WO2023153635A1 - Inflammatory disease classification method and device using machine learning-based raman spectroscopic analysis - Google Patents

Inflammatory disease classification method and device using machine learning-based raman spectroscopic analysis Download PDF

Info

Publication number
WO2023153635A1
WO2023153635A1 PCT/KR2022/021418 KR2022021418W WO2023153635A1 WO 2023153635 A1 WO2023153635 A1 WO 2023153635A1 KR 2022021418 W KR2022021418 W KR 2022021418W WO 2023153635 A1 WO2023153635 A1 WO 2023153635A1
Authority
WO
WIPO (PCT)
Prior art keywords
raman
machine learning
raman signal
signal
inflammatory disease
Prior art date
Application number
PCT/KR2022/021418
Other languages
French (fr)
Korean (ko)
Inventor
김준기
이상화
주미연
Original Assignee
재단법인 아산사회복지재단
울산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 아산사회복지재단, 울산대학교 산학협력단 filed Critical 재단법인 아산사회복지재단
Publication of WO2023153635A1 publication Critical patent/WO2023153635A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/064Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/20Measuring for diagnostic purposes; Identification of persons for measuring urological functions restricted to the evaluation of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/7445Display arrangements, e.g. multiple display units
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Definitions

  • the present invention relates to a method and apparatus for classifying inflammatory diseases using machine learning-based Raman spectroscopy.
  • IC/BPS interstitial cystitis/bladder pain syndrome
  • Another urinary inflammatory disease such as urolithiasis, ureteral stricture, ureteral obstruction, and nephritis, may cause kidney damage and cause chronic or acute kidney disease, so quantified evaluation criteria for early diagnosis are further required.
  • metabolomics has been studied for early diagnosis of diseases, and metabolomics is an important study that reveals mechanisms of metabolome by relating metabolome to various physiological and pathological conditions.
  • metabolomics shows great potential as a biomarker for early diagnosis and monitoring of cancer, improved analysis methods for complex biological products are needed for clinical application as a quantified diagnosis method.
  • GC-MS gas chromatography mass spectrometry
  • mass spectrometry such as liquid chromatography, Raman spectroscopy, and surface enhanced Raman spectroscopy (Surface Enhanced Raman Spectroscopy).
  • the early diagnosis methods according to the prior art such as Raman spectroscopy, have a problem in that it is difficult to clearly classify and quantify a specific disease based on the test results for a specific sample or individual factors and diagnose it. Specifically, there is a problem in that accuracy is low in clearly quantifying and diagnosing a specific disease by category by checking only the spectrum distribution or detection signals detected in various ranges for a specific sample or specimen.
  • An object to be solved by the present invention is to provide a method and apparatus for classifying inflammatory diseases using machine learning-based Raman spectroscopic analysis.
  • the problem to be solved by the present invention is an inflammatory disease classification method capable of detecting chemical biomarkers for urinary inflammatory diseases and diseases by surface-enhanced Raman spectroscopy, and classifying inflammatory disease types and early diagnosis of patients. and to provide an apparatus.
  • An inflammatory disease classification method performed by an inflammatory disease classification apparatus for solving the above problems includes preparing and pre-treating specimens; Obtaining a Raman signal and a spectrum of the Raman signal through Raman spectroscopy; analyzing the Raman signal and a spectrum distribution of the Raman signal; Quantifying diagnostic data through a preset machine learning program; and extracting a diagnostic result by comparing the Raman signal and the spectrum distribution with quantified diagnostic data.
  • the Raman signal and the spectrum of the Raman signal may be obtained by performing a surface-enhanced Raman scattering test.
  • the acquiring of the Raman signal and the spectrum of the Raman signal may further include correcting the Raman spectroscopy signal by performing biomarker detection correction in the surface-enhanced Raman scattering test process.
  • nano-sized biomarkers on a surface-enhanced Raman scattering test kit are applied as Raman measurement targets, and intensity changes of amplified peaks of the nano-sized molecules are measured to measure the Raman spectroscopic signal.
  • the spectral signal can be calibrated.
  • the type of metabolite contained in each sample, inflammation level, and inflammation type are analyzed for each sample, and the type of metabolite, inflammation level, Depending on the type of inflammation, the progress of urinary inflammatory diseases such as nephritis, cystitis, cancer, and acute kidney disease can be analyzed.
  • the quantifying the diagnostic data through the preset machine learning program may include inputting the Raman signal and the Raman spectrum detection result into the machine learning program and the database as input values; additionally inputting additional learning factors including subject detection human information as input values of the machine learning program; selecting at least one or more machine learning models and machine learning programs; allowing the selected machine learning program to learn by reflecting the input values; and quantifying the diagnostic data according to an execution result of the machine learning program.
  • the step of additionally inputting additional learning factors including the sample detection human information as input values of the machine learning program includes age, gender, detection human information including diseases, findings, symptoms, sample detection amount, and detection site. Information can be additionally input as the input values.
  • the extracting of the diagnosis result may include comparing the Raman signal and the Raman spectrum detection result with the diagnosis data quantified through the machine learning program; and setting a diagnosis result according to the comparison result and displaying it on a display screen.
  • an apparatus for classifying inflammatory diseases for solving the above problems includes a Raman test module for obtaining a Raman signal and a spectrum of the Raman signal by performing a Raman spectroscopic test on specimens; a data learning module that receives learning factors including the Raman signal and a spectral distribution of the Raman signal and performs preset machine learning to quantify diagnostic data; and an early diagnosis module for extracting a diagnosis result by comparing the Raman signal and the spectrum distribution of the Raman signal with the quantified diagnosis data.
  • the Raman inspection module may include a sample inspection pre-processing unit including a surface-enhanced Raman scattering inspection kit; and a Raman signal detector for acquiring the Raman signal by performing a surface-enhanced Raman scattering test on the sample pretreated on the surface-enhanced Raman scattering test kit.
  • the Raman test module applies the nano-sized biomarkers on the surface-enhanced Raman scattering test kit as Raman measurement targets, and measures the intensity change of the amplified peak of the nano-sized molecule to obtain the Raman spectroscopy signal.
  • a spectral signal corrector for correcting and quantifying may be further included.
  • the early diagnosis module analyzes the type of metabolite, inflammation level, and inflammation type contained in each sample for each sample, and according to the type of metabolite, inflammation level, and inflammation type, nephritis, cystitis, cancer, etc. of urinary system inflammatory disease, and progression to acute kidney disease can be analyzed.
  • the data learning module may include: a learning factor input unit inputting the Raman signal and a spectrum detection result of the Raman signal to a machine learning program and a database as input values; a machine learning program input unit for storing machine learning programs for each of a plurality of machine learning models and selecting and compiling at least one or more machine learning models and machine learning programs; a machine learning processing unit executing the selected machine learning program so that the selected machine learning program reflects the input values and is machine trained; and a disease diagnosis model generating unit quantifying the diagnosis data according to an execution result of the machine learning program.
  • the learning factor input unit may additionally input detection human information including age, gender, disease, findings, and symptoms, a sample detection amount, and detection site information as the input values.
  • the early diagnosis module may include: a data processing unit that reads the Raman signal and the Raman spectrum detection result and classifies them according to subject personal information including age, gender, diseases, findings, and symptoms; a disease diagnosis model extractor that reads the quantified diagnosis data from the data learning module; a data comparison detection unit that compares and analyzes the Raman signal, a spectrum detection result of the Raman signal, and the quantified diagnostic data; and a diagnosis result extraction unit configured to set and display a diagnosis result according to a comparison result with the diagnosis data.
  • the inflammatory disease classification method and apparatus can quickly classify and quantify the patient's inflammatory disease type through machine learning-based Raman spectroscopic analysis results and machine learning, and perform early diagnosis using the quantified results. can Therefore, it is possible to prevent damage to the kidney by diagnosing inflammation of the ureter near the kidney at an early stage.
  • the inflammatory disease classification method and apparatus can more quickly and accurately classify and diagnose difficult-to-diagnose urinary diseases such as cystitis and nephritis, enabling appropriate and rapid treatment.
  • FIG. 1 is a flowchart for sequentially explaining a method for classifying inflammatory diseases according to an embodiment of the present invention.
  • 2 is a graph showing Raman signal detection results obtained through a surface-enhanced Raman scattering method.
  • Figure 3 is a diagram showing the random forest (Random forest) results of the Raman spectrum obtained through the surface-enhanced Raman scattering method.
  • 4A to 4C are diagrams showing results of sequentially performing principal component analysis and linear discriminant analysis of the Raman spectrum obtained through the surface-enhanced Raman scattering method.
  • 5A to 5C are diagrams showing results of sequentially performing non-negative matrix factorization-linear discriminant analysis of the Raman spectrum obtained through the surface-enhanced Raman scattering method.
  • FIG. 6 is a flowchart illustrating the method of analyzing spectral data and extracting a disease diagnosis model shown in FIG. 1 in more detail.
  • FIG. 7 is a block diagram showing a configuration of an inflammatory disease classification apparatus according to an embodiment of the present invention in detail.
  • the identification code is used for convenience of description, and the identification code does not explain the order of each step, and each step may be performed in a different order from the specified order unless a specific order is clearly described in context. there is.
  • FIG. 1 is a flowchart for sequentially explaining a method for classifying inflammatory diseases according to an embodiment of the present invention.
  • the inflammatory disease classification method includes preparing and preprocessing a specimen (ST1), obtaining a Raman signal through a Raman test (ST2), correcting a Raman spectroscopy signal (ST3), Raman signal and The step of processing Raman spectroscopy data by analyzing the spectrum of the Raman signal (ST4), the step of quantifying the diagnostic results (diagnostic data) analyzed by performing machine learning (ST5), and the step of extracting the diagnostic results (ST6).
  • the specimens detected from the inflammatory site or the specimens detected from the test subject are placed in the test kit for disease testing without a separate separation process.
  • urine detected from inflammation inducing sites such as the ureter or bladder can be applied as a sample.
  • inflammation levels and related diseases can be detected through Raman spectroscopy and analysis of urine samples.
  • urine of 8- to 10-week-old laboratory rats can be used as a sample in order to quantify the urinary diagnostic data through examination and analysis through the specimen.
  • urine of 23 laboratory rats aged 8 to 10 weeks could be used as the specimens applied to show the Raman test results in graphs and drawings. More specifically, 5 ⁇ l of 1.5 ml of urine from 4 animals with interstitial cystitis symptoms, 5 animals with mild ureteral obstruction symptoms, 5 animals with severe ureteral obstruction symptoms, 5 animals with control group, and 4 animals with normal group could be applied as samples.
  • a Raman signal may be obtained by performing a surface-enhanced Raman scattering test.
  • the surface-enhanced Raman scattering method is an analysis method that can overcome the detection sensitivity limit of Raman spectroscopy and provides molecular-specific information about biological and chemical samples.
  • a target material is quantified by measuring a change in intensity of amplified characteristic peaks of nano-sized molecules.
  • a Raman signal may be obtained by measuring a portion where the sample is widely distributed in the substrate using a Raman spectroscopic method.
  • background correction of the Raman signal may be performed.
  • the biomarker detection and correction may be performed to correct the Raman spectroscopy signal (ST3).
  • an enhancement factor (EF) used as a measure of the surface-enhanced Raman scattering scale is usually 10 4 to 10 8 , and sometimes reaches 10 14 , which enables single-molecule level detection.
  • EF enhancement factor
  • the intensity of the signal is dramatically increased by about 10 6 to about 10 8 compared to the general Raman spectroscopy method, so that even a small amount of inflammatory markers can be detected.
  • the Raman spectroscopy signal correction step (ST3) according to an embodiment of the present invention, nano-sized biomarkers on the surface-enhanced Raman scattering test kit are tested.
  • the Raman signal and spectral distribution can be calibrated and quantified by measuring a change in intensity of a characteristic peak of the amplified biomarker Raman signal.
  • the type of metabolite contained in the sample, the level of inflammation, the type of inflammation, etc. are confirmed for each sample collected.
  • the degree of progression of diseases eg, nephritis, cystitis, urinary inflammatory diseases such as cancer, and acute kidney disease
  • the type of metabolite, inflammation level, and type of inflammation can be confirmed.
  • Figure 2 is a graph showing Raman signal detection results obtained through a surface-enhanced Raman scattering method. Specifically, Figure 2 is a graph showing the surface-enhanced Raman signals of pyelonephritis and interstitial cystitis specimens.
  • inflammation levels due to severe ureteral obstruction can be confirmed through a sample (SO_K) taken between the kidney and the ureter, and collected from the bladder. Even one sample (SO_B) can confirm the level of inflammation caused by severe ureteral obstruction.
  • another sample (MO_K) taken between the kidney and ureter can confirm the level of inflammation due to mild ureteral obstruction, and another sample (MO_B) taken from the bladder can also show the level of inflammation due to mild ureteral obstruction. You can check.
  • the level of inflammation according to interstitial cystitis can be confirmed through a sample (IC/BPS) taken from the bladder.
