WO2023153453A1 - リハビリテーション支援システム、情報処理方法およびプログラム - Google Patents

リハビリテーション支援システム、情報処理方法およびプログラム Download PDF

Info

Publication number
WO2023153453A1
WO2023153453A1 PCT/JP2023/004231 JP2023004231W WO2023153453A1 WO 2023153453 A1 WO2023153453 A1 WO 2023153453A1 JP 2023004231 W JP2023004231 W JP 2023004231W WO 2023153453 A1 WO2023153453 A1 WO 2023153453A1
Authority
WO
WIPO (PCT)
Prior art keywords
rehabilitation
information
subject
support system
analysis
Prior art date
Application number
PCT/JP2023/004231
Other languages
English (en)
French (fr)
Inventor
悠二 石村
彰太 唐沢
俊樹 福田
綾香 唐沢
江里 山田
Original Assignee
ソニーグループ株式会社
エムスリー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022071101A external-priority patent/JP2023115876A/ja
Application filed by ソニーグループ株式会社, エムスリー株式会社 filed Critical ソニーグループ株式会社
Priority to CN202380018863.9A priority Critical patent/CN118613213A/zh
Publication of WO2023153453A1 publication Critical patent/WO2023153453A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/30ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising

Definitions

  • the present invention relates to a rehabilitation support system, information processing method and program.
  • Pose estimation technology extracts multiple keypoints from an image of a target person or object (if the target is a human, multiple feature points representing shoulders, elbows, wrists, hips, knees, ankles, etc.) and extracts key points. This technology estimates the pose of a target based on the relative positions of points. Posture estimation technology is expected to be applied in a wide range of fields such as learning support in sports, healthcare, automated driving, and danger prediction.
  • a series of actions of the target can be regarded as a combination of a plurality of characteristic actions (phases). If analysis is performed for each phase, a series of actions can be accurately analyzed. Conventional methods do not classify motions according to phases. Therefore, it is not possible to accurately evaluate the entire series of actions.
  • the present disclosure proposes a rehabilitation support system, an information processing method, and a program capable of supporting rehabilitation based on accurate motion analysis.
  • a posture information extraction unit that extracts posture information of the rehabilitation subject from video data of training or evaluation exercise of the rehabilitation subject;
  • a state machine for detecting a plurality of phases included in a series of motions of the rehabilitation subject in exercise, and motion analysis for analyzing the posture information for each of the phases and generating analysis information indicating evaluation results of the series of motions.
  • a rehabilitation support system is provided. Further, according to the present disclosure, an information processing method in which information processing of the rehabilitation support system is executed by a computer, and a program for causing a computer to realize information processing of the rehabilitation support system are provided.
  • FIG. 4 is a flowchart showing an example of analysis/evaluation processing; It is a figure which shows an example of the functional structure regarding analysis / intervention processing. It is a figure which shows the landmark in standing-up operation
  • FIG. 10 is a diagram showing an example of a UI for inputting inquiry data;
  • FIG. 10 is a diagram showing an example of a UI for inputting inquiry data;
  • FIG. 10 is a diagram showing an example of a UI for inputting inquiry data;
  • It is a figure which shows an example of UI of an operation check.
  • It is a figure which shows an example of UI of an operation check.
  • It is a figure which shows an example of UI of an operation check.
  • FIG. 10 is a diagram showing an example of a UI for preparing for shooting;
  • FIG. 10 is a diagram showing an example of a UI for preparing for shooting;
  • FIG. 10 is a diagram showing an example of a UI for preparing for shooting;
  • FIG. 9 is a diagram showing a display example of an evaluation result in AI check;
  • FIG. 9 is a diagram showing a display example of an evaluation result in AI check;
  • FIG. 1 is a diagram showing an example of a rehabilitation support service for at-home patients undergoing rehabilitation.
  • the rehabilitation support service is a service that supports rehabilitation performed at medical institutions, at home, at work, etc.
  • rehabilitation refers to techniques and methods for improving the potential of patients with disabilities, chronic diseases, geriatric diseases, etc. who require long-term treatment, and recovering and promoting their social and social functions.
  • a person who is a target of rehabilitation is described as a rehabilitation target person TG.
  • the rehabilitation target TG is, for example, a sick person, an injured person, an elderly person, a disabled person, or the like.
  • the rehabilitation support service grasps the progress of rehabilitation based on video data of rehabilitation training or evaluation exercises performed by the rehabilitation target TG, and presents appropriate intervention information VI.
  • Rehabilitation methods include exercise therapy, physical therapy, exercise in daily life, and brace therapy, and the present disclosure describes an example of rehabilitation by exercise therapy.
  • exercise therapy movement disorders such as standing, sitting, and walking are improved by conducting range-of-motion training, basic movement training, muscle strengthening training, and the like.
  • the rehabilitation support service is implemented by a rehabilitation support system 1 as shown in FIG.
  • the rehabilitation support system 1 has a client terminal 100 , a motion analysis server 200 , a medical staff terminal 300 , a family terminal 400 and a service provider server 500 .
  • the client terminal 100, motion analysis server 200, medical staff terminal 300, family terminal 400 and service provider server 500 are connected via a network NW (see FIG. 11).
  • the client terminal 100 is an information terminal such as a smart phone, tablet terminal, notebook computer, or desktop computer.
  • the client terminal 100 is owned by the client who requested the motion analysis of the rehabilitation subject TG.
  • the client is the rehabilitation target TG's family FM or the rehabilitation target TG himself, but in this disclosure, an example in which the rehabilitation target TG himself is the client will be described.
  • the client terminal 100 transmits to the motion analysis server 200 the video data MD that shows the rehabilitation target person TG performing training or evaluation exercise for rehabilitation.
  • the motion analysis server 200 analyzes the motion of the rehabilitation subject TG based on the moving image data MD.
  • a series of motions of the rehabilitation subject TG is captured as a combination of a plurality of characteristic motions arranged along the time axis.
  • the motion analysis server 200 extracts individual characteristic motions as phases. Boundaries between phases are defined based on predetermined indices.
  • the motion analysis server 200 evaluates a series of motions by performing motion analysis for each phase based on a predetermined index.
  • the motion analysis server 200 generates analysis information MAI indicating the evaluation result and transmits it to the client terminal 100 .
  • the motion analysis server 200 can also transmit the generated analysis information MAI to the medical staff terminal 300 and the family terminal 400 .
  • the rehabilitation target TG, the medical staff DT, and the family FM can grasp the physical condition of the rehabilitation target TG based on the transmitted analysis information MAI.
  • Analytical information MAI includes evaluation results regarding motor ability, severity of disability, and characteristics of disability of rehabilitation target TG in comparison with healthy subjects or medical standards.
  • the analysis information MAI can also include an evaluation result regarding the effect of rehabilitation based on comparison with the exercise ability of the past rehabilitation subject TG.
  • Medical personnel DT such as doctors, physical therapists, pharmacists, and health advisors diagnose the rehabilitation target TG based on the analysis information MAI received by the medical personnel terminal 300 .
  • the medical staff DT transmits diagnostic information DG indicating the diagnosis result to the motion analysis server 200 via the medical staff terminal 300 .
  • the motion analysis server 200 transmits the diagnosis information DG together with the analysis information MAI to the service provider server 500 .
  • the service provider server 500 Based on the analysis information MAI and/or the diagnostic information DG, the service provider server 500 extracts the product sales information PSI for equipment, canes, mats, etc. according to the health condition of the rehabilitation target TG from the product sales database, 200.
  • the motion analysis server 200 generates intervention information VI for the rehabilitation subject TG based on the analysis information MAI, diagnostic information DG, and product sales information PSI, and transmits the intervention information VI to the client terminal 100 .
  • the intervention information VI includes the diagnosis result of the rehabilitation target TG, the authentication of the motor function, various proposals for helping the rehabilitation target TG's functional recovery, and product sales information PSI.
  • FIG. 2 is a block diagram showing an example of the functional configuration of the rehabilitation support system 1. As shown in FIG.
  • the client terminal 100 has a sensor section 110 , an input device 120 and a display device 170 .
  • the sensor unit 110 collects vital data and exercise data that can be used for symptom analysis of the rehabilitation subject TG.
  • the exercise data includes moving image data MD recording images of the rehabilitation subject TG during training or evaluation exercise for rehabilitation.
  • the input device 120 includes various input devices capable of inputting medical inquiry data CD.
  • the display device 170 displays various determination results (analysis information MAI) and intervention information VI obtained by motion analysis of the rehabilitation subject TG.
  • the sensor unit 110 can include a heartbeat sensor, a VO2MAX (maximum oxygen uptake) sensor, a pedometer, a strength meter, a goniometer, a camera 160, a GPS (Global Positioning System), an acceleration sensor, and a gyro sensor.
  • Input devices 120 may include touch panels, keyboards, mice, eye-tracking devices, and voice input devices.
  • the display device 170 includes an LCD (Liquid Crystal Display) or an OLED (Organic Light Emitting Diode).
  • the sensor unit 110, the input device 120, and the display device 170 may be provided integrally within one device, or may be provided as independent devices.
  • the client terminal 100 transmits the rehabilitation subject TG's vital data, exercise data, and interview data CD to the motion analysis server 200 .
  • the motion analysis server 200 analyzes the health condition of the rehabilitation subject TG based on various data acquired from the client terminal 100 .
  • the medical interview data CD is entered based on the medical questionnaire.
  • the interview data CD includes, for example, primary information such as name, age, sex, weight, disease name, and medicines being taken, and secondary information related to the primary information.
  • the secondary information includes information such as worrisome symptoms, pain, onset time of symptoms, paralyzed sites, nursing care status, presence or absence of braces, and recent life activity range.
  • the interview data CD may be manually input by the rehabilitation subject TG, or may be extracted from information held by the medical institution, such as an electronic medical record. Vital information such as heart rate and position information such as range of daily activities may be obtained from the measurement data of the sensor unit 110 .
  • the client terminal 100 can acquire the medical record information, medication information, genome information, etc. of the rehabilitation target TG from the medical information database via the network.
  • the client terminal 100 can acquire information on lifestyle habits such as diet, sleep, and weight of the rehabilitation subject TG from a health information database that records health information.
  • the client terminal 100 can include various types of information acquired from the medical information database and the health information database in the interview data CD.
  • the motion analysis server 200 has a health information calculation unit 210 , an evaluation unit 220 , an intervention information generation unit 230 and a storage device 290 .
  • the health information calculation unit 210 calculates the health information of the rehabilitation subject TG based on the sensor data and medical interview data CD.
  • the health information includes various types of information indicating the health condition of the rehabilitation target TG, such as disability information, vital information, functional information (information related to physical functions such as walking ability, muscle strength and range of motion of joints), and rehabilitation status of the rehabilitation target TG. Contains information.
  • the health information calculation unit 210 includes a sensor data analysis unit 211, a feature amount extraction unit 212, and an interview data analysis unit 213.
  • the sensor data analysis unit 211 analyzes the vital information and exercise capacity of the rehabilitation subject TG based on the sensing results of the heartbeat sensor, VO2MAX (maximum oxygen uptake) sensor, pedometer, muscle strength meter, goniometer, and acceleration sensor. Detect at least one.
  • the sensor data analysis unit 211 analyzes the moving image data MD showing how the rehabilitation target TG performs rehabilitation, and extracts the posture information HPI (see FIG. 8) of the rehabilitation target TG.
  • the feature amount extraction unit 212 extracts feature amounts based on the indices stored in the index database 295 from the posture information HPI.
  • the index database 295 stores indices for motion analysis for each patient's disorder (disease, functional disorder, behavioral disorder).
  • Figures 3 and 4 are diagrams showing examples of indicators for motion analysis.
  • the index includes various information for performing motion analysis.
  • Indicators include various elements that provide a basis for the work and processes required for motion analysis. Each failure is associated with one or more judgment items that are subject to motion analysis.
  • the storage device 290 (indicator database 295) stores moving image shooting conditions, definition information of feature amounts, and motion analysis algorithm AL for each determination item as indices for motion analysis.
  • the motion analysis algorithm AL may include information regarding phase information, evaluation methods for each phase, definition of symptom classification, and the like.
  • the evaluation method for each phase should preferably include information such as evaluation items and scoring criteria for each phase.
  • FIG. 4 shows an example of indices related to standing up motion, squat motion, and the like.
  • the shooting direction of moving images is defined as shooting condition information.
  • the motion analysis algorithm AL includes, as phase information, information such as phase definitions and phase boundary detection methods.
  • the motion analysis algorithm AL includes, as a phase evaluation method, information such as evaluation items for each phase, scoring criteria, and role models (model motions of healthy subjects, etc.).
  • the information shown in FIGS. 3 and 4 is an example of motion analysis indicators, and the motion analysis indicators are not limited to these.
  • indices For patients who have difficulty in activities of daily living (ADL), indices according to evaluation methods such as FIM (Functional Independence Measure) and BI (Barthel Index) are used. FIM and BI have multiple evaluation items such as movement and transfer. These evaluations do not refer to bodily movements, and are evaluated based on whether they are able to do it or not, or whether they are doing it in their daily lives.
  • the basic movements of daily living such as getting up, standing up, walking, and going up and down stairs, and the movements that make up these movements (hereinafter referred to as basic movements), are evaluated. Therefore, the way the body moves itself can be evaluated.
  • index database 295 individual basic actions are defined as judgment items.
  • the moving image data MD is acquired for each determination item, and motion analysis is also performed for each determination item.
  • the medical interview data analysis unit 213 extracts the disability information of the rehabilitation subject TG from the medical interview data CD.
  • the disability information includes information on the type of disability and severity of disability of the rehabilitation target TG.
  • information on the paralyzed side is also included in the disability information. Impairment information may be considered in motion analysis. This is because if the type and severity of an obstacle differ, even if the same motion is detected, the motion may be interpreted differently.
  • information on the paralyzed side is used when determining the shooting direction of a moving image. Video recording is done in such a way that the movements of the paralyzed side can be recorded in detail.
  • the medical interview data analysis unit 213 determines whether it is appropriate to exercise the rehabilitation subject TG based on the medical interview data CD. If it is determined that it is impossible or inappropriate for the rehabilitation subject TG to exercise, the medical interview data analysis unit 213 notifies the client terminal 100 of an alert prompting the user to stop rehabilitation or confirm with a doctor. . The interview data analysis unit 213 may make an inquiry to the medical staff terminal 300 instead of notifying the client terminal 100 of an alert.
  • the evaluation unit 220 analyzes the motion of the rehabilitation subject TG based on the feature quantity extracted by the feature quantity extraction unit 212 and the motion analysis algorithm AL stored in the index database 295 . For example, the evaluation unit 220 classifies a series of motions of the rehabilitation subject TG recorded in the moving image data MD into a plurality of phases based on the motion analysis algorithm AL. The evaluation unit 220 analyzes the movement of each phase in consideration of the disability information of the rehabilitation target person TG. A method for detecting the boundaries of the phases and a method for evaluating the motion of each phase are defined in the motion analysis algorithm AL. The evaluation unit 220 generates analysis information MAI indicating the evaluation result of the series of actions.
  • the intervention information generation unit 230 generates intervention information VI for the rehabilitation target person TG based on the analysis information MAI.
  • the intervention information VI includes information (judgment information) that serves as judgment material for prompting the rehabilitation target TG to improve the motion, or a training plan for the rehabilitation target TG.
  • the judgment information includes, for example, scores for rehabilitation and diabetes, vital information, and the like.
  • the intervention information generator 230 extracts one or more symptoms of the rehabilitation subject TG from the analysis information MAI, and determines a training plan based on the priority determined for each symptom and the severity of each symptom. can be done.
  • the intervention information generation unit 230 can also determine a training plan by referring to information such as interview data in addition to the analysis information MAI.
  • the symptoms include the severity of the disability estimated from the behavior specific to the TG of the rehabilitation subject compared to the healthy subject, the decrease in muscle strength, the decrease in the range of motion of the joint, and the like. If multiple symptoms are detected, for example, a training plan based on the highest priority symptom is presented.
  • the priority of symptoms and training plans for each symptom are stored in the disease-specific solution database 294.
  • the disease-specific solution database 294 is associated with one or more training plans for each symptom.
  • the intervention information generator 230 can present another training plan linked to the symptom based on the transition of the rehabilitation score and the progress of improvement of the symptom.
  • the intervention information generation unit 230 determines the current level of athletic ability of the rehabilitation subject TG based on the analysis information MAI. The level information is used for comparison with other patients with similar disorders, certification of improvement of symptoms, and the like. For example, the intervention information generator 230 generates authentication information for authenticating the current level of the rehabilitation target TG. Based on the authentication information, the rehabilitation subject TG can calculate the degree of contribution to the reduction of insurance premiums and calculate refunds. Intervention information VI may include insurance recommendations based on authentication information. Intervention information VI may also include assessment information about efficacy and rehabilitation support services based on authentication information.
  • the storage device 290 has a personal information database 291 , an anonymized sensing information database 292 , an intervention information database 293 , a disease-specific solution database 294 and an index database 295 .
  • the personal information database 291 stores information related to the individual rehabilitation target TG, such as age, height, weight, diet, sleep, walking information, muscle strength information, and range of motion information of the rehabilitation target TG.
  • personal information is stored on the motion analysis server 200 as a database.
  • the personal information of the rehabilitation target TG may be stored in the client terminal 100 owned by the rehabilitation target TG.
  • the anonymized sensing information database 292 stores the past sensing data of the rehabilitation target TG used by the health information calculation unit 210 .
  • Past sensing data is stored as anonymized data in association with anonymously processed information such as age, gender, and disease.
  • the intervention information database 293 stores the intervention information VI generated by the intervention information generation unit 230 in association with the health information of the rehabilitation subject TG.
  • the disease-specific solution database 294 stores disease-specific solutions such as frailty, Parkinson's disease, heart disease, cerebrovascular disease such as cerebral infarction, and side effect prevention, which are used by the intervention information generation unit 230 .
  • disease-specific solutions such as frailty, Parkinson's disease, heart disease, cerebrovascular disease such as cerebral infarction, and side effect prevention
  • contents such as advice, educational contents, and rehabilitation/exercise programs are stored for each disease. Each content may be stored in association with an evaluation result or diagnosis result. As a result, appropriate advice and contents are provided according to the condition of the rehabilitation target TG.
  • the index database 295 stores indices used by the evaluation unit 220 .
  • the index database 295 includes definition information of feature quantities and motion analysis algorithms AL using the feature quantities as indicators for motion analysis.
  • the motion analysis algorithm AL may be based on a specific threshold, or may be based on a learning model in which machine learning has been performed.
  • the medical personnel terminal 300 is an information terminal such as a smart phone, tablet terminal, notebook computer, and desktop computer.
  • the medical personnel terminal 300 has an evaluation unit 310 and a diagnosis and receipt information database 390 .
  • the medical staff terminal 300 receives and displays the health information, analysis information MAI, symptom information, and the like of the rehabilitation target TG transmitted from the motion analysis server 200 .
  • the evaluation unit 310 evaluates the current The physical condition of the rehabilitation subject TG is diagnosed, and the diagnosis result and advice according to the diagnosis result are transmitted to the motion analysis server 200 .
  • the diagnosis result and the advice corresponding to the diagnosis result may be transmitted directly to the client terminal 100 owned by the rehabilitation subject TG without going through the motion analysis server 200 .
  • the diagnosis and receipt information database 390 stores diagnostic information, drug information, communication information, genome information, receipt information, and the like on which the rehabilitation subject TG was diagnosed in the past.
  • the attending physician of the rehabilitation target TG can receive the rehabilitation target TG even if he or she lives far away from the rehabilitation target TG. You can see the health status and behavioral changes of TGs. Thereby, the doctor can remotely diagnose the current health condition of the rehabilitation target TG and provide the diagnosis result.
  • the family terminal 400 is an information terminal such as a smart phone, tablet terminal, notebook computer, and desktop computer.
  • the family terminal 400 receives and displays the health information of the rehabilitation target TG and the analysis information MAI transmitted from the motion analysis server 200 .
  • the family FM of the rehabilitation target TG can know the rehabilitation target TG's health condition and behavioral changes even if they live far away from the rehabilitation target TG.
  • the service provider server 500 has a sales database 591.
  • the product sales database 591 stores product sales information PSI such as health food suitable for each health information and analysis information MAI.
  • the service provider server 500 receives the health information, analysis information MAI, symptom information, and the like of the rehabilitation target TG transmitted from the motion analysis server 200 .
  • the service provider server 500 searches the product sales database 591 for product sales information PSI corresponding to the received health information, analysis information MAI, and symptom information of the rehabilitation target TG.
  • the service provider server 500 transmits the retrieved product sales information PSI to the motion analysis server 200 .
  • the service provider can recommend health foods, etc. based on the rehabilitation target TG's health condition and behavioral changes. product sales information PSI can be provided to the rehabilitation subject TG.
  • the health information, analysis information MAI, and symptom information of the rehabilitation target TG received by the medical staff terminal 300 and the service provider server 500 are desirably anonymized.
  • the motion analysis server 200 calculates health information and provides analysis information MAI and intervention information VI.
  • the server that calculates the health information and the server that evaluates the movement and provides the analysis information MAI and the intervention information VI may be configured separately.
  • the service provider server 500 has been described as a server different from the motion analysis server 200, the motion analysis server 200 and the service provider server 500 may be integrated.
  • the motion analysis server 200 includes various databases.
  • a database server including various databases may be provided separately.
  • each database in storage device 290 may be managed by a server different from motion analysis server 200 .
  • FIG. 5 is a flowchart showing an outline of motion analysis processing.
  • the client terminal 100 acquires sensor data and interview data CD from the sensor unit 110 and the input device 120 (step S1).
  • the client terminal 100 transmits the acquired sensor data to the motion analysis server 200 (step S2).
  • the medical interview data analysis unit 213 extracts the disability information of the rehabilitation target person TG from the medical interview data CD (step S3).
  • the sensor data analysis unit 211 extracts, from the sensor data, functional information related to the physical functions of the rehabilitation subject TG and posture information HPI of the rehabilitation subject TG during training or evaluation exercise for rehabilitation (step S4).
  • Step S3 When motion analysis is performed based only on the posture information HPI of the rehabilitation target TG, a process of extracting disability information from the interview data CD (step S3) and a process of extracting functional information from sensor data (step S3) are performed. Step S4) is unnecessary.
  • the feature quantity extraction unit 212 extracts from the index database 295 the index of motion analysis (definition information of the feature quantity, motion analysis algorithm AL) corresponding to the item.
  • the feature amount extraction unit 212 extracts feature amounts from the posture information HPI based on the feature amount definition information (step S5).
  • the definition information of the feature amount is linked to the disability information and specified in the index database 295, it is desirable that the feature amount extraction unit 212 also refer to the disability information of the rehabilitation subject TG when extracting the index. .
  • the evaluation unit 220 analyzes the movement of the rehabilitation subject TG by applying the extracted feature amount data to the movement analysis algorithm AL. Motion analysis is performed for each phase of motion.
  • the evaluation unit 220 classifies an example motion of the rehabilitation subject TG into a plurality of phases based on the motion analysis algorithm AL.
  • the evaluation unit 220 analyzes posture information HPI (feature amount data) for each phase based on indices (evaluation items and evaluation criteria).
  • the evaluation unit 220 evaluates a series of motions of the rehabilitation subject TG based on the motion analysis results for each phase, and generates analysis information MAI indicating the evaluation results (step S6).
  • the evaluation unit 220 evaluates the series of motions of the rehabilitation target TG in consideration of the disability information and/or function information of the rehabilitation target TG. You can also
  • the intervention information generation unit 230 acquires diagnostic information DG and product sales information PSI related to the analysis information MAI from the medical staff terminal 300 and the service provider server 500 .
  • the intervention information generator 230 generates intervention information VI for intervening in the rehabilitation subject TG based on the analysis information MAI, the diagnostic information DG, the symptom information, and the product sales information PSI (step S7).
  • the intervention information generator 230 transmits the generated intervention information VI to the client terminal 100 (step S8).
  • the client terminal 100 displays the intervention information VI on the display device 170 to make the rehabilitation subject TG recognize the rehabilitation situation (step S9). This prompts a change in the behavior of the rehabilitation target TG.
  • FIG. 6 is a flowchart illustrating an example of moving image acquisition processing.
  • the client terminal 100 recognizes a person (rehabilitation subject TG) whose motion analysis is to be performed.
  • the rehabilitation target TG may be recognized as a person in the center of the field of view of the camera 160, or the rehabilitation target TG may be authenticated by account information, face authentication, fingerprint authentication, or the like.
  • Step SA2 Preparing for shooting>
  • the client terminal 100 determines whether or not rehabilitation is possible based on the interview data CD.
  • the client terminal 100 determines determination items and imaging conditions in preparation for imaging.
  • the judgment items are selected by the rehabilitation target TG or the trainer.
  • the set training items may be determined as determination items.
  • the determination items are determined based on, for example, user input information (selection of rehabilitation subject TG) or interview data CD.
  • the client terminal 100 identifies the disability of the rehabilitation subject TG based on the interview data CD.
  • the client terminal 100 extracts from the index database 295 one or more determination items linked to the disability of the rehabilitation subject TG. If there is only one judgment item, that one judgment item is determined as the target of motion analysis. If there are a plurality of determination items, one determination item selected based on the user input information is determined as a motion analysis target. Judgment items can also be specified by a doctor or a physical therapist.
  • the client terminal 100 extracts the shooting conditions linked to the judgment items from the index database 295, and notifies the rehabilitation subject TG using audio and video.
  • the imaging conditions include criteria for the positional relationship between the rehabilitation target TG and the camera 160, the position of the rehabilitation target TG within the angle of view (for example, the coordinates of both shoulders, the position of the center line of the skeleton), and the like.
  • the client terminal 100 determines that the imaging position of the camera 160 does not satisfy the above-described criteria, the client terminal 100 notifies the rehabilitation subject TG using audio or video.
  • the determination of whether or not the shooting position satisfies the above criteria may be made by another analysis device such as the motion analysis server 200 . Part of the determination (eg pose estimation only) may be performed by the client terminal 100 and the rest by other analysis equipment. Further, when the positional relationship between the rehabilitation subject TG and the camera 160 is detected using a ToF sensor or the like, the image of the camera 160 is corrected based on the detected positional relationship so that the above-described criteria are satisfied. You may
  • the client terminal 100 can detect its own horizontality using a gyro sensor or the like, and can notify the rehabilitation subject TG when it is tilted from the horizontal.
  • a gyro sensor or the like When analyzing the movement of the rehabilitation target TG, it is necessary to accurately detect in which direction and how much the rehabilitation target TG's posture is inclined from the vertical direction. Therefore, as a preparation before photographing, the rehabilitation subject TG is asked to adjust the horizontality of the client terminal 100 .
  • the client terminal 100 determines that the rehabilitation target TG cannot be accurately separated from the background by image analysis, it can notify the rehabilitation target TG.
  • the rehabilitation subject TG is separated from the background by image analysis. They cannot be separated with good accuracy. Even if another person exists in the background of the rehabilitation target TG, the rehabilitation target TG and the other person cannot be separated for analysis. If the rehabilitation target TG cannot be separated from the background, the rehabilitation target TG's posture information HPI cannot be extracted with high accuracy. Therefore, the rehabilitation subject TG is notified and asked to adjust the photographing position and lighting conditions.
  • Step SA3 Acquire moving image>
  • the client terminal 100 shoots a moving image.
  • the client terminal 100 may capture a moving image for assessment before capturing the moving image.
  • the assessment movie means a movie showing basic actions such as standing up, walking, going up and down stairs, and getting up, which is acquired to analyze the symptoms of the rehabilitation subject TG.
  • the assessment moving images are used together with the interview data CD as judgment materials for analyzing the symptoms of the rehabilitation subject TG.
  • one or more additional test videos may be filmed based on the analysis results of the assessment videos.
  • the video for additional test means a video showing a motion that is more detailed than the basic motion described above, or another motion for supplementary analysis.
  • the video for additional test can be used as a judgment material for analyzing the symptoms of the rehabilitation subject TG together with the interview data CD.
  • Instructions to start and end video recording can be input by voice.
  • the poses at the start and end of the motion may be detected by image analysis, and when these poses are detected, processing for starting and ending moving image shooting may be automatically performed.
  • Step SA4 Preprocessing for motion analysis> After the moving image is captured, the client terminal 100 performs preprocessing for motion analysis by the motion analysis server 200 as necessary.
  • the client terminal 100 When analyzing the movement of the rehabilitation subject TG using the moving image data MD, the number of frame images that actually need to be analyzed is not so large (for example, 1 or more and 10 or less per phase). If all the frame images included in the moving image data MD are analyzed by the high-performance motion analysis server 200, the analysis cost will increase. Therefore, the client terminal 100 extracts a specific action scene (hereinafter referred to as a specific scene) that is expected to include an important frame image representing the action of the phase as preprocessing for action analysis. A specific scene is extracted corresponding to each phase. The client terminal 100 transmits only frame images of specific scenes to the motion analysis server 200 .
  • a specific action scene hereinafter referred to as a specific scene
  • the client terminal 100 analyzes the moving image data MD acquired in the low image quality mode (for example, resolution of 368 pixels ⁇ 368 pixels per frame) and predicts the reception timing of a specific scene.
  • the client terminal 100 switches the acquisition mode of the moving image data MD from the low image quality mode to the high image quality mode (for example, a resolution of 640 pixels ⁇ 480 pixels per frame) in accordance with the predicted timing, and obtains high image quality frame images.
  • Send to the motion analysis server 200 .
  • the client terminal 100 transmits frame images of scenes other than the specific scene to the motion analysis server 200 with low image quality.
  • the features of the specific scene to be extracted are specified in the motion analysis algorithm AL.
  • the specific scene is detected based on the contour information of the rehabilitation target TG, the posture information LPI (see FIG. 7), and the positional relationship between the specific object OB used by the rehabilitation target TG and the rehabilitation target TG.
  • the specific object OB is, for example, a chair for a standing motion, a cane for a walking motion, and a bathtub for a bathing motion.
  • the motion analysis algorithm AL defines a method for extracting a specific scene based on the positional relationship between the seat surface and the buttocks, the degree of bending of the waist, and changes in the direction of movement of the center of gravity of the body.
  • the low-performance client terminal 100 can perform this at high speed if it is only to detect a specific scene. Since only the frame images included in the specific scene are subject to motion analysis, the cost of analysis by the motion analysis server 200 can be reduced.
  • Pretreatment Flow>> 7 to 9 are diagrams for explaining specific examples of preprocessing. The flow of FIG. 9 will be described below with reference to FIGS. 7 and 8. FIG.
  • the client terminal 100 shoots a video of the rehabilitation subject TG (step SD1).
  • the moving image data MD is composed of a plurality of frame images FI arranged in chronological order.
  • a moving image includes a specific scene to be analyzed and scenes before and after the specific scene.
  • the client terminal 100 extracts one or more frame images FI (specific frame images SFI) representing specific scenes from the moving image data MD (step SD2). Determination of the specific scene is performed, for example, based on the motion of the rehabilitation subject TG.
  • the movement of the rehabilitation target TG is, for example, the posture information LPI (information indicating the result of low-accuracy attitude estimation by the first analytical model 143).
  • the above completes the preprocessing for extracting the target for high-precision posture estimation.
  • the extracted frame images are subject to motion analysis by the motion analysis server 200 .
  • the motion analysis server 200 extracts posture information HPI of the rehabilitation subject TG for each frame image SFI from one or more extracted specific frame images SFI (step SD3).
  • the posture information HPI of the rehabilitation subject TG is extracted only from one or more specific frame images SFI, for example, using a high-precision, high-computational second analysis model 297 (see FIG. 11).
  • the motion analysis server 200 extracts the posture information HPI indicating the motion timing of each phase from among the extracted one or more posture information HPI (information indicating the highly accurate posture estimation result by the second analysis model 297). Thereby, a plurality of phases included in a series of operations are detected.
  • the motion analysis server 200 analyzes the motion of the rehabilitation subject TG for each phase using the posture information HPI indicating the motion timing of each phase (step SD4).
  • the client terminal 100 receives the analysis information MAI from the motion analysis server 200 and notifies it to the rehabilitation subject TG (step SD5).
  • the client terminal 100 performs low-precision posture estimation and the motion analysis server 200 performs high-precision posture estimation, but the sharing of posture estimation is not limited to this.
