WO2023155082A1 - 一种新型太阳能辅助热源泵热水器及其控制方法 - Google Patents

一种新型太阳能辅助热源泵热水器及其控制方法 Download PDF

Info

Publication number
WO2023155082A1
WO2023155082A1 PCT/CN2022/076555 CN2022076555W WO2023155082A1 WO 2023155082 A1 WO2023155082 A1 WO 2023155082A1 CN 2022076555 W CN2022076555 W CN 2022076555W WO 2023155082 A1 WO2023155082 A1 WO 2023155082A1
Authority
WO
WIPO (PCT)
Prior art keywords
water heater
evaporator
heat source
superheat
pump water
Prior art date
Application number
PCT/CN2022/076555
Other languages
English (en)
French (fr)
Inventor
骆雪华
Original Assignee
骆雪华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 骆雪华 filed Critical 骆雪华
Priority to PCT/CN2022/076555 priority Critical patent/WO2023155082A1/zh
Publication of WO2023155082A1 publication Critical patent/WO2023155082A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy

Definitions

  • the invention relates to the technical field of solar energy/air energy heat conversion devices, in particular to a novel solar-assisted heat source pump water heater and a control method thereof.
  • the air source heat pump water heater unit is one of the most energy-efficient equipment in the world today. It is a new generation of hot water production devices and equipment after boilers, gas water heaters, electric water heaters and solar water heaters. At present, air energy heat exchangers are mainly finned. They are better at absorbing single energy, but their common disadvantage is that they cannot absorb solar energy and air energy at the same time, especially when they are used in heat pump systems. Meet user requirements. In recent years, some high-efficiency solar collectors have also appeared, which can absorb solar energy and air energy at the same time. People pay more and more attention to the comprehensive utilization of wind and heat, so the new solar-assisted heat source heat pump water heater has certain research value.
  • the purpose of the present invention is to propose a novel solar-assisted heat source heat pump water heater which improves the comprehensive utilization efficiency of wind and scenery and has obvious energy-saving effect.
  • Another object of the present invention is to propose a new control method for a solar-assisted heat source heat pump water heater, which can effectively avoid the problem of excessive exhaust temperature and pressure caused by excessively high return air superheat.
  • a new type of solar-assisted heat source pump water heater including a water tank and a refrigerant circuit, the refrigerant circuit is connected to each other by a compressor, a low-pressure liquid storage tank, a throttle valve and an evaporator through a four-way valve; the evaporator is a fan-equipped air heat exchanger;
  • the low-pressure liquid storage tank is connected to the compressor and discharges the refrigerant through the D end of the four-way valve, enters the water tank through the C end of the four-way valve to exchange heat with water, and passes through the section after condensation.
  • the flow valve enters the evaporator, and finally returns to the compressor through the E end of the four-way valve;
  • the throttle valve is connected to the S end of the four-way valve and the low-pressure liquid storage tank through a capillary tube, and the formed return air superheat control circuit is controlled by a solenoid valve installed on the capillary tube.
  • the system is provided with The temperature sensing package controls the switch of the solenoid valve by calculating the degree of superheat.
  • the evaporator is a finned evaporator with a fan.
  • the finned evaporator is composed of copper tubes, fins and U-shaped elbows.
  • the copper tubes pass through the pre-set vertically.
  • the fins are spaced apart, and are tightly combined with the fins by means of pressure expansion tubes.
  • the fins are made of aluminum.
  • the surface of the fin is coated with a solar selective coating with an absorptivity of 0.95.
  • the system controls the temperature of the solenoid valve by calculating the degree of superheat through the outdoor temperature sensor set on the evaporator, the low pressure sensor and the return air pipe temperature sensor set between the compressor and the low pressure liquid storage tank. switch.
  • Beneficial effects of the present invention 1. Use solar energy and air energy at the same time to improve the comprehensive utilization efficiency of wind and scenery, and the energy-saving effect is obvious; 2. Effectively avoid the problem of excessive exhaust temperature and pressure caused by excessive return air overheating; 3. The system is energy-saving, safe and reliable.
  • Fig. 1 is a structural representation of an embodiment of the present invention
  • Fig. 2 is a schematic flowchart of a control method according to an embodiment of the present invention.
  • compressor 1 low-pressure liquid storage tank 2, four-way valve 3, throttling component 4, evaporator 5, fan 6, water tank 7, No. 1 solenoid valve 8, outdoor temperature sensor 9, low-pressure sensor 10, return air pipe Temperature sensor 11, No. 2 electromagnetic valve 12, T1, T2 are the upper limit and lower limit of the degree of superheat set in the program.