  • the inflammatory signal of pyelonephritis is prominent in the range of about 650 cm -1 to 750 cm -1
  • the inflammatory signal of interstitial cystitis is dominant in the range of about 910 cm -1 to 1060 cm -1 .
  • Figure 3 is a diagram showing the random forest (Random forest) results of the Raman spectrum obtained through the surface-enhanced Raman scattering method.
  • a Raman spectroscopy equipment eg, 532nm laser, 785nm laser Raman Device
  • a preset wavelength range may be sampled and a spectrum distribution of the sampled wavelength range may be analyzed.
  • related diseases such as interstitial cystitis, mild ureteral obstruction, severe ureteral obstruction, and control group can be identified and analyzed.
  • the spectrum distribution of the Raman signal is analyzed through a pre-set program on a computer, the content and increase in the type of protein, lipid, RNA, DNA, etc. can be analyzed according to the unique Raman spectrum distribution and coverage of organic and inorganic molecules. there is.
  • a sample taken between the kidney and the ureter (SO_K), a sample taken from the bladder (SO_B), another sample taken between the kidney and the ureter (MO_K), and another sample taken from the bladder ( MO_B), and a disease classification result can be confirmed by calculating a disease prediction value through a random forest ensemble algorithm result of a Raman spectrum for each specific sample (IC/BPS) collected from the bladder.
  • 4A to 4C are diagrams showing results of sequentially performing principal component analysis and linear discriminant analysis of the Raman spectrum obtained through the surface-enhanced Raman scattering method.
  • a Raman spectroscopy equipment eg, 532nm laser, 785nm laser Raman Device
  • 500cm -1 ⁇ 3000cm - A preset wavelength range between 1 and 1 may be sampled, and the spectrum distribution of the sampled wavelength range may be analyzed.
  • the wavelength range of 500 cm ⁇ 1 to 3000 cm ⁇ 1 related diseases such as interstitial cystitis, mild ureteral obstruction, severe ureteral obstruction, and control group can be identified and analyzed.
  • the spectrum distribution of the Raman signal is analyzed through a pre-set program on a computer, the content and increase in the type of protein, lipid, RNA, DNA, etc. can be analyzed according to the unique Raman spectrum distribution and coverage of organic and inorganic molecules. there is.
  • a sample collected between the kidney and the ureter (SO_K), a sample collected from the bladder (SO_B), another sample collected between the kidney and the ureter (MO_K), and the bladder through principal component analysis (PCA) Linear discriminant analysis after obtaining 5 in FIG. 4A, 30 in FIG. 4B, and 50 in FIG.
  • PCA principal component analysis
  • 5A to 5C are diagrams showing results of sequentially performing non-negative matrix factorization-linear discriminant analysis of the Raman spectrum obtained through the surface-enhanced Raman scattering method.
  • the step of analyzing the Raman signal and the spectrum distribution of the Raman signal by using Raman spectroscopy equipment (eg, 532nm laser, 785nm laser Raman Device) 500cm -1 ⁇ 3000cm -
  • Raman spectroscopy equipment eg, 532nm laser, 785nm laser Raman Device
  • 500cm -1 ⁇ 3000cm - A preset wavelength range between 1 and 1 may be sampled, and the spectrum distribution of the sampled wavelength range may be analyzed.
  • related diseases such as interstitial cystitis, mild ureteral obstruction, severe ureteral obstruction, and control group can be identified and analyzed.
  • the spectrum distribution of the Raman signal is analyzed through a pre-set program on a computer, the content and increase in the type of protein, lipid, RNA, DNA, etc. can be analyzed according to the unique Raman spectrum distribution and coverage of organic and inorganic molecules. there is.
  • a sample collected between the kidney and the ureter through non-negative matrix decomposition (NMF) (SO_K), a sample collected from the bladder (SO_B), and another sample collected between the kidney and the ureter (MO_K) , another sample (MO_B) taken from the bladder, and the non-negative matrix decomposition component (NMFC) of the Raman spectrum for each specific sample (IC/BPS) taken from the bladder are 5 in FIG. 5, 30 in FIG. 5 b, and 30 in FIG. 5 c.
  • the disease classification result can be confirmed by deriving the result value through a linear discriminant analysis (LDA) model.
  • LDA linear discriminant analysis
  • FIG. 6 is a flowchart illustrating the method of analyzing spectral data and extracting a disease diagnosis model shown in FIG. 1 in more detail.
  • step ST5 of quantifying diagnostic results (diagnostic data) analyzed through a preset machine learning program the Raman signal and Raman spectrum detection results are entered into the machine learning program and database as input values.
  • step (SS1) step of additionally inputting additional learning factors including sample detection human information as input values of a machine learning program (SS2), step of selecting and setting at least one machine learning model and machine learning program (SS3) , making the set machine learning program reflect the input values for learning processing (SS4), and quantifying diagnostic data according to the execution result of the machine learning program (SS5).
  • the Raman signal detection result and the Raman spectrum detection result are entered as input values into an input program and a database (SS1).
  • SS1 an input program and a database
  • at least one machine learning program among preset machine learning programs you can additionally input the Raman signal detection result and Raman spectrum detection result, including sample-related information, as learning factors.
  • Machine learning programs include PCA (Principal Component Analysis)-LDA (Linear Discriminant Analysis) model, NMF (Non-Negative Matrix Factorization)-LDA (Linear Discriminant Analysis) model, RFML (Random Forest Machine Learning) model, deep learning (e.g. For example, Convolutional Neural Networks (CNN) and the like may be concurrently applied.
  • PCA Principal Component Analysis
  • LDA Linear Discriminant Analysis
  • NMF Non-Negative Matrix Factorization
  • RFML Random Forest Machine Learning
  • deep learning e.g. For example, Convolutional Neural Networks (CNN) and the like may be concurrently applied.
  • CNN Convolutional Neural Networks
  • the type of metabolite contained in the sample can be upgraded.
  • the level of inflammation can be upgraded.
  • the progress of urinary inflammatory diseases such as nephritis, cystitis, and cancer, and the progress of acute kidney disease, respectively, are diagnostic data. can be quantified and databased. (SS5)
  • the step of extracting the diagnosis result is the step of comparing and analyzing the Raman signal detection result and the Raman spectrum detection result and the diagnostic data quantified through a machine learning program (SS6), and the comparison result and setting a diagnostic result according to the method and displaying it on a display screen such as a monitor (SS7).
  • the Raman signals extracted by the surface-enhanced Raman scattering test for each sample and the spectrum distribution results of the Raman signals are compared and analyzed with diagnostic data quantified through a machine learning program.
  • the diagnosis result is finally extracted according to the comparison result of the Raman signal and the spectrum distribution result of the Raman signal and the quantified diagnosis data, and the finally extracted diagnosis result can be displayed on a separate monitor or display screen. there is.
  • FIG. 7 is a block diagram showing a configuration of an inflammatory disease classification apparatus according to an embodiment of the present invention in detail.
  • the inflammatory disease classification apparatus shown in FIG. 7 includes a Raman examination module 100, an early diagnosis module 200, and a data learning module 300.
  • the Raman inspection module 100 acquires a Raman signal by performing a surface-enhanced Raman scattering inspection on the pretreated sample.
  • the Raman inspection module 100 includes a sample inspection and preprocessing unit 101 and a Raman signal detection unit 103 .
  • the sample inspection and pre-processing unit 101 of the Raman test module 100 includes a test kit in which a sample detected from an inflammation-inducing site or a sample of a test subject is placed and pre-processed so as to spread for a predetermined period of time for disease inspection.
  • the Raman signal detector 103 obtains a Raman signal by performing a surface-enhanced Raman scattering test on a sample pretreated on a surface-enhanced Raman scattering test kit. Then, the obtained Raman signal is stored in the database.
  • the Raman signal detector 103 measures the change in intensity of the amplified characteristic peak of the Raman nano-sized molecule by performing a sample inspection using a preset surface-enhanced Raman scattering method, and measures the Raman signal and Raman signal for the target material. A spectrum of the signal can be acquired and quantified.
  • the Raman test module 100 filters molecules larger than the micro size on the surface-enhanced Raman scattering test kit, and nano-sized biomarkers. It may further include a spectroscopy signal correction unit 105 for correcting and quantifying the Raman spectroscopy signal by measuring a change in intensity of the amplified peak.
  • the intensity of the signal is dramatically increased by about 10 6 to about 10 8 compared to the general Raman spectroscopy method, so that even a small amount of inflammatory markers can be detected.
  • the spectral signal corrector 105 of the Raman test module 100 quantifies the target material by measuring intensity changes of amplified characteristic peaks of nano-sized biomarkers on the surface-enhanced Raman scattering test kit.
  • the data learning module 300 quantifies diagnostic data by receiving learning factors including a Raman signal and a spectral distribution of the Raman signal and performing preset machine learning.
  • the data learning module 300 may include a learning factor input unit 301, a machine learning processor 303, a machine learning program input unit 305, and a disease diagnosis model generator 307.
  • the learning factor input unit 301 of the data learning module 300 allows the Raman signal detection result and the Raman spectrum detection result to be input into a preset program and database as input values.
  • the learning factor input unit 301 may further input additional learning factors including detection human information when inputting the Raman signal detection result and the Raman spectrum detection result.
  • the sample detection amount, detection site information, and detection personal information eg, age, gender, disease, findings, symptoms, etc.
  • detection personal information eg, age, gender, disease, findings, symptoms, etc.
  • the machine learning program input unit 305 stores machine learning programs for each of a plurality of machine learning models, and selects and compiles at least one machine learning model and machine learning program.
  • the machine learning programs include PCA (Principal Component Analysis)-LDA (Linear Discriminant Analysis) model, NMF (Non-Negative Matrix Factorization)-LDA (Linear Discriminant Analysis) model, RFML (Random Forest Machine Learning) model, deep learning (eg, Convolutional Neural Networks (CNN)) may be concurrently applied.
  • the machine learning processing unit 303 executes the input and selected machine learning program from the machine learning program input unit 305 to determine the type of metabolite contained in each specimen, the type and type of inflammation, the level of inflammation, and the level of inflammation. Upgrade disease progression information.
  • the disease diagnosis model generation unit 307 quantifies diagnosis data according to a result of executing a machine learning program. At this time, the disease diagnosis model generation unit 307 provides progress information of urinary inflammatory diseases such as nephritis, cystitis, cancer, and acute kidney disease according to sample-related classification information such as age, gender, diseases possessed, findings, and symptoms, respectively. It is quantified as diagnostic data and stored and shared in a database.
  • urinary inflammatory diseases such as nephritis, cystitis, cancer, and acute kidney disease
  • sample-related classification information such as age, gender, diseases possessed, findings, and symptoms, respectively. It is quantified as diagnostic data and stored and shared in a database.
  • the early diagnosis module 200 compares and analyzes the Raman signal and the spectral distribution of the Raman signal and the quantified diagnostic data to extract a diagnostic result for an inflammatory disease.
  • the early diagnosis module 200 may include a data processing unit 202, a disease diagnosis model extraction unit 204, a data comparison detection unit 206, and a diagnosis result extraction unit 208.
  • the data processing unit 202 of the early diagnosis module 200 reads the Raman signal detection results and the Raman spectrum detection results and classifies them according to specimen-related classification information such as age, gender, diseases possessed, findings, and symptoms.
  • the disease diagnosis model extractor 204 reads the quantified diagnosis data from the data learning module 300 in real time.
  • the comparison detector 206 compares and analyzes the Raman signal detection result and the Raman spectrum detection result and the quantified diagnostic data.
  • the comparison detection unit 206 sequentially compares and analyzes the Raman signals extracted through the surface-enhanced Raman scattering test for each sample and the spectrum distribution result of the Raman signals with diagnostic data quantified through a machine learning program.
  • the diagnosis result extraction unit 208 sets and displays diagnosis results according to comparison results.
  • the diagnosis result extraction unit 208 may finally extract a diagnosis result according to a comparison result between the Raman signal and the spectrum distribution result of the Raman signal and the quantified diagnosis data, and display the result on a screen.
  • the early diagnosis module 200 and the data learning module 300 include a memory (not shown) storing data for an algorithm or a program reproducing the algorithm for controlling the operation of components in the processor of each module, and a memory ( Alternatively, it may include a processor (not shown) that performs the above-described operation using data stored in a database.
  • the memory and the processor may be implemented as separate chips.
  • the memory and the processor may be implemented as a single chip.
  • Each component refers to software and/or hardware components such as Field Programmable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC).
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • the disclosed embodiments may be implemented in the form of a recording medium storing commands executable by the early diagnosis module 200 and the data learning module 300 . Instructions may be stored in the form of program codes, and when executed by a processor, create program modules to perform operations of the disclosed embodiments.
  • the recording medium may be implemented as an early diagnosis module 200, a data learning module 300, and a computer-readable recording medium.
  • the early diagnosis module 200 and the data learning module 300 or computer-readable recording media include all types of recording media in which instructions readable by a computer are stored. For example, there may be read only memory (ROM), random access memory (RAM), magnetic tape, magnetic disk, flash memory, optical data storage device, and the like.
  • ROM read only memory
  • RAM random access memory
  • magnetic tape magnetic tape
  • magnetic disk magnetic disk
  • flash memory optical data storage device

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Human Computer Interaction (AREA)
  • Urology & Nephrology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Evolutionary Computation (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Provided are an inflammatory disease classification method and device, using machine learning-based Raman spectroscopic analysis. The inflammatory disease classification method, according to the present invention, comprises the steps of: preparing and preprocessing specimens; acquiring a Raman signal and a spectrum of the Raman signal through a Raman spectroscopic analysis; analyzing the Raman signal and the spectral distribution of the Raman signal; quantifying diagnostic data by means of a preset machine learning program; and extracting a diagnostic result by comparing the Raman signal and the spectral distribution with the quantified diagnostic data.

Description

머신 러닝 기반 라만 분광 분석을 이용한 염증 질환 분류 방법 및 장치Inflammatory disease classification method and apparatus using machine learning-based Raman spectroscopic analysis
본 발명은 머신 러닝 기반 라만 분광 분석을 이용한 염증 질환 분류 방법 및 장치에 관한 것이다. The present invention relates to a method and apparatus for classifying inflammatory diseases using machine learning-based Raman spectroscopy.
비뇨기계 염증 질환 중 간질성 방광염(Interstitial cystitis/bladder pain syndrome, IC/BPS)의 경우, 골반 통증을 유발하는 난치성 질환이며 빈번한 배뇨를 유발하고 극심한 통증을 유발한다. 방광염과 같은 비뇨기계 염증 질환을 진단하기 위해 환자의 증상 확인, 및 소변의 세균 검사 등을 통해 임상 진단이 내려지고 있으나 아직은 정량화된 평가 기준이 없는 상태이다. Among urinary inflammatory diseases, interstitial cystitis/bladder pain syndrome (IC/BPS) is an intractable disease that causes pelvic pain, causes frequent urination, and causes extreme pain. In order to diagnose urinary inflammatory diseases such as cystitis, clinical diagnosis is being made through patient symptom confirmation and urine bacterial examination, but there is no quantified evaluation standard yet.
또 다른 비뇨기계 염증 질환인 요로 결석, 요관 협착, 요관 폐색, 및 신장염 등은 신장의 손상을 발생시켜 만성 또는 급성 신장 질환을 일으킬 수 있기 때문에 조기 진단을 위한 정량화된 평가 기준이 더욱 요구되고 있다. Another urinary inflammatory disease, such as urolithiasis, ureteral stricture, ureteral obstruction, and nephritis, may cause kidney damage and cause chronic or acute kidney disease, so quantified evaluation criteria for early diagnosis are further required.
근래에는 질병의 조기 진단을 위해 대사체학(Metabolomics)이 연구되고 있으며, 대사체학은 대사체군(Metabolome)을 다양한 생리 및 병리학적 상태와 관련지어 대사체 메커니즘을 밝히는 중요한 학문이다. 다만, 대사체학은 암의 조기 진단 및 모니터링을 위한 바이오 마커로써 큰 잠재력을 보여주고 있으나, 정량화된 진단 방안으로서의 임상 적용을 위해서는 복잡한 생물학적 산물에 대한 개선된 분석 방법이 더 필요하였다. In recent years, metabolomics has been studied for early diagnosis of diseases, and metabolomics is an important study that reveals mechanisms of metabolome by relating metabolome to various physiological and pathological conditions. However, although metabolomics shows great potential as a biomarker for early diagnosis and monitoring of cancer, improved analysis methods for complex biological products are needed for clinical application as a quantified diagnosis method.
더욱 개선된 질병 조기 진단 방법으로는 기체 크로마토그래피 질량 분석법(Gas Chromatography Mass Spectrometry, GC-MS)과 액체 크로마토그래피 등의 질량 분석법, 라만 분광법(Raman Spectroscopy), 및 표면 증강 라만 분광법(Surface Enhanced Raman Spectroscopy) 등이 대두되었다. Further improved early disease diagnosis methods include gas chromatography mass spectrometry (GC-MS) and mass spectrometry such as liquid chromatography, Raman spectroscopy, and surface enhanced Raman spectroscopy (Surface Enhanced Raman Spectroscopy). ), etc. have emerged.
하지만, 라만 분광법 등 종래 기술에 따른 조기의 조기 진단 방법들은 특정 검체나 개별 인자들에 대한 검사 결과들로 명확하게 특정 질병을 분류하고 정량화해서 진단하기가 어려운 문제가 있었다. 구체적으로, 특정 시료나 검체에 대해 다양한 범위로 검출된 스펙트럼 분포나 검출 신호들만을 확인해서는 명확하게 특정 질병을 분류별로 정량화하고 진단하기에는 그 정확도가 떨어지는 문제가 있었다.However, the early diagnosis methods according to the prior art, such as Raman spectroscopy, have a problem in that it is difficult to clearly classify and quantify a specific disease based on the test results for a specific sample or individual factors and diagnose it. Specifically, there is a problem in that accuracy is low in clearly quantifying and diagnosing a specific disease by category by checking only the spectrum distribution or detection signals detected in various ranges for a specific sample or specimen.
본 발명이 해결하고자 하는 과제는 머신 러닝 기반의 라만 분광 분석을 이용한 염증 질환 분류 방법 및 장치를 제공하는 것이다. An object to be solved by the present invention is to provide a method and apparatus for classifying inflammatory diseases using machine learning-based Raman spectroscopic analysis.
또한, 본 발명이 해결하고자 하는 과제는 비뇨기계 염증 질환 및 질병에 대해 표면-증강 라만 분광 방식으로 화학적 바이오 마커를 검출하고, 환자의 염증 질환 유형 분류 및 조기 진단을 수행할 수 있는 염증 질환 분류 방법 및 장치를 제공하는 것이다. In addition, the problem to be solved by the present invention is an inflammatory disease classification method capable of detecting chemical biomarkers for urinary inflammatory diseases and diseases by surface-enhanced Raman spectroscopy, and classifying inflammatory disease types and early diagnosis of patients. and to provide an apparatus.
본 발명이 해결하고자 하는 과제들은 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The problems to be solved by the present invention are not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.
상술한 과제를 해결하기 위한 본 발명의 일 면에 따른 염증 질환 분류 장치에 의해 수행되는 염증 질환 분류 방법은, 검체들을 준비하고 전처리하는 단계; 라만 분광 검사를 통해 라만 시그널 및 라만 시그널의 스펙트럼을 획득하는 단계; 상기 라만 시그널 및 상기 라만 시그널의 스펙트럼 분포를 분석하는 단계; 미리 설정된 기계 학습 프로그램을 통해 진단 데이터를 정량화하는 단계; 및 상기 라만 시그널 및 상기 스펙트럼 분포와 정량화된 진단 데이터들을 비교하여 진단 결과를 추출하는 단계를 포함할 수 있다.An inflammatory disease classification method performed by an inflammatory disease classification apparatus according to an aspect of the present invention for solving the above problems includes preparing and pre-treating specimens; Obtaining a Raman signal and a spectrum of the Raman signal through Raman spectroscopy; analyzing the Raman signal and a spectrum distribution of the Raman signal; Quantifying diagnostic data through a preset machine learning program; and extracting a diagnostic result by comparing the Raman signal and the spectrum distribution with quantified diagnostic data.
이때, 상기 라만 시그널 및 라만 시그널의 스펙트럼 획득 단계는, 표면-증강 라만 산란(surface-enhanced Raman scattering) 방식의 검사를 수행해서 상기 라만 시그널 및 상기 라만 시그널의 스펙트럼을 획득할 수 있다.In this case, in the step of obtaining the Raman signal and the spectrum of the Raman signal, the Raman signal and the spectrum of the Raman signal may be obtained by performing a surface-enhanced Raman scattering test.
또한, 상기 라만 시그널 및 라만 시그널의 스펙트럼 획득 단계는, 상기 표면-증강 라만 산란 검사 과정에서 바이오 마커 검출 보정을 수행하여 라만 분광 시그널을 보정하는 단계를 더 포함할 수 있다.In addition, the acquiring of the Raman signal and the spectrum of the Raman signal may further include correcting the Raman spectroscopy signal by performing biomarker detection correction in the surface-enhanced Raman scattering test process.
또한, 상기 라만 분광 시그널을 보정하는 단계는, 표면-증강 라만 산란 검사 키트상 나노 사이즈의 바이오 마커들을 라만 측정 타겟으로 적용하고, 상기 나노 사이즈의 분자의 증폭된 피크의 세기 변화를 측정하여 상기 라만 분광 시그널을 보정할 수 있다.In addition, in the step of correcting the Raman spectroscopy signal, nano-sized biomarkers on a surface-enhanced Raman scattering test kit are applied as Raman measurement targets, and intensity changes of amplified peaks of the nano-sized molecules are measured to measure the Raman spectroscopic signal. The spectral signal can be calibrated.
또한, 상기 라만 시그널 및 상기 라만 시그널의 스펙트럼 분포를 분석하는 단계는, 상기 검체들별로 각 검체 내에 포함된 대사물질의 종류, 염증 수치, 염증 종류를 분석하고, 상기 대사물질의 종류, 염증 수치, 염증 종류에 따라 신장염, 방광염, 암 등의 비뇨기계 염증 질환, 및 급성 신장 질환에 대한 진행도를 분석할 수 있다.In addition, in the step of analyzing the Raman signal and the spectral distribution of the Raman signal, the type of metabolite contained in each sample, inflammation level, and inflammation type are analyzed for each sample, and the type of metabolite, inflammation level, Depending on the type of inflammation, the progress of urinary inflammatory diseases such as nephritis, cystitis, cancer, and acute kidney disease can be analyzed.
또한, 상기 미리 설정된 기계 학습 프로그램을 통해 진단 데이터를 정량화하는 단계는, 상기 라만 시그널 및 상기 라만 스펙트럼 검출 결과가 상기 기계 학습 프로그램과 데이터 베이스에 입력 값들로 입력되도록 하는 단계; 검체 검출 인적 정보를 포함한 추가 학습 인자들을 상기 기계 학습 프로그램의 입력 값으로 추가 입력하는 단계; 적어도 하나 또는 둘 이상의 기계 학습 모델 및 기계 학습 프로그램을 선택하는 단계; 상기 선택된 기계 학습 프로그램이 상기 입력 값들을 반영하여 학습되도록 하는 단계; 및 상기 기계 학습 프로그램의 실행 결과에 따라 상기 진단 데이터를 정량화하는 단계를 포함할 수 있다.In addition, the quantifying the diagnostic data through the preset machine learning program may include inputting the Raman signal and the Raman spectrum detection result into the machine learning program and the database as input values; additionally inputting additional learning factors including subject detection human information as input values of the machine learning program; selecting at least one or more machine learning models and machine learning programs; allowing the selected machine learning program to learn by reflecting the input values; and quantifying the diagnostic data according to an execution result of the machine learning program.
이때, 상기 검체 검출 인적 정보를 포함한 추가 학습 인자들을 상기 기계 학습 프로그램의 입력 값으로 추가 입력하는 단계는, 나이, 성별, 보유 질병, 소견, 증상을 포함하는 검출 인적 정보, 검체 검출량, 및 검출 부위 정보를 상기 입력 값들으로 추가 입력할 수 있다.In this case, the step of additionally inputting additional learning factors including the sample detection human information as input values of the machine learning program includes age, gender, detection human information including diseases, findings, symptoms, sample detection amount, and detection site. Information can be additionally input as the input values.
또한, 상기 진단 결과를 추출하는 단계는, 상기 라만 시그널 및 상기 라만 스펙트럼 검출 결과를 상기 기계 학습 프로그램을 통해 정량화된 상기 진단 데이터와 비교하는 단계; 및 비교 결과에 따른 진단 결과를 설정하여 표시 화면으로 표시하는 단계를 포함할 수 있다.The extracting of the diagnosis result may include comparing the Raman signal and the Raman spectrum detection result with the diagnosis data quantified through the machine learning program; and setting a diagnosis result according to the comparison result and displaying it on a display screen.
또한, 상술한 과제를 해결하기 위한 본 발명의 일 면에 따른 염증 질환 분류 장치는 검체들에 대한 라만 분광 검사를 수행하여 라만 시그널 및 상기 라만 시그널의 스펙트럼을 획득하는 라만 검사 모듈; 상기 라만 시그널 및 상기 라만 시그널의 스펙트럼 분포를 포함하는 학습 인자들을 입력받고, 미리 설정된 기계 학습을 수행하여 진단 데이터를 정량화하는 데이터 학습 모듈; 및 상기 라만 시그널 및 상기 라만 시그널의 스펙트럼 분포와 정량화된 상기 진단 데이터를 비교하여 진단 결과를 추출하는 조기 진단 모듈을 포함할 수 있다.In addition, an apparatus for classifying inflammatory diseases according to an aspect of the present invention for solving the above problems includes a Raman test module for obtaining a Raman signal and a spectrum of the Raman signal by performing a Raman spectroscopic test on specimens; a data learning module that receives learning factors including the Raman signal and a spectral distribution of the Raman signal and performs preset machine learning to quantify diagnostic data; and an early diagnosis module for extracting a diagnosis result by comparing the Raman signal and the spectrum distribution of the Raman signal with the quantified diagnosis data.
이때, 상기 라만 검사 모듈은, 표면-증강 라만 산란 검사 키트를 포함하는 시료 검사 전처리부; 및 상기 표면-증강 라만 산란 검사 키트 상 전처리된 검체에 대한 표면-증강 라만 산란 검사를 수행하여 상기 라만 시그널을 획득하는 라만 시그널 검출부를 포함할 수 있다.In this case, the Raman inspection module may include a sample inspection pre-processing unit including a surface-enhanced Raman scattering inspection kit; and a Raman signal detector for acquiring the Raman signal by performing a surface-enhanced Raman scattering test on the sample pretreated on the surface-enhanced Raman scattering test kit.
또한, 상기 라만 검사 모듈은, 상기 표면-증강 라만 산란 검사 키트상 나노 사이즈의 바이오 마커들을 라만 측정 타겟으로 적용하고, 상기 나노 사이즈의 분자의 증폭된 피크의 세기 변화를 측정하여 상기 라만 분광 시그널을 보정 및 정량화하는 분광 시그널 보정부를 더 포함할 수 있다.In addition, the Raman test module applies the nano-sized biomarkers on the surface-enhanced Raman scattering test kit as Raman measurement targets, and measures the intensity change of the amplified peak of the nano-sized molecule to obtain the Raman spectroscopy signal. A spectral signal corrector for correcting and quantifying may be further included.
또한, 상기 조기 진단 모듈은, 상기 검체들 별로 각 검체 내에 포함된 대사물질의 종류, 염증 수치, 염증 종류를 분석하고, 상기 대사물질의 종류, 염증 수치, 염증 종류에 따라 신장염, 방광염, 암 등의 비뇨기계 염증 질환, 및 급성 신장 질환에 대한 진행도를 분석할 수 있다.In addition, the early diagnosis module analyzes the type of metabolite, inflammation level, and inflammation type contained in each sample for each sample, and according to the type of metabolite, inflammation level, and inflammation type, nephritis, cystitis, cancer, etc. of urinary system inflammatory disease, and progression to acute kidney disease can be analyzed.
또한, 상기 데이터 학습 모듈은, 상기 라만 시그널 및 상기 라만 시그널의 스펙트럼 검출 결과를 기계 학습 프로그램과 데이터 베이스에 입력 값들로 입력하는 학습 인자 입력부; 복수의 기계 학습 모델별 기계 학습 프로그램을 저장하고 적어도 하나 또는 둘 이상의 기계 학습 모델 및 기계 학습 프로그램을 선택해서 컴파일하는 기계학습 프로그램 입력부; 상기 선택된 기계 학습 프로그램이 상기 입력 값들을 반영하여 기계 학습되도록 상기 선택된 기계 학습 프로그램을 실행시키는 기계학습 처리부; 및 상기 기계 학습 프로그램의 실행 결과에 따라 상기 진단 데이터를 정량화하는 질병 진단 모델 생성부를 포함할 수 있다.In addition, the data learning module may include: a learning factor input unit inputting the Raman signal and a spectrum detection result of the Raman signal to a machine learning program and a database as input values; a machine learning program input unit for storing machine learning programs for each of a plurality of machine learning models and selecting and compiling at least one or more machine learning models and machine learning programs; a machine learning processing unit executing the selected machine learning program so that the selected machine learning program reflects the input values and is machine trained; and a disease diagnosis model generating unit quantifying the diagnosis data according to an execution result of the machine learning program.
또한, 상기 학습 인자 입력부는, 나이, 성별, 보유 질병, 소견, 증상을 포함하는 검출 인적 정보, 검체 검출량, 및 검출 부위 정보를 상기 입력 값들으로 추가 입력할 수 있다.In addition, the learning factor input unit may additionally input detection human information including age, gender, disease, findings, and symptoms, a sample detection amount, and detection site information as the input values.
또한, 상기 조기 진단 모듈은, 상기 라만 시그널 및 상기 라만 스펙트럼 검출 결과를 읽어들이고 나이, 성별, 보유 질병, 소견, 증상을 포함하는 검체 인적 정보에 따라 분류하는 데이터 처리부; 상기 데이터 학습 모듈로부터 정량화된 진단 데이터를 읽어들이는 질병 진단 모델 추출부; 상기 라만 시그널 및 상기 라만 시그널의 스펙트럼 검출 결과와 정량화된 상기 진단 데이터를 비교 분석하는 데이터 비교 검출부; 및 상기 진단 데이터와의 비교 결과에 따른 진단 결과를 설정 및 표시하는 진단 결과 추출부를 포함할 수 있다.In addition, the early diagnosis module may include: a data processing unit that reads the Raman signal and the Raman spectrum detection result and classifies them according to subject personal information including age, gender, diseases, findings, and symptoms; a disease diagnosis model extractor that reads the quantified diagnosis data from the data learning module; a data comparison detection unit that compares and analyzes the Raman signal, a spectrum detection result of the Raman signal, and the quantified diagnostic data; and a diagnosis result extraction unit configured to set and display a diagnosis result according to a comparison result with the diagnosis data.
본 발명의 실시예에 따른 염증 질환 분류 방법 및 장치로는 머신 러닝 기반 라만 분광 분석 결과와 기계 학습을 통해 환자의 염증 질환 유형을 빠르게 분류 및 정량화하고, 정량화된 결과물들을 이용해서 조기 진단을 수행할 수 있다. 이에, 신장 근처 요관의 염증을 조기에 진단하여 신장의 손상을 막을 수 있다. The inflammatory disease classification method and apparatus according to an embodiment of the present invention can quickly classify and quantify the patient's inflammatory disease type through machine learning-based Raman spectroscopic analysis results and machine learning, and perform early diagnosis using the quantified results. can Therefore, it is possible to prevent damage to the kidney by diagnosing inflammation of the ureter near the kidney at an early stage.
또한, 본 발명의 실시예에 따른 염증 질환 분류 방법 및 장치를 통해서는 진단이 어려운 방광염과 신장염 등의 비뇨기계 질환을 더욱 빠르고 정확하게 분류하고 진단함으로써, 적절하고 신속한 치료가 가능하도록 할 수 있다. In addition, the inflammatory disease classification method and apparatus according to the embodiment of the present invention can more quickly and accurately classify and diagnose difficult-to-diagnose urinary diseases such as cystitis and nephritis, enabling appropriate and rapid treatment.
본 발명의 효과들은 이상에서 언급된 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다. The effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description below.
도 1은 본 발명의 실시예에 따른 염증 질환 분류 방법을 순서대로 설명하기 위한 순서도이다. 1 is a flowchart for sequentially explaining a method for classifying inflammatory diseases according to an embodiment of the present invention.
도 2는 표면-증강 라만 산란 방식을 통해 획득한 라만 시그널 검출 결과를 나타낸 그래프이다. 2 is a graph showing Raman signal detection results obtained through a surface-enhanced Raman scattering method.
도 3은 표면-증강 라만 산란 방식을 통해 획득한 라만 스펙트럼의 랜덤포레스트(Random forest) 결과를 나타낸 도면이다.Figure 3 is a diagram showing the random forest (Random forest) results of the Raman spectrum obtained through the surface-enhanced Raman scattering method.
도 4a 내지 도 4c는 표면-증강 라만 산란 방식을 통해 획득한 라만 스펙트럼의 주성분 분석(Principal component analysis)-선형판별분석(Linear Discriminant Analysis)을 순차적으로 수행한 결과를 나타낸 도면이다.4A to 4C are diagrams showing results of sequentially performing principal component analysis and linear discriminant analysis of the Raman spectrum obtained through the surface-enhanced Raman scattering method.
도 5a 내지 도 5c는 표면-증강 라만 산란 방식을 통해 획득한 라만 스펙트럼의 비음수 행렬 분해(Non-Negative Matrix Factorization)-선형판별분석(Linear Discriminant Analysis)을 순차적으로 수행한 결과를 나타낸 도면이다.5A to 5C are diagrams showing results of sequentially performing non-negative matrix factorization-linear discriminant analysis of the Raman spectrum obtained through the surface-enhanced Raman scattering method.
도 6은 도 1에 도시된 분광 데이터 분석 및 질병 진단 모델 추출 방법을 더욱 구체적으로 나타낸 순서도이다. FIG. 6 is a flowchart illustrating the method of analyzing spectral data and extracting a disease diagnosis model shown in FIG. 1 in more detail.
도 7은 본 발명의 실시예에 따른 염증 질환 분류 장치를 구체적으로 나타낸 구성 블록도이다. 7 is a block diagram showing a configuration of an inflammatory disease classification apparatus according to an embodiment of the present invention in detail.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다. 본 명세서가 실시예들의 모든 요소들을 설명하는 것은 아니며, 본 발명이 속하는 기술분야에서 일반적인 내용 또는 실시예들 간에 중복되는 내용은 생략한다. 명세서에서 사용되는 '부, 모듈, 부재, 블록'이라는 용어는 소프트웨어 또는 하드웨어로 구현될 수 있으며, 실시예들에 따라 복수의 '부, 모듈, 부재, 블록'이 하나의 구성요소로 구현되거나, 하나의 '부, 모듈, 부재, 블록'이 복수의 구성요소들을 포함하는 것도 가능하다. Like reference numbers designate like elements throughout the specification. This specification does not describe all elements of the embodiments, and general content or overlapping content between the embodiments in the technical field to which the present invention belongs is omitted. The term 'unit, module, member, or block' used in the specification may be implemented as software or hardware, and according to embodiments, a plurality of 'units, modules, members, or blocks' may be implemented as one component, It is also possible that one 'part, module, member, block' includes a plurality of components.
어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. When a certain component is said to "include", this means that it may further include other components, not excluding other components unless otherwise stated.
제1, 제2 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위해 사용되는 것으로, 구성요소가 전술된 용어들에 의해 제한되는 것은 아니다. Terms such as first and second are used to distinguish one component from another, and the components are not limited by the aforementioned terms.
단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.Expressions in the singular number include plural expressions unless the context clearly dictates otherwise.
각 단계들에 있어 식별부호는 설명의 편의를 위하여 사용되는 것으로 식별부호는 각 단계들의 순서를 설명하는 것이 아니며, 각 단계들은 문맥상 명백하게 특정 순서를 기재하지 않는 이상 명기된 순서와 다르게 실시될 수 있다. In each step, the identification code is used for convenience of description, and the identification code does not explain the order of each step, and each step may be performed in a different order from the specified order unless a specific order is clearly described in context. there is.
이하 첨부된 도면들을 참고하여 본 발명의 작용 원리 및 실시예들에 대해 설명한다. Hereinafter, the working principle and embodiments of the present invention will be described with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 따른 염증 질환 분류 방법을 순서대로 설명하기 위한 순서도이다. 1 is a flowchart for sequentially explaining a method for classifying inflammatory diseases according to an embodiment of the present invention.
도 1을 참조하면, 염증 질환 분류 방법은 검체를 준비하고 전처리하는 단계(ST1), 라만 검사를 통해 라만 시그널을 획득하는 단계(ST2), 라만 분광 시그널을 보정하는 단계(ST3), 라만 시그널 및 라만 시그널의 스펙트럼을 분석하여 라만 분광 데이터를 처리하는 단계(ST4), 기계 학습을 수행하여 분석한 진단 결과(진단 데이터)들을 정량화하는 단계(ST5), 및 진단 결과를 추출하는 단계(ST6)를 포함한다.Referring to FIG. 1, the inflammatory disease classification method includes preparing and preprocessing a specimen (ST1), obtaining a Raman signal through a Raman test (ST2), correcting a Raman spectroscopy signal (ST3), Raman signal and The step of processing Raman spectroscopy data by analyzing the spectrum of the Raman signal (ST4), the step of quantifying the diagnostic results (diagnostic data) analyzed by performing machine learning (ST5), and the step of extracting the diagnostic results (ST6). include
구체적으로, 검체를 준비하고 전처리하는 단계(ST1)에서는 질병 검사를 위해 염증 유발 부위에서 검출한 검체, 또는 실험체로부터 검출한 검체들이 별도의 분리과정 없이 검사 키트에 배치되도록 한다. 다양한 염증 질환들 중 비뇨기계 질환을 분류하고 검진하기 위해서는 요관이나 방광 등 염증 유발 부위에서 검출한 소변을 검체로 적용할 수 있다. 그리고, 소변 검체에 대한 라만 분광 검사 및 분석을 통해 염증 수치와 관련 질병 등을 검출할 수 있다. Specifically, in the step of preparing and pre-processing the specimen (ST1), the specimens detected from the inflammatory site or the specimens detected from the test subject are placed in the test kit for disease testing without a separate separation process. In order to classify and examine urinary system diseases among various inflammatory diseases, urine detected from inflammation inducing sites such as the ureter or bladder can be applied as a sample. In addition, inflammation levels and related diseases can be detected through Raman spectroscopy and analysis of urine samples.
반면, 실험체를 통한 검사 및 분석을 통해 비뇨기계 진단 데이터들을 정량화하기 위해서는 8주령 내지 10주령 실험용 쥐들의 소변을 검체로 적용할 수 있다. 이하, 라만 검사 결과를 그래프 및 도면으로 도시하기 위해 적용된 실험체로는 8주령 내지 10주령의 실험용 쥐 23마리의 소변을 검체로 이용할 수 있었다. 더욱 구체적으로는 간질성 방광염 증상 4마리, 약한 요관 폐색 증상 5마리, 심한 요관 폐색 증상 5마리, 대조군 5마리, 정상군 4마리의 소변 1.5㎖ 중 5㎕가 각각 검체로 적용될 수 있었다. On the other hand, urine of 8- to 10-week-old laboratory rats can be used as a sample in order to quantify the urinary diagnostic data through examination and analysis through the specimen. Hereinafter, urine of 23 laboratory rats aged 8 to 10 weeks could be used as the specimens applied to show the Raman test results in graphs and drawings. More specifically, 5 μl of 1.5 ml of urine from 4 animals with interstitial cystitis symptoms, 5 animals with mild ureteral obstruction symptoms, 5 animals with severe ureteral obstruction symptoms, 5 animals with control group, and 4 animals with normal group could be applied as samples.
라만 분광 검사를 통한 라만 시그널 획득 단계(ST2)에서는 표면-증강 라만 산란(surface-enhanced Raman scattering) 방식의 검사를 수행해서 라만 시그널을 획득할 수 있다. 일 실시예에 따른 표면-증강 라만 산란 방식은 라만 분광법의 검출 감도 한계를 극복할 수 있는 분석법으로서, 생물학적 및 화학적 검체들에 대한 분자 특이적 정보를 제공하는 분석법이다. 표면-증강 라만 산란 방식의 검사로는 나노 사이즈 분자들의 분자의 증폭된 특징적인 피크의 세기(intensity) 변화를 측정하여 표적 물질을 정량화한다. In the step of obtaining a Raman signal through Raman spectroscopy (ST2), a Raman signal may be obtained by performing a surface-enhanced Raman scattering test. The surface-enhanced Raman scattering method according to an embodiment is an analysis method that can overcome the detection sensitivity limit of Raman spectroscopy and provides molecular-specific information about biological and chemical samples. In the surface-enhanced Raman scattering test, a target material is quantified by measuring a change in intensity of amplified characteristic peaks of nano-sized molecules.
구체적으로, 라만 시그널 및 라만 시그널의 스펙트럼 획득 단계(ST2)에서는 표면-증강 라만 산란 기판에 검체 5㎕를 도포하고 더 넓게 분포되면서 수분이 일부 증발되도록 약 30분 정도 대기한다. 그리고 기판 내에 검체가 넓게 분포된 부분을 라만 분광 방식으로 측정하여 라만 시그널을 획득할 수 있다. Specifically, in the step of acquiring the Raman signal and the spectrum of the Raman signal (ST2), 5 μl of the sample is applied to the surface-enhanced Raman scattering substrate and waited for about 30 minutes to partially evaporate moisture while spreading more widely. In addition, a Raman signal may be obtained by measuring a portion where the sample is widely distributed in the substrate using a Raman spectroscopic method.
라만 시그널을 획득하는 과정에서는 라만 시그널의 백그라운드 보정을 수행할 수 있다. 다시 말해, 표면-증강 라만 산란 방식의 검사를 통한 라만 시그널 획득시 바이오 마커 검출 보정을 수행하여 라만 분광 시그널을 보정할 수 있다.(ST3) In the process of acquiring the Raman signal, background correction of the Raman signal may be performed. In other words, when acquiring a Raman signal through surface-enhanced Raman scattering inspection, the biomarker detection and correction may be performed to correct the Raman spectroscopy signal (ST3).
표면-증강 라만 산란 방식의 활성 과정에서는 표면에서의 흡수 에너지에 의해 라만 스펙트럼의 세기가 현저히 향상되도록 한다. 여기서, 표면-증강 라만 산란 규모의 척도로 사용되는 증강 인자(enhancement factor; EF)는 보통 104 내지 108이며, 단일 분자 수준의 검출이 가능한 1014에 이르기도 한다. 이에, 표면-증강 라만 산란 방식의 경우 일반적인 라만 분광 방식보다 약 106 ~ 108까지 신호의 세기가 비약적으로 증가되어 소량의 염증 마커도 검출 가능하다. 따라서, 본 발명의 일 실시예에 따른 라만 분광 시그널 보정 단계(ST3)에서는 표면-증강 라만 산란 검사 키트상 나노 사이즈의 바이오 마커들이 검사되도록 한다. 그리고, 증폭된 바이오 마커 라만 시그널의 특징적인 피크의 세기 변화를 측정하여 라만 시그널과 스펙트럼 분포를 보정 및 정량화할 수 있다. In the activation process of the surface-enhanced Raman scattering method, the intensity of the Raman spectrum is remarkably enhanced by absorption energy at the surface. Here, an enhancement factor (EF) used as a measure of the surface-enhanced Raman scattering scale is usually 10 4 to 10 8 , and sometimes reaches 10 14 , which enables single-molecule level detection. Thus, in the case of the surface-enhanced Raman scattering method, the intensity of the signal is dramatically increased by about 10 6 to about 10 8 compared to the general Raman spectroscopy method, so that even a small amount of inflammatory markers can be detected. Therefore, in the Raman spectroscopy signal correction step (ST3) according to an embodiment of the present invention, nano-sized biomarkers on the surface-enhanced Raman scattering test kit are tested. In addition, the Raman signal and spectral distribution can be calibrated and quantified by measuring a change in intensity of a characteristic peak of the amplified biomarker Raman signal.
라만 시그널과 라만 시그널의 스펙트럼 분포를 분석하는 단계(ST4)에서는 채취한 검체별로 검체 내에 포함된 대사물질의 종류, 염증 수치, 염증 종류 등을 확인한다. 그리고 대사물질의 종류, 염증 수치, 염증 종류 등에 따른 질병(예를 들어, 신장염, 방광염, 암 등의 비뇨기계 염증 질환, 및 급성 신장 질환)에 대한 진행도를 확인할 수 있다. In the step of analyzing the Raman signal and the spectrum distribution of the Raman signal (ST4), the type of metabolite contained in the sample, the level of inflammation, the type of inflammation, etc. are confirmed for each sample collected. In addition, the degree of progression of diseases (eg, nephritis, cystitis, urinary inflammatory diseases such as cancer, and acute kidney disease) according to the type of metabolite, inflammation level, and type of inflammation can be confirmed.
도 2는 표면-증강 라만 산란 방식을 통해 획득한 라만 시그널 검출 결과를 나타낸 그래프이다. 구체적으로, 도 2는 신우신염 및 간질성 방광염 검체의 표면-증강 라만 시그널을 나타낸 그래프이다. 2 is a graph showing Raman signal detection results obtained through a surface-enhanced Raman scattering method. Specifically, Figure 2 is a graph showing the surface-enhanced Raman signals of pyelonephritis and interstitial cystitis specimens.