  • client terminal 100 may perform all posture estimation (low-precision posture estimation and high-precision posture estimation), or motion analysis server 200 may perform all posture estimation. In either case, the excellent effects of rapid detection of specific scenes and reduction of total three strikes in high-precision pose estimation are obtained.
  • FIG. 10 is a flowchart showing an example of analysis/evaluation processing.
  • Step SB1 Posture Estimation> From the client terminal 100 , a plurality of images of specific scenes are extracted from the moving image data MD and transmitted to the motion analysis server 200 .
  • the motion analysis server 200 performs posture analysis for each specific scene. Pose analysis is performed using known pose estimation techniques. For example, the motion analysis server 200 uses a deep learning technique to extract a plurality of key points KP (a plurality of feature points indicating shoulders, elbows, wrists, waists, knees, ankles, etc. from the image of the rehabilitation subject TG: FIG. 12). ) are extracted.
  • the motion analysis server 200 estimates the posture of the rehabilitation subject TG based on the extracted relative positions of the key points KP.
  • the motion analysis server 200 extracts the posture information HPI of the rehabilitation subject TG from each frame image included in the specific scene.
  • the posture information HPI means information indicating the position (coordinates) of each keypoint KP and the positional relationship (joint angles, etc.) between the keypoints KP.
  • the motion analysis server 200 is an information processing device with higher performance than the client terminal 100 . Therefore, the posture information HPI is extracted with higher accuracy than when posture analysis is performed by the client terminal 100 . Using highly accurate posture information HPI also increases the accuracy of motion analysis.
  • the motion analysis algorithm AL defines definition information on how to define the posture of each phase.
  • the posture is defined based on, for example, the positional relationship between the keypoints KP and the mode of movement of a specific keypoint KP (moving direction, moving speed, change in moving speed, etc.).
  • the posture may be defined based on the positional relationship with a specific object OB (chair, cane, bathtub, etc.) used by the rehabilitation subject TG.
  • Multiple postures may be defined in one phase. By analyzing multiple postures, it is possible to analyze the transition of postures occurring within the same phase.
  • the jumping posture can be analyzed, for example, using the waist angle calculated from the base of the neck, the center of the hip joint, and the positions of the knee on the shooting side.
  • the motion analysis server 200 extracts one or more frame images SFI defined in the definition information from one or more frame images SFI included in the specific scene. As a result, one or more postures associated with the same phase defined in the definition information are detected.
  • a posture determination method a determination method based on a threshold value or a determination method based on machine learning such as deep learning may be used.
  • ⁇ Step SB3 Evaluation> ⁇ Categorization>>
  • One or more evaluation items are defined for each phase in the motion analysis algorithm AL.
  • Individual evaluation items and scoring criteria are set by medical personnel DT such as physical therapists. When standard evaluation items and scoring criteria are known, known evaluation items and scoring criteria may be used as they are.
  • the scoring criteria may be machine-learned based on supervised data collected in the healthy subject database, calculated based on statistical processing, or calculated based on a combination of these. .
  • a threshold value for analysis used as a scoring criterion can be automatically calculated based on learning results, statistical processing, or the like. For example, when the buttocks of the rehabilitation subject TG are separated from the seat surface, the leg angles of the rehabilitation subject TG are analyzed. This leg angle can be calculated from the data of healthy subjects.
  • the motion analysis server 200 extracts the posture information HPI from the frame image SFI representing the motion of the phase.
  • the motion analysis server 200 scores the extracted posture information HPI for each evaluation item. Scoring may be performed on individual posture information HPI, or may be performed on average posture information HPI over a plurality of frames.
  • a scoring method a scoring method based on a threshold may be used, or a scoring method based on machine learning such as deep learning may be used.
  • the timing of grading may be in real time, or may be after moving image shooting.
  • Step SB5 Classification of symptoms>
  • the motion analysis server 200 detects motion characteristics of the rehabilitation subject TG based on the scoring results of each phase.
  • the motion analysis server 200 classifies the symptoms of the rehabilitation subject TG based on motion characteristics.
  • a classification method a classification method based on a threshold may be used, or a classification method based on machine learning such as deep learning may be used.
  • the symptom classification items are set by a medical practitioner DT such as a physical therapist.
  • An example of a symptom classification item is the direction of rotation (paralyzed side, non-paralyzed side).
  • 150 or more classification items are defined in the motion analysis algorithm AL. Multiple symptoms may be detected as a result of symptom classification.
  • the motion analysis server 200 may output all symptoms, or may rank individual symptoms based on their importance and output only high-ranking symptoms.
  • symptom classification is performed after analysis of all phases is completed, but symptom detection may be performed on a phase-by-phase basis.
  • the symptoms of each phase can be comprehensively evaluated after the analysis of all phases is completed, and a final symptom evaluation can be performed.
  • the motion analysis server 200 evaluates a series of motions of the rehabilitation subject TG based on the scoring results of each evaluation item and the symptom classification results.
  • the motion analysis server 200 compares the evaluation results of the rehabilitation target TG with the evaluation results of others (healthy subjects, other patients) or past evaluation results of the rehabilitation target TG, and notifies the rehabilitation target TG of the comparison results. can do.
  • the motion analysis server 200 enlarges or reduces the skeleton image of the person to be compared according to the size of the skeleton of the rehabilitation subject TG.
  • the motion analysis server 200 preferably synchronizes the movement of the skeleton of the rehabilitation subject TG with the movement of the skeleton of the person to be compared. If the number of frames of the video of the rehabilitation target TG showing the same phase is different from the number of frames of the video of the person to be compared, it is preferable to interpolate the necessary frames. This facilitates comparison.
  • the motion analysis server 200 generates analysis information MAI indicating evaluation results of a series of motions, and reports to rehabilitation subject TG, family FM, medical staff DT, and the like.
  • the analysis information MAI includes various types of information for supporting rehabilitation, such as the current symptoms of the rehabilitation subject TG (scoring results, symptom classification results), symptom transitions, advice, and recommended training plans. included.
  • the timing of the report can be set arbitrarily. It can be set every day, every week, or every month, depending on the type and severity of symptoms and the period of rehabilitation.
  • FIG. 11 is a diagram illustrating an example of a functional configuration related to analysis/intervention processing.
  • the client terminal 100 has a processing device 130 , a storage device 140 and a communication device 150 .
  • the processing device 130 has a moving image acquisition section 131 , a shooting condition determination section 132 , a scene extraction section 133 and an output section 134 .
  • the moving image acquisition unit 131 acquires moving image data MD of the rehabilitation subject TG captured by the camera 160 .
  • a moving image includes a plurality of specific scenes corresponding to each phase.
  • the scene extraction unit 133 acquires the moving image data MD from the moving image acquisition unit 131.
  • the scene extraction unit 133 extracts one or more frame images SFI representing specific scenes for each phase from the moving image data MD.
  • the number of frame images SFI to be extracted is, for example, 1 or more and 10 or less.
  • the scene extraction unit 133 determines a specific scene based on the motion of the rehabilitation subject TG.
  • the scene extraction unit 133 compares the motion characteristics of the rehabilitation target person TG with the scene information 142 to determine a specific scene.
  • the scene extraction unit 133 detects switching to a specific scene based on the posture analysis result of the frame image group before the specific scene.
  • the scene extraction unit 133 extracts one or more frame images FI having a resolution higher than that of the frame image group, which are acquired in response to switching to the specific scene, as one or more specific frame images SFI representing the specific scene.
  • the scene information 142 a plurality of specific scenes corresponding to each phase and determination conditions for determining each specific scene are defined in association with each other.
  • the definition information of the specific scene and the method of determining the specific scene are specified in the motion analysis algorithm AL.
  • the client terminal 100 extracts the definition information of the specific scene and the determination method of the specific scene from the index database 295 and stores them as the scene information 142 in the storage device 140 .
  • the scene extraction unit 133 extracts the posture information LPI of the rehabilitation subject TG using, for example, the first analysis model 143 obtained by machine learning.
  • the first analysis model 143 is, for example, an analysis model whose posture estimation accuracy is lower than that of the analysis model (second analysis model 297) used when the motion analysis server 200 extracts the posture information HPI.
  • the scene extraction unit 133 detects switching to a specific scene based on a change in the posture of the rehabilitation subject TG estimated from the extracted posture information LPI.
  • the moving image data MD contains information on a series of actions including multiple specific scenes that occur in chronological order.
  • the scene extraction unit 133 determines which specific scene is occurring from an individual point of view while considering the context before and after the action flow.
  • standing up is defined as moving from sitting on a chair or bed with both feet on the floor to standing upright.
  • the rising motion consists of (i) the motion from a sitting posture until the buttocks are lifted from the seat surface (first phase), and (ii) the motion from when the buttocks are lifted from the seat surface to the movement of the center of gravity of the body to the feet (phase 1). 2 phase), (iii) the movement from the state where the center of gravity has sufficiently moved to the foot (the state where the center of gravity has moved forward) to the movement of the center of gravity upward while stretching the legs (third phase), and (iv) ) is finally classified into the standing state (fourth phase).
  • a specific scene corresponding to each phase is determined based on the assumed body motion for each specific scene.
  • the scene extracting unit 133 determines that the rehabilitation subject TG and a specific object OB used for training or evaluation exercise for rehabilitation (such as a chair in the case of a stand-up motion) are predetermined. or a change in the positional relationship between the rehabilitation target TG and the specific object OB, the switch to the specific scene is detected.
  • the specific scene can be determined with higher accuracy than when the specific scene is determined based only on the relative positional relationship between the skeletons.
  • the accuracy of posture estimation changes depending on the scale of the neural network used in the analysis model.
  • many key points KP are extracted from the image data, and various motions of the rehabilitation subject TG are estimated with high accuracy. Even if there is a lack of information due to occlusion or the like, the key points KP of the rehabilitation subject TG are extracted with high accuracy.
  • Methods of increasing the scale of a neural network include a method of increasing feature maps (channels) and a method of deepening layers. Either method increases the processing amount of the convolution operation and decreases the calculation speed. There is a trade-off between attitude estimation accuracy and calculation speed.
  • the scene extraction unit 133 extracts the posture information LPI of the rehabilitation subject TG from all the frame images FI forming the moving image data MD using, for example, the first analysis model 143 with a small neural network scale and low accuracy and low computational complexity. Extract. If it is only necessary to determine the specific scene of the rehabilitation target TG, it is sufficient to be able to roughly grasp the rehabilitation target TG's motion. Even if there is a lack of information due to occlusion or the like, the characteristics of the motion can be grasped by the rough change in posture. Therefore, even if the first analysis model 143 with low accuracy and low computational complexity is used, the action scene of the rehabilitation subject TG can be determined. When the first analysis model 143 is used, the processing amount of the convolution operation for each frame image FI is small, so even if the moving image data MD is large, rapid processing is possible.
  • Data of one or more frame images SFI representing a specific scene are transmitted to the motion analysis server 200 via the communication device 150 .
  • the motion analysis server 200 uses the received one or more frame images SFI to perform motion analysis of the phase corresponding to the specific scene.
  • the output unit 134 receives the evaluation result (analysis information MAI) based on the motion analysis from the motion analysis server 200 via the communication device 150 .
  • the output unit 134 notifies the rehabilitation subject TG of the received analysis information MAI. Notifications are made, for example, by a combination of text, graphics and sound.
  • the imaging condition determination unit 132 determines the imaging direction of the rehabilitation target TG when acquiring the moving image data MD based on the disability information of the rehabilitation target TG and the type (determination item) of training or evaluation exercise for rehabilitation. to decide.
  • the index database 295 defines one or more photographing directions in which photographing should be performed for each determination item.
  • the shooting direction is determined from the point of view of easiness of grasping the motion. For example, based on the characteristics of the movement to be analyzed, the frontal direction (perpendicular to the frontal plane), the lateral direction (perpendicular to the sagittal plane), or both the frontal direction and lateral direction of the rehabilitation subject TG , and so on.
  • the imaging condition determination unit 132 notifies the rehabilitation subject TG of the imaging direction defined in the index database 295 . For example, when the rehabilitation target TG performs rehabilitation for standing up motion, the imaging condition determination unit 132 determines the front direction and the lateral direction of the rehabilitation target TG as imaging directions. When the information on the paralyzed side is included in the disability information, the imaging condition determination unit 132 determines the imaging direction so that the movement of the paralyzed side can be recorded in detail.
  • the storage device 140 stores, for example, shooting condition information 141, scene information 142, a first analysis model 143 and a program 144.
  • the shooting condition information 141 includes information on shooting conditions defined in the motion analysis algorithm AL.
  • the client terminal 100 extracts information about the shooting conditions from the index database 295 and stores it as shooting condition information 141 in the storage device 140 .
  • the shooting condition information 141 and the scene information 142 may be downloaded from the index database 295 or may be installed in the client terminal 100 from the beginning.
  • the program 144 is a program that causes a computer to execute information processing of the client terminal 100 .
  • the processing device 130 performs various processes according to the program 144 .
  • the storage device 140 may be used as a work area that temporarily stores the processing results of the processing device 130 .
  • Storage device 140 includes, for example, any non-transitory storage media such as semiconductor storage media and magnetic storage media.
  • the storage device 140 includes, for example, an optical disk, a magneto-optical disk, or a flash memory.
  • the program 144 is stored, for example, in a non-transitory computer-readable storage medium.
  • the processing device 130 is, for example, a computer configured with a processor and memory.
  • the memory of the processing device 130 includes RAM (Random Access Memory) and ROM (Read Only Memory).
  • the processing device 130 By executing the program 144 , the processing device 130 functions as a moving image acquisition section 131 , a shooting condition determination section 132 , a scene extraction section 133 and an output section 134 .
  • the motion analysis server 200 has a processing device 250 , a storage device 290 and a communication device 260 .
  • the processing device 250 has a posture information extraction unit 214 , a state machine 221 and a motion analysis unit 222 .
  • Posture information extraction section 214 is included in sensor data analysis section 211 .
  • State machine 221 and motion analysis unit 222 are included in evaluation unit 220 .
  • the posture information extraction unit 214 acquires one or more frame images SFI representing a specific scene transmitted from the client terminal 100 via the communication device 260 .
  • the posture information extraction unit 214 uses the second analysis model 297 obtained by machine learning to extract the posture information HPI of the rehabilitation subject TG for each frame image SFI from one or more frame images SFI representing a specific scene.
  • the second analysis model 297 is an analysis model with a higher orientation estimation accuracy than the analysis model (first analysis model 143) used when the scene extraction unit 133 determines a specific scene.
  • the posture information extraction unit 214 extracts the posture information HPI of the rehabilitation subject TG from one or more specific frame images SFI using, for example, a second analysis model 297 with a large scale neural network and high accuracy and high computational complexity. Only one or more specific frame images SFI selected from a plurality of frame images FI forming the moving image data MD are subjected to the posture estimation processing by the posture information extraction unit 214 . Therefore, even if the processing amount of convolution operation for each frame image SFI is large, rapid processing is possible.
  • the state machine 221 detects a plurality of phases included in a series of motions of the rehabilitation target TG based on the rehabilitation target TG's posture information HPI. For example, the state machine 221 matches the features contained in the posture information HPI of the rehabilitation target TG with the phase information 298 .
  • the phase information 298, a plurality of phases to be analyzed and judgment conditions for judging each phase are defined in association with each other.
  • the phase definition information and the phase determination method are specified in the motion analysis algorithm AL.
  • phase information 298 indicates various information about phases (definition information and determination method for each phase, etc.) defined in the motion analysis algorithm AL.
  • the state machine 221 extracts one or more posture information HPIs according to the collation result from among the one or more posture information HPIs extracted by the posture information extraction unit 214 .
  • One or more pieces of posture information HPI extracted based on the collation result indicate the posture of the rehabilitation subject TG in the phases defined in the phase information 298, respectively. Through this processing, multiple phases included in a series of operations are detected.
  • the state machine 221 detects multiple phases included in the series of motions based on the posture information HPI acquired from multiple directions. As a result, a plurality of phases are detected while compensating for blind spot information.
  • the motion analysis unit 222 obtains posture information HPI of the rehabilitation target TG in the specific scene extracted by the posture information extraction unit 214 (posture information extracted for each frame image SFI from one or more frame images SFI included in the specific scene). to get The motion analysis unit 222 extracts one or more frame images SFI representing the phases detected by the state machine 221 from one or more frame images SFI included in the specific scene as analysis targets.
  • the motion analysis unit 222 extracts one or more frame images SFI to be analyzed for each phase based on the phase detection results obtained from the state machine 221 .
  • the motion analysis unit 222 analyzes the posture information HPI to be analyzed for each phase based on the disability information of the rehabilitation subject TG, and generates analysis information MAI indicating the evaluation result of a series of motions.
  • the motion analysis method (definition of scoring items, scoring method, etc.) is specified in the motion analysis algorithm AL.
  • the motion analysis unit 222 performs motion analysis based on the motion analysis algorithm AL acquired from the index database 295 .
  • the motion analysis unit 222 scores the motion of each phase based on one or more scoring items set for each phase, and generates analysis information MAI based on the scoring results of each phase.
  • the motion analysis unit 222 transmits the analysis information MAI to the client terminal 100 , the medical staff terminal 300 , the family terminal 400 and the service provider server 500 via the communication device 260 .
  • the storage device 290 stores role model information 296 , second analysis model 297 , phase information 298 and program 299 .
  • Role model information 296 and phase information 298 are defined in index database 295 as part of behavior analysis algorithm AL.
  • the program 299 is a program that causes a computer to execute information processing of the motion analysis server 200 .
  • the processing device 250 performs various processes according to programs 299 stored in the storage device 290 .
  • the storage device 290 may be used as a work area that temporarily stores the processing results of the processing device 250 .
  • Storage device 290 includes, for example, any non-transitory storage media such as semiconductor storage media and magnetic storage media.
  • the storage device 290 includes, for example, an optical disk, magneto-optical disk, or flash memory.
  • the program 299 is stored, for example, in a non-transitory computer-readable storage medium.
  • the processing device 250 is, for example, a computer configured with a processor and memory.
  • the memory of processing unit 250 includes RAM and ROM.
  • Processing device 250 functions as sensor data analysis unit 211 , evaluation unit 220 , posture information extraction unit 214 , state machine 221 and motion analysis unit 222 by executing program 299 .
  • the service provider server 500 has a processing device 510 , a storage device 590 and a communication device 520 .
  • the processing device 510 has an information acquisition unit 511 and a sales information generation unit 512 .
  • the information acquisition unit 511 acquires the analysis information MAI via the communication device 520 .
  • the product sales information generation unit 512 extracts from the product sales database 591 information on a product group suitable for the rehabilitation status of the rehabilitation target TG based on the analysis information MAI acquired from the information acquisition unit 511 .
  • the product sales information generation unit 512 generates product sales information PSI based on the extracted product group information, and transmits the product sales information PSI to the motion analysis server 200 via the communication device 520 .
  • the motion analysis server 200 generates intervention information VI using the analysis information MAI and the product sales information PSI, and transmits it to the client terminal 100 .
  • the storage device 590 stores a sales database 591 and a program 592.
  • the program 592 is a program that causes a computer to execute information processing of the processing device 510 .
  • the processing device 510 functions as an information acquisition unit 511 and a product sales information generation unit 512 by executing a program 592 .
  • the configurations of storage device 590 and processing device 510 are similar to storage device 290 and processing device 250 of motion analysis server 200 .
  • FIG. 12 is a diagram showing landmarks in the rising motion.
  • the rehabilitation subject TG is photographed in two directions, the front direction and the side direction.
  • conditions such as posture distortion in the front-rear direction and left-right direction, and rotation due to cerebrovascular disease, etc., can be analyzed.
  • the landmarks of the rehabilitation target TG seen from the lateral direction are the key points KP-S1 to KP-S5.
  • the keypoint KP-S1 is the keypoint KP indicating the position of the ear.
  • a keypoint KP-S2 is a keypoint KP indicating the position of the shoulder.
  • a keypoint KP-S3 is a keypoint KP indicating the position of the hip joint.
  • a keypoint KP-S4 is a keypoint KP indicating the position of the knee.
  • a key point KP-S5 is a key point KP indicating the position of the ankle.
  • the landmarks of the rehabilitation target TG seen from the front are the key points KP-F1 to KP-F9.
  • a keypoint KP-F1 is a keypoint KP indicating the position of the nose.
  • a key point KP-F2 is a key point KP indicating the position of the right shoulder.
  • a keypoint KP-F3 is a keypoint KP indicating the position of the left shoulder.
  • a keypoint KP-F4 is a keypoint KP indicating the position of the right pelvis.
  • a keypoint KP-F5 is a keypoint KP indicating the position of the left pelvis.
  • a keypoint KP-F6 is a keypoint KP indicating the position of the right knee.
  • a keypoint KP-F7 is a keypoint KP indicating the position of the left knee.
  • a keypoint KP-F8 is a keypoint KP indicating the position of the right ankle.
  • a keypoint KP-F9 is a keypoint KP indicating the position of the left ankle.
  • FIGS. 13 and 14 are diagrams showing an example of motion analysis. The phases of operation progress from top to bottom.
  • the left column shows the motion of a specific person RM (for example, a healthy person) who serves as a model.
  • the middle column shows the movement of the rehabilitation subject TG.
  • the right column shows the result of comparison between the motion of the specific person RM and the motion of the rehabilitation target TG.
  • the comparison result is presented as analytical information MAI.
  • the index database 295 stores indices for evaluating standing-up motions.
  • Indicators include various elements that provide a basis for the work and processes required for motion analysis. For example, shooting conditions for shooting a moving image of a rising motion, definition information of feature amounts to be extracted from the posture information HPI, and a procedure (motion analysis algorithm AL) for performing motion analysis based on the posture information HPI. , as an index for evaluating the standing-up motion.
  • the motion analysis server 200 analyzes the motion of the rehabilitation subject TG based on the stand-up motion index stored in the index database 295 .
  • the positional relationship of each keypoint KP included in the posture information HPI (the distance between the keypoints KP, the angle of the joint, etc.), or the peak value of the height of a specific keypoint KP, the The average value of the height of , the mode of change in position within a predetermined time period, and the like are extracted as feature amounts.
  • a series of actions are classified into four phases based on feature values.
  • the state machine 221 stores the positional relationship between the buttocks of the rehabilitation subject TG and the seat surface, the change in the angle of the waist of the rehabilitation subject TG, the change in the moving speed of the center of gravity of the rehabilitation subject TG, and the height of the waist of the rehabilitation subject TG. Multiple phases are detected based on changes in height.
  • the state machine 221 detects the state immediately before the buttocks leave the seat surface of the chair as the first phase.
  • the state machine 221 detects a state in which the center of gravity is between the ankles of both feet and the waist is bent to the maximum immediately after the first phase as the second phase.
  • the state machine 221 detects, as the third phase, the state in which the moving speed of the center of gravity in the height direction reaches the maximum immediately after the second phase.
  • the state machine 221 detects, as the fourth phase, the state in which the waist height reaches the highest point immediately after the third phase, and thereafter the waist height fluctuates within a range that satisfies the low fluctuation criterion and stops.
  • FIG. 15 is a diagram showing an example of detection processing in the second phase.
  • the vertical axis indicates the vertical distance (mm) between the shoulder (right shoulder, left shoulder) and the waist.
  • the horizontal axis indicates time (seconds).
  • the second phase is defined as the most bent state immediately after the first phase.
  • the degree of bending of the waist is determined based on the distance between the shoulder and the waist.
  • the motion at the time indicated by the arrow when the distance between the shoulder and the waist is the smallest is calculated as the second phase.
  • the distance is different between the right shoulder and the left shoulder.
  • the motion analysis unit 222 detects rotation based on the displacement of the shoulder joints of both shoulders viewed from the lateral direction. Even when rotation occurs, the time when the distance to the waist is the shortest is the same for the right and left shoulders.
  • FIG. 16 is a diagram showing an example of the third phase detection method.
  • the vertical axis indicates the vertical moving speed (mm/sec) of the center of gravity of the body.
  • the horizontal axis indicates time (seconds).
  • the third phase is defined as the state in which the movement speed of the center of gravity in the height direction reaches the maximum immediately after the second phase.
  • acceleration information obtained by differentiating the moving speed is displayed together with the moving speed.
  • the motion at the time indicated by the arrow at which the acceleration becomes zero is calculated as the third phase.
  • the rising operation progresses in the order of the first phase, second phase, third phase and fourth phase.
  • the operations may not proceed in this order.
  • the phase detection algorithm of the state machine 221 an algorithm that takes into consideration the situation where the phase progresses in the opposite direction may be adopted.
  • FIG. 17 is a diagram showing an example of analysis information MAI.
  • the motion analysis unit 222 generates analysis information MAI based on the analysis results for each phase.
  • the output unit 134 displays the analysis information MAI on the display device 170 together with the image of the rehabilitation subject to analysis (the image of the moving image data MD). For example, the output unit 134 suspends the movement of the rehabilitation subject TG for each phase, and displays the analysis information MAI together with the still image IM of the rehabilitation subject TG in the phase.
  • the output unit 134 for example, notifies the first analysis information MAI1 and the second analysis information MAI2 as the analysis information MAI.
  • the first analysis information MAI1 includes, for each phase, information indicating a comparison between the motion of the rehabilitation subject TG and the motion of a specific person RM (for example, a healthy person) serving as a model of the motion.
  • the second analysis information MAI2 includes information indicating a guideline for approximating the movement of the rehabilitation subject TG to the movement of the specific person RM.
  • the motion analysis algorithm AL defines motion information to be compared in motion analysis.
  • role model information 296 indicates information about a comparison target defined in the motion analysis algorithm AL (information on the motion of the specific person RM, etc.).
  • the analysis information MAI may include information indicating the transition of the scoring results of each phase for each scoring item from the past to the present.
  • the first analysis information MAI1 includes, for example, the skeletal information SI of the rehabilitation subject TG and the reference skeletal information RSI (skeletal information of the specific person RM) serving as a reference for comparison in each phase.
  • the reference skeleton information RSI is generated using, for example, skeleton information obtained by correcting the skeleton information of the specific person RM in each phase based on the physical difference between the rehabilitation subject TG and the specific person RM.
  • Reference skeleton information RSI in each phase is included in role model information 296 .
  • the scale of the reference skeleton information RSI is set as follows. First, one or more bones suitable for comparing the physiques of the specific person RM and the rehabilitation target TG are defined. For example, in the example of FIG. 17, the spine and leg bones are defined as the reference for comparison.
  • the motion analysis unit 222 detects, for example, the lengths of the backbone and the leg bones at the timing when the postures of each of the specific person RM and the rehabilitation subject TG are aligned.
  • the motion analysis unit 222 calculates the ratio of the sum of the lengths of the backbone and leg bones as the ratio of the body sizes of the specific person RM and the rehabilitation subject TG, and based on this ratio, the scale of the skeleton of the specific person RM is calculated. to change
  • the example of FIG. 17 shows the phases corresponding to the knee joint bending motion in a squat.
  • the output unit 134 selectively displays, as the skeleton information SI and the reference skeleton information RSI of the rehabilitation target TG, the skeleton information corresponding to the part of the rehabilitation target TG to be analyzed in the phase.
  • information on the skeleton of shoulders, hips, knees and ankles is selectively displayed.
  • a comment about the action is displayed on the lower side of the display screen, and an arrow directed to the waist position of the specific person RM is displayed at the waist position of the rehabilitation target TG. Comments and arrows are presented as second analysis information MAI2.
  • the reference skeleton information RSI may be displayed in conjunction with the movement of the rehabilitation subject TG at all times during the period of a series of squat actions. However, in order to clarify the comparison with the specific person RM, it is also possible to display the reference skeleton information RSI at the timing when it deviates from the action of the specific person RM.
  • the output unit 134 displays the skeleton information SI of the rehabilitation target TG and the reference skeleton information RSI at the timing when a difference exceeding the allowable standard occurs between the skeleton information SI of the rehabilitation target TG and the reference skeleton information RSI. do.
  • the output unit 134 highlights the skeleton of the rehabilitation target TG in a portion where the skeleton information SI of the rehabilitation target TG differs from the reference skeleton information RSI by exceeding the allowable standard.
  • the time required for a series of actions differs between the specific person RM and the rehabilitation subject TG. Therefore, effective timings for comparison are defined as phases, and the reference skeleton information RSI is superimposed on the rehabilitation subject TG so that the defined phases match. This facilitates comparison with the specific person RM, and makes it easier to understand how the rehabilitation subject TG should behave.
  • FIG. 17 shows analysis information MAI for squats, but similar analysis information MAI can be displayed for stand-up motions.
  • the right columns of FIGS. 13 and 14 show the comparison results between the skeleton information SI and the reference skeleton information RSI in each phase.
  • the output unit 134 can superimpose and display the comparison result information as shown in the right column of FIGS. 13 and 14 on the moving image.
  • the analysis information MAI is displayed superimposed on the frame image indicating the operation timing of each phase.
  • the display device 170 pauses the reproduction of the analysis moving image data AMD at the operation timing of each phase. Then, the display device 170 displays a still image IM in which the analysis information MAI is superimposed on the frame image of each phase.
  • the reproduction of the analysis moving image data AMD is paused for each phase, and the analysis information MAI of the corresponding phase is notified.
  • the moving image data MD may be reproduced in slow motion so that the posture of the rehabilitation subject TG can be easily confirmed. At this time, slow-motion playback may be applied only to the section from the first phase to the last phase, and the images before and after that section may be played back at normal playback speed.
  • the first analysis information MAI1 is presented as information indicating comparison with others.
  • the first analysis information MAI1 may include information indicating comparison with the motion of the past rehabilitation subject TG.
  • the first analysis information MAI1 can include the skeleton information SI of the current rehabilitation subject TG and the skeleton information SI of the past rehabilitation subject TG as a reference for comparison.
  • the output unit 134 at the timing when a difference exceeding the allowable standard occurs between the skeleton information SI of the current rehabilitation candidate TG and the reference skeleton information RSI indicating the motion of the specific person RM, the current rehabilitation candidate The skeleton information SI of the TG and the skeleton information SI of the past rehabilitation subject TG are displayed.
  • the output unit 134 highlights the skeleton of the rehabilitation target TG in a portion where the current skeleton information SI of the rehabilitation target TG differs from the reference skeleton information RSI by exceeding the allowable standard.
  • the notification method of the analysis information MAI is not limited to this.
  • the client terminal 100 may generate new moving image data (modified moving image data) incorporating the analysis information MAI, and the generated modified moving image data may be reproduced on the display device 170 .
  • analysis information MAI is written in a frame image indicating each phase of the corrected moving image data.
  • the corrected video data the movement of the rehabilitation subject TG is stopped for each phase, and after the still image IM of the rehabilitation subject TG including the analysis information MAI is displayed for a predetermined time, the continuation video is displayed for the next phase. The display is adjusted to resume.
  • the modified video data may be generated by the motion analysis unit 222.
  • the motion analysis unit 222 transmits the generated modified video data to the client terminal 100, the medical staff terminal 300, the family terminal 400 and the service provider server 500 together with the analysis information MAI or instead of the analysis information MAI. can be done.
  • the posture information HPI of the rehabilitation target TG in the front direction and the lateral direction can be obtained from one moving image data MD. can be extracted. In such a case, there is no need to shoot front and side images separately.
  • ToF Time Of Flight
  • FIG. 18 is a diagram showing variations of the system configuration.
  • the rehabilitation support system 1A on the upper side of FIG. 18 has a configuration in which the sensor unit 110 is built into the client terminal 100, as in FIG.
  • a part of the sensor unit 110 may be configured as a built-in sensor of the client terminal 100
  • a sensor other than the built-in sensor may be configured as an external sensor independent of the client terminal 100 .
  • Sensor data detected by an external sensor is temporarily stored in the client terminal 100 and then transmitted to the motion analysis server 200 .
  • Sensor data detected by an external sensor may be transmitted directly to the motion analysis server 200 without going through the client terminal 100 .
  • the device owned by the service provider is the server (service provider server 500).
  • the device owned by the service provider does not necessarily have to be a server, and may be an information terminal such as a smart phone, a tablet terminal, a notebook computer, or a desktop computer.
  • the rehabilitation support system 1 has a posture information extraction section 214 , a state machine 221 and a motion analysis section 222 .
