WO2023155123A1 - Transmission beams on and off determination - Google Patents

Transmission beams on and off determination Download PDF

Info

Publication number
WO2023155123A1
WO2023155123A1 PCT/CN2022/076803 CN2022076803W WO2023155123A1 WO 2023155123 A1 WO2023155123 A1 WO 2023155123A1 CN 2022076803 W CN2022076803 W CN 2022076803W WO 2023155123 A1 WO2023155123 A1 WO 2023155123A1
Authority
WO
WIPO (PCT)
Prior art keywords
paging
configuration
search space
transceiver
space configuration
Prior art date
Application number
PCT/CN2022/076803
Other languages
French (fr)
Inventor
Zhi YAN
Hongmei Liu
Yuantao Zhang
Haiming Wang
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to PCT/CN2022/076803 priority Critical patent/WO2023155123A1/en
Publication of WO2023155123A1 publication Critical patent/WO2023155123A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel

Definitions

  • the subject matter disclosed herein generally relates to wireless communications, and more particularly relates to methods and apparatuses for transmission beams ON and OFF determination.
  • New Radio NR
  • VLSI Very Large Scale Integration
  • RAM Random Access Memory
  • ROM Read-Only Memory
  • EPROM or Flash Memory Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • LAN Local Area Network
  • WAN Wide Area Network
  • UE User Equipment
  • eNB Evolved Node B
  • gNB Next Generation Node B
  • Uplink UL
  • Downlink DL
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • FPGA Field Programmable Gate Array
  • OFDM Orthogonal Frequency Division Multiplexing
  • RRC Radio Resource Control
  • LTE Long Term Evolution
  • MCS Modulation and Coding Scheme
  • DRX Discontinuous Reception
  • PD Physical Downlink Control Channel
  • the search space for paging and related paging message are designed to cover UEs in a whole cell range (including UE (s) in worst case, e.g. UEs located in the cell boundary, UEs with high speed, etc) . Accordingly, for other UEs (e.g. UEs located in cell center, or UEs that are stationary) , the legacy paging design (e.g. using low MCS, high aggregation level, and/or more transmission resource) will waste power and/or energy and/or resource at the network side (e.g. at gNB) .
  • the legacy paging design e.g. using low MCS, high aggregation level, and/or more transmission resource
  • This disclosure targets network energy saving related to paging corresponding beam ON and OFF determination.
  • a UE comprises a transceiver; and a processor, wherein the processor is configured to receive, via the transceiver, a first paging configuration and a first paging search space configuration; receive, via the transceiver, at least one of a second paging configuration and a second paging search space configuration; and monitor paging message based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.
  • the second paging configuration includes all fields of the first paging configuration.
  • the first paging configuration and the second paging configuration are in the same message.
  • the second paging search space configuration includes all fields of the first paging search space configuration.
  • the first paging search space configuration and the second search space configuration are in the same message.
  • the processor is configured to monitor the paging message, by a higher layer indicator, based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.
  • the processor is configured to switch between the first paging configuration and the second paging configuration and/or between the first paging search space configuration and the second paging search space configuration periodically according to a first period and a first time offset.
  • the paging message is monitored based on the second paging search space, and the processor is further configured to receive, via the transceiver, an indication of control signal monitoring occasion ON and OFF.
  • the indication of control signal monitoring occasion ON and OFF can be a bitmap manner indication, or periodically, or determined by a PO index, a frame number, subframe number and/or a symbol number.
  • the paging message is monitored in a PO
  • the PO is a set of first number of consecutive control signal monitoring occasions, where the first number is actually transmitted SSB groups determined by actually transmitted SSB (s) and SSB association configuration.
  • the processor may be further configured to receive, via the transceiver, the SSB association configuration which is beams association configuration, or beams and SSB groups association configuration.
  • the processor is further configured to transmit, via the transceiver, the SSB association configuration which is beams association configuration, or beams and SSB groups association configuration.
  • a method performed by a UE comprises receiving a first paging configuration and a first paging search space configuration; receiving at least one of a second paging configuration and a second paging search space configuration; and monitoring paging message based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.
  • a base unit comprises a transceiver; and a processor, wherein the processor is configured to transmit, via the transceiver, a first paging configuration and a first paging search space configuration; transmit, via the transceiver, at least one of a second paging configuration and a second paging search space configuration; and transmit, via the transceiver, paging message based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, the second paging search space configuration.
  • a method performed by a base unit comprises transmitting a first paging configuration and a first paging search space configuration; transmitting at least one of a second paging configuration and a second paging search space configuration; and transmitting paging message based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.
  • Figure 1 illustrates LTE paging
  • Figures 2 (a) and 2 (b) illustrates NR paging
  • Figure 3 illustrates a first option of monitoring the second paging search space
  • Figures 4 (a) and 4 (b) illustrate a second option of monitoring the second paging search space
  • Figures 5 (a) to 5 (c) illustrate three examples of the first sub-embodiment of the third embodiment
  • Figure 6 illustrates an example of the second sub-embodiment of the third embodiment
  • Figure 7 is a schematic flow chart diagram illustrating an embodiment of a method
  • Figure 8 is a schematic flow chart diagram illustrating another embodiment of a method.
  • Figure 9 is a schematic block diagram illustrating apparatuses according to one embodiment.
  • embodiments may be embodied as a system, apparatus, method, or program product. Accordingly, embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects that may generally all be referred to herein as a “circuit” , “module” or “system” . Furthermore, embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine-readable code, computer readable code, and/or program code, referred to hereafter as “code” .
  • code computer readable storage devices storing machine-readable code, computer readable code, and/or program code, referred to hereafter as “code” .
  • the storage devices may be tangible, non-transitory, and/or non-transmission.
  • the storage devices may not embody signals. In a certain embodiment, the storage devices only employ signals for accessing code.
  • modules may be implemented as a hardware circuit comprising custom very-large-scale integration (VLSI) circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components.
  • VLSI very-large-scale integration
  • a module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
  • Modules may also be implemented in code and/or software for execution by various types of processors.
  • An identified module of code may, for instance, include one or more physical or logical blocks of executable code which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but, may include disparate instructions stored in different locations which, when joined logically together, include the module and achieve the stated purpose for the module.
  • a module of code may contain a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices.
  • operational data may be identified and illustrated herein within modules and may be embodied in any suitable form and organized within any suitable type of data structure. This operational data may be collected as a single data set, or may be distributed over different locations including over different computer readable storage devices.
  • the software portions are stored on one or more computer readable storage devices.
  • the computer readable medium may be a computer readable storage medium.
  • the computer readable storage medium may be a storage device storing code.
  • the storage device may be, for example, but need not necessarily be, an electronic, magnetic, optical, electromagnetic, infrared, holographic, micromechanical, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • a storage device would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, random access memory (RAM) , read-only memory (ROM) , erasable programmable read-only memory (EPROM or Flash Memory) , portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • a computer-readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Code for carrying out operations for embodiments may include any number of lines and may be written in any combination of one or more programming languages including an object-oriented programming language such as Python, Ruby, Java, Smalltalk, C++, or the like, and conventional procedural programming languages, such as the "C" programming language, or the like, and/or machine languages such as assembly languages.
  • the code may be executed entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) .
  • LAN local area network
  • WAN wide area network
  • Internet Service Provider an Internet Service Provider
  • the code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices, to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function specified in the schematic flowchart diagrams and/or schematic block diagrams block or blocks.
  • the code may also be loaded onto a computer, other programmable data processing apparatus, or other devices, to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the code executed on the computer or other programmable apparatus provides processes for implementing the functions specified in the flowchart and/or block diagram block or blocks.
  • each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) .
  • UE During idle mode, UE gets into and stay in sleeping mode defined in DRX cycle (Discontinuous Receive Cycle) configured in SIB2. UE periodically wakes up and monitors PDCCH in order to check for the presence of a paging message. If the PDCCH indicates that a paging message is transmitted in the subframe, then UE needs to demodulate the paging message.
  • DRX cycle Continuous Receive Cycle
  • FIG. 1 illustrates the LTE paging.
  • Paging Occasion (PO) is a subframe where there may be P-RNTI scrambled PDCCH addressing the paging message.
  • Paging Frame (PF) is one Radio Frame, which may contain one or multiple Paging Occasion (s) .
  • T is DRX cycle of the UE
  • N min (T, nB) , which means the smaller one among T and nB
  • nB can be any one of 4T, 2T, T, T/2, T/4, T/8, T/16, T/32, which comes from SIB2 (i.e. from IE nB) .
  • T is determined by the shortest of the UE specific DRX value, if allocated by upper layers, and a default DRX value broadcast in system information. If UE specific DRX is not configured by upper layers, the default value is applied.
  • Figures 2 (a) and 2 (b) illustrate NR paging.
  • the UE may use Discontinuous Reception (DRX) in RRC_IDLE state and RRC_INACTIVE state.
  • DRX Discontinuous Reception
  • the UE monitors one paging occasion (PO) per DRX cycle.
  • a PO is a set of PDCCH monitoring occasions and can consist of multiple time slots (e.g. subframe or OFDM symbol) where paging DCI can be sent.
  • One Paging Frame (PF) is one Radio Frame and may contain one or multiple PO (s) or starting point of a PO.
  • T is DRX cycle of the UE (T is determined by the shortest of the UE specific DRX value (s) , if configured by RRC and/or upper layers, and a default DRX value broadcast in system information) . In RRC_IDLE state, if UE specific DRX is not configured by upper layers, the default value is applied.
  • N is the number of total paging frames in T.
  • Ns is the number of paging occasions for a PF.
  • UE In multi-beam operations in NR, UE assumes that the same paging message is repeated in all transmitted beams.
  • the selection of the beam (s) for the reception of the paging message is up to UE implementation. For example, UE selects a best beam from SSB beams 1 to 8 (e.g. B1 to B8 in the left part of Figure 2 (a) ) , if they are transmitted.
  • SSB beam B1 is selected as the best beam
  • UE monitors the paging message in beam 1 (i.e. B1 in the right part of Figure 2 (b) ) .
  • the UE monitors the (i_s+ 1) th PO.
  • a PO is a set of ‘S*X’ consecutive PDCCH monitoring occasions where S is the number of actually transmitted SSBs.
  • X is the nrofPDCCH-MonitoringOccasionPerSSB-InPO (if configured) or is equal to 1 (if nrofPDCCH-MonitoringOccasionPerSSB-InPO is not configured) .
  • all of SSB beams 1 to 8 e.g. B1 to B8 in the left part of Figure 2 (a) or Figure 2 (b) ) are actually transmitted SSBs.
  • the paging configuration includes parameters (or fields) Ns, nAndPagingFrameOffset, nrofPDCCH-MonitoringOccasionPerSSB-InPO, and the length of default DRX Cycle (all of which are signaled in SIB1) .
  • the paging search space configuration includes IE ⁇ searchSpaceId, controlResourceSetId, monitoringSlotPeriodicityAndOffset, duration, monitoringSymbolsWithinSlot, nrofCandidates, searchSpaceType ⁇ configured in SIB1.
  • the paging configuration and the paging search space are configured to cover all UEs in a whole cell range. This would waste network energy for some UEs (e.g. UEs located in cell center, or UEs that are stationary) .
  • the paging configuration and the paging search space configured for all UEs are referred to as first paging configuration and first paging search space, where the first paging search space is configured by a first paging search space configuration in SIB1.