도 2를 참조하면, 라만 시그널 및 라만 시그널의 스펙트럼 분포를 분석하는 단계(ST4)에서는 신장과 요관 사이에서 채취한 검체(SO_K)를 통해 심한 요관 폐색에 따른 염증 수치를 확인할 수 있으며, 방광에서 채취한 검체(SO_B)를 통해서도 심한 요관 폐색에 따른 염증 수치를 확인할 수 있다. 이와 달리, 신장과 요관 사이에서 채취한 다른 검체(MO_K)를 통해서는 약한 요관 폐색에 따른 염증 수치를 확인할 수 있으며, 방광에서 채취한 또 다른 검체(MO_B)를 통해서도 약한 요관 폐색에 따른 염증 수치를 확인할 수 있다. 반면, 방광에서 채취한 어느 한 검체(IC/BPS)를 통해서는 간질성 방광염에 따른 염증 수치를 확인할 수 있다. Referring to FIG. 2, in the step of analyzing the Raman signal and the spectral distribution of the Raman signal (ST4), inflammation levels due to severe ureteral obstruction can be confirmed through a sample (SO_K) taken between the kidney and the ureter, and collected from the bladder. Even one sample (SO_B) can confirm the level of inflammation caused by severe ureteral obstruction. On the other hand, another sample (MO_K) taken between the kidney and ureter can confirm the level of inflammation due to mild ureteral obstruction, and another sample (MO_B) taken from the bladder can also show the level of inflammation due to mild ureteral obstruction. You can check. On the other hand, the level of inflammation according to interstitial cystitis can be confirmed through a sample (IC/BPS) taken from the bladder.
이와 더불어, 약 650cm-1 ~ 750cm-1 범위에서는 신우신염의 염증 신호가 두드러 지고, 약 910cm-1 ~ 1060cm-1 범위에서는 간질성 방광염의 염증 신호가 우세함을 확인할 수 있다. In addition, it can be seen that the inflammatory signal of pyelonephritis is prominent in the range of about 650 cm -1 to 750 cm -1 , and the inflammatory signal of interstitial cystitis is dominant in the range of about 910 cm -1 to 1060 cm -1 .
도 3은 표면-증강 라만 산란 방식을 통해 획득한 라만 스펙트럼의 랜덤포레스트(Random forest) 결과를 나타낸 도면이다.Figure 3 is a diagram showing the random forest (Random forest) results of the Raman spectrum obtained through the surface-enhanced Raman scattering method.
도 3을 참조하면, 라만 시그널 및 라만 시그널의 스펙트럼 분포를 분석하는 단계(ST4)에서는 라만 분광 장비(예를 들어, 532nm laser, 785nm laser Raman Device)를 이용하여 500cm-1 ~ 3000cm-1 사이의 미리 설정된 파장 범위를 샘플링하고, 샘플링된 파장 범위의 스펙트럼 분포를 분석할 수 있다. 여기서, 500cm-1 ~ 3000cm-1 파장 범위에서는 간질성 방광염, 약한 요관폐색, 심한 요관폐색, 대조군 등의 관련 질병을 확인 및 분석할 수 있다. Referring to Figure 3, in the step of analyzing the Raman signal and the spectrum distribution of the Raman signal (ST4), by using a Raman spectroscopy equipment (eg, 532nm laser, 785nm laser Raman Device) between 500cm -1 ~ 3000cm -1 A preset wavelength range may be sampled and a spectrum distribution of the sampled wavelength range may be analyzed. Here, in the wavelength range of 500 cm −1 to 3000 cm −1 , related diseases such as interstitial cystitis, mild ureteral obstruction, severe ureteral obstruction, and control group can be identified and analyzed.
또한, 라만 시그널의 스펙트럼 분포를 컴퓨터의 미리 설정된 프로그램을 통해 분석하면, 유기 및 무기 분자의 고유 라만 스펙트럼 분포 및 포함 범위에 따라 단백질의 종류, 지질, RNA, DNA 등의 함유량 및 증가량을 분석할 수 있다. In addition, if the spectrum distribution of the Raman signal is analyzed through a pre-set program on a computer, the content and increase in the type of protein, lipid, RNA, DNA, etc. can be analyzed according to the unique Raman spectrum distribution and coverage of organic and inorganic molecules. there is.
일 예로, 도 3과 같이, 신장과 요관 사이에서 채취한 검체(SO_K), 방광에서 채취한 검체(SO_B), 신장과 요관 사이에서 채취한 다른 검체(MO_K), 방광에서 채취한 또 다른 검체(MO_B), 및 방광에서 채취한 특정 검체(IC/BPS)별 라만 스펙트럼의 랜덤포레스트(Random forest) 앙상블 알고리즘 결과를 통해 질병 예측값을 산출하여 질병 분류 결과를 확인할 수 있다. For example, as shown in FIG. 3, a sample taken between the kidney and the ureter (SO_K), a sample taken from the bladder (SO_B), another sample taken between the kidney and the ureter (MO_K), and another sample taken from the bladder ( MO_B), and a disease classification result can be confirmed by calculating a disease prediction value through a random forest ensemble algorithm result of a Raman spectrum for each specific sample (IC/BPS) collected from the bladder.
도 4a 내지 도 4c는 표면-증강 라만 산란 방식을 통해 획득한 라만 스펙트럼의 주성분 분석(Principal component analysis)-선형판별분석(Linear Discriminant Analysis)을 순차적으로 수행한 결과를 나타낸 도면이다.4A to 4C are diagrams showing results of sequentially performing principal component analysis and linear discriminant analysis of the Raman spectrum obtained through the surface-enhanced Raman scattering method.
도 4a 내지 도 4c를 참조하면, 라만 시그널 및 라만 시그널의 스펙트럼 분포를 분석하는 단계(ST4)에서는 라만 분광 장비(예를 들어, 532nm laser, 785nm laser Raman Device)를 이용하여 500cm-1 ~ 3000cm-1 사이의 미리 설정된 파장 범위를 샘플링하고, 샘플링된 파장 범위의 스펙트럼 분포를 분석할 수 있다. 여기서, 500cm-1 ~ 3000cm-1 파장 범위에서는 간질성 방광염, 약한 요관폐색, 심한 요관폐색, 대조군 등의 관련 질병을 확인 및 분석할 수 있다. Referring to Figures 4a to 4c, in the step of analyzing the Raman signal and the spectral distribution of the Raman signal (ST4), by using a Raman spectroscopy equipment (eg, 532nm laser, 785nm laser Raman Device) 500cm -1 ~ 3000cm - A preset wavelength range between 1 and 1 may be sampled, and the spectrum distribution of the sampled wavelength range may be analyzed. Here, in the wavelength range of 500 cm −1 to 3000 cm −1 , related diseases such as interstitial cystitis, mild ureteral obstruction, severe ureteral obstruction, and control group can be identified and analyzed.
또한, 라만 시그널의 스펙트럼 분포를 컴퓨터의 미리 설정된 프로그램을 통해 분석하면, 유기 및 무기 분자의 고유 라만 스펙트럼 분포 및 포함 범위에 따라 단백질의 종류, 지질, RNA, DNA 등의 함유량 및 증가량을 분석할 수 있다. In addition, if the spectrum distribution of the Raman signal is analyzed through a pre-set program on a computer, the content and increase in the type of protein, lipid, RNA, DNA, etc. can be analyzed according to the unique Raman spectrum distribution and coverage of organic and inorganic molecules. there is.
도 4a 내지 도 4c와 같이, 주성분 분석(PCA)을 통해 신장과 요관 사이에서 채취한 검체(SO_K), 방광에서 채취한 검체(SO_B), 신장과 요관 사이에서 채취한 다른 검체(MO_K), 방광에서 채취한 또 다른 검체(MO_B), 및 방광에서 채취한 특정 검체(IC/BPS)별 라만 스펙트럼의 주성분(PC)을 도 4a의 5, 도 4b의 30, 도 4c의 50 획득 후 선형판별분석(LDA) 모델을 통해 결과 값을 도출하여 질병 분류 결과를 확인할 수 있다.As shown in FIGS. 4A to 4C, a sample collected between the kidney and the ureter (SO_K), a sample collected from the bladder (SO_B), another sample collected between the kidney and the ureter (MO_K), and the bladder through principal component analysis (PCA) Linear discriminant analysis after obtaining 5 in FIG. 4A, 30 in FIG. 4B, and 50 in FIG. The results of disease classification can be confirmed by deriving the result value through the (LDA) model.
도 5a 내지 도 5c는 표면-증강 라만 산란 방식을 통해 획득한 라만 스펙트럼의 비음수 행렬 분해(Non-Negative Matrix Factorization)-선형판별분석(Linear Discriminant Analysis)을 순차적으로 수행한 결과를 나타낸 도면이다.5A to 5C are diagrams showing results of sequentially performing non-negative matrix factorization-linear discriminant analysis of the Raman spectrum obtained through the surface-enhanced Raman scattering method.
도 5a 내지 도 5c를 참조하면, 라만 시그널 및 라만 시그널의 스펙트럼 분포를 분석하는 단계(ST4)에서는 라만 분광 장비(예를 들어, 532nm laser, 785nm laser Raman Device)를 이용하여 500cm-1 ~ 3000cm-1 사이의 미리 설정된 파장 범위를 샘플링하고, 샘플링된 파장 범위의 스펙트럼 분포를 분석할 수 있다. 여기서, 500cm-1 ~ 3000cm-1 파장 범위에서는 간질성 방광염, 약한 요관폐색, 심한 요관폐색, 대조군 등의 관련 질병을 확인 및 분석할 수 있다. Referring to Figures 5a to 5c, in the step of analyzing the Raman signal and the spectrum distribution of the Raman signal (ST4), by using Raman spectroscopy equipment (eg, 532nm laser, 785nm laser Raman Device) 500cm -1 ~ 3000cm - A preset wavelength range between 1 and 1 may be sampled, and the spectrum distribution of the sampled wavelength range may be analyzed. Here, in the wavelength range of 500 cm −1 to 3000 cm −1 , related diseases such as interstitial cystitis, mild ureteral obstruction, severe ureteral obstruction, and control group can be identified and analyzed.
또한, 라만 시그널의 스펙트럼 분포를 컴퓨터의 미리 설정된 프로그램을 통해 분석하면, 유기 및 무기 분자의 고유 라만 스펙트럼 분포 및 포함 범위에 따라 단백질의 종류, 지질, RNA, DNA 등의 함유량 및 증가량을 분석할 수 있다. In addition, if the spectrum distribution of the Raman signal is analyzed through a pre-set program on a computer, the content and increase in the type of protein, lipid, RNA, DNA, etc. can be analyzed according to the unique Raman spectrum distribution and coverage of organic and inorganic molecules. there is.
도 5a 내지 도 5c와 같이, 비음수 행렬분해(NMF)을 통해 신장과 요관 사이에서 채취한 검체(SO_K), 방광에서 채취한 검체(SO_B), 신장과 요관 사이에서 채취한 다른 검체(MO_K), 방광에서 채취한 또 다른 검체(MO_B), 및 방광에서 채취한 특정 검체(IC/BPS)별 라만 스펙트럼의 비음수 행렬분해 성분(NMFC)을 도 5a의 5, 도 5b의 30, 도 5c의 50 획득 후 선형판별분석(LDA) 모델을 통해 결과 값을 도출하여 질병 분류 결과를 확인할 수 있다. As shown in FIGS. 5A to 5C, a sample collected between the kidney and the ureter through non-negative matrix decomposition (NMF) (SO_K), a sample collected from the bladder (SO_B), and another sample collected between the kidney and the ureter (MO_K) , another sample (MO_B) taken from the bladder, and the non-negative matrix decomposition component (NMFC) of the Raman spectrum for each specific sample (IC/BPS) taken from the bladder are 5 in FIG. 5, 30 in FIG. 5 b, and 30 in FIG. 5 c. After acquiring 50, the disease classification result can be confirmed by deriving the result value through a linear discriminant analysis (LDA) model.
도 6은 도 1에 도시된 분광 데이터 분석 및 질병 진단 모델 추출 방법을 더욱 구체적으로 나타낸 순서도이다. FIG. 6 is a flowchart illustrating the method of analyzing spectral data and extracting a disease diagnosis model shown in FIG. 1 in more detail.
도 6을 참조하면, 미리 설정된 기계 학습 프로그램을 통해 분석한 진단 결과들(진단 데이터)을 정량화하는 단계(ST5)는 라만 시그널 및 라만 스펙트럼 검출 결과가 기계 학습 프로그램과 데이터 베이스에 입력 값들로 입력되도록 하는 단계(SS1), 검체 검출 인적 정보를 포함한 추가 학습 인자들을 기계 학습 프로그램의 입력 값으로 추가 입력하는 단계(SS2), 적어도 하나의 기계 학습 모델 및 기계 학습 프로그램을 선택하여 설정하는 단계(SS3), 설정된 기계 학습 프로그램이 입력 값들을 반영하여 학습 처리되도록 하는 단계(SS4), 및 기계 학습 프로그램의 실행 결과에 따라 진단 데이터를 정량화하는 단계(SS5)를 포함한다. Referring to FIG. 6, in step ST5 of quantifying diagnostic results (diagnostic data) analyzed through a preset machine learning program, the Raman signal and Raman spectrum detection results are entered into the machine learning program and database as input values. step (SS1), step of additionally inputting additional learning factors including sample detection human information as input values of a machine learning program (SS2), step of selecting and setting at least one machine learning model and machine learning program (SS3) , making the set machine learning program reflect the input values for learning processing (SS4), and quantifying diagnostic data according to the execution result of the machine learning program (SS5).
구체적으로, 기계 학습 수행을 위해서는 먼저 라만 시그널 검출 결과 및 라만 스펙트럼 검출 결과가 입력 프로그램과 데이터 베이스에 입력 값들로 입력되도록 한다.(SS1) 이때, 미리 설정된 기계 학습 프로그램들 중 적어도 하나의 기계 학습 프로그램을 선택해서 검체 관련 정보를 비롯한 라만 시그널 검출 결과 및 라만 스펙트럼 검출 결과를 학습 인자로 추가 입력할 수 있다.(SS2,SS3) Specifically, in order to perform machine learning, first, the Raman signal detection result and the Raman spectrum detection result are entered as input values into an input program and a database (SS1). At this time, at least one machine learning program among preset machine learning programs By selecting , you can additionally input the Raman signal detection result and Raman spectrum detection result, including sample-related information, as learning factors. (SS2, SS3)
기계 학습 프로그램으로는 PCA(Principal component analysis)-LDA(Linear Discriminant Analysis)모델, NMF(Non-Negative Matrix Factorization)-LDA(Linear Discriminant Analysis)모델, RFML(Random Forest Machine Learning) 모델, 딥러닝(예를 들어, CNN(Convolutional Neural Networks)) 등이 동반적으로 적용될 수 있다. 학습 인자 입력시에는 결과적인 분류 정보들을 명확히 구분하기 위해 검체 검출량, 검출 부위 정보, 검출 인적 정보(예를 들어, 나이, 성별, 보유 질병, 소견, 증상 등)을 각각 추가 입력할 수 있다. Machine learning programs include PCA (Principal Component Analysis)-LDA (Linear Discriminant Analysis) model, NMF (Non-Negative Matrix Factorization)-LDA (Linear Discriminant Analysis) model, RFML (Random Forest Machine Learning) model, deep learning (e.g. For example, Convolutional Neural Networks (CNN) and the like may be concurrently applied. When inputting learning factors, in order to clearly classify the resultant classification information, the sample detection amount, detection site information, and detection personal information (eg, age, gender, disease, findings, symptoms, etc.) may be additionally input.
기계 학습 모델 및 해당 프로그램을 통한 기계 학습 결과에 따라서는 검체 내 포함된 대사물질의 종류, 염증의 종류와 유형, 염증 수치, 및 염증 수치에 따른 질병(신장염, 방광염, 암 등의 비뇨기계 염증 질환, 급성 신장 질환)들의 진행 정보들이 업그레이드될 수 있다. 그리고, 나이, 성별, 보유 질병, 소견, 증상 등의 검체 검출 인적 정보와 관련 분류 정보에 따라 신장염, 방광염, 암 등의 비뇨기계 염증 질환 진행도, 및 급성 신장 질환의 진행도 등이 각각 진단 데이터로 정량화되고, 데이터베이스화 될 수 있다.(SS5) Depending on the results of machine learning through the machine learning model and the program, the type of metabolite contained in the sample, the type and type of inflammation, the level of inflammation, and the disease according to the level of inflammation (urinary inflammatory diseases such as nephritis, cystitis, and cancer) , acute kidney disease) can be upgraded. In addition, according to sample detection personal information such as age, gender, disease, findings, and symptoms, and related classification information, the progress of urinary inflammatory diseases such as nephritis, cystitis, and cancer, and the progress of acute kidney disease, respectively, are diagnostic data. can be quantified and databased. (SS5)
또한, 도 6을 참조하면, 진단 결과를 추출하는 단계(ST6)는 라만 시그널 검출 결과 및 라만 스펙트럼 검출 결과와 기계 학습 프로그램을 통해 정량화된 진단 데이터를 비교 분석하는 단계(SS6), 및 비교 결과에 따른 진단 결과를 설정하고 모니터 등의 표시 화면으로 표시하는 단계(SS7)를 포함한다. In addition, referring to FIG. 6 , the step of extracting the diagnosis result (ST6) is the step of comparing and analyzing the Raman signal detection result and the Raman spectrum detection result and the diagnostic data quantified through a machine learning program (SS6), and the comparison result and setting a diagnostic result according to the method and displaying it on a display screen such as a monitor (SS7).
구체적으로, SS6 단계에서 진단 결과를 추출하기 위해서는 검체별 표면-증강 라만 산란 검사로 추출된 라만 시그널, 및 라만 시그널의 스펙트럼 분포 결과를 기계 학습 프로그램을 통해 정량화된 진단 데이터들과 비교 분석한다.Specifically, in order to extract diagnostic results in the SS6 step, the Raman signals extracted by the surface-enhanced Raman scattering test for each sample and the spectrum distribution results of the Raman signals are compared and analyzed with diagnostic data quantified through a machine learning program.
그리고, SS7 단계에서 라만 시그널 및 라만 시그널의 스펙트럼 분포 결과와 정량화된 진단 데이터들의 비교 결과에 따라 최종적으로 진단 결과를 추출하고, 최종적으로 추출된 진단 결과는 별도의 모니터나 표시 화면을 통해 표시될 수 있다. And, in the SS7 step, the diagnosis result is finally extracted according to the comparison result of the Raman signal and the spectrum distribution result of the Raman signal and the quantified diagnosis data, and the finally extracted diagnosis result can be displayed on a separate monitor or display screen. there is.
도 7은 본 발명의 실시예에 따른 염증 질환 분류 장치를 구체적으로 나타낸 구성 블록도이다. 7 is a block diagram showing a configuration of an inflammatory disease classification apparatus according to an embodiment of the present invention in detail.
도 7에 도시된 염증 질환 분류 장치는 라만 검사 모듈(100), 조기 진단 모듈(200), 및 데이터 학습 모듈(300)을 포함한다. The inflammatory disease classification apparatus shown in FIG. 7 includes a Raman examination module 100, an early diagnosis module 200, and a data learning module 300.
구체적으로, 라만 검사 모듈(100)은 전처리된 검체에 대한 표면-증강 라만 산란 검사를 수행하여 라만 시그널을 획득한다. 이를 위해, 라만 검사 모듈(100)은 시료 검사 및 전처리부(101), 및 라만 시그널 검출부(103)를 포함한다. Specifically, the Raman inspection module 100 acquires a Raman signal by performing a surface-enhanced Raman scattering inspection on the pretreated sample. To this end, the Raman inspection module 100 includes a sample inspection and preprocessing unit 101 and a Raman signal detection unit 103 .
라만 검사 모듈(100)의 시료 검사 및 전처리부(101)는 질병 검사를 위해 염증 유발 부위에서 검출한 검체, 또는 실험체의 검체가 배치되어, 소정 기간 퍼지도록 전처리하는 검사 키트를 포함한다. The sample inspection and pre-processing unit 101 of the Raman test module 100 includes a test kit in which a sample detected from an inflammation-inducing site or a sample of a test subject is placed and pre-processed so as to spread for a predetermined period of time for disease inspection.
라만 시그널 검출부(103)는 표면-증강 라만 산란 검사 키트 상에서 전처리된 검체에 대해 표면-증강 라만 산란 검사를 수행하여 라만 시그널을 획득한다. 그리고 획득한 라만 시그널을 데이터 베이스에 저장한다. The Raman signal detector 103 obtains a Raman signal by performing a surface-enhanced Raman scattering test on a sample pretreated on a surface-enhanced Raman scattering test kit. Then, the obtained Raman signal is stored in the database.
라만 시그널 검출부(103)는 미리 설정된 표면-증강 라만 산란 방식의 검체 검사를 수행해서 라만 나노 사이즈의 분자의 증폭된 특징적인 피크의 세기(intensity) 변화를 측정하고, 표적 물질에 대한 라만 시그널과 라만 시그널의 스펙트럼을 획득 및 정량화할 수 있다. The Raman signal detector 103 measures the change in intensity of the amplified characteristic peak of the Raman nano-sized molecule by performing a sample inspection using a preset surface-enhanced Raman scattering method, and measures the Raman signal and Raman signal for the target material. A spectrum of the signal can be acquired and quantified.
라만 검사 모듈(100)은 라만 시그널 검출부(103)의 표면-증강 라만 산란 방식을 통한 라만 시그널을 획득시 표면-증강 라만 산란 검사 키트상 마이크로 사이즈보다 더 큰 분자들은 필터링 하며, 나노 사이즈의 바이오 마커들에 대한 증폭된 피크의 세기 변화를 측정하여 상기 라만 분광 시그널을 보정 및 정량화하는 분광 시그널 보정부(105)를 더 포함할 수 있다. 표면-증강 라만 산란 검사 방식의 경우 일반적인 라만 분광 방식보다 약 106 ~ 108 까지 신호의 세기가 비약적으로 증가되어 소량의 염증 마커도 검출 가능하다. 이에, 라만 검사 모듈(100)의 분광 시그널 보정부(105)는 표면-증강 라만 산란 검사 키트상 나노 사이즈의 바이오 마커들의 증폭된 특징적인 피크의 세기 변화를 측정하여 표적 물질을 정량화한다. When the Raman signal is acquired through the surface-enhanced Raman scattering method of the Raman signal detector 103, the Raman test module 100 filters molecules larger than the micro size on the surface-enhanced Raman scattering test kit, and nano-sized biomarkers. It may further include a spectroscopy signal correction unit 105 for correcting and quantifying the Raman spectroscopy signal by measuring a change in intensity of the amplified peak. In the case of the surface-enhanced Raman scattering test method, the intensity of the signal is dramatically increased by about 10 6 to about 10 8 compared to the general Raman spectroscopy method, so that even a small amount of inflammatory markers can be detected. Accordingly, the spectral signal corrector 105 of the Raman test module 100 quantifies the target material by measuring intensity changes of amplified characteristic peaks of nano-sized biomarkers on the surface-enhanced Raman scattering test kit.
데이터 학습 모듈(300)은 라만 시그널 및 라만 시그널의 스펙트럼 분포를 포함하는 학습 인자들을 입력받고 미리 설정된 기계 학습을 수행하여 진단 데이터를 정량화한다. 이를 위해, 데이터 학습 모듈(300)은 학습 인자 입력부(301), 기계학습 처리부(303), 기계학습 프로그램 입력부(305), 및 질병 진단 모델 생성부(307)를 포함할 수 있다. The data learning module 300 quantifies diagnostic data by receiving learning factors including a Raman signal and a spectral distribution of the Raman signal and performing preset machine learning. To this end, the data learning module 300 may include a learning factor input unit 301, a machine learning processor 303, a machine learning program input unit 305, and a disease diagnosis model generator 307.
데이터 학습 모듈(300)의 학습 인자 입력부(301)는 라만 시그널 검출 결과 및 라만 스펙트럼 검출 결과가 미리 설정된 프로그램과 데이터 베이스에 입력 값들로 입력되도록 한다. 이때, 학습 인자 입력부(301)는 라만 시그널 검출 결과 및 라만 스펙트럼 검출 결과 입력 시, 검출 인적 정보를 비롯한 추가 학습 인자들을 더 입력할 수 있다. 다시 말해, 학습 인자 입력시에는 결과적인 분류 정보들을 명확히 구분하기 위해 검체 검출량, 검출 부위 정보, 검출 인적 정보(예를 들어, 나이, 성별, 보유 질병, 소견, 증상 등)을 각각 추가 입력할 수 있다. The learning factor input unit 301 of the data learning module 300 allows the Raman signal detection result and the Raman spectrum detection result to be input into a preset program and database as input values. At this time, the learning factor input unit 301 may further input additional learning factors including detection human information when inputting the Raman signal detection result and the Raman spectrum detection result. In other words, when inputting the learning factor, the sample detection amount, detection site information, and detection personal information (eg, age, gender, disease, findings, symptoms, etc.) can be additionally input to clearly classify the resulting classification information. there is.
기계학습 프로그램 입력부(305)는 복수의 기계 학습 모델별 기계 학습 프로그램을 저장하고, 적어도 하나의 기계 학습 모델 및 기계 학습 프로그램을 선택해서 컴파일한다. 이때, 기계 학습 프로그램으로는 PCA(Principal component analysis)-LDA(Linear Discriminant Analysis)모델, NMF(Non-Negative Matrix Factorization)-LDA(Linear Discriminant Analysis)모델, RFML(Random Forest Machine Learning) 모델, 딥러닝(예를 들어, CNN(Convolutional Neural Networks)) 등이 동반적으로 적용될 수 있다. The machine learning program input unit 305 stores machine learning programs for each of a plurality of machine learning models, and selects and compiles at least one machine learning model and machine learning program. At this time, the machine learning programs include PCA (Principal Component Analysis)-LDA (Linear Discriminant Analysis) model, NMF (Non-Negative Matrix Factorization)-LDA (Linear Discriminant Analysis) model, RFML (Random Forest Machine Learning) model, deep learning (eg, Convolutional Neural Networks (CNN)) may be concurrently applied.
기계학습 처리부(303)는 기계학습 프로그램 입력부(305)로부터 입력 및 선택된 기계 학습 프로그램을 실행시켜서 각각의 검체들에 포함된 대사물질의 종류, 염증의 종류와 유형, 염증 수치, 및 염증 수치에 따른 질병의 진행 정보들을 업그레이드한다. The machine learning processing unit 303 executes the input and selected machine learning program from the machine learning program input unit 305 to determine the type of metabolite contained in each specimen, the type and type of inflammation, the level of inflammation, and the level of inflammation. Upgrade disease progression information.
질병 진단 모델 생성부(307)는 기계 학습 프로그램 실행 결과에 따라 진단 데이터를 정량화한다. 이때, 질병 진단 모델 생성부(307)는 나이, 성별, 보유 질병, 소견, 증상 등의 검체 관련 분류 정보에 따라 신장염, 방광염, 암 등의 비뇨기계 염증 질환, 급성 신장 질환의 진행도 정보들을 각각 진단 데이터로 정량화하여 데이터베이스에 저장 및 공유한다. The disease diagnosis model generation unit 307 quantifies diagnosis data according to a result of executing a machine learning program. At this time, the disease diagnosis model generation unit 307 provides progress information of urinary inflammatory diseases such as nephritis, cystitis, cancer, and acute kidney disease according to sample-related classification information such as age, gender, diseases possessed, findings, and symptoms, respectively. It is quantified as diagnostic data and stored and shared in a database.
조기 진단 모듈(200)은 라만 시그널 및 라만 시그널의 스펙트럼 분포와 정량화된 진단 데이터를 비교 분석하여, 염증 질환에 대한 진단 결과를 추출한다. 이를 위해, 조기 진단 모듈(200)은 데이터 처리부(202), 질병 진단 모델 추출부(204), 데이터 비교 검출부(206), 진단 결과 추출부(208)를 포함할 수 있다. The early diagnosis module 200 compares and analyzes the Raman signal and the spectral distribution of the Raman signal and the quantified diagnostic data to extract a diagnostic result for an inflammatory disease. To this end, the early diagnosis module 200 may include a data processing unit 202, a disease diagnosis model extraction unit 204, a data comparison detection unit 206, and a diagnosis result extraction unit 208.
조기 진단 모듈(200)의 데이터 처리부(202)는 라만 시그널 검출 결과 및 라만 스펙트럼 검출 결과들을 읽어들이고 나이, 성별, 보유 질병, 소견, 증상 등의 검체 관련 분류 정보에 따라 분류한다. 이때, 질병 진단 모델 추출부(204)는 데이터 학습 모듈(300)로부터 정량화된 진단 데이터를 실시간으로 읽어들인다. The data processing unit 202 of the early diagnosis module 200 reads the Raman signal detection results and the Raman spectrum detection results and classifies them according to specimen-related classification information such as age, gender, diseases possessed, findings, and symptoms. At this time, the disease diagnosis model extractor 204 reads the quantified diagnosis data from the data learning module 300 in real time.
비교 검출부(206)는 라만 시그널 검출 결과 및 라만 스펙트럼 검출 결과와 정량화된 진단 데이터를 비교 분석한다. 비교 검출부(206)는 검체별로 표면-증강 라만 산란 검사를 통해 추출된 라만 시그널, 및 라만 시그널의 스펙트럼 분포 결과를 기계 학습 프로그램을 통해 정량화된 진단 데이터들과 순차적으로 비교 및 분석한다. The comparison detector 206 compares and analyzes the Raman signal detection result and the Raman spectrum detection result and the quantified diagnostic data. The comparison detection unit 206 sequentially compares and analyzes the Raman signals extracted through the surface-enhanced Raman scattering test for each sample and the spectrum distribution result of the Raman signals with diagnostic data quantified through a machine learning program.
진단 결과 추출부(208)는 비교 결과에 따른 진단 결과를 설정 및 표시한다. 진단 결과 추출부(208)는 라만 시그널 및 라만 시그널의 스펙트럼 분포 결과와 정량화된 진단 데이터들의 비교 결과에 따라 최종적으로 진단 결과를 추출하고 화면으로 표시할 수 있다. The diagnosis result extraction unit 208 sets and displays diagnosis results according to comparison results. The diagnosis result extraction unit 208 may finally extract a diagnosis result according to a comparison result between the Raman signal and the spectrum distribution result of the Raman signal and the quantified diagnosis data, and display the result on a screen.
조기 진단 모듈(200), 및 데이터 학습 모듈(300)은 각 모듈의 프로세서 내 구성요소들의 동작을 제어하기 위한 알고리즘 또는 알고리즘을 재현한 프로그램에 대한 데이터를 저장하는 메모리(미도시), 및 메모리(또는, 데이터 베이스)에 저장된 데이터를 이용하여 전술한 동작을 수행하는 프로세서(미도시)를 포함할 수 있다. 이때, 메모리와 프로세서는 각각 별개의 칩으로 구현될 수 있다. 또는, 메모리와 프로세서는 단일 칩으로 구현될 수도 있다. The early diagnosis module 200 and the data learning module 300 include a memory (not shown) storing data for an algorithm or a program reproducing the algorithm for controlling the operation of components in the processor of each module, and a memory ( Alternatively, it may include a processor (not shown) that performs the above-described operation using data stored in a database. In this case, the memory and the processor may be implemented as separate chips. Alternatively, the memory and the processor may be implemented as a single chip.
각각의 구성요소는 소프트웨어 및/또는 Field Programmable Gate Array(FPGA) 및 주문형 반도체(ASIC, Application Specific Integrated Circuit)와 같은 하드웨어 구성요소를 의미한다. Each component refers to software and/or hardware components such as Field Programmable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC).
한편, 개시된 실시예들은 조기 진단 모듈(200), 및 데이터 학습 모듈(300)에 의해 실행 가능한 명령어를 저장하는 기록매체의 형태로 구현될 수 있다. 명령어는 프로그램 코드의 형태로 저장될 수 있으며, 프로세서에 의해 실행되었을 때, 프로그램 모듈을 생성하여 개시된 실시예들의 동작을 수행할 수 있다. 기록매체는 조기 진단 모듈(200), 및 데이터 학습 모듈(300), 컴퓨터로 읽을 수 있는 기록매체로 구현될 수 있다. Meanwhile, the disclosed embodiments may be implemented in the form of a recording medium storing commands executable by the early diagnosis module 200 and the data learning module 300 . Instructions may be stored in the form of program codes, and when executed by a processor, create program modules to perform operations of the disclosed embodiments. The recording medium may be implemented as an early diagnosis module 200, a data learning module 300, and a computer-readable recording medium.
조기 진단 모듈(200), 및 데이터 학습 모듈(300)이나 컴퓨터가 읽을 수 있는 기록매체로는 컴퓨터에 의하여 해독될 수 있는 명령어가 저장된 모든 종류의 기록 매체를 포함한다. 예를 들어, ROM(Read Only Memory), RAM(Random Access Memory), 자기 테이프, 자기 디스크, 플래쉬 메모리, 광 데이터 저장장치 등이 있을 수 있다. The early diagnosis module 200 and the data learning module 300 or computer-readable recording media include all types of recording media in which instructions readable by a computer are stored. For example, there may be read only memory (ROM), random access memory (RAM), magnetic tape, magnetic disk, flash memory, optical data storage device, and the like.
이상에서와 같이 첨부된 도면을 참조하여 개시된 실시예들을 설명하였다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고도, 개시된 실시예들과 다른 형태로 본 발명이 실시될 수 있음을 이해할 것이다. 개시된 실시예들은 예시적인 것이며, 한정적으로 해석되어서는 안 된다.As above, the disclosed embodiments have been described with reference to the accompanying drawings. Those skilled in the art to which the present invention pertains will understand that the present invention can be implemented in a form different from the disclosed embodiments without changing the technical spirit or essential features of the present invention. The disclosed embodiments are illustrative and should not be construed as limiting.