  • a new solar-assisted heat source pump water heater as shown in Figure 1, includes a water tank 7 and a refrigerant circuit, the refrigerant circuit consists of a compressor 1, a low-pressure liquid storage tank 2, a throttle valve 4 and an evaporator 5 through a four-way valve 3 Connected to each other; the evaporator 5 is an air energy heat exchanger with a fan 6;
  • the low-pressure liquid storage tank 2 is connected to the compressor 1 and discharges the refrigerant through the D end of the four-way valve 3, and enters the water tank 7 through the C end of the four-way valve 3 to exchange heat with water and condense Then enter the evaporator 5 through the throttle valve 4, and finally return to the compressor 1 through the E end of the four-way valve 3;
  • the throttle valve 4 is connected to the S end of the four-way valve 3 and the low-pressure liquid storage tank 2 through a capillary tube, and the formed return air superheat control loop is controlled by a solenoid valve installed on the capillary tube,
  • the system is provided with a temperature sensing package to control the switch of the solenoid valve by calculating the degree of superheat.
  • the No. 1 solenoid valve 8 and the No. 2 solenoid valve 12 are connected in series on the capillary.
  • the C terminal is connected, and the throttle valve 4 is also connected to the S terminal of the four-way valve 3 and the low-pressure liquid storage tank 2 through the No. 1 solenoid valve 8.
  • the system is equipped with a temperature sensor to control the solenoid valves 8 and 12 by calculating the degree of superheat. switch, so as to control the opening and closing of the return air superheat control circuit, avoid the problem of excessive exhaust temperature and pressure caused by the return air overheating, improve the comprehensive utilization efficiency of wind and scenery, and the energy saving effect is obvious.
  • the evaporator 5 is a finned evaporator with a fan 6, and the finned evaporator is composed of copper tubes, fins and U-shaped elbows, and the copper tubes vertically pass through the The fins with a set spacing are tightly combined with the fins by means of pressure expansion tubes.
  • the evaporator 5 used is composed of copper tubes and fins.
  • the fins of a certain size are arranged at fixed intervals to form rows of narrow spaces with a certain depth and width.
  • the copper tubes vertically pass through the fins with a preset spacing.
  • the fins are tightly combined with the fins by means of pressure expansion tubes, and the number of tube rows is selected according to the load requirements. Radiation light from sunlight and other substances is absorbed by the fins, which efficiently absorb light energy and convert it into heat energy.
  • the fins are made of aluminum.
  • the fins are bent aluminum fins, and the front and rear bending of the fins can strengthen the turbulence of the air, improve the heat exchange capacity of the air side of the evaporator 5, reduce the use of the fan 6, save the power consumption of operation, and effectively save energy and electricity.
  • Aluminum is light and is the preferred material for the fins.
  • the surface of the fins is coated with a solar selective coating with an absorptivity of 0.95.
  • the fin surface of the evaporator 5 is coated with a solar selective coating with an absorptivity of 0.95, using solar energy as an auxiliary heat source, so that it can use both solar energy and air energy under the conditions of the sun to solve the problem of air pollution. It can prevent the heat exchanger from being afraid of freezing in winter and severe frosting.
  • the system calculates the degree of superheat through the outdoor temperature sensor 9 arranged on the evaporator 5, the low pressure sensor 10 and the return air pipe temperature sensor 11 arranged between the compressor 1 and the low pressure liquid storage tank 2 To control the switch of the electromagnetic valve 8.
  • a temperature sensing package is installed to detect the operating parameters of the system, and a return air superheat equation is established, and the wind gear and start-stop of the fan 6 are selected through the control of the system.
  • the refrigerant When the solar radiation intensity is high, the refrigerant is completely evaporated in the evaporator 5, and the evaporation temperature increases, which may cause the superheated degree of the return air to be too large.
  • the outdoor temperature sensor 9 the low pressure sensor 10 and the return air pipe temperature sensor 11
  • the detection of system operating parameters establishes the return air superheat equation, and selects the wind speed and start-stop of the fan 6 through the control of the system.
  • the finned evaporator When the solar radiation intensity is low or there is no sun, the finned evaporator is equivalent to an ordinary air-energy water heater.
  • the refrigerant only exchanges heat with the air. After evaporation, the refrigerant passes through the low-pressure liquid storage tank 2 and returns to the compressor 1. Complete a loop.
  • the four-way valve 3 plays a role of switching during low-temperature heating and automatic defrosting.

Abstract

一种太阳能辅助热源热泵热水器及其控制方法,所述热水器包括水箱(7)和冷媒回路,所述冷媒回路由压缩机(1)、低压储液罐(2)、节流阀(4)和蒸发器(5)通过四通阀(3)相互连接;蒸发器(5)采用翅片式蒸发器,所述节流阀(4)通过毛细管连接于所述四通阀(3)的S端和所述低压储液罐(2),所形成的控制回气过热度回路由安装于所述毛细管上的电磁阀来控制,系统设置有感温包通过计算过热度来控制所述电磁阀的开关。该太阳能辅助热源热泵热水器及其控制方法,可以提高风光综合利用效率、节能效果明显,有效避免回气过热度过高造成的排气温度、压力过高的问题。

Description

一种新型太阳能辅助热源泵热水器及其控制方法 技术领域
本发明涉及太阳能/空气能热转换装置技术领域,尤其涉及一种新型太阳能辅助热源泵热水机及其控制方法。
背景技术
空气源热泵热水机组是当今世界上利用能源效率最好的设备之一,是继锅炉、燃气热水器、电热水器和太阳能热水器之后的新一代热水制取装置与设备。目前空气能换热器以翅片式为主。它们对单一能源吸收比较好,但其共同缺点是不能同时吸收太阳能和空气能,尤其应用在热泵系统的弊端非常明显,不能实现热泵系统全天候高效运行,对太阳能和空气能的利用效率低,不能满足用户要求。近年来也出现了一些高效太阳能集热器,能同时吸收太阳能和空气能,人们对风光热综合利用越来越重视,所以新型太阳能辅助热源热泵热水器具有一定研究价值。
发明内容
本发明的目的在于提出一种提高风光综合利用效率、节能效果明显的新型太阳能辅助热源热泵热水器。
本发明的另一个目的在于提出一种的新型太阳能辅助热源热泵热水器的控制方法,有效避免回气过热度过高造成的排气温度、压力过高的问题。
为达此目的,本发明采用以下技术方案:
一种新型太阳能辅助热源泵热水器,包括水箱和冷媒回路,所述冷媒回路由压缩机、低压储液罐、节流阀和蒸发器通过四通阀相互相连接;所述蒸发器为带风机的空气能换热器;
所述低压储液罐连接于所述压缩机并通过所述四通阀的D端排出冷媒,经所述四通阀的C端进入所述水箱与水进行换热,冷凝后经所述节流阀进入所述蒸发器,最后经所述四通阀的E端回到所述压缩机;
所述节流阀通过毛细管连接于所述四通阀的S端和所述低压储液罐,所形成的控制回气过热度回路由安装于所述毛细管上的电磁阀来控制,系统设置有感温包通过计算过热度来控制所述电磁阀的开关。
更进一步说明所述蒸发器为带风机的翅片式蒸发器,所述翅片式蒸发器由铜管、翅片和U型弯头紧密配合组成,所述铜管垂直穿过预先设定好间距的翅片,并用压力胀管的方式与所述翅片紧密结合。
更进一步说明所述翅片采用铝材料。
更进一步说明所述翅片的表面涂镀吸收率为0.95的太阳能选择性涂层。
更进一步说明系统通过设置于所述蒸发器的室外温度传感器以及设置于所述压缩机和所述低压储液罐之间的低压传感器和回气管温度传感器来计算过热度来控制所述电磁阀的开关。
更进一步说明,所述室外温度传感器、低压传感器和回气管温度传感器对系统运行参数的检测;
当回气过热度>T2时,所述风机的风档逐渐减一档,当所述风机的风档为0,且回气过热度>T2时,开启所述一号电磁阀;
当回气过热度<T1时,所述风机的风档逐渐加一档,当所述风机的风档已在最高档时,打开所述二号电磁阀。
本发明的有益效果:1、同时使用太阳能、空气能两种能源,提高风光综合利用效率,节能效果明显;2、有效避免回气过热度过高造成的排气温度、压力过高的问题;3、系统节能省电、安全可靠。
附图说明
图1是本发明的一个实施例的结构示意图;
图2是本发明的一个实施例的控制方法的流程示意图。
其中:压缩机1,低压储液罐2,四通阀3,节流部件4,蒸发器5,风机,6,水箱7,一号电磁阀8,室外温度传感器9,低压传感器10,回气管温度传感器11,二号电磁阀12,T1,T2为程序中设定的过热度上限和下限。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
一种新型太阳能辅助热源泵热水器,如图1所示,包括水箱7和冷媒回路,所述冷媒回路由压缩机1、低压储液罐2、节流阀4和蒸发器5通过四通阀3相互相连接;所述蒸发器5为带风机6的空气能换热器;
所述低压储液罐2连接于所述压缩机1并通过所述四通阀3的D端排出冷媒,经所述四通阀3的C端进入所述水箱7与水进行换热,冷凝后经所述节流阀4进入所述蒸发器5,最后经所述四通阀3的E端回到所述压缩机1;
所述节流阀4通过毛细管连接于所述四通阀3的S端和所述低压储液罐2,所形成的控制回气过热度回路由安装于所述毛细管上的电磁阀来控制,系统设置有感温包通过计算过热度来控制所述电磁阀的开关。
毛细管上的电磁阀设置有两个,一号电磁阀8和二号电磁阀12串联于毛细管上,节流阀4通过一号电磁阀8和二号电磁阀12的串联与四通阀3的C端相连,节流阀4通过一号电磁阀8还连接于四通阀3的S端和低压储液罐2,系统设置有感温包通过计算过热度来控制所述电磁阀8、12的开关,从而控制所形成的控制回气过热度回路的开合,避免回气过热度过高造成的排气温度、压力过高的问题,提高风光综合利用效率,节能效果明显。
更进一步说明,所述蒸发器5为带风机6的翅片式蒸发器,所述翅片式蒸发器由铜管、翅片和U型弯头紧密配合组成,所述铜管垂直穿过预先设定好间距的翅片,并用压力胀管的方式与所述翅片紧密结合。
采用的蒸发器5由铜管和翅片配合而成,一定尺寸的翅片按固定间隔排列,形成一排排具有一定深度和宽度的狭窄空间,铜管垂直穿过预先设定好间距的翅片,并用压力胀管的方式与所述翅片紧密结合,其管排数根据负荷需要选择。太阳光及其他物质的辐射光由翅片吸收,高效的吸收光能并将其转化成热能。
更进一步说明,所述翅片采用铝材料。翅片为折弯铝翅片,翅片的前后折弯可加强空气的扰流,提高蒸发器5的空气侧换热能力,减少使用风机6,节省运行耗电量,有效的节能省电。铝材料质轻,是作为翅片的优选材料。
更进一步说明,所述翅片的表面涂镀吸收率为0.95的太阳能选择性涂层。在蒸发器5的翅片表面涂镀吸收率为0.95的太阳能选择性涂层,以太阳能作为辅助热源,使其能够在有太阳的条件下,同时使用太阳能、空气能两种能源,解决了空气能换热器冬天怕冻,结霜严重等问题。
更进一步说明,系统通过设置于所述蒸发器5的室外温度传感器9以及设置于所述压缩机1和所述低压储液罐2之间的低压传感器10和回气管温度传感器11来计算过热度来控制所述电磁阀8的开关。设置有感温包对系统运行参数的检测,并建立有回气过热度方程,通过对系统的控制来选择风机6的风档和启停。
更进一步说明,所述室外温度传感器9、低压传感器10和回气管温度传感器11对系统运行参数的检测,检测流程如图2所示;
当回气过热度>T2时,所述风机6的风档逐渐减一档,当所述风机6的风档为0,且回气过热度>T2时,开启所述电磁阀8;
当回气过热度<T1时,所述风机6的风档逐渐加一档,当所述风机6的风档已在最高档时,打开所述电磁阀12。
当太阳辐射强度大的时候,制冷剂在蒸发器5中完全蒸发,蒸发温度提高,可能造成回气过热度太大,此时,根据室外温度传感器9、低压传感器10和回气管温度传感器11对系统运行参数的检测,建立回气过热度方程,通过对系统的控制来选择风机6的风档和启停,当回气过热度>T2时,风机6风档逐渐减一档,当风机6风档为0,回气过热度>T2时,开启一号电磁阀8,经节流部件4节流后的低温液体通过毛细管对低压储液罐2中的过热气体进行喷液冷却;当回气过热度<T1时,风机6风档逐渐加一档,当风机6风档已在最高档时,打开二号电磁阀12,压缩机1出来的高温高压气体对过热度不足的冷媒进行喷气增焓,提高过热度,保证了系统运行的可靠性。解决现有的直膨式太阳能热泵系统中在夏季太阳能强烈的时候,回气过热度过高造成的排气温度、压力过高的问题,提高风光综合利用效率,节能效果明显。
当太阳辐射强度低或没有太阳的时候,此时翅片式蒸发器等同于普通空气能热水器,制冷剂只与空气换热,蒸发后制冷剂经过低压储液罐2后回到压缩机1,完成一次循环。在系统中,四通阀3在低温制热自动除霜时起到切换的作用。
以上结合具体实施例描述了本发明的技术原理。这些描述只是为了解释本发明的原理,而不能以任何方式解释为对本发明保护范围的限制。基于此处的解释,本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其它具体实施方式,这些方式都将落入本发明的保护范围之内。

Claims (6)

  1. 一种新型太阳能辅助热源泵热水器,其特征在于:包括水箱和冷媒回路,所述冷媒回路由压缩机、低压储液罐、节流阀和蒸发器通过四通阀相互相连接;所述蒸发器为带风机的空气能换热器;
    所述低压储液罐连接于所述压缩机并通过所述四通阀的D端排出冷媒,经所述四通阀的C端进入所述水箱与水进行换热,冷凝后经所述节流阀进入所述蒸发器,最后经所述四通阀的E端回到所述压缩机;
    所述节流阀通过毛细管连接于所述四通阀的S端和所述低压储液罐,所形成的控制回气过热度回路由安装于所述毛细管上的电磁阀来控制,系统设置有感温包通过计算过热度来控制所述电磁阀的开关。
  2. 根据权利要求1所述的一种新型太阳能辅助热源泵热水器,其特征在于:所述蒸发器为带风机的翅片式蒸发器,所述翅片式蒸发器由铜管、翅片和U型弯头紧密配合组成,所述铜管垂直穿过预先设定好间距的翅片,并用压力胀管的方式与所述翅片紧密结合。
  3. 根据权利要求2所述的一种新型太阳能辅助热源泵热水器,其特征在于:所述翅片采用铝材料。
  4. 根据权利要求2或3所述的一种新型太阳能辅助热源泵热水器,其特征在于:所述翅片的表面涂镀吸收率为0.95的太阳能选择性涂层。
  5. 根据权利要求1所述的一种新型太阳能辅助热源泵热水器,其特征在于:系统通过设置于所述蒸发器的室外温度传感器以及设置于所述压缩机和所述低压储液罐之间的低压传感器和回气管温度传感器来计算过热度来控制所述电磁阀的开关。
  6. 根据权利要求5所述的一种新型太阳能辅助热源泵热水器的控制方法, 其特征在于:所述室外温度传感器、低压传感器和回气管温度传感器对系统运行参数的检测;
    当回气过热度>T2时,所述风机的风档逐渐减一档,当所述风机的风档为0,且回气过热度>T2时,开启所述一号电磁阀;
    当回气过热度<T1时,所述风机的风档逐渐加一档,当所述风机的风档已在最高档时,打开所述二号电磁阀。
PCT/CN2022/076555 2022-02-17 2022-02-17 一种新型太阳能辅助热源泵热水器及其控制方法 WO2023155082A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/076555 WO2023155082A1 (zh) 2022-02-17 2022-02-17 一种新型太阳能辅助热源泵热水器及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/076555 WO2023155082A1 (zh) 2022-02-17 2022-02-17 一种新型太阳能辅助热源泵热水器及其控制方法

Publications (1)

Publication Number Publication Date
WO2023155082A1 true WO2023155082A1 (zh) 2023-08-24

Family

ID=87577353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076555 WO2023155082A1 (zh) 2022-02-17 2022-02-17 一种新型太阳能辅助热源泵热水器及其控制方法

Country Status (1)

Country Link
WO (1) WO2023155082A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2586092A1 (fr) * 1985-07-18 1987-02-13 Cornu Jean Procede d'amelioration du rendement d'un systeme de chauffage par pompe thermodynamique et systeme pour la mise en oeuvre d'un tel procede
CN101338942A (zh) * 2008-08-07 2009-01-07 广东美的电器股份有限公司 一种太阳能复合热泵热水器
CN201522101U (zh) * 2009-11-18 2010-07-07 苏州大学 空气源热泵热水器
CN101929733A (zh) * 2010-09-29 2010-12-29 中原工学院 太阳能-空气-地能三热源型热泵热水器
CN203413885U (zh) * 2013-05-23 2014-01-29 天普新能源科技有限公司 一种空气源热泵
CN105987503A (zh) * 2015-02-05 2016-10-05 佛山市禾才科技服务有限公司 一种新型太阳能辅助热源泵热水器及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2586092A1 (fr) * 1985-07-18 1987-02-13 Cornu Jean Procede d'amelioration du rendement d'un systeme de chauffage par pompe thermodynamique et systeme pour la mise en oeuvre d'un tel procede
CN101338942A (zh) * 2008-08-07 2009-01-07 广东美的电器股份有限公司 一种太阳能复合热泵热水器
CN201522101U (zh) * 2009-11-18 2010-07-07 苏州大学 空气源热泵热水器
CN101929733A (zh) * 2010-09-29 2010-12-29 中原工学院 太阳能-空气-地能三热源型热泵热水器
CN203413885U (zh) * 2013-05-23 2014-01-29 天普新能源科技有限公司 一种空气源热泵
CN105987503A (zh) * 2015-02-05 2016-10-05 佛山市禾才科技服务有限公司 一种新型太阳能辅助热源泵热水器及其控制方法

Similar Documents

Publication Publication Date Title
CN100404980C (zh) 空气源热泵热水器
CN2881440Y (zh) 空气源热泵热水器
CN103453679B (zh) 家用壁挂式平板太阳能热泵热水器的控制方法
CN103453577B (zh) 分体式平板太阳能热泵采暖器及其控制方法
CN109114804A (zh) 太阳能光伏-市电联合驱动的光伏光热一体化双源热泵热水系统及其运行方法
CN103574860A (zh) 一种空调除霜循环系统
CN105987503A (zh) 一种新型太阳能辅助热源泵热水器及其控制方法
CN106016825A (zh) 太阳能、空气源热泵双热源三联供系统
CN110762892A (zh) 一种结合太阳能冷暖两联双供系统
CN212806110U (zh) 利用自然能的储能装置和二氧化碳热泵耦合系统
CN106123396A (zh) 一种太阳能集热/蒸发器与翅片式蒸发器结合的热泵
CN110762658A (zh) 一种结合太阳能冷暖两联双供系统及其控制方法
CN203454431U (zh) 家用壁挂式平板太阳能热泵热水器
CN102563973B (zh) 新型太阳能空气源热泵系统及热水制备方法
CN102645044A (zh) 一种直膨式太阳能热泵热水系统
CN202853065U (zh) 一种空调除霜循环系统
CN205403227U (zh) 高效清洁多能源综合利用冷热联供系统
WO2023155082A1 (zh) 一种新型太阳能辅助热源泵热水器及其控制方法
CN208312736U (zh) 一种热泵式太阳能热水器
CN205939816U (zh) 一种太阳能集热/蒸发器与翅片式蒸发器结合的热泵
CN2909103Y (zh) 太阳能双效吸收式空调
CN2357287Y (zh) 利用高温高压制冷剂除霜装置
CN212961846U (zh) 热管式光伏光热模块-热泵-相变材料耦合系统
CN201221875Y (zh) 热气旁通除霜热泵结构
CN209763567U (zh) 一种超低温空气源热泵高效除霜装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926417

Country of ref document: EP

Kind code of ref document: A1