  • a new (or an additional) paging search space (e.g. second paging search space) is configured.
  • the second paging search space may be configured in the same carrier as the first paging search space.
  • the second paging search space may be configured in new carriers.
  • the second paging search space is configured by a second paging search space configuration.
  • the second paging search space configuration may include all fields of the first paging search space configuration.
  • the first paging search space configuration i.e. all fields of the first paging search space configuration
  • the second paging search space configuration may have different field values from the first paging search space configuration. For example, at least one field value (in addition to the searchSpaceId field value) is different value.
  • the second paging search space can be configured by adding at least one new field to the first paging search space configuration.
  • the second paging search space configuration refers to the newly added field.
  • the first paging search space configuration and the second paging search space configuration are transmitted in the same message.
  • the first paging search space configuration includes the following fields: ⁇ searchSpaceId, controlResourceSetId, monitoringSlotPeriodicityAndOffset, duration, monitoringSymbolsWithinSlot, nrofCandidates, searchSpaceType ⁇ .
  • the first paging search space configuration has the following values: ⁇ searchSpaceId#1, controlResourceSetId#1, monitoringSlotPeriodicityAndOffset#1, duration#1, monitoringSymbolsWithinSlot#1, nrofCandidates#1, searchSpaceType#1 ⁇ .
  • the second paging search space configuration may have the following values: ⁇ searchSpaceId#2, controlResourceSetId#2, monitoringSlotPeriodicityAndOffset#1, duration#1, monitoringSymbolsWithinSlot#1, nrofCandidates#1, searchSpaceType#1 ⁇ . That is, the second paging search space configuration has a different value for the controlResourceSetId field: controlResourceSetId#2.
  • controlResourceSetId#2 may indicate a CORESET having a reduced frequency range and/or a reduced time range (maybe referred to as a reduced CORESET) .
  • the gNB may save energy for transmitting paging message in the reduced CORESET.
  • the first and the second paging search space configurations may have the following fields: ⁇ searchSpaceId, controlResourceSetId, controlResourceSetId-r18, monitoringSlotPeriodicityAndOffset, duration, monitoringSymbolsWithinSlot, nrofCandidates, searchSpaceType ⁇ . That is, a new field controlResourceSetId-r18 added to the first paging search space configuration is referred to as the second paging search space configuration.
  • controlResourceSetId-r18 field may have a value controlResourceSetId#2 (while the controlResourceSetId field may have a value controlResourceSetId#1) .
  • the second paging search space configuration and the first paging search space configuration are transmitted in the same message.
  • the gNB may save energy for transmitting paging message in the reduced CORESET.
  • UE e.g. UEs located in cell center, or UEs that are stationary
  • the gNB may indicate a UE to monitor the second paging search space for a time duration (e.g. indicated by a second paging search space timer) .
  • the time duration e.g. when the second paging search space timer expires
  • the UE fallbacks to monitor the first paging search space.
  • UE may be cell-specifically configured to switch to monitor the first paging search space and the second paging search space periodically according to a configured period and a time offset. All UEs can be configured with the second option, since the first paging search space and the second paging search space can be periodically configured to be monitored.
  • a reference time (e.g. frame 0, slot 0) , which is referred to the time offset, is configured as a start time.
  • a first paging search space timer (e.g. 40 slots) can be configured, while when the first paging search space timer expires, a second paging search space timer (e.g. 50 slots) starts.
  • the first paging search space timer will start when the second paging search space timer expires.
  • the configured period (e.g. T) may be equal to the sum of the first paging search space timer and the second paging search space timer
  • a reference time (e.g. frame 0, slot 0) , which is referred to the time offset, is configured as a start time.
  • UE may be configured to periodically monitor the first paging search space and the second paging search space in a configured period T, wherein, in a first part of the period T (e.g. ⁇ T, where ⁇ is between 0 and 1) , UE monitors the first paging search space; while in a second part (i.e. remaining part) of the period T (e.g. (1- ⁇ ) T) , UE monitors the second paging search space.
  • a first part of the period T e.g. ⁇ T, where ⁇ is between 0 and 1
  • UE monitors the first paging search space
  • a second part i.e. remaining part
  • a second paging search space configuration with a reduced CORESET is described.
  • Other field (s) of the first paging search space configuration can be modified to construct the second paging search space configuration, so long as the modified field (s) of the configuration of the first paging search space can save network energy.
  • a new (or additional) paging configuration in addition to the second paging search space configured according to the first embodiment, can be configured for use in the second paging search space.
  • the second paging configuration can be configured by reusing the parameters (or fields) of the first paging configuration. That is, the second paging configuration has all parameters of the first paging configuration and has different values for the parameters. For example, at least one parameter of the second paging configuration has a different value from the first paging configuration.
  • the second paging configuration can be configured by adding at least one new parameter (or field) to the parameters (or fields) of the first paging configuration.
  • the second paging configuration refers to the newly added parameter (s) .
  • the first paging configuration and the second paging configuration are transmitted in the same message.
  • the first paging configuration includes parameters ⁇ Ns, nAndPagingFrameOffset, nrofPDCCH-MonitoringOccasionPerSSB-InPO, the length of default DRX Cycle ⁇ .
  • the first paging configuration is configured to have the following values: ⁇ Ns#1, nAndPagingFrameOffset#1, nrofPDCCH-MonitoringOccasionPerSSB-InPO#1, the length#1 of default DRX Cycle ⁇ .
  • the second paging configuration may have the following values: ⁇ Ns#1, nAndPagingFrameOffset#1, nrofPDCCH-MonitoringOccasionPerSSB-InPO#2, the length#1 of default DRX Cycle ⁇ . That is, the second paging configuration has a different value for the parameter nrofPDCCH-MonitoringOccasionPerSSB-InPO: nrofPDCCH-MonitoringOccasionPerSSB-InPO#2.
  • nrofPDCCH-MonitoringOccasionPerSSB-InPO#2 may indicate a smaller value (e.g. 1)
  • nrofPDCCH-MonitoringOccasionPerSSB-InPO#1 may indicate a larger value (e.g. 2) .
  • the first and the second paging configurations may have the following parameters ⁇ Ns, nAndPagingFrameOffset, nrofPDCCH-MonitoringOccasionPerSSB-InPO, nrofPDCCH-MonitoringOccasionPerSSB-InPO-r18, the length of default DRX Cycle ⁇ . That is, a new parameter nrofPDCCH-MonitoringOccasionPerSSB-InPO-r18 added to the parameters of the first paging configuration is referred to as the second paging configuration.
  • the parameter nrofPDCCH-MonitoringOccasionPerSSB-InPO-r18 may have a value nrofPDCCH-MonitoringOccasionPerSSB-InPO#2.
  • the second paging configuration and the first paging configuration are transmitted in the same message.
  • nrofPDCCH-MonitoringOccasionPerSSB-InPO e.g. 1 in Figure 2 (a)
  • nrofPDCCH-MonitoringOccasionPerSSB-InPO e.g. 2 in Figure 2 (b)
  • fewer paging message is transmitted.
  • a new configuration in addition to the second paging search space configured according to the first embodiment, can be configured for use in the second paging search space.
  • PDCCH monitoring occasions are configured ON or OFF in different POs. It means that, for the same paging message in different transmitted beams (different PDCCH monitoring occasions) , paging message in some of the transmitted beams are configured OFF (while the paging message in other transmitted beams are configured ON) .
  • the paging message is transmitted in each of beams transmitting SSBs.
  • SSB1 to SSB8 are transmitted in B1 to B8 (i.e. SSB-associated beams B1 to B8) (with reference to the left part of Figure 2 (a) )
  • the paging message is also transmitted in B1 to B8 (i.e. the same beams as SSB-associated beams B1 to B8) (with reference to the right part of Figure 2 (a) ) .
  • the paging message in each of beams 2, 4, 6 and 8 are configured OFF (indicated as “X” in Figure 5 (a) ) , which means that the paging message in each of beams 2, 4, 6 and 8 is not transmitted by the network (e.g. gNB) (i.e. “X” means beam OFF or PDCCH monitoring occasion OFF) , while the paging message in each of beams 1, 3, 5 and 7 (i.e.
  • B1, B3, B5 and B7) are configured ON, which means that the paging message in each of beams 1, 3, 5 and 7 is transmitted by the network (e.g. gNB) .
  • beams 1 to 8 i.e. B1 to B8 are associated with SSBs.
  • beam 1 is associated with SSB1.
  • the SSB transmitted in beam n (n is from 1 to 8, e.g. beam 1 (B1) ) is transmitted in slot n-1 (e.g. slot 0)
  • slot n-1 e.g. slot 0
  • the paging message transmitted in beam n is from 1 to 8, e.g.
  • beam 1 (B1) ) is transmitted in slot n-1 (e.g. slot 0) .
  • the network e.g. gNB
  • UE can be further configured with beam association with neighboring beams by higher layer signaling.
  • B2 (beam 2) may be associated with neighboring beams B3 (beam 3) and B1 (beam 1) that are configured ON.
  • B2 beam 2
  • the UE since the paging message in B2 is not transmitted, the UE shall choose neighboring beam B3 or B1 (i.e. one of the neighboring beams that is configured ON) to receive the paging message. It is up to UE implementation on which ON beam (e.g. B3 or B1) indicated in the beam association is selected for receiving the paging message.
  • ON beam e.g. B3 or B1
  • Figure 5 (b) illustrates another example of the first sub-embodiment of the third embodiment.
  • the paging message in each of beams 1, 3, 5 and 7 i.e. B1, B3, B5 and B7) are configured OFF, while the paging message in each of beams 2, 4, 6 and 8 (i.e. B2, B4, B6 and B8) are configured ON.
  • B1 (beam 1) may be associated with B2 (beam 2) and B8 (beam 8) . It means that, if UE assumes B1 is the best beam, it is up to UE’s implementation to decide whether B2 or B8 is used to receive the paging message.
  • the beams can be configured ON or OFF by any of the following manners:
  • Manner 1 via bitmap indication, e.g. by RRC signaling.
  • a bitmap ‘01010101’ can configure beams 1, 3, 5 and 7 OFF and beams 2, 4, 6 and 8 ON (suppose ‘0’ indicates beam OFF and ‘1’ indicates beam ON) .
  • Manner 2 periodically (e.g. round-robin ON and OFF) .
  • the beam transmitted in the first half of the configured period in a configured period, is configured ON, while the beam transmitted in the last half of the configured period is configured OFF.
  • beam 1 transmitted in the first half of the configured period is configured ON
  • beam 2 transmitted in the last half of the configured period is configured OFF.
  • beam 3 transmitted in the first half of the configured period is configured ON and beam 4 transmitted in the last half of the configured period is configured OFF, and so on.
  • several patterns of beams ON and OFF can be configured while each pattern is periodically enabled.
  • two patterns of beams ON and OFF can be configured, e.g. a first pattern of “11110000” and a second pattern of “00001111” , suppose ‘0’ indicates beam OFF and ‘1’ indicates beam ON.
  • the first pattern is enabled, the beams 1 to 4 (B1 to B4) are configured ON while the beams 5 to 8 (B5 to B8) are configured OFF.
  • the second pattern is enabled, the beams 5 to 8 (B5 to B8) are configured ON while the beams 1 to 4 (B1 to B4) are configured OFF.
  • Manner 3 paging messages in different PDCCH monitoring occasions (i.e. in different transmitted beams) are configured ON or OFF depending on PO index, frame number, subframe number and/or symbol number.
  • the paging message is transmitted in beams that are not 1-to-1 same as SSB-associated beams. Instead, the paging message is transmitted in beams each of which is 1-to-M associated with SSB-associated beams, where M is 2 or more.
  • SSBs are configured in SSB group (s) (e.g. “G” groups) by SSB group association, e.g. via higher layer signaling.
  • SSB group A ⁇ SSB1, SSB2 ⁇
  • SSB group B ⁇ SSB3, SSB4 ⁇
  • SSB group C ⁇ SSB5, SSB6 ⁇
  • SSB group D ⁇ SSB7, SSB8 ⁇
  • a PO is a set of G consecutive PDCCH monitoring occasions, where “G” is the number of actually transmitted SSB groups determined by actually transmitted SSBs indicated by ssb-PositionsInBurst in SIB1 and SSB association (i.e. 1-to-M association) .
  • the g th PDCCH monitoring occasion for paging in the PO corresponds to the g th transmitted SSB group, where g is from 1 to G.
  • the UE selects beam Ba to receive the paging message.
  • the UE selects beam Bd to receive the paging message.
  • Such 1-to-M association can be represented by a beams association configuration.
  • M is 2, and beam Ba is associated with SSB-associated beams B1 and B2, beam Bb is associated with SSB-associated beams B3 and B4, beam Bc is associated with SSB-associated beams B5 and B6, and beam Bd is associated with SSB-associated beams B7 and B8.
  • the 1-to-M association can be represented by a beams and SSB groups association.
  • beam Ba is associated with SSB group A (i.e. SSB1 and SSB2)
  • beam Bb is associated with SSB group B (i.e.
  • beam Bc is associated with SSB group C (i.e. SSB5 and SSB6)
  • beam Bd is associated with SSB group D (i.e. SSB7 and SSB8) .
  • At least one SSB group consists of two or more SSBs. Accordingly, the number of the beams for transmitting paging message is lower than the number of SSB beams (with reference to Figure 6) , the network (e.g. gNB) can save energy compared with the same number of beams for transmitting paging message as the number of SSB beams (with reference to Figure 2 (a) ) .
  • some UE may be configured to monitor the second paging search space.
  • the UE may be configured to monitor the second paging search space based on various parameters, e.g. assist information reported by the UE.
  • the assist information may include at least one of best beam information, UE mobility information, UE with advanced receiver information, UE with delay-sensitive information, UE CSI information, etc.
  • Best beam information The position for a UE with low mobility for a long-time duration is stable. Accordingly, the previous best beam information can assist the gNB to schedule paging message. Incidentally, the best beam is represented by an SSB.
  • UE mobility information Some UE is stationary, the related beam, MCS, aggregation level can be designed with reduced energy.
  • UE with advanced receiver information a UE with large number of receive antennas and with received beam sweeping can be scheduled with reduced energy.
  • the number of available receive antennas and/or receiver capability levels can be UE with advanced receiver information.
  • a UE with delay-sensitive information a UE with sensitive delay should be configured with small paging message monitoring period, while delay non-sensitive UE may be configured with large paging message monitoring period.
  • the delay sensitive level or UE category can be UE with delay-sensitive information.
  • UE CSI information for a UE with good CSI information, PDCCH and paging message can be scheduled with limited resources or higher MCS.
  • the assist information can be used to divide the UE to different categories, so that the paging message can be transmitted with reduced (or proper) network energy for each UE category.
  • the second paging search space is configured by the second paging search space configuration.
  • the second paging search space is not configured.
  • the second paging configuration or the new configuration is configured, and cell-specifically configured to some UE (s) (e.g. according to the assist information reported by UE) .
  • T and N correspond to the first paging configuration.
  • the second paging configuration refers to another set of T and N.
  • the first paging configuration refers to T1 and N1
  • the second paging configuration refers to T2 and N2.
  • Figure 7 is a schematic flow chart diagram illustrating an embodiment of a method 700 according to the present application.
  • the method 700 is performed by an apparatus, such as a remote unit (e.g. UE) .
  • the method 700 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
  • the method 700 is a method of a UE, comprising: 702 receiving a first paging configuration and a first paging search space configuration; 704 receiving at least one of a second paging configuration and a second paging search space configuration; and 706 monitoring paging message based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.
  • the second paging configuration includes all fields of the first paging configuration.
  • the first paging configuration and the second paging configuration are in the same message.
  • the second paging search space configuration includes all fields of the first paging search space configuration.
  • the first paging search space configuration and the second search space configuration are in the same message.
  • the paging message is monitored, by a higher layer indicator, based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.
  • the method comprises switching between the first paging configuration and the second paging configuration and/or between the first paging search space configuration and the second paging search space configuration periodically according to a first period and a first time offset.
  • the paging message is monitored based on the second paging search space, and the method further comprises receiving an indication of control signal monitoring occasion ON and OFF.
  • the indication of control signal monitoring occasion ON and OFF can be a bitmap manner indication, or periodically, or determined by a PO index, a frame number, subframe number and/or a symbol number.
  • the paging message is monitored in a PO
  • the PO is a set of first number of consecutive control signal monitoring occasions, where the first number is actually transmitted SSB groups determined by actually transmitted SSB (s) and SSB association configuration.
  • the method may further comprise receiving the SSB association configuration which is beams association configuration, or beams and SSB groups association configuration.
  • the method further comprise transmitting assist information which is at least one of best beam information, UE mobility information, UE with advanced receiver information, UE with delay-sensitive information and UE CSI information.
  • Figure 8 is a schematic flow chart diagram illustrating an embodiment of a method 800 according to the present application.
  • the method 800 is performed by an apparatus, such as a base unit.
  • the method 800 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
  • the method 800 may comprise 802 transmitting a first paging configuration and a first paging search space configuration; 804 transmitting at least one of a second paging configuration and a second paging search space configuration; and 806 transmitting paging message based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.
  • the second paging configuration includes all fields of the first paging configuration.
  • the first paging configuration and the second paging configuration are in the same message.
  • the second paging search space configuration includes all fields of the first paging search space configuration.
  • the first paging search space configuration and the second search space configuration are in the same message.
  • the paging message is transmitted, by a higher layer indicator, based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.
  • the method comprises switching between the first paging configuration and the second paging configuration and/or between the first paging search space configuration and the second paging search space configuration periodically according to a first period and a first time offset.
  • the paging message is transmitted based on the second paging search space, and the method further comprises transmitting an indication of control signal monitoring occasion ON and OFF.
  • the indication of control signal monitoring occasion ON and OFF can be a bitmap manner indication, or periodically, or determined by a PO index, a frame number, subframe number and/or a symbol number.
  • the paging message is transmitted in a PO
  • the PO is a set of first number of consecutive control signal monitoring occasions, where the first number is actually transmitted SSB groups determined by actually transmitted SSB (s) and SSB association configuration.
  • the method may further comprise transmitting the SSB association configuration which is beams association configuration, or beams and SSB groups association configuration.
  • the method further comprise receiving assist information which is at least one of best beam information, UE mobility information, UE with advanced receiver information, UE with delay-sensitive information and UE CSI information.
  • Figure 9 is a schematic block diagram illustrating apparatuses according to one embodiment.
  • the UE i.e. the remote unit
  • the UE includes a processor, a memory, and a transceiver.
  • the processor implements a function, a process, and/or a method which are proposed in Figure 7.
  • the UE comprises a transceiver; and a processor, wherein the processor is configured to receive, via the transceiver, a first paging configuration and a first paging search space configuration; receive, via the transceiver, at least one of a second paging configuration and a second paging search space configuration; and monitor paging message based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.
  • the second paging configuration includes all fields of the first paging configuration.
  • the first paging configuration and the second paging configuration are in the same message.
  • the second paging search space configuration includes all fields of the first paging search space configuration.
  • the first paging search space configuration and the second search space configuration are in the same message.
  • the processor is configured to monitor the paging message, by a higher layer indicator, based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.
  • the processor is configured to switch between the first paging configuration and the second paging configuration and/or between the first paging search space configuration and the second paging search space configuration periodically according to a first period and a first time offset.
  • the paging message is monitored based on the second paging search space, and the processor is further configured to receive, via the transceiver, an indication of control signal monitoring occasion ON and OFF.
  • the indication of control signal monitoring occasion ON and OFF can be a bitmap manner indication, or periodically, or determined by a PO index, a frame number, subframe number and/or a symbol number.
  • the paging message is monitored in a PO
  • the PO is a set of first number of consecutive control signal monitoring occasions, where the first number is actually transmitted SSB groups determined by actually transmitted SSB (s) and SSB association configuration.
  • the processor may be further configured to receive, via the transceiver, the SSB association configuration which is beams association configuration, or beams and SSB groups association configuration.
  • the processor is further configured to transmit, via the transceiver, the SSB association configuration which is beams association configuration, or beams and SSB groups association configuration.
  • the gNB (i.e. the base unit) includes a processor, a memory, and a transceiver.
  • the processor implements a function, a process, and/or a method which are proposed in Figure 8.
  • the base unit comprises a transceiver; and a processor, wherein the processor is configured to transmit, via the transceiver, a first paging configuration and a first paging search space configuration; transmit, via the transceiver, at least one of a second paging configuration and a second paging search space configuration; and transmit, via the transceiver, paging message based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, the second paging search space configuration.
  • the second paging configuration includes all fields of the first paging configuration.
  • the first paging configuration and the second paging configuration are in the same message.
  • the second paging search space configuration includes all fields of the first paging search space configuration.
  • the first paging search space configuration and the second search space configuration are in the same message.
  • the processor is configured to transmit, by a higher layer indicator, based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.
  • the processor is configured to switch between the first paging configuration and the second paging configuration and/or between the first paging search space configuration and the second paging search space configuration periodically according to a first period and a first time offset.
  • the paging message is transmitted based on the second paging search space, and the processor is further configured to transmit, via the transceiver, an indication of control signal monitoring occasion ON and OFF.
  • the indication of control signal monitoring occasion ON and OFF can be a bitmap manner indication, or periodically, or determined by a PO index, a frame number, subframe number and/or a symbol number.
  • the paging message is transmitted in a PO
  • the PO is a set of first number of consecutive control signal monitoring occasions, where the first number is actually transmitted SSB groups determined by actually transmitted SSB (s) and SSB association configuration.
  • the processor may be further configured to transmit, via the transceiver, the SSB association configuration which is beams association configuration, or beams and SSB groups association configuration.
  • the processor is further configured to receive, via the transceiver, assist information which is at least one of best beam information, UE mobility information, UE with advanced receiver information, UE with delay-sensitive information and UE CSI information.
  • Layers of a radio interface protocol may be implemented by the processors.
  • the memories are connected with the processors to store various pieces of information for driving the processors.
  • the transceivers are connected with the processors to transmit and/or receive a radio signal. Needless to say, the transceiver may be implemented as a transmitter to transmit the radio signal and a receiver to receive the radio signal.
  • the memories may be positioned inside or outside the processors and connected with the processors by various well-known means.
  • each component or feature should be considered as an option unless otherwise expressly stated.
  • Each component or feature may be implemented not to be associated with other components or features.
  • the embodiment may be configured by associating some components and/or features. The order of the operations described in the embodiments may be changed. Some components or features of any embodiment may be included in another embodiment or replaced with the component and the feature corresponding to another embodiment. It is apparent that the claims that are not expressly cited in the claims are combined to form an embodiment or be included in a new claim.
  • the embodiments may be implemented by hardware, firmware, software, or combinations thereof.
  • the exemplary embodiment described herein may be implemented by using one or more application-specific integrated circuits (ASICs) , digital signal processors (DSPs) , digital signal processing devices (DSPDs) , programmable logic devices (PLDs) , field programmable gate arrays (FPGAs) , processors, controllers, micro-controllers, microprocessors, and the like.
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays

Abstract

Methods and apparatuses for transmission beams ON and OFF determination are disclosed. In one embodiment, a UE comprises a transceiver; and a processor, wherein the processor is configured to receive, via the transceiver, a first paging configuration and a first paging search space configuration; receive, via the transceiver, at least one of a second paging configuration and a second paging search space configuration; and monitor paging message based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.

Description

TRANSMISSION BEAMS ON AND OFF DETERMINATION FIELD
The subject matter disclosed herein generally relates to wireless communications, and more particularly relates to methods and apparatuses for transmission beams ON and OFF determination.
BACKGROUND
The following abbreviations are herewith defined, at least some of which are referred to in the following description: New Radio (NR) , Very Large Scale Integration (VLSI) , Random Access Memory (RAM) , Read-Only Memory (ROM) , Erasable Programmable Read-Only Memory (EPROM or Flash Memory) , Compact Disc Read-Only Memory (CD-ROM) , Local Area Network (LAN) , Wide Area Network (WAN) , User Equipment (UE) , Evolved Node B (eNB) , Next Generation Node B (gNB) , Uplink (UL) , Downlink (DL) , Central Processing Unit (CPU) , Graphics Processing Unit (GPU) , Field Programmable Gate Array (FPGA) , Orthogonal Frequency Division Multiplexing (OFDM) , Radio Resource Control (RRC) , Long Term Evolution (LTE) , Modulation and Coding Scheme (MCS) , Discontinuous Reception (DRX) , Physical Downlink Control Channel (PDCCH) , Paging Occasion (PO) , Radio Network Tempory Identity (RNTI) , Paging RNTI (P-RNTI) , Paging Frame (PF) , control-resource set (CORESET) , Channel State Information (CSI) , Physical Broadcast Channel (PBCH) , Synchronization Signal and PBCH block (SSB) , System Information Block (SIB) .
In legacy LTE and NR paging design, the search space for paging and related paging message are designed to cover UEs in a whole cell range (including UE (s) in worst case, e.g. UEs located in the cell boundary, UEs with high speed, etc) . Accordingly, for other UEs (e.g. UEs located in cell center, or UEs that are stationary) , the legacy paging design (e.g. using low MCS, high aggregation level, and/or more transmission resource) will waste power and/or energy and/or resource at the network side (e.g. at gNB) .
This disclosure targets network energy saving related to paging corresponding beam ON and OFF determination.
BRIEF SUMMARY
Methods and apparatuses for transmission beams ON and OFF determination are disclosed.
In one embodiment, a UE comprises a transceiver; and a processor, wherein the processor is configured to receive, via the transceiver, a first paging configuration and a first  paging search space configuration; receive, via the transceiver, at least one of a second paging configuration and a second paging search space configuration; and monitor paging message based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.
In some embodiment, the second paging configuration includes all fields of the first paging configuration. Alternatively, the first paging configuration and the second paging configuration are in the same message. In some embodiment, the second paging search space configuration includes all fields of the first paging search space configuration. Alternatively, the first paging search space configuration and the second search space configuration are in the same message.
In one embodiment, the processor is configured to monitor the paging message, by a higher layer indicator, based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.
In another embodiment, the processor is configured to switch between the first paging configuration and the second paging configuration and/or between the first paging search space configuration and the second paging search space configuration periodically according to a first period and a first time offset.
In some embodiment, the paging message is monitored based on the second paging search space, and the processor is further configured to receive, via the transceiver, an indication of control signal monitoring occasion ON and OFF. The indication of control signal monitoring occasion ON and OFF can be a bitmap manner indication, or periodically, or determined by a PO index, a frame number, subframe number and/or a symbol number.
In some embodiment, the paging message is monitored in a PO, the PO is a set of first number of consecutive control signal monitoring occasions, where the first number is actually transmitted SSB groups determined by actually transmitted SSB (s) and SSB association configuration. The processor may be further configured to receive, via the transceiver, the SSB association configuration which is beams association configuration, or beams and SSB groups association configuration.
In some embodiment, the processor is further configured to transmit, via the transceiver, the SSB association configuration which is beams association configuration, or beams and SSB groups association configuration.
In another embodiment, a method performed by a UE comprises receiving a first paging configuration and a first paging search space configuration; receiving at least one of a second paging configuration and a second paging search space configuration; and monitoring paging message based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.
In one embodiment, a base unit comprises a transceiver; and a processor, wherein the processor is configured to transmit, via the transceiver, a first paging configuration and a first paging search space configuration; transmit, via the transceiver, at least one of a second paging configuration and a second paging search space configuration; and transmit, via the transceiver, paging message based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, the second paging search space configuration.
In yet another embodiment, a method performed by a base unit comprises transmitting a first paging configuration and a first paging search space configuration; transmitting at least one of a second paging configuration and a second paging search space configuration; and transmitting paging message based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.
BRIEF DESCRIPTION OF THE DRAWINGS
A more particular description of the embodiments briefly described above will be rendered by reference to specific embodiments that are illustrated in the appended drawings. Understanding that these drawings depict only some embodiments, and are not therefore to be considered to be limiting of scope, the embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings, in which:
Figure 1 illustrates LTE paging;
Figures 2 (a) and 2 (b) illustrates NR paging;
Figure 3 illustrates a first option of monitoring the second paging search space;
Figures 4 (a) and 4 (b) illustrate a second option of monitoring the second paging search space;
Figures 5 (a) to 5 (c) illustrate three examples of the first sub-embodiment of the third embodiment;
Figure 6 illustrates an example of the second sub-embodiment of the third embodiment;
Figure 7 is a schematic flow chart diagram illustrating an embodiment of a method;
Figure 8 is a schematic flow chart diagram illustrating another embodiment of a method; and
Figure 9 is a schematic block diagram illustrating apparatuses according to one embodiment.
DETAILED DESCRIPTION
As will be appreciated by one skilled in the art that certain aspects of the embodiments may be embodied as a system, apparatus, method, or program product. Accordingly, embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects that may generally all be referred to herein as a “circuit” , “module” or “system” . Furthermore, embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine-readable code, computer readable code, and/or program code, referred to hereafter as “code” . The storage devices may be tangible, non-transitory, and/or non-transmission. The storage devices may not embody signals. In a certain embodiment, the storage devices only employ signals for accessing code.
Certain functional units described in this specification may be labeled as “modules” , in order to more particularly emphasize their independent implementation. For example, a module may be implemented as a hardware circuit comprising custom very-large-scale integration (VLSI) circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components. A module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
Modules may also be implemented in code and/or software for execution by various types of processors. An identified module of code may, for instance, include one or more physical or logical blocks of executable code which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but, may include disparate instructions stored in different locations  which, when joined logically together, include the module and achieve the stated purpose for the module.
Indeed, a module of code may contain a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices. Similarly, operational data may be identified and illustrated herein within modules and may be embodied in any suitable form and organized within any suitable type of data structure. This operational data may be collected as a single data set, or may be distributed over different locations including over different computer readable storage devices. Where a module or portions of a module are implemented in software, the software portions are stored on one or more computer readable storage devices.
Any combination of one or more computer readable medium may be utilized. The computer readable medium may be a computer readable storage medium. The computer readable storage medium may be a storage device storing code. The storage device may be, for example, but need not necessarily be, an electronic, magnetic, optical, electromagnetic, infrared, holographic, micromechanical, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
A non-exhaustive list of more specific examples of the storage device would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, random access memory (RAM) , read-only memory (ROM) , erasable programmable read-only memory (EPROM or Flash Memory) , portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer-readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
Code for carrying out operations for embodiments may include any number of lines and may be written in any combination of one or more programming languages including an object-oriented programming language such as Python, Ruby, Java, Smalltalk, C++, or the like, and conventional procedural programming languages, such as the "C" programming language, or the like, and/or machine languages such as assembly languages. The code may be executed entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the very last scenario, the remote computer may be connected to the user's  computer through any type of network, including a local area network (LAN) or a wide area network (WAN) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) .
Reference throughout this specification to “one embodiment” , “an embodiment” , or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in one embodiment” , “in an embodiment” , and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment, but mean “one or more but not all embodiments” unless expressly specified otherwise. The terms “including” , “comprising” , “having” , and variations thereof mean “including but are not limited to” , unless otherwise expressly specified. An enumerated listing of items does not imply that any or all of the items are mutually exclusive, otherwise unless expressly specified. The terms “a” , “an” , and “the” also refer to “one or more” unless otherwise expressly specified.
Furthermore, described features, structures, or characteristics of various embodiments may be combined in any suitable manner. In the following description, numerous specific details are provided, such as examples of programming, software modules, user selections, network transactions, database queries, database structures, hardware modules, hardware circuits, hardware chips, etc., to provide a thorough understanding of embodiments. One skilled in the relevant art will recognize, however, that embodiments may be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid any obscuring of aspects of an embodiment.
Aspects of different embodiments are described below with reference to schematic flowchart diagrams and/or schematic block diagrams of methods, apparatuses, systems, and program products according to embodiments. It will be understood that each block of the schematic flowchart diagrams and/or schematic block diagrams, and combinations of blocks in the schematic flowchart diagrams and/or schematic block diagrams, can be implemented by code. This code may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which are executed via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions specified in the schematic flowchart diagrams and/or schematic block diagrams for the block or blocks.
The code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices, to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function specified in the schematic flowchart diagrams and/or schematic block diagrams block or blocks.
The code may also be loaded onto a computer, other programmable data processing apparatus, or other devices, to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the code executed on the computer or other programmable apparatus provides processes for implementing the functions specified in the flowchart and/or block diagram block or blocks.
The schematic flowchart diagrams and/or schematic block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of apparatuses, systems, methods and program products according to various embodiments. In this regard, each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) .
It should also be noted that in some alternative implementations, the functions noted in the block may occur out of the order noted in the Figures. For example, two blocks shown in succession may substantially be executed concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. Other steps and methods may be conceived that are equivalent in function, logic, or effect to one or more blocks, or portions thereof, to the illustrated Figures.
Although various arrow types and line types may be employed in the flowchart and/or block diagrams, they are understood not to limit the scope of the corresponding embodiments. Indeed, some arrows or other connectors may be used to indicate only the logical flow of the depicted embodiment. For instance, an arrow may indicate a waiting or monitoring period of unspecified duration between enumerated steps of the depicted embodiment. It will also be noted that each block of the block diagrams and/or flowchart diagrams, and combinations of blocks in the block diagrams and/or flowchart diagrams, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and code.
The description of elements in each Figure may refer to elements of proceeding figures. Like numbers refer to like elements in all figures, including alternate embodiments of like elements.
A brief review of paging in LTE is described. During idle mode, UE gets into and stay in sleeping mode defined in DRX cycle (Discontinuous Receive Cycle) configured in SIB2. UE periodically wakes up and monitors PDCCH in order to check for the presence of a paging message. If the PDCCH indicates that a paging message is transmitted in the subframe, then UE needs to demodulate the paging message.
Figure 1 illustrates the LTE paging. Paging Occasion (PO) is a subframe where there may be P-RNTI scrambled PDCCH addressing the paging message. Paging Frame (PF) is one Radio Frame, which may contain one or multiple Paging Occasion (s) . PF can be calculated by: PF = SFN mod T = (T div N) x (UE_ID mod N) ,
where T is DRX cycle of the UE; N = min (T, nB) , which means the smaller one among T and nB; and nB can be any one of 4T, 2T, T, T/2, T/4, T/8, T/16, T/32, which comes from SIB2 (i.e. from IE nB) .
T is determined by the shortest of the UE specific DRX value, if allocated by upper layers, and a default DRX value broadcast in system information. If UE specific DRX is not configured by upper layers, the default value is applied.
Figures 2 (a) and 2 (b) illustrate NR paging. The UE may use Discontinuous Reception (DRX) in RRC_IDLE state and RRC_INACTIVE state. The UE monitors one paging occasion (PO) per DRX cycle. A PO is a set of PDCCH monitoring occasions and can consist of multiple time slots (e.g. subframe or OFDM symbol) where paging DCI can be sent. One Paging Frame (PF) is one Radio Frame and may contain one or multiple PO (s) or starting point of a PO.
SFN for the PF is determined by: (SFN + PF_offset) mod T = (T div N) * (UE_ID mod N) . Index (i_s) (indicating the index of the PO) is determined by: i_s= floor (UE_ID/N) mod Ns. T is DRX cycle of the UE (T is determined by the shortest of the UE specific DRX value (s) , if configured by RRC and/or upper layers, and a default DRX value broadcast in system information) . In RRC_IDLE state, if UE specific DRX is not configured by upper layers, the default value is applied. N is the number of total paging frames in T. Ns is the number of paging occasions for a PF.
In multi-beam operations in NR, UE assumes that the same paging message is repeated in all transmitted beams. The selection of the beam (s) for the reception of the paging  message is up to UE implementation. For example, UE selects a best beam from SSB beams 1 to 8 (e.g. B1 to B8 in the left part of Figure 2 (a) ) , if they are transmitted. The [x*S+K]  th PDCCH monitoring occasion for paging in the PO corresponds to the K th transmitted SSB, where x = 0, 1, …, X-1; K = 1, 2, …, S. For example, if SSB beam B1 is selected as the best beam, UE monitors the paging message in beam 1 (i.e. B1 in the right part of Figure 2 (b) ) .
The UE monitors the (i_s+ 1)  th PO. A PO is a set of ‘S*X’ consecutive PDCCH monitoring occasions where S is the number of actually transmitted SSBs. X is the nrofPDCCH-MonitoringOccasionPerSSB-InPO (if configured) or is equal to 1 (if nrofPDCCH-MonitoringOccasionPerSSB-InPO is not configured) .
Figure 2 (a) illustrates the situation in which X =1, and Figure 2 (b) illustrates the situation in which X = 2, suppose that all of SSB beams 1 to 8 (e.g. B1 to B8 in the left part of Figure 2 (a) or Figure 2 (b) ) are actually transmitted SSBs.
It can be seen that in both LTE and NR paging, a paging configuration and a paging search space are configured. In NR paging, the paging configuration includes parameters (or fields) Ns, nAndPagingFrameOffset, nrofPDCCH-MonitoringOccasionPerSSB-InPO, and the length of default DRX Cycle (all of which are signaled in SIB1) . The paging search space configuration includes IE {searchSpaceId, controlResourceSetId, monitoringSlotPeriodicityAndOffset, duration, monitoringSymbolsWithinSlot, nrofCandidates, searchSpaceType} configured in SIB1.
The paging configuration and the paging search space are configured to cover all UEs in a whole cell range. This would waste network energy for some UEs (e.g. UEs located in cell center, or UEs that are stationary) . For ease of discussion, in the following description, the paging configuration and the paging search space configured for all UEs are referred to as first paging configuration and first paging search space, where the first paging search space is configured by a first paging search space configuration in SIB1.
According to a first embodiment, a new (or an additional) paging search space (e.g. second paging search space) is configured. The second paging search space may be configured in the same carrier as the first paging search space. Alternatively, the second paging search space may be configured in new carriers.
The second paging search space is configured by a second paging search space configuration.
The second paging search space configuration may include all fields of the first paging search space configuration. In other words, the first paging search space configuration (i.e. all fields of the first paging search space configuration) is reused. The second paging search space configuration may have different field values from the first paging search space configuration. For example, at least one field value (in addition to the searchSpaceId field value) is different value.
Alternatively, the second paging search space can be configured by adding at least one new field to the first paging search space configuration. In this condition, the second paging search space configuration refers to the newly added field. The first paging search space configuration and the second paging search space configuration are transmitted in the same message.
For example, it is supposed that the first paging search space configuration includes the following fields: {searchSpaceId, controlResourceSetId, monitoringSlotPeriodicityAndOffset, duration, monitoringSymbolsWithinSlot, nrofCandidates, searchSpaceType} . In addition, the first paging search space configuration has the following values: {searchSpaceId#1, controlResourceSetId#1, monitoringSlotPeriodicityAndOffset#1, duration#1, monitoringSymbolsWithinSlot#1, nrofCandidates#1, searchSpaceType#1} .
If the second paging search space configuration includes all fields of the first paging search space configuration, the second paging search space configuration may have the following values: {searchSpaceId#2, controlResourceSetId#2, monitoringSlotPeriodicityAndOffset#1, duration#1, monitoringSymbolsWithinSlot#1, nrofCandidates#1, searchSpaceType#1} . That is, the second paging search space configuration has a different value for the controlResourceSetId field: controlResourceSetId#2. For example, controlResourceSetId#2 may indicate a CORESET having a reduced frequency range and/or a reduced time range (maybe referred to as a reduced CORESET) . When the second paging search space configuration has a reduced CORESET, the gNB may save energy for transmitting paging message in the reduced CORESET.
If the second paging search space configuration refers to newly added field (s) to the first paging search space configuration, the first and the second paging search space configurations may have the following fields: {searchSpaceId, controlResourceSetId, controlResourceSetId-r18, monitoringSlotPeriodicityAndOffset, duration, monitoringSymbolsWithinSlot, nrofCandidates, searchSpaceType} . That is, a new field  controlResourceSetId-r18 added to the first paging search space configuration is referred to as the second paging search space configuration. For example, the controlResourceSetId-r18 field may have a value controlResourceSetId#2 (while the controlResourceSetId field may have a value controlResourceSetId#1) . In this condition, the second paging search space configuration and the first paging search space configuration are transmitted in the same message.
With the second paging search space configuration (e.g. with a reduced CORESET) , the gNB may save energy for transmitting paging message in the reduced CORESET. For example, in a first option, UE (e.g. UEs located in cell center, or UEs that are stationary) may be cell-specifically configured to monitor the second paging search space (e.g. with the reduced CORESET) for a time duration, where the time duration can be configured by a higher layer signaling. For example, as shown in Figure 3, the gNB may indicates a UE to monitor the second paging search space for a time duration (e.g. indicated by a second paging search space timer) . After the time duration (e.g. when the second paging search space timer expires) , the UE fallbacks to monitor the first paging search space.
In a second option, UE may be cell-specifically configured to switch to monitor the first paging search space and the second paging search space periodically according to a configured period and a time offset. All UEs can be configured with the second option, since the first paging search space and the second paging search space can be periodically configured to be monitored.
For example, as shown in Figure 4 (a) , a reference time (e.g. frame 0, slot 0) , which is referred to the time offset, is configured as a start time. A first paging search space timer (e.g. 40 slots) can be configured, while when the first paging search space timer expires, a second paging search space timer (e.g. 50 slots) starts. The first paging search space timer will start when the second paging search space timer expires. As a whole, the configured period (e.g. T) may be equal to the sum of the first paging search space timer and the second paging search space timer
For another example, as shown in Figure 4 (b) , a reference time (e.g. frame 0, slot 0) , which is referred to the time offset, is configured as a start time. UE may be configured to periodically monitor the first paging search space and the second paging search space in a configured period T, wherein, in a first part of the period T (e.g. αT, where α is between 0 and 1) , UE monitors the first paging search space; while in a second part (i.e. remaining part) of the period T (e.g. (1-α) T) , UE monitors the second paging search space.
In the above examples, a second paging search space configuration with a reduced CORESET is described. Other field (s) of the first paging search space configuration can be modified to construct the second paging search space configuration, so long as the modified field (s) of the configuration of the first paging search space can save network energy.
According to a second embodiment, in addition to the second paging search space configured according to the first embodiment, a new (or additional) paging configuration (e.g. second paging configuration) can be configured for use in the second paging search space.
The second paging configuration can be configured by reusing the parameters (or fields) of the first paging configuration. That is, the second paging configuration has all parameters of the first paging configuration and has different values for the parameters. For example, at least one parameter of the second paging configuration has a different value from the first paging configuration.
Alternatively, the second paging configuration can be configured by adding at least one new parameter (or field) to the parameters (or fields) of the first paging configuration. In this condition, the second paging configuration refers to the newly added parameter (s) . The first paging configuration and the second paging configuration are transmitted in the same message.
For example, it is supposed that the first paging configuration includes parameters {Ns, nAndPagingFrameOffset, nrofPDCCH-MonitoringOccasionPerSSB-InPO, the length of default DRX Cycle} . In addition, the first paging configuration is configured to have the following values: {Ns#1, nAndPagingFrameOffset#1, nrofPDCCH-MonitoringOccasionPerSSB-InPO#1, the length#1 of default DRX Cycle} .
If the second paging configuration has all parameters of the first paging configuration, the second paging configuration may have the following values: {Ns#1, nAndPagingFrameOffset#1, nrofPDCCH-MonitoringOccasionPerSSB-InPO#2, the length#1 of default DRX Cycle} . That is, the second paging configuration has a different value for the parameter nrofPDCCH-MonitoringOccasionPerSSB-InPO: nrofPDCCH-MonitoringOccasionPerSSB-InPO#2. For example, nrofPDCCH-MonitoringOccasionPerSSB-InPO#2 may indicate a smaller value (e.g. 1) , while nrofPDCCH-MonitoringOccasionPerSSB-InPO#1 may indicate a larger value (e.g. 2) .
If the second paging configuration is configured by adding at least one new parameter to the parameters of the first paging configuration, the first and the second paging  configurations may have the following parameters {Ns, nAndPagingFrameOffset, nrofPDCCH-MonitoringOccasionPerSSB-InPO, nrofPDCCH-MonitoringOccasionPerSSB-InPO-r18, the length of default DRX Cycle} . That is, a new parameter nrofPDCCH-MonitoringOccasionPerSSB-InPO-r18 added to the parameters of the first paging configuration is referred to as the second paging configuration. For example, the parameter nrofPDCCH-MonitoringOccasionPerSSB-InPO-r18 may have a value nrofPDCCH-MonitoringOccasionPerSSB-InPO#2. In this condition, the second paging configuration and the first paging configuration are transmitted in the same message.
Note that smaller value of nrofPDCCH-MonitoringOccasionPerSSB-InPO (e.g. 1 in Figure 2 (a) ) can save network energy compared with larger value of nrofPDCCH-MonitoringOccasionPerSSB-InPO (e.g. 2 in Figure 2 (b) ) , since fewer paging message is transmitted.
According to a third embodiment, in addition to the second paging search space configured according to the first embodiment, a new configuration can be configured for use in the second paging search space.
According to a first sub-embodiment of the third embodiment, PDCCH monitoring occasions are configured ON or OFF in different POs. It means that, for the same paging message in different transmitted beams (different PDCCH monitoring occasions) , paging message in some of the transmitted beams are configured OFF (while the paging message in other transmitted beams are configured ON) .
In the situation of Figure 2 (a) or 2 (b) , the paging message is transmitted in each of beams transmitting SSBs. For example, in the situation of Figure 2 (a) , SSB1 to SSB8 are transmitted in B1 to B8 (i.e. SSB-associated beams B1 to B8) (with reference to the left part of Figure 2 (a) ) , while the paging message is also transmitted in B1 to B8 (i.e. the same beams as SSB-associated beams B1 to B8) (with reference to the right part of Figure 2 (a) ) .
According to the first sub-embodiment of the third embodiment, as indicated in Figure 5 (a) , the paging message in each of  beams  2, 4, 6 and 8 (i.e. B2, B4, B6 and B8) are configured OFF (indicated as “X” in Figure 5 (a) ) , which means that the paging message in each of  beams  2, 4, 6 and 8 is not transmitted by the network (e.g. gNB) (i.e. “X” means beam OFF or PDCCH monitoring occasion OFF) , while the paging message in each of  beams  1, 3, 5 and 7 (i.e. B1, B3, B5 and B7) are configured ON, which means that the paging message in each of  beams  1, 3, 5 and 7 is transmitted by the network (e.g. gNB) . Note that beams 1 to 8 (i.e. B1 to B8) are  associated with SSBs. For example, beam 1 is associated with SSB1. Incidentally, in the left part of Figure 5 (a) , the SSB transmitted in beam n (n is from 1 to 8, e.g. beam 1 (B1) ) is transmitted in slot n-1 (e.g. slot 0) , while, in the right part of Figure 5 (a) , the paging message transmitted in beam n (n is from 1 to 8, e.g. beam 1 (B1) ) is transmitted in slot n-1 (e.g. slot 0) . Compared with Figure 2 (a) in which the paging message in all of beams 1 to 8 (i.e. B1 to B8) is transmitted, if the paging message in some beams (e.g. beams 2, 4, 6 and 8) is not transmitted, the network (e.g. gNB) can save energy. In addition, UE can be further configured with beam association with neighboring beams by higher layer signaling. For example, B2 (beam 2) may be associated with neighboring beams B3 (beam 3) and B1 (beam 1) that are configured ON. It means that if B2 (beam 2) is the best beam determined by the UE, since the paging message in B2 is not transmitted, the UE shall choose neighboring beam B3 or B1 (i.e. one of the neighboring beams that is configured ON) to receive the paging message. It is up to UE implementation on which ON beam (e.g. B3 or B1) indicated in the beam association is selected for receiving the paging message.
Figure 5 (b) illustrates another example of the first sub-embodiment of the third embodiment. The paging message in each of  beams  1, 3, 5 and 7 (i.e. B1, B3, B5 and B7) are configured OFF, while the paging message in each of  beams  2, 4, 6 and 8 (i.e. B2, B4, B6 and B8) are configured ON. In the example of Figure 5 (b) , B1 (beam 1) may be associated with B2 (beam 2) and B8 (beam 8) . It means that, if UE assumes B1 is the best beam, it is up to UE’s implementation to decide whether B2 or B8 is used to receive the paging message.
The beams can be configured ON or OFF by any of the following manners:
Manner 1: via bitmap indication, e.g. by RRC signaling. For example, for the example in Figure 5 (b) , a bitmap ‘01010101’ can configure  beams  1, 3, 5 and 7 OFF and beams 2, 4, 6 and 8 ON (suppose ‘0’ indicates beam OFF and ‘1’ indicates beam ON) .
Manner 2: periodically (e.g. round-robin ON and OFF) . In a first example, in a configured period, the beam transmitted in the first half of the configured period is configured ON, while the beam transmitted in the last half of the configured period is configured OFF. For example, beam 1 transmitted in the first half of the configured period is configured ON, beam 2 transmitted in the last half of the configured period is configured OFF. Periodically, beam 3 transmitted in the first half of the configured period is configured ON and beam 4 transmitted in the last half of the configured period is configured OFF, and so on. In a second example, several patterns of beams ON and OFF can be configured while each pattern is periodically enabled. For  example, as shown in Figure 5 (c) , if there are eight beams, two patterns of beams ON and OFF can be configured, e.g. a first pattern of “11110000” and a second pattern of “00001111” , suppose ‘0’ indicates beam OFF and ‘1’ indicates beam ON. When the first pattern is enabled, the beams 1 to 4 (B1 to B4) are configured ON while the beams 5 to 8 (B5 to B8) are configured OFF. When the second pattern is enabled, the beams 5 to 8 (B5 to B8) are configured ON while the beams 1 to 4 (B1 to B4) are configured OFF.
Manner 3: paging messages in different PDCCH monitoring occasions (i.e. in different transmitted beams) are configured ON or OFF depending on PO index, frame number, subframe number and/or symbol number.
According to a second sub-embodiment of the third embodiment, the paging message is transmitted in beams that are not 1-to-1 same as SSB-associated beams. Instead, the paging message is transmitted in beams each of which is 1-to-M associated with SSB-associated beams, where M is 2 or more.
SSBs are configured in SSB group (s) (e.g. “G” groups) by SSB group association, e.g. via higher layer signaling. For example, in Figure 6, SSB group A = {SSB1, SSB2} , SSB group B = {SSB3, SSB4} , SSB group C = {SSB5, SSB6} , SSB group D = {SSB7, SSB8} . A PO is a set of G consecutive PDCCH monitoring occasions, where “G” is the number of actually transmitted SSB groups determined by actually transmitted SSBs indicated by ssb-PositionsInBurst in SIB1 and SSB association (i.e. 1-to-M association) . In this condition, the g th PDCCH monitoring occasion for paging in the PO corresponds to the g th transmitted SSB group, where g is from 1 to G.
For example, as shown in Figure 6, if either B1 or B2 is determined as the best beam by the UE, the UE selects beam Ba to receive the paging message. For another example, if either B7 or B8 is determined as the best beam by the UE, the UE selects beam Bd to receive the paging message.
Such 1-to-M association can be represented by a beams association configuration. For example, in the example of Figure 6, M is 2, and beam Ba is associated with SSB-associated beams B1 and B2, beam Bb is associated with SSB-associated beams B3 and B4, beam Bc is associated with SSB-associated beams B5 and B6, and beam Bd is associated with SSB-associated beams B7 and B8. Alternatively, the 1-to-M association can be represented by a beams and SSB groups association. For example, beam Ba is associated with SSB group A (i.e. SSB1 and SSB2) , beam Bb is associated with SSB group B (i.e. SSB3 and SSB4) , beam Bc is  associated with SSB group C (i.e. SSB5 and SSB6) , and beam Bd is associated with SSB group D (i.e. SSB7 and SSB8) .
At least one SSB group consists of two or more SSBs. Accordingly, the number of the beams for transmitting paging message is lower than the number of SSB beams (with reference to Figure 6) , the network (e.g. gNB) can save energy compared with the same number of beams for transmitting paging message as the number of SSB beams (with reference to Figure 2 (a) ) .
In the above-described embodiments, some UE may be configured to monitor the second paging search space. According to a fourth embodiment, the UE may be configured to monitor the second paging search space based on various parameters, e.g. assist information reported by the UE. The assist information may include at least one of best beam information, UE mobility information, UE with advanced receiver information, UE with delay-sensitive information, UE CSI information, etc.
Best beam information: The position for a UE with low mobility for a long-time duration is stable. Accordingly, the previous best beam information can assist the gNB to schedule paging message. Incidentally, the best beam is represented by an SSB.
UE mobility information: Some UE is stationary, the related beam, MCS, aggregation level can be designed with reduced energy.
UE with advanced receiver information: a UE with large number of receive antennas and with received beam sweeping can be scheduled with reduced energy. For example, the number of available receive antennas and/or receiver capability levels can be UE with advanced receiver information.
UE with delay-sensitive information: a UE with sensitive delay should be configured with small paging message monitoring period, while delay non-sensitive UE may be configured with large paging message monitoring period. The delay sensitive level or UE category can be UE with delay-sensitive information.
UE CSI information: for a UE with good CSI information, PDCCH and paging message can be scheduled with limited resources or higher MCS.
As a whole, the assist information can be used to divide the UE to different categories, so that the paging message can be transmitted with reduced (or proper) network energy for each UE category.
In all of the first to the third embodiments, the second paging search space is configured by the second paging search space configuration. According to a fifth embodiment, the second paging search space is not configured. On the other hand, the second paging configuration or the new configuration is configured, and cell-specifically configured to some UE (s) (e.g. according to the assist information reported by UE) . For example, as described with reference to Figure 1, PF = SFN mod T = (T div N) x (UE_ID mod N) , T and N correspond to the first paging configuration. According to the fifth embodiment, the second paging configuration refers to another set of T and N. In other words, the first paging configuration refers to T1 and N1, while the second paging configuration refers to T2 and N2.
Figure 7 is a schematic flow chart diagram illustrating an embodiment of a method 700 according to the present application. In some embodiments, the method 700 is performed by an apparatus, such as a remote unit (e.g. UE) . In certain embodiments, the method 700 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
The method 700 is a method of a UE, comprising: 702 receiving a first paging configuration and a first paging search space configuration; 704 receiving at least one of a second paging configuration and a second paging search space configuration; and 706 monitoring paging message based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.
In some embodiment, the second paging configuration includes all fields of the first paging configuration. Alternatively, the first paging configuration and the second paging configuration are in the same message.
In some embodiment, the second paging search space configuration includes all fields of the first paging search space configuration. Alternatively, the first paging search space configuration and the second search space configuration are in the same message.
In one embodiment, the paging message is monitored, by a higher layer indicator, based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.
In another embodiment, the method comprises switching between the first paging configuration and the second paging configuration and/or between the first paging search space  configuration and the second paging search space configuration periodically according to a first period and a first time offset.
In some embodiment, the paging message is monitored based on the second paging search space, and the method further comprises receiving an indication of control signal monitoring occasion ON and OFF. The indication of control signal monitoring occasion ON and OFF can be a bitmap manner indication, or periodically, or determined by a PO index, a frame number, subframe number and/or a symbol number.
In some embodiment, the paging message is monitored in a PO, the PO is a set of first number of consecutive control signal monitoring occasions, where the first number is actually transmitted SSB groups determined by actually transmitted SSB (s) and SSB association configuration. The method may further comprise receiving the SSB association configuration which is beams association configuration, or beams and SSB groups association configuration.
In some embodiment, the method further comprise transmitting assist information which is at least one of best beam information, UE mobility information, UE with advanced receiver information, UE with delay-sensitive information and UE CSI information.
Figure 8 is a schematic flow chart diagram illustrating an embodiment of a method 800 according to the present application. In some embodiments, the method 800 is performed by an apparatus, such as a base unit. In certain embodiments, the method 800 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
The method 800 may comprise 802 transmitting a first paging configuration and a first paging search space configuration; 804 transmitting at least one of a second paging configuration and a second paging search space configuration; and 806 transmitting paging message based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.
In some embodiment, the second paging configuration includes all fields of the first paging configuration. Alternatively, the first paging configuration and the second paging configuration are in the same message.
In some embodiment, the second paging search space configuration includes all fields of the first paging search space configuration. Alternatively, the first paging search space configuration and the second search space configuration are in the same message.
In one embodiment, the paging message is transmitted, by a higher layer indicator, based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.
In another embodiment, the method comprises switching between the first paging configuration and the second paging configuration and/or between the first paging search space configuration and the second paging search space configuration periodically according to a first period and a first time offset.
In some embodiment, the paging message is transmitted based on the second paging search space, and the method further comprises transmitting an indication of control signal monitoring occasion ON and OFF. The indication of control signal monitoring occasion ON and OFF can be a bitmap manner indication, or periodically, or determined by a PO index, a frame number, subframe number and/or a symbol number.
In some embodiment, the paging message is transmitted in a PO, the PO is a set of first number of consecutive control signal monitoring occasions, where the first number is actually transmitted SSB groups determined by actually transmitted SSB (s) and SSB association configuration. The method may further comprise transmitting the SSB association configuration which is beams association configuration, or beams and SSB groups association configuration.
In some embodiment, the method further comprise receiving assist information which is at least one of best beam information, UE mobility information, UE with advanced receiver information, UE with delay-sensitive information and UE CSI information.
Figure 9 is a schematic block diagram illustrating apparatuses according to one embodiment.
Referring to Figure 9, the UE (i.e. the remote unit) includes a processor, a memory, and a transceiver. The processor implements a function, a process, and/or a method which are proposed in Figure 7.
The UE comprises a transceiver; and a processor, wherein the processor is configured to receive, via the transceiver, a first paging configuration and a first paging search  space configuration; receive, via the transceiver, at least one of a second paging configuration and a second paging search space configuration; and monitor paging message based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.
In some embodiment, the second paging configuration includes all fields of the first paging configuration. Alternatively, the first paging configuration and the second paging configuration are in the same message.
In some embodiment, the second paging search space configuration includes all fields of the first paging search space configuration. Alternatively, the first paging search space configuration and the second search space configuration are in the same message.
In one embodiment, the processor is configured to monitor the paging message, by a higher layer indicator, based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.
In another embodiment, the processor is configured to switch between the first paging configuration and the second paging configuration and/or between the first paging search space configuration and the second paging search space configuration periodically according to a first period and a first time offset.
In some embodiment, the paging message is monitored based on the second paging search space, and the processor is further configured to receive, via the transceiver, an indication of control signal monitoring occasion ON and OFF. The indication of control signal monitoring occasion ON and OFF can be a bitmap manner indication, or periodically, or determined by a PO index, a frame number, subframe number and/or a symbol number.
In some embodiment, the paging message is monitored in a PO, the PO is a set of first number of consecutive control signal monitoring occasions, where the first number is actually transmitted SSB groups determined by actually transmitted SSB (s) and SSB association configuration. The processor may be further configured to receive, via the transceiver, the SSB association configuration which is beams association configuration, or beams and SSB groups association configuration.
In some embodiment, the processor is further configured to transmit, via the transceiver, the SSB association configuration which is beams association configuration, or beams and SSB groups association configuration.
The gNB (i.e. the base unit) includes a processor, a memory, and a transceiver. The processor implements a function, a process, and/or a method which are proposed in Figure 8.
The base unit comprises a transceiver; and a processor, wherein the processor is configured to transmit, via the transceiver, a first paging configuration and a first paging search space configuration; transmit, via the transceiver, at least one of a second paging configuration and a second paging search space configuration; and transmit, via the transceiver, paging message based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, the second paging search space configuration.
In some embodiment, the second paging configuration includes all fields of the first paging configuration. Alternatively, the first paging configuration and the second paging configuration are in the same message.
In some embodiment, the second paging search space configuration includes all fields of the first paging search space configuration. Alternatively, the first paging search space configuration and the second search space configuration are in the same message.
In one embodiment, the processor is configured to transmit, by a higher layer indicator, based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.
In another embodiment, the processor is configured to switch between the first paging configuration and the second paging configuration and/or between the first paging search space configuration and the second paging search space configuration periodically according to a first period and a first time offset.
In some embodiment, the paging message is transmitted based on the second paging search space, and the processor is further configured to transmit, via the transceiver, an indication of control signal monitoring occasion ON and OFF. The indication of control signal monitoring occasion ON and OFF can be a bitmap manner indication, or periodically, or determined by a PO index, a frame number, subframe number and/or a symbol number.
In some embodiment, the paging message is transmitted in a PO, the PO is a set of first number of consecutive control signal monitoring occasions, where the first number  is actually transmitted SSB groups determined by actually transmitted SSB (s) and SSB association configuration. The processor may be further configured to transmit, via the transceiver, the SSB association configuration which is beams association configuration, or beams and SSB groups association configuration.
In some embodiment, the processor is further configured to receive, via the transceiver, assist information which is at least one of best beam information, UE mobility information, UE with advanced receiver information, UE with delay-sensitive information and UE CSI information.
Layers of a radio interface protocol may be implemented by the processors. The memories are connected with the processors to store various pieces of information for driving the processors. The transceivers are connected with the processors to transmit and/or receive a radio signal. Needless to say, the transceiver may be implemented as a transmitter to transmit the radio signal and a receiver to receive the radio signal.
The memories may be positioned inside or outside the processors and connected with the processors by various well-known means.
In the embodiments described above, the components and the features of the embodiments are combined in a predetermined form. Each component or feature should be considered as an option unless otherwise expressly stated. Each component or feature may be implemented not to be associated with other components or features. Further, the embodiment may be configured by associating some components and/or features. The order of the operations described in the embodiments may be changed. Some components or features of any embodiment may be included in another embodiment or replaced with the component and the feature corresponding to another embodiment. It is apparent that the claims that are not expressly cited in the claims are combined to form an embodiment or be included in a new claim.
The embodiments may be implemented by hardware, firmware, software, or combinations thereof. In the case of implementation by hardware, according to hardware implementation, the exemplary embodiment described herein may be implemented by using one or more application-specific integrated circuits (ASICs) , digital signal processors (DSPs) , digital signal processing devices (DSPDs) , programmable logic devices (PLDs) , field programmable gate arrays (FPGAs) , processors, controllers, micro-controllers, microprocessors, and the like.
Embodiments may be practiced in other specific forms. The described embodiments are to be considered in all respects to be only illustrative and not restrictive. The  scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims (15)

  1. A user equipment (UE) , comprising:
    a transceiver; and
    a processor, wherein the processor is configured to
    receive, via the transceiver, a first paging configuration and a first paging search space configuration;
    receive, via the transceiver, at least one of a second paging configuration and a second paging search space configuration; and
    monitor paging message based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.
  2. The UE of claim 1, wherein,
    the second paging configuration includes all fields of the first paging configuration.
  3. The UE of claim 1, wherein,
    the first paging configuration and the second paging configuration are in the same message.
  4. The UE of claim 1, wherein,
    the second paging search space configuration includes all fields of the first paging search space configuration.
  5. The UE of claim 1, wherein,
    the first paging search space configuration and the second search space configuration are in the same message.
  6. The UE of claim 1, wherein,
    the processor is configured to monitor the paging message, by a higher layer indicator, based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.
  7. The UE of claim 1, wherein,
    the processor is configured to switch between the first paging configuration and the second paging configuration and/or between the first paging search space configuration and the second paging search space configuration periodically according to a first period and a first time offset.
  8. The UE of claim 1, wherein,
    the paging message is monitored based on the second paging search space, and
    the processor is further configured to receive, via the transceiver, an indication of control signal monitoring occasion ON and OFF.
  9. The UE of claim 8, wherein,
    the indication of control signal monitoring occasion ON and OFF is
    a bitmap manner indication, or
    periodically, or
    determined by a Paging Occasion (PO) index, a frame number, subframe number and/or a symbol number.
  10. The UE of claim 1, wherein,
    the paging message is monitored in a PO, the PO is a set of first number of consecutive control signal monitoring occasions, where the first number is actually transmitted Synchronization Signal and PBCH block (SSB) groups determined by actually transmitted SSB (s) and SSB association configuration.
  11. The UE of claim 10, wherein,
    the processor is further configured to receive, via the transceiver, the SSB association configuration which is beams association configuration, or beams and SSB groups association configuration.
  12. The UE of claim 1, wherein,
    the processor is further configured to transmit, via the transceiver, assist information which is at least one of best beam information, UE mobility information, UE with advanced receiver information, UE with delay-sensitive information and UE Channel State Information (CSI) information.
  13. A method performed by a user equipment (UE) , comprising:
    receiving a first paging configuration and a first paging search space configuration;
    receiving at least one of a second paging configuration and a second paging search space configuration; and
    monitoring paging message based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, and the second paging search space configuration.
  14. A base unit, comprising:
    a transceiver; and
    a processor, wherein the processor is configured to
    transmit, via the transceiver, a first paging configuration and a first paging search space configuration;
    transmit, via the transceiver, at least one of a second paging configuration and a second paging search space configuration; and
    transmit, via the transceiver, paging message based on at least one of the first paging configuration, the first paging search space configuration, the second paging configuration, the second paging search space configuration.
  15. The base unit of claim 14, wherein,
    the paging message is transmitted based on the second paging search space, and
    the processor is further configured to transmit, via the transceiver, an indication of control signal monitoring occasion ON and OFF.
PCT/CN2022/076803 2022-02-18 2022-02-18 Transmission beams on and off determination WO2023155123A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/076803 WO2023155123A1 (en) 2022-02-18 2022-02-18 Transmission beams on and off determination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/076803 WO2023155123A1 (en) 2022-02-18 2022-02-18 Transmission beams on and off determination

Publications (1)

Publication Number Publication Date
WO2023155123A1 true WO2023155123A1 (en) 2023-08-24

Family

ID=87577391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076803 WO2023155123A1 (en) 2022-02-18 2022-02-18 Transmission beams on and off determination

Country Status (1)

Country Link
WO (1) WO2023155123A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149694A (en) * 2018-02-11 2019-08-20 电信科学技术研究院有限公司 A kind of paging message transmission method, user terminal and network side equipment
CN110944341A (en) * 2018-09-25 2020-03-31 夏普株式会社 Method performed by user equipment and user equipment
US20200322918A1 (en) * 2019-04-04 2020-10-08 FG Innovation Company Limited Method for monitoring paging and apparatus using the same
CN113475106A (en) * 2019-02-15 2021-10-01 高通股份有限公司 Measurement of narrow-band Internet of things equipment
WO2021204434A1 (en) * 2020-04-09 2021-10-14 Panasonic Intellectual Property Corporation Of America User equipment and base station involved in paging
WO2021238993A1 (en) * 2020-05-26 2021-12-02 FG Innovation Company Limited User equipment and method for power saving in rrc inactive or rrc idle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149694A (en) * 2018-02-11 2019-08-20 电信科学技术研究院有限公司 A kind of paging message transmission method, user terminal and network side equipment
CN110944341A (en) * 2018-09-25 2020-03-31 夏普株式会社 Method performed by user equipment and user equipment
CN113475106A (en) * 2019-02-15 2021-10-01 高通股份有限公司 Measurement of narrow-band Internet of things equipment
US20200322918A1 (en) * 2019-04-04 2020-10-08 FG Innovation Company Limited Method for monitoring paging and apparatus using the same
WO2021204434A1 (en) * 2020-04-09 2021-10-14 Panasonic Intellectual Property Corporation Of America User equipment and base station involved in paging
WO2021238993A1 (en) * 2020-05-26 2021-12-02 FG Innovation Company Limited User equipment and method for power saving in rrc inactive or rrc idle

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PANASONIC: "Enhancements for unlicensed band URLLC/IIoT", 3GPP DRAFT; R1-2109453, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211011 - 20211019, 1 October 2021 (2021-10-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052058400 *
XIAOMI: "Paging enhancements for power saving", 3GPP DRAFT; R1-2111582, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211111 - 20211119, 5 November 2021 (2021-11-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052179478 *

Similar Documents

Publication Publication Date Title
US11445443B2 (en) Method, user equipment, base station, and readable storage medium for transmitting wake-up signal
US20220167267A1 (en) Terminal power saving method, power saving apparatus, information sending method and apparatus, storage medium, and electronic device
US20210329481A1 (en) Communication method and communications device
EP4187998A1 (en) Method and device for transmitting and receiving wireless signal in wireless communication system
EP4149175A1 (en) Method and device for transmitting/receiving wireless signal in wireless communication system
US20210160775A1 (en) State determining method, state indication method, communication device, communication system, and storage medium
US11777688B2 (en) Wireless communication method, enhanced node B and user equipment
US11910463B2 (en) Method and apparatus for transmitting and receiving wireless signal in wireless communication system
US20170034781A1 (en) Method of enhancing uplink transmission handling in a discontinuous reception (drx) mode of a user equipment
WO2023155123A1 (en) Transmission beams on and off determination
CN108668360B (en) Sending method and receiving method of paging message, base station and terminal
US20230017292A1 (en) Media access control (mac) control element (ce) for configuring pathloss reference signal for sounding reference signal (srs)
WO2024011504A1 (en) Paging carrier determination for nr
CN116982364A (en) Paging enhancement mechanism
WO2023102882A1 (en) Wake up signal for uplink transmission
WO2023240606A1 (en) Access restriction in an energy saving network
US20230232330A1 (en) Sleep indication method, user equipment, network side device and storage medium
US20230412341A1 (en) Tracking reference signal configuration
WO2024073982A1 (en) Message monitoring in energy saving network
WO2023201704A1 (en) Network transmission on and off
US20240089914A1 (en) Terminal, base station, and wireless communication method
WO2023216105A1 (en) Access to energy saving network
US20240073860A1 (en) Terminal, base station, and wireless communication method
RU2781561C1 (en) Management information processing
WO2024073916A1 (en) Bwp switching

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926456

Country of ref document: EP

Kind code of ref document: A1