WO2023153498A1 - Molding composition manufacturing method, molded body manufacturing method, molding material, and molded body - Google Patents

Molding composition manufacturing method, molded body manufacturing method, molding material, and molded body Download PDF

Info

Publication number
WO2023153498A1
WO2023153498A1 PCT/JP2023/004585 JP2023004585W WO2023153498A1 WO 2023153498 A1 WO2023153498 A1 WO 2023153498A1 JP 2023004585 W JP2023004585 W JP 2023004585W WO 2023153498 A1 WO2023153498 A1 WO 2023153498A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding
inorganic solid
composition
mass
raw material
Prior art date
Application number
PCT/JP2023/004585
Other languages
French (fr)
Japanese (ja)
Inventor
雄也 酒井
裕太 菊池
理久 田中
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2023153498A1 publication Critical patent/WO2023153498A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • Embodiments of the present invention relate to a method for producing a molding composition, a method for producing a molded article, a molding material, and a molded article.
  • Injection molding, extrusion molding, blow molding, etc. are known as molding techniques for manufacturing molded bodies with desired shapes. These are widely used as a simple method that can realize a desired shape (see Patent Document 1, for example). In these methods, a thermoplastic resin material in a fluidized state at a high temperature is extruded into a mold having a predetermined shape, and a predetermined molding process is performed to impart a corresponding shape to the resin material.
  • the molding method described above is not suitable for manufacturing moldings containing inorganic materials. This is generally because many inorganic materials do not fluidize at the heating temperatures in the above molding techniques, and compacts formed by solidifying inorganic material powder tend to become brittle. For this reason, it is not easy to use molding techniques such as injection molding and extrusion molding in molding inorganic materials.
  • the problem to be solved by the present invention is to provide a method for producing a molding composition, a method for producing a molded article, a molding material, and a molded article that can easily obtain a molded article from a raw material composition containing an inorganic material. That is.
  • the present invention may include the following aspects.
  • a method for producing a molding composition obtaining a raw material composition containing an inorganic solid material and an organic material that is fluidized by heating to bond the inorganic solid materials together; heating the raw material composition in a material space; extruding the heated raw material composition from the material space as the molding composition;
  • a method, including [2] The organic material is a plant material. The method according to [1].
  • the organic material contains one or more selected from the group consisting of lignin, cellulose, hemicellulose, and sugar. The method according to [1] or [2].
  • the inorganic solid material includes one or more concretes, one or more cements, one or more minerals, one or more metals, one or more ceramics, one or more glasses, and one or more slags. , one or more lime, and one or more incinerated ash, and one or more selected from the group consisting of composite materials thereof, The method according to any one of [1] to [3]. [5] the ratio m 1 /m 2 of the mass m 1 of the organic material and the mass m 2 of the inorganic solid material is greater than 1; The method according to any one of [1] to [4]. [6] The raw material composition further contains water, The method according to any one of [1] to [5].
  • the heating temperature in the step of heating the raw material composition is 60 degrees or more and 240 degrees or less.
  • [8] further comprising applying pressure to the heated raw material composition;
  • a method for manufacturing a molded body A method comprising the step of molding the molding composition produced by the method according to any one of [1] to [8] into a predetermined shape.
  • the molded body is molded by injection molding, extrusion molding, insert molding, blow molding, or inflation molding. The method according to [9].
  • an inorganic solid material an organic material that is fluidized by heating to bond the inorganic solid materials together; including the ratio m 1 /m 2 of the mass m 1 of the organic material and the mass m 2 of the inorganic solid material is greater than 1; molding material.
  • an inorganic solid material an organic material that bonds the inorganic solid materials together and that can be fluidized by heating; including the ratio m 1 /m 2 of the mass m 1 of the organic material and the mass m 2 of the inorganic solid material is greater than 1; molding.
  • the present invention it is possible to provide a method for producing a molding composition, a method for producing a molded article, a molding material, and a molded article that can easily obtain a molded article from a raw material composition containing an inorganic material.
  • a method for producing a molding composition, a method for producing a molded article, a molding material, and a molded article of the embodiment will be described below.
  • the following embodiments show one aspect of the present invention, do not limit the present invention, and can be arbitrarily changed within the scope of the technical idea of the present invention. Also, each configuration and each feature of the embodiments can be combined arbitrarily.
  • a method for producing a molding composition comprising: (1) a step of obtaining a raw material composition containing an inorganic solid material and an organic material that is fluidized by heating to bond the inorganic solid materials together (hereinafter referred to as a "raw material preparation step”); (2) a step of heating the raw material composition in the material space (hereinafter referred to as a “heating step”); (3) a step of extruding the heated raw material composition from the material space as a molding composition (hereinafter referred to as "extrusion step”);
  • a method is provided comprising:
  • the present inventors have found that the above method enables extrusion processing for molding using a raw material composition containing an inorganic solid material.
  • Each step (1) to (3) included in the above method will be described below. Note that these steps may be executed in parallel.
  • Raw material preparation step First, the above organic material and inorganic solid material are prepared. Then, by mixing these, a raw material composition is obtained. Other materials may be added along with the organic and inorganic solid materials. Examples of other materials include water, additives, and the like.
  • ingredients are added is not particularly limited. All materials may be mixed together, or may be mixed in multiple steps.
  • the method of mixing the materials is not particularly limited.
  • mixing methods include manual stirring, mortar (manual or automatic), ball mill, planetary mill, vibrating mill, rotor mill, hammer mill, disper mill, mixer, homogenizer, and the like.
  • Conditions for mixing are not particularly limited.
  • the materials can be mixed in the atmosphere at normal temperature and normal pressure, but the temperature, pressure, atmosphere, etc. may be appropriately set.
  • Organic material can have the function of fluidizing the entire composition so that molding such as injection molding and extrusion molding can be performed.
  • the organic material is not particularly limited as long as it is fluidized by heating and exhibits adhesiveness. When the organic material is fluidized by heating and then cooled, the surrounding inorganic solid material particles can be adhered and fixed to each other. This can improve the strength and compactness of the compact.
  • organic materials include, but are not limited to, vegetable materials, animal materials, synthetic resin materials, and the like.
  • the organic material may contain two or more of these materials.
  • organic materials are plant materials.
  • plant material means material contained in plants or derivatives thereof.
  • plant materials include lignin, cellulose, hemicellulose, sugars, and the like. From the viewpoint of raw materials, there are no particular limitations, but conifers such as cedar, cypress, and pine; broad-leaved trees such as beech, chinensis, and maple; , barnyard millet, green soybeans, soybeans, red beans, peas, coffee beans; , bell peppers, paprika, cucumber, bamboo shoots, tea leaves, and other vegetables; oranges, mandarin oranges, Iyokan, strawberries, bananas, cassis, apples, persimmons, pears, cherries, pineapples, grapes, blueberries, peaches, and other fruits; potatoes, sweet potatoes, purple Potatoes such as potato, taro, Chinese yam, and yam; mushrooms such as shiitake, maitake, enoki, shimeji, name
  • lignin refers to a polymer having a structure in which lignin monomers are polymerized as a basic structure, which may be partially substituted by a substituent, and binds or complexes with other compounds. may be formed.
  • the type of lignin is not particularly limited, such as S-type lignin, G-type lignin, and H-type lignin.
  • the organic material may contain lignin in a structure in which one or more lignin monomers are polymerized.
  • Lignin may contain monomers other than lignin monomers as polymerized units.
  • cellulose refers to a polymer having a basic structure in which ⁇ -glucose is linearly polymerized through glycosidic bonds, and may be partially substituted with a substituent. (for example, lignin), or may form a complex with other compounds.
  • substituent for example, lignin
  • sucrose refers to a compound having a carbonyl group or an aldehyde group and having multiple hydroxyl groups, which may be partially substituted by substituents, bound to other compounds or It may form a complex.
  • organic materials are animal materials.
  • animal material means a material contained in an animal or a derivative thereof. Examples of animal materials include, but are not limited to, proteins and the like.
  • organic materials are synthetic resin materials.
  • synthetic resin materials include thermoplastic resins. Specific examples include polyolefin (polyethylene, polypropylene, etc.), polystyrene, polyvinyl chloride, polyacrylonitrile, polyvinyl alcohol, polyester (polyethylene terephthalate, etc.), polycarbonate, polyamide, and the like.
  • the raw material composition and the molding composition do not have to contain the synthetic resin material.
  • the organic material can contain one or more selected from the group consisting of lignin, cellulose, hemicellulose, and sugar. These materials can be obtained from plants. Therefore, the use of these materials as organic materials is preferable in that plant-derived resources, which have not been sufficiently reused in the past, can be reused, contributing to sustainability.
  • lignin, cellulose, hemicellulose, and sugars are fluidized at elevated temperatures to fluidize the entire feedstock composition, thereby enabling the extrusion process for shaping.
  • these materials function like an adhesive, and after cooling, the particles of the inorganic solid material are adhered and fixed to each other, thereby maintaining the shape of the molded body and improving the strength of the molded body. Conceivable.
  • fibrous materials have resistance to tensile force
  • organic materials containing fibrous materials are preferable in that the tensile strength of the molded body can be improved.
  • fibrous materials that can be used as organic materials include cellulose, hemicellulose, nylon fibers, polyester fibers, acrylic fibers, and the like.
  • the raw material composition and molding composition may be free of fibrous material.
  • the organic material may be comminuted and/or screened, for example by grinding, chopping, or sieving the raw material, until the maximum particle size is in the desired range.
  • maximum particle size refers to the use of a mesh sieve having square pores of a predetermined size to select a "particle group that has passed through the sieve” from a certain particle group. sieve pore size. That is, the maximum particle size of the "particles that passed through the sieve” is the pore size of the sieve used.
  • the maximum particle size of the organic material when mixed with other materials is, for example, 100 nm or more and 50 mm or less.
  • the maximum particle size of the organic material is less than 100 nm, the burden of pulverizing the material may become excessively large. If the maximum particle size of the organic material exceeds 50 mm, the organic material may not be sufficiently fluidized even at high temperatures.
  • the maximum particle size of the organic material is preferably 1 ⁇ m or more and 10 mm or less, 10 ⁇ m or more and 5 mm or less, or 100 ⁇ m or more and 1 mm or less.
  • the maximum particle size of the inorganic solid material is smaller than the diameter of the extrusion port 30 of the molding device 10 described below. In addition, these upper limit values and lower limit values can be combined arbitrarily.
  • the amount of organic material added is, for example, 50 parts by mass or more and 99 parts by mass or less, preferably 60 parts by mass or more and 90 parts by mass or less, or 70 parts by mass or more. It is 80 parts by mass or less.
  • these upper limit values and lower limit values can be combined arbitrarily.
  • the inorganic solid material can have the function of improving the density and/or durability (for example, fire resistance and insect repellency) of the molded article to be produced.
  • the inorganic solid material may be any inorganic material that is solid at normal temperature and pressure.
  • the inorganic solid material is not particularly limited, but for example, one or more concretes, one or more cements, one or more minerals, one or more metals, one or more ceramics, one or more glasses, one above slag, one or more kinds of lime, one or more kinds of incineration ash, and one or more selected from the group consisting of these composite materials.
  • Concrete includes any known cement material, any known coarse aggregate, any known fine aggregate, and water.
  • concrete includes cement materials such as portland cement, ground blast furnace slag, silica fume and fly ash, water, fine aggregate such as natural sand, blast furnace slag and limestone sand, natural gravel and blast furnace slag coarse aggregate. , limestone gravel, steel slag subbase material for roads and other coarse aggregates.
  • Concrete may further comprise an air entrainment agent. The blending amount of each component in the concrete can be determined arbitrarily.
  • Concrete may further contain any material other than the above.
  • concrete may further comprise optional additives such as shrinkage reducing agents, water reducers, cement dispersants, and the like.
  • Concrete may further include fibrous materials, metallic materials, ceramic materials, plastic materials, wood, wood chips, grass, paper, cloth, glass, soil, clay, paints, adhesives, and the like.
  • Concrete is concrete in various shapes such as concrete structures having arbitrary shapes, concrete waste, or fragments obtained by crushing or pulverizing concrete structures, granules, and powders. obtain.
  • concrete waste such as concrete rubble generated from construction of structures such as buildings, roads, railways, utility poles may be used.
  • the use of concrete waste is advantageous in terms of cost and sustainability, as it enables effective utilization of concrete resources that have not been sufficiently reused in the past.
  • cement means a powder that can be used as a raw material for building materials such as mortar and concrete.
  • Examples of cement include portland cement, ground granulated blast furnace slag, silica fume, fly ash cement, and alumina cement.
  • minerals may be natural minerals, or may be artificial or biologically derived materials.
  • minerals, or mixtures or composites of minerals include sand, gravel, silt, clay, gravel, stone, diatomaceous earth, and the like.
  • metal includes elemental metals and alloys. Examples of metals include iron, steel, aluminum, copper, brass, and the like.
  • ceramics means heat-treated inorganic substances.
  • examples of ceramics include metal oxides, metal carbides, metal nitrides, and inorganic materials containing no metal element (eg, diamond, silicon, carbon fiber, silicon carbide, fullerene, boron carbide), and the like.
  • glass means a solid material containing at least partially amorphous silicon oxide.
  • glasses include soda lime glass, quartz glass, silicate glass, borosilicate glass, and the like.
  • slag means a by-product produced when smelting metal from ore.
  • slag include blast furnace slag, steelmaking slag, nonferrous slag, and the like.
  • lime is a generic term for quicklime (calcium oxide) and slaked lime (calcium hydroxide), and includes materials containing calcium oxide and/or calcium hydroxide as main components.
  • Incineration ash as used herein means the powder that remains after burning a substance. Examples of incinerated ash include fly ash.
  • the inorganic solid material includes one or more selected from the group consisting of concrete, cement, sand, gravel, stone, diatomaceous earth, slag, gypsum, lime, ash, fly ash, metal, brick, and glass. These materials are advantageous in that they are readily available and have not been fully utilized in the past.
  • Inorganic solid materials like organic materials, can be comminuted and/or screened, for example by grinding or sieving raw materials, until the maximum particle size is in the desired range.
  • the maximum particle size of the inorganic solid material is, for example, 100 nm or more and 50 mm or less. If the maximum particle size of the inorganic solid material is less than 100 nm, the burden of pulverizing the material may become excessively large. If the maximum particle size of the inorganic solid material is more than 50 mm, the gaps between the constituent particles of the molded article to be produced become large, and the strength of the entire molded article may decrease.
  • the maximum particle size of the inorganic solid material is preferably 1 ⁇ m or more and 10 mm or less, 10 ⁇ m or more and 5 mm or less, or 100 ⁇ m or more and 1 mm or less.
  • the maximum particle size of the inorganic solid material is smaller than the diameter of the extrusion port 30 of the molding device 10 described below.
  • these upper limit values and lower limit values can be combined arbitrarily.
  • the amount of the inorganic solid material added is, for example, 10 parts by mass or more and less than 50 parts by mass, preferably 15 parts by mass or more and 45 parts by mass or less, and 20 parts by mass or more. It is 40 parts by mass or less, or 25 parts by mass or more and 35 parts by mass or less.
  • these upper limit values and lower limit values can be combined arbitrarily.
  • the amount of the organic material added is, for example, greater than 50 parts by mass and 99 parts by mass or less. That is, the amount of the inorganic solid material added is, for example, 1 part by mass or more and less than 50 parts by mass.
  • the ratio m 1 /m 2 between the mass m 1 of the organic material and the mass m 2 of the inorganic solid material is, for example, greater than 1 and 100 or less.
  • m 1 /m 2 may be 1.5 to 50, 2 to 20, 3 to 10, or 4 to 8.
  • these upper limit values and lower limit values can be combined arbitrarily.
  • the amount of the organic material added is less than 50 parts by mass (that is, m 1 /m 2 is 1 or less), the amount of the organic material contained in the molding composition is insufficient, and sufficient fluidity is not obtained during molding. may not be obtained. As a result, there is a possibility that the molding composition cannot be injected. Even if it is less than parts by mass, it may be possible to inject depending on the applied pressure.). If the amount of the organic material added is more than 99 parts by mass (that is, the amount of the inorganic solid material added is less than 1 part by mass), the amount of combustible components in the molded body increases, and sufficient fire resistance may not be obtained. have a nature. In addition, the molded article may not be sufficiently resistant to insect damage and fungal growth.
  • (1-3) Water Water may be added to the organic material and the inorganic solid material in the raw material preparation step.
  • the raw material composition will contain water.
  • the timing of adding water is not particularly limited, but it is preferable to add water to the raw material composition before the heating step in order to permeate the water into the raw material composition before heating.
  • the addition of water increased the fluidity of the molding composition, making it easier to extrude, while also tending to increase the porosity of the molding composition.
  • the effect of water is discussed below.
  • a possible mechanism for the increase in fluidity is that the organic material is denatured by high-temperature steam, resulting in an improvement in fluidity.
  • the organic material contains lignin or hemicellulose, the mechanism is considered to be that these components are decomposed by high-temperature steam, thereby improving fluidity.
  • a possible mechanism for the increase in porosity is that water contained in the molding composition evaporates due to heating, resulting in formation of voids in the molding composition.
  • moisture content the ratio of the mass of added water to the total mass of components other than water in the raw material composition.
  • a water content of 0% means that no water was added, and a water content of 100% means that the same mass of water as the components other than water in the raw material composition was added.
  • the water content is, for example, 0% or more and 200% or less, 5% or more and 100% or less, or 10% or more and 50% or less.
  • these upper limit values and lower limit values can be combined arbitrarily.
  • additives include adhesives, plasticizers, reinforcing materials, colorants, dispersants, antioxidants, flame retardants, stabilizers, foaming agents, and the like.
  • an alkaline component for example, another organic material, another inorganic solid material, or the like may be further added.
  • the form of the raw material composition is not particularly limited.
  • organic materials and inorganic solid materials may be mixed in the form of powders or particles, respectively.
  • the raw material composition may be in the form of a powder (including a powder wet with water), or may be solidified into a predetermined shape such as a pellet.
  • the raw material composition has the form of a powder in which the powder of the organic material and the powder of the inorganic solid material are mixed.
  • the raw material composition is heated to a predetermined temperature.
  • heat treatment is performed so as to fluidize the organic material.
  • the organic material fluidized by the heat treatment enters interstices between particles of the inorganic solid material, so that substantially the entire molding composition is fluidized.
  • a heating method is not particularly limited, and any heating means such as a hot plate and a heating furnace can be used.
  • the heating temperature in the heating step is, for example, 60 degrees or more and 240 degrees or less. If the heating temperature is less than 60°C, the organic material may not be sufficiently fluidized and extrusion of the molding composition may be difficult. If the heating temperature is over 240 degrees, the organic material may be carbonized or ignited. Preferably, the heating temperature is 80 to 230 degrees, 100 to 200 degrees, or 120 to 180 degrees. In addition, these upper limit values and lower limit values can be combined arbitrarily. The heating temperature may be changed as appropriate during the molding process.
  • pressure treatment may be performed by applying pressure to the raw material composition.
  • the pressure treatment may be performed after the heating to the heating temperature is completed, may be performed in parallel with the heating to the heating temperature, or may be performed before the heating treatment.
  • the method may further include applying pressure to the heated raw material composition (hereinafter referred to as "pressurization step").
  • pressurization step By pressurizing the heated raw material composition, the material is compressed while the organic material is in a molten state, so that the voids inside the molding composition can be reduced. By molding using this molding composition, a molded article with few voids can be formed.
  • the applied pressure applied to the raw material composition in the pressure treatment is, for example, 0.01 MPa or more and 400 MPa or less. If the applied pressure is less than 0.01 MPa, the raw material composition may not be sufficiently pressurized. If the applied pressure is 400 MPa or more, the excessive pressure may adversely affect the molding equipment. Preferably, the applied pressure is 0.1 MPa to 300 MPa, 1 MPa to 200 MPa, or 10 MPa to 100 MPa. In addition, these upper limit values and lower limit values can be combined arbitrarily. The applied pressure may be varied appropriately during the molding process.
  • a step of selecting a heating temperature and/or applied pressure that can extrude the molding composition may be performed according to the molding conditions.
  • the molding conditions include, for example, the types, amounts, and forms of organic materials and inorganic solid materials contained in the raw material composition, the amount of water in the raw material composition, the treatment of the raw material powder, the size and shape of the mold used, as well as the diameter of the extrusion port.
  • the heating temperature and/or the applied pressure can be selected by referring to a database that records the heating temperature and/or the applied pressure suitable for extrusion of the molding composition. .
  • FIG. 1 are cross-sectional views showing a molding apparatus 10 and its method of use.
  • the molding apparatus 10 accommodates and heats the raw material composition P1 inside, and applies pressure to the heated raw material composition P1 by sandwiching it from above and below, and extrudes it to the outside as a molding composition P2.
  • the molding apparatus 10 includes storage means for storing the raw material composition P1 in the material space, heating means for heating the raw material composition P1 in the material space, pressurizing means for applying pressure to the raw material composition P1 in the material space, and heating means. and extruding means for extruding the pressurized raw material composition P1 to the outside from the material space as the molding composition P2, and molding means for molding the extruded molding composition P2 into a predetermined shape.
  • molding device 10 has lower member 12 and upper member 14 .
  • the lower member 12 and the upper member 14 are joined together to form a cavity C (an example of a "material space") inside which the raw material composition P1 can be accommodated.
  • a cavity C an example of a "material space" inside which the raw material composition P1 can be accommodated.
  • lower member 12 and upper member 14 are made of a material with good thermal conductivity. More preferably, lower member 12 and upper member 14 are made of metal.
  • the lower member 12 has a lower heating member 20 (an example of "heating means"), a base 22, and an accommodating member 24 (an example of "accommodating means”).
  • the lower heating member 20 is attached to the lower surface of the base 22 and heats the molding apparatus 10 from below.
  • the housing member 24 is a tubular member attached to the upper surface of the base 22 and supported by the base 22 .
  • the containing member 24 has an internal space capable of containing the raw material composition P1.
  • a peripheral wall of the housing member 24 is formed with an extrusion port 30 passing through the peripheral wall.
  • the upper member 14 has an upper heating member 26 and a pressing member 28 .
  • the upper heating member 26 (an example of “heating means”) is attached to the upper surface of the pressing member 28 and heats the molding apparatus 10 from above.
  • the pressing member 28 (an example of “pressurizing means” and “extrusion means”) has a piston shape so that it can be inserted into the internal space of the housing member 24 from above.
  • a cavity C is formed by inserting the pressing member 28 into the internal space of the housing member 24 . Cavity C is closed except for extrusion port 30 .
  • a method of heating the raw material composition P1 using the molding apparatus 10 will be described. First, the molding apparatus 10 is heated to a predetermined temperature by the lower heating member 20 and the upper heating member 26 . Next, the raw material composition P1 is put into the internal space of the containing member 24 . A raw material composition P1 is heated by a preheated molding device 10 . Thereafter, as shown in FIG. 1, the lower member 12 and the upper member 14 are coupled by inserting the pressing member 28 into the internal space of the housing member 24 . The raw material composition P1 is pressed from above by the pressing member 28 . As a result, heat exchange between the raw material composition P1 and each member of the molding apparatus 10 is promoted, and the raw material composition P1 is compressed within the cavity C. As a result, the entire raw material composition P1 is heated.
  • the molding device 10 can perform both the heating step and the extrusion step, because the molding composition P2 can be easily molded.
  • a method for manufacturing a molded body comprising: (4) A step of molding the molding composition produced by the above method into a predetermined shape (hereinafter referred to as "molding step").
  • a method is provided comprising: The molding step may follow the extrusion step described above or be performed in parallel with the extrusion step.
  • An example of a method for producing a molded article from the molding composition P2 will be described below with reference to FIG.
  • FIG. 3 shows an example of a method of processing the molding composition P2 using the molding apparatus 10.
  • a mold 40 is used for molding the molding composition P2.
  • a die 40 is coupled to the outlet of extrusion spout 30 .
  • Mold 40 has a female mold 42 and a male mold 44 .
  • the female die 42 is formed with a recess having a predetermined shape for forming a molded product.
  • the male mold 44 is formed with a projection having a predetermined shape for cooperating with the female mold 42 to form a molded product.
  • a mold 40 (an example of "forming means") is coupled to the housing member 24 so that the concave portion of the female mold 42 communicates with the extrusion port 30.
  • the gap G is filled with the molding composition P2 extruded from the extrusion port 30 in a state in which the housing member 24 and the mold 40 are coupled.
  • the female mold 42 and the male mold 44 are separated, and the molding composition P2 is cooled and hardened on the convex portion of the male mold 44 . Thereby, a molded product having a shape corresponding to the gap G is obtained.
  • the molding method of the molding composition P2 is not limited to the above example.
  • the method shown in FIG. 3 is injection molding, various molding methods such as extrusion molding, insert molding, blow molding, and inflation molding can be used for the molding composition P2 extruded from the extrusion port 30.
  • the raw material composition can be appropriately pretreated.
  • the pretreatment may be performed, for example, in the raw material preparation step, before or after mixing each raw material.
  • a treatment for example, alkali treatment, autoclave treatment, or enzymatic treatment
  • Any base such as KOH, NaOH, LiOH can be used for the alkaline treatment.
  • arbitrary pretreatments such as acid treatment, oxidation treatment, explosion treatment, hydrolysis treatment, and bleaching treatment may be performed. After pretreatment such as alkali treatment or acid treatment, washing treatment may be performed.
  • washing treatment such as washing with water, washing with a neutralization chamber, or neutralization treatment with an acid or alkali can be performed so that the raw material is in a predetermined state (for example, a predetermined pH).
  • a predetermined state for example, a predetermined pH
  • Such pretreatment and/or washing treatment may be carried out in order to make the raw material composition P1 containing the organic material and the inorganic solid material suitable for the desired molding method.
  • the molding composition P2 having properties and characteristics suitable for the desired molding method is obtained, or a molded article having desired strength characteristics is obtained.
  • the fiber orientation of the fibrous material may be controlled by known techniques.
  • properties and characteristics suitable for the desired molding method for example, flowability, thermal shear properties, viscosity, density, etc.
  • a molding composition can be obtained that has a desired shear capacity or shear rate.
  • a known simple molding method can be applied to the raw material composition containing the inorganic solid material. Therefore, a molded article having a desired shape can be easily obtained from a raw material composition containing an inorganic solid material. Further, by bonding the inorganic solid materials together with the organic material, the strength of the molded body can be improved compared to a molded body made of only the inorganic solid material.
  • the molding material includes an inorganic solid material and an organic material that is fluidized by heating to bond the inorganic solid materials together, the mass m1 of the organic material and the mass of the inorganic solid material
  • a molding material is provided in which the ratio m 1 /m 2 to m 2 is greater than 1.
  • a molding material is used as a material for forming a molded body.
  • the term "molding material” encompasses both the raw material composition P1 and the molding composition P2 described above.
  • the form of the molding material is not particularly limited, and may be a mixture of solid powders such as the raw material composition P1, or a composition in which at least a portion is fluidized such as the molding composition P2.
  • the composition may be a solidified fluid.
  • the molding material can be used in molding methods applicable to thermoplastic materials such as injection molding, extrusion molding, blow molding, inflation molding.
  • m 1 /m 2 is 100 or less, for example.
  • m 1 /m 2 may be 1.5 to 50, 2 to 20, 3 to 10, or 4 to 8.
  • these upper limit values and lower limit values can be combined arbitrarily.
  • the molding material has, for example, a porosity of 0% or more and 90% or less. Porosity is measured by the Archimedes method. Preferably, the porosity of the molding material is 10% to 80%, 20% to 70%, 25% to 60%, or 30% to 50%.
  • the shaped body includes an inorganic solid material, and an organic material that bonds the inorganic solid materials together and that can be fluidized by heating, and the mass of the organic material m 1 to the mass m 2 of the inorganic solid material, m 1 /m 2 is greater than 1.
  • m 1 /m 2 is, for example, 100 or less.
  • m 1 /m 2 may be 1.5 to 50, 2 to 20, 3 to 10, or 4 to 8.
  • these upper limit values and lower limit values can be combined arbitrarily.
  • the compact has, for example, a porosity of 0% or more and 90% or less. Porosity is measured by the Archimedes method. Preferably, the porosity of the compact is 10% to 80%, 20% to 70%, 25% to 60%, or 30% to 50%.
  • Example 1-1 Manufacture of raw material composition
  • cedar wood powder (trade name: domestic cedar powder, 300 ⁇ m pass, manufactured by Naka Wood Co., Ltd.) was prepared. A 300 ⁇ m pass is a standard for passing through a sieve with an opening of 300 ⁇ m. Therefore, the maximum particle size of the wood flour used is about 300 ⁇ m.
  • the inorganic solid material concrete powder obtained by pulverizing concrete rubble was prepared. Specifically, the concrete rubble was pulverized and passed through a sieve with an opening of 105 ⁇ m to obtain a concrete powder having a maximum particle size of about 105 ⁇ m. The above organic material and inorganic solid material were mixed at a mass ratio of 4:1. 10 parts by mass of water was added to 100 parts by mass of this mixture and mixed. Thus, a powdery raw material composition was obtained.
  • the molding apparatus 10 shown in FIG. 1 was used to heat and inject the raw material composition. Specifically, after the lower member 12 and the upper member 14 of the molding apparatus 10 are preheated to 180° C. by the heating members 20 and 26, respectively, the raw material composition P1 in powder form is put into the cavity C in the molding apparatus 10. did. Next, a load of 1 ton is applied in the direction in which the lower member 12 and the upper member 14 approach each other, and the load is maintained for 5 minutes, and whether or not the molding composition P2 is injected from the extrusion port 30 of the housing member 24 of the lower member 12 is checked. confirmed.
  • the molding composition P2 was injected from the extrusion port 30 when a load of 2 tons was applied.
  • the inner diameter of the housing member 24 of the molding apparatus 10 used is 14 mm, and the area to which the load is applied is about 154 mm 2 , so the load of 2 tons is converted to pressure of about 128 MPa.
  • Example 1-2, Example 1-3, Comparative Example 1> (Change in mass ratio between organic material and inorganic solid material)
  • Example 1-2, Example 1-3, and Comparative Example 1 as shown in Table 1 below, except that the mass ratio of the organic material and the inorganic solid material was changed, Example 1-1 and The presence or absence of ejection was confirmed in the same manner. Specifically, the mass ratio of the organic material and the inorganic solid material was varied within the range of 3:1 to 1:1. As a result, injection was confirmed in Examples 1-2 and 1-3, but injection of the molding composition P2 was not confirmed in Comparative Example 1 even when a load of 7 tons was applied.
  • Examples 2-1 to 2-5 (Change of heating temperature)
  • the heating temperature was changed from Example 1-1 (the mass ratio of the organic material to the inorganic solid material was 4:1). , confirmed the presence or absence of injection.
  • the heating temperature was changed from that in Example 1-2 (the mass ratio of the organic material to the inorganic solid material was 3:1), and the presence or absence of injection was confirmed. As a result, injection of the molding composition P2 was confirmed in all Examples.
  • Example 3-1 As shown in Table 1 below, the same as Example 1-1 except that 100 parts by weight of water was added to 100 parts by weight of the mixture of the organic material and the inorganic solid material. Then, the presence or absence of injection was confirmed.
  • Example 3-2 to 3-7 the heating temperature and the mass ratio of the organic material and the inorganic solid material were variously changed from those in Example 3-1, and the presence or absence of injection was confirmed. As a result, injection was confirmed in Examples 3-1 to 3-7, but injection of the molding composition P2 was not confirmed in Comparative Example 2 even when a load of 7 tons was applied. In Example 3-1, injection was confirmed, but the specific load value is unknown.
  • Example 4-2 (no water used)
  • Example 4-1 and 4-2 as shown in Table 1 below, the presence or absence of injection was confirmed without adding water.
  • injection of the molding composition P2 was confirmed in all Examples.
  • Example 5 (Use of thermoplastic resin)
  • polyethylene trade name: small polyethylene fine powder, manufactured by Featherfield Co., Ltd.
  • injection of the molding composition P2 was confirmed.
  • Table 1 below shows experimental parameters and results for each example and comparative example.
  • the "water content” column describes the ratio of the added amount (mass) of water to the total mass of the organic material and the inorganic solid material.
  • “success/failure” column "Yes” is entered when injection is confirmed, and “No” is entered when injection is not confirmed up to a load of 7 tons.
  • the molding composition can be extruded without containing the synthetic resin material. It was also confirmed that the molding composition could be extruded even when a synthetic resin material (polyethylene) was used instead of wood flour.
  • a synthetic resin material polyethylene
  • the heating temperature and water content increased, the load during injection decreased and the injection tended to become easier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

According to an embodiment, the present invention provides a molding composition manufacturing method including: a step for obtaining a raw material composition containing inorganic solid materials and an organic material that is liquidized by being heated, to glue the inorganic solid materials together; a step for heating the raw material composition in a material space; and a step for extruding the heated raw material composition, as a molding composition, from the material space.

Description

成形用組成物の製造方法、成形体の製造方法、成形材料、および成形体Method for producing molding composition, method for producing molded article, molding material, and molded article
 本発明の実施形態は、成形用組成物の製造方法、成形体の製造方法、成形材料、および成形体に関する。本願は、2022年2月11日に出願された米国特許仮出願63/309,019号に基づき優先権を主張し、その内容をここに援用する。 Embodiments of the present invention relate to a method for producing a molding composition, a method for producing a molded article, a molding material, and a molded article. This application claims priority to US Provisional Patent Application No. 63/309,019, filed February 11, 2022, the contents of which are hereby incorporated by reference.
 所望の形状を有する成形体を製造する成形技術として、射出成形、押出成形、ブロー成形などが知られている。これらは、所望の形状を実現できる簡便な方法として広く使用されている(たとえば、特許文献1を参照)。これらの方法では、高温で流動化した状態の熱可塑性樹脂材料を所定の形状を有する型に押し出し、所定の成形プロセスを実施することにより、対応する形状を当該樹脂材料に付与する。 Injection molding, extrusion molding, blow molding, etc. are known as molding techniques for manufacturing molded bodies with desired shapes. These are widely used as a simple method that can realize a desired shape (see Patent Document 1, for example). In these methods, a thermoplastic resin material in a fluidized state at a high temperature is extruded into a mold having a predetermined shape, and a predetermined molding process is performed to impart a corresponding shape to the resin material.
日本国特開平11-240051号公報Japanese Patent Laid-Open No. 11-240051
 一方、上記の成形方法は、無機材料を含む成形体を製造するには適していない。これは、一般に、上記の成形技術における加熱温度では多くの無機材料は流動化しないこと、無機材料粉末を固めた成形体が脆くなりやすいことなどが原因である。このため、無機材料の成形において射出成形、押出成形などの成形技術を利用することは容易でない。 On the other hand, the molding method described above is not suitable for manufacturing moldings containing inorganic materials. This is generally because many inorganic materials do not fluidize at the heating temperatures in the above molding techniques, and compacts formed by solidifying inorganic material powder tend to become brittle. For this reason, it is not easy to use molding techniques such as injection molding and extrusion molding in molding inorganic materials.
 本発明が解決しようとする課題は、無機材料を含む原料組成物から成形体を簡便に得ることができる成形用組成物の製造方法、成形体の製造方法、成形材料、および成形体を提供することである。 The problem to be solved by the present invention is to provide a method for producing a molding composition, a method for producing a molded article, a molding material, and a molded article that can easily obtain a molded article from a raw material composition containing an inorganic material. That is.
 本発明は、以下の態様を含み得る。
[1]成形用組成物の製造方法であって、
 無機固体材料と、加熱によって流動化して前記無機固体材料同士を接着する有機材料とを含む原料組成物を得るステップと、
 材料空間において前記原料組成物を加熱するステップと、
 加熱された前記原料組成物を、前記成形用組成物として、前記材料空間から押し出すステップと、
を含む、方法。
[2]前記有機材料は、植物性材料である、
 [1]に記載の方法。
[3]前記有機材料は、リグニン、セルロール、ヘミセルロース、および糖からなる群より選択された1以上を含む、
 [1]または[2]に記載の方法。
[4]前記無機固体材料は、1種以上のコンクリート、1種以上のセメント、1種以上の鉱物、1種以上の金属、1種以上のセラミックス、1種以上のガラス、1種以上のスラグ、1種以上の石灰、および1種以上の焼却灰、ならびにこれらの複合材料からなる群より選択された1以上を含む、
 [1]~[3]のいずれかに記載の方法。
[5]前記有機材料の質量mと前記無機固体材料の質量mとの比m/mが1より大きい、
 [1]~[4]のいずれかに記載の方法。
[6]前記原料組成物は、水をさらに含む、
 [1]~[5]のいずれかに記載の方法。
[7]前記原料組成物を加熱するステップにおける加熱温度は、60度以上240度以下である、
 [1]~[6]のいずれかに記載の方法。
[8]加熱された前記原料組成物に圧力を加えるステップをさらに含む、
 [1]~[7]のいずれかに記載の方法。
[9]成形体の製造方法であって、
 [1]~[8]のいずれかに記載の方法によって製造された成形用組成物を所定の形状に成形するステップを含む、方法。
[10]前記成形体は、射出成形、押出成形、インサート成形、ブロー成形、またはインフレーション成形によって成形される、
 [9]に記載の方法。
[11]無機固体材料と、
 加熱によって流動化して前記無機固体材料同士を接着する有機材料と、
を含み、
 前記有機材料の質量mと前記無機固体材料の質量mとの比m/mが1より大きい、
 成形材料。
[12]無機固体材料と、
 前記無機固体材料同士を接着している有機材料であって、加熱によって流動化可能な有機材料と、
を含み、
 前記有機材料の質量mと前記無機固体材料の質量mとの比m/mが1より大きい、
 成形体。
The present invention may include the following aspects.
[1] A method for producing a molding composition,
obtaining a raw material composition containing an inorganic solid material and an organic material that is fluidized by heating to bond the inorganic solid materials together;
heating the raw material composition in a material space;
extruding the heated raw material composition from the material space as the molding composition;
A method, including
[2] The organic material is a plant material.
The method according to [1].
[3] The organic material contains one or more selected from the group consisting of lignin, cellulose, hemicellulose, and sugar.
The method according to [1] or [2].
[4] The inorganic solid material includes one or more concretes, one or more cements, one or more minerals, one or more metals, one or more ceramics, one or more glasses, and one or more slags. , one or more lime, and one or more incinerated ash, and one or more selected from the group consisting of composite materials thereof,
The method according to any one of [1] to [3].
[5] the ratio m 1 /m 2 of the mass m 1 of the organic material and the mass m 2 of the inorganic solid material is greater than 1;
The method according to any one of [1] to [4].
[6] The raw material composition further contains water,
The method according to any one of [1] to [5].
[7] The heating temperature in the step of heating the raw material composition is 60 degrees or more and 240 degrees or less.
The method according to any one of [1] to [6].
[8] further comprising applying pressure to the heated raw material composition;
The method according to any one of [1] to [7].
[9] A method for manufacturing a molded body,
A method comprising the step of molding the molding composition produced by the method according to any one of [1] to [8] into a predetermined shape.
[10] The molded body is molded by injection molding, extrusion molding, insert molding, blow molding, or inflation molding.
The method according to [9].
[11] an inorganic solid material;
an organic material that is fluidized by heating to bond the inorganic solid materials together;
including
the ratio m 1 /m 2 of the mass m 1 of the organic material and the mass m 2 of the inorganic solid material is greater than 1;
molding material.
[12] an inorganic solid material;
an organic material that bonds the inorganic solid materials together and that can be fluidized by heating;
including
the ratio m 1 /m 2 of the mass m 1 of the organic material and the mass m 2 of the inorganic solid material is greater than 1;
molding.
 本発明によれば、無機材料を含む原料組成物から成形体を簡便に得ることができる成形用組成物の製造方法、成形体の製造方法、成形材料、および成形体を提供することができる。 According to the present invention, it is possible to provide a method for producing a molding composition, a method for producing a molded article, a molding material, and a molded article that can easily obtain a molded article from a raw material composition containing an inorganic material.
一実施形態に係る成形装置およびその使用方法を示す断面図である。It is sectional drawing which shows the shaping|molding apparatus which concerns on one Embodiment, and its usage. 一実施形態に係る成形装置およびその使用方法を示す断面図である。It is sectional drawing which shows the shaping|molding apparatus which concerns on one Embodiment, and its usage. 一実施形態に係る成形装置およびその使用方法を示す断面図である。It is sectional drawing which shows the shaping|molding apparatus which concerns on one Embodiment, and its usage.
 以下、実施形態の成形用組成物の製造方法、成形体の製造方法、成形材料、および成形体について説明する。なお、以下の実施形態は、本発明の一態様を示すものであり、本発明を限定するものではなく、本発明の技術的思想の範囲内で任意に変更可能である。また、実施形態の各構成および各特徴は、任意に組み合わせることが可能である。 A method for producing a molding composition, a method for producing a molded article, a molding material, and a molded article of the embodiment will be described below. The following embodiments show one aspect of the present invention, do not limit the present invention, and can be arbitrarily changed within the scope of the technical idea of the present invention. Also, each configuration and each feature of the embodiments can be combined arbitrarily.
<成形用組成物の製造方法>
 一実施形態によれば、成形用組成物の製造方法であって、
(1)無機固体材料と、加熱によって流動化して無機固体材料同士を接着する有機材料とを含む原料組成物を得るステップ(以下、「原料調製ステップ」という。)と、
(2)材料空間において原料組成物を加熱するステップ(以下、「加熱ステップ」という。)と、
(3)加熱された原料組成物を、成形用組成物として、材料空間から押し出すステップ(以下、「押出ステップ」という。)と、
を含む方法が提供される。
<Method for producing molding composition>
According to one embodiment, a method for producing a molding composition, comprising:
(1) a step of obtaining a raw material composition containing an inorganic solid material and an organic material that is fluidized by heating to bond the inorganic solid materials together (hereinafter referred to as a "raw material preparation step");
(2) a step of heating the raw material composition in the material space (hereinafter referred to as a "heating step");
(3) a step of extruding the heated raw material composition from the material space as a molding composition (hereinafter referred to as "extrusion step");
A method is provided comprising:
 本発明者らは、上記方法によって、無機固体材料を含む原料組成物を用いて成形のための押出処理を行うことができることを見出した。以下、上記方法に含まれる各ステップ(1)~(3)について説明する。なお、これらのステップは、並行して実行されてもよい。 The present inventors have found that the above method enables extrusion processing for molding using a raw material composition containing an inorganic solid material. Each step (1) to (3) included in the above method will be described below. Note that these steps may be executed in parallel.
(1)原料調製ステップ
 まず、上記の有機材料および無機固体材料をそれぞれ用意する。次いで、これらを混合することにより、原料組成物を得る。有機材料および無機固体材料とともに、他の材料を添加してもよい。他の材料の例として、水、添加剤などが挙げられる。
(1) Raw material preparation step First, the above organic material and inorganic solid material are prepared. Then, by mixing these, a raw material composition is obtained. Other materials may be added along with the organic and inorganic solid materials. Examples of other materials include water, additives, and the like.
 材料を添加する順序は特に限定されない。全材料をまとめて混合してもよく、複数段階に分けて混合を行ってもよい。 The order in which the ingredients are added is not particularly limited. All materials may be mixed together, or may be mixed in multiple steps.
 材料を混合する方法は、特に限定されない。例えば、混合方法として、手動でのかき混ぜ、乳鉢(手動または自動)、ボールミル、遊星ミル、振動ミル、ローターミル、ハンマーミル、ディスパーミル、ミキサー、ホモジナイザーなどが挙げられる。混合を行う条件は、特に限定されない。例えば、常温常圧において大気下で材料を混合することができるが、温度、圧力、雰囲気などは適宜設定してよい。 The method of mixing the materials is not particularly limited. For example, mixing methods include manual stirring, mortar (manual or automatic), ball mill, planetary mill, vibrating mill, rotor mill, hammer mill, disper mill, mixer, homogenizer, and the like. Conditions for mixing are not particularly limited. For example, the materials can be mixed in the atmosphere at normal temperature and normal pressure, but the temperature, pressure, atmosphere, etc. may be appropriately set.
(1-1)有機材料
 有機材料は、射出成形や押出成形などの成形を行えるように、組成物全体を流動化させる機能を有し得る。有機材料は、加熱によって流動化して接着性を呈する材料であれば特に限定されない。有機材料は、加熱によって流動化させた後に冷却することにより、周囲の無機固体材料の粒子同士を接着固定することができる。これにより、成形体の強度および緻密性が向上し得る。
(1-1) Organic material The organic material can have the function of fluidizing the entire composition so that molding such as injection molding and extrusion molding can be performed. The organic material is not particularly limited as long as it is fluidized by heating and exhibits adhesiveness. When the organic material is fluidized by heating and then cooled, the surrounding inorganic solid material particles can be adhered and fixed to each other. This can improve the strength and compactness of the compact.
(有機材料の種類)
 有機材料の例として、植物性材料、動物性材料、合成樹脂材料などが挙げられるが、これらに限定されるものではない。有機材料は、これらの材料を2種以上含んでもよい。
(type of organic material)
Examples of organic materials include, but are not limited to, vegetable materials, animal materials, synthetic resin materials, and the like. The organic material may contain two or more of these materials.
 たとえば、有機材料は、植物性材料である。本明細書において、「植物性材料」とは、植物に含まれる材料またはその誘導体を意味する。植物性材料の例として、リグニン、セルロース、ヘミセルロース、糖などが挙げられる。原材料の観点では、特に限定されないが、スギ、ヒノキ、マツなどの針葉樹;ブナ、シイ、カエデなどの広葉樹;イネ、コムギ、タケ、サトウキビなどのイネ科植物;米、麦、トウモロコシ、キビ、アワ、ヒエ、枝豆、大豆、小豆、エンドウ豆、コーヒー豆などの穀物;カボチャ、キャベツ、レタス、玉ねぎ、人参、大根、ゴボウ、白菜、ブロッコリー、カリフラワー、ほうれん草、小松菜、チンゲン菜、トマト、スイカ、メロン、ピーマン、パプリカ、キュウリ、タケノコ、茶葉などの野菜;オレンジ、蜜柑、伊予柑、イチゴ、バナナ、カシス、林檎、柿、梨、サクランボ、パイナップル、ブドウ、ブルーベリー、桃など果物;ジャガイモ、サツマイモ、むらさき芋、サトイモ、長芋、山芋など芋類;椎茸、舞茸、エノキ茸、シメジ、ナメコ、マッシュルームなどの茸類;アオサ、ワカメ、コンブ、メカブ、ヒジキ、ノリなどの海藻;その他の植物体(例えば、植物工場から排出される植物性廃棄物や残渣);リグノセルロース材料;人工的な材料(たとえば、製紙工場から排出されるリグニンおよび/またはセルロースを含有する廃棄物や残渣)などが挙げられる。形態の観点では、特に限定されないが、木粉、木材チップ、おがくず、植物の茎や葉、花、植物由来の廃棄物や残渣などが挙げられる。なお、単離されたリグニン、セルロース、ヘミセルロース、糖などの植物性材料を有機材料として使用してもよい。 For example, organic materials are plant materials. As used herein, "plant material" means material contained in plants or derivatives thereof. Examples of plant materials include lignin, cellulose, hemicellulose, sugars, and the like. From the viewpoint of raw materials, there are no particular limitations, but conifers such as cedar, cypress, and pine; broad-leaved trees such as beech, chinensis, and maple; , barnyard millet, green soybeans, soybeans, red beans, peas, coffee beans; , bell peppers, paprika, cucumber, bamboo shoots, tea leaves, and other vegetables; oranges, mandarin oranges, Iyokan, strawberries, bananas, cassis, apples, persimmons, pears, cherries, pineapples, grapes, blueberries, peaches, and other fruits; potatoes, sweet potatoes, purple Potatoes such as potato, taro, Chinese yam, and yam; mushrooms such as shiitake, maitake, enoki, shimeji, nameko, and mushrooms; seaweeds such as sea lettuce, wakame, kelp, mekabu, hijiki, and laver; lignocellulosic materials; man-made materials (eg, lignin- and/or cellulose-containing wastes and residues from paper mills); From the viewpoint of form, there are no particular limitations, but examples include wood flour, wood chips, sawdust, plant stems and leaves, flowers, plant-derived wastes and residues, and the like. In addition, plant materials such as isolated lignin, cellulose, hemicellulose, and sugar may be used as the organic material.
 本明細書において、「リグニン」とは、リグニンモノマーが重合した構造を基本構造とする高分子であって、部分的に置換基によって置換されていてもよく、他の化合物と結合または複合体を形成していてもよい。リグニンの種類は、S型リグニン、G型リグニン、H型リグニンなど、特に限定されない。有機材料は、1種または2種以上のリグニンモノマーが重合した構造のリグニンを含み得る。リグニンは、リグニンモノマー以外のモノマーを重合単位として含んでもよい。 As used herein, the term "lignin" refers to a polymer having a structure in which lignin monomers are polymerized as a basic structure, which may be partially substituted by a substituent, and binds or complexes with other compounds. may be formed. The type of lignin is not particularly limited, such as S-type lignin, G-type lignin, and H-type lignin. The organic material may contain lignin in a structure in which one or more lignin monomers are polymerized. Lignin may contain monomers other than lignin monomers as polymerized units.
 本明細書において、「セルロース」とは、β-グルコースがグリコシド結合により直鎖状に重合した構造を基本構造とする高分子であって、部分的に置換基によって置換されていてもよく、他の化合物(例えばリグニン)と結合していてもよく、他の化合物と複合体を形成していてもよい。 As used herein, the term "cellulose" refers to a polymer having a basic structure in which β-glucose is linearly polymerized through glycosidic bonds, and may be partially substituted with a substituent. (for example, lignin), or may form a complex with other compounds.
 本明細書において、「糖」とは、カルボニル基またはアルデヒド基を有し、複数のヒドロキシル基を有する化合物であって、部分的に置換基によって置換されていてもよく、他の化合物と結合または複合体を形成していてもよい。 As used herein, the term "sugar" refers to a compound having a carbonyl group or an aldehyde group and having multiple hydroxyl groups, which may be partially substituted by substituents, bound to other compounds or It may form a complex.
 たとえば、有機材料は、動物性材料である。本明細書において、「動物性材料」とは、動物に含まれる材料またはその誘導体を意味する。動物性材料の例として、特に限定されないが、タンパク質などが挙げられる。 For example, organic materials are animal materials. As used herein, "animal material" means a material contained in an animal or a derivative thereof. Examples of animal materials include, but are not limited to, proteins and the like.
 たとえば、有機材料は、合成樹脂材料である。合成樹脂材料の例として、熱可塑性樹脂が挙げられる。具体的には、ポリオレフィン(ポリエチレン、ポリプロピレンなど)、ポリスチレン、ポリ塩化ビニル、ポリアクリロニトリル、ポリビニルアルコール、ポリエステル(ポリエチレンテレフタレートなど)、ポリカーボネート、ポリアミドなどが挙げられる。ただし、原料組成物および成形用組成物は、合成樹脂材料を含まなくてもよい。 For example, organic materials are synthetic resin materials. Examples of synthetic resin materials include thermoplastic resins. Specific examples include polyolefin (polyethylene, polypropylene, etc.), polystyrene, polyvinyl chloride, polyacrylonitrile, polyvinyl alcohol, polyester (polyethylene terephthalate, etc.), polycarbonate, polyamide, and the like. However, the raw material composition and the molding composition do not have to contain the synthetic resin material.
 たとえば、有機材料は、リグニン、セルロール、ヘミセルロース、および糖からなる群より選択された1以上を含むことができる。これらの材料は、植物から取得することができる。したがって、これらの材料を有機材料として使用することは、従来十分な再利用がされていなかった植物由来の資源を再利用でき、持続可能性に資する点で好ましい。 For example, the organic material can contain one or more selected from the group consisting of lignin, cellulose, hemicellulose, and sugar. These materials can be obtained from plants. Therefore, the use of these materials as organic materials is preferable in that plant-derived resources, which have not been sufficiently reused in the past, can be reused, contributing to sustainability.
 本発明を理論により拘束するものではないが、リグニン、セルロース、ヘミセルロース、および糖は、高温で流動化して原料組成物全体を流動化させることにより、成形のための押出処理を可能にすると考えられる。また、これらの材料は、接着剤のように機能し、冷却後には無機固体材料の粒子同士を接着固定することにより、成形体の形状を維持するとともに成形体の強度を向上させることができると考えられる。 While not wishing to be bound by theory, it is believed that lignin, cellulose, hemicellulose, and sugars are fluidized at elevated temperatures to fluidize the entire feedstock composition, thereby enabling the extrusion process for shaping. . In addition, these materials function like an adhesive, and after cooling, the particles of the inorganic solid material are adhered and fixed to each other, thereby maintaining the shape of the molded body and improving the strength of the molded body. Conceivable.
 繊維質材料は引張力への抵抗を有するので、繊維質材料を含む有機材料は、成形体の引張強度が向上し得る点で好ましい。有機材料として使用可能な繊維質材料の例として、セルロース、ヘミセルロース、ナイロン繊維、ポリエステル繊維、アクリル繊維などが挙げられる。ただし、原料組成物および成形用組成物は、繊維質材料を含まなくてもよい。 Since fibrous materials have resistance to tensile force, organic materials containing fibrous materials are preferable in that the tensile strength of the molded body can be improved. Examples of fibrous materials that can be used as organic materials include cellulose, hemicellulose, nylon fibers, polyester fibers, acrylic fibers, and the like. However, the raw material composition and molding composition may be free of fibrous material.
(有機材料の粒径)
 有機材料は、例えば原料を粉砕したり切り刻んだりふるいにかけたりすることにより、最大粒径が所望の範囲となるまで微細化および/または選別され得る。本明細書において、「最大粒径」とは、所定のサイズの正方形の細孔を有する網目状のふるいを用いて、ある粒子群から「ふるいを通過した粒子群」を選別した場合における、使用したふるいの細孔のサイズを意味する。すなわち、「ふるいを通過した粒子群」の最大粒径は、使用したふるいの細孔のサイズである。他の材料と混合される際の有機材料の最大粒径は、例えば100nm以上50mm以下である。有機材料の最大粒径が100nm未満である場合には、材料の粉砕の負担が過度に大きくなる可能性がある。有機材料の最大粒径が50mm超である場合には、高温でも有機材料が十分に流動化できない可能性がある。有機材料の最大粒径は、好ましくは、1μm以上10mm以下、10μm以上5mm以下、または100μm以上1mm以下である。好ましくは、無機固体材料の最大粒形は、後述する成形装置10の押出口30の直径より小さい。なお、これらの上限値および下限値は任意に組み合わせることができる。
(Particle size of organic material)
The organic material may be comminuted and/or screened, for example by grinding, chopping, or sieving the raw material, until the maximum particle size is in the desired range. As used herein, the term "maximum particle size" refers to the use of a mesh sieve having square pores of a predetermined size to select a "particle group that has passed through the sieve" from a certain particle group. sieve pore size. That is, the maximum particle size of the "particles that passed through the sieve" is the pore size of the sieve used. The maximum particle size of the organic material when mixed with other materials is, for example, 100 nm or more and 50 mm or less. If the maximum particle size of the organic material is less than 100 nm, the burden of pulverizing the material may become excessively large. If the maximum particle size of the organic material exceeds 50 mm, the organic material may not be sufficiently fluidized even at high temperatures. The maximum particle size of the organic material is preferably 1 μm or more and 10 mm or less, 10 μm or more and 5 mm or less, or 100 μm or more and 1 mm or less. Preferably, the maximum particle size of the inorganic solid material is smaller than the diameter of the extrusion port 30 of the molding device 10 described below. In addition, these upper limit values and lower limit values can be combined arbitrarily.
(有機材料の添加量)
 混合する材料の全量を100質量部とした場合に、有機材料の添加量は、例えば50質量部以上99質量部以下であり、好ましくは、60質量部以上90質量部以下、または70質量部以上80質量部以下である。なお、これらの上限値および下限値は任意に組み合わせることができる。
(Amount of organic material added)
When the total amount of the materials to be mixed is 100 parts by mass, the amount of the organic material added is, for example, 50 parts by mass or more and 99 parts by mass or less, preferably 60 parts by mass or more and 90 parts by mass or less, or 70 parts by mass or more. It is 80 parts by mass or less. In addition, these upper limit values and lower limit values can be combined arbitrarily.
(1-2)無機固体材料
 無機固体材料は、製造される成形体において、密度および/または耐久性(たとえば、耐火性や防虫性)を向上させる機能を有し得る。無機固体材料は、常温常圧で固体である任意の無機材料であってよい。
(1-2) Inorganic Solid Material The inorganic solid material can have the function of improving the density and/or durability (for example, fire resistance and insect repellency) of the molded article to be produced. The inorganic solid material may be any inorganic material that is solid at normal temperature and pressure.
(無機固体材料の種類)
 無機固体材料は、特に限定されないが、たとえば、1種以上のコンクリート、1種以上のセメント、1種以上の鉱物、1種以上の金属、1種以上のセラミックス、1種以上のガラス、1種以上のスラグ、1種以上の石灰、および1種以上の焼却灰、ならびにこれらの複合材料からなる群より選択された1以上を含む。
(Type of inorganic solid material)
The inorganic solid material is not particularly limited, but for example, one or more concretes, one or more cements, one or more minerals, one or more metals, one or more ceramics, one or more glasses, one above slag, one or more kinds of lime, one or more kinds of incineration ash, and one or more selected from the group consisting of these composite materials.
 コンクリートは、既知の任意のセメント材、既知の任意の粗骨材、既知の任意の細骨材、および水を含む。例えば、コンクリートは、ポルトランドセメント、高炉スラグ微粉末、シリカフューム、フライアッシュなどのセメント材と、水と、天然砂、高炉スラグ、石灰石の砂などの細骨材と、天然砂利、高炉スラグ粗骨材、石灰石の砂利、道路用鉄鋼スラグ路盤材などの粗骨材と、を含む。コンクリートは、空気連行剤をさらに含んでもよい。コンクリート中の各成分の配合量は任意に決定可能である。 Concrete includes any known cement material, any known coarse aggregate, any known fine aggregate, and water. For example, concrete includes cement materials such as portland cement, ground blast furnace slag, silica fume and fly ash, water, fine aggregate such as natural sand, blast furnace slag and limestone sand, natural gravel and blast furnace slag coarse aggregate. , limestone gravel, steel slag subbase material for roads and other coarse aggregates. Concrete may further comprise an air entrainment agent. The blending amount of each component in the concrete can be determined arbitrarily.
 コンクリートは、上記以外の任意の材料をさらに含んでもよい。例えば、コンクリートは、収縮低減剤、減水剤、セメント分散剤などの任意の添加剤をさらに含んでもよい。コンクリートは、繊維材料、金属材料、セラミックス材料、プラスチック材料、木材、木くず、草、紙、布、ガラス、土、粘土、塗料、接着剤などをさらに含んでもよい。  Concrete may further contain any material other than the above. For example, concrete may further comprise optional additives such as shrinkage reducing agents, water reducers, cement dispersants, and the like. Concrete may further include fibrous materials, metallic materials, ceramic materials, plastic materials, wood, wood chips, grass, paper, cloth, glass, soil, clay, paints, adhesives, and the like.
 コンクリートは、具体的には、任意の形状を有するコンクリート製の構造物、コンクリート廃棄物、またはコンクリート製の構造物が破砕もしくは粉砕された破片状、粒状、粉末状など種々の形状のコンクリートであり得る。無機固体材料として、建物、道路、鉄道、電柱などの工作物の工事で発生したコンクリート瓦礫などのコンクリート廃棄物が使用されてもよい。コンクリート廃棄物を使用することは、従来十分な再利用がされていなかったコンクリート資源を有効に利用できるので、コスト面でも、持続可能性に資する点でも有利である。 Concrete is concrete in various shapes such as concrete structures having arbitrary shapes, concrete waste, or fragments obtained by crushing or pulverizing concrete structures, granules, and powders. obtain. As the inorganic solid material, concrete waste such as concrete rubble generated from construction of structures such as buildings, roads, railways, utility poles may be used. The use of concrete waste is advantageous in terms of cost and sustainability, as it enables effective utilization of concrete resources that have not been sufficiently reused in the past.
 本明細書において、「セメント」とは、モルタル、コンクリートなどの建築材料の原料として使用可能な粉体を意味する。セメントの例としては、ポルトランドセメント、高炉スラグ微粉末、シリカフューム、フライアッシュセメント、アルミナセメントなどが挙げられる。 As used herein, "cement" means a powder that can be used as a raw material for building materials such as mortar and concrete. Examples of cement include portland cement, ground granulated blast furnace slag, silica fume, fly ash cement, and alumina cement.
 本明細書において、「鉱物」は、天然鉱物であってもよく、人工物または生物由来の材料であってもよい。鉱物、または鉱物の混合物もしくは複合体の例として、砂、礫、シルト、粘土、砂利、石、珪藻土などが挙げられる。 As used herein, "minerals" may be natural minerals, or may be artificial or biologically derived materials. Examples of minerals, or mixtures or composites of minerals, include sand, gravel, silt, clay, gravel, stone, diatomaceous earth, and the like.
 本明細書において、「金属」とは、単体金属および合金を含む。金属の例として、鉄、鋼、アルミニウム、銅、真鍮などが挙げられる。 In this specification, "metal" includes elemental metals and alloys. Examples of metals include iron, steel, aluminum, copper, brass, and the like.
 本明細書において、「セラミックス」とは、熱処理された無機物を意味する。セラミックスの例として、金属酸化物、金属炭化物、金属窒化物、金属元素を含まない無機材料(たとえば、ダイヤモンド、シリコン、炭素繊維、炭化ケイ素、フラーレン、炭化ホウ素)などが挙げられる。 As used herein, "ceramics" means heat-treated inorganic substances. Examples of ceramics include metal oxides, metal carbides, metal nitrides, and inorganic materials containing no metal element (eg, diamond, silicon, carbon fiber, silicon carbide, fullerene, boron carbide), and the like.
 本明細書において、「ガラス」とは、少なくとも部分的に非晶質のケイ素酸化物を含む固体材料を意味する。ガラスの例として、ソーダ石灰ガラス、石英ガラス、ケイ酸塩ガラス、ホウケイ酸ガラスなどが挙げられる。 As used herein, "glass" means a solid material containing at least partially amorphous silicon oxide. Examples of glasses include soda lime glass, quartz glass, silicate glass, borosilicate glass, and the like.
 本明細書において、「スラグ」とは、鉱石から金属を製錬する際に生成される副産物を意味する。スラグの例として、高炉スラグ、製鋼スラグ、非鉄スラグなどが挙げられる。 As used herein, "slag" means a by-product produced when smelting metal from ore. Examples of slag include blast furnace slag, steelmaking slag, nonferrous slag, and the like.
 本明細書において、「石灰」とは、生石灰(酸化カルシウム)および消石灰(水酸化カルシウム)の総称であり、酸化カルシウムおよび/または水酸化カルシウムを主成分として含む材料も含む。 As used herein, "lime" is a generic term for quicklime (calcium oxide) and slaked lime (calcium hydroxide), and includes materials containing calcium oxide and/or calcium hydroxide as main components.
 本明細書において、「焼却灰」とは、物質を燃焼させた後に残存する粉末を意味する。焼却灰の例として、フライアッシュなどが挙げられる。 "Incineration ash" as used herein means the powder that remains after burning a substance. Examples of incinerated ash include fly ash.
 好ましくは、無機固体材料は、コンクリート、セメント、砂、砂利、石、珪藻土、スラグ、石膏、石灰、灰、フライアッシュ、金属、レンガ、およびガラスからなる群より選択された1以上を含む。これらの材料は、入手が容易である点、従来十分に活用されていない点で有利である。 Preferably, the inorganic solid material includes one or more selected from the group consisting of concrete, cement, sand, gravel, stone, diatomaceous earth, slag, gypsum, lime, ash, fly ash, metal, brick, and glass. These materials are advantageous in that they are readily available and have not been fully utilized in the past.
(無機固体材料の粒径)
 無機固体材料は、有機材料と同様に、たとえば原料を粉砕したりふるいにかけたりすることにより、最大粒径が所望の範囲となるまで微細化および/または選別され得る。無機固体材料の最大粒径は、たとえば100nm以上50mm以下である。無機固体材料の最大粒径が100nm未満である場合には、材料の粉砕の負担が過度に大きくなる可能性がある。無機固体材料の最大粒径が50mm超である場合には、製造される成形体の構成粒子間の隙間が大きくなり、成形体全体の強度が低下する可能性がある。無機固体材料の最大粒径は、好ましくは、1μm以上10mm以下、10μm以上5mm以下、または100μm以上1mm以下である。好ましくは、無機固体材料の最大粒形は、後述する成形装置10の押出口30の直径より小さい。なお、これらの上限値および下限値は任意に組み合わせることができる。
(Particle size of inorganic solid material)
Inorganic solid materials, like organic materials, can be comminuted and/or screened, for example by grinding or sieving raw materials, until the maximum particle size is in the desired range. The maximum particle size of the inorganic solid material is, for example, 100 nm or more and 50 mm or less. If the maximum particle size of the inorganic solid material is less than 100 nm, the burden of pulverizing the material may become excessively large. If the maximum particle size of the inorganic solid material is more than 50 mm, the gaps between the constituent particles of the molded article to be produced become large, and the strength of the entire molded article may decrease. The maximum particle size of the inorganic solid material is preferably 1 μm or more and 10 mm or less, 10 μm or more and 5 mm or less, or 100 μm or more and 1 mm or less. Preferably, the maximum particle size of the inorganic solid material is smaller than the diameter of the extrusion port 30 of the molding device 10 described below. In addition, these upper limit values and lower limit values can be combined arbitrarily.
(無機固体材料の添加量)
 混合する材料の全量を100質量部とした場合に、無機固体材料の添加量は、たとえば10質量部以上50質量部未満であり、好ましくは、15質量部以上45質量部以下、20質量部以上40質量部以下、または25質量部以上35質量部以下である。なお、これらの上限値および下限値は任意に組み合わせることができる。
(Amount of inorganic solid material added)
When the total amount of the materials to be mixed is 100 parts by mass, the amount of the inorganic solid material added is, for example, 10 parts by mass or more and less than 50 parts by mass, preferably 15 parts by mass or more and 45 parts by mass or less, and 20 parts by mass or more. It is 40 parts by mass or less, or 25 parts by mass or more and 35 parts by mass or less. In addition, these upper limit values and lower limit values can be combined arbitrarily.
 上記有機材料と上記無機固体材料との合計が100質量部である場合において、有機材料の添加量は、たとえば50質量部より大きく、99質量部以下である。すなわち、無機固体材料の添加量は、たとえば1質量部以上50質量部未満である。有機材料の質量mと無機固体材料の質量mとの比m/mは、たとえば1より大きく、100以下である。好ましくは、m/mは、1.5以上50以下、2以上20以下、3以上10以下、または4以上8以下であってよい。なお、これらの上限値および下限値は任意に組み合わせることができる。有機材料の添加量が50質量部未満(すなわち、m/mが1以下)である場合には、成形用組成物に含まれる有機材料の量が不足し、成形時に十分な流動性が得られない可能性がある。その結果、成形用組成物を射出できない可能性がある(詳しくは後述の実施例を参照。ただし、後述の実施例では所定の上限圧力までしか検討していないので、有機材料の添加量が50質量部未満であっても印加圧力によっては射出できる場合もあると考えられる。)。有機材料の添加量が99質量部超(すなわち、無機固体材料の添加量が1質量部未満)である場合には、成形体の可燃性成分が多くなり、十分な耐火性が得られない可能性がある。また、成形体において、虫害やカビの繁殖に対する十分な耐性が得られない可能性がある。 When the total amount of the organic material and the inorganic solid material is 100 parts by mass, the amount of the organic material added is, for example, greater than 50 parts by mass and 99 parts by mass or less. That is, the amount of the inorganic solid material added is, for example, 1 part by mass or more and less than 50 parts by mass. The ratio m 1 /m 2 between the mass m 1 of the organic material and the mass m 2 of the inorganic solid material is, for example, greater than 1 and 100 or less. Preferably, m 1 /m 2 may be 1.5 to 50, 2 to 20, 3 to 10, or 4 to 8. In addition, these upper limit values and lower limit values can be combined arbitrarily. When the amount of the organic material added is less than 50 parts by mass (that is, m 1 /m 2 is 1 or less), the amount of the organic material contained in the molding composition is insufficient, and sufficient fluidity is not obtained during molding. may not be obtained. As a result, there is a possibility that the molding composition cannot be injected. Even if it is less than parts by mass, it may be possible to inject depending on the applied pressure.). If the amount of the organic material added is more than 99 parts by mass (that is, the amount of the inorganic solid material added is less than 1 part by mass), the amount of combustible components in the molded body increases, and sufficient fire resistance may not be obtained. have a nature. In addition, the molded article may not be sufficiently resistant to insect damage and fungal growth.
(1-3)水
 原料調製ステップにおいて、有機材料および無機固体材料に水が添加されてもよい。この場合、原料組成物は、水を含むことになる。水を添加するタイミングは、特に限定されないが、加熱前に原料組成物中に水を浸透させておくためには、加熱ステップの前に水を原料組成物に添加することが好ましい。
(1-3) Water Water may be added to the organic material and the inorganic solid material in the raw material preparation step. In this case, the raw material composition will contain water. The timing of adding water is not particularly limited, but it is preferable to add water to the raw material composition before the heating step in order to permeate the water into the raw material composition before heating.
 後述の実施例によれば、水を添加すると、成形用組成物の流動性が増加して押出が容易になる一方、成形用組成物の空隙率も増加する傾向が見られた。本発明を理論によって拘束するものではないが、以下、水の影響について考察する。流動性の増加については、高温の水蒸気によって有機材料が変性する結果、流動性が向上する、というメカニズムが考えられる。たとえば、有機材料がリグニンまたはヘミセルロースを含む場合には、これらの成分が高温の水蒸気によって分解されることにより、流動性が向上する、というメカニズムが考えられる。空隙率の増加については、成形用組成物に含まれる水が加熱によって蒸発する結果、成形用組成物中に空隙が生じる、というメカニズムが考えられる。 According to the examples described later, the addition of water increased the fluidity of the molding composition, making it easier to extrude, while also tending to increase the porosity of the molding composition. Without intending to bind the invention by theory, the effect of water is discussed below. A possible mechanism for the increase in fluidity is that the organic material is denatured by high-temperature steam, resulting in an improvement in fluidity. For example, if the organic material contains lignin or hemicellulose, the mechanism is considered to be that these components are decomposed by high-temperature steam, thereby improving fluidity. A possible mechanism for the increase in porosity is that water contained in the molding composition evaporates due to heating, resulting in formation of voids in the molding composition.
 本明細書において、原料組成物における水以外の成分の合計質量に対する添加した水の質量の比を「含水率」という。
含水率0%は、水を添加しなかったことを意味し、含水率100%は、原料組成物における水以外の成分と同じ質量の水を添加したことを意味する。含水率は、例えば、0%以上200%以下、5%以上100%以下、または10%以上50%以下である。なお、これらの上限値および下限値は任意に組み合わせることができる。
As used herein, the ratio of the mass of added water to the total mass of components other than water in the raw material composition is referred to as "moisture content".
A water content of 0% means that no water was added, and a water content of 100% means that the same mass of water as the components other than water in the raw material composition was added. The water content is, for example, 0% or more and 200% or less, 5% or more and 100% or less, or 10% or more and 50% or less. In addition, these upper limit values and lower limit values can be combined arbitrarily.
(1-4)添加剤
 上記の有機材料、無機固体材料、および水に加えて、その他の添加剤が、必要に応じて添加されてよい。添加剤の例として、接着剤、可塑剤、補強材料、着色料、分散剤、酸化防止剤、難燃剤、安定剤、発泡剤などが挙げられる。
(1-4) Additives In addition to the above organic materials, inorganic solid materials, and water, other additives may be added as necessary. Examples of additives include adhesives, plasticizers, reinforcing materials, colorants, dispersants, antioxidants, flame retardants, stabilizers, foaming agents, and the like.
 その他、成形用組成物を押出成形、射出成形などの成形方法に適した状態にすること、成形用組成物の金型への充填性を向上させること、および/または、成形体の特性(たとえば、曲げ強度、圧縮強度、引張強度、表面性状など)を向上させることを目的として、アルカリ成分、別の有機材料、別の無機固体材料などをさらに添加してもよい。 In addition, to make the molding composition suitable for molding methods such as extrusion molding and injection molding, to improve the fillability of the molding composition into the mold, and / or to improve the properties of the molded product (for example, , flexural strength, compressive strength, tensile strength, surface properties, etc.), an alkaline component, another organic material, another inorganic solid material, or the like may be further added.
 原料組成物の形態は特に限定されない。たとえば、原料組成物において、有機材料および無機固体材料がそれぞれ粉末または粒子の形態で混在していてよい。原料組成物は、粉末状(水で湿った粉末状である場合を含む)であってもよく、ペレット状など所定の形状に固められてもよい。好ましくは、原料組成物は、有機材料の粉末と無機固体材料の粉末とが混合された粉末の形態を有する。 The form of the raw material composition is not particularly limited. For example, in the raw material composition, organic materials and inorganic solid materials may be mixed in the form of powders or particles, respectively. The raw material composition may be in the form of a powder (including a powder wet with water), or may be solidified into a predetermined shape such as a pellet. Preferably, the raw material composition has the form of a powder in which the powder of the organic material and the powder of the inorganic solid material are mixed.
(2)加熱ステップ
 加熱ステップでは、原料組成物が所定の温度まで加熱される。加熱ステップでは、有機材料が流動化するように加熱処理が行われる。好ましくは、加熱処理によって流動化した有機材料が無機固体材料の粒子間の隙間に入り込み、その結果、実質的に成形用組成物全体が流動化する。加熱方法は特に限定されず、ホットプレート、加熱炉など任意の加熱手段を利用可能である。
(2) Heating Step In the heating step, the raw material composition is heated to a predetermined temperature. In the heating step, heat treatment is performed so as to fluidize the organic material. Preferably, the organic material fluidized by the heat treatment enters interstices between particles of the inorganic solid material, so that substantially the entire molding composition is fluidized. A heating method is not particularly limited, and any heating means such as a hot plate and a heating furnace can be used.
(2-1)加熱処理
 加熱ステップにおける加熱温度は、たとえば、60度以上240度以下である。加熱温度が60度未満である場合、有機材料が十分に流動化せず、成形用組成物の押出が困難である可能性がある。加熱温度が240度超である場合、有機材料が炭化または発火する可能性がある。好ましくは、加熱温度は、80度以上230度以下、100度以上200度以下、または120度以上180度以下である。なお、これらの上限値および下限値は任意に組み合わせることができる。加熱温度は、成形処理中に適宜変化させてもよい。
(2-1) Heat Treatment The heating temperature in the heating step is, for example, 60 degrees or more and 240 degrees or less. If the heating temperature is less than 60°C, the organic material may not be sufficiently fluidized and extrusion of the molding composition may be difficult. If the heating temperature is over 240 degrees, the organic material may be carbonized or ignited. Preferably, the heating temperature is 80 to 230 degrees, 100 to 200 degrees, or 120 to 180 degrees. In addition, these upper limit values and lower limit values can be combined arbitrarily. The heating temperature may be changed as appropriate during the molding process.
(2-2)加圧処理
 加熱処理に加えて、原料組成物に圧力を加える加圧処理が行われ得る。加圧処理は、加熱温度への昇温が完了した後に行われてもよく、加熱温度への昇温と並行して行われてもよく、加熱処理の前に行われてもよい。たとえば、上記方法は、加熱された原料組成物に圧力を加えるステップ(以下、「加圧ステップ」という。)をさらに含み得る。加熱された原料組成物を加圧することにより、有機材料が融解した状態で材料が圧縮されるので、成形用組成物の内部の隙間を減少させることができる。この成形用組成物を使用して成形を行うことにより、空隙が少ない成形体が形成され得る。
(2-2) Pressure treatment In addition to heat treatment, pressure treatment may be performed by applying pressure to the raw material composition. The pressure treatment may be performed after the heating to the heating temperature is completed, may be performed in parallel with the heating to the heating temperature, or may be performed before the heating treatment. For example, the method may further include applying pressure to the heated raw material composition (hereinafter referred to as "pressurization step"). By pressurizing the heated raw material composition, the material is compressed while the organic material is in a molten state, so that the voids inside the molding composition can be reduced. By molding using this molding composition, a molded article with few voids can be formed.
 加圧処理において原料組成物に加えられる印加圧力は、たとえば、0.01MPa以上400MPa以下である。印加圧力が0.01MPa未満である場合、原料組成物を十分に加圧できない可能性がある。印加圧力が400MPa以上である場合、過大な圧力が成形装置に悪影響を及ぼす可能性がある。好ましくは、印加圧力は、0.1MPa以上300MPa以下、1MPa以上200MPa以下、または10MPa以上100MPa以下である。なお、これらの上限値および下限値は任意に組み合わせることができる。印加圧力は、成形処理中に適宜変化させてもよい。 The applied pressure applied to the raw material composition in the pressure treatment is, for example, 0.01 MPa or more and 400 MPa or less. If the applied pressure is less than 0.01 MPa, the raw material composition may not be sufficiently pressurized. If the applied pressure is 400 MPa or more, the excessive pressure may adversely affect the molding equipment. Preferably, the applied pressure is 0.1 MPa to 300 MPa, 1 MPa to 200 MPa, or 10 MPa to 100 MPa. In addition, these upper limit values and lower limit values can be combined arbitrarily. The applied pressure may be varied appropriately during the molding process.
 加熱処理および/または加圧処理の前に、成形条件に応じて、成形用組成物を押し出すことができる加熱温度および/または印加圧力を選択するステップを行ってもよい。成形条件は、たとえば、原料組成物に含まれる有機材料および無機固体材料の種類、量、および形態、原料組成物における水の量、原料粉末の処理、使用される金型の大きさおよび形状、ならびに押出口の直径を含む。たとえば、様々な成形条件の組合せに対して、成形用組成物の押出に適した加熱温度および/または印加圧力を記録したデータベースを参照して、加熱温度および/または印加圧力を選択することができる。 Before the heat treatment and/or pressure treatment, a step of selecting a heating temperature and/or applied pressure that can extrude the molding composition may be performed according to the molding conditions. The molding conditions include, for example, the types, amounts, and forms of organic materials and inorganic solid materials contained in the raw material composition, the amount of water in the raw material composition, the treatment of the raw material powder, the size and shape of the mold used, as well as the diameter of the extrusion port. For example, for various combinations of molding conditions, the heating temperature and/or the applied pressure can be selected by referring to a database that records the heating temperature and/or the applied pressure suitable for extrusion of the molding composition. .
(2-3)成形装置の構成
 以下、成形装置の構成の一例について図面を参照して説明する。図1~図3は、成形装置10およびその使用方法を示す断面図である。成形装置10は、原料組成物P1を内部に収容して加熱するとともに、上下から挟み込むことによって加熱された原料組成物P1に圧力を加え、成形用組成物P2として外部に押し出すことができる。
(2-3) Configuration of Molding Apparatus An example of the configuration of the molding apparatus will be described below with reference to the drawings. 1-3 are cross-sectional views showing a molding apparatus 10 and its method of use. The molding apparatus 10 accommodates and heats the raw material composition P1 inside, and applies pressure to the heated raw material composition P1 by sandwiching it from above and below, and extrudes it to the outside as a molding composition P2.
 成形装置10は、原料組成物P1を材料空間に収容する収容手段と、材料空間において原料組成物P1を加熱する加熱手段と、材料空間において原料組成物P1に圧力を加える加圧手段と、加熱および加圧された原料組成物P1を成形用組成物P2として材料空間から外部に押し出す押出手段と、押し出された成形用組成物P2を所定の形状に成形する成形手段と、を有し得る。 The molding apparatus 10 includes storage means for storing the raw material composition P1 in the material space, heating means for heating the raw material composition P1 in the material space, pressurizing means for applying pressure to the raw material composition P1 in the material space, and heating means. and extruding means for extruding the pressurized raw material composition P1 to the outside from the material space as the molding composition P2, and molding means for molding the extruded molding composition P2 into a predetermined shape.
 たとえば、図1に示すように、成形装置10は、下部材12および上部材14を有する。下部材12および上部材14は、互いに結合されて、内部に原料組成物P1を収容可能なキャビティC(「材料空間」の一例)を形成する。好ましくは、下部材12および上部材14は、伝熱性に優れた材料からなる。より好ましくは、下部材12および上部材14は、金属製である。 For example, as shown in FIG. 1, molding device 10 has lower member 12 and upper member 14 . The lower member 12 and the upper member 14 are joined together to form a cavity C (an example of a "material space") inside which the raw material composition P1 can be accommodated. Preferably, lower member 12 and upper member 14 are made of a material with good thermal conductivity. More preferably, lower member 12 and upper member 14 are made of metal.
 下部材12は、下側加熱部材20(「加熱手段」の一例)、ベース22、および収容部材24(「収容手段」の一例)を有する。下側加熱部材20は、ベース22の下面に取り付けられて、成形装置10を下側から加熱する。収容部材24は、ベース22の上面に取り付けられてベース22により支持される筒状部材である。収容部材24は、原料組成物P1を収容可能な内部空間を有する。収容部材24の周壁には、当該周壁を貫通する押出口30が形成されている。 The lower member 12 has a lower heating member 20 (an example of "heating means"), a base 22, and an accommodating member 24 (an example of "accommodating means"). The lower heating member 20 is attached to the lower surface of the base 22 and heats the molding apparatus 10 from below. The housing member 24 is a tubular member attached to the upper surface of the base 22 and supported by the base 22 . The containing member 24 has an internal space capable of containing the raw material composition P1. A peripheral wall of the housing member 24 is formed with an extrusion port 30 passing through the peripheral wall.
 上部材14は、上側加熱部材26および押圧部材28を有する。上側加熱部材26(「加熱手段」の一例)は、押圧部材28の上面に取り付けられて、成形装置10を上側から加熱する。押圧部材28(「加圧手段」および「押出手段」の一例)は、収容部材24の内部空間に上から挿入できるように、ピストン形状を有する。押圧部材28が収容部材24の内部空間に挿入されることにより、キャビティCが形成される。キャビティCは、押出口30を除いて密閉される。 The upper member 14 has an upper heating member 26 and a pressing member 28 . The upper heating member 26 (an example of “heating means”) is attached to the upper surface of the pressing member 28 and heats the molding apparatus 10 from above. The pressing member 28 (an example of “pressurizing means” and “extrusion means”) has a piston shape so that it can be inserted into the internal space of the housing member 24 from above. A cavity C is formed by inserting the pressing member 28 into the internal space of the housing member 24 . Cavity C is closed except for extrusion port 30 .
 成形装置10を使用した原料組成物P1の加熱方法について説明する。まず、下側加熱部材20および上側加熱部材26によって成形装置10が所定温度まで加熱される。次いで、収容部材24の内部空間に原料組成物P1が投入される。原料組成物P1は、予熱された成形装置10によって加熱される。その後、図1に示すように、押圧部材28が収容部材24の内部空間に挿入されることにより、下部材12と上部材14とが結合される。原料組成物P1は、押圧部材28によって上からプレスされる。これにより、原料組成物P1と成形装置10の各部材との熱交換が促進されるとともに、キャビティC内で原料組成物P1が圧縮される。その結果、原料組成物P1全体が加熱される。 A method of heating the raw material composition P1 using the molding apparatus 10 will be described. First, the molding apparatus 10 is heated to a predetermined temperature by the lower heating member 20 and the upper heating member 26 . Next, the raw material composition P1 is put into the internal space of the containing member 24 . A raw material composition P1 is heated by a preheated molding device 10 . Thereafter, as shown in FIG. 1, the lower member 12 and the upper member 14 are coupled by inserting the pressing member 28 into the internal space of the housing member 24 . The raw material composition P1 is pressed from above by the pressing member 28 . As a result, heat exchange between the raw material composition P1 and each member of the molding apparatus 10 is promoted, and the raw material composition P1 is compressed within the cavity C. As a result, the entire raw material composition P1 is heated.
(3)押出ステップ
 押出ステップでは、加熱された原料組成物P1が、成形用組成物P2として外部に押し出される。以下、成形装置10を使用した押出ステップの一例について、図1~図3を参照して説明する。
(3) Extrusion Step In the extrusion step, the heated raw material composition P1 is extruded to the outside as a molding composition P2. An example of an extrusion step using molding apparatus 10 will now be described with reference to FIGS. 1-3.
 図2に示すように、下部材12と上部材14とが互いに近づく方向に、圧力がさらに印加される。たとえば、上側加熱部材26の上面に下方向の荷重が加えられることにより、下部材12と上部材14とがプレスされる。十分に加熱された有機材料は、流動化して、圧縮により無機固体材料の粒子間の隙間に入り込むことができる。これにより、有機材料と無機固体材料とがより均質に混ざり合い、有機材料と無機固体材料との接触面積が増加する。流動化した有機材料は、無機固体材料のマトリックス材料として機能し、原料組成物P1全体を流動化させる。その結果、図2に示すように、原料組成物P1は、加圧によって、キャビティCから押出口30を通って成形用組成物P2として外部空間に押し出される。この成形用組成物P2は、成形加工に使用可能である。 As shown in FIG. 2, further pressure is applied in the direction in which the lower member 12 and the upper member 14 approach each other. For example, a downward load is applied to the upper surface of upper heating member 26 to press lower member 12 and upper member 14 . Sufficiently heated organic material can fluidize and enter interstices between particles of inorganic solid material by compression. As a result, the organic material and the inorganic solid material are mixed more homogeneously, and the contact area between the organic material and the inorganic solid material is increased. The fluidized organic material functions as a matrix material for the inorganic solid material and fluidizes the entire raw material composition P1. As a result, as shown in FIG. 2, the raw material composition P1 is pressurized from the cavity C through the extrusion port 30 and extruded into the external space as a molding composition P2. This molding composition P2 can be used for molding.
 成形装置10が加熱ステップおよび押出ステップの両方を実行可能であると、簡便に成形用組成物P2の成形を行うことができるので好ましい。 It is preferable that the molding device 10 can perform both the heating step and the extrusion step, because the molding composition P2 can be easily molded.
<成形体の製造方法>
 一実施形態によれば、成形体の製造方法であって、
(4)上記の方法によって製造された成形用組成物を所定の形状に成形するステップ(以下、「成形ステップ」という。)
を含む方法が提供される。成形ステップは、上記の押出ステップに続いて、または押出ステップと並行して行われてよい。以下、成形用組成物P2から成形体を製造する方法の一例について、図3を参照して説明する。
<Method for manufacturing molded body>
According to one embodiment, a method for manufacturing a molded body, comprising:
(4) A step of molding the molding composition produced by the above method into a predetermined shape (hereinafter referred to as "molding step").
A method is provided comprising: The molding step may follow the extrusion step described above or be performed in parallel with the extrusion step. An example of a method for producing a molded article from the molding composition P2 will be described below with reference to FIG.
(4)成形ステップ
 図3は、成形装置10を用いた成形用組成物P2の加工方法の一例を示す。図3では、成形用組成物P2の成形加工のために、型40が使用される。図3に示すように、型40は、押出口30の出口に結合される。型40は、メス型42およびオス型44を有する。メス型42には、成形品を形成するための所定の形状を有する凹部が形成される。オス型44には、メス型42と協働して成形品を形成するための所定の形状を有する凸部が形成される。メス型42とオス型44とが結合されると、メス型42の凹部およびオス型44の凸部は、完全には接触せず、成形品の形状に対応する隙間Gを形成する。
(4) Molding Step FIG. 3 shows an example of a method of processing the molding composition P2 using the molding apparatus 10. As shown in FIG. In FIG. 3, a mold 40 is used for molding the molding composition P2. As shown in FIG. 3, a die 40 is coupled to the outlet of extrusion spout 30 . Mold 40 has a female mold 42 and a male mold 44 . The female die 42 is formed with a recess having a predetermined shape for forming a molded product. The male mold 44 is formed with a projection having a predetermined shape for cooperating with the female mold 42 to form a molded product. When the female mold 42 and the male mold 44 are joined together, the concave portion of the female mold 42 and the convex portion of the male mold 44 do not come into complete contact, forming a gap G corresponding to the shape of the molded product.
 型40(「成形手段」の一例)は、メス型42の凹部が押出口30と連通するように、収容部材24に結合される。収容部材24と型40とが結合された状態において押出口30から押し出された成形用組成物P2は、隙間Gに充填される。その後、メス型42とオス型44とが分離され、成形用組成物P2が、オス型44の凸部上で冷却されて固まる。これにより、隙間Gに対応する形状を有する成形品が得られる。 A mold 40 (an example of "forming means") is coupled to the housing member 24 so that the concave portion of the female mold 42 communicates with the extrusion port 30. The gap G is filled with the molding composition P2 extruded from the extrusion port 30 in a state in which the housing member 24 and the mold 40 are coupled. After that, the female mold 42 and the male mold 44 are separated, and the molding composition P2 is cooled and hardened on the convex portion of the male mold 44 . Thereby, a molded product having a shape corresponding to the gap G is obtained.
 このように、有機材料によって流動化した成形用組成物P2を成形装置10の押出口30から押し出すことによって、型40に対応する任意の形状を有する成形体を製造することができる。なお、成形用組成物P2の成形方法は上記例に限定されない。図3に示す方法は射出成形であるが、押出口30から押し出された成形用組成物P2に対して、押出成形、インサート成形、ブロー成形、インフレーション成形など様々な成形方法が利用可能である。 Thus, by extruding the molding composition P2 fluidized by the organic material from the extrusion port 30 of the molding apparatus 10, a molding having an arbitrary shape corresponding to the mold 40 can be manufactured. In addition, the molding method of the molding composition P2 is not limited to the above example. Although the method shown in FIG. 3 is injection molding, various molding methods such as extrusion molding, insert molding, blow molding, and inflation molding can be used for the molding composition P2 extruded from the extrusion port 30.
(5)その他の処理
 原料組成物に対して、適宜前処理を行うことができる。前処理は、たとえば、原料調製ステップにおいて、各原料を混合する前または混合した後に行われてよい。具体的には、前処理として、高分子を低分子化する処理(たとえば、アルカリ処理、オートクレーブ処理、または酵素処理)を行うことができる。アルカリ処理には、KOH、NaOH、LiOHなど、任意の塩基を使用可能である。その他、酸処理、酸化処理、爆砕処理、加水分解処理、漂白処理など、任意の前処理が行われてよい。アルカリ処理、酸処理などの前処理後は、洗浄処理が行われてよい。具体的には、原料が所定の状態(たとえば、所定のpH)となるように、水洗浄、中性化チャンバーによる洗浄、酸またはアルカリによる中和処理などの洗浄処理が行われ得る。このような前処理および/または洗浄処理は、有機材料および無機固体材料を含む原料組成物P1を、所望の成形方法に適した性状および特性とするために行われてもよい。
(5) Other treatments The raw material composition can be appropriately pretreated. The pretreatment may be performed, for example, in the raw material preparation step, before or after mixing each raw material. Specifically, as a pretreatment, a treatment (for example, alkali treatment, autoclave treatment, or enzymatic treatment) for reducing the polymer can be performed. Any base such as KOH, NaOH, LiOH can be used for the alkaline treatment. In addition, arbitrary pretreatments such as acid treatment, oxidation treatment, explosion treatment, hydrolysis treatment, and bleaching treatment may be performed. After pretreatment such as alkali treatment or acid treatment, washing treatment may be performed. Specifically, washing treatment such as washing with water, washing with a neutralization chamber, or neutralization treatment with an acid or alkali can be performed so that the raw material is in a predetermined state (for example, a predetermined pH). Such pretreatment and/or washing treatment may be carried out in order to make the raw material composition P1 containing the organic material and the inorganic solid material suitable for the desired molding method.
 原料組成物P1が繊維質材料を含む場合には、所望の成形方法に適した性状および特性を有する成形用組成物P2が得られるように、または、所望の強度特性を有する成形体が得られるように、既知の手法によって繊維質材料の繊維方向を制御してもよい。 When the raw material composition P1 contains a fibrous material, the molding composition P2 having properties and characteristics suitable for the desired molding method is obtained, or a molded article having desired strength characteristics is obtained. As such, the fiber orientation of the fibrous material may be controlled by known techniques.
 以上のとおり、有機材料および無機固体材料を含む原料組成物に対して加熱、加圧、水の添加、前処理といった操作を適宜行うことにより、所望の成形方法に適した性状および特性(たとえば、流動性、熱剪断性、粘性、密度など)を有する成形用組成物を得ることができる。たとえば、所望の剪断能力または剪断速度を有する成形用組成物を得ることができる。これにより、無機固体材料を含む原料組成物に対して既知の簡便な成形方法を適用できる。したがって、無機固体材料を含む原料組成物から、所望の形状を有する成形体を簡便に得ることができる。また、有機材料が無機固体材料同士を接着することによって、無機固体材料のみからなる成形体に比べて、成形体の強度を向上させることができる。 As described above, by appropriately performing operations such as heating, pressurization, addition of water, and pretreatment on the raw material composition containing the organic material and the inorganic solid material, properties and characteristics suitable for the desired molding method (for example, flowability, thermal shear properties, viscosity, density, etc.) can be obtained. For example, a molding composition can be obtained that has a desired shear capacity or shear rate. Thereby, a known simple molding method can be applied to the raw material composition containing the inorganic solid material. Therefore, a molded article having a desired shape can be easily obtained from a raw material composition containing an inorganic solid material. Further, by bonding the inorganic solid materials together with the organic material, the strength of the molded body can be improved compared to a molded body made of only the inorganic solid material.
<成形材料>
 一実施形態によれば、成形材料であって、無機固体材料と、加熱によって流動化して無機固体材料同士を接着する有機材料と、を含み、有機材料の質量mと前記無機固体材料の質量mとの比m/mが1より大きい、成形材料が提供される。
<Molding material>
According to one embodiment, the molding material includes an inorganic solid material and an organic material that is fluidized by heating to bond the inorganic solid materials together, the mass m1 of the organic material and the mass of the inorganic solid material A molding material is provided in which the ratio m 1 /m 2 to m 2 is greater than 1.
 成形材料は、成形体を形成するための材料として使用される。「成形材料」との語は、上述の原料組成物P1および成形用組成物P2のいずれも包含する。成形材料の形態は特に限定されず、原料組成物P1のような固体粉末の混合物であってもよく、成形用組成物P2のような少なくとも一部が流動化した組成物であってもよく、流動体が固化した状態の組成物であってもよい。好ましくは、成形材料は、射出成形、押出成形、ブロー成形、インフレーション成形といった熱可塑性樹脂材料に適用可能な成形方法において使用され得る。 A molding material is used as a material for forming a molded body. The term "molding material" encompasses both the raw material composition P1 and the molding composition P2 described above. The form of the molding material is not particularly limited, and may be a mixture of solid powders such as the raw material composition P1, or a composition in which at least a portion is fluidized such as the molding composition P2. The composition may be a solidified fluid. Preferably, the molding material can be used in molding methods applicable to thermoplastic materials such as injection molding, extrusion molding, blow molding, inflation molding.
 成形材料において、m/mは、たとえば100以下である。好ましくは、m/mは、1.5以上50以下、2以上20以下、3以上10以下、または4以上8以下であってよい。なお、これらの上限値および下限値は任意に組み合わせることができる。 In the molding material, m 1 /m 2 is 100 or less, for example. Preferably, m 1 /m 2 may be 1.5 to 50, 2 to 20, 3 to 10, or 4 to 8. In addition, these upper limit values and lower limit values can be combined arbitrarily.
 成形材料は、たとえば、0%以上90%以下の空隙率を有する。空隙率は、アルキメデス法により測定される。好ましくは、成形材料の空隙率は、10%以上80%以下、20%以上70%以下、25%以上60%以下、または30%以上50%以下である。 The molding material has, for example, a porosity of 0% or more and 90% or less. Porosity is measured by the Archimedes method. Preferably, the porosity of the molding material is 10% to 80%, 20% to 70%, 25% to 60%, or 30% to 50%.
<成形体>
 一実施形態によれば、成形体であって、無機固体材料と、無機固体材料同士を接着する有機材料であって、加熱によって流動化可能な有機材料と、を含み、有機材料の質量mと無機固体材料の質量mとの比m/mが1より大きい、成形体が提供される。
<Molded body>
According to one embodiment, the shaped body includes an inorganic solid material, and an organic material that bonds the inorganic solid materials together and that can be fluidized by heating, and the mass of the organic material m 1 to the mass m 2 of the inorganic solid material, m 1 /m 2 is greater than 1.
 成形体において、m/mは、たとえば100以下である。好ましくは、m/mは、1.5以上50以下、2以上20以下、3以上10以下、または4以上8以下であってよい。なお、これらの上限値および下限値は任意に組み合わせることができる。 In the compact, m 1 /m 2 is, for example, 100 or less. Preferably, m 1 /m 2 may be 1.5 to 50, 2 to 20, 3 to 10, or 4 to 8. In addition, these upper limit values and lower limit values can be combined arbitrarily.
 成形体は、たとえば、0%以上90%以下の空隙率を有する。空隙率は、アルキメデス法により測定される。好ましくは、成形体の空隙率は、10%以上80%以下、20%以上70%以下、25%以上60%以下、または30%以上50%以下である。 The compact has, for example, a porosity of 0% or more and 90% or less. Porosity is measured by the Archimedes method. Preferably, the porosity of the compact is 10% to 80%, 20% to 70%, 25% to 60%, or 30% to 50%.
 以下、実験例により本発明を説明するが、本発明は以下の実験例に限定されるものではない。 Although the present invention will be described below with experimental examples, the present invention is not limited to the following experimental examples.
<実施例1-1>
(原料組成物の製造)
 有機材料として、スギの木粉(商品名:国産杉粉 300μmパス、那賀ウッド社製 )を用意した。300μmパスとは、目開き300μmのふるいを通過した規格である。したがって、使用した木粉の最大粒径は約300μmである。無機固体材料として、コンクリート瓦礫を粉砕したコンクリート粉末を用意した。具体的には、コンクリート瓦礫を粉砕し、目開き105μmのふるいにかけて、最大粒径が約105μmのコンクリート粉末を得た。上記の有機材料と無機固体材料とを、質量比4:1で混合した。この混合物100質量部に対して、10質量部の水を添加し、混合した。これにより、粉末状の原料組成物を得た。
<Example 1-1>
(Manufacture of raw material composition)
As an organic material, cedar wood powder (trade name: domestic cedar powder, 300 μm pass, manufactured by Naka Wood Co., Ltd.) was prepared. A 300 μm pass is a standard for passing through a sieve with an opening of 300 μm. Therefore, the maximum particle size of the wood flour used is about 300 μm. As the inorganic solid material, concrete powder obtained by pulverizing concrete rubble was prepared. Specifically, the concrete rubble was pulverized and passed through a sieve with an opening of 105 μm to obtain a concrete powder having a maximum particle size of about 105 μm. The above organic material and inorganic solid material were mixed at a mass ratio of 4:1. 10 parts by mass of water was added to 100 parts by mass of this mixture and mixed. Thus, a powdery raw material composition was obtained.
(加熱および射出)
 図1に示す成形装置10を使用して、原料組成物の加熱および射出を行った。具体的には、成形装置10の下部材12および上部材14をそれぞれ、加熱部材20、26によって180℃に予熱した後、成形装置10内のキャビティCに粉末状の上記原料組成物P1を投入した。次いで、下部材12と上部材14とが近づく方向に、1トンの荷重を加えて5分間維持し、下部材12の収容部材24の押出口30から成形用組成物P2が射出されるかを確認した。1トンの荷重を加えて5分間維持して射出が確認されなかった場合には、荷重を5分ごとに1トンずつ、最大7トンまで増加させて、射出の有無および射出が確認されたときの荷重を確認した。その結果、2トンの荷重を加えたときに、押出口30から成形用組成物P2が射出された。なお、使用した成形装置10の収容部材24の内径14mmであり、荷重が加わる面積は約154mmであるので、2トンの荷重を圧力に換算すると約128MPaである。
(heating and injection)
The molding apparatus 10 shown in FIG. 1 was used to heat and inject the raw material composition. Specifically, after the lower member 12 and the upper member 14 of the molding apparatus 10 are preheated to 180° C. by the heating members 20 and 26, respectively, the raw material composition P1 in powder form is put into the cavity C in the molding apparatus 10. did. Next, a load of 1 ton is applied in the direction in which the lower member 12 and the upper member 14 approach each other, and the load is maintained for 5 minutes, and whether or not the molding composition P2 is injected from the extrusion port 30 of the housing member 24 of the lower member 12 is checked. confirmed. If a load of 1 ton is maintained for 5 minutes and injection is not confirmed, the load is increased by 1 ton every 5 minutes, up to a maximum of 7 tons, and the presence or absence of injection and when injection is confirmed was confirmed. As a result, the molding composition P2 was injected from the extrusion port 30 when a load of 2 tons was applied. The inner diameter of the housing member 24 of the molding apparatus 10 used is 14 mm, and the area to which the load is applied is about 154 mm 2 , so the load of 2 tons is converted to pressure of about 128 MPa.
<実施例1-2、実施例1-3、比較例1>
(有機材料と無機固体材料との質量比の変更)
 実施例1-2、実施例1-3、および比較例1では、下記の表1に示すように、有機材料と無機固体材料との質量比を変更したことを除き、実施例1-1と同様にして射出の有無を確認した。具体的には、有機材料と無機固体材料との質量比を3:1~1:1の範囲で変更した。その結果、実施例1-2および実施例1-3では、射出が確認されたが、比較例1では、7トンの荷重を加えても、成形用組成物P2の射出は確認されなかった。
<Example 1-2, Example 1-3, Comparative Example 1>
(Change in mass ratio between organic material and inorganic solid material)
In Example 1-2, Example 1-3, and Comparative Example 1, as shown in Table 1 below, except that the mass ratio of the organic material and the inorganic solid material was changed, Example 1-1 and The presence or absence of ejection was confirmed in the same manner. Specifically, the mass ratio of the organic material and the inorganic solid material was varied within the range of 3:1 to 1:1. As a result, injection was confirmed in Examples 1-2 and 1-3, but injection of the molding composition P2 was not confirmed in Comparative Example 1 even when a load of 7 tons was applied.
<実施例2-1~実施例2-5>
(加熱温度の変更)
 実施例2-1~実施例2-3では、下記の表1に示すように、加熱温度を実施例1-1(有機材料と無機固体材料との質量比が4:1)から変更して、射出の有無を確認した。実施例2-4および実施例2-5では、加熱温度を実施例1-2(有機材料と無機固体材料との質量比が3:1)から変更して、射出の有無を確認した。その結果、いずれの実施例でも、成形用組成物P2の射出が確認された。
<Examples 2-1 to 2-5>
(Change of heating temperature)
In Examples 2-1 to 2-3, as shown in Table 1 below, the heating temperature was changed from Example 1-1 (the mass ratio of the organic material to the inorganic solid material was 4:1). , confirmed the presence or absence of injection. In Examples 2-4 and 2-5, the heating temperature was changed from that in Example 1-2 (the mass ratio of the organic material to the inorganic solid material was 3:1), and the presence or absence of injection was confirmed. As a result, injection of the molding composition P2 was confirmed in all Examples.
<実施例3-1~実施例3-7、比較例2>
(含水率の変更)
 実施例3-1では、下記の表1に示すように、有機材料と無機固体材料との混合物100質量部に対して100質量部の水を添加したことを除き、実施例1-1と同様にして射出の有無を確認した。実施例3-2~実施例3-7では、加熱温度および有機材料と無機固体材料との質量比を実施例3-1から様々に変更して、射出の有無を確認した。その結果、実施例3-1~実施例3-7では、射出が確認されたが、比較例2では、7トンの荷重を加えても、成形用組成物P2の射出は確認されなかった。なお、実施例3-1では、射出を確認したものの、具体的な荷重の値は不明である。
<Examples 3-1 to 3-7, Comparative Example 2>
(Change in moisture content)
In Example 3-1, as shown in Table 1 below, the same as Example 1-1 except that 100 parts by weight of water was added to 100 parts by weight of the mixture of the organic material and the inorganic solid material. Then, the presence or absence of injection was confirmed. In Examples 3-2 to 3-7, the heating temperature and the mass ratio of the organic material and the inorganic solid material were variously changed from those in Example 3-1, and the presence or absence of injection was confirmed. As a result, injection was confirmed in Examples 3-1 to 3-7, but injection of the molding composition P2 was not confirmed in Comparative Example 2 even when a load of 7 tons was applied. In Example 3-1, injection was confirmed, but the specific load value is unknown.
<実施例4-1、実施例4-2>
(水の不使用)
 実施例4-1および実施例4-2では、下記の表1に示すように、水を添加せずに、射出の有無を確認した。その結果、いずれの実施例でも、成形用組成物P2の射出が確認された。
<Example 4-1, Example 4-2>
(no water used)
In Examples 4-1 and 4-2, as shown in Table 1 below, the presence or absence of injection was confirmed without adding water. As a result, injection of the molding composition P2 was confirmed in all Examples.
<実施例5>
(熱可塑性樹脂の使用)
 実施例5では、有機材料としてポリエチレン(商品名:小分ポリエチレン微粉末、フェザーフィールド株式会社製)を使用したことを除き、実施例1-1と同様にして、射出の有無を確認した。その結果、成形用組成物P2の射出が確認された。
<Example 5>
(Use of thermoplastic resin)
In Example 5, the presence or absence of injection was confirmed in the same manner as in Example 1-1, except that polyethylene (trade name: small polyethylene fine powder, manufactured by Featherfield Co., Ltd.) was used as the organic material. As a result, injection of the molding composition P2 was confirmed.
 以下の表1は、各実施例および比較例における実験パラメータおよび結果を示す。「含水率」欄には、有機材料と無機固体材料との合計質量に対する水の添加量(質量)の割合を記載する。「成否」欄には、射出が確認された場合には「Yes」、荷重7トンまで射出が確認されなかったら「No」と記載されている。
Figure JPOXMLDOC01-appb-T000001
Table 1 below shows experimental parameters and results for each example and comparative example. The "water content" column describes the ratio of the added amount (mass) of water to the total mass of the organic material and the inorganic solid material. In the "success/failure" column, "Yes" is entered when injection is confirmed, and "No" is entered when injection is not confirmed up to a load of 7 tons.
Figure JPOXMLDOC01-appb-T000001
 上記のとおり、有機材料と無機固体材料との質量比が1:1を上回る場合には、合成樹脂材料を含まなくても成形用組成物の押出が可能であることを確認した。また、木粉に代えて合成樹脂材料(ポリエチレン)を使用した場合でも成形用組成物の押出が可能であることを確認した。一方、比較例1および比較例2のように有機材料と無機固体材料との質量比が1:1以下の場合には、少なくとも荷重7トンまでの範囲では成形用組成物P2の射出は困難であった。一方、有機材料と無機固体材料との質量比が大きくなるにつれて、射出時の荷重が減少し、射出が容易になる傾向が見られた。同様に、加熱温度および含水率がそれぞれ大きくなるにつれて、射出時の荷重が減少し、射出が容易になる傾向が見られた。 As described above, it was confirmed that when the mass ratio of the organic material and the inorganic solid material exceeds 1:1, the molding composition can be extruded without containing the synthetic resin material. It was also confirmed that the molding composition could be extruded even when a synthetic resin material (polyethylene) was used instead of wood flour. On the other hand, when the mass ratio of the organic material to the inorganic solid material is 1:1 or less as in Comparative Examples 1 and 2, it is difficult to inject the molding composition P2 with a load of at least 7 tons. there were. On the other hand, there was a tendency that as the mass ratio of the organic material and the inorganic solid material increased, the load during injection decreased and the injection became easier. Similarly, as the heating temperature and water content increased, the load during injection decreased and the injection tended to become easier.
<空隙率の評価>
 以下の表2に示すように、実施例において射出された成形用組成物P2を24時間アルコール(95%エタノール)中に浸漬した後、引き上げた。各実施例において、浸漬実験の前後で成形用組成物P2の質量の増加が確認された。浸漬前後の質量の増分を浸漬前の質量で割った値を「吸アルコール率」として計算した。また、アルキメデス法を用いて「空隙率」を計算した。すなわち、浸漬前(絶乾状態)の質量(乾燥質量)、浸漬後の質量(飽水質量)、およびアルコール液中での質量(水中質量)をそれぞれ測定し、(飽水質量-乾燥質量)/(飽水質量-水中質量)の値を「空隙率」として計算した。
<Evaluation of porosity>
As shown in Table 2 below, the injection molding composition P2 in the examples was immersed in alcohol (95% ethanol) for 24 hours and then withdrawn. In each example, an increase in mass of the molding composition P2 was confirmed before and after the immersion experiment. The value obtained by dividing the increase in mass before and after immersion by the mass before immersion was calculated as the "alcohol absorption rate". Also, the "porosity" was calculated using the Archimedes method. That is, the mass (dry mass) before immersion (absolutely dry state), the mass after immersion (saturated water mass), and the mass in the alcohol solution (water mass) are measured, and (saturated water mass - dry mass) The value of /(mass saturated with water - mass in water) was calculated as the "porosity".
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記のとおり、原料組成物中の有機材料の含有量が大きいほど、吸アルコール率および空隙率の値が小さくなる傾向が確認された。また、含水率が小さいほど、吸アルコール率および空隙率の値が小さくなる傾向が確認された。空隙率の値が小さいほど、無機固体材料の粒子間の隙間に有機材料が入り込んで、無機固体材料の粒子同士を接着していると考えられる。 As described above, it was confirmed that the higher the organic material content in the raw material composition, the lower the alcohol absorption rate and the porosity. It was also confirmed that the lower the water content, the lower the alcohol absorption rate and the porosity. It is considered that the smaller the porosity value, the more the organic material enters into the gaps between the particles of the inorganic solid material, and the particles of the inorganic solid material are bonded to each other.
10…成形装置、12…下部材、20…下側加熱部材、22…ベース、24…収容部材、30…押出口、14…上部材、26…上側加熱部材、28…押圧部材、40…型、42…メス型、44…オス型、C…キャビティ、P1…原料組成物、P2…成形用組成物。 DESCRIPTION OF SYMBOLS 10... Molding apparatus, 12... Lower member, 20... Lower heating member, 22... Base, 24... Accommodating member, 30... Extrusion port, 14... Upper member, 26... Upper heating member, 28... Pressing member, 40... Mold , 42... Female mold, 44... Male mold, C... Cavity, P1... Raw material composition, P2... Molding composition.

Claims (12)

  1.  成形用組成物の製造方法であって、
     無機固体材料と、加熱によって流動化して前記無機固体材料同士を接着する有機材料とを含む原料組成物を得るステップと、
     材料空間において前記原料組成物を加熱するステップと、
     加熱された前記原料組成物を、前記成形用組成物として、前記材料空間から押し出すステップと、
    を含む、方法。
    A method for producing a molding composition, comprising:
    obtaining a raw material composition containing an inorganic solid material and an organic material that is fluidized by heating to bond the inorganic solid materials together;
    heating the raw material composition in a material space;
    extruding the heated raw material composition from the material space as the molding composition;
    A method, including
  2.  前記有機材料は、植物性材料である、
     請求項1に記載の方法。
    wherein the organic material is a plant material;
    The method of claim 1.
  3.  前記有機材料は、リグニン、セルロール、ヘミセルロース、および糖からなる群より選択された1以上を含む、
     請求項1または2に記載の方法。
    the organic material comprises one or more selected from the group consisting of lignin, cellulose, hemicellulose, and sugar;
    3. A method according to claim 1 or 2.
  4.  前記無機固体材料は、1種以上のコンクリート、1種以上のセメント、1種以上の鉱物、1種以上の金属、1種以上のセラミックス、1種以上のガラス、1種以上のスラグ、1種以上の石灰、および1種以上の焼却灰、ならびにこれらの複合材料からなる群より選択された1以上を含む、
     請求項1~3のいずれか一項に記載の方法。
    The inorganic solid material includes one or more concretes, one or more cements, one or more minerals, one or more metals, one or more ceramics, one or more glasses, one or more slags, one above lime, and one or more incinerated ash, and one or more selected from the group consisting of composite materials thereof,
    The method according to any one of claims 1-3.
  5.  前記有機材料の質量mと前記無機固体材料の質量mとの比m/mが1より大きい、
     請求項1~4のいずれか一項に記載の方法。
    the ratio m 1 /m 2 of the mass m 1 of the organic material and the mass m 2 of the inorganic solid material is greater than 1;
    The method according to any one of claims 1-4.
  6.  前記原料組成物は、水をさらに含む、
     請求項1~5のいずれか一項に記載の方法。
    The raw material composition further contains water,
    The method according to any one of claims 1-5.
  7.  前記原料組成物を加熱するステップにおける加熱温度は、60度以上240度以下である、
     請求項1~6のいずれか一項に記載の方法。
    The heating temperature in the step of heating the raw material composition is 60 degrees or more and 240 degrees or less.
    The method according to any one of claims 1-6.
  8.  加熱された前記原料組成物に圧力を加えるステップをさらに含む、
     請求項1~7のいずれか一項に記載の方法。
    further comprising applying pressure to the heated feedstock composition;
    The method according to any one of claims 1-7.
  9.  成形体の製造方法であって、
     請求項1~8のいずれか一項に記載の方法によって製造された成形用組成物を所定の形状に成形するステップを含む、方法。
    A method for manufacturing a molded body,
    A method comprising molding a molding composition produced by the method of any one of claims 1 to 8 into a predetermined shape.
  10.  前記成形体は、射出成形、押出成形、インサート成形、ブロー成形、またはインフレーション成形によって成形される、
     請求項9に記載の方法。
    The molded body is molded by injection molding, extrusion molding, insert molding, blow molding, or inflation molding,
    10. The method of claim 9.
  11.  無機固体材料と、
     加熱によって流動化して前記無機固体材料同士を接着する有機材料と、
    を含み、
     前記有機材料の質量mと前記無機固体材料の質量mとの比m/mが1より大きい、
     成形材料。
    an inorganic solid material;
    an organic material that is fluidized by heating to bond the inorganic solid materials together;
    including
    the ratio m 1 /m 2 of the mass m 1 of the organic material and the mass m 2 of the inorganic solid material is greater than 1;
    molding material.
  12.  無機固体材料と、
     前記無機固体材料同士を接着している有機材料であって、加熱によって流動化可能な有機材料と、
    を含み、
     前記有機材料の質量mと前記無機固体材料の質量mとの比m/mが1より大きい、
     成形体。
    an inorganic solid material;
    an organic material that bonds the inorganic solid materials together and that can be fluidized by heating;
    including
    the ratio m 1 /m 2 of the mass m 1 of the organic material and the mass m 2 of the inorganic solid material is greater than 1;
    molding.
PCT/JP2023/004585 2022-02-11 2023-02-10 Molding composition manufacturing method, molded body manufacturing method, molding material, and molded body WO2023153498A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263309019P 2022-02-11 2022-02-11
US63/309,019 2022-02-11

Publications (1)

Publication Number Publication Date
WO2023153498A1 true WO2023153498A1 (en) 2023-08-17

Family

ID=87564516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004585 WO2023153498A1 (en) 2022-02-11 2023-02-10 Molding composition manufacturing method, molded body manufacturing method, molding material, and molded body

Country Status (1)

Country Link
WO (1) WO2023153498A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128663A (en) * 1998-10-27 2000-05-09 Nichiha Corp Production of wooden cement board
JP2002020148A (en) * 2000-06-30 2002-01-23 Daiken Trade & Ind Co Ltd Recycled forming material
JP2006007138A (en) * 2004-06-28 2006-01-12 Kubota Matsushitadenko Exterior Works Ltd Method for manufacturing molded article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128663A (en) * 1998-10-27 2000-05-09 Nichiha Corp Production of wooden cement board
JP2002020148A (en) * 2000-06-30 2002-01-23 Daiken Trade & Ind Co Ltd Recycled forming material
JP2006007138A (en) * 2004-06-28 2006-01-12 Kubota Matsushitadenko Exterior Works Ltd Method for manufacturing molded article

Similar Documents

Publication Publication Date Title
US5413746A (en) Method for molding shaped products and an apparatus for carrying out same
Alzaidy Experimental study for stabilizing clayey soil with eggshell powder and plastic wastes
WO2005070635A1 (en) The water-proof composite sheet
JP2003165844A (en) Lignocellulose-containing material and its utilization
CN101519534A (en) Wood-plastic composite material and manufacturing method thereof
CN102417702A (en) Production method of full-degradation nut shell particle/natural fibre synergy reinforcement lactyl composite material
CN102729311A (en) Production method of eucalyptus bark shaving boards
CN100337973C (en) Method for producing low temperature ceramic timber
CN101214678A (en) Method for producing bamboo fibre artificial board without glue glued adhesion
CN101306937A (en) Construction garbage concrete brick and production process thereof
Wei et al. Improving the properties of botanical concrete based on waste concrete, wood, and kraft lignin powder
WO2023153498A1 (en) Molding composition manufacturing method, molded body manufacturing method, molding material, and molded body
EP0573695B1 (en) A method for molding shaped products and an apparatus for carrying out same
JP7157984B2 (en) Cured product manufacturing method
CN105062110A (en) Method for preparation of polypropylene based wood plastic composite material from walnut shell powder
CN101100365A (en) Method for producing low-temperature ceramic stone
CN104446563A (en) Method for preparing SiC (silicon carbide)-based refractory material by using silicon resin as binding agent
US5171496A (en) Process for making wood composite employing blast-furnace slag as the binder
RU2400358C1 (en) Wood-particle composite material and method for its manufacturing
WO2023106286A1 (en) Molded body production method, structure processing method, composition production method, and composition
JPH06227807A (en) Production of granular active carbon
Wechsler et al. Sustainable furniture panel composites from forestry and food industry by-products in Australia
CN110914373A (en) Surface-coated plant fibers, process for their production and their use in the production of manufactured articles
RU2270817C1 (en) Mix to produce articles of composite materials
CN102424545A (en) Process for preparing building template by using fly ash and prepared building template

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752960

Country of ref document: EP

Kind code of ref document: A1