Claims (15)

  1. 염증 질환 분류 장치에 의해 수행되는 방법에 있어서,In the method performed by the inflammatory disease classification device,
    검체들을 준비하고 전처리하는 단계; Preparing and pre-processing samples;
    라만 분광 검사를 통해 라만 시그널 및 라만 시그널의 스펙트럼을 획득하는 단계; Obtaining a Raman signal and a spectrum of the Raman signal through Raman spectroscopy;
    상기 라만 시그널 및 상기 라만 시그널의 스펙트럼 분포를 분석하는 단계; analyzing the Raman signal and a spectrum distribution of the Raman signal;
    미리 설정된 기계 학습 프로그램을 통해 진단 데이터를 정량화하는 단계; 및 Quantifying diagnostic data through a preset machine learning program; and
    상기 라만 시그널 및 상기 스펙트럼 분포와 정량화된 진단 데이터들을 비교하여 진단 결과를 추출하는 단계를 포함하는, 염증 질환 분류 방법.Comprising the step of extracting a diagnostic result by comparing the Raman signal and the spectral distribution and quantified diagnostic data, inflammatory disease classification method.
  2. 제1 항에 있어서, According to claim 1,
    상기 라만 시그널 및 라만 시그널의 스펙트럼 획득 단계는,The step of obtaining the Raman signal and the spectrum of the Raman signal,
    표면-증강 라만 산란(surface-enhanced Raman scattering) 방식의 검사를 수행해서 상기 라만 시그널 및 상기 라만 시그널의 스펙트럼을 획득하는, 염증 질환 분류 방법. An inflammatory disease classification method for obtaining the Raman signal and the spectrum of the Raman signal by performing a surface-enhanced Raman scattering test.
  3. 제2 항에 있어서, According to claim 2,
    상기 라만 시그널 및 라만 시그널의 스펙트럼 획득 단계는,The step of obtaining the Raman signal and the spectrum of the Raman signal,
    상기 표면-증강 라만 산란 검사 과정에서 바이오 마커 검출 보정을 수행하여 라만 분광 시그널을 보정하는 단계를 더 포함하는, 염증 질환 분류 방법.Further comprising the step of correcting the Raman spectroscopy signal by performing biomarker detection correction in the surface-enhanced Raman scattering test process, the inflammatory disease classification method.
  4. 제3 항에 있어서, According to claim 3,
    상기 라만 분광 시그널을 보정하는 단계는,The step of correcting the Raman spectroscopy signal,
    표면-증강 라만 산란 검사 키트상 나노 사이즈의 바이오 마커들을 라만 측정 타겟으로 적용하고, 상기 나노 사이즈의 분자의 증폭된 피크의 세기 변화를 측정하여 상기 라만 분광 시그널을 보정하는, 염증 질환 분류 방법.Applying nano-sized biomarkers on a surface-enhanced Raman scattering test kit as Raman measurement targets, and measuring a change in intensity of an amplified peak of the nano-sized molecule to correct the Raman spectroscopy signal, Inflammatory disease classification method.
  5. 제2 항에 있어서, According to claim 2,
    상기 라만 시그널 및 상기 라만 시그널의 스펙트럼 분포를 분석하는 단계는,Analyzing the Raman signal and the spectrum distribution of the Raman signal,
    상기 검체들별로 각 검체 내에 포함된 대사물질의 종류, 염증 수치, 염증 종류를 분석하고, 상기 대사물질의 종류, 염증 수치, 염증 종류에 따라 신장염, 방광염, 암 등의 비뇨기계 염증 질환, 및 급성 신장 질환에 대한 진행도를 분석하는, 염증 질환 분류 방법. For each of the samples, the type of metabolite contained in each sample, the level of inflammation, and the type of inflammation are analyzed, and urinary inflammatory diseases such as nephritis, cystitis, cancer, and acute An inflammatory disease classification method for analyzing the progression of kidney disease.
  6. 제2 항에 있어서, According to claim 2,
    상기 미리 설정된 기계 학습 프로그램을 통해 진단 데이터를 정량화하는 단계는,The step of quantifying diagnostic data through the preset machine learning program,
    상기 라만 시그널 및 상기 라만 스펙트럼 검출 결과가 상기 기계 학습 프로그램과 데이터 베이스에 입력 값들로 입력되도록 하는 단계; inputting the Raman signal and the Raman spectrum detection result into the machine learning program and the database as input values;
    검체 검출 인적 정보를 포함한 추가 학습 인자들을 상기 기계 학습 프로그램의 입력 값으로 추가 입력하는 단계; additionally inputting additional learning factors including subject detection human information as input values of the machine learning program;
    적어도 하나 또는 둘 이상의 기계 학습 모델 및 기계 학습 프로그램을 선택하는 단계; selecting at least one or more machine learning models and machine learning programs;
    상기 선택된 기계 학습 프로그램이 상기 입력 값들을 반영하여 학습되도록 하는 단계; 및 allowing the selected machine learning program to learn by reflecting the input values; and
    상기 기계 학습 프로그램의 실행 결과에 따라 상기 진단 데이터를 정량화하는 단계를 포함하는, 염증 질환 분류 방법.Inflammatory disease classification method comprising the step of quantifying the diagnostic data according to the execution result of the machine learning program.
  7. 제6 항에 있어서, According to claim 6,
    상기 검체 검출 인적 정보를 포함한 추가 학습 인자들을 상기 기계 학습 프로그램의 입력 값으로 추가 입력하는 단계는,The step of additionally inputting additional learning factors including the subject detection personal information as input values of the machine learning program,
    나이, 성별, 보유 질병, 소견, 증상을 포함하는 검출 인적 정보, 검체 검출량, 및 검출 부위 정보를 상기 입력 값들으로 추가 입력하는, 염증 질환 분류 방법. A method for classifying inflammatory diseases, wherein age, sex, disease, diagnosis, and human detection information including symptoms, specimen detection amount, and detection site information are additionally input as the input values.
  8. 제6 항에 있어서, According to claim 6,
    상기 진단 결과를 추출하는 단계는,The step of extracting the diagnosis result,
    상기 라만 시그널 및 상기 라만 스펙트럼 검출 결과를 상기 기계 학습 프로그램을 통해 정량화된 상기 진단 데이터와 비교하는 단계; 및 comparing the Raman signal and the Raman spectrum detection result with the diagnostic data quantified through the machine learning program; and
    비교 결과에 따른 진단 결과를 설정하여 표시 화면으로 표시하는 단계를 포함하는, 염증 질환 분류 방법.An inflammatory disease classification method comprising the step of setting a diagnosis result according to a comparison result and displaying it on a display screen.
  9. 검체들에 대한 라만 분광 검사를 수행하여 라만 시그널 및 상기 라만 시그널의 스펙트럼을 획득하는 라만 검사 모듈; a Raman test module for obtaining a Raman signal and a spectrum of the Raman signal by performing a Raman spectroscopy test on the specimens;
    상기 라만 시그널 및 상기 라만 시그널의 스펙트럼 분포를 포함하는 학습 인자들을 입력받고, 미리 설정된 기계 학습을 수행하여 진단 데이터를 정량화하는 데이터 학습 모듈; 및 a data learning module that receives learning factors including the Raman signal and a spectral distribution of the Raman signal and performs preset machine learning to quantify diagnostic data; and
    상기 라만 시그널 및 상기 라만 시그널의 스펙트럼 분포와 정량화된 상기 진단 데이터를 비교하여 진단 결과를 추출하는 조기 진단 모듈을 포함하는, 염증 질환 분류 장치. An inflammatory disease classification apparatus comprising an early diagnosis module for extracting a diagnosis result by comparing the Raman signal and the spectrum distribution of the Raman signal and the quantified diagnosis data.
  10. 제9 항에 있어서, According to claim 9,
    상기 라만 검사 모듈은,The Raman inspection module,
    표면-증강 라만 산란 검사 키트를 포함하는 시료 검사 전처리부; 및 a sample inspection pre-processing unit including a surface-enhanced Raman scattering inspection kit; and
    상기 표면-증강 라만 산란 검사 키트 상 전처리된 검체에 대한 표면-증강 라만 산란 검사를 수행하여 상기 라만 시그널을 획득하는 라만 시그널 검출부를 포함하는, 염증 질환 분류 장치.An inflammatory disease classification apparatus comprising a Raman signal detector for obtaining the Raman signal by performing a surface-enhanced Raman scattering test on a sample pretreated on the surface-enhanced Raman scattering test kit.
  11. 제10 항에 있어서, According to claim 10,
    상기 라만 검사 모듈은,The Raman inspection module,
    상기 표면-증강 라만 산란 검사 키트상 나노 사이즈의 바이오 마커들을 라만 측정 타겟으로 적용하고, 상기 나노 사이즈의 분자의 증폭된 피크의 세기 변화를 측정하여 상기 라만 분광 시그널을 보정 및 정량화하는 분광 시그널 보정부를 더 포함하는 염증 질환 분류 장치. A spectroscopic signal correction unit for applying nano-sized biomarkers on the surface-enhanced Raman scattering test kit as Raman measurement targets and measuring a change in intensity of an amplified peak of the nano-sized molecule to correct and quantify the Raman spectroscopic signal. Inflammatory disease classification device further comprising.
  12. 제11 항에 있어서, According to claim 11,
    상기 조기 진단 모듈은,The early diagnosis module,
    상기 검체들 별로 각 검체 내에 포함된 대사물질의 종류, 염증 수치, 염증 종류를 분석하고, 상기 대사물질의 종류, 염증 수치, 염증 종류에 따라 신장염, 방광염, 암 등의 비뇨기계 염증 질환, 및 급성 신장 질환에 대한 진행도를 분석하는 염증 질환 분류 장치.For each sample, the type of metabolite contained in each sample, the level of inflammation, and the type of inflammation are analyzed, and according to the type of metabolite, level of inflammation, and type of inflammation, urinary inflammatory diseases such as nephritis, cystitis, cancer, and acute An inflammatory disease classification device that analyzes the progression of kidney disease.
  13. 제9 항에 있어서, According to claim 9,
    상기 데이터 학습 모듈은,The data learning module,
    상기 라만 시그널 및 상기 라만 시그널의 스펙트럼 검출 결과를 기계 학습 프로그램과 데이터 베이스에 입력 값들로 입력하는 학습 인자 입력부; a learning factor input unit inputting the Raman signal and a spectrum detection result of the Raman signal into a machine learning program and a database as input values;
    복수의 기계 학습 모델별 기계 학습 프로그램을 저장하고 적어도 하나 또는 둘 이상의 기계 학습 모델 및 기계 학습 프로그램을 선택해서 컴파일하는 기계학습 프로그램 입력부; a machine learning program input unit for storing machine learning programs for each of a plurality of machine learning models and selecting and compiling at least one or more machine learning models and machine learning programs;
    상기 선택된 기계 학습 프로그램이 상기 입력 값들을 반영하여 기계 학습되도록 상기 선택된 기계 학습 프로그램을 실행시키는 기계학습 처리부; 및 a machine learning processing unit executing the selected machine learning program so that the selected machine learning program reflects the input values and is machine trained; and
    상기 기계 학습 프로그램의 실행 결과에 따라 상기 진단 데이터를 정량화하는 질병 진단 모델 생성부를 포함하는 염증 질환 분류 장치. Inflammatory disease classification apparatus comprising a disease diagnosis model generation unit for quantifying the diagnosis data according to an execution result of the machine learning program.
  14. 제13 항에 있어서, According to claim 13,
    상기 학습 인자 입력부는,The learning factor input unit,
    나이, 성별, 보유 질병, 소견, 증상을 포함하는 검출 인적 정보, 검체 검출량, 및 검출 부위 정보를 상기 입력 값들으로 추가 입력하는 염증 질환 분류 장치. An inflammatory disease classification device for additionally inputting detection human information including age, gender, disease possessed, findings, and symptoms, sample detection amount, and detection site information as the input values.
  15. 제13 항에 있어서, According to claim 13,
    상기 조기 진단 모듈은,The early diagnosis module,
    상기 라만 시그널 및 상기 라만 스펙트럼 검출 결과를 읽어들이고 나이, 성별, 보유 질병, 소견, 증상을 포함하는 검체 인적 정보에 따라 분류하는 데이터 처리부; a data processing unit that reads the Raman signal and the Raman spectrum detection result and classifies them according to subject personal information including age, gender, diseases, findings, and symptoms;
    상기 데이터 학습 모듈로부터 정량화된 진단 데이터를 읽어들이는 질병 진단 모델 추출부; a disease diagnosis model extractor that reads the quantified diagnosis data from the data learning module;
    상기 라만 시그널 및 상기 라만 시그널의 스펙트럼 검출 결과와 정량화된 상기 진단 데이터를 비교 분석하는 데이터 비교 검출부; 및 a data comparison detection unit that compares and analyzes the Raman signal, a spectrum detection result of the Raman signal, and the quantified diagnostic data; and
    상기 진단 데이터와의 비교 결과에 따른 진단 결과를 설정 및 표시하는 진단 결과 추출부를 포함하는, 염증 질환 분류 장치.Inflammatory disease classification apparatus comprising a diagnosis result extraction unit for setting and displaying a diagnosis result according to a comparison result with the diagnosis data.
PCT/KR2022/021418 2022-02-08 2022-12-27 Inflammatory disease classification method and device using machine learning-based raman spectroscopic analysis WO2023153635A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0016224 2022-02-08
KR1020220016224A KR20230119901A (en) 2022-02-08 2022-02-08 Method and device for classifcation of nflammatory disease using raman spectroscopic analysis based on machine learning

Publications (1)

Publication Number Publication Date
WO2023153635A1 true WO2023153635A1 (en) 2023-08-17

Family

ID=87564558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/021418 WO2023153635A1 (en) 2022-02-08 2022-12-27 Inflammatory disease classification method and device using machine learning-based raman spectroscopic analysis

Country Status (2)

Country Link
KR (1) KR20230119901A (en)
WO (1) WO2023153635A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050078924A (en) * 2004-02-03 2005-08-08 재단법인서울대학교산학협력재단 Urine component analysis system and method by raman spectroscopy
KR20170130195A (en) * 2016-05-18 2017-11-28 서울대학교산학협력단 Nano sensor for early diagonisis of lung cancer using surface enhanced raman scattering and the method thereof
KR20180053957A (en) * 2016-11-14 2018-05-24 테라셈 주식회사 Medical diagnosis system, server, and method thereof
KR20190016387A (en) * 2017-08-08 2019-02-18 사회복지법인 삼성생명공익재단 A disease diagnosis method and slide using plasmonic enhancement effect
JP2021526628A (en) * 2018-04-05 2021-10-07 イーエニエーエスセー テック − インスティチュート デ エンゲンハリア デ システマス エ コンピュータドレス テクノロジア エ シエンシアInesc Tec − Instituto De Engenharia De Sistemas E Computadores, Tecnologia E Ciencia Spectrophotometric methods and equipment for predicting quantified values of components from samples

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102428314B1 (en) 2020-02-26 2022-08-03 사회복지법인 삼성생명공익재단 Cancer diagnosis using Raman signal of urine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050078924A (en) * 2004-02-03 2005-08-08 재단법인서울대학교산학협력재단 Urine component analysis system and method by raman spectroscopy
KR20170130195A (en) * 2016-05-18 2017-11-28 서울대학교산학협력단 Nano sensor for early diagonisis of lung cancer using surface enhanced raman scattering and the method thereof
KR20180053957A (en) * 2016-11-14 2018-05-24 테라셈 주식회사 Medical diagnosis system, server, and method thereof
KR20190016387A (en) * 2017-08-08 2019-02-18 사회복지법인 삼성생명공익재단 A disease diagnosis method and slide using plasmonic enhancement effect
JP2021526628A (en) * 2018-04-05 2021-10-07 イーエニエーエスセー テック − インスティチュート デ エンゲンハリア デ システマス エ コンピュータドレス テクノロジア エ シエンシアInesc Tec − Instituto De Engenharia De Sistemas E Computadores, Tecnologia E Ciencia Spectrophotometric methods and equipment for predicting quantified values of components from samples

Also Published As

Publication number Publication date
KR20230119901A (en) 2023-08-16

Similar Documents

Publication Publication Date Title
Zhang et al. Evaluation of a novel, integrated approach using functionalized magnetic beads, bench-top MALDI-TOF-MS with prestructured sample supports, and pattern recognition software for profiling potential biomarkers in human plasma
CN108603859B (en) Use of metabolites in urine for preparing kit used in method for evaluating cancer
US8175816B2 (en) System and method for analyzing metabolomic data
US20050101023A1 (en) Methods for diagnosing urinary tract and prostatic disorders
Guleken et al. Identification of polycystic ovary syndrome from blood serum using hormone levels via Raman spectroscopy and multivariate analysis
JP2002022748A (en) Clinical inspection system
JP2019105456A (en) Biomarker Search Method for Urinary Metabolites
Sotirakis et al. Identification of motor progression in Parkinson’s disease using wearable sensors and machine learning
CN113990485A (en) Method for diagnosing diseases based on conventional test data and knowledge graph
WO2023153635A1 (en) Inflammatory disease classification method and device using machine learning-based raman spectroscopic analysis
JP2007285922A (en) Clinical blood examination method using near infrared ray
Adigal et al. Protein profile analysis of tear fluid with hyphenated HPLC-UV LED-induced fluorescence detection for the diagnosis of dry eye syndrome
Zuleika Cross-Sectional Study as Research Design in Medicine
Vignoli et al. NMR-based metabolomics in Alzheimer’s disease research: a review
Listgarten et al. Practical proteomic biomarker discovery: taking a step back to leap forward
WO2007066589A1 (en) Method and apparatus for examining and diagnosing life style-related disease using near-infrared spectroscopy
RU2723139C2 (en) Method for differential diagnosis of forms of chronic tonsillitis using raman-fluorescence spectroscopy
WO2015026171A1 (en) Composition for diagnosing ovarian cancer, containing lysophosphatidylcholine and homocysteic acid, and method for diagnozing ovarian cancer by using same
JP2010117290A (en) Apparatus and method for analyzing liquid sample constituent
JP2007513399A (en) Generation and use of biochemical images
Naylor et al. Use of the Accutrend Plus point-of-care monitor for blood triglyceride measurement in horses
US20230194532A1 (en) Quantum optics profiles for screening, diagnosis, and prognosis of diseases
JP2001330599A (en) Metabolic error screening diagnostic device by gc/ms
CN116500179B (en) Method and system for calculating and converting original scores of ceramide related factors in blood plasma
EP4212864A1 (en) Cancer test method using metabolite list

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE