WO2023155129A1 - Ph control in a dyeing process using co2 - Google Patents

Ph control in a dyeing process using co2 Download PDF

Info

Publication number
WO2023155129A1
WO2023155129A1 PCT/CN2022/076820 CN2022076820W WO2023155129A1 WO 2023155129 A1 WO2023155129 A1 WO 2023155129A1 CN 2022076820 W CN2022076820 W CN 2022076820W WO 2023155129 A1 WO2023155129 A1 WO 2023155129A1
Authority
WO
WIPO (PCT)
Prior art keywords
dyeing
carbonic acid
textile substrate
acid solution
solution
Prior art date
Application number
PCT/CN2022/076820
Other languages
French (fr)
Inventor
Xiangxiang SHAO
Yida XU
Original Assignee
Linde Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Gmbh filed Critical Linde Gmbh
Priority to PCT/CN2022/076820 priority Critical patent/WO2023155129A1/en
Publication of WO2023155129A1 publication Critical patent/WO2023155129A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/653Nitrogen-free carboxylic acids or their salts
    • D06P1/6533Aliphatic, araliphatic or cycloaliphatic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/0032Determining dye recipes and dyeing parameters; Colour matching or monitoring
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/673Inorganic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/20Physical treatments affecting dyeing, e.g. ultrasonic or electric
    • D06P5/2044Textile treatments at a pression higher than 1 atm
    • D06P5/2055Textile treatments at a pression higher than 1 atm during dyeing

Definitions

  • the present invention is generally related to a dyeing process for a textile substrate, and in particular, related to a dyeing process using CO 2 to control pH, especially pH of a textile substrate in the pretreatment stage.
  • a conventional textile dyeing process is generally divided into stages of pretreatment, dyeing, printing, and finishing.
  • Pretreatment of a textile is performed in order to remove natural impurities and artificial impurities from textile fabrics and to improve the uniformity, hydrophilic characteristics, and affinity for dye stuffs.
  • the pretreatment stage generally includes steps of singeing, de-sizing, scouring, bleaching, mercerizing, etc.
  • a lot of auxiliary agents are used in the pretreatment process.
  • the scouring and bleaching of a textile fabric is generally carried out under alkaline conditions, and in mercerization of a textile fabric, especially a cotton fabric, the fabric is treated in a 20%caustic soda solution. If washing is not sufficient, residues of the alkaline agents often remain in the textile fabric after pretreatment. It is known that pH has a great effect on dye uptake in the dyeing process, and it is important to control pH in the dyeing process.
  • the dyeing stage of a textile is often carried out in a dyeing solution.
  • the dyeing solution must also maintain a proper pH to provide accurate and uniform shading of color.
  • acetic acid (CH 3 COOH) is widely utilized in different stages of a dyeing process for pH control.
  • CH 3 COOH as one kind of organic acids, is quite expensive.
  • CH 3 COOH gives off pungent smell, is harmful for eyes and skin of workers, and increases COD (chemical oxygen demand) for the waste stream which is not easy to treat.
  • the present invention provides a method of controlling pH of a textile substrate in pretreatment stage of a dyeing process, the method comprising the steps of:
  • the present invention provides a method of controlling pH of a dyeing solution in a dyeing process, the method comprising the steps of:
  • the carbonic acid solution is prepared by delivering carbon dioxide (CO 2 ) gas into water in a pressurized reactor system and mixing with water under elevated pressure. Carbon dioxide and water form carbonic acid, which dissociates into bicarbonate and hydrogen ions. Depending on the concentration of carbonic acid, the solution will have different pH, which is normally expected to be 5-7, and at that pH carbonic acid is in equilibrium with dissociated bicarbonate ions and hydrogen ions in water.
  • CO 2 carbon dioxide
  • the prepared carbonic acid solution is added to a dye vat containing pretreated textile substrate.
  • the hydrogen ions in the carbonic acid solution react with alkaline agent remained and adsorbed in the pretreated textile substrate, to reduce the pH of the textile substrate.
  • the concentration of the carbonic acid solution can be adjusted and determined by a skilled person in the art depending on the textile substrate to be treated, and is generally 0.2 to 5 g/l, preferably 0.5 to 3 g/l.
  • the prepared carbonic acid solution is added to a dye vat containing a dyeing solution.
  • hydrogen ion concentration increases, thereby reducing the pH of the dyeing solution.
  • bicarbonate and carbonate ions can be formed in the carbonic acid solution, and maintain the pH of the dyeing solution.
  • the present invention employs CO 2 in the form of a carbonic acid solution which is prepared separately by pre-dissolving CO 2 gas in water in a reactor system, and the resulting carbonic acid solution is delivered to the dye vat via a pump.
  • CO 2 gas can be additionally injected into the atmosphere in the dye vat to pressurize the dye vat, maintain the pressure of dye vat higher than atmospheric pressure but under the safety pressure of the vat, so as to prevent CO 2 from vaporizing from carbonic acid solution, and thus maintain carbonic acid concentration in the solution
  • the present invention provides a lower operational cost and safer working environment for workers.
  • the present invention can achieve extremely high levels of CO 2 dissolution of > 95%, and high reaction efficiency.
  • the inventor believes that when CO 2 gas is directly injected into a dye vat, from the viewpoint of a dynamic mass transfer process, CO 2 needs to be dissolved in water to generate carbonic acid, which then dissociates into hydrogen ions to react with alkali, and in this process, the step where the gas goes across the gas-liquid interface membrane controls the dissolution speed and is relatively slow, so the amount of CO 2 that can participate in the reaction is mainly affected by the step of gas dissolution.
  • a carbonic acid solution is prepared in advance and added into the dye vat, the carbonic acid will directly react with the alkali after dissociation, without involving the slow step of two-phase mass transfer.
  • the level of CO 2 dissolution can only be 50-70%, if CO 2 gas is directly injected into the dye vat via a sparger, especially when target CO 2 concentration is close to its solubility.
  • the present invention allows the reactor system for preparing a carbonic acid solution to be compatible with in-line or sidestream modes, and suitable for internal or external installation, and therefore, is adaptable to the existing different types of dyeing machines with a minimum structure modification needed.
  • Textile substrates suitable to be used in the present invention can be any known textile substrate in the art.
  • suitable textile substrate include, but are not limited to, cotton, nylon, rayon, polyester, silk, wool, acrylic, leather, etc.
  • the textile substrate to be employed in the present invention is preferably cotton.
  • dyes include, but are not limited to, acid, basic, reactive, disperse, direct, vat dyes.
  • the desired pH of a textile substrate after pretreatment stage is normally around neutral.
  • the desired pH of a dyeing solution in the dyeing process will depend on the type of dye and the textile substrate to be dyed.
  • the desired pH of a dyeing solution for a polyester substrate is 5.5-6
  • for a nylon substrate is 6-6.5
  • for a cotton substrate is 6.5-7.
  • Fig. 1 is a schematic drawing of a pretreatment stage of a dyeing process using CO 2 to control pH of cotton cloth according to an embodiment of the present invention.
  • the dyeing process took place in an overflow dyeing machine.
  • a carbonic acid solution was prepared in a pressurized reactor system ( reactor available from Linde GmbH) .
  • a pressurized reactor which can dissolve CO 2 effectively into water by mixing CO 2 gas and water under pressurized conditions.
  • Dye vats having a lot of different formats can be employed in the present invention, and in this Example, a typical overflow dyeing machine, in which the dyeing solution is pumped from the bottom of the vat, then goes through an external heat exchanger and sprays onto the cloth in the dyeing vat again from the top nozzles, was used.
  • Fig. 1 shows a pretreatment process using carbonic acid solution to control the pH of cotton cloth.
  • CO 2 gas was delivered into reactor 1, and mixed with water under elevated pressure of 1 barg, to obtain 1 g/l carbonic acid solution.
  • This example shows that carbonic acid solution can be used to effectively adjust the pH of a textile substrate in the pretreatment stage of a dyeing process, to achieve comparable technical effect with conventionally used acetic acid solution.
  • CO 2 utilization efficiency was evaluated on a lab scale simulating the condition that CO 2 was directly injected and diffused into water in a dye vat. The result was shown in the following Figure.
  • the CO 2 utilization efficiency was determined by employing a first method of measuring the volume of CO 2 gas escaped from water level and a second method of measuring the rising speed of CO 2 gas bubble in water and calculating in a model, and then taking an average of the values obtained from the first and second methods.
  • CO 2 utilization rate is significantly affected by water depth. Considering the fact that water depth commonly used in the art is usually as shallow as ⁇ 0.8m, at neutral pH CO 2 utilization rate would expect to be less than 70%, which is much less than CO 2 utilization efficiency of >95%for CO 2 pressurized vessel ( Reactor) ,.

Abstract

The present invention is generally related to a dyeing process for a textile substrate, and in particular, related to a dyeing process using CO2 to control pH, especially pH of a textile substrate in the pretreatment stage.

Description

pH control in a dyeing process using CO 2 Field of the Invention:
The present invention is generally related to a dyeing process for a textile substrate, and in particular, related to a dyeing process using CO 2 to control pH, especially pH of a textile substrate in the pretreatment stage.
Background of the Invention:
A conventional textile dyeing process is generally divided into stages of pretreatment, dyeing, printing, and finishing. Pretreatment of a textile is performed in order to remove natural impurities and artificial impurities from textile fabrics and to improve the uniformity, hydrophilic characteristics, and affinity for dye stuffs. The pretreatment stage generally includes steps of singeing, de-sizing, scouring, bleaching, mercerizing, etc. A lot of auxiliary agents are used in the pretreatment process. For example, the scouring and bleaching of a textile fabric is generally carried out under alkaline conditions, and in mercerization of a textile fabric, especially a cotton fabric, the fabric is treated in a 20%caustic soda solution. If washing is not sufficient, residues of the alkaline agents often remain in the textile fabric after pretreatment. It is known that pH has a great effect on dye uptake in the dyeing process, and it is important to control pH in the dyeing process.
The dyeing stage of a textile is often carried out in a dyeing solution. The dyeing solution must also maintain a proper pH to provide accurate and uniform shading of color.
In the prior art, acetic acid (CH 3COOH) is widely utilized in different stages of a dyeing process for pH control. However, CH 3COOH, as one kind of organic acids, is quite expensive. Besides, CH 3COOH gives off pungent smell, is harmful for eyes and skin of workers, and increases COD (chemical oxygen demand) for the waste stream which is not easy to treat.
Therefore, there exists a need for seeking a new cost-effective, environmental friendly and efficient method to maintain and control pH, that obviates the use of acetic acid in the dyeing process, especially in the pretreatment stage of the dyeing process.
Summary of the Invention:
In one aspect, the present invention provides a method of controlling pH of a textile substrate in pretreatment stage of a dyeing process, the method comprising the steps of:
providing a carbonic acid solution; and
introducing the carbonic acid solution to a dye vat containing the textile substrate, to control the pH of the textile substrate to be around neutral, for example, 6.5-7.5.
In a further aspect, the present invention provides a method of controlling pH of a dyeing solution in a dyeing process, the method comprising the steps of:
providing a carbonic acid solution;
providing a dyeing solution in a dye vat; and
adding the carbonic acid solution to the dyeing solution in the dye vat, to control the pH of the dyeing solution.
According to the present invention, the carbonic acid solution is prepared by delivering carbon dioxide (CO 2) gas into water in a pressurized reactor system and mixing with water under elevated pressure. Carbon dioxide and water form carbonic acid, which dissociates into bicarbonate and hydrogen ions. Depending on the concentration of carbonic acid, the solution will have different pH, which is normally expected to be 5-7, and at that pH carbonic acid is in equilibrium with dissociated bicarbonate ions and hydrogen ions in water.
In one embodiment of the present invention, the prepared carbonic acid solution is added to a dye vat containing pretreated textile substrate. Upon adding the carbonic acid solution in the dye vat, the hydrogen ions in the carbonic acid solution react with alkaline agent remained and adsorbed in the pretreated textile substrate, to reduce the pH of the textile substrate.
The concentration of the carbonic acid solution can be adjusted and determined by a skilled person in the art depending on the textile substrate to be treated, and is generally 0.2 to 5 g/l, preferably 0.5 to 3 g/l.
In another embodiment of the present invention, the prepared carbonic acid solution is added to a dye vat containing a dyeing solution. Upon adding the carbonic acid solution to the dyeing solution, hydrogen ion concentration increases, thereby reducing the pH of the dyeing solution. In addition, as a  buffering system, bicarbonate and carbonate ions can be formed in the carbonic acid solution, and maintain the pH of the dyeing solution.
Unlike a conventional method which injects CO 2 gas to a dyeing process through a sparger or through direct gas injection into the vat atmosphere, the present invention employs CO 2 in the form of a carbonic acid solution which is prepared separately by pre-dissolving CO 2 gas in water in a reactor system, and the resulting carbonic acid solution is delivered to the dye vat via a pump. In a preferred embodiment, CO 2 gas can be additionally injected into the atmosphere in the dye vat to pressurize the dye vat, maintain the pressure of dye vat higher than atmospheric pressure but under the safety pressure of the vat, so as to prevent CO 2 from vaporizing from carbonic acid solution, and thus maintain carbonic acid concentration in the solution
By replacing CH 3COOH with CO 2 to control pH in the dyeing process, the present invention provides a lower operational cost and safer working environment for workers.
Further, by pre-dissolving CO 2 into water in a pressurized reactor system to obtain a carbonic acid solution, the present invention can achieve extremely high levels of CO 2 dissolution of > 95%, and high reaction efficiency.
Without wishing to be bound by theory, the inventor believes that when CO 2 gas is directly injected into a dye vat, from the viewpoint of a dynamic mass transfer process, CO 2 needs to be dissolved in water to generate carbonic acid, which then dissociates into hydrogen ions to react with alkali, and in this process, the step where the gas goes across the gas-liquid interface membrane controls the dissolution speed and is relatively slow, so the amount of CO 2 that can participate in the reaction is mainly affected by the step of gas dissolution. In contrast, if a carbonic acid solution is prepared in advance and added into the dye vat, the carbonic acid will directly react with the alkali after dissociation, without involving the slow step of two-phase mass transfer. As the reaction time in a dye vat is limited and the liquid level in a dye vat commonly used in the art is usually as shallow as less than 1 m, the level of CO 2 dissolution can only be 50-70%, if CO 2 gas is directly injected into the dye vat via a sparger, especially when target CO 2 concentration is close to its solubility.
More importantly, the present invention allows the reactor system for  preparing a carbonic acid solution to be compatible with in-line or sidestream modes, and suitable for internal or external installation, and therefore, is adaptable to the existing different types of dyeing machines with a minimum structure modification needed.
Textile substrates suitable to be used in the present invention can be any known textile substrate in the art. Examples of suitable textile substrate include, but are not limited to, cotton, nylon, rayon, polyester, silk, wool, acrylic, leather, etc. The textile substrate to be employed in the present invention is preferably cotton.
Various types of natural and synthetic dyes can be used in the dyeing process of the present invention. Examples of dyes include, but are not limited to, acid, basic, reactive, disperse, direct, vat dyes.
The desired pH of a textile substrate after pretreatment stage is normally around neutral.
The desired pH of a dyeing solution in the dyeing process will depend on the type of dye and the textile substrate to be dyed. For example, the desired pH of a dyeing solution for a polyester substrate is 5.5-6, for a nylon substrate is 6-6.5, and for a cotton substrate is 6.5-7.
Brief Description of the Drawing
Fig. 1 is a schematic drawing of a pretreatment stage of a dyeing process using CO 2 to control pH of cotton cloth according to an embodiment of the present invention.
Detailed Description of the Preferred Embodiment
The present invention is further illustrated by the following examples, but is not limited to the scope thereof. Any experimental methods with no conditions specified in the following examples are selected according to the conventional method and conditions, or product or device specifications.
Example 1:
The dyeing process took place in an overflow dyeing machine.
A carbonic acid solution was prepared in a pressurized reactor system (
Figure PCTCN2022076820-appb-000001
reactor available from Linde GmbH) .
Figure PCTCN2022076820-appb-000002
reactor is a pressurized reactor which can dissolve CO 2  effectively into water by mixing CO 2 gas and water under pressurized conditions. Dye vats having a lot of different formats can be employed in the present invention, and in this Example, a typical overflow dyeing machine, in which the dyeing solution is pumped from the bottom of the vat, then goes through an external heat exchanger and sprays onto the cloth in the dyeing vat again from the top nozzles, was used.
Fig. 1 shows a pretreatment process using carbonic acid solution to control the pH of cotton cloth.
As shown in Fig. 1, CO 2 gas was delivered into
Figure PCTCN2022076820-appb-000003
reactor 1, and mixed with water under elevated pressure of 1 barg, to obtain 1 g/l carbonic acid solution.
In dye vat 2 of the overflow dyeing machine, cotton cloth was mixed with 2 g/l NaOH solution. The solution was heated to 98℃ and maintained at this temperature for 60 min. Then the solution was removed and fresh water was added to the cloth, heated to 60℃ and maintained at this temperature for 10 min. Then water was removed and 1 g/l carbonic acid solution as prepared above was added via a pump (which was not shown here) , and washed the cloth for 10min. Then the solution was removed and fresh water was again added to the cloth, and washed for 10min. Finally water was removed and cloth was dried. After all these processing steps, the final pH of cloth was 6.5~7.5 and the cloth was ready for the next dyeing stage.
This example shows that carbonic acid solution can be used to effectively adjust the pH of a textile substrate in the pretreatment stage of a dyeing process, to achieve comparable technical effect with conventionally used acetic acid solution.
Further, CO 2 utilization efficiency was evaluated on a lab scale simulating the condition that CO 2 was directly injected and diffused into water in a dye vat. The result was shown in the following Figure. The CO 2 utilization efficiency was determined by employing a first method of measuring the volume of CO 2 gas escaped from water level and a second method of measuring the rising speed of CO 2 gas bubble in water and calculating in a model, and then taking an average of the values obtained from the first and second methods.
CO 2 utilization efficiency (if CO 2 gas directly diffuses into water)
Figure PCTCN2022076820-appb-000004
Water depth (m)
From the above Figure, it can be seen that CO 2 utilization rate is significantly affected by water depth. Considering the fact that water depth commonly used in the art is usually as shallow as <0.8m, at neutral pH CO 2 utilization rate would expect to be less than 70%, which is much less than CO 2 utilization efficiency of >95%for CO 2 pressurized vessel (
Figure PCTCN2022076820-appb-000005
Reactor) ,.
The invention has been described herein in considerable detail in order to provide those skilled in the art with the information needed to construct and use embodiments of the invention as required. However, it is to be understood that various modifications can be accomplished without departing from the scope of the invention itself.

Claims (7)

  1. A process for dyeing a textile substrate, comprising in the pretreatment stage of the process, the steps of
    providing a carbonic acid solution;
    introducing the carbonic acid solution to a dye vat containing the textile substrate, to control the pH of the textile substrate to be around neutral.
  2. The process for dyeing a textile substrate according to claim 1, wherein the carbonic acid solution is prepared in a pressurized reactor system.
  3. The process for dyeing a textile substrate according to claim 1 or 2, further comprising the step of introducing additional CO 2 into the dye vat atmosphere to maintain carbonic acid concentration in the solution.
  4. The process for dyeing a textile substrate according to any one of claims 1 to 3, wherein the carbonic acid solution has a concentration of 0.2-5 g/L.
  5. The process for dyeing a textile substrate according to any one of claims 1 to 4, wherein the textile substrate is selected from the group comprising cotton, nylon, rayon, polyester, silk, wool, acrylic, and leather.
  6. A process for dyeing a textile substrate, comprising the steps of:
    providing a carbonic acid solution;
    providing a dyeing solution in a dye vat;
    adding the carbonic acid solution to the dyeing solution in the dye vat, to control the pH of the dyeing solution.
  7. The process for dyeing a textile substrate according to claim 6, wherein the carbonic acid solution is prepared in a pressurized reactor system.
PCT/CN2022/076820 2022-02-18 2022-02-18 Ph control in a dyeing process using co2 WO2023155129A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/076820 WO2023155129A1 (en) 2022-02-18 2022-02-18 Ph control in a dyeing process using co2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/076820 WO2023155129A1 (en) 2022-02-18 2022-02-18 Ph control in a dyeing process using co2

Publications (1)

Publication Number Publication Date
WO2023155129A1 true WO2023155129A1 (en) 2023-08-24

Family

ID=80628973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076820 WO2023155129A1 (en) 2022-02-18 2022-02-18 Ph control in a dyeing process using co2

Country Status (1)

Country Link
WO (1) WO2023155129A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4536907A (en) * 1982-11-29 1985-08-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for effecting an accelerated neutralization of cellulose textile substrates impregnated with alkaline hydroxide
US5295998A (en) * 1993-02-02 1994-03-22 Liquid Carbonic Industries Corporation Adjusting pH in dyeing processes using CO2
CN107780239A (en) * 2017-11-10 2018-03-09 湖州南浔金吉宝纺织有限公司 A kind of colouring method of textile raw material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4536907A (en) * 1982-11-29 1985-08-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for effecting an accelerated neutralization of cellulose textile substrates impregnated with alkaline hydroxide
US5295998A (en) * 1993-02-02 1994-03-22 Liquid Carbonic Industries Corporation Adjusting pH in dyeing processes using CO2
CN107780239A (en) * 2017-11-10 2018-03-09 湖州南浔金吉宝纺织有限公司 A kind of colouring method of textile raw material

Similar Documents

Publication Publication Date Title
CN100552124C (en) Low temperature scouring and bleaching agent and preparation thereof and be used for cotton or the pre-treatment process of cotton blending fabric
CN105256485B (en) A kind of Cold Pad-Batch Dyeing with Reactive Dyes equipment and colouring method
CN104695238B (en) Disperse dyes mineralising in situ, degree of depth water-saving and emission-reducing dyeing post-processing approach and auxiliary agent
CN105671948B (en) A kind of textile printing and dyeing pre-treatment auxiliary agent and the preparation method and application thereof
CN107841866B (en) Preparation method of white fabric
CN109898348A (en) A kind of cotton, viscous blended fabric vital staining production technique
CN114507964A (en) Environment-friendly fading treatment process for denim fabric and after-finishing line
WO2023155129A1 (en) Ph control in a dyeing process using co2
US5295998A (en) Adjusting pH in dyeing processes using CO2
CN103469535A (en) Low-temperature pre-treatment technology of cotton fabric
GB2216149A (en) A process for bleaching textile material
Ibrahim et al. Environmentally Sound Dyeing of Cellulose‐Based Textiles
CN104711847A (en) Hydrogen peroxide orientation catalytic composite additive and application of additive to pretreatment of cotton
CN114775201B (en) System and method for adjusting pH of fabric by using carbon dioxide gas
CN114808300B (en) Water-saving and energy-saving fabric pH adjusting process
CN112301763A (en) Pure cotton fabric and dyeing method thereof
CN109235018A (en) A kind of grey cloth is singed cold dome treatment process
CN110747664A (en) Low bath ratio dyeing process of active turquoise blue G
CN107700126B (en) Dyeing method of textile
CN108589330B (en) Alkali deweighting process for dyed polyester fabric
CN110629568B (en) Polyester yarn dyeing process
CN114395924A (en) Multifunctional refining agent, cold batch liquid and cold batch pretreatment method
CN110616574A (en) Continuous vat dyeing process for black knitted fabric
CN110644263A (en) Method for recycling textile printing and dyeing residual slurry
CN109577035A (en) A kind of stock-dye technique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22707600

Country of ref document: EP

Kind code of ref document: A1