  • the posture information extraction unit 214 extracts the posture information HPI of the rehabilitation target TG from the training or evaluation exercise video data MD of the rehabilitation target TG.
  • the state machine 221 Based on the posture information HPI of the rehabilitation target TG, the state machine 221 detects a plurality of phases included in a series of motions of the rehabilitation target TG in training or evaluation exercise.
  • the motion analysis unit 222 analyzes the posture information HPI for each phase and generates analysis information MAI indicating the evaluation result of a series of motions.
  • the processing of the rehabilitation support system 1 is executed by a computer.
  • the program of the present disclosure causes a computer to implement the processing of the rehabilitation support system 1 .
  • the motion analysis unit 222 generates analysis information MAI by analyzing the posture information HPI for each phase based on the disability information of the rehabilitation subject TG.
  • the analysis is performed considering the failure information. Therefore, even the same action is assigned different meanings for each disease. Since analysis results are obtained with failure information taken into account for each phase, a series of operations can be accurately evaluated as a whole.
  • the rehabilitation support system 1 has a scene extraction unit 133.
  • the scene extraction unit 133 extracts one or more specific frame images SFI representing specific scenes corresponding to each phase from the moving image data MD.
  • the posture information extraction unit 214 extracts posture information HPI of the rehabilitation subject TG for each frame image SFI from the extracted one or more specific frame images SFI.
  • posture information HPI is extracted only from frame images FI of specific scenes that require analysis (specific frame images SFI).
  • specific frame images SFI specific frame images
  • the moving image data MD before and after the specific scene do not contribute to motion analysis. Omitting image processing of data regions that do not contribute to motion analysis reduces the time and cost required for motion analysis.
  • the scene extraction unit 133 detects switching to a specific scene based on the posture analysis results of the frame image group before the specific scene.
  • the scene extraction unit 133 extracts one or more frame images FI having a higher resolution than the frame image group, which are acquired in response to switching to the specific scene, as one or more specific frame images SFI.
  • the reception timing of the specific scene is predicted based on the moving image data MD acquired in the low image quality mode.
  • the acquisition mode of the moving image data MD is switched from the low image quality mode to the high image quality mode in accordance with the predicted timing.
  • the posture information HPI of the rehabilitation subject TG is extracted from the moving image data MD obtained in the high image quality mode. Therefore, the posture information HPI to be analyzed can be extracted with high precision while specifying the specific scene with a low processing load.
  • the scene extraction unit 133 extracts the movement of the rehabilitation subject TG when the rehabilitation subject TG and the specific object OB used for training or evaluation exercise for rehabilitation have a predetermined positional relationship, or the motion of the rehabilitation subject TG.
  • a change to a specific scene is detected based on a change in the positional relationship between the TG and the specific object OB.
  • the specific scene can be detected with higher accuracy than when the specific scene is detected based only on the relative positional relationship between the skeletons.
  • the scene extraction unit 133 extracts the posture information of the rehabilitation subject TG using an analysis model (first analysis model 143) whose posture estimation accuracy is lower than that of the analysis model (second analysis model 297) used in the posture information extraction unit 214. Extract LPI.
  • the scene extraction unit 133 detects switching to a specific scene based on a change in the posture of the rehabilitation subject TG estimated from the extracted posture information LPI.
  • the simple first analysis model 143 is used to quickly estimate the motion of the rehabilitation subject TG at low cost. Accurate motion analysis is not required if only specific scenes are detected. By varying the pose estimation accuracy of the first analysis model 143 used for determining a specific scene and the second analysis model 297 used for detailed motion analysis, low-cost and efficient motion analysis can be performed.
  • the rehabilitation support system 1 has an imaging condition determination unit 132.
  • the imaging condition determining unit 132 determines the imaging direction of the rehabilitation target TG when acquiring the moving image data MD based on the disability information of the rehabilitation target TG and the type of training or evaluation exercise for rehabilitation.
  • moving image data MD suitable for motion analysis can be easily obtained.
  • the state machine 221 detects a plurality of phases included in a series of motions while compensating for blind spot information with posture information HPI obtained from a plurality of directions.
  • the imaging condition determination unit determines the front direction and the lateral direction of the rehabilitation target TG as imaging directions.
  • the posture of the rehabilitation subject TG in the stand-up motion is captured without blind spots.
  • the state machine 221 detects a plurality of phases based on the positional relationship between the buttocks and the seat surface, changes in the angle of the waist, changes in the movement speed of the center of gravity, and changes in the height of the waist.
  • the state machine 221 detects the state immediately before the buttocks leave the seat surface of the chair as the first phase.
  • the characteristic motion immediately before the buttocks leave the seat surface is detected as the first phase.
  • the state machine 221 detects, as the second phase, the state in which the center of gravity is between the ankles of both feet and the waist is bent to the maximum immediately after the first phase.
  • the characteristic motion of lifting the buttocks and moving the center of gravity to the feet is detected as the second phase.
  • the state machine 221 detects, as the third phase, the state in which the moving speed of the center of gravity in the height direction reaches the maximum immediately after the second phase.
  • the characteristic motion of raising the state while stretching the legs is detected as the third phase.
  • the state machine 221 detects, as the fourth phase, the state in which the waist height reaches the highest point immediately after the third phase, and thereafter the waist height fluctuates within a range that satisfies the low fluctuation criterion and stops.
  • the motion analysis unit 222 detects rotation based on the displacement of the shoulder joints of both shoulders viewed from the lateral direction.
  • the rehabilitation support system 1 has an output unit 134 .
  • the output unit 134 suspends the movement of the rehabilitation target TG for each phase, and displays the analysis information MAI together with the still image IM of the rehabilitation target TG in the phase.
  • the analysis results are provided in a manner linked to the playback scene of the video. Therefore, the movement of the rehabilitation subject TG to be focused on and the analysis result thereof can be efficiently grasped.
  • the output unit 134 displays, as the analysis information MAI, information indicating comparison with the motions of healthy subjects.
  • the output unit 134 displays, as the analysis information MAI, the skeleton information SI of the rehabilitation subject TG and the reference skeleton information RSI that serves as a reference for comparison.
  • the output unit 134 selectively displays skeleton information corresponding to the part of the rehabilitation target TG to be analyzed in the phase as the skeleton information SI and the reference skeleton information RSI of the rehabilitation target TG.
  • the output unit 134 displays the skeleton information SI of the rehabilitation target TG and the reference skeleton information RSI at the timing when the difference exceeding the allowable standard occurs between the skeleton information SI of the rehabilitation target TG and the reference skeleton information RSI.
  • the output unit 134 highlights the skeleton of the rehabilitation target TG in the portion where the skeleton information SI of the rehabilitation target TG differs from the reference skeleton information RSI by exceeding the allowable standard.
  • the output unit 134 displays, as the analysis information MAI, information indicating a guideline for bringing the movement of the rehabilitation subject TG closer to that of a healthy person.
  • the rehabilitation subject TG can be urged to improve the movement based on the guideline.
  • the output unit 134 includes, as the analysis information MAI, information indicating comparison with the motion of the past rehabilitation subject TG.
  • the output unit 134 includes, as the analysis information MAI, the skeleton information SI of the current rehabilitation subject TG and the skeleton information SI of the past rehabilitation subject TG that serves as a reference for comparison.
  • the output unit 134 outputs the skeleton information of the current rehabilitation target TG at the timing when a difference exceeding the allowable standard occurs between the skeleton information SI of the current rehabilitation target TG and the reference skeleton information RSI indicating the motion of a healthy person.
  • the SI and the skeleton information SI of the past rehabilitation subject TG are displayed.
  • the output unit 134 highlights the skeleton of the rehabilitation target TG in the portion where the current skeleton information SI of the rehabilitation target TG differs from the reference skeleton information RSI by exceeding the allowable standard.
  • the analysis information MAI includes information indicating the transition of the scoring results of each phase for each scoring item from the past to the present.
  • the rehabilitation support system 1 has an intervention information generation unit 230.
  • the intervention information generator 230 generates intervention information VI for the rehabilitation target person TG based on the analysis information MAI.
  • the intervention information VI includes judgment information that serves as judgment material for prompting the rehabilitation target TG to improve the movement, or the rehabilitation target TG's training plan.
  • the intervention information generation unit 230 extracts one or more symptoms of the rehabilitation target TG from the analysis information MAI, and determines a training plan based on the priority determined for each symptom and the severity of each symptom.
  • the intervention information generation unit 230 generates authentication information for authenticating the current level of the rehabilitation subject TG.
  • the level of the rehabilitation subject TG is objectively grasped based on the authentication information.
  • the intervention information VI includes insurance recommendations based on authentication information.
  • the intervention information VI includes evaluation information on drug efficacy based on authentication information.
  • the state machine 221 detects multiple phases based on the determination method for each phase stored in the index database 295 .
  • the motion analysis unit 222 analyzes the motion of the rehabilitation subject TG for each phase based on the scoring items and scoring criteria for each phase stored in the index database 295 .
  • the index database 295 stores, for each determination item, one or more information out of moving image shooting conditions, phase definitions, specific scenes to be analyzed, scoring items, and scoring criteria as indicators for motion analysis.
  • the judgment item is associated with the type of motion targeted for motion analysis.
  • the motion analysis unit 222 transmits the evaluation result of the series of motions to a terminal or server possessed by an interventionist (medical personnel DT, family FM, service provider, etc.) who intervenes in the rehabilitation target TG. This configuration allows for precise analysis and intervention.
  • FIG. 19 is a diagram showing a specific technique for symptom classification.
  • the motion analysis server 200 evaluates the motion of the rehabilitation subject TG based on the analysis results of the posture information HPI in each phase. After the analysis of all the phases is completed, the motion analysis server 200 detects features of the motion of the rehabilitation subject TG based on the scoring results of each phase. The motion analysis server 200 classifies the symptoms of the rehabilitation subject TG based on motion characteristics (see FIG. 10).
  • the evaluation viewpoint means the criteria for evaluating the evaluation items of each phase. Goals (criteria) to be achieved are set for each phase, and the criteria for screening whether or not the goals have been achieved are the evaluation viewpoints.
  • the motion analysis unit 222 evaluates the evaluation items of each phase based on one or more evaluation viewpoints. The motion analysis unit 222 classifies the symptoms of the rehabilitation subject TG based on the evaluation results from each evaluation viewpoint.
  • the goal of the action set in the evaluation perspective is arbitrary.
  • basic motions basic motions for daily life
  • steps elementary motions
  • the index database 295 defines one or more evaluation viewpoints for each element action.
  • ⁇ getting up'' includes four elemental actions: ⁇ turning the body'', ⁇ moving the legs while lying on one's back'', ⁇ supporting the upper body with the arms'', and ⁇ supporting the upper body with the hands''.
  • 1 or more evaluation points are set for each elemental movement.
  • the number and contents of element motions included in the life-based motion are set independently for each life-based motion. For example, "walking" includes eight elemental actions.
  • the number and content of evaluation viewpoints in each element action are also set independently according to the content of the action.
  • Each element operation includes one or more phases.
  • One or more evaluation items are set for each phase.
  • the evaluation item is, for example, how much the movement of the rehabilitation subject TG deviates from the set target (for example, the placement of the skeleton of the specific person RM serving as a model). How much deviation is allowed may be set using a threshold or the like, or may be determined using the results of machine learning.
  • the results of the evaluation items alone are difficult to express the characteristics of the movement. Combining the results of multiple evaluation items makes it easier to identify behavioral characteristics according to symptoms. For this reason, the feature of the action that is grasped by combining a plurality of evaluation items is defined as an evaluation viewpoint.
  • the criteria indicated by the evaluation viewpoints are closer to human understanding than the criteria indicated by the evaluation items. Therefore, evaluation results that are easy for humans to understand can be obtained.
  • the motion analysis unit 222 evaluates a comprehensive motion feature based on a plurality of evaluation viewpoints.
  • the motion analysis unit 222 performs symptom classification based on comprehensive motion characteristics.
  • “viewpoint 1" is evaluated based on the evaluation results of each evaluation item in “phase 2" and "phase 4".
  • “O” in FIG. 19 means that the movement of the rehabilitation subject TG satisfies the acceptance criteria in terms of evaluation. Whether or not the acceptance criteria are met is determined by the combination of achieved evaluation items. For example, it is possible to make an agreement that if "Evaluation item 1" and “Evaluation item 2" of “Phase 2" and “Evaluation item 1" of "Phase 4" are achieved, "Perspective 1" satisfies the acceptance criteria. be.
  • a combination of evaluation items to meet the acceptance criteria is designed in advance by the medical personnel DT or the system designer.
  • One or more evaluation viewpoints assigned to one element action include one or more main viewpoints.
  • the main point of view means an evaluation point of view for which it is essential to satisfy the acceptance criteria in order to determine that the action as the judgment item has been properly performed. If there is even one main point of view that does not meet the acceptance criteria, it is not recognized that the actions that constitute the judgment items were performed appropriately as a whole.
  • Evaluation viewpoints other than the main viewpoint are classified into sub viewpoints.
  • a sub-viewpoint is an evaluation viewpoint used to calculate or evaluate the degree of achievement of a motion, the goodness of a motion, and the appropriateness of a motion, which are judgment items.
  • the motion analysis unit 222 evaluates the evaluation items of each phase from the main point of view. When a main viewpoint that does not satisfy the acceptance criteria is detected, the motion analysis unit 222 can determine that the motion that is the determination item is not performed appropriately, and stop the evaluation based on the remaining evaluation viewpoints. . According to this configuration, unnecessary evaluation processing is omitted, so the processing load is reduced.
  • the intervention information generation unit 230 determines a training plan based on a combination of evaluation viewpoints that satisfy the acceptance criteria or a combination of evaluation viewpoints that do not meet the acceptance criteria. In the example of FIG. 19, three training programs are shown as training plans.
  • the index database 295 defines correspondence relationships between combinations of evaluation viewpoints that satisfy the acceptance criteria or combinations of evaluation viewpoints that do not meet the acceptance criteria, and training programs to be implemented.
  • a movement check using the rehabilitation support system 1 can be performed at any time.
  • the rehabilitation target TG repeats training and evaluation every day with reference to the intervention information VI, so that the rehabilitation target TG can accumulate effective training by himself/herself without a professional. After a certain period of time has passed since the previous training, there is a possibility that the symptoms and living environment of the rehabilitation target TG have changed. Therefore, when the operation check is performed after a certain period of time, the rehabilitation subject TG is obligated to re-present the interview data CD, and the determination items can be reset.
  • FIG. 20 is a diagram showing a modification of the motion analysis process shown in FIG.
  • the types of actions that are judgment items are determined independently of the medical interview data CD.
  • the index database 295 is associated with one or more determination items for each failure. Therefore, it is conceivable to extract disability information from the medical interview data CD and determine the judgment items based on the extracted disability information.
  • FIG. 20 shows such an example.
  • the client terminal 100 acquires the medical interview data CD from the input device 120 (step S11).
  • the client terminal 100 transmits the acquired inquiry data CD to the motion analysis server 200 (step S12).
  • the medical interview data analysis unit 213 extracts the disability information of the rehabilitation target person TG from the medical interview data CD (step S13).
  • the medical interview data analysis unit 213 extracts one or more determination items linked to the failure information from the index database 295 (step S14).
  • the interview data analysis unit 213 selects one or more determination items to be performed by the rehabilitation subject TG from the extracted one or more determination items.
  • the selection of judgment items is arbitrary. All of the extracted one or more determination items may be selected, or only a part of the extracted one or more determination items may be selected.
  • the client terminal 100 designates one or more of the selected determination items one by one, and prompts the rehabilitation subject TG to carry out the determination.
  • the rehabilitation subject TG performs actions for the determination items specified by the client terminal 100 .
  • the client terminal 100 uses the sensor unit 110 to sense the motion performed by the rehabilitation subject TG, and transmits sensor data (video of the motion) to the motion analysis server 200 (step S15).
  • the sensor data analysis process and intervention information generation process are the same as those shown in FIG. 5 (steps S4 to S9).
  • the index database 295 associates and stores failure information and judgment items.
  • the motion analysis unit 222 analyzes motions of determination items linked to the disability information of the rehabilitation target person TG. According to this configuration, an appropriate motion analysis is performed according to the failure.
  • the output unit 134 presents various UIs for inputting information, instructing procedures, etc. to the rehabilitation subject TG via the display device 170 .
  • 21 to 23 are diagrams showing an example of a UI for inputting medical inquiry data CD.
  • the client terminal 100 displays an input field for the patient's primary information on the display device 170 .
  • the rehabilitation subject TG patient inputs, as primary information, information such as name, age, sex, weight, name of disease, and medication being taken (see FIG. 21).
  • the client terminal 100 After completing the input of the primary information, the client terminal 100 displays an input field for the patient's secondary information on the display device 170 .
  • Rehabilitation subject TG inputs, as secondary information, information such as worrisome symptoms, pain, onset time of symptoms, paralyzed parts, nursing care status, presence or absence of braces, and information such as the latest life activity range. (see FIGS. 22 and 23).
  • Figs. 24 to 26 are diagrams showing an example of an operation check UI.
  • the client terminal 100 After completing the input of the interview data CD, the client terminal 100 extracts the disability information of the rehabilitation target person TG from the interview data CD. The client terminal 100 extracts from the index database 295 one or more determination items linked to the failure information. The client terminal 100 presents the extracted one or more determination items to the rehabilitation subject TG, and prompts the rehabilitation subject TG to perform all the determination items in order.
  • Operation checks include self-assessment checks and checks using AI (AI checks).
  • FIG. 25 is a diagram showing an example of walking motion check by self-evaluation.
  • a walking motion includes eight elemental motions.
  • the rehabilitation subject TG performs a basic motion (judgment item) to be checked and self-evaluates the performed motion for each elemental motion.
  • a basic motion (judgment item) to be checked and self-evaluates the performed motion for each elemental motion.
  • a video of a specific person RM for example, a healthy person
  • Physical therapists, trainers, and the like are included in the able-bodied persons who become the specific person RM.
  • the rehabilitation target person TG imitates the movement of the specific person RM while watching the video.
  • the UI displays one or more evaluation viewpoints defined for the element operation.
  • the rehabilitation subject TG evaluates his own motion based on each evaluation viewpoint.
  • the rehabilitation subject TG checks the check button when his/her own motion satisfies the acceptance criteria with respect to the evaluation viewpoint. If there is even one main viewpoint that does not satisfy the acceptance criteria, it is determined that the actions that constitute the judgment items are not properly performed, and evaluation based on the remaining evaluation viewpoints is not performed. Therefore, the UI for the sub-viewpoints is not displayed unless all the main viewpoints are checked.
  • FIG. 26 is a diagram showing an example of walking motion checking by AI.
  • AI check means a motion check by the motion analysis unit 222 described above.
  • the rehabilitation subject TG can select whether to perform a self-evaluation check or an AI check after the video of the specific person RM has been played.
  • the rehabilitation subject TG is photographed and motion analysis is performed according to the flow of FIGS. 6 and 10 .
  • 27 to 30 are diagrams showing an example of the UI for preparing for shooting.
  • the output unit 134 presents a procedure for preparing a shooting environment using images and sounds in order to obtain a moving image suitable for motion analysis.
  • the rehabilitation subject TG adjusts the lighting conditions of the location where the photographing is to be performed and arranges the room so that unnecessary objects are not reflected in the background according to the presented procedure (see FIG. 27).
  • Shooting is performed by setting the camera 160 (client terminal 100) on a tripod.
  • the output unit 134 instructs the rehabilitation subject TG about the position of the tripod and the attitude of the camera 160 so that the camera 160 can take pictures at the appropriate position and attitude (see FIGS. 28 and 29).
  • FIG. 29 shows how the level gauge displayed on the display device 170 is used to adjust the levelness of the camera 160 .
  • the output unit 134 notifies the shooting direction determined by the shooting condition determination unit 132 .
  • Shooting is performed at a position away from the rehabilitation target TG. Therefore, the necessary notification is made by combining video (including text information) and sound. Since it is difficult to perform direct operations on the client terminal 100, necessary operations are performed based on voice and gestures. For example, the process of starting and ending shooting is performed in response to detection of a trigger (gesture, movement to the shooting start position, etc.) that serves as a shooting start condition and shooting end condition from the image of the camera 160 .
  • a trigger gesture, movement to the shooting start position, etc.
  • the imaging condition determination unit 132 starts recording the movement of the rehabilitation target TG in response to the fact that the condition of the rehabilitation target TG captured by the camera 160 satisfies the imaging start condition.
  • the photographing condition determination unit 132 displays the image of the camera 160 on the display device 170 until the photographing start condition is satisfied, and displays the image of the camera 160 on the display device 170 when the photographing start condition is satisfied and recording of the operation is started. to stop displaying .
  • the imaging condition determination unit 132 starts recording the motion.
  • the shooting start position POS is indicated by a circle.
  • the rehabilitation subject TG moves to the photographing start position POS shown in the image while watching the camera image displayed on the display device 170 .
  • both legs of the rehabilitation subject TG are within the circle and the entire body of the rehabilitation subject TG is within the angle of view of the camera 160 (shooting standby state)
  • a frame portion bordering the screen is detected. FM color changes.
  • the shooting standby state continues for a predetermined time, the frame portion FM starts blinking. If the shooting standby state continues, the start of shooting is notified by voice, and shooting starts automatically.
  • the display device 170 is turned off (full black display) so that the rehabilitation subject TG can concentrate on the movement.
  • Figs. 31 and 32 are diagrams showing display examples of the evaluation results in the AI check.
  • the output unit 134 presents evaluation results for each evaluation viewpoint.
  • Action evaluation is based on comparison with a specific person RM serving as a role model.
  • the motion is evaluated while comparing videos of key phases.
  • the images of the rehabilitation subject TG and the specific person RM may be displayed side by side on the same screen, or alternatively displayed by screen switching.
  • the output unit 134 suspends the movement of the rehabilitation target TG for each specific phase corresponding to the evaluation viewpoint, and displays the analysis information MAI together with the still image of the rehabilitation target TG in the specific phase.
  • the output unit 134 displays, as the analysis information MAI, the skeleton information SI of the rehabilitation subject TG and the reference skeleton information RSI of the specific person RM serving as a reference for comparison.
  • the output unit 134 selectively displays, as the skeleton information SI and the reference skeleton information RSI of the rehabilitation target TG, the skeleton information corresponding to the part of the rehabilitation target TG to be analyzed in a specific phase.
  • a posture information extraction unit that extracts posture information of the rehabilitation subject from video data of training or evaluation exercise of the rehabilitation subject; a state machine that detects a plurality of phases included in a series of motions of the rehabilitation subject in the training or the evaluation exercise based on the posture information of the rehabilitation subject; a motion analysis unit that analyzes the posture information for each of the phases and generates analysis information indicating an evaluation result of the series of motions;
  • a rehabilitation support system having (2) The motion analysis unit generates the analysis information by analyzing the posture information for each phase based on the disability information of the rehabilitation target.
  • the posture information extraction unit extracts the posture information of the rehabilitation subject for each frame image from the one or more specific frame images.
  • the rehabilitation support system according to (1) or (2) above.
  • the scene extraction unit detects a switch to the specific scene based on a posture analysis result of a group of frame images before the specific scene, and extracts from the group of frame images acquired in response to the switch to the specific scene. extracting one or more high-resolution frame images as the one or more specific frame images;
  • the rehabilitation support system according to (3) above.
  • the scene extraction unit extracts a motion of the rehabilitation subject when the rehabilitation subject and a specific object used in the training or the evaluation exercise are in a predetermined positional relationship, or the rehabilitation subject and the detecting a switch to the specific scene based on a change in positional relationship with a specific object;
  • the rehabilitation support system according to (4) above.
  • the scene extraction unit extracts the posture information of the rehabilitation target using an analysis model whose posture estimation accuracy is lower than that of the analysis model used in the posture information extraction unit, and estimates from the extracted posture information. detecting a switch to the specific scene based on a change in posture of the rehabilitation subject;
  • the rehabilitation support system according to (4) or (5) above.
  • a shooting condition determination unit that determines a shooting direction of the rehabilitation subject when acquiring the moving image data based on the disability information of the rehabilitation subject and the type of the training or the evaluation exercise;
  • a rehabilitation support system according to any one of (1) to (6) above.
  • the state machine detects a plurality of phases included in the series of motions while supplementing blind spot information with the posture information obtained from a plurality of directions.
  • the rehabilitation support system according to (7) above.
  • the imaging condition determination unit determines the front direction and the lateral direction of the rehabilitation target as the imaging direction.
  • the rehabilitation support system according to (8) above.
  • the state machine detects a plurality of phases based on the positional relationship between the buttocks and the seat surface, the change in the angle of the waist, the change in the movement speed of the center of gravity, and the change in the height of the waist.
  • the state machine detects a state immediately before the buttocks leave the seat surface of the chair as a first phase.
  • (12) The state machine detects, as a second phase, a state in which the center of gravity is between the ankles of both feet and the waist is most bent immediately after the first phase.
  • the state machine detects, as a third phase, a state in which the moving speed of the center of gravity point in the height direction reaches a maximum immediately after the second phase.
  • the state machine detects, as a fourth phase, a state in which the waist height reaches a maximum point immediately after the third phase, and then the waist height fluctuates within a range that satisfies a low fluctuation criterion and stops. do, The rehabilitation support system according to (13) above.
  • the motion analysis unit detects rotation based on the displacement of the shoulder joints of both shoulders viewed from the lateral direction.
  • an output unit that suspends the movement of the rehabilitation subject for each of the phases and displays the analysis information together with a still image of the rehabilitation subject in the phase;
  • a rehabilitation support system according to any one of (1) to (15) above.
  • the output unit displays, as the analysis information, information indicating a comparison with the motion of a healthy subject.
  • the rehabilitation support system according to (16) above.
  • the output unit displays, as the analysis information, the skeleton information of the rehabilitation subject and the reference skeleton information serving as the reference for comparison.
  • the output unit selectively displays skeleton information corresponding to a part of the rehabilitation subject to be analyzed in the phase as the skeleton information of the rehabilitation subject and the reference skeleton information.
  • the rehabilitation support system according to (18) above.
  • the output unit displays the skeleton information of the rehabilitation subject and the reference skeleton information at timing when a difference exceeding an allowable standard occurs between the skeleton information of the rehabilitation subject and the reference skeleton information.
  • the rehabilitation support system according to (18) or (19) above.
  • the output unit highlights the skeleton of the rehabilitation candidate in a portion where the skeleton information of the rehabilitation candidate differs from the reference skeleton information by exceeding a permissible standard.
  • the rehabilitation support system according to any one of (18) to (20) above.
  • the output unit displays, as the analysis information, information indicating a guideline for bringing the movement of the rehabilitation subject closer to the movement of the healthy person.
  • a rehabilitation support system according to any one of (17) to (21) above.
  • the output unit displays, as the analysis information, information indicating a comparison with the motion of the rehabilitation subject in the past.
  • a rehabilitation support system according to any one of (16) to (22) above.
  • the output unit includes, as the analysis information, the current skeleton information of the rehabilitation candidate and the past skeleton information of the rehabilitation candidate that serves as a reference for the comparison, The rehabilitation support system according to (23) above.
  • the output unit outputs the current skeleton information of the rehabilitation candidate and the past skeleton information at the timing when a difference exceeding an allowable standard occurs between the current skeleton information of the rehabilitation candidate and the reference skeleton information representing the motion of a healthy person. displaying the skeletal information of the rehabilitation subject of The rehabilitation support system according to (24) above.
  • the output unit highlights the skeleton of the rehabilitation candidate in a portion where the current skeleton information of the rehabilitation candidate differs from the reference skeleton information by exceeding a permissible standard.
  • the analysis information includes information indicating the transition of the scoring results of each phase for each scoring item from the past to the present, A rehabilitation support system according to any one of (1) to (26) above.
  • the intervention information includes judgment information that serves as judgment material for prompting the rehabilitation subject to improve movement, or a training plan for the rehabilitation subject, The rehabilitation support system according to (28) above.
  • the intervention information generation unit extracts one or more symptoms of the rehabilitation target person from the analysis information, and determines the training plan based on the priority determined for each symptom and the severity of each symptom. , The rehabilitation support system according to (29) above. (31) The intervention information generating unit generates authentication information for authenticating the current level of the rehabilitation target, A rehabilitation support system according to any one of (28) to (30) above. (32) the intervention information includes an insurance recommendation based on the authentication information; The rehabilitation support system according to (31) above. (33) The intervention information includes evaluation information about efficacy based on the authentication information, The rehabilitation support system according to (31) or (32) above. (34) The state machine detects the plurality of phases based on a determination method for each phase stored in an index database.
  • a rehabilitation support system according to any one of (1) to (33) above.
  • the motion analysis unit analyzes the motion of the rehabilitation subject for each phase based on the scoring items and scoring criteria for each phase stored in the index database.
  • the index database stores, for each determination item, one or more information among the shooting conditions of the moving image, the definition of the phase, the specific scene to be analyzed, the scoring item, and the scoring criteria, as an index for motion analysis.
  • the rehabilitation support system according to (34) or (35) above.
  • the determination item is associated with the type of exercise targeted for motion analysis, The rehabilitation support system according to (36) above.
  • the motion analysis unit transmits the evaluation result of the series of motions to a terminal or server owned by an interventionist who intervenes in the rehabilitation target person.
  • a rehabilitation support system according to any one of (1) to (37) above.
  • (39) Extracting posture information of the rehabilitation subject from video data of training or evaluation exercise of the rehabilitation subject, detecting a plurality of phases included in a series of motions of the rehabilitation subject in the training or the evaluation exercise based on the posture information of the rehabilitation subject; analyzing the posture information for each of the phases and generating analysis information indicating an evaluation result of the series of motions;
  • a computer-implemented information processing method comprising: (40) Extracting posture information of the rehabilitation subject from video data of training or evaluation exercise of the rehabilitation subject, detecting a plurality of phases included in a series of motions of the rehabilitation subject in the training or the evaluation exercise based on the posture information of the rehabilitation subject; analyzing the posture information for each of the phases and generating analysis information indicating an evaluation result of the series of motions;
  • a program that makes a
  • the motion analysis unit evaluates the evaluation items of each phase based on one or more evaluation viewpoints, and classifies the symptoms of the rehabilitation subject based on the evaluation results from each evaluation viewpoint.
  • the one or more evaluation viewpoints include one or more main viewpoints that must satisfy the acceptance criteria in order to determine that the action to be a judgment item has been properly performed,
  • the motion analysis unit evaluates the evaluation items of each phase from the main point of view, and if the main point of view that does not satisfy the acceptance criteria is detected, it is determined that the action of the judgment item is performed appropriately. and stop evaluation based on the remaining evaluation aspects,
  • the rehabilitation support system according to (41) above.
  • the index database associates and stores the failure information and the judgment items;
  • the motion analysis unit analyzes the motion of the determination item linked to the disability information of the rehabilitation subject.
  • the imaging condition determination unit starts recording the movement of the rehabilitation subject in response to the fact that the condition of the rehabilitation subject captured by the camera satisfies the imaging start condition.
  • the photographing condition determination unit displays an image of the camera on a display device until the photographing start condition is satisfied, and displays the image of the camera when the photographing start condition is satisfied and recording of the operation is started. stop displaying to the device, The rehabilitation support system according to (45) above. (47) The imaging condition determination unit notifies the rehabilitation target that the imaging start condition is satisfied, and then starts recording the motion. The rehabilitation support system according to (46) above.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Pathology (AREA)
  • Primary Health Care (AREA)
  • Pain & Pain Management (AREA)
  • Rehabilitation Therapy (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

リハビリテーション支援システムは、姿勢情報抽出部(214)、ステートマシン(221)および動作分析部(222)を有する。姿勢情報抽出部(214)は、リハビリテーション対象者のトレーニングまたは評価運動の動画データからリハビリテーション対象者の姿勢情報を抽出する。ステートマシン(221)は、リハビリテーション対象者の姿勢情報に基づいて、トレーニングまたは評価運動におけるリハビリテーション対象者の一連の動作に含まれる複数のフェーズを検出する。動作分析部(222)は、フェーズごとに姿勢情報を分析し、一連の動作の評価結果を示す分析情報を生成する。

Description

リハビリテーション支援システム、情報処理方法およびプログラム
 本発明は、リハビリテーション支援システム、情報処理方法およびプログラムに関する。
 リハビリテーションは医療・介護保険で十分にカバーされていない。そのため、姿勢推定技術を用いて気軽かつ手ごろにリハビリテーションの支援を行う手法が提案されている。姿勢推定技術は、ターゲットとなる人物または物の画像から複数のキーポイント(ターゲットが人間であれば、肩・肘・手首・腰・膝・足首などを示す複数の特徴点)を抽出し、キーポイント同士の相対位置に基づいてターゲットの姿勢を推定する技術である。姿勢推定技術は、スポーツにおける学習支援、ヘルスケア、自動運転および危険予知などの広範な分野で応用が期待されている。
特許第4166087号公報 特許第4594157号公報 特許第5547968号公報 特許第6045139号公報 特開2021-049319号公報 特開2020-141806号公報 特許第6447609号公報 特許第6289165号公報
 ターゲットの動画を用いて動作分析を行う場合、一連の動作をポイントとなるフェーズごとに分析することが望ましい。ターゲットの一連の動作は、複数の特徴的な動作(フェーズ)の組み合わせとして捉えることができる。フェーズごとに分析を行えば、一連の動作を的確に分析することができる。従来の手法では、フェーズによる動作の分類は行われていない。そのため、一連の動作を全体にわたって的確に評価することができない。
 そこで、本開示では、的確な動作分析に基づいてリハビリテーションを支援することが可能なリハビリテーション支援システム、情報処理方法およびプログラムを提案する。
 本開示によれば、リハビリテーション対象者のトレーニングまたは評価運動の動画データから前記リハビリテーション対象者の姿勢情報を抽出する姿勢情報抽出部と、前記リハビリテーション対象者の姿勢情報に基づいて、前記トレーニングまたは前記評価運動における前記リハビリテーション対象者の一連の動作に含まれる複数のフェーズを検出するステートマシンと、前記フェーズごとに前記姿勢情報を分析し、前記一連の動作の評価結果を示す分析情報を生成する動作分析部と、を有するリハビリテーション支援システムが提供される。また、本開示によれば、前記リハビリテーション支援システムの情報処理がコンピュータにより実行される情報処理方法、ならびに、前記リハビリテーション支援システムの情報処理をコンピュータに実現させるプログラムが提供される。
リハビリテーションを行う在宅患者向けのリハビリテーション支援サービスの一例を示す図である。 リハビリテーション支援システムの機能構成の一例を示すブロック図である。 動作分析の指標の一例を示す図である。 動作分析の指標の一例を示す図である。 動作分析処理の概略を示すフローチャートである。 動画取得処理の一例を示すフローチャートである。 前処理の具体例を説明する図である。 前処理の具体例を説明する図である。 前処理の具体例を説明する図である。 分析・評価処理の一例を示すフローチャートである。 分析・介入処理に関わる機能構成の一例を示す図である。 立ち上がり動作におけるランドマークを示す図である。 動作分析の一例を示す図である。 動作分析の一例を示す図である。 第2フェーズの検出処理の一例を示す図である。 第3フェーズの検出方法の一例を示す図である。 分析情報の一例を示す図である。 システム構成のバリエーションを示す図である。 症状分類の具体的手法を示す図である。 動作分析処理の変形例を示す図である。 問診データの入力を行うためのUIの一例を示す図である。 問診データの入力を行うためのUIの一例を示す図である。 問診データの入力を行うためのUIの一例を示す図である。 動作チェックのUIの一例を示す図である。 動作チェックのUIの一例を示す図である。 動作チェックのUIの一例を示す図である。 撮影の準備を行うためのUIの一例を示す図である。 撮影の準備を行うためのUIの一例を示す図である。 撮影の準備を行うためのUIの一例を示す図である。 撮影の準備を行うためのUIの一例を示す図である。 AIチェックにおける評価結果の表示例を示す図である。 AIチェックにおける評価結果の表示例を示す図である。
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
 なお、説明は以下の順序で行われる。
[1.リハビリテーション支援サービスの概要]
[2.リハビリテーション支援システムの構成]
[3.情報処理方法]
 [3-1.動作分析処理の概略]
 [3-2.動画取得処理]
 [3-3.分析・評価処理]
[4.分析・介入処理に関わる機能構成]
[5.動作分析の具体例]
 [5-1.立ち上がり動作におけるランドマーク]
 [5-2.立ち上がり動作の分析]
 [5-3.分析情報]
[6.システム構成のバリエーション]
[7.効果]
[8.症状分類の具体的手法]
[9.動作分析処理の変形例]
[10.UIの具体例]
[1.リハビリテーション支援サービスの概要]
 図1は、リハビリテーションを行う在宅患者向けのリハビリテーション支援サービスの一例を示す図である。
 リハビリテーション支援サービスは、医療機関や自宅、職場等において行われるリハビリテーションを支援するサービスである。ここで、「リハビリテーション」とは、障害、慢性疾患、老年病など、治療期間が長期にわたる患者の潜在能力を高めて、生活機能ひいては、社会的機能を回復、促進するための技術や方法を指す。また、リハビリテーションの対象となる者をリハビリテーション対象者TGと表記する。リハビリテーション対象者TGは、例えば、病人やけが人、高齢者、障害者等である。
 リハビリテーション支援サービスは、リハビリテーション対象者TGが行うリハビリテーション用のトレーニングまたは評価運動の動画データに基づいてリハビリテーションの進捗状況を把握し、適切な介入情報VIを提示する。リハビリテーションの手法としては、運動療法、物理療法、日常生活動作練習および装具療法などがあるが、本開示では運動療法によってリハビリテーションを行う例が説明される。運動療法では、立つ、座る、歩くなどの運動の障害が、関節可動域訓練、基本動作訓練、筋力増強訓練などを行うことにより改善される。
 リハビリテーション支援サービスは、図1に示すようなリハビリテーション支援システム1により実施される。リハビリテーション支援システム1は、クライアント端末100、動作分析サーバ200、医療関係者端末300、家族端末400、および、サービス提供者サーバ500を有する。クライアント端末100、動作分析サーバ200、医療関係者端末300、家族端末400およびサービス提供者サーバ500は、ネットワークNW(図11参照)を介して接続されている。
 クライアント端末100は、スマートフォン、タブレット端末、ノートパソコンおよびデスクトップパソコンなどの情報端末である。クライアント端末100は、リハビリテーション対象者TGの動作分析を依頼したクライアントによって保有される。通常、クライアントは、リハビリテーション対象者TGの家族FMかリハビリテーション対象者TG自身であるが、本開示では、リハビリテーション対象者TG自身がクライアントである例が説明される。クライアント端末100は、リハビリテーション対象者TGがリハビリテーションのためのトレーニングまたは評価運動を行う様子を映した動画データMDを動作分析サーバ200に送信する。
 動作分析サーバ200は、動画データMDに基づいてリハビリテーション対象者TGの動作を分析する。リハビリテーション対象者TGの一連の動作は、時間軸に沿って並ぶ複数の特徴的な動作の組み合わせとして捉えられる。動作分析サーバ200は、個々の特徴的な動作をフェーズとして抽出する。フェーズどうしの境界は所定の指標に基づいて定義される。動作分析サーバ200は、所定の指標に基づいてフェーズごとに動作分析を行うことで、一連の動作を評価する。
 動作分析サーバ200は、評価結果を示す分析情報MAIを生成し、クライアント端末100に送信する。動作分析サーバ200は、生成された分析情報MAIを医療関係者端末300および家族端末400に送信することもできる。リハビリテーション対象者TG、医療関係者DTおよび家族FMは、送信された分析情報MAIに基づいてリハビリテーション対象者TGの健康状態を把握することができる。
 分析情報MAIは、健常者あるいは医学標準との比較におけるリハビリテーション対象者TGの運動能力、障害の重さおよび障害の特徴に関する評価結果を含む。分析情報MAIは、過去のリハビリテーション対象者TGの運動能力との比較に基づくリハビリテーションの効果に関する評価結果を含むこともできる。医師、理学療法士、薬剤師および健康アドバイザなどの医療関係者DTは、医療関係者端末300で受信した分析情報MAIに基づいてリハビリテーション対象者TGの診断を行う。医療関係者DTは、診断結果を示す診断情報DGを医療関係者端末300を介して動作分析サーバ200に送信する。動作分析サーバ200は、診断情報DGを分析情報MAIとともにサービス提供者サーバ500に送信する。
 サービス提供者サーバ500は、分析情報MAIおよび/または診断情報DGに基づいて、物販データベースからリハビリテーション対象者TGの健康状態に応じた装具、杖、マットなどの物販情報PSIを抽出し、動作分析サーバ200に送信する。動作分析サーバ200は、分析情報MAI、診断情報DGおよび物販情報PSIに基づいて、リハビリテーション対象者TGへの介入情報VIを生成し、クライアント端末100に送信する。介入情報VIは、リハビリテーション対象者TGの診断結果、運動機能の認証、リハビリテーション対象者TGの機能回復を手助けするための各種提案、および、物販情報PSIを含む。
[2.リハビリテーション支援システムの構成]
 図2は、リハビリテーション支援システム1の機能構成の一例を示すブロック図である。
 クライアント端末100は、センサ部110、入力デバイス120および表示装置170を有する。センサ部110は、リハビリテーション対象者TGの症状分析に利用可能なバイタルデータおよび運動データを収集する。運動データは、リハビリテーションのためのトレーニングまたは評価運動を行っている最中のリハビリテーション対象者TGの映像を記録した動画データMDを含む。入力デバイス120は、問診データCDを入力可能な各種入力機器を含む。表示装置170は、リハビリテーション対象者TGの動作分析によって得られた各種判定結果(分析情報MAI)および介入情報VIを表示する。
 例えば、センサ部110は、心拍センサ、VO2MAX(最大酸素摂取量)センサ、歩数計、筋力計、ゴニオメータ、カメラ160、GPS(Global Positioning System)、加速度センサおよびジャイロセンサを含むことができる。入力デバイス120は、タッチパネル、キーボード、マウス、アイトラッキング装置および音声入力装置を含むことができる。表示装置170は、LCD(Liquid Crystal Display)またはOLED(Organic Light Emitting Diode)を含む。センサ部110、入力デバイス120および表示装置170は一つのデバイス内に一体的に設けられてもよいし、それぞれ独立した装置として設けられてもよい。
 クライアント端末100は、リハビリテーション対象者TGのバイタルデータ、運動データおよび問診データCDを動作分析サーバ200に送信する。動作分析サーバ200は、クライアント端末100から取得した各種データに基づいてリハビリテーション対象者TGの健康状態を分析する。
 問診データCDは、問診表に基づいて入力される。問診データCDは、例えば、氏名、年齢、性別、体重、病名および服用中の薬などの一次情報と、一次情報に関連した二次情報と、を含む。二次情報には、気になる症状、痛み、症状の発症時間、麻痺部位、介護状況、装具の有無、および、直近の生活活動範囲などの情報が含まれる。問診データCDは、リハビリテーション対象者TGによって手動で入力されてもよいし、電子カルテなどの医療機関の保有する情報から抽出されてもよい。心拍数などのバイタル情報や生活活動範囲などの位置情報は、センサ部110の計測データから取得されてもよい。
 クライアント端末100は、ネットワークを介して医療情報データベースからリハビリテーション対象者TGのカルテ情報、投薬情報およびゲノム情報などを取得することができる。また、クライアント端末100は、健康情報を記録した健康情報データベースからリハビリテーション対象者TGの食事、睡眠および体重などの生活習慣に関する情報を取得することができる。クライアント端末100は、医療情報データベースおよび健康情報データベースから取得した各種情報を問診データCDに含めることができる。
 動作分析サーバ200は、健康情報算出部210、評価部220、介入情報生成部230および記憶装置290を有する。
 健康情報算出部210は、センサデータおよび問診データCDに基づいてリハビリテーション対象者TGの健康情報を算出する。健康情報は、リハビリテーション対象者TGの障害情報、バイタル情報、機能情報(歩行能力、筋力および関節の可動域などの身体機能に関する情報)およびリハビリテーションの状況など、リハビリテーション対象者TGの健康状態を示す各種情報を含む。
 例えば、健康情報算出部210は、センサデータ解析部211、特徴量抽出部212および問診データ解析部213を含む。センサデータ解析部211は、心拍センサ、VO2MAX(最大酸素摂取量)センサ、歩数計、筋力計、ゴニオメータおよび加速度センサのセンシング結果に基づいて、リハビリテーション対象者TGのバイタル情報と運動能力とのうちの少なくとも一方を検出する。センサデータ解析部211は、リハビリテーション対象者TGがリハビリテーションを行う様子を映した動画データMDを解析して、リハビリテーション対象者TGの姿勢情報HPI(図8参照)を抽出する。
 特徴量抽出部212は、姿勢情報HPIから、指標データベース295に記憶されている指標に基づいて特徴量を抽出する。指標データベース295には、患者の持つ障害(疾患、機能障害、行動障害)ごとに動作分析を行うための指標が記憶されている。
 図3および図4は、動作分析の指標の一例を示す図である。
 指標には、動作分析を行うための種々の情報が含まれる。指標には、動作分析に必要な作業および処理の基準となる様々な要素が含まれる。個々の障害には、動作分析の対象となる1以上の判定項目が紐づけられている。記憶装置290(指標データベース295)には、判定項目ごとに、動画の撮影条件、特徴量の定義情報および動作分析アルゴリズムALが、動作分析を行うための指標として記憶されている。動作分析アルゴリズムALは、フェーズ情報、各フェーズの評価方法、および、症状分類の定義などに関する情報を含んでもよい。各フェーズの評価方法には、各フェーズの評価項目および採点基準などの情報が含まれることが望ましい。
 例えば、図4には、立ち上がり動作およびスクワット動作などに関する指標の一例が示されている。指標データベース295には、撮影条件情報として動画の撮影方向が規定されている。動作分析アルゴリズムALは、フェーズ情報として、例えば、フェーズの定義およびフェーズの境界の検出方法などの情報を含む。動作分析アルゴリズムALは、フェーズの評価方法として、例えば、フェーズごとの評価項目、採点基準およびロールモデル(手本となる健常者などの動作)などの情報を含む。図3および図4に示される情報は、動作分析の指標の一例であって、動作分析の指標はこれに限られない。
 日常生活動作(ADL)に支障がある患者については、FIM(Functional Independence Measure)およびBI(Barthel Index)などの評価方法に応じた指標が用いられる。FIMおよびBIには、移動や移乗などの複数の評価項目が存在する。これらの評価は身体の動きについては言及しておらず、あくまでできたかできていないか、あるいは、生活の中でしているかしていないかで評価が行われる。これに対して本手法では、日常生活動作の基盤となる起き上がり、立ち上がり、歩行および階段昇降などの動作ならびにそれらの動作を構成する運動(以下、基本動作という)が評価の対象となる。そのため、身体の動き方自体を評価することができる。指標データベース295には、個々の基本動作が判定項目として定義されている。動画データMDは判定項目ごとに取得され、動作分析も判定項目ごとに行われる。
 図2に戻って、問診データ解析部213は、問診データCDからリハビリテーション対象者TGの障害情報を抽出する。障害情報は、リハビリテーション対象者TGの障害の種類および障害の重さの情報を含む。リハビリテーション対象者の疾患が脳血管障害である場合には、麻痺側の情報も障害情報に含まれる。障害情報は、動作分析において考慮され得る。障害の種類や重さが異なれば、同じ動作が検出された場合でも、その動作に対して異なる解釈がされる可能性があるからである。例えば、麻痺側の情報は、動画の撮影方向を決定する際に用いられる。動画の撮影は、麻痺側の動作が詳細に記録できるような方法で行われる。
 問診データ解析部213は、問診データCDに基づいて、リハビリテーション対象者TGに運動をさせることが適切か否かを判定する。リハビリテーション対象者TGに運動をさせることが不可能、または、適切でないと判定された場合には、問診データ解析部213は、リハビリテーションの中止または医師への確認を促すアラートをクライアント端末100に通知する。問診データ解析部213は、クライアント端末100にアラートを通知する代わりに、医療関係者端末300に問い合わせを行ってもよい。
 評価部220は、特徴量抽出部212で抽出された特徴量と指標データベース295に記憶された動作分析アルゴリズムALとに基づいて、リハビリテーション対象者TGの動作を分析する。例えば、評価部220は、動作分析アルゴリズムALに基づいて、動画データMDに記録されたリハビリテーション対象者TGの一連の動作を複数のフェーズに分類する。評価部220は、リハビリテーション対象者TGの障害情報を考慮してフェーズごとに動作を分析する。フェーズの境界の検出方法および各フェーズの動作の評価方法は、動作分析アルゴリズムALに定義されている。評価部220は、一連の動作の評価結果を示す分析情報MAIを生成する。
 介入情報生成部230は、分析情報MAIに基づいてリハビリテーション対象者TGへの介入情報VIを生成する。介入情報VIは、リハビリテーション対象者TGに動作の改善を促すための判断材料となる情報(判断情報)、または、リハビリテーション対象者TGのトレーニングプランを含む。判断情報には、例えば、リハビリテーションや糖尿病などの点数、あるいは、バイタル情報などが含まれる。リハビリテーション等の点数と物販情報PSIとを紐づけることで、リハビリテーション対象者TGに適した商品の検索が容易となる。客観的な判断情報は、プロモーションやマーケティングにも利用できる。
 介入情報生成部230は、分析情報MAIからリハビリテーション対象者TGの1以上の症状を抽出し、症状ごとに決められた優先度、および、個々の症状の重さに基づいてトレーニングプランを決定することができる。介入情報生成部230は、分析情報MAI以外にも、問診データなどの情報を参考にしてトレーニングプランを決定することもできる。症状には、健常者と比較したリハビリテーション対象者TG特有の動作から推測される障害の重さ、筋力の低下および関節の可動域の減少などが含まれる。複数の症状が検出された場合には、例えば、最も優先度の高い症状に基づくトレーニングプランが提示される。
 症状の優先度および症状ごとのトレーニングプランは、疾患別ソリューションデータベース294に記憶されている。疾患別ソリューションデータベース294は、症状ごとに1以上のトレーニングプランが紐づけられている。介入情報生成部230は、リハビリテーションの点数の推移および症状の改善の進捗に基づいて、症状に紐づけられた他のトレーニングプランを提示することができる。
 介入情報生成部230は、分析情報MAIに基づいて、現在のリハビリテーション対象者TGの運動能力のレベルを判定する。レベルの情報は、類似の障害を持つ他の患者との比較や、症状改善の認定処理などに用いられる。例えば、介入情報生成部230は、現在のリハビリテーション対象者TGのレベルを認証する認証情報を生成する。リハビリテーション対象者TGは、認証情報に基づいて、保険料低減に対する貢献度合いを計算し、返還金の計算などをすることができる。介入情報VIは、認証情報に基づく保険に関する提言を含むことができる。介入情報VIは、認証情報に基づく薬効およびリハビリテーション支援サービスについての評価情報を含むこともできる。
 記憶装置290には、個人情報データベース291、匿名化センシング情報データベース292、介入情報データベース293、疾患別ソリューションデータベース294および指標データベース295を有する。
 個人情報データベース291は、リハビリテーション対象者TGの年齢、身長、体重、食事、睡眠、歩行情報、筋力情報、可動域情報などのリハビリテーション対象者TG個人に関する情報を記憶する。図2の例では、個人情報がデータベースとして動作分析サーバ200上で記憶される構成となっている。しかし、リハビリテーション対象者TGの個人情報は、リハビリテーション対象者TGの保有するクライアント端末100に記憶されてもよい。
 匿名化センシング情報データベース292は、健康情報算出部210により用いられるリハビリテーション対象者TGの過去のセンシングデータを記憶する。過去のセンシングデータは、匿名化データとして、年齢や性別、疾患等の匿名加工情報に紐づけて記憶される。
 介入情報データベース293は、介入情報生成部230により生成された介入情報VIを、リハビリテーション対象者TGの健康情報に対応付けて記憶する。
 疾患別ソリューションデータベース294は、介入情報生成部230により用いられる、フレイル、パーキンソン、心疾患、脳梗塞などの脳血管疾患、および副作用予防などの疾患別のソリューションを記憶する。例えば、疾患毎にアドバイスや教育コンテンツ、リハビリテーション・運動プログラムなどのコンテンツが格納されている。各コンテンツは評価結果や診断結果に紐づいて記憶されていてもよい。これにより、リハビリテーション対象者TGの状態に応じた適切なアドバイスやコンテンツが提供される。
 指標データベース295には、評価部220で使用される指標が記憶されている。指標データベース295は、特徴量の定義情報、および、特徴量を用いた動作分析アルゴリズムALを動作分析の指標として含む。動作分析アルゴリズムALは、特定の閾値に基づくものでもよいし、機械学習が実施された学習モデルに基づくものでもよい。
 医療関係者端末300は、スマートフォン、タブレット端末、ノートパソコンおよびデスクトップパソコンなどの情報端末である。医療関係者端末300は、評価部310と、診断およびレセプト情報データベース390を有する。医療関係者端末300は、動作分析サーバ200から送信されてくるリハビリテーション対象者TGの健康情報、分析情報MAIおよび症状に関する情報などを受信し、表示する。
 評価部310は、医師などが入力する情報、動作分析サーバ200により受信されたリハビリテーション対象者TGの健康情報や分析情報MAIと、診断およびレセプト情報データベース390に記憶されている情報に基づいて、現在のリハビリテーション対象者TGの健康状態を診断し、その診断結果や、診断結果に応じたアドバイスを、動作分析サーバ200に送信する。診断結果や診断結果に応じたアドバイスは、動作分析サーバ200を介さず、リハビリテーション対象者TGの保有するクライアント端末100に直接送信されてもよい。
 診断およびレセプト情報データベース390には、リハビリテーション対象者TGが過去に診断された診断情報、薬情報、通信情報、ゲノム情報およびレセプト情報などが記憶されている。
 医療関係者端末300にはリハビリテーション対象者TGの健康情報や評価結果などが送信されるので、リハビリテーション対象者TGの主治医は、リハビリテーション対象者TGと遠く離れたところに住んでいても、リハビリテーション対象者TGの健康状態や行動変容がわかる。これにより、医師は、現在のリハビリテーション対象者TGの健康状態を遠隔で診断し、その診断結果を提供することができる。
 家族端末400は、スマートフォン、タブレット端末、ノートパソコンおよびデスクトップパソコンなどの情報端末である。家族端末400は、動作分析サーバ200から送信されてくるリハビリテーション対象者TGの健康情報や分析情報MAIなどを受信し、表示する。これにより、リハビリテーション対象者TGの家族FMは、リハビリテーション対象者TGと遠く離れたところに住んでいても、リハビリテーション対象者TGの健康状態や行動変容を知ることができる。
 サービス提供者サーバ500は、物販データベース591を有する。物販データベース591は、各健康情報や分析情報MAIに適する健康食品などの物販情報PSIを記憶している。サービス提供者サーバ500は、動作分析サーバ200から送信されてくるリハビリテーション対象者TGの健康情報、分析情報MAIおよび症状に関する情報などを受信する。サービス提供者サーバ500は、受信したリハビリテーション対象者TGの健康情報、分析情報MAIおよび症状に関する情報に応じた物販情報PSIを物販データベース591から検索する。サービス提供者サーバ500は、検索した物販情報PSIを動作分析サーバ200に送信する。
 サービス提供者サーバ500にはリハビリテーション対象者TGの健康情報や分析情報MAIなどが送信されるので、サービス提供者は、リハビリテーション対象者TGの健康状態や行動変容に基づいて、お勧めの健康食品などの物販情報PSIをリハビリテーション対象者TGに提供することができる。医療関係者端末300およびサービス提供者サーバ500が受信したリハビリテーション対象者TGの健康情報、分析情報MAIおよび症状に関する情報は匿名化されることが望ましい。
 図2の例では、動作分析サーバ200において、健康情報が算出され、分析情報MAIや介入情報VIが提供される。しかし、健康情報を算出するサーバと、動作の評価を行い、分析情報MAIや介入情報VIを提供するサーバは別々に構成されてもよい。また、サービス提供者サーバ500は、動作分析サーバ200と異なるサーバとして説明されたが、動作分析サーバ200とサービス提供者サーバ500とは一体化されてもよい。
 また、図2の例では、動作分析サーバ200が各種データベースを備える例が説明された。しかし、各種データベースを備えるデータベースサーバが別途設けられてもよい。さらに、記憶装置290内の各データベースは、動作分析サーバ200とは異なるサーバで管理されてもよい。
[3.情報処理方法]
[3-1.動作分析処理の概略]
 図5は、動作分析処理の概略を示すフローチャートである。
 クライアント端末100は、センサ部110および入力デバイス120からセンサデータおよび問診データCDを取得する(ステップS1)。クライアント端末100は、取得したセンサデータを動作分析サーバ200に送信する(ステップS2)。この際、クライアント端末100は問診データCDも動作分析サーバ200に送信することが望ましい。
 問診データ解析部213は、問診データCDからリハビリテーション対象者TGの障害情報を抽出する(ステップS3)。センサデータ解析部211は、センサデータからリハビリテーション対象者TGの身体機能に関する機能情報、および、リハビリテーションのためのトレーニングまたは評価運動を行っている最中のリハビリテーション対象者TGの姿勢情報HPIを抽出する(ステップS4)。なお、リハビリテーション対象者TGの姿勢情報HPIのみに基づいて動作分析が行われる場合には、問診データCDから障害情報を抽出する処理(ステップS3)、および、センサデータから機能情報を抽出する処理(ステップS4)は不要である。
 特徴量抽出部212は、指標データベース295から、項目に応じた動作分析の指標(特徴量の定義情報、動作分析アルゴリズムAL)を抽出する。特徴量抽出部212は、特徴量の定義情報に基づいて、姿勢情報HPIから特徴量を抽出する(ステップS5)。特徴量の定義情報が障害情報に紐づけて指標データベース295に規定されている場合には、指標の抽出に際して、特徴量抽出部212はリハビリテーション対象者TGの障害情報もあわせて参照することが望ましい。
 評価部220は、抽出された特徴量のデータを動作分析アルゴリズムALに当てはめて、リハビリテーション対象者TGの動作を分析する。動作分析は、動作のフェーズごとに行われる。評価部220は、動作分析アルゴリズムALに基づいて、リハビリテーション対象者TGの一例の動作を複数のフェーズに分類する。評価部220は、指標(評価項目と評価基準)に基づいて、フェーズごとに姿勢情報HPI(特徴量のデータ)を分析する。評価部220は、フェーズごとの動作の分析結果に基づいてリハビリテーション対象者TGの一連の動作を評価し、評価結果を示す分析情報MAIを生成する(ステップS6)。障害の大きさや運動機能などを考慮した詳細な評価を行う場合には、評価部220は、リハビリテーション対象者TGの障害情報および/または機能情報を考慮してリハビリテーション対象者TGの一連の動作を評価することもできる。
 介入情報生成部230は、医療関係者端末300およびサービス提供者サーバ500から、分析情報MAIに関連する診断情報DGおよび物販情報PSIを取得する。介入情報生成部230は、分析情報MAI、診断情報DG、症状に関する情報および物販情報PSIに基づいて、リハビリテーション対象者TGに介入するための介入情報VIを生成する(ステップS7)。
 介入情報生成部230は、生成された介入情報VIをクライアント端末100に送信する(ステップS8)。クライアント端末100は、介入情報VIを表示装置170に表示し、リハビリテーションの状況をリハビリテーション対象者TGに認識させる(ステップS9)。これにより、リハビリテーション対象者TGの行動の変化が促される。
[3-2.動画取得処理]
 図6は、動画取得処理の一例を示すフローチャートである。
<ステップSA1:身分認識>
 クライアント端末100は、動作分析の対象となる人物(リハビリテーション対象者TG)を認識する。リハビリテーション対象者TGはカメラ160の撮影視野の中央にいる人物として認識されてもよいし、アカウント情報、顔認証または指紋認証などによりリハビリテーション対象者TGの認証がおこなわれてもよい。
<ステップSA2:撮影準備>
 クライアント端末100は、問診データCDに基づいてリハビリテーションの可否を判定する。クライアント端末100は、リハビリテーションが可能と判定した場合には、撮影の準備として、判定項目や撮影条件を決定する。
 判定項目は、リハビリテーション対象者TGまたはトレーナの選択により選択される。トレーニングプランに分析対象となるトレーニング項目が設定されている場合には、設定されたトレーニング項目が判定項目として決定されてもよい。本開示では、判定項目は、例えばユーザ入力情報(リハビリテーション対象者TGの選択)または問診データCDに基づいて決定される。
 クライアント端末100は、問診データCDに基づいて、リハビリテーション対象者TGの持つ障害を特定する。クライアント端末100は、指標データベース295から、リハビリテーション対象者TGの障害に紐づけられた1以上の判定項目を抽出する。判定項目が1つしか存在しない場合には、その1つの判定項目が動作分析の対象として決定される。判定項目が複数存在する場合には、ユーザ入力情報に基づいて選択された1つの判定項目が動作分析の対象として決定される。判定項目は、医師や理学療法士により指定されることも可能である。
 クライアント端末100は、指標データベース295から、判定項目と紐づけられた撮影条件を抽出し、音声や映像を用いてリハビリテーション対象者TGに通知する。撮影条件には、リハビリテーション対象者TGとカメラ160との位置関係や画角内のリハビリテーション対象者TGの位置(例えば、両肩の座標、骨格の中心線の位置)などについての基準が含まれる。クライアント端末100は、カメラ160の撮影位置が上述の基準を満たさないと判定した場合には、音声や映像を用いてリハビリテーション対象者TGに通知する。
 撮影位置が上述の基準を満たすか否かの判定は、動作分析サーバ200などの他の分析機器によって行われてもよい。判定の一部(例えば姿勢推定のみ)がクライアント端末100によって行われ、残りが他の分析機器によって行われてもよい。また、ToFセンサなどを用いてリハビリテーション対象者TGとカメラ160との位置関係が検出される場合には、検出された位置関係に基づいて、カメラ160の映像を上述の基準が満たされるように補正してもよい。
 クライアント端末100は、ジャイロセンサなどを用いて自身の水平度を検知し、水平から傾いている場合にはリハビリテーション対象者TGに通知することができる。リハビリテーション対象者TGの動作を分析する場合には、リハビリテーション対象者TGの姿勢が鉛直方向からどの方向にどの程度傾いているかを正確に検知する必要がある。そのため、撮影前の準備として、リハビリテーション対象者TGにクライアント端末100の水平度を調整してもらう。
 クライアント端末100は、画像解析によりリハビリテーション対象者TGを背景から精度よく分離できないと判定した場合には、リハビリテーション対象者TGに通知することができる。洋服の色と背景(例えば壁)の色が同じである場合、あるいは、髪の毛の色と背景(例えば暗い廊下)の色とが同じである場合には、画像解析によってリハビリテーション対象者TGを背景から精度よく分離することができない。リハビリテーション対象者TGの背景に別の人物が存在する場合にも、リハビリテーション対象者TGと別の人物とを分離して解析することができない。リハビリテーション対象者TGを背景から分離できないと、リハビリテーション対象者TGの姿勢情報HPIを精度よく抽出することができない。そのため、リハビリテーション対象者TGに通知して、撮影位置や照明の状態を調整してもらう。
<ステップSA3:動画取得>
 撮影条件が適正化されたら、クライアント端末100は動画の撮影を実施する。クライアント端末100は、動画を撮影する前に、アセスメント用動画を撮影してもよい。アセスメント用動画は、リハビリテーション対象者TGの症状を分析するために取得される、立ち上がり、歩行、階段の上り下り、および、起き上がりなどの基本動作を映した動画を意味する。アセスメント用動画は、問診データCDとともに、リハビリテーション対象者TGの症状を分析するための判断材料として用いられる。
 なお、アセスメント用動画の分析結果に基づいて1以上の追加試験用動画が撮影されてもよい。追加試験用動画は、上述した基本動作よりも細かい動作、あるいは補助分析用の他の動作を映した動画を意味する。追加試験用動画は、問診データCDとともに、リハビリテーション対象者TGの症状を分析するための判断材料として用いることができる。
 動画の撮影開始および撮影終了の指示は、音声によって入力することができる。あるいは、動作の開始時と終了時のポーズを画像解析によって検知し、これらのポーズが検知されたときに自動的に動画の撮影開始と撮影終了の処理が行われるようにしてもよい。
<ステップSA4:動作分析のための前処理>
 動画が撮影されたら、クライアント端末100は、必要に応じて、動作分析サーバ200で動作分析を行うための前処理を行う。
 動画データMDを用いてリハビリテーション対象者TGの動作を分析する場合、実際に分析が必要なフレーム画像の数はそれほど多くない(例えば、1フェーズあたり1枚以上10枚以下)。動画データMDに含まれる全てのフレーム画像を高性能な動作分析サーバ200で解析すると、解析コストが大きくなる。そのため、クライアント端末100は、動作分析の前処理として、フェーズの動作を示す重要なフレーム画像が含まれていると予想される特定の動作シーン(以下、特定シーンと記載する)を抽出する。特定シーンは、各フェーズに対応して抽出される。クライアント端末100は、特定シーンのフレーム画像のみを動作分析サーバ200に送信する。
 例えば、クライアント端末100は、低画質モード(例えば、1フレームあたり368画素×368画素の解像度)で取得した動画データMDを解析して、特定シーンの受信タイミングを予測する。クライアント端末100は、予測されたタイミングに合わせて、動画データMDの取得モードを低画質モードから高画質モード(例えば、1フレームあたり640画素×480画素の解像度)に切り替え、高画質のフレーム画像を動作分析サーバ200に送信する。クライアント端末100は、特定シーン以外のシーンのフレーム画像は低画質のまま動作分析サーバ200に送信する。
 抽出すべき特定シーンの特徴は、動作分析アルゴリズムALに規定されている。特定シーンは、リハビリテーション対象者TGの輪郭情報、姿勢情報LPI(図7参照)、および、リハビリテーション対象者TGが使用する特定のオブジェクトOBとリハビリテーション対象者TGとの位置関係などに基づいて検出される。特定のオブジェクトOBは、例えば立ち上がり動作であれば椅子であり、歩行動作であれば杖であり、入浴動作であれば浴槽である。例えば、立ち上がり動作については、座面と臀部との位置関係、腰の曲がり具合、および、体の重心の移動方向の変化などに基づく特定シーンの抽出方法が動作分析アルゴリズムALに規定されている。
 特定シーンを検出するだけであれば、低性能なクライアント端末100でも高速に実施できる。特定シーンに含まれるフレーム画像のみが動作分析の対象となるため、動作分析サーバ200による解析コストが抑えられる。
<<前処理のフロー>>
 図7ないし図9は、前処理の具体例を説明する図である。以下、図9のフローを図7および図8を参照しながら説明する。
 クライアント端末100は、リハビリテーション対象者TGの動画を撮影する(ステップSD1)。動画データMDは時系列的に並ぶ複数のフレーム画像FIによって構成される。動画には、分析の対象となる特定シーンと、特定シーンの前後のシーンと、が含まれる。
 クライアント端末100は、動画データMDから特定シーンを示す1以上のフレーム画像FI(特定のフレーム画像SFI)を抽出する(ステップSD2)。特定シーンの判定は、例えば、リハビリテーション対象者TGの動作に基づいて行われる。リハビリテーション対象者TGの動作は、例えば、低精度低計算量の第1分析モデル143(図11参照)を用いて動画データMDの全フレーム画像FIから抽出されたリハビリテーション対象者TGの姿勢情報LPI(第1分析モデル143による低精度姿勢推定結果を示す情報)に基づいて推定される。
 以上により、高精度姿勢推定の対象を抽出するための前処理が完了する。抽出されたフレーム画像は、動作分析サーバ200による動作分析の対象となる。
 例えば、動作分析サーバ200は、抽出された1以上の特定のフレーム画像SFIからフレーム画像SFIごとにリハビリテーション対象者TGの姿勢情報HPIを抽出する(ステップSD3)。リハビリテーション対象者TGの姿勢情報HPIは、例えば、高精度高計算量の第2分析モデル297(図11参照)を用いて1以上の特定のフレーム画像SFIのみから抽出される。
 動作分析サーバ200は、抽出された1以上の姿勢情報HPI(第2分析モデル297による高精度姿勢推定結果を示す情報)の中から、各フェーズの動作タイミングを示す姿勢情報HPIを抽出する。これにより、一連の動作に含まれる複数のフェーズが検出される。動作分析サーバ200は、各フェーズの動作タイミングを示す姿勢情報HPIを用いて、フェーズごとにリハビリテーション対象者TGの動作を分析する(ステップSD4)。
 クライアント端末100は、動作分析サーバ200から分析情報MAIを受信し、リハビリテーション対象者TGに通知する(ステップSD5)。
 なお、図7ないし図9の例では、低精度姿勢推定がクライアント端末100で行われ、高精度姿勢推定が動作分析サーバ200で行われたが、姿勢推定の分担はこれに限られない。例えば、クライアント端末100で全ての姿勢推定(低精度姿勢推定および高精度姿勢推定)が行われてもよいし、動作分析サーバ200で全ての姿勢推定が行われてもよい。いずれの場合でも、特定シーンの迅速な検出、および、高精度姿勢推定における計三個ストの低減という優れた効果が得られる。
[3-3.分析・評価処理]
 図10は、分析・評価処理の一例を示すフローチャートである。
<ステップSB1:姿勢推定>
 動作分析サーバ200には、クライアント端末100から、複数の特定シーンの映像が動画データMDから抽出されて送信される。動作分析サーバ200は、各特定シーンの姿勢分析を行う。姿勢分析は、公知の姿勢推定技術を用いて行われる。例えば、動作分析サーバ200は、ディープラーニングの手法を用いて、リハビリテーション対象者TGの画像から複数のキーポイントKP(肩・肘・手首・腰・膝・足首などを示す複数の特徴点:図12参照)を抽出する。動作分析サーバ200は、抽出されたキーポイントKPどうしの相対位置に基づいてリハビリテーション対象者TGの姿勢を推定する。
 動作分析サーバ200は、特定シーンに含まれる個々のフレーム画像からリハビリテーション対象者TGの姿勢情報HPIを抽出する。姿勢情報HPIは、各キーポイントKPの位置(座標)およびキーポイントKPどうしの位置関係(関節の角度など)を示す情報を意味する。動作分析サーバ200は、クライアント端末100よりも高性能な情報処理装置である。そのため、クライアント端末100で姿勢分析を行うよりも高精度な姿勢情報HPIが抽出される。高精度な姿勢情報HPIを用いることで、動作分析の精度も高まる。
<ステップSB2:フェーズ分析>
 動作分析アルゴリズムALには、各フェーズの姿勢をどのように定義すべきかについての定義情報が規定されている。姿勢の定義は、例えば、キーポイントKPどうしの位置関係、および、特定のキーポイントKPの移動の態様(移動方向、移動速度、移動速度の変化の様子など)などに基づいて行われる。リハビリテーション対象者TGが使用する特定のオブジェクトOB(椅子、杖、浴槽など)との位置関係に基づいて、姿勢の定義が行われてもよい。
 1つのフェーズには、複数の姿勢が定義されてもよい。複数の姿勢を分析対象とすることで、同一フェーズ内で生じる姿勢の推移を分析することができる。
 例えば、壁から少し離れたところに壁を背にして立っている状態で、壁に寄り掛かった後に壁から跳ね上がるというようなリハビリテーショントレーニングがある。一連の動作には、壁に寄りかかるフェーズと、壁から跳ね上がるフェーズという2つのフェーズが含まれる。壁から跳ね上がるフェーズでは、肩から跳ね上がるのが正しい動きとなる。臍から跳ね上がるのは誤った動作であるが、フェーズの終了時点(跳ね上がった直後)だけ見ても、肩から跳ね上がったか臍から跳ね上がったかがわからない。しかし、跳ね上がり期間中の姿勢の推移を分析すれば、正しい動作が行われたかどうかをチェックすることができる。
 跳ね上がりの姿勢は、例えば、首の付け根、股関節中心部および撮影側の膝の位置によって算出される腰の角度を用いて分析することができる。壁から跳ね上がっている期間(フェーズ)の複数または全てのフレーム画像SFIを解析することで、跳ね上がりのフェーズの開始から終了までの姿勢の推移を詳細に分析することができる。
 動作分析サーバ200は、特定シーンに含まれる1以上のフレーム画像SFIの中から、定義情報に規定された1以上のフレーム画像SFIを抽出する。これにより、定義情報に規定された、同一フェーズ内に紐づく1以上の姿勢が検出される。姿勢の判別手法としては、閾値に基づく判別手法を用いてもよいし、ディープラーニングなどの機械学習に基づく判別手法を用いてもよい。
<ステップSB3:評価>
<<項目分け>>
 動作分析アルゴリズムALには、フェーズごとに、1以上の評価項目が規定されている。個々の評価項目および採点基準は、理学療法士などの医療関係者DTによって設定される。標準的な評価項目および採点基準が知られている場合には、公知の評価項目および採点基準がそのまま流用されてもよい。採点基準は、健常者データベースに集められた教師データに基づいて機械学習されてもよいし、統計学的な処理に基づいて算出されてもよいし、これらの組み合わせに基づいて算出されてもよい。採点基準として用いられる分析時の閾値は、学習結果または統計処理などに基づいて自動的に算出することができる。例えば、リハビリテーション対象者TGの臀部が座面から離れるときには、リハビリテーション対象者TGの足の角度が分析の対象となる。この足の角度は健常者のデータから算出することができる。
<<採点>>
 動作分析サーバ200は、フェーズの動作を示すフレーム画像SFIから姿勢情報HPIを抽出する。動作分析サーバ200は、抽出された姿勢情報HPIを評価項目ごとに採点する。採点は、個々の姿勢情報HPIについて行われてもよいし、複数のフレームにまたがる平均的な姿勢情報HPIについて行われてもよい。採点方法としては、閾値に基づく採点手法を用いてもよいし、ディープラーニングなどの機械学習に基づく採点手法を用いてもよい。採点のタイミングは、リアルタイムでもよいし、動画撮影後でもよい。
<ステップSB5:症状分類>
 全フェーズの分析が完了したら(ステップSB4:Yes)、動作分析サーバ200は、各フェーズの採点結果に基づいて、リハビリテーション対象者TGの動作の特徴を検出する。動作分析サーバ200は、動作の特徴に基づいてリハビリテーション対象者TGの症状を分類する。分類手法としては、閾値に基づく分類手法を用いてもよいし、ディープラーニングなどの機械学習に基づく分類手法を用いてもよい。症状の分類項目は、理学療法士などの医療関係者DTによって設定される。症状の分類項目の一例としては、回旋の方向(麻痺側、非麻痺側)などが挙げられる。動作分析アルゴリズムALには、例えば、150以上の分類項目が規定されている。症状分類の結果、複数の症状が検出される可能性がある。この場合には、動作分析サーバ200は全ての症状を出力してもよいし、個々の症状を重要度に基づいて順位付けし、上位の症状のみを出力してもよい。
 なお、症状の分類ができない場合、あるいは、より詳細な分類を行いたい場合には、追加試験を行うことができる。動作分析サーバ200は、追加試験用の動作を記録した動画データに基づいて再度症状の分類を行う。図10の例では、全フェーズの分析が完了した後に症状分類が行われるが、症状の検出はフェーズごとに行われてもよい。フェーズごとの症状を全フェーズの分析完了後に総合評価し、最終的な症状評価を行うこともできる。
<<比較>>
 動作分析サーバ200は、各評価項目の採点結果および症状の分類結果に基づいて、リハビリテーション対象者TGの一連の動作を評価する。動作分析サーバ200は、リハビリテーション対象者TGの評価結果を他者(健常者、他の患者)の評価結果または過去のリハビリテーション対象者TGの評価結果と比較し、比較結果をリハビリテーション対象者TGに通知することができる。
 比較方法としては、比較の対象となる複数の骨格画像をオーバーレイ表示または並列表示するなどの方法が挙げられる。この際、骨格画像のサイズは一致させることが好ましい。例えば、動作分析サーバ200は、比較対象となる人物の骨格画像をリハビリテーション対象者TGの骨格の大きさに合わせて拡大または縮小する。この際、動作分析サーバ200は、リハビリテーション対象者TGの骨格の動きを比較対象となる人物の骨格の動きと同期させることが好ましい。同一フェーズを示すリハビリテーション対象者TGの映像のフレーム数が比較対象となる人物の映像のフレーム数と異なる場合には、必要なフレームを補間することが好ましい。これにより、比較が行いやすくなる。
<<レポート>>
 動作分析サーバ200は、一連の動作の評価結果を示す分析情報MAIを生成し、リハビリテーション対象者TG、家族FMおよび医療関係者DTなどにレポートを行う。分析情報MAIには、例えば、リハビリテーション対象者TGの現在の症状(採点結果、症状の分類結果)、症状の推移、アドバイス、および、推奨されるトレーニングプランなど、リハビリテーションを支援するための各種情報が含まれる。レポートのタイミングは、任意に設定することができる。症状の種類、重さおよびリハビリテーションの期間などに応じて、一日ごと、一週間ごと、あるいは、一か月ごとなどと設定することができる。
[4.分析・介入処理に関わる機能構成]
 図11は、分析・介入処理に関わる機能構成の一例を示す図である。
<クライアント端末>
 クライアント端末100は、処理装置130、記憶装置140とおよび通信装置150を有する。処理装置130は、動画取得部131、撮影条件決定部132、シーン抽出部133および出力部134を有する。
 動画取得部131は、カメラ160で撮影されたリハビリテーション対象者TGの動画データMDを取得する。動画には、各フェーズに対応した複数の特定シーンが含まれる。
 シーン抽出部133は、動画取得部131から動画データMDを取得する。シーン抽出部133は、動画データMDからフェーズごとに特定シーンを示す1以上のフレーム画像SFIを抽出する。抽出されるフレーム画像SFIの数は、例えば、1以上10以下である。例えば、シーン抽出部133は、リハビリテーション対象者TGの動作に基づいて特定シーンを判定する。シーン抽出部133は、リハビリテーション対象者TGの動作の特徴をシーン情報142と照合して特定シーンの判定を行う。
 例えば、シーン抽出部133は、特定シーンよりも前のフレーム画像群の姿勢解析結果に基づいて特定シーンへの切り替わりを検出する。シーン抽出部133は、特定シーンへの切り替わりに応じて取得した、フレーム画像群よりも高解像度の1以上のフレーム画像FIを、特定シーンを示す1以上の特定のフレーム画像SFIとして抽出する。
 シーン情報142には、各フェーズに対応した複数の特定シーンと、それぞれの特定シーンを判定するための判定条件と、が関連付けて規定されている。特定シーンの定義情報および特定シーンの判定方法は、動作分析アルゴリズムALに規定されている。クライアント端末100は、指標データベース295から、特定シーンの定義情報および特定シーンの判定方法を抽出し、記憶装置140にシーン情報142として記憶する。
 シーン抽出部133は、例えば、機械学習によって得られた第1分析モデル143を用いてリハビリテーション対象者TGの姿勢情報LPIを抽出する。第1分析モデル143は、例えば、動作分析サーバ200で姿勢情報HPIを抽出する際に用いられる分析モデル(第2分析モデル297)よりも姿勢の推定精度が低い分析モデルである。シーン抽出部133は、抽出された姿勢情報LPIから推定されるリハビリテーション対象者TGの姿勢の変化に基づいて、特定シーンへの切り替わりを検出する。
 動画データMDは、時系列で生じる複数の特定シーンを含む一連の動作の情報を含む。シーン抽出部133は、どの特定シーンが生じているかを、動作の流れの中で、前後の文脈を考慮しながら、それぞれ個別の観点で判定する。
 例えば、立ち上がり動作は、両足が床につく位置で椅子やベッドに座った状態から真っ直ぐに立った姿勢へと移行する動作として定義される。立ち上がり動作は、(i)座った姿勢から臀部が座面から浮くまでの動作(第1フェーズ)、(ii)臀部が座面から浮いてから足に体の重心を移動するまでの動作(第2フェーズ)、(iii)十分に足に重心が移動した状態(前方へ重心が移動しきった状態)から足を伸ばしながら上方へ重心を移動するまでの動作(第3フェーズ)、および、(iv)最終的に立った状態(第4フェーズ)に分類される。各フェーズに対応した特定シーンは、特定シーンごとに想定される体の動きに基づいて判定される。
 判定を容易にするために、シーン抽出部133は、例えば、リハビリテーション対象者TGと、リハビリテーションのためのトレーニングまたは評価運動に用いられる特定のオブジェクトOB(立ち上がり動作の場合は椅子など)と、が所定の位置関係にあるときのリハビリテーション対象者TGの動作、または、リハビリテーション対象者TGと特定のオブジェクトOBとの位置関係の変化に基づいて、特定シーンへの切り替わりを検出する。この構成では、骨格同士の相対的な位置関係のみに基づいて特定シーンを判定する場合よりも、精度よく特定シーンが判定される。
 姿勢の推定精度は、分析モデルに用いられるニューラルネットワークの規模によって変化する。規模の大きいニューラルネットワークを用いた場合には、画像データから多くのキーポイントKPが抽出され、リハビリテーション対象者TGの様々な動作が精度よく推定される。オクルージョン等による情報の欠落があっても、リハビリテーション対象者TGのキーポイントKPは精度よく抽出される。ニューラルネットワークの規模を大きくする方法としては、特徴マップ(チャンネル)を増やす方法と層(レイヤ)を深くする方法とがある。いずれの方法でも、畳み込み演算の処理量が増加し、計算速度が低下する。姿勢の推定精度と計算速度とはトレードオフの関係にある。
 シーン抽出部133は、例えば、ニューラルネットワークの規模が小さい低精度低計算量の第1分析モデル143を用いて、動画データMDを構成する全てのフレーム画像FIからリハビリテーション対象者TGの姿勢情報LPIを抽出する。リハビリテーション対象者TGの特定シーンを判定するだけであれば、リハビリテーション対象者TGの大まかな動作が把握できればよい。オクルージョン等による情報の欠落があっても、姿勢の大まかな変化によって動作の特徴は把握される。よって、低精度低計算量の第1分析モデル143を用いても、リハビリテーション対象者TGの動作シーンを判定することができる。第1分析モデル143を用いた場合には、フレーム画像FIごとの畳み込み演算の処理量が小さいため、動画データMDが大きくても迅速な処理が可能である。
 特定シーンを示す1以上のフレーム画像SFIのデータは通信装置150を介して動作分析サーバ200に送信される。動作分析サーバ200は、受信した1以上のフレーム画像SFIを用いて、特定シーンに対応するフェーズの動作分析を行う。出力部134は、動作分析に基づく評価結果(分析情報MAI)を通信装置150を介して動作分析サーバ200から受信する。出力部134は、受信した分析情報MAIをリハビリテーション対象者TGに通知する。通知は、例えば、文字、図表および音声の組み合わせによって行われる。
 撮影条件決定部132は、リハビリテーション対象者TGの障害情報、および、リハビリテーションのためのトレーニングまたは評価運動の種類(判定項目)に基づいて、動画データMDを取得する際のリハビリテーション対象者TGの撮影方向を決定する。指標データベース295には、判定項目ごとに、撮影を行うべき1以上の撮影方向が規定されている。撮影方向は、ポイントなる動作の把握のしやすさという観点から決められる。例えば、分析対象となる動作の特徴に基づいて、リハビリテーション対象者TGの正面方向(前額面に垂直な方向)、側面方向(矢状面に垂直な方向)、あるいは、正面方向と側面方向の両方、などのように撮影方向が決定される。
 撮影条件決定部132は、指標データベース295に規定された撮影方向をリハビリテーション対象者TGに通知する。例えば、リハビリテーション対象者TGが立ち上がり動作についてのリハビリテーションを行う場合、撮影条件決定部132は、リハビリテーション対象者TGの正面方向および側面方向を撮影方向として決定する。障害情報に麻痺側の情報が含まれる場合には、撮影条件決定部132は、麻痺側の動作が詳細に記録できるような撮影方向を決定する。
 記憶装置140は、例えば、撮影条件情報141、シーン情報142、第1分析モデル143およびプログラム144を記憶する。撮影条件情報141は、動作分析アルゴリズムALに規定された撮影条件に関する情報を含む。クライアント端末100は、指標データベース295から、撮影条件に関する情報を抽出し、記憶装置140に撮影条件情報141として記憶する。なお、撮影条件情報141およびシーン情報142は、指標データベース295からダウンロードされてもよいし、最初からクライアント端末100にインストールされていてもよい。
 プログラム144は、クライアント端末100の情報処理をコンピュータに実行させるプログラムである。処理装置130は、プログラム144にしたがって各種の処理を行う。記憶装置140は、処理装置130の処理結果を一時的に記憶する作業領域として利用されてもよい。記憶装置140は、例えば、半導体記憶媒体および磁気記憶媒体などの任意の非一過的な記憶媒体を含む。記憶装置140は、例えば、光ディスク、光磁気ディスクまたはフラッシュメモリを含んで構成される。プログラム144は、例えば、コンピュータにより読み取り可能な非一過的な記憶媒体に記憶されている。
 処理装置130は、例えば、プロセッサとメモリとで構成されるコンピュータである。処理装置130のメモリには、RAM(Random Access Memory)およびROM(Read Only Memory)が含まれる。処理装置130は、プログラム144を実行することにより、動画取得部131、撮影条件決定部132、シーン抽出部133および出力部134として機能する。
<動作分析サーバ>
 動作分析サーバ200は、処理装置250、記憶装置290および通信装置260を有する。処理装置250は、姿勢情報抽出部214、ステートマシン221および動作分析部222を有する。姿勢情報抽出部214は、センサデータ解析部211に含まれる。ステートマシン221および動作分析部222は、評価部220に含まれる。
 姿勢情報抽出部214は、クライアント端末100から送信された特定シーンを示す1以上のフレーム画像SFIを通信装置260を介して取得する。姿勢情報抽出部214は、機械学習によって得られた第2分析モデル297を用いて、特定シーンを示す1以上のフレーム画像SFIからフレーム画像SFIごとにリハビリテーション対象者TGの姿勢情報HPIを抽出する。
 第2分析モデル297は、シーン抽出部133で特定シーンを判定する際に用いる分析モデル(第1分析モデル143)よりも姿勢の推定精度が高い分析モデルである。姿勢情報抽出部214は、例えば、ニューラルネットワークの規模が大きい高精度高計算量の第2分析モデル297を用いて特定の1以上のフレーム画像SFIからリハビリテーション対象者TGの姿勢情報HPIを抽出する。姿勢情報抽出部214による姿勢推定処理の対象となるのは、動画データMDを構成する複数のフレーム画像FIから選択された特定の1以上のフレーム画像SFIのみである。そのため、フレーム画像SFIごとの畳み込み演算の処理量が大きくても迅速な処理が可能である。
 ステートマシン221は、リハビリテーション対象者TGの姿勢情報HPIに基づいて、リハビリテーション対象者TGの一連の動作に含まれる複数のフェーズを検出する。例えば、ステートマシン221は、リハビリテーション対象者TGの姿勢情報HPIに含まれる特徴をフェーズ情報298と照合する。フェーズ情報298には、分析の対象となる複数のフェーズと、それぞれのフェーズを判定するための判定条件と、が関連付けて規定されている。フェーズの定義情報およびフェーズの判定方法(フェーズの境界の検出方法)は、動作分析アルゴリズムALに規定されている。図11では、動作分析アルゴリズムALに規定された、フェーズに関する種々の情報(フェーズごとの定義情報および判定方法など)をフェーズ情報298として示している。
 ステートマシン221は、姿勢情報抽出部214で抽出された1以上の姿勢情報HPIの中から、照合結果に応じた1以上の姿勢情報HPIを抽出する。照合結果に基づいて抽出された1以上の姿勢情報HPIは、それぞれフェーズ情報298に規定されたフェーズにおけるリハビリテーション対象者TGの姿勢を示す。この処理により、一連の動作に含まれる複数のフェーズが検出される。
 リハビリテーション対象者TGの動作が複数の方向から撮影される場合、ステートマシン221は、複数の方向から取得される姿勢情報HPIに基づいて、一連の動作に含まれる複数のフェーズを検出する。これにより、死角となる情報を補いながら複数のフェーズが検出される。
 動作分析部222は、姿勢情報抽出部214で抽出された特定シーンにおけるリハビリテーション対象者TGの姿勢情報HPI(特定シーンに含まれる1以上のフレーム画像SFIからフレーム画像SFIごとに抽出された姿勢情報)を取得する。動作分析部222は、特定シーンに含まれる1以上のフレーム画像SFIから、ステートマシン221で検出されたフェーズを示す1以上のフレーム画像SFIを分析対象として抽出する。
 動作分析部222は、ステートマシン221から取得したフェーズの検出結果に基づいて、フェーズごとに、分析対象となる1以上のフレーム画像SFIを抽出する。動作分析部222は、リハビリテーション対象者TGの障害情報に基づいて、フェーズごとに、分析対象となる姿勢情報HPIを分析し、一連の動作の評価結果を示す分析情報MAIを生成する。動作分析の方法(採点項目の定義、採点方法など)は、動作分析アルゴリズムALに規定されている。動作分析部222は、指標データベース295から取得した動作分析アルゴリズムALに基づいて動作分析を行う。
 例えば、動作分析部222は、フェーズごとに設定された1以上の採点項目に基づいて各フェーズの動作を採点し、各フェーズの採点結果に基づいて分析情報MAIを生成する。動作分析部222は、分析情報MAIを通信装置260を介してクライアント端末100、医療関係者端末300、家族端末400およびサービス提供者サーバ500に送信する。
 記憶装置290は、ロールモデル情報296、第2分析モデル297、フェーズ情報298およびプログラム299を記憶する。ロールモデル情報296およびフェーズ情報298は、動作分析アルゴリズムALの一部として指標データベース295に規定されている。プログラム299は、動作分析サーバ200の情報処理をコンピュータに実行させるプログラムである。処理装置250は、記憶装置290に記憶されているプログラム299にしたがって各種の処理を行う。記憶装置290は、処理装置250の処理結果を一時的に記憶する作業領域として利用されてもよい。記憶装置290は、例えば、半導体記憶媒体および磁気記憶媒体などの任意の非一過的な記憶媒体を含む。記憶装置290は、例えば、光ディスク、光磁気ディスクまたはフラッシュメモリを含んで構成される。プログラム299は、例えば、コンピュータにより読み取り可能な非一過的な記憶媒体に記憶されている。
 処理装置250は、例えば、プロセッサとメモリとで構成されるコンピュータである。処理装置250のメモリには、RAMおよびROMが含まれる。処理装置250は、プログラム299を実行することにより、センサデータ解析部211、評価部220、姿勢情報抽出部214、ステートマシン221および動作分析部222として機能する。
<サービス提供者サーバ>
 サービス提供者サーバ500は、処理装置510、記憶装置590および通信装置520を有する。処理装置510は、情報取得部511および物販情報生成部512を有する。情報取得部511は、分析情報MAIを通信装置520を介して取得する。物販情報生成部512は、情報取得部511から取得した分析情報MAIに基づいて、リハビリテーション対象者TGのリハビリテーションの状況に適した製品群の情報を物販データベース591から抽出する。物販情報生成部512は、抽出された物品群の情報に基づいて物販情報PSIを生成し、通信装置520を介して動作分析サーバ200に送信する。動作分析サーバ200は、分析情報MAIおよび物販情報PSIなどを用いて介入情報VIを生成し、クライアント端末100に送信する。
 記憶装置590は、物販データベース591およびプログラム592を記憶する。プログラム592は、処理装置510の情報処理をコンピュータに実行させるプログラムである。処理装置510は、プログラム592を実行することにより、情報取得部511および物販情報生成部512として機能する。記憶装置590および処理装置510の構成は、動作分析サーバ200の記憶装置290および処理装置250と同様である。
[5.動作分析の具体例]
 以下、図12ないし図16を用いて動作分析の具体例を説明する。ここでは、一例として、立ち上がり動作を分析する例が説明される。
[5-1.立ち上がり動作におけるランドマーク]
 図12は、立ち上がり動作におけるランドマークを示す図である。
 立ち上がり動作では、リハビリテーション対象者TGの正面方向と側面方向の2つの方向で撮影が行われる。リハビリテーション対象者TGの動作を複数の視点から撮影することで、前後方向および左右方向の姿勢のゆがみや脳血管疾患などに基づく回旋などの状況が分析される。
 側面方向から見たリハビリテーション対象者TGのランドマークはキーポイントKP-S1~KP-S5である。キーポイントKP-S1は、耳の位置を示すキーポイントKPである。キーポイントKP-S2は、肩の位置を示すキーポイントKPである。キーポイントKP-S3は、股関節の位置を示すキーポイントKPである。キーポイントKP-S4は、膝の位置を示すキーポイントKPである。キーポイントKP-S5は、踝の位置を示すキーポイントKPである。
 正面方向から見たリハビリテーション対象者TGのランドマークはキーポイントKP-F1~KP-F9である。キーポイントKP-F1は、鼻の位置を示すキーポイントKPである。キーポイントKP-F2は、右肩の位置を示すキーポイントKPである。キーポイントKP-F3は、左肩の位置を示すキーポイントKPである。キーポイントKP-F4は、右側の骨盤の位置を示すキーポイントKPである。キーポイントKP-F5は、左側の骨盤の位置を示すキーポイントKPである。キーポイントKP-F6は、右膝の位置を示すキーポイントKPである。キーポイントKP-F7は、左膝の位置を示すキーポイントKPである。キーポイントKP-F8は、右足首の位置を示すキーポイントKPである。キーポイントKP-F9は、左足首の位置を示すキーポイントKPである。
[5-2.立ち上がり動作の分析]
 図13および図14は、動作分析の一例を示す図である。動作のフェーズは、上側から下側に向けて進行する。図13および図14において、左側の列は、手本となる特定人物RM(例えば健常者)の動作を示す。中央の列は、リハビリテーション対象者TGの動作を示す。右側の列は、特定人物RMの動作とリハビリテーション対象者TGの動作との比較結果を示す。比較結果は、分析情報MAIとして提示される。
 指標データベース295には、立ち上がり動作を評価するための指標が記憶されている。指標には、動作分析に必要な作業および処理の基準となる様々な要素が含まれる。例えば、立ち上がり動作の動画を撮影するための撮影条件、姿勢情報HPIから抽出すべき特徴量の定義情報、および、姿勢情報HPIに基づいて動作分析を行う際の手順(動作分析アルゴリズムAL)などが、立ち上がり動作を評価するための指標として挙げられる。動作分析サーバ200は、指標データベース295に記憶された立ち上がり動作の指標に基づいてリハビリテーション対象者TGの動作を分析する。
 例えば、立ち上がり動作では、姿勢情報HPIに含まれる各キーポイントKPの位置関係(キーポイントKPどうしの距離、関節の角度など)、あるいは、特定のキーポイントKPの高さのピーク値、所定時間内の高さの平均値、および、所定時間内の位置の変化の態様などが特徴量として抽出される。
 特徴量に基づいて一連の動作が4つのフェーズに分類される。例えば、ステートマシン221は、リハビリテーション対象者TGの臀部と座面との位置関係、リハビリテーション対象者TGの腰の角度の変化、リハビリテーション対象者TGの重心点の移動速度の変化、および、腰の高さの変化に基づいて、複数のフェーズを検出する。
 ステートマシン221は、臀部が椅子の座面から離れる直前の状態を第1フェーズとして検出する。ステートマシン221は、重心点が両足の踝の間にあり、かつ、第1フェーズの直後に最も腰が曲がった状態を第2フェーズとして検出する。ステートマシン221は、第2フェーズの直後に重心点の高さ方向の移動速度が最大に達した状態を第3フェーズとして検出する。ステートマシン221は、第3フェーズの直後に腰の高さが最高点に達し、その後、腰の高さが低変動基準を満たす範囲で変動して停止した状態を第4フェーズとして検出する。
 図15は、第2フェーズの検出処理の一例を示す図である。縦軸は、肩(右肩、左肩)と腰との鉛直方向の距離(mm)を示す。横軸は、時間(秒)を示す。
 前述のように、第2フェーズは、第1フェーズの直後に最も腰が曲がった状態として定義される。図15の例では、腰の曲がり具合が、肩と腰の距離に基づいて判定される。肩と腰の距離が最も小さくなる矢印の時刻の動作が第2フェーズとして算出される。図15の例では、右肩と左肩とで距離の大きさが異なる。動作分析部222は、側面方向から見た両肩の肩関節の位置ずれに基づいて回旋を検出する。回旋が生じた場合でも、腰との距離が最も短くなる時刻は、右肩と左肩で同じである。
 図16は、第3フェーズの検出方法の一例を示す図である。縦軸は、体の重心点の鉛直方向の移動速度(mm/秒)を示す。横軸は、時間(秒)を示す。
 第3フェーズは、第2フェーズの直後に重心点の高さ方向の移動速度が最大に達した状態として定義される。図16の例では、移動速度を微分して得られる加速度の情報が移動速度とともに表示されている。加速度がゼロになる矢印の時刻の動作が第3フェーズとして算出される。
 なお、上述の例では、立ち上がり動作が第1フェーズ、第2フェーズ、第3フェーズおよび第4フェーズの順に進行することが想定されている。しかし、障害の大きさによっては、この順に動作が進行しない可能性もある。例えば、第2フェーズの動作が行われた後に、第3フェーズの動作に移行せずに第1フェーズの動作に戻ってしまうような事態も考えられる。そのため、ステートマシン221のフェーズ検出アルゴリズムとしては、フェーズが逆方向に進行してしまうような事態を考慮したアルゴリズムが採用されてもよい。
[5-3.分析情報]
 図17は、分析情報MAIの一例を示す図である。
 動作分析部222は、フェーズごとの分析結果に基づいて分析情報MAIを生成する。出力部134は、分析情報MAIを分析対象となったリハビリテーションの映像(動画データMDの映像)とともに表示装置170に表示する。例えば、出力部134は、フェーズごとにリハビリテーション対象者TGの動きを一時停止し、分析情報MAIをフェーズにおけるリハビリテーション対象者TGの静止画像IMとともに表示する。
 出力部134は、例えば、分析情報MAIとして、第1分析情報MAI1および第2分析情報MAI2を通知する。第1分析情報MAI1は、フェーズごとに、リハビリテーション対象者TGの動作と、動作の手本となる特定人物RM(例えば健常者)の動作と、の比較を示す情報を含む。第2分析情報MAI2は、リハビリテーション対象者TGの動作を特定人物RMの動作に近づけるための指針を示す情報を含む。
 特定人物RMの動作の情報は、ロールモデル情報296として記憶装置290に記憶されている。動作分析アルゴリズムALには、動作分析を行う上で比較の対象となる動作の情報が規定されている。図11では、動作分析アルゴリズムALに規定された比較対象に関する情報(特定人物RMの動作の情報など)をロールモデル情報296として示している。分析情報MAIは、過去から現在までの採点項目ごとの各フェーズの採点結果の推移を示す情報を含んでもよい。
 第1分析情報MAI1は、例えば、各フェーズにおける、リハビリテーション対象者TGの骨格情報SIと、比較の基準となる基準骨格情報RSI(特定人物RMの骨格情報)と、を含む。基準骨格情報RSIは、例えば、各フェーズにおける特定人物RMの骨格情報を、リハビリテーション対象者TGと特定人物RMとの体格差に基づいて修正した骨格情報を用いて生成される。各フェーズにおける基準骨格情報RSIは、ロールモデル情報296に含まれている。
 基準骨格情報RSIの縮尺は、例えば、次のように設定される。まず、特定人物RMとリハビリテーション対象者TGの体格を比較するのに適した1以上の骨が定義される。例えば、図17の例では、背骨と足の骨が比較の基準として定義されている。動作分析部222は、例えば、特定人物RMとリハビリテーション対象者TGのそれぞれについて、姿勢が揃うタイミングにおける背骨と足の骨の長さを検出する。動作分析部222は、背骨と足の骨の長さの和の比を特定人物RMとリハビリテーション対象者TGの体の大きさの比として算出し、この比に基づいて特定人物RMの骨格の縮尺を変更する。
 図17の例では、スクワットにおける膝関節の屈曲動作に対応するフェーズが示されている。出力部134は、リハビリテーション対象者TGの骨格情報SIおよび基準骨格情報RSIとして、フェーズにおいて分析されるべきリハビリテーション対象者TGの部位に対応した骨格の情報を選択的に表示する。図17の例では、肩、腰、膝および踝の骨格の情報が選択的に表示されている。表示画面の下側には動作についてのコメントが表示され、リハビリテーション対象者TGの腰の位置には、特定人物RMの腰の位置に向けた矢印が表示されている。コメントおよび矢印は第2分析情報MAI2として提示されている。
 基準骨格情報RSIは、スクワットの一連の動作の期間中、常に、リハビリテーション対象者TGの動きに連動させて表示されてもよい。しかし、特定人物RMとの比較を明確にするために、特定人物RMの動作との間に乖離が生じたタイミングで基準骨格情報RSIを表示することもできる。例えば、出力部134は、リハビリテーション対象者TGの骨格情報SIと基準骨格情報RSIとの間に許容基準を超える差分が生じたタイミングで、リハビリテーション対象者TGの骨格情報SIおよび基準骨格情報RSIを表示する。出力部134は、リハビリテーション対象者TGの骨格情報SIと基準骨格情報RSIとが許容基準を超えて相違する部分のリハビリテーション対象者TGの骨格をハイライト表示する。
 一連の動作に要する時間は特定人物RMとリハビリテーション対象者TGとで異なる。そのため、比較を行うのに効果的なタイミングがフェーズとして定義され、定義されたフェーズが一致するように基準骨格情報RSIがリハビリテーション対象者TGに重畳される。これにより、特定人物RMとの比較が容易になり、リハビリテーション対象者TGがどのように動作すべきかが理解しやすくなる。
 図17には、スクワットの分析情報MAIが示されているが、立ち上がり動作についても同様の分析情報MAIを表示することができる。図13および図14の右側の列には、各フェーズにおける、骨格情報SIと基準骨格情報RSIとの比較結果が示されている。出力部134は、図13および図14の右側の列に示すような比較結果の情報を動画に重畳して表示させることができる。
 分析情報MAIは、各フェーズの動作タイミングを示すフレーム画像に重畳して表示される。表示装置170は、各フェーズの動作タイミングにおいて分析動画データAMDの再生を一時停止する。そして、表示装置170は、分析情報MAIを各フェーズのフレーム画像に重畳させた静止画像IMを表示する。複数のフェーズが設定されている場合には、フェーズごとに分析動画データAMDの再生が一時停止され、対応するフェーズの分析情報MAIが通知される。なお、動画データMDの再生は、リハビリテーション対象者TGの姿勢を確認しやすいように、スローモーションで行われてもよい。この際、スローモーション再生は、最初のフェーズから最後のフェーズまでの区間についてのみ適用され、その区間の前後の映像については通常の再生速度で再生されてもよい。
 上述の例では、第1分析情報MAI1は、他者との比較を示す情報として提示される。しかし、第1分析情報MAI1は、過去のリハビリテーション対象者TGの動作との比較を示す情報を含んでもよい。例えば、第1分析情報MAI1は、現在のリハビリテーション対象者TGの骨格情報SIと、比較の基準となる過去のリハビリテーション対象者TGの骨格情報SIと、を含むことができる。
 例えば、出力部134は、現在のリハビリテーション対象者TGの骨格情報SIと特定の人物RMの動作を示す基準骨格情報RSIとの間に許容基準を超える差分が生じたタイミングで、現在のリハビリテーション対象者TGの骨格情報SIおよび過去のリハビリテーション対象者TGの骨格情報SIを表示する。出力部134は、現在のリハビリテーション対象者TGの骨格情報SIと基準骨格情報RSIとが許容基準を超えて相違する部分のリハビリテーション対象者TGの骨格をハイライト表示する。
 上述の例では、出力部134が動画データMDの再生画面に分析情報MAIを重畳して表示する例が説明された。しかし、分析情報MAIの通知手法はこれに限られない。例えば、クライアント端末100が分析情報MAIを組み込んだ新たな動画データ(修正動画データ)を生成し、生成された修正動画データを表示装置170で再生してもよい。例えば、修正動画データの各フェーズを示すフレーム画像には、分析情報MAIが書きこまれている。修正動画データでは、フェーズごとにリハビリテーション対象者TGの動きが停止され、分析情報MAIを含むリハビリテーション対象者TGの静止画像IMが所定時間だけ表示された後、次のフェーズに向けて続きの映像が再開されるように表示が調整される。
 修正動画データは、動作分析部222によって生成されてもよい。動作分析部222は、生成された修正動画データを分析情報MAIとともに、または、分析情報MAIの代わりに、クライアント端末100、医療関係者端末300、家族端末400およびサービス提供者サーバ500に送信することができる。
 上述の例では、立ち上がり動作の分析が行われたが、ジャンプやスクワットなどの他のリハビリテーションの動作についても同様の分析が可能である。ただし、ジャンプやスクワットの評価には、ジャンプやスクワットに対応した独自の指標(ジャンプやスクワットの動画を撮影するための撮影条件、姿勢情報HPIから抽出すべき特徴量の定義情報、および、姿勢情報HPIに基づいて動作分析を行う際の手順など)が用いられる。すなわち、ジャンプやスクワットの動作については、立ち上がり動作とは異なる基準でフェーズの分類および動作分析が行われる。撮影条件も立ち上がり動作とは異なる。例えば、ジャンプやスクワットの撮影は、リハビリテーション対象者TGの正面方向のみから行われる。
 なお、ToF(Time Of Flight)センサなどを用いてリハビリテーション対象者TGの3次元座標情報が取得できる場合には、1つの動画データMDから正面方向および側面方向のリハビリテーション対象者TGの姿勢情報HPIが抽出できる。このような場合には、正面方向と側面方向の映像を別々に撮影する必要はない。
[6.システム構成のバリエーション]
 図18は、システム構成のバリエーションを示す図である。
 図18の上段側のリハビリテーション支援システム1Aは、図2と同様に、センサ部110がクライアント端末100に内蔵された構成を有する。図18の下段側のリハビリテーション支援システム1Bでは、センサ部110はクライアント端末100から独立したデバイスとして設けられる。センサ部110の一部がクライアント端末100の内臓センサとして構成され、内蔵センサ以外のセンサがクライアント端末100から独立した外部センサとして構成されてもよい。外部センサで検出されたセンサデータは、いったんクライアント端末100に蓄積されてから動作分析サーバ200に送信される。外部センサで検出されたセンサデータは、クライアント端末100を経由せずに直接動作分析サーバ200に送信されてもよい。
 なお、上述した例では、サービス提供者が保有するデバイスがサーバ(サービス提供者サーバ500)である例が示された。しかし、サービス提供者が保有するデバイスは、必ずしもサーバである必要はなく、スマートフォン、タブレット端末、ノートパソコンおよびデスクトップパソコンなどの情報端末でもよい。
[7.効果]
 リハビリテーション支援システム1は、姿勢情報抽出部214、ステートマシン221および動作分析部222を有する。姿勢情報抽出部214は、リハビリテーション対象者TGのトレーニングまたは評価運動の動画データMDからリハビリテーション対象者TGの姿勢情報HPIを抽出する。ステートマシン221は、リハビリテーション対象者TGの姿勢情報HPIに基づいて、トレーニングまたは評価運動におけるリハビリテーション対象者TGの一連の動作に含まれる複数のフェーズを検出する。動作分析部222は、フェーズごとに姿勢情報HPIを分析し、一連の動作の評価結果を示す分析情報MAIを生成する。本開示の情報処理方法は、リハビリテーション支援システム1の処理がコンピュータにより実行される。本開示のプログラムは、リハビリテーション支援システム1の処理をコンピュータに実現させる。
 この構成によれば、リハビリテーション対象者TGの一連の動作が、ポイントとなるフェーズごとに分析される。そのため、一連の動作が全体にわたって的確に評価される。よって、効果的なリハビリテーションの支援が行われる。
 動作分析部222は、リハビリテーション対象者TGの障害情報に基づいてフェーズごとに姿勢情報HPIを分析することにより分析情報MAIを生成する。
 この構成によれば、分析は障害情報を考慮して行われる。そのため、同じ動作であっても疾患ごとに異なる意味づけが行われる。フェーズごとに障害情報を加味した分析結果が得られるため、一連の動作が全体にわたって的確に評価される。
 リハビリテーション支援システム1はシーン抽出部133を有する。シーン抽出部133は、動画データMDから、フェーズごとに、フェーズに応じた特定シーンを示す1以上の特定のフレーム画像SFIを抽出する。姿勢情報抽出部214は、抽出された1以上の特定のフレーム画像SFIからフレーム画像SFIごとにリハビリテーション対象者TGの姿勢情報HPIを抽出する。
 この構成によれば、分析が必要な特定シーンのフレーム画像FI(特定のフレーム画像SFI)のみから姿勢情報HPIが抽出される。リハビリテーション対象者TGの動画を撮影する場合、特定シーンが確実に動画データMDに含まれるように、特定シーンの前後の動作まで撮影される場合が多い。特定シーンの前後の動画データMDは、動作分析に寄与しない。動作分析に寄与しないデータ領域の画像処理を省略することで、動作分析に必要な時間およびコストが軽減される。
 シーン抽出部133は、特定シーンよりも前のフレーム画像群の姿勢解析結果に基づいて特定シーンへの切り替わりを検出する。シーン抽出部133は、特定シーンへの切り替わりに応じて取得した、フレーム画像群よりも高解像度の1以上のフレーム画像FIを1以上の特定のフレーム画像SFIとして抽出する。
 この構成によれば、低画質モードで取得された動画データMDに基づいて特定シーンの受信タイミングが予測される。予測されたタイミングに合わせて、動画データMDの取得モードが低画質モードから高画質モードに切り替わる。リハビリテーション対象者TGの姿勢情報HPIは、高画質モードで取得された動画データMDから抽出される。そのため、特定シーンの特定を低い処理負荷で行いつつ、分析対象となる姿勢情報HPIを高精度に抽出することができる。
 シーン抽出部133は、リハビリテーション対象者TGと、リハビリテーションのためのトレーニングまたは評価運動に用いられる特定のオブジェクトOBと、が所定の位置関係にあるときのリハビリテーション対象者TGの動作、または、リハビリテーション対象者TGと特定のオブジェクトOBとの位置関係の変化に基づいて、特定シーンへの切り替わりを検出する。
 この構成によれば、骨格同士の相対的な位置関係のみに基づいて特定シーンを検出する場合よりも、精度よく特定シーンが検出される。
 シーン抽出部133は、姿勢情報抽出部214で用いられる分析モデル(第2分析モデル297)よりも姿勢の推定精度が低い分析モデル(第1分析モデル143)を用いてリハビリテーション対象者TGの姿勢情報LPIを抽出する。シーン抽出部133は、抽出された姿勢情報LPIから推定されるリハビリテーション対象者TGの姿勢の変化に基づいて特定シーンへの切り替わりを検出する。
 この構成によれば、簡易的な第1分析モデル143を用いてリハビリテーション対象者TGの動作が迅速かつ低コストで推定される。特定シーンを検出するだけであれば、精度のよい動作分析は必要とされない。特定シーンの判定に用いる第1分析モデル143と詳細な動作分析を行う際の第2分析モデル297の姿勢推定精度を異ならせることにより、低コストで効率のよい動作分析が行われる。
 リハビリテーション支援システム1は、撮影条件決定部132を有する。撮影条件決定部132は、リハビリテーション対象者TGの障害情報、および、リハビリテーションのためのトレーニングまたは評価運動の種類に基づいて、動画データMDを取得する際のリハビリテーション対象者TGの撮影方向を決定する。
 この構成によれば、動作分析に適した動画データMDが容易に得られる。
 ステートマシン221は、複数の方向から取得される姿勢情報HPIによって死角となる情報を補いながら、一連の動作に含まれる複数のフェーズを検出する。
 この構成によれば、オクルージョン等による情報の欠落が生じにくい。そのため、精度のよい動作分析が行われる。
 リハビリテーション対象者TGが立ち上がり動作についてのリハビリテーションを行う場合、撮影条件決定部は、リハビリテーション対象者TGの正面方向および側面方向を撮影方向として決定する。
 この構成によれば、立ち上がり動作におけるリハビリテーション対象者TGの姿勢が、死角を有することなく撮影される。
 ステートマシン221は、臀部と座面との位置関係、腰の角度の変化、重心点の移動速度の変化、および、腰の高さの変化に基づいて、複数のフェーズを検出する。
 この構成によれば、立ち上がり動作の特徴を適切に反映した複数のフェーズが検出される。
 ステートマシン221は、臀部が椅子の座面から離れる直前の状態を第1フェーズとして検出する。
 この構成によれば、臀部が座面から離れる直前の特徴的な動作が第1フェーズとして検出される。
 ステートマシン221は、重心点が両足の踝の間にあり、かつ、第1フェーズの直後に最も腰が曲がった状態を第2フェーズとして検出する。
 この構成によれば、臀部を浮かせて重心を足に移動させるときの特徴的な動作が第2フェーズとして検出される。
 ステートマシン221は、第2フェーズの直後に重心点の高さ方向の移動速度が最大に達した状態を第3フェーズとして検出する。
 この構成によれば、脚を伸ばしながら状態を起こすときの特徴的な動作が第3フェーズとして検出される。
 ステートマシン221は、第3フェーズの直後に腰の高さが最高点に達し、その後、腰の高さが低変動基準を満たす範囲で変動して停止した状態を第4フェーズとして検出する。
 この構成によれば、脚と背中がまっすぐ伸びたときの特徴的な動作が第4フェーズとして検出される。
 動作分析部222は、側面方向から見た両肩の肩関節の位置ずれに基づいて回旋を検出する。
 この構成によれば、脳血管障害における麻痺側が把握される。
 リハビリテーション支援システム1は、出力部134を有する。出力部134は、フェーズごとにリハビリテーション対象者TGの動きを一時停止し、分析情報MAIをフェーズにおけるリハビリテーション対象者TGの静止画像IMとともに表示する。
 この構成によれば、分析結果は動画の再生シーンとリンクした態様で提供される。そのため、着目すべきリハビリテーション対象者TGの動作およびその分析結果が効率よく把握される。
 出力部134は、分析情報MAIとして、健常者の動作との比較を示す情報を表示する。
 この構成によれば、リハビリテーション対象者TGがどのような動作を行っているのかが、健常者の動作との比較に基づいて容易に把握される。
 出力部134は、分析情報MAIとして、リハビリテーション対象者TGの骨格情報SIと比較の基準となる基準骨格情報RSIとを表示する。
 この構成によれば、リハビリテーション対象者TGの動作と健常者の動作との差が把握しやすくなる。
 出力部134は、リハビリテーション対象者TGの骨格情報SIおよび基準骨格情報RSIとして、フェーズにおいて分析されるべきリハビリテーション対象者TGの部位に対応した骨格の情報を選択的に表示する。
 この構成によれば、着目すべき骨格の情報が容易に把握される。
 出力部134は、リハビリテーション対象者TGの骨格情報SIと基準骨格情報RSIとの間に許容基準を超える差分が生じたタイミングで、リハビリテーション対象者TGの骨格情報SIおよび基準骨格情報RSIを表示する。
 この構成によれば、健常者の動作と乖離している動作のフェーズが容易に把握される。
 出力部134は、リハビリテーション対象者TGの骨格情報SIと基準骨格情報RSIとが許容基準を超えて相違する部分のリハビリテーション対象者TGの骨格をハイライト表示する。
 この構成によれば、健常者の動作との間に乖離が生じている部分の骨格が容易に把握される。
 出力部134は、分析情報MAIとして、リハビリテーション対象者TGの動作を健常者の動作に近づけるための指針を示す情報を表示する。
 この構成によれば、指針に基づいてリハビリテーション対象者TGに動作の改善を促すことができる。
 出力部134は、分析情報MAIとして、過去のリハビリテーション対象者TGの動作との比較を示す情報を含む。
 この構成によれば、動作の改善の状況が容易に把握される。
 出力部134は、分析情報MAIとして、現在のリハビリテーション対象者TGの骨格情報SIと比較の基準となる過去のリハビリテーション対象者TGの骨格情報SIとを含む。
 この構成によれば、改善すべき動作の部位が容易に把握される。
 出力部134は、現在のリハビリテーション対象者TGの骨格情報SIと健常者の動作を示す基準骨格情報RSIとの間に許容基準を超える差分が生じたタイミングで、現在のリハビリテーション対象者TGの骨格情報SIおよび過去のリハビリテーション対象者TGの骨格情報SIを表示する。
 この構成によれば、健常者の動作との間に乖離が生じるタイミングが容易に把握される。
 出力部134は、現在のリハビリテーション対象者TGの骨格情報SIと基準骨格情報RSIとが許容基準を超えて相違する部分のリハビリテーション対象者TGの骨格をハイライト表示する。
 この構成によれば、改善すべき動作の部位が容易に把握される。
 分析情報MAIは、過去から現在までの採点項目ごとの各フェーズの採点結果の推移を示す情報を含む。
 この構成によれば、動作の改善の状況が容易に把握される。
 リハビリテーション支援システム1は、介入情報生成部230を有する。介入情報生成部230は、分析情報MAIに基づいてリハビリテーション対象者TGへの介入情報VIを生成する。
 この構成によれば、リハビリテーション対象者TGのリハビリテーションに積極的に関与することができる。
 介入情報VIは、リハビリテーション対象者TGに動作の改善を促すための判断材料となる判断情報、または、リハビリテーション対象者TGのトレーニングプランを含む。
 この構成によれば、動作を改善するための指針をリハビリテーション対象者TGに提示することができる。
 介入情報生成部230は、分析情報MAIからリハビリテーション対象者TGの1以上の症状を抽出し、症状ごとに決められた優先度、および、個々の症状の重さに基づいてトレーニングプランを決定する。
 この構成によれば、重要度の高い情報に基づいて適切なトレーニングプランが提示される。
 介入情報生成部230は、現在のリハビリテーション対象者TGのレベルを認証する認証情報を生成する。
 この構成によれば、認証情報に基づいてリハビリテーション対象者TGのレベルが客観的に把握される。
 介入情報VIは、認証情報に基づく保険に関する提言を含む。
 この構成によれば、保険プランなどの見直しをリハビリテーション対象者TGに促すことができる。
 介入情報VIは、認証情報に基づく薬効についての評価情報を含む。
 この構成によれば、処方薬などの見直しをリハビリテーション対象者TGや医師に促すことができる。
 ステートマシン221は、指標データベース295に記憶されたフェーズごとの判定方法に基づいて複数のフェーズを検出する。動作分析部222は、指標データベース295に記憶されたフェーズごとの採点項目および採点基準に基づいて、フェーズごとにリハビリテーション対象者TGの動作を分析する。指標データベース295は、判定項目ごとの、動画の撮影条件、フェーズの定義、分析対象となる特定シーン、採点項目および採点基準のうちの1以上の情報を、動作分析の指標として記憶する。判定項目は、動作分析の対象となる運動の種類と関連付けられている。動作分析部222は、一連の動作の評価結果を、リハビリテーション対象者TGに介入する介入者(医療関係者DT、家族FM、サービス提供者など)が保有する端末またはサーバに送信する。この構成によれば、的確な分析および介入が可能となる。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
[8.症状分類の具体的手法]
 以下、上述した実施形態の具体例および変形例について説明する。図19は、症状分類の具体的手法を示す図である。
 前述のように、動作分析サーバ200は、各フェーズの姿勢情報HPIの分析結果に基づいてリハビリテーション対象者TGの動作を評価する。動作分析サーバ200は、全フェーズの分析が完了したら、各フェーズの採点結果に基づいて、リハビリテーション対象者TGの動作の特徴を検出する。動作分析サーバ200は、動作の特徴に基づいてリハビリテーション対象者TGの症状を分類する(図10参照)。
 図19では、各フェーズの採点結果に基づいて検出される動作の特徴が「評価観点」という用語で表現されている。評価観点とは、各フェーズの評価項目を評価するための規準を意味する。各フェーズには達成すべき目標(規準)が設定されており、目標が達成されたか否かのふるい分けの基準が評価観点となる。動作分析部222は、1以上の評価観点に基づいて各フェーズの評価項目を評価する。動作分析部222は、各評価観点での評価結果に基づいてリハビリテーション対象者TGの症状分類を行う。
 評価観点において設定される動作の目標は任意である。例えば、図19には、日常生活を行う上での基盤となる動作(生活基盤動作)の例として、「起き上がり」、「座位」、「立ち上がり」、「立位」、「歩行」および「階段」が示されている。それぞれの生活基盤動作には、1以上の要素動作(ステップ)が基本動作(判定項目)として含まれる。指標データベース295には、要素動作ごとに1以上の評価観点が規定されている。
 例えば、「起き上がり」には、「身体の向きをかえる」、「仰向けの状態で脚を動かす」、「腕で上半身を支える」および「手で上半身を支える」という4つの要素動作が含まれる。
 「身体の向きをかえる」には、「身体を横に向けることができたか」、「横向きになった際に肩が引けていないか」、「横向きになった際に腰が引けていないか」および「上半身や下半身が伸びきっていないか」という4つの評価観点が設定されている。
 「仰向けの状態で脚を動かす」には、「両脚をベッドから下ろせたか」、「上半身が仰け反っていないか」および「両脚を揃えて下ろすことができているか」という3つの評価観点が設定されている。
 「腕で上半身を支える」には、「肘をついて上半身を起こすことができたか」、「手すりを使わずにできたか」および「身体がのけ反らずに行えたか」という3つの評価観点が設定されている。
 「手で上半身を支える」には、「手をついて上半身を起こせたか」および「身体がのけ反らずに行えたか」という2つの評価観点が設定されている。
 「起き上がり」以外の生活基盤動作についても、要素動作ごとに1以上の評価観点が設定されている。生活基盤動作に含まれる要素動作の数および内容は、生活基盤動作ごとに独立に設定される。例えば、「歩行」には、8つの要素動作が含まれる。各要素動作における評価観点の数および内容も動作の内容に応じて独立に設定される。
 各要素動作には、1以上のフェーズが含まれる。各フェーズには、1以上の評価項目が設定されている。評価項目は、例えば、リハビリテーション対象者TGの動作が設定された目標(例えば、手本となる特定人物RMの骨格の配置)からどれだけずれているかである。ずれがどれだけ許容されるかは、閾値などを用いて設定されてもよいし、機械学習の結果を用いて決定されてもよい。
 評価項目の結果は、それ単独では動作の特徴を表しにくい。複数の評価項目の結果を組み合わせることで、症状に応じた動作の特徴が表れやすくなる。そのため、複数の評価項目の組み合わせによって把握される動作の特徴が評価観点として規定される。評価観点が示す規準は、評価項目が示す規準よりも人間の理解に近い。そのため、人間が理解しやすい評価結果が得られる。
 評価項目の組み合わせが異なれば、把握される動作の特徴も異なる。図19の例では、1つの判定項目に対して、評価項目の組み合わせが異なる複数の評価観点が規定されている。動作分析部222は、複数の評価観点に基づいて総合的な動作の特徴を評価する。動作分析部222は、総合的な動作の特徴に基づいて症状分類を行う。
 図19の例では、「フェーズ2」および「フェーズ4」の各評価項目の評価結果に基づいて「観点1」の評価が行われる。図19中の「〇」は、リハビリテーション対象者TGの動作が評価観点に関して合格基準を満たしていることを意味する。合格基準を満たすか否かは、達成された評価項目の組み合わせによって決まる。例えば、「フェーズ2」の「評価項目1」および「評価項目2」と「フェーズ4」の「評価項目1」とが達成される場合に「観点1」が合格基準を満たすといった取り決めが可能である。合格基準を満たすための評価項目の組み合わせは医療関係者DTまたはシステム設計者により事前に設計される。
 1つの要素動作に割り当てられる1以上の評価観点には、1以上のメイン観点が含まれる。メイン観点とは、判定項目となる動作が適切に行われたと判定されるために合格基準を満たすことが必須となる評価観点を意味する。合格基準を満たさないメイン観点が1つでも存在すれば、判定項目となる動作は全体として適切に行われたと認められない。メイン観点以外の評価観点はサブ観点に分類される。サブ観点は、判定項目となる動作の達成度、動作の良さおよび動作の適切さを算出または評価するために使用される評価観点である。
 動作分析部222は、各フェーズの評価項目に対する評価をメイン観点に基づくものから行う。動作分析部222は、合格基準を満たさないメイン観点が検出された場合には、判定項目となる動作が適切に行われていないと判定し、残りの評価観点に基づく評価を停止することができる。この構成によれば、不要な評価処理が省略されるため、処理負荷が低減される。
 介入情報生成部230は、合格基準を満たす評価観点の組み合わせ、または、合格基準を満たしていない評価観点の組み合わせに基づいてトレーニングプランを決定する。図19の例では、トレーニングプランとして、3つのトレーニングプログラムが示されている。指標データベース295には、合格基準を満たす評価観点の組み合わせ、または、合格基準を満たしていない評価観点の組み合わせと、実施すべきトレーニングプログラムとの対応関係が規定されている。
 リハビリテーション支援システム1を用いた動作チェックは、いつでも行うことができる。リハビリテーション対象者TGは、介入情報VIを参考にしながら毎日トレーニングと評価を繰り返すことで、専門職の人間がいなくてもリハビリテーション対象者TG自身で効果的なトレーニングを積み重ねることができる。前回のトレーニングから一定の期間が過ぎると、リハビリテーション対象者TGの症状および生活環境などが変わっている可能性がある。そのため、一定期間後に動作チェックが行われた場合には、リハビリテーション対象者TGに問診データCDの再提示を義務付け、判定項目の再設定を行うことができる。
[9.動作分析処理の変形例]
 図20は、図5に示した動作分析処理の変形例を示す図である。
 図5の例では、判定項目となる動作の種類は問診データCDによらずに決定されている。しかし、指標データベース295には、障害ごとに1以上の判定項目が紐づけられている。そのため、問診データCDから障害情報を抽出し、抽出された障害情報に基づいて判定項目を決定することも考えられる。図20はこのような例を示している。
 まず、クライアント端末100は、入力デバイス120から問診データCDを取得する(ステップS11)。クライアント端末100は、取得した問診データCDを動作分析サーバ200に送信する(ステップS12)。問診データ解析部213は、問診データCDからリハビリテーション対象者TGの障害情報を抽出する(ステップS13)。問診データ解析部213は、指標データベース295から、障害情報に紐づけられた1以上の判定項目を抽出する(ステップS14)。
 問診データ解析部213は、抽出された1以上の判定項目から、リハビリテーション対象者TGが実施すべき1以上の判定項目を選択する。判定項目の選択は任意である。抽出された1以上の判定項目が全て選択されてもよいし、抽出された1以上の判定項目のうち一部のみが選択されてもよい。クライアント端末100は、選択された1以上の判定項目を1つずつ指定してリハビリテーション対象者TGに実施を促す。
 リハビリテーション対象者TGは、クライアント端末100が指定する判定項目の動作を行う。クライアント端末100は、センサ部110を用いて、リハビリテーション対象者TGが行う動作をセンシングし、センサデータ(動作の映像)を動作分析サーバ200に送信する(ステップS15)。センサデータの分析処理および介入情報の生成処理(ステップS16~S21)は図5に示すもの(ステップS4~S9)と同じである。
 上述の例では、指標データベース295は、障害情報と判定項目とを紐づけて記憶する。動作分析部222は、リハビリテーション対象者TGの障害情報に紐づけられた判定項目の動作を分析する。この構成によれば、障害に応じた適切な動作分析が行われる。
[10.UIの具体例]
 以下、UI(User Interface)の具体例を説明する。出力部134は、情報の入力や手順の指示などを行うための各種UIを表示装置170を介してリハビリテーション対象者TGに提示する。図21ないし図23は、問診データCDの入力を行うためのUIの一例を示す図である。
 まず、クライアント端末100は、表示装置170に患者の一次情報の入力欄を表示する。リハビリテーション対象者TG(患者)は、一次情報として、例えば、氏名、年齢、性別、体重、病名および服用中の薬などの情報を入力する(図21参照)。
 一次情報の入力が完了したら、クライアント端末100は、表示装置170に患者の二次情報の入力欄を表示する。リハビリテーション対象者TGは、二次情報として、例えば、気になる症状、痛み、症状の発症時間、麻痺部位、介護状況、装具の有無、および、直近の生活活動範囲などの情報などの情報を入力する(図22および図23参照)。
 図24ないし図26は、動作チェックのUIの一例を示す図である。
 問診データCDの入力が完了したら、クライアント端末100は、問診データCDからリハビリテーション対象者TGの障害情報を抽出する。クライアント端末100は、指標データベース295から、障害情報に紐づけられた1以上の判定項目を抽出する。クライアント端末100は、抽出された1以上の判定項目をリハビリテーション対象者TGに提示し、全ての判定項目を順番に実施することを促す。
 図24の例では、問診データCDから抽出された障害情報に基づいて、「起き上がり」、「立ち上がり」、「歩行」および「階段昇降」の4つの生活基盤動作と、「座る」および「立つ」の2つの基本姿勢が判定項目として抽出されている。UIは、リハビリテーション対象者TGに対して、「起き上がり」、「立ち上がり」、「歩行」および「階段昇降」をこの順番で実施するように促す。UIには、生活基盤動作ごとに、生活基盤動作に含まれる要素動作の数および実施済みの要素動作の数が表示されている。
 動作チェックには、自己評価によるチェックとAIを用いたチェック(AIチェック)がある。図25は、自己評価による歩行動作のチェックの一例を示す図である。
 歩行動作には、8つの要素動作が含まれる。リハビリテーション対象者TGは、要素動作ごとに、チェック対象となる基本動作(判定項目)の実施、および、実施動作に対する自己評価を行う。図26の例では、リハビリテーション対象者TGが基本動作を実施する前に、手本となる特定人物RM(例えば健常者)の映像が表示される。特定人物RMとなる健常者には、理学療法士やトレーナなどが含まれる。リハビリテーション対象者TGは、映像を見ながら特定人物RMの動作をまねる。UIには、要素動作に対して定義された1以上の評価観点が表示される。リハビリテーション対象者TGは、各評価観点に基づいて自己の動作を評価する。
 図25の例では、「歩く前の重心移動のチェック」について、「右脚へ重心移動ができたか」および「左脚へ重心移動ができたか」という2つの評価観点が表示されている。「脚を一歩前に出した姿勢のバランスチェック」について、「右脚を一歩前に出した姿勢を保つことができたか」および「左脚を一歩前に出した姿勢を保つことができたか」という2つの評価観点が表示されている。「脚を一歩前に出した姿勢のバランスチェック」については、さらに、「上半身は垂直に保てているか」および「支え脚がまっすぐに伸びているか」という2つの評価観点が続けて表示される。
 「歩く前の重心移動のチェック」では、「右脚へ重心移動ができたか」および「左脚へ重心移動ができたか」は、いずれもメイン観点である。「脚を一歩前に出した姿勢のバランスチェック」では、「右脚を一歩前に出した姿勢を保つことができたか」および「左脚を一歩前に出した姿勢を保つことができたか」がメイン観点であり、「上半身は垂直に保てているか」および「支え脚がまっすぐに伸びているか」はサブ観点である。
 リハビリテーション対象者TGは、評価観点に関して自己の動作が合格基準を満たす場合に、チェックボタンにチェックを行う。1つでも合格基準を満たさないメイン観点が存在する場合には、判定項目となる動作が適切に行われていないと判定され、残りの評価観点に基づく評価は行われない。そのため、全てのメイン観点に対してチェックが行われなければ、サブ観点に関するUIは表示されない。
 図26は、AIによる歩行動作のチェックの一例を示す図である。
 AIチェックとは、前述した動作分析部222による動作チェックを意味する。リハビリテーション対象者TGは、特定人物RMの映像の再生が終了した後、自己評価によるチェックを行うか、AIチェックを行うかを選択することができる。AIチェックが選択された場合には、図6および図10のフローにしたがって、リハビリテーション対象者TGの撮影および動作分析が行われる。
 図27ないし図30は、撮影の準備を行うためのUIの一例を示す図である。
 出力部134は、動作分析に適した動画を得るために、画像および音声を用いて、撮影環境を整えるための手順を提示する。リハビリテーション対象者TGは、提示された手順にしたがって、撮影を行う場所の照明状態を調整したり、背景に不要なものが映り込まないように部屋を整理したりする(図27参照)。
 撮影はカメラ160(クライアント端末100)を三脚に設置して行われる。出力部134は、カメラ160が適切な位置および姿勢で撮影を行えるように、三脚の位置およびカメラ160の姿勢についてリハビリテーション対象者TGに指示を行う(図28および図29参照)。
 図29には、表示装置170に表示された水準器を用いてカメラ160の水平度を調節する様子が示されている。動作分析を行う場合には、リハビリテーション対象者TGの姿勢が鉛直方向からどの方向にどの程度傾いているかを正確に検知する必要がある。そのため、撮影前の準備として水平度の調整を行うことが望ましい。水平度の調整が完了したら、出力部134は、撮影条件決定部132で決定された撮影方向を通知する。
 撮影は、リハビリテーション対象者TGから離れた位置で行われる。そのため、必要な通知は映像(テキスト情報を含む)と音声とを組み合わせて行われる。クライアント端末100上で直接操作を行うことは難しいため、必要な操作は音声やジェスチャに基づいて行われる。例えば、撮影の開始および終了の処理は、カメラ160の映像から撮影開始条件および撮影終了条件となるトリガ(ジェスチャや撮影開始位置への移動など)を検出したことに応答して行われる。
 例えば、撮影条件決定部132は、カメラ160に写るリハビリテーション対象者TGの状態が撮影開始条件を満たしたことに応答してリハビリテーション対象者TGの動作の記録を開始する。撮影条件決定部132は、撮影開始条件が満たされるまでカメラ160の映像を表示装置170に表示し、撮影開始条件が満たされて動作の記録が開始されるとカメラ160の映像の表示装置170への表示を停止する。撮影条件決定部132は、撮影開始条件が満たされたことをリハビリテーション対象者TGに通知した後、動作の記録を開始する。
 図30の例では、撮影開始位置POSがサークルで示されている。撮影の準備が完了したら、リハビリテーション対象者TGは、表示装置170に映るカメラの映像を見ながら、映像内に示された撮影開始位置POSに移動する。
 リハビリテーション対象者TGの両足がサークル内に収まっており、且つ、リハビリテーション対象者TGの全身がカメラ160の画角に入っている状態(撮影待機状態)が検出されると、画面を縁取るフレーム部FMの色が変わる。撮影待機状態が所定時間だけ継続すると、フレーム部FMが点滅を開始する。さらに撮影待機状態が続くと、音声による撮影開始の通知が行われ、撮影が自動的に開始する。撮影開始後は、リハビリテーション対象者TGが動作に集中できるように、表示装置170は消灯される(全面黒表示)。
 図31および図32は、AIチェックにおける評価結果の表示例を示す図である。
 出力部134は、評価観点ごとに評価結果を提示する。動作の評価は、手本となる特定人物RMとの比較に基づいて行われる。図32の例では、ポイントとなるフェーズの映像を比較しながら動作の評価が行われる。リハビリテーション対象者TGと特定人物RMの映像は、同一画面上に並べて表示されてもよいし、画面切り替えによって択一的に表示されてもよい。
 例えば、出力部134は、評価観点に対応する特定のフェーズごとにリハビリテーション対象者TGの動きを一時停止し、分析情報MAIを特定のフェーズにおけるリハビリテーション対象者TGの静止画像とともに表示する。出力部134は、分析情報MAIとして、リハビリテーション対象者TGの骨格情報SIと比較の基準となる特定人物RMの基準骨格情報RSIとを表示する。出力部134は、リハビリテーション対象者TGの骨格情報SIおよび基準骨格情報RSIとして、特定のフェーズにおいて分析されるべきリハビリテーション対象者TGの部位に対応した骨格の情報を選択的に表示する。
[付記]
 なお、本技術は以下のような構成も採ることができる。
(1)
 リハビリテーション対象者のトレーニングまたは評価運動の動画データから前記リハビリテーション対象者の姿勢情報を抽出する姿勢情報抽出部と、
 前記リハビリテーション対象者の姿勢情報に基づいて、前記トレーニングまたは前記評価運動における前記リハビリテーション対象者の一連の動作に含まれる複数のフェーズを検出するステートマシンと、
 前記フェーズごとに前記姿勢情報を分析し、前記一連の動作の評価結果を示す分析情報を生成する動作分析部と、
 を有するリハビリテーション支援システム。
(2)
 前記動作分析部は、前記リハビリテーション対象者の障害情報に基づいて前記フェーズごとに前記姿勢情報を分析することにより前記分析情報を生成する、
 上記(1)に記載のリハビリテーション支援システム。
(3)
 前記動画データから、前記フェーズごとに、前記フェーズに応じた特定シーンを示す1以上の特定のフレーム画像を抽出するシーン抽出部を有し、
 前記姿勢情報抽出部は、前記1以上の特定のフレーム画像からフレーム画像ごとに前記リハビリテーション対象者の姿勢情報を抽出する、
 上記(1)または(2)に記載のリハビリテーション支援システム。
(4)
 前記シーン抽出部は、前記特定シーンよりも前のフレーム画像群の姿勢解析結果に基づいて前記特定シーンへの切り替わりを検出し、前記特定シーンへの切り替わりに応じて取得した、前記フレーム画像群よりも高解像度の1以上のフレーム画像を前記1以上の特定のフレーム画像として抽出する、
 上記(3)に記載のリハビリテーション支援システム。
(5)
 前記シーン抽出部は、前記リハビリテーション対象者と、前記トレーニングまたは前記評価運動に用いられる特定のオブジェクトと、が所定の位置関係にあるときの前記リハビリテーション対象者の動作、または、前記リハビリテーション対象者と前記特定のオブジェクトとの位置関係の変化に基づいて、前記特定シーンへの切り替わりを検出する、
 上記(4)に記載のリハビリテーション支援システム。
(6)
 前記シーン抽出部は、前記姿勢情報抽出部で用いられる分析モデルよりも姿勢の推定精度が低い分析モデルを用いて前記リハビリテーション対象者の姿勢情報を抽出し、抽出された前記姿勢情報から推定される前記リハビリテーション対象者の姿勢の変化に基づいて前記特定シーンへの切り替わりを検出する、
 上記(4)または(5)に記載のリハビリテーション支援システム。
(7)
 前記リハビリテーション対象者の障害情報、および、前記トレーニングまたは前記評価運動の種類に基づいて、前記動画データを取得する際の前記リハビリテーション対象者の撮影方向を決定する撮影条件決定部を有する、
 上記(1)ないし(6)のいずれか1つに記載のリハビリテーション支援システム。
(8)
 前記ステートマシンは、複数の方向から取得される前記姿勢情報によって死角となる情報を補いながら、前記一連の動作に含まれる複数のフェーズを検出する、
 上記(7)に記載のリハビリテーション支援システム。
(9)
 前記リハビリテーション対象者が立ち上がり動作についてのリハビリテーションを行う場合、前記撮影条件決定部は、前記リハビリテーション対象者の正面方向および側面方向を前記撮影方向として決定する、
 上記(8)に記載のリハビリテーション支援システム。
(10)
 前記ステートマシンは、臀部と座面との位置関係、腰の角度の変化、重心点の移動速度の変化、および、腰の高さの変化に基づいて、複数のフェーズを検出する、
 上記(9)に記載のリハビリテーション支援システム。
(11)
 前記ステートマシンは、前記臀部が椅子の座面から離れる直前の状態を第1フェーズとして検出する、
 上記(10)に記載のリハビリテーション支援システム。
(12)
 前記ステートマシンは、前記重心点が両足の踝の間にあり、かつ、前記第1フェーズの直後に最も前記腰が曲がった状態を第2フェーズとして検出する、
 上記(11)に記載のリハビリテーション支援システム。
(13)
 前記ステートマシンは、前記第2フェーズの直後に前記重心点の高さ方向の移動速度が最大に達した状態を第3フェーズとして検出する、
 上記(12)に記載のリハビリテーション支援システム。
(14)
 前記ステートマシンは、前記第3フェーズの直後に前記腰の高さが最高点に達し、その後、前記腰の高さが低変動基準を満たす範囲で変動して停止した状態を第4フェーズとして検出する、
 上記(13)に記載のリハビリテーション支援システム。
(15)
 前記動作分析部は、前記側面方向から見た両肩の肩関節の位置ずれに基づいて回旋を検出する、
 上記(9)ないし(14)のいずれか1つに記載のリハビリテーション支援システム。
(16)
 前記フェーズごとに前記リハビリテーション対象者の動きを一時停止し、前記分析情報を前記フェーズにおける前記リハビリテーション対象者の静止画像とともに表示する出力部を有する、
 上記(1)ないし(15)のいずれか1つに記載のリハビリテーション支援システム。
(17)
 前記出力部は、前記分析情報として、健常者の動作との比較を示す情報を表示する、
 上記(16)に記載のリハビリテーション支援システム。
(18)
 前記出力部は、前記分析情報として、前記リハビリテーション対象者の骨格情報と前記比較の基準となる基準骨格情報とを表示する、
 上記(17)に記載のリハビリテーション支援システム。
(19)
 前記出力部は、前記リハビリテーション対象者の骨格情報および前記基準骨格情報として、前記フェーズにおいて分析されるべき前記リハビリテーション対象者の部位に対応した骨格の情報を選択的に表示する、
 上記(18)に記載のリハビリテーション支援システム。
(20)
 前記出力部は、前記リハビリテーション対象者の骨格情報と前記基準骨格情報との間に許容基準を超える差分が生じたタイミングで、前記リハビリテーション対象者の骨格情報および前記基準骨格情報を表示する、
 上記(18)または(19)に記載のリハビリテーション支援システム。
(21)
 前記出力部は、前記リハビリテーション対象者の骨格情報と前記基準骨格情報とが許容基準を超えて相違する部分の前記リハビリテーション対象者の骨格をハイライト表示する、
 上記(18)ないし(20)のいずれか1つに記載のリハビリテーション支援システム。
(22)
 前記出力部は、前記分析情報として、前記リハビリテーション対象者の動作を前記健常者の動作に近づけるための指針を示す情報を表示する、
 上記(17)ないし(21)のいずれか1つに記載のリハビリテーション支援システム。
(23)
 前記出力部は、前記分析情報として、過去の前記リハビリテーション対象者の動作との比較を示す情報を表示する、
 上記(16)ないし(22)のいずれか1つに記載のリハビリテーション支援システム。
(24)
 前記出力部は、前記分析情報として、現在の前記リハビリテーション対象者の骨格情報と前記比較の基準となる過去の前記リハビリテーション対象者の骨格情報とを含む、
 上記(23)に記載のリハビリテーション支援システム。
(25)
 前記出力部は、現在の前記リハビリテーション対象者の骨格情報と健常者の動作を示す基準骨格情報との間に許容基準を超える差分が生じたタイミングで、現在の前記リハビリテーション対象者の骨格情報および過去の前記リハビリテーション対象者の骨格情報を表示する、
 上記(24)に記載のリハビリテーション支援システム。
(26)
 前記出力部は、現在の前記リハビリテーション対象者の骨格情報と前記基準骨格情報とが許容基準を超えて相違する部分の前記リハビリテーション対象者の骨格をハイライト表示する、
 上記(25)に記載のリハビリテーション支援システム。
(27)
 前記分析情報は、過去から現在までの採点項目ごとの各フェーズの採点結果の推移を示す情報を含む、
 上記(1)ないし(26)のいずれか1つに記載のリハビリテーション支援システム。
(28)
 前記分析情報に基づいて前記リハビリテーション対象者への介入情報を生成する介入情報生成部を有する、
 上記(1)ないし(27)のいずれか1つに記載のリハビリテーション支援システム。
(29)
 前記介入情報は、前記リハビリテーション対象者に動作の改善を促すための判断材料となる判断情報、または、前記リハビリテーション対象者のトレーニングプランを含む、
 上記(28)に記載のリハビリテーション支援システム。
(30)
 前記介入情報生成部は、前記分析情報から前記リハビリテーション対象者の1以上の症状を抽出し、症状ごとに決められた優先度、および、個々の症状の重さに基づいて前記トレーニングプランを決定する、
 上記(29)に記載のリハビリテーション支援システム。
(31)
 前記介入情報生成部は、現在の前記リハビリテーション対象者のレベルを認証する認証情報を生成する、
 上記(28)ないし(30)のいずれか1つに記載のリハビリテーション支援システム。
(32)
 前記介入情報は、前記認証情報に基づく保険に関する提言を含む、
 上記(31)に記載のリハビリテーション支援システム。
(33)
 前記介入情報は、前記認証情報に基づく薬効についての評価情報を含む、
 上記(31)または(32)に記載のリハビリテーション支援システム。
(34)
 前記ステートマシンは、指標データベースに記憶されたフェーズごとの判定方法に基づいて前記複数のフェーズを検出する、
 上記(1)ないし(33)のいずれか1つに記載のリハビリテーション支援システム。
(35)
 前記動作分析部は、前記指標データベースに記憶されたフェーズごとの採点項目および採点基準に基づいて、前記フェーズごとに前記リハビリテーション対象者の動作を分析する、
 上記(34)に記載のリハビリテーション支援システム。
(36)
 前記指標データベースは、判定項目ごとの、動画の撮影条件、フェーズの定義、分析対象となる特定シーン、採点項目および採点基準のうちの1以上の情報を、動作分析の指標として記憶する、
 上記(34)または(35)に記載のリハビリテーション支援システム。
(37)
 前記判定項目は、動作分析の対象となる運動の種類と関連付けられている、
 上記(36)に記載のリハビリテーション支援システム。
(38)
 前記動作分析部は、前記一連の動作の評価結果を、前記リハビリテーション対象者に介入する介入者が保有する端末またはサーバに送信する、
 上記(1)ないし(37)のいずれか1つに記載のリハビリテーション支援システム。
(39)
 リハビリテーション対象者のトレーニングまたは評価運動の動画データから前記リハビリテーション対象者の姿勢情報を抽出し、
 前記リハビリテーション対象者の姿勢情報に基づいて、前記トレーニングまたは前記評価運動における前記リハビリテーション対象者の一連の動作に含まれる複数のフェーズを検出し、
 前記フェーズごとに前記姿勢情報を分析し、前記一連の動作の評価結果を示す分析情報を生成する、
 ことを有する、コンピュータにより実行される情報処理方法。
(40)
 リハビリテーション対象者のトレーニングまたは評価運動の動画データから前記リハビリテーション対象者の姿勢情報を抽出し、
 前記リハビリテーション対象者の姿勢情報に基づいて、前記トレーニングまたは前記評価運動における前記リハビリテーション対象者の一連の動作に含まれる複数のフェーズを検出し、
 前記フェーズごとに前記姿勢情報を分析し、前記一連の動作の評価結果を示す分析情報を生成する、
 ことをコンピュータに実現させるプログラム。
(41)
 前記動作分析部は、1以上の評価観点に基づいて各フェーズの評価項目を評価し、各評価観点での評価結果に基づいて前記リハビリテーション対象者の症状分類を行う、
 上記(1)に記載のリハビリテーション支援システム。
(42)
 前記1以上の評価観点は、判定項目となる動作が適切に行われたと判定されるために合格基準を満たすことが必須となる1以上のメイン観点を含み、
 前記動作分析部は、各フェーズの評価項目に対する評価をメイン観点に基づくものから行い、前記合格基準を満たさないメイン観点が検出された場合には、前記判定項目となる動作が適切に行われていないと判定し、残りの評価観点に基づく評価を停止する、
 上記(41)に記載のリハビリテーション支援システム。
(43)
 前記評価観点に対応する特定のフェーズごとに前記リハビリテーション対象者の動きを一時停止し、前記分析情報を前記特定のフェーズにおける前記リハビリテーション対象者の静止画像とともに表示する出力部を有する、
 上記(41)に記載のリハビリテーション支援システム。
(44)
 前記指標データベースは、障害情報と前記判定項目とを紐づけて記憶し、
 前記動作分析部は、前記リハビリテーション対象者の障害情報に紐づけられた前記判定項目の動作を分析する、
 上記(36)に記載のリハビリテーション支援システム。
(45)
 前記撮影条件決定部は、カメラに写る前記リハビリテーション対象者の状態が撮影開始条件を満たしたことに応答して前記リハビリテーション対象者の動作の記録を開始する、
 上記(7)に記載のリハビリテーション支援システム。
(46)
 前記撮影条件決定部は、前記撮影開始条件が満たされるまで前記カメラの映像を表示装置に表示し、前記撮影開始条件が満たされて前記動作の記録が開始されると前記カメラの映像の前記表示装置への表示を停止する、
 上記(45)に記載のリハビリテーション支援システム。
(47)
 前記撮影条件決定部は、前記撮影開始条件が満たされたことを前記リハビリテーション対象者に通知した後、前記動作の記録を開始する、
 上記(46)に記載のリハビリテーション支援システム。
1、1A,1B リハビリテーション支援システム
132 撮影条件決定部
133 シーン抽出部
134 出力部
143 第1分析モデル
160 カメラ
170 表示装置
214 姿勢情報抽出部
221 ステートマシン
222 動作分析部
230 介入情報生成部
297 第2分析モデル
FI,SFI フレーム画像
IM 静止画像
LPI,HPI 姿勢情報
MAI 分析情報
MD 動画データ
OB オブジェクト
RSI 基準骨格情報
SI 骨格情報
TG リハビリテーション対象者
VI 介入情報

Claims (47)

  1.  リハビリテーション対象者のトレーニングまたは評価運動の動画データから前記リハビリテーション対象者の姿勢情報を抽出する姿勢情報抽出部と、
     前記リハビリテーション対象者の姿勢情報に基づいて、前記トレーニングまたは前記評価運動における前記リハビリテーション対象者の一連の動作に含まれる複数のフェーズを検出するステートマシンと、
     前記フェーズごとに前記姿勢情報を分析し、前記一連の動作の評価結果を示す分析情報を生成する動作分析部と、
     を有するリハビリテーション支援システム。
  2.  前記動作分析部は、前記リハビリテーション対象者の障害情報に基づいて前記フェーズごとに前記姿勢情報を分析することにより前記分析情報を生成する、
     請求項1に記載のリハビリテーション支援システム。
  3.  前記動画データから、前記フェーズごとに、前記フェーズに応じた特定シーンを示す1以上の特定のフレーム画像を抽出するシーン抽出部を有し、
     前記姿勢情報抽出部は、前記1以上の特定のフレーム画像からフレーム画像ごとに前記リハビリテーション対象者の姿勢情報を抽出する、
     請求項1に記載のリハビリテーション支援システム。
  4.  前記シーン抽出部は、前記特定シーンよりも前のフレーム画像群の姿勢解析結果に基づいて前記特定シーンへの切り替わりを検出し、前記特定シーンへの切り替わりに応じて取得した、前記フレーム画像群よりも高解像度の1以上のフレーム画像を前記1以上の特定のフレーム画像として抽出する、
     請求項3に記載のリハビリテーション支援システム。
  5.  前記シーン抽出部は、前記リハビリテーション対象者と、前記トレーニングまたは前記評価運動に用いられる特定のオブジェクトと、が所定の位置関係にあるときの前記リハビリテーション対象者の動作、または、前記リハビリテーション対象者と前記特定のオブジェクトとの位置関係の変化に基づいて、前記特定シーンへの切り替わりを検出する、
     請求項4に記載のリハビリテーション支援システム。
  6.  前記シーン抽出部は、前記姿勢情報抽出部で用いられる分析モデルよりも姿勢の推定精度が低い分析モデルを用いて前記リハビリテーション対象者の姿勢情報を抽出し、抽出された前記姿勢情報から推定される前記リハビリテーション対象者の姿勢の変化に基づいて前記特定シーンへの切り替わりを検出する、
     請求項4に記載のリハビリテーション支援システム。
  7.  前記リハビリテーション対象者の障害情報、および、前記トレーニングまたは前記評価運動の種類に基づいて、前記動画データを取得する際の前記リハビリテーション対象者の撮影方向を決定する撮影条件決定部を有する、
     請求項1に記載のリハビリテーション支援システム。
  8.  前記ステートマシンは、複数の方向から取得される前記姿勢情報によって死角となる情報を補いながら、前記一連の動作に含まれる複数のフェーズを検出する、
     請求項7に記載のリハビリテーション支援システム。
  9.  前記リハビリテーション対象者が立ち上がり動作についてのリハビリテーションを行う場合、前記撮影条件決定部は、前記リハビリテーション対象者の正面方向および側面方向を前記撮影方向として決定する、
     請求項8に記載のリハビリテーション支援システム。
  10.  前記ステートマシンは、臀部と座面との位置関係、腰の角度の変化、重心点の移動速度の変化、および、腰の高さの変化に基づいて、複数のフェーズを検出する、
     請求項9に記載のリハビリテーション支援システム。
  11.  前記ステートマシンは、前記臀部が椅子の座面から離れる直前の状態を第1フェーズとして検出する、
     請求項10に記載のリハビリテーション支援システム。
  12.  前記ステートマシンは、前記重心点が両足の踝の間にあり、かつ、前記第1フェーズの直後に最も前記腰が曲がった状態を第2フェーズとして検出する、
     請求項11に記載のリハビリテーション支援システム。
  13.  前記ステートマシンは、前記第2フェーズの直後に前記重心点の高さ方向の移動速度が最大に達した状態を第3フェーズとして検出する、
     請求項12に記載のリハビリテーション支援システム。
  14.  前記ステートマシンは、前記第3フェーズの直後に前記腰の高さが最高点に達し、その後、前記腰の高さが低変動基準を満たす範囲で変動して停止した状態を第4フェーズとして検出する、
     請求項13に記載のリハビリテーション支援システム。
  15.  前記動作分析部は、前記側面方向から見た両肩の肩関節の位置ずれに基づいて回旋を検出する、
     請求項9に記載のリハビリテーション支援システム。
  16.  前記フェーズごとに前記リハビリテーション対象者の動きを一時停止し、前記分析情報を前記フェーズにおける前記リハビリテーション対象者の静止画像とともに表示する出力部を有する、
     請求項1に記載のリハビリテーション支援システム。
  17.  前記出力部は、前記分析情報として、健常者の動作との比較を示す情報を表示する、
     請求項16に記載のリハビリテーション支援システム。
  18.  前記出力部は、前記分析情報として、前記リハビリテーション対象者の骨格情報と前記比較の基準となる基準骨格情報とを表示する、
     請求項17に記載のリハビリテーション支援システム。
  19.  前記出力部は、前記リハビリテーション対象者の骨格情報および前記基準骨格情報として、前記フェーズにおいて分析されるべき前記リハビリテーション対象者の部位に対応した骨格の情報を選択的に表示する、
     請求項18に記載のリハビリテーション支援システム。
  20.  前記出力部は、前記リハビリテーション対象者の骨格情報と前記基準骨格情報との間に許容基準を超える差分が生じたタイミングで、前記リハビリテーション対象者の骨格情報および前記基準骨格情報を表示する、
     請求項18に記載のリハビリテーション支援システム。
  21.  前記出力部は、前記リハビリテーション対象者の骨格情報と前記基準骨格情報とが許容基準を超えて相違する部分の前記リハビリテーション対象者の骨格をハイライト表示する、
     請求項18に記載のリハビリテーション支援システム。
  22.  前記出力部は、前記分析情報として、前記リハビリテーション対象者の動作を前記健常者の動作に近づけるための指針を示す情報を表示する、
     請求項17に記載のリハビリテーション支援システム。
  23.  前記出力部は、前記分析情報として、過去の前記リハビリテーション対象者の動作との比較を示す情報を表示する、
     請求項16に記載のリハビリテーション支援システム。
  24.  前記出力部は、前記分析情報として、現在の前記リハビリテーション対象者の骨格情報と前記比較の基準となる過去の前記リハビリテーション対象者の骨格情報とを表示する、
     請求項23に記載のリハビリテーション支援システム。
  25.  前記出力部は、現在の前記リハビリテーション対象者の骨格情報と健常者の動作を示す基準骨格情報との間に許容基準を超える差分が生じたタイミングで、現在の前記リハビリテーション対象者の骨格情報および過去の前記リハビリテーション対象者の骨格情報を表示する、
     請求項24に記載のリハビリテーション支援システム。
  26.  前記出力部は、現在の前記リハビリテーション対象者の骨格情報と前記基準骨格情報とが許容基準を超えて相違する部分の前記リハビリテーション対象者の骨格をハイライト表示する、
     請求項25に記載のリハビリテーション支援システム。
  27.  前記分析情報は、過去から現在までの採点項目ごとの各フェーズの採点結果の推移を示す情報を含む、
     請求項1に記載のリハビリテーション支援システム。
  28.  前記分析情報に基づいて前記リハビリテーション対象者への介入情報を生成する介入情報生成部を有する、
     請求項1に記載のリハビリテーション支援システム。
  29.  前記介入情報は、前記リハビリテーション対象者に動作の改善を促すための判断材料となる判断情報、または、前記リハビリテーション対象者のトレーニングプランを含む、
     請求項28に記載のリハビリテーション支援システム。
  30.  前記介入情報生成部は、前記分析情報から前記リハビリテーション対象者の1以上の症状を抽出し、症状ごとに決められた優先度、および、個々の症状の重さに基づいて前記トレーニングプランを決定する、
     請求項29に記載のリハビリテーション支援システム。
  31.  前記介入情報生成部は、現在の前記リハビリテーション対象者のレベルを認証する認証情報を生成する、
     請求項28に記載のリハビリテーション支援システム。
  32.  前記介入情報は、前記認証情報に基づく保険に関する提言を含む、
     請求項31に記載のリハビリテーション支援システム。
  33.  前記介入情報は、前記認証情報に基づく薬効についての評価情報を含む、
     請求項31に記載のリハビリテーション支援システム。
  34.  前記ステートマシンは、指標データベースに記憶されたフェーズごとの判定方法に基づいて前記複数のフェーズを検出する、
     請求項1に記載のリハビリテーション支援システム。
  35.  前記動作分析部は、前記指標データベースに記憶されたフェーズごとの採点項目および採点基準に基づいて、前記フェーズごとに前記リハビリテーション対象者の動作を分析する、
     請求項34に記載のリハビリテーション支援システム。
  36.  前記指標データベースは、判定項目ごとの、動画の撮影条件、フェーズの定義、分析対象となる特定シーン、採点項目および採点基準のうちの1以上の情報を、動作分析の指標として記憶する、
     請求項34に記載のリハビリテーション支援システム。
  37.  前記判定項目は、動作分析の対象となる運動の種類と関連付けられている、
     請求項36に記載のリハビリテーション支援システム。
  38.  前記動作分析部は、前記一連の動作の評価結果を、前記リハビリテーション対象者に介入する介入者が保有する端末またはサーバに送信する、
     請求項1に記載のリハビリテーション支援システム。
  39.  リハビリテーション対象者のトレーニングまたは評価運動の動画データから前記リハビリテーション対象者の姿勢情報を抽出し、
     前記リハビリテーション対象者の姿勢情報に基づいて、前記トレーニングまたは前記評価運動における前記リハビリテーション対象者の一連の動作に含まれる複数のフェーズを検出し、
     前記フェーズごとに前記姿勢情報を分析し、前記一連の動作の評価結果を示す分析情報を生成する、
     ことを有する、コンピュータにより実行される情報処理方法。
  40.  リハビリテーション対象者のトレーニングまたは評価運動の動画データから前記リハビリテーション対象者の姿勢情報を抽出し、
     前記リハビリテーション対象者の姿勢情報に基づいて、前記トレーニングまたは前記評価運動における前記リハビリテーション対象者の一連の動作に含まれる複数のフェーズを検出し、
     前記フェーズごとに前記姿勢情報を分析し、前記一連の動作の評価結果を示す分析情報を生成する、
     ことをコンピュータに実現させるプログラム。
  41.  前記動作分析部は、1以上の評価観点に基づいて各フェーズの評価項目を評価し、各評価観点での評価結果に基づいて前記リハビリテーション対象者の症状分類を行う、
     請求項1に記載のリハビリテーション支援システム。
  42.  前記1以上の評価観点は、判定項目となる動作が適切に行われたと判定されるために合格基準を満たすことが必須となる1以上のメイン観点を含み、
     前記動作分析部は、各フェーズの評価項目に対する評価をメイン観点に基づくものから行い、前記合格基準を満たさないメイン観点が検出された場合には、前記判定項目となる動作が適切に行われていないと判定し、残りの評価観点に基づく評価を停止する、
     請求項41に記載のリハビリテーション支援システム。
  43.  前記評価観点に対応する特定のフェーズごとに前記リハビリテーション対象者の動きを一時停止し、前記分析情報を前記特定のフェーズにおける前記リハビリテーション対象者の静止画像とともに表示する出力部を有する、
     請求項41に記載のリハビリテーション支援システム。
  44.  前記指標データベースは、障害情報と前記判定項目とを紐づけて記憶し、
     前記動作分析部は、前記リハビリテーション対象者の障害情報に紐づけられた前記判定項目の動作を分析する、
     請求項36に記載のリハビリテーション支援システム。
  45.  前記撮影条件決定部は、カメラに写る前記リハビリテーション対象者の状態が撮影開始条件を満たしたことに応答して前記リハビリテーション対象者の動作の記録を開始する、
     請求項7に記載のリハビリテーション支援システム。
  46.  前記撮影条件決定部は、前記撮影開始条件が満たされるまで前記カメラの映像を表示装置に表示し、前記撮影開始条件が満たされて前記動作の記録が開始されると前記カメラの映像の前記表示装置への表示を停止する、
     請求項45に記載のリハビリテーション支援システム。
  47.  前記撮影条件決定部は、前記撮影開始条件が満たされたことを前記リハビリテーション対象者に通知した後、前記動作の記録を開始する、
     請求項46に記載のリハビリテーション支援システム。
PCT/JP2023/004231 2022-02-08 2023-02-08 リハビリテーション支援システム、情報処理方法およびプログラム WO2023153453A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380018863.9A CN118613213A (zh) 2022-02-08 2023-02-08 康复辅助系统、信息处理方法以及程序

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-018204 2022-02-08
JP2022018204 2022-02-08
JP2022-071101 2022-04-22
JP2022071101A JP2023115876A (ja) 2022-02-08 2022-04-22 リハビリテーション支援システム、情報処理方法およびプログラム

Publications (1)

Publication Number Publication Date
WO2023153453A1 true WO2023153453A1 (ja) 2023-08-17

Family

ID=87564499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004231 WO2023153453A1 (ja) 2022-02-08 2023-02-08 リハビリテーション支援システム、情報処理方法およびプログラム

Country Status (1)

Country Link
WO (1) WO2023153453A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168590A (ja) * 2003-12-08 2005-06-30 Matsushita Electric Ind Co Ltd 運動評価装置
JP2005352686A (ja) * 2004-06-09 2005-12-22 Matsushita Electric Ind Co Ltd リハビリテーション管理装置
JP2017217266A (ja) * 2016-06-08 2017-12-14 パラマウントベッド株式会社 リハビリテーション支援制御装置及びコンピュータプログラム
JP2019083519A (ja) * 2017-10-27 2019-05-30 パラマウントベッド株式会社 動画像記録システム
JP2020192307A (ja) * 2019-05-29 2020-12-03 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 下肢筋力評価方法、下肢筋力評価プログラム、下肢筋力評価装置及び下肢筋力評価システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168590A (ja) * 2003-12-08 2005-06-30 Matsushita Electric Ind Co Ltd 運動評価装置
JP2005352686A (ja) * 2004-06-09 2005-12-22 Matsushita Electric Ind Co Ltd リハビリテーション管理装置
JP2017217266A (ja) * 2016-06-08 2017-12-14 パラマウントベッド株式会社 リハビリテーション支援制御装置及びコンピュータプログラム
JP2019083519A (ja) * 2017-10-27 2019-05-30 パラマウントベッド株式会社 動画像記録システム
JP2020192307A (ja) * 2019-05-29 2020-12-03 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 下肢筋力評価方法、下肢筋力評価プログラム、下肢筋力評価装置及び下肢筋力評価システム

Similar Documents

Publication Publication Date Title
US11633659B2 (en) Systems and methods for assessing balance and form during body movement
JP6351978B2 (ja) 動作情報処理装置及びプログラム
US9374522B2 (en) Video generating apparatus and method
US20140024971A1 (en) Assessment and cure of brain concussion and medical conditions by determining mobility
US20100049095A1 (en) Assessment of medical conditions by determining mobility
JP7057589B2 (ja) 医療情報処理システム、歩行状態定量化方法およびプログラム
WO2019008771A1 (ja) 治療及び/又は運動の指導プロセス管理システム、治療及び/又は運動の指導プロセス管理のためのプログラム、コンピュータ装置、並びに方法
US20150005910A1 (en) Motion information processing apparatus and method
JP7373788B2 (ja) リハビリ支援装置、リハビリ支援システム及びリハビリ支援方法
US20200401214A1 (en) Systems for monitoring and assessing performance in virtual or augmented reality
US20200129109A1 (en) Mobility Assessment Tracking Tool (MATT)
KR20080005798A (ko) 모션트랙킹 기술과 증강현실 기법을 활용한 인지 및행동장애 재활 지원시스템
US20210236022A1 (en) Smart Interpretive Wheeled Walker using Sensors and Artificial Intelligence for Precision Assisted Mobility Medicine Improving the Quality of Life of the Mobility Impaired
CN113490945A (zh) 人动作过程采集系统
WO2023153453A1 (ja) リハビリテーション支援システム、情報処理方法およびプログラム
Williams et al. Training conditions influence walking kinematics and self-selected walking speed in patients with neurological impairments
JP2023115876A (ja) リハビリテーション支援システム、情報処理方法およびプログラム
US20220032124A1 (en) Training system, training method, and program
Chacon-Murguia et al. Human gait feature extraction including a kinematic analysis toward robotic power assistance
CN118613213A (zh) 康复辅助系统、信息处理方法以及程序
Venugopalan et al. MotionTalk: personalized home rehabilitation system for assisting patients with impaired mobility
WO2023047621A1 (ja) 情報処理システム、情報処理方法およびプログラム
WO2022260046A1 (ja) 被験者の状態を推定するためのコンピュータシステム、方法、およびプログラム
US20220032123A1 (en) Training system, training method, and program
US20220062708A1 (en) Training system, training method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE