬关键层条件沿空工作面合理宽度确定方法及系统
本申请要求于2022年02月17日提交中国专利局、申请号为202210143947.2、发明名称为“一种厚硬关键层条件沿空工作面合理宽度确定方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及矿业工程技术领域,特别是涉及一种厚硬关键层条件沿空工作面合理宽度确定方法及系统。
背景技术
沿空工作面(本发明主要针对单侧采空区条件下的沿空工作面,暂不涉及两侧采空区条件下的沿空或孤岛工作面)在井下开采的比重超过了70%~80%,相对于两侧实体煤条件下的工作面(一般为首采工作面),由于采空区覆岩应力转移,以及沿空工作面开采过程中覆岩空间结构相互影响、协同运动与演化,沿空工作面应力环境和发生冲击地压灾害的属性存在较大的差异。
沿空工作面宽度是影响矿山压力分布和动力灾害显现的关键性指标,对于沿空工作面的安全开采有很大影响,所以现在需要一种沿空工作面宽度的确定方法来对开采进行指导。
发明内容
本发明的目的是提供一种厚硬关键层条件沿空工作面合理宽度确定方法及系统,可以得到沿空工作面的合理宽度,进而实现对沿空工作面的安全开采。
为实现上述目的,本发明提供了如下方案:
一种厚硬关键层条件沿空工作面合理宽度确定方法,包括:
以沿空工作面的宽度为自变量构建分段函数;所述分段函数表示宽度与沿空工作面参数之间的关系,所述参数包括沿空巷道小煤柱宽度、巷道宽度、破裂区宽度、塑性区宽度、煤体单轴抗压强度、煤层埋藏深度、破断角、采空区 上覆岩层平均容量和采空区宽度;
获取待确定宽度的沿空工作面的参数;
根据所述待确定宽度的沿空工作面的参数、所述分段函数和设定函数阈值确定解集;
确定符合所述解集的数值为合理宽度并根据所述合理宽度对所述沿空工作面进行开采。
可选的,所述分段函数具体为:
Figure PCTCN2022098304-appb-000001
其中,
当a+r<d′<H cotα时
Figure PCTCN2022098304-appb-000002
当H cotα<d′<2H cotα时
Figure PCTCN2022098304-appb-000003
当2H cotα<d′时
Figure PCTCN2022098304-appb-000004
其中,u(d′)表示分段函数,d′表示宽度,a表示沿空巷道小煤柱宽度,r表示巷道宽度,ρ表示破裂区宽度和塑性区宽度的和,n表示围岩不同区域的围压系数,[σ]表示煤体单轴抗压强度,K表示沿空工作面采场动载应力的增量系数,P 1表示沿空工作面的静载应力,H表示煤层埋藏深度,α表示破断角,γ表示采空区上覆岩层平均容量,Δσ表示采空区上覆各级岩层传递到沿空工作面的应力增量最大值,D表示采空区宽度。
可选的,所述根据所述待确定宽度的沿空工作面的参数、所述分段函数和设定函数阈值确定解集,具体包括:
将所述待确定宽度的沿空工作面的参数输入所述分段函数得到待求解函数;
令所述待求解函数小于或等于所述设定函数阈值计算得到所述解集。
可选的,所述根据所述合理宽度对所述沿空工作面进行开采,具体包括:
根据所述合理宽度、所述沿空巷道小煤柱宽度和所述巷道宽度计算所述待确定宽度的沿空工作面的实际宽度;
根据所述实际宽度对所述沿空工作面进行开采。
一种厚硬关键层条件沿空工作面合理宽度确定系统,包括:
分段函数构建模块,用于以沿空工作面的宽度为自变量构建分段函数;所述分段函数表示宽度与沿空工作面参数之间的关系,所述参数包括沿空巷道小煤柱宽度、巷道宽度、破裂区宽度、塑性区宽度、煤体单轴抗压强度、煤层埋藏深度、破断角、采空区上覆岩层平均容量和采空区宽度;
获取模块,用于获取待确定宽度的沿空工作面的参数;
求解模块,用于根据所述待确定宽度的沿空工作面的参数、所述分段函数和设定函数阈值确定解集;
合理宽度确定模块,用于确定符合所述解集的数值为合理宽度并根据所述合理宽度对所述沿空工作面进行开采。
可选的,所述分段函数具体为:
Figure PCTCN2022098304-appb-000005
其中,
当a+r<d′<H cotα时
Figure PCTCN2022098304-appb-000006
当H cotα<d′<2H cotα时
Figure PCTCN2022098304-appb-000007
当2H cotα<d′时
Figure PCTCN2022098304-appb-000008
其中,u(d′)表示分段函数,d′表示宽度,a表示沿空巷道小煤柱宽度,r表示巷道宽度,ρ表示破裂区宽度和塑性区宽度的和,n表示围岩不同区域的围压系数,[σ]表示煤体单轴抗压强度,K表示沿空工作面采场动载应力的增量系数,P 1表示沿空工作面的静载应力,H表示煤层埋藏深度,α表示破断角,γ表示采空区上覆岩层平均容量,Δσ表示采空区上覆各级岩层传递到沿空工作面的应力增量最大值,D表示采空区宽度。
可选的,所述求解模块,具体包括:
待求解函数确定单元,用于将所述待确定宽度的沿空工作面的参数输入所述分段函数得到待求解函数;
解集计算单元,用于令所述待求解函数小于或等于所述设定函数阈值计算得到所述解集。
可选的,所述合理宽度确定模块包括:
实际宽度确定单元,用于根据所述合理宽度、所述沿空巷道小煤柱宽度和所述巷道宽度计算所述待确定宽度的沿空工作面的实际宽度;
开采单元,用于根据所述实际宽度对所述沿空工作面进行开采。
根据本发明提供的具体实施例,本发明公开了以下技术效果:本发明以沿空工作面的宽度为自变量构建分段函数;所述分段函数表示宽度与沿空工作面参数之间的关系,所述参数包括沿空巷道小煤柱宽度、巷道宽度、破裂区宽度、塑性区宽度、煤体单轴抗压强度、煤层埋藏深度、破断角、采空区上覆岩层平均容量和采空区宽度;获取待确定宽度的沿空工作面的参数;根据所述待确定宽度的沿空工作面的参数、所述分段函数和设定函数阈值确定解集;确定符合所述解集的数值为合理宽度并根据所述合理宽度对所述沿空工作面进行开采,可以得到沿空工作面的合理宽度,根据合理宽度对沿空工作面进行开采,能够主动减小工作面冲击危险等级和区域,降低防冲工程量,实现冲击地压的有效防治。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种厚硬关键层条件沿空工作面合理宽度确定方法的流程图;
图2为与冲击地压有关的沿空工作面新分类示意图;
图3为非充分采动条件的覆岩应力转移模型示意图;
图4为充分采动条件的覆岩应力转移模型示意图;
图5为沿空工作面采前静载应力分计算模型图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
本发明实施例提供了一种厚硬关键层条件沿空工作面合理宽度确定方法,如图1所示,所述方法,包括:
步骤101:以沿空工作面的宽度为自变量构建分段函数;所述分段函数表示宽度与沿空工作面参数之间的关系,所述参数包括沿空巷道小煤柱宽度、巷道宽度、破裂区宽度、塑性区宽度、煤体单轴抗压强度、煤层埋藏深度、破断角、采空区上覆岩层平均容量和采空区宽度。
步骤102:获取待确定宽度的沿空工作面的参数。
步骤103:根据所述待确定宽度的沿空工作面的参数、所述分段函数和设定函数阈值确定解集。
步骤104:确定符合所述解集的数值为合理宽度并根据所述合理宽度对所述沿空工作面进行开采。
在实际应用中,冲击地压的强度理论认为,煤体局部应力超过其极限强度是诱发冲击的临界条件,因此,沿空工作面煤体条件(单轴抗压强度等)一定的情况下,采前采空区的覆岩空间结构分布特征,开采过程中“采空区-工作面”的覆岩空间结构形成-演化-协同运动规律,很大程度上决定了沿空工作面支承应力分布和冲击危险性。以岩层控制的关键层理论和覆岩空间结构观点为基础,分析沿空工作面回采之前+回采过程中,“采空区-工作面”组成采场的关键层运动状态和覆岩空间结构变化,将沿空工作面主要划分3类:“一侧非充分采空区→沿空工作面开采→大范围非充分采空区”(NFM-NFM)、“一侧非充分采空区→沿空工作面开采→大范围充分采空区”(NFM-FM)和“一侧充分采空区→沿空工作面开采→大范围充分采空区”(FM-FM)。
如图2所示,图2(a)为一侧非充分采空区→沿空工作面开采→大范围非充分采空区(NFM-NFM)的沿空工作面结构示意图,图2(b)为一侧非充分采空区→沿空工作面开采→大范围充分采空区(NFM-FM)的沿空工作面结构示意图,图2(c)为一侧充分采空区→沿空工作面开采→大范围充分采空区(FM-FM)的沿空工作面结构示意图,以采场上覆关键层的运动状态(破断或稳定)为主要特征,沿空工作面一侧的采空区主要由非充分采空区(non-full mining area,NFM)和充分采空区(full mining area,FM)2种,非充分采空区A1、A2和充分采空区A3,沿空工作面开采后,原采空区和本工作面采空区逐步贯通、发展并最终形成新的大范围采空区,受关键层物理力学特征和赋存条件不同影响,以及采空区和沿空工作面开采尺度的差异性,新采空区上覆关键层可能发生初次破断,或者沿空工作面的上覆关键层随工作面开采继续发生破断,因此,新采空区任可划分为非充分采空区B1和充分采空区B2、B3。
如图3和图4所示,采空区岩层载荷传递机制表述为:
①在高度方向上,根据各岩层的运动状态归结为高位悬顶岩层(未破断)、低位破裂岩层(已破断),在关键层破断的情况下,高位悬顶结构消失并逐渐演化为“低-高”位破裂岩层;②在水平方向上,低位破裂岩层在采空区边界形成铰接结构,各铰接结构岩块近似重量的一半作用在一侧采空区冒落矸石上,另一半重量作用在一侧实体煤上方破断的岩层上,高位悬顶岩层平均作用 在采空区两侧岩体上。设采空区一侧岩层破断位置的连线称为综合破断线相应的水平线的夹角称为破断角,用α表示,铰接岩块在采空区触矸连线与水平方向的夹角称为触矸角,用β表示。煤层埋深为H,非充分采动情况下,采空区冒落带高度为h 1,冒落带至地表高度为h 2=H-h 1,采空区宽度为D,作用在沿空工作面的岩层区域面积S=S 1/2;充分采动情况下,冒落带上方至关键层顶部(铰接部分)岩层厚度为h 2′,关键层顶部至地表(随关键层一起运动部分)岩层厚度为h 2″,h 2=h 2′+h 2″,作用在沿空工作面的岩层区域面积S=S 2/2。
根据相应岩层部分围成的面积,S 1、S 2近似为:
Figure PCTCN2022098304-appb-000009
以沿空工作面长度为横坐标x,煤层距离顶板的高度为纵坐标y,采空区与沿空工作面交接处为坐标原点o,不规则多边形为相应S 1、S 2区域的轮廓边界,建立沿空工作面采前静载应力分析模型,如图5所示。
沿空工作面的采前静载应力σ J主要由2部分组成:工作面上覆(未采动)岩层自重应力σ z,以及一侧采空区不同采动的覆岩转移应力σ T。因此,σ J可以表示为:σ J=σ ZT。沿空工作面的自重应力σ z为关于工作面长度的分段函数,表达式为:
Figure PCTCN2022098304-appb-000010
式中,γ为上覆岩层平均容重,一般取γ为2.5t/m 3
采空区覆岩在沿空工作面的分布函数表达式为:
Figure PCTCN2022098304-appb-000011
式中,Δσ为采空区上覆各级岩层传递到沿空工作面的应力增量最大值,依据 现有技术可以分析得到不同采动条件下Δσ的结果如下:
当非充分采动条件时,
Figure PCTCN2022098304-appb-000012
当充分采动条件时,
Figure PCTCN2022098304-appb-000013
由上述结果,联立式:
σ J=σ ZT
Figure PCTCN2022098304-appb-000014
Figure PCTCN2022098304-appb-000015
能够确定非充分采动条件沿空工作面采前静载应力,而充分采动条件沿空工作面采前静载应力通过联立式:σ J=σ ZT
Figure PCTCN2022098304-appb-000016
Figure PCTCN2022098304-appb-000017
得到。
沿空工作面开采煤体存在支承应力P和承载应力(强度)R两种应力,煤体支承应力P主要由开采环境和采动情况等外部因素决定,称之为“外力”,煤体承载应力(强度)R主要由煤体本生物理力学性质及其围岩条件等内部因素决定,称之为“内力”,“外力”和“内力”大小及其关系共同决定了工作面煤体冲击情况。P的来源主要包括静载应力和动载应力,静载应力大小与采深、岩层赋存、关键层分布、采空情况和沿空工作面长度等关键参数有关,动载应力与沿空工作面开采关键层运动和覆岩结构变化有关。R除了受到工作面煤层强度等自身力学影响,同时还与工作面长度等因素关系密切。具体分析P和R 如下:
沿空工作面煤体受到支承应力P(P 1+P 2)的大小包括采空区覆岩转移和沿空工作面覆岩自重应力形成的静载应力,以及有沿空工作面开采关键层运动及覆岩结构运动现成的静载应力。分别计算工作面采前静载应力σ J和工作面的静载应力P 1大小。
(1)静载应力P 1
1)当d′满足a+r<d′≤Hcotα,工作面采前静载应力为:
Figure PCTCN2022098304-appb-000018
计算得到工作面的静载应力P 1大小为:
Figure PCTCN2022098304-appb-000019
2)当d′满足Hcotα<d′≤2Hcotα,工作面采前静载应力为:
Figure PCTCN2022098304-appb-000020
计算得到工作面的静载应力P 1大小为:
Figure PCTCN2022098304-appb-000021
3)当d′满足2Hcotα<d′,工作面采前静载应力为:
Figure PCTCN2022098304-appb-000022
计算得到工作面的静载应力P 1大小为:
Figure PCTCN2022098304-appb-000023
(2)动载应力P 2及P大小估算
动载应力P 2主要来源于开采上覆岩层运动,决定于地质条件(关键层赋存和物理力学特征等)和技术因素(开采强度和开采方法等),采前和开采过程中采空区关键层运动状态及其覆岩结构特征变化,是决定矿震和大范围顶板运动影响范围和显现程度的主要原因,特别是主关键层破断运动能够诱发采场强动压,NFM-NFM、NFM-FM和FM-FM的3类情况下,沿空工作面采场动载应力的增量系数K(相对于静载应力)分别为K1、K2、K3,一般情况下K1、K2、K3均大于0,并且取值越大表示覆岩运动越剧烈和开采动载效应越明显且K1<K2<K3。
估算得到动载应力P 2与P 1关系:P 2=KP 1,P为静载-动载应力之和,近似表达式为:P=P 1+P 2=(1+K)P 1
在不考虑煤柱和边界煤等特殊条件工作面情况下,一般回采工作面的长度为80~300m,远远大于煤体塑性区宽度(一般约为2~10m),因此,当工作面宽度大于5~20m时,工作面具有完整的分区,从采空区边沿起,沿着工作面长度方向上工作面煤体大致呈“破裂区-塑性区-弹性区-塑性区-破裂区”分布特征,依据不同煤体围岩状态,分析工作面煤体的极限支承应力σ S近似为对称的“梯形”分布,近似认为工作面中间的弹性区煤体处于三围应力状态,其极限支承强度σ 3C约为煤体单轴抗压强度[σ]的n≈3~5倍,平均取4,即σ 3C≈n[σ],工作面边沿的破裂、塑性区煤体处于“无约束-单向-二维-三维”过度状态,其极限支承强度从0线性增加至σ 3C,若工作面一侧破裂区+塑性区宽度为ρ,则弹性区宽度为d-2ρ。则σ S的近似表达式为:
Figure PCTCN2022098304-appb-000024
分析沿空工作面极限承载应力(强度)R:
Figure PCTCN2022098304-appb-000025
以实现工作面冲击地压的有效防治为目的,综合考虑工作面采前静载应力分布,通过对比研究沿空工作面煤体两个“应力”支承应力P、极限承载应力(强度)R及其之间大小关系,为确定沿空工作面合理长度提供力学依据和工程判据。从“应力”的角度分析,满足的要求或条件近似描述为:工作面煤体受到承载(包括静载和动载两部分)应力(用P表示)低于煤体自身的极限承载应力(强度)(用R表示),即P<R,R/P的比值大小反映了工作面宏观的应力状态和冲击危险性程度,设关于d′(d′=d+a+r)的函数u(d′)为:
Figure PCTCN2022098304-appb-000026
综上所述所述分段函数具体为:
Figure PCTCN2022098304-appb-000027
其中,
当a+r<d′<H cotα时
Figure PCTCN2022098304-appb-000028
当H cotα<d′<2H cotα时
Figure PCTCN2022098304-appb-000029
当2H cotα<d′时
Figure PCTCN2022098304-appb-000030
其中,u(d′)表示分段函数,d′表示宽度,a表示沿空巷道小煤柱宽度,r表示巷道宽度,ρ表示破裂区宽度和塑性区宽度的和,n表示围岩不同区域的围压系数,根据实际情况 取值,[σ]表示煤体单轴抗压强度,K表示沿空工作面采场动载应力的增量系数,P 1表示沿空工作面的静载应力,H表示煤层埋藏深度,α表示破断角,γ表示采空区上覆岩层平均容量,Δσ为采空区上覆各级岩层传递到沿空工作面的应力增量最大值,D表示采空区宽度。
在实际应用中,所述根据所述待确定宽度的沿空工作面的参数、所述分段函数和设定函数阈值确定解集,具体包括:
将所述待确定宽度的沿空工作面的参数输入所述分段函数得到待求解函数。
令所述待求解函数小于或等于所述设定函数阈值计算得到所述解集。
在实际应用中,R/P结果越大越有利于工作面冲击地压防治或降低工作面防冲工程,一般情况下采用R/P<1.5作为判断工作面是否整体稳定性的“应力”指标,如果R/P≥1.5时,说明工作面具备了整体冲击失稳的可能性,R/P越大可能出现工作面不可采的情况,所述待求解函数小于或等于所述设定函数阈值计算得到所述解集具体为:
(1)根据沿空工作面采前矿压理论和实际监测等综合分析结果,确定上覆关键岩的运动状态或采动情况。
(2)参考相似矿井开采经验或理论分析,预测沿空工作面开采过程中上覆关键层及其覆岩空间结构特征变化,分析沿空工作面的具体种类(归结为NFM-NFM、NFM-FM和FM-FM的某一类),估算沿空工作面采场动载应力的增量系数K大小,按照不同条件可取K=0~2.0,一般为0.5~1.0。
(3)分别研究实体煤巷道在不同位置区域,即①(a+r<d′≤Hcotα)、②(Hcotα<d′≤2Hcotα)和③(2Hcotα<d′)情况下的函数u(d′),依据工作面整体冲击失稳条件令u(d′)≥1.5,得到不等式的解,即d′的取值范围即合理宽度。
在实际应用中,所述根据所述合理宽度对所述沿空工作面进行开采,具体包括:
根据所述合理宽度、所述沿空巷道小煤柱宽度和所述巷道宽度计算所述待确定宽度的沿空工作面的实际宽度。
根据沿空侧区段煤柱留设和巷道宽度设计要求,确定的沿空工作面实际宽 度d r=d′-a-r。并将研究的结果参数d r“反馈”至上述步骤(2),验证结果是否符合经验或理论分析条件下的上覆关键层运动特征,并对研究的结果进行优化和完善。
根据所述实际宽度对所述沿空工作面进行开采。
本发明还提供了一种与上述方法对应的厚硬关键层条件沿空工作面合理宽度确定系统,包括:
分段函数构建模块,用于以沿空工作面的宽度为自变量构建分段函数;所述分段函数表示宽度与沿空工作面参数之间的关系,所述参数包括沿空巷道小煤柱宽度、巷道宽度、破裂区宽度、塑性区宽度、煤体单轴抗压强度、煤层埋藏深度、破断角、采空区上覆岩层平均容量和采空区宽度。
获取模块,用于获取待确定宽度的沿空工作面的参数。
求解模块,用于根据所述待确定宽度的沿空工作面的参数、所述分段函数和设定函数阈值确定解集。
合理宽度确定模块,用于确定符合所述解集的数值为合理宽度并根据所述合理宽度对所述沿空工作面进行开采。
作为一种可选的实施方式,所述分段函数具体为:
Figure PCTCN2022098304-appb-000031
其中,
当a+r<d′<H cotα时
Figure PCTCN2022098304-appb-000032
当H cotα<d′<2H cotα时
Figure PCTCN2022098304-appb-000033
当2H cotα<d′时
Figure PCTCN2022098304-appb-000034
其中,u(d′)表示分段 函数,d′表示宽度,a表示沿空巷道小煤柱宽度,r表示巷道宽度,ρ表示破裂区宽度和塑性区宽度的和,n表示围岩不同区域的围压系数,[σ]表示煤体单轴抗压强度,K表示沿空工作面采场动载应力的增量系数,P 1表示沿空工作面的静载应力,H表示煤层埋藏深度,α表示破断角,γ表示采空区上覆岩层平均容量,Δσ表示采空区上覆各级岩层传递到沿空工作面的应力增量最大值,D表示采空区宽度。
作为一种可选的实施方式,所述求解模块,具体包括:
待求解函数确定单元,用于将所述待确定宽度的沿空工作面的参数输入所述分段函数得到待求解函数。
解集计算单元,用于令所述待求解函数小于或等于所述设定函数阈值计算得到所述解集。
作为一种可选的实施方式,所述合理宽度确定模块包括:
实际宽度确定单元,用于根据所述合理宽度、所述沿空巷道小煤柱宽度和所述巷道宽度计算所述待确定宽度的沿空工作面的实际宽度。
开采单元,用于根据所述实际宽度对所述沿空工作面进行开采。
本发明可以得到沿空工作面的合理宽度,根据合理宽度对沿空工作面进行开采,能够主动减小工作面冲击危险等级和区域,降低防冲工程量,实现冲击地压的有效防治。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (8)

  1. 一种厚硬关键层条件沿空工作面合理宽度确定方法,其特征在于,包括:
    以沿空工作面的宽度为自变量构建分段函数;所述分段函数表示宽度与沿空工作面参数之间的关系,所述参数包括沿空巷道小煤柱宽度、巷道宽度、破裂区宽度、塑性区宽度、煤体单轴抗压强度、煤层埋藏深度、破断角、采空区上覆岩层平均容量和采空区宽度;
    获取待确定宽度的沿空工作面的参数;
    根据所述待确定宽度的沿空工作面的参数、所述分段函数和设定函数阈值确定解集;
    确定符合所述解集的数值为合理宽度并根据所述合理宽度对所述沿空工作面进行开采。
  2. 根据权利要求1所述的一种厚硬关键层条件沿空工作面合理宽度确定方法,其特征在于,所述分段函数具体为:
    Figure PCTCN2022098304-appb-100001
    其中,
    当a+r<d′<Hcotα时
    Figure PCTCN2022098304-appb-100002
    当Hcotα<d′<2Hcotα时
    Figure PCTCN2022098304-appb-100003
    当2Hcotα<d′时
    Figure PCTCN2022098304-appb-100004
    其中,u(d′)表示分段函数,d′表示宽度,a表示沿空巷道小煤柱宽度,r表示巷道宽度,ρ表示破裂区宽度和塑性区宽度的和,n表示围岩不同区域的围压系数,[σ]表示煤体 单轴抗压强度,K表示沿空工作面采场动载应力的增量系数,P 1表示沿空工作面的静载应力,H表示煤层埋藏深度,α表示破断角,γ表示采空区上覆岩层平均容量,Δσ表示采空区上覆各级岩层传递到沿空工作面的应力增量最大值,D表示采空区宽度。
  3. 根据权利要求1所述的一种厚硬关键层条件沿空工作面合理宽度确定方法,其特征在于,所述根据所述待确定宽度的沿空工作面的参数、所述分段函数和设定函数阈值确定解集,具体包括:
    将所述待确定宽度的沿空工作面的参数输入所述分段函数得到待求解函数;
    令所述待求解函数小于或等于所述设定函数阈值计算得到所述解集。
  4. 根据权利要求1所述的一种厚硬关键层条件沿空工作面合理宽度确定方法,其特征在于,所述根据所述合理宽度对所述沿空工作面进行开采,具体包括:
    根据所述合理宽度、所述沿空巷道小煤柱宽度和所述巷道宽度计算所述待确定宽度的沿空工作面的实际宽度;
    根据所述实际宽度对所述沿空工作面进行开采。
  5. 一种厚硬关键层条件沿空工作面合理宽度确定系统,其特征在于,包括:
    分段函数构建模块,用于以沿空工作面的宽度为自变量构建分段函数;所述分段函数表示宽度与沿空工作面参数之间的关系,所述参数包括沿空巷道小煤柱宽度、巷道宽度、破裂区宽度、塑性区宽度、煤体单轴抗压强度、煤层埋藏深度、破断角、采空区上覆岩层平均容量和采空区宽度;
    获取模块,用于获取待确定宽度的沿空工作面的参数;
    求解模块,用于根据所述待确定宽度的沿空工作面的参数、所述分段函数和设定函数阈值确定解集;
    合理宽度确定模块,用于确定符合所述解集的数值为合理宽度并根据所述合理宽度对所述沿空工作面进行开采。
  6. 根据权利要求5所述的一种厚硬关键层条件沿空工作面合理宽度确定系统,其特征在于,所述分段函数具体为:
    Figure PCTCN2022098304-appb-100005
    其中,
    当a+r<d′<Hcotα时
    Figure PCTCN2022098304-appb-100006
    当Hcotα<d′<2Hcotα时
    Figure PCTCN2022098304-appb-100007
    当2Hcotα<d′时
    Figure PCTCN2022098304-appb-100008
    其中,u(d′)表示分段函数,d′表示宽度,a表示沿空巷道小煤柱宽度,r表示巷道宽度,ρ表示破裂区宽度和塑性区宽度的和,n表示围岩不同区域的围压系数,[σ]表示煤体单轴抗压强度,K表示沿空工作面采场动载应力的增量系数,P 1表示沿空工作面的静载应力,H表示煤层埋藏深度,α表示破断角,γ表示采空区上覆岩层平均容量,Δσ表示采空区上覆各级岩层传递到沿空工作面的应力增量最大值,D表示采空区宽度。
  7. 根据权利要求5所述的一种厚硬关键层条件沿空工作面合理宽度确定系统,其特征在于,所述求解模块,具体包括:
    待求解函数确定单元,用于将所述待确定宽度的沿空工作面的参数输入所述分段函数得到待求解函数;
    解集计算单元,用于令所述待求解函数小于或等于所述设定函数阈值计算得到所述解集。
  8. 根据权利要求5所述的一种厚硬关键层条件沿空工作面合理宽度确定系统,其特征在于,所述合理宽度确定模块包括:
    实际宽度确定单元,用于根据所述合理宽度、所述沿空巷道小煤柱宽度和 所述巷道宽度计算所述待确定宽度的沿空工作面的实际宽度;
    开采单元,用于根据所述实际宽度对所述沿空工作面进行开采。
PCT/CN2022/098304 2022-02-17 2022-06-13 一种厚硬关键层条件沿空工作面合理宽度确定方法及系统 WO2023155341A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210143947.2 2022-02-17
CN202210143947.2A CN114427461A (zh) 2022-02-17 2022-02-17 一种厚硬关键层条件沿空工作面合理宽度确定方法及系统

Publications (1)

Publication Number Publication Date
WO2023155341A1 true WO2023155341A1 (zh) 2023-08-24

Family

ID=81312527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098304 WO2023155341A1 (zh) 2022-02-17 2022-06-13 一种厚硬关键层条件沿空工作面合理宽度确定方法及系统

Country Status (3)

Country Link
US (1) US20230296020A1 (zh)
CN (1) CN114427461A (zh)
WO (1) WO2023155341A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114427461A (zh) * 2022-02-17 2022-05-03 安徽理工大学 一种厚硬关键层条件沿空工作面合理宽度确定方法及系统
CN117669267B (zh) * 2024-01-30 2024-04-05 北京科技大学 一种矿震矿井地面水力压裂合理改造尺寸设计方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2034991C1 (ru) * 1992-08-04 1995-05-10 Государственный научно-исследовательский, проектно-конструкторский и проектный угольный институт с экспериментальным заводом "Печорниипроект" Способ борьбы с динамическими явлениями при разработке угольных пластов
CN104594899A (zh) * 2014-11-24 2015-05-06 山西潞安环保能源开发股份有限公司 一种沿空掘巷窄煤柱合理宽度的确定方法
CN111460564A (zh) * 2020-04-09 2020-07-28 安徽理工大学 深井冲击煤层充填工作面区段煤柱宽度的确定方法
CN113431577A (zh) * 2021-04-28 2021-09-24 山西煤炭运销集团科学技术研究有限公司 一种极近距离煤层开采同向内错巷道布置的方法
CN114427461A (zh) * 2022-02-17 2022-05-03 安徽理工大学 一种厚硬关键层条件沿空工作面合理宽度确定方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2034991C1 (ru) * 1992-08-04 1995-05-10 Государственный научно-исследовательский, проектно-конструкторский и проектный угольный институт с экспериментальным заводом "Печорниипроект" Способ борьбы с динамическими явлениями при разработке угольных пластов
CN104594899A (zh) * 2014-11-24 2015-05-06 山西潞安环保能源开发股份有限公司 一种沿空掘巷窄煤柱合理宽度的确定方法
CN111460564A (zh) * 2020-04-09 2020-07-28 安徽理工大学 深井冲击煤层充填工作面区段煤柱宽度的确定方法
CN113431577A (zh) * 2021-04-28 2021-09-24 山西煤炭运销集团科学技术研究有限公司 一种极近距离煤层开采同向内错巷道布置的方法
CN114427461A (zh) * 2022-02-17 2022-05-03 安徽理工大学 一种厚硬关键层条件沿空工作面合理宽度确定方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG YUXIAO; JIANG FUXING; WANG YONGBAO; LIU WEIXIN; FANG TING: "Study on Mechanism of Local Shear Failure for Large Isolated Working Face", METAL MINE, MAANSHAN KUANGSHAN YANJIUYUAN,, CN, no. 10, 15 October 2017 (2017-10-15), CN , pages 184 - 186, XP009548245, ISSN: 1001-1250, DOI: 10.19614/j.cnki.jsks.2017.10.035 *
ZHANG, MING; LI, KEQING; JIANG, FUXING; YANG, GENDI; XU, SHOUJIN: "Study on the Width of Isolated coal Face with Rock-burst Hazards Based on the Theory of Overlying Rock Structure", METAL MINE, MAANSHAN KUANGSHAN YANJIUYUAN,, CN, no. 4, 15 April 2016 (2016-04-15), CN , pages 63 - 65, XP009548749, ISSN: 1001-1250 *

Also Published As

Publication number Publication date
CN114427461A (zh) 2022-05-03
US20230296020A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
WO2023155341A1 (zh) 一种厚硬关键层条件沿空工作面合理宽度确定方法及系统
Shabanimashcool et al. Numerical modelling of longwall mining and stability analysis of the gates in a coal mine
Xia et al. Numerical study of stability of mining roadways with 6.0-m section coal pillars under influence of repeated mining
Zhao et al. Fractural structure of thick hard roof stratum using long beam theory and numerical modeling
An et al. Field and numerical investigation on roof failure and fracture control of thick coal seam roadway
Yang et al. Overburden failure and the prevention of water and sand inrush during coal mining under thin bedrock
Luo et al. Safe roof thickness and span of stope under complex filling body
Zhang et al. An innovative approach for gob-side entry retaining by roof cutting in steeply pitching seam longwall mining with hard roof: a case study
Sun et al. Numerical investigation of gob-side entry retaining through precut overhanging hard roof to control rockburst
Yang et al. Movement laws of overlying strata above a fully mechanized coal mining face backfilled with gangue: a case study in jiulishan coal mine in henan Province, China
Wang et al. Stability control of overburden and coal pillars in the gob-side entry under dynamic pressure
Wu et al. Characteristics of stress field and damage law of coal rock in residual pillar of top slice and its application
Zhang et al. Research on roof cutting pressure relief of the gob-side entry retaining with roadside backfilling
Lang et al. Boundary distribution of top-coal limit-equilibrium zone in fully mechanized caving in steeply dipping coal seams
Xie et al. Failure mechanism and control technology of thick and soft coal fully mechanized caving roadway under double gobs in close coal seams
CN112901169B (zh) 一种不对称孤岛工作面的冲击失稳判别与防冲开采方法
Li et al. Determining the rational layout parameters of the lateral high drainage roadway serving for two adjacent working faces
Nikolaevich Karpov et al. Analytical studies of strain-stress distribution of rock massif at recovery room T-junctions
Jiang et al. Research on the reasonable coal pillar width and surrounding rock supporting optimization of gob-side entry under inclined seam condition
Fuenzalida et al. REBOP–FLAC3D hybrid approach to cave modelling
Zhang et al. Study of top coal partition and key delayed-action region for horizontal sublevel top coal caving in deeply inclined seam
Binwei et al. Impact Analysis of Hard Roof on the Morphological Evolution of Stress Arch.
Yang et al. Study on the characteristics of top-coal caving and optimization of recovery ratio in steeply inclined residual high sectional coal pillar
CN111079311B (zh) 无煤柱自成巷顶板断裂结构的安全处理方法
Li et al. Adaptability Analysis of Full Height Mining at One Time of Deep Soft Thick Coal Seam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926651

Country of ref document: EP

Kind code of ref document: A1