WO2023153390A1 - Photosensitive resin sheet, cured film, and multilayer wiring substrate - Google Patents

Photosensitive resin sheet, cured film, and multilayer wiring substrate Download PDF

Info

Publication number
WO2023153390A1
WO2023153390A1 PCT/JP2023/003951 JP2023003951W WO2023153390A1 WO 2023153390 A1 WO2023153390 A1 WO 2023153390A1 JP 2023003951 W JP2023003951 W JP 2023003951W WO 2023153390 A1 WO2023153390 A1 WO 2023153390A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive resin
resin sheet
transmittance
resin layer
film
Prior art date
Application number
PCT/JP2023/003951
Other languages
French (fr)
Japanese (ja)
Inventor
濱野翼
小森悠佑
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2023509675A priority Critical patent/JPWO2023153390A1/ja
Publication of WO2023153390A1 publication Critical patent/WO2023153390A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a photosensitive resin sheet, a cured film, and a multilayer wiring board.
  • polyimide Due to its excellent electrical properties, mechanical properties, and heat resistance, polyimide is useful as a surface protective film for semiconductor elements, an interlayer insulating film, and a wiring protective insulating film for circuit boards.
  • a photosensitive polyimide material to which photosensitivity has been imparted can be microfabricated by photolithography technology, and wiring density can be increased.
  • Photosensitive polyimide materials are generally liquid or sheet-like materials, and in particular, sheet-like materials are easier to form thick films than liquid materials, and the number of processes can be reduced, so production efficiency is high. It has advantages such as
  • Patent Document 1 a photosensitive resin composition containing a polyimide or a polyimide precursor having a carbon-carbon unsaturated double bond and a compound that generates radicals by actinic ray radiation has been proposed.
  • Patent Document 1 a photosensitive resin composition containing a polyimide or a polyimide precursor having a carbon-carbon unsaturated double bond and a compound that generates radicals by actinic ray radiation.
  • Patent Document 1 a photosensitive resin composition containing a polyimide or a polyimide precursor having a carbon-carbon unsaturated double bond and a compound that generates radicals by actinic ray radiation.
  • a photosensitive resin composition using a ring-closed polyimide a polyimide having at least one group selected from the group consisting of a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group and a thiol group at the main chain terminal, an unsaturated bond
  • Patent Document 2 A photosensitive resin composition containing a polymerizable compound, imidazole silane, and a photopolymerization initiator has been proposed (Patent Document 2).
  • Patent Document 2 Such techniques enable photopatterning of polyimide resin compositions without the need for heat treatment at high temperatures, and there is an increasing demand for higher wiring densities.
  • a thick film processing is required for the protective insulating film.
  • closed-ring polyimides have a large absorption of actinic rays, so that it is difficult to sufficiently photo-cure deep portions of the thick film of the photosensitive resin composition in the exposure step of photopatterning.
  • the pattern formed on the photosensitive resin composition tends to have a reverse tapered cross-sectional shape (a shape in which the actinic ray incident side is the front surface and tapers toward the back surface), making it difficult to obtain a rectangular pattern. There is a problem.
  • the cross-sectional shape of the pattern is rectangular, and a thick photosensitive resin sheet that enables the formation of fine patterns is a material with enhanced light transmission.
  • the visibility of the pattern portion after pattern formation is poor, making it difficult to determine the missing portion of the pattern.
  • the metal wiring pattern in the lower layer is transparent, false detection occurs in the inspection of the pattern of the protective insulating film. be a factor.
  • the present invention provides a photosensitive resin sheet which has a rectangular cross-sectional shape of the pattern, which enables the formation of a fine pattern, makes it easy to determine where the pattern is defective, and prevents the metal wiring in the lower layer from being seen through. intended to provide
  • a photosensitive resin sheet having a support film and a photosensitive resin layer is a layer formed from a photosensitive resin composition
  • the photosensitive resin composition is a resin composition containing an alkali-soluble polyimide (A), a photopolymerizable compound (B), a photopolymerization initiator (C), and a coloring agent (D)
  • Relationship A Formula 1 that satisfies at least one of formulas 1 and 2: 0.10% ⁇ Tb600 ⁇ 40%
  • Formula 2 0.10% ⁇ TbVL ⁇ 40%
  • Relationship B Formula 3 that satisfies at least one of formulas 3 to 5: 3.0% ⁇ Tb365 ⁇ 70%
  • Formula 4 3.0% ⁇ Tb405 ⁇ 70%
  • Formula 5 3.0% ⁇ Tb436 ⁇ 70%
  • [5] The photosensitive resin sheet according to any one of [1] to [4], wherein the photosensitive resin layer has a transmittance Tb450 at 450 nm that satisfies the following relationship.
  • the content of the coloring material (D) is 0.1 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the alkali-soluble polyimide (A) [1] to [ 5].
  • Formula 6 20% ⁇ Tc450 ⁇ 90% Relationship C: satisfying at least one of formulas 7 and 8 Formula 7: 0.10% ⁇ Tc600 ⁇ 50% Formula 8: 0.10% ⁇ TcVL ⁇ 50% [14]
  • a multilayer wiring board having the cured film according to [12].
  • the present invention it is possible to obtain a photosensitive resin sheet whose pattern has a rectangular cross-sectional shape, which enables formation of a fine pattern, and which facilitates determination of pattern defect locations.
  • the cured film obtained from the photosensitive resin sheet of the present invention is excellent in electrical properties, mechanical properties, and heat resistance, and is therefore useful as a surface protective film for semiconductor elements, an interlayer insulating film, and a wiring protective insulating film for circuit boards. is.
  • FIG. 2 is a schematic cross-sectional view showing one mode in which a defective portion is included in a pattern in which recesses are formed using the photosensitive resin sheet of the present invention. It is the cross-sectional schematic diagram which showed the one aspect
  • the present invention is a photosensitive resin sheet having a support film and a photosensitive resin layer, wherein the photosensitive resin layer is a layer formed from a photosensitive resin composition, and the photosensitive resin composition is an alkali-soluble polyimide (A), a photopolymerizable compound (B), a photopolymerization initiator (C), and a resin composition containing a coloring agent (D), wherein the photosensitive resin layer is at 600 nm
  • a photosensitive resin sheet characterized by satisfying the following relation A when the transmittance Tb is 600 and the minimum value TbVL of the transmittance at 500 to 800 nm. Relationship A: satisfying at least one of formulas 1 and 2 Formula 1: 0.10 ⁇ Tb600 ⁇ 40% Formula 2: 0.10% ⁇ TbVL ⁇ 40% Details of this are given below.
  • the photosensitive resin composition forming the photosensitive resin layer in the photosensitive resin sheet of the present invention contains an alkali-soluble polyimide (A). Containing the alkali-soluble polyimide (A) facilitates formation of a thick photosensitive resin sheet, and facilitates adjustment of the film thickness according to the application.
  • the main skeleton of the alkali-soluble polyimide (A) is not particularly limited, but (meth)acrylic polymer, epoxy polymer, polyurethane, polybenzoxazine, polybenzoxazole precursor, polybenzoxazole, polyimide precursor, polyimide, etc. can be used. can.
  • the alkali-soluble polyimide (A) is at least one resin selected from the group consisting of polyimide, polybenzoxazole, precursors thereof, and copolymers thereof, that is, , polybenzoxazole precursors, polybenzoxazoles, polyimide precursors, ring-closed polyimides, and copolymers thereof.
  • the alkali-soluble polyimide (A) is more preferably a polyimide precursor or a closed-ring polyimide, which suppresses corrosion of metal wiring, improves the electrical reliability of the wiring board, and can lower the heat treatment temperature after patterning. From the point of view, it is particularly preferable to use a closed-ring polyimide.
  • the alkali-soluble polyimide (A) preferably dissolves in a developer and has at least alkali solubility.
  • alkali-soluble as used herein means that the solubility in a 2.38% by weight tetramethylammonium hydroxide (TMAH) aqueous solution is 0.1 g/100 mL or more.
  • the functional group that imparts alkali solubility to the alkali-soluble polyimide (A), that is, the alkali-soluble group includes a phenolic hydroxyl group, a thiol group, a carboxyl group, a sulfonic acid group, etc.
  • the alkali-soluble group a phenolic hydroxyl group , carboxyl groups or both.
  • alkali-soluble polyimide (A) it is preferable to contain one or more polyimides having a structural unit represented by the following general formula (1), and one or more polyimides represented by the following general formula (2) or (3) It is more preferable to contain polyimide.
  • X represents a monovalent organic group having at least one of a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group and a thiol group.
  • Y represents a divalent organic group having at least one of a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group and a thiol group.
  • X and Y preferably have a phenolic hydroxyl group or a thiol group, and particularly preferably have a phenolic hydroxyl group.
  • R 1 represents a 4- to 22-valent organic group
  • R 2 represents a 2- to 20-valent organic group
  • R3 and R4 each independently represent a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group or a thiol group.
  • R 3 and R 4 are preferably phenolic hydroxyl groups or carboxyl groups, particularly preferably phenolic hydroxyl groups.
  • ⁇ and ⁇ each independently represent an integer ranging from 0 to 10. Among such ⁇ and ⁇ , it is preferable that ⁇ + ⁇ is 1 or more.
  • n represents the number of repeating structural units of the polymer. The range of n is 3-200. If n is 3 or more, it is possible to further improve the thick film workability of the photosensitive resin sheet. From the viewpoint of improving the thick film workability, n is preferably 5 or more. On the other hand, when n is 200 or less, the solubility of the alkali-soluble polyimide (A) in an alkali developer can be improved. From the viewpoint of improving the solubility, n is preferably 100 or less.
  • R 1 is a 4- to 22-valent organic group having a structure derived from tetracarboxylic dianhydride. Among them, R 1 is preferably an organic group having 5 to 45 carbon atoms containing an aromatic group or a cycloaliphatic group.
  • tetracarboxylic dianhydrides include aromatic tetracarboxylic dianhydrides and aliphatic tetracarboxylic dianhydrides.
  • aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 2,3,3′,4′-biphenyltetracarboxylic dianhydride, Carboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 2,2',3,3 '-benzophenonetetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl)propane dianhydride, 1, 1-bis
  • aliphatic tetracarboxylic dianhydrides examples include butanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, and 2,3,5,6-cyclohexanetetracarboxylic acid.
  • acid dianhydride Epiclon (registered trademark) B-4400 (Dainippon Ink & Chemicals, Inc.), Rikacid TDA-100 and BT-100 (Shin Nippon Rika Co., Ltd.), and the like.
  • examples of tetracarboxylic dianhydrides include acid dianhydrides having the structures shown below.
  • the tetracarboxylic dianhydride two types of the aromatic tetracarboxylic dianhydride described above, the aliphatic tetracarboxylic dianhydride, and the acid dianhydride having the structure shown below The above may be used.
  • R5 is an oxygen atom, a group selected from C( CF3 ) 2 , C( CH3 ) 2 and SO2 ; and represents a group selected from a thiol group.
  • R 2 is a divalent to dodecavalent organic group having a diamine-derived structure.
  • an organic group having 5 to 40 carbon atoms containing an aromatic group or a cycloaliphatic group is preferred.
  • Diamines include, for example, hydroxyl group-containing diamines, carboxyl group-containing diamines, thiol group-containing diamines, aromatic diamines, compounds in which at least some of the hydrogen atoms of these aromatic rings are substituted with alkyl groups or halogen atoms, fatty group diamines and the like.
  • hydroxyl group-containing diamines examples include bis-(3-amino-4-hydroxyphenyl)hexafluoropropane, bis(3-amino-4-hydroxyphenyl)sulfone, bis(3-amino-4-hydroxyphenyl)propane.
  • Carboxyl group-containing diamines include, for example, 2,2-bis[3-amino-4-carboxyphenyl]propane, 2,2-bis[4-amino-3-carboxyphenyl]propane, 2,2-bis[3 -amino-4-carboxyphenyl]hexafluoropropane, 4,4'-diamino-2,2',5,5'-tetracarboxydiphenylmethane, 3,3'-diamino-4,4'-dicarboxydiphenyl ether, 4 ,4'-diamino-3,3'-dicarboxydiphenyl ether, 4,4'-diamino-2,2'-dicarboxydiphenyl ether, 4,4'-diamino-2,2',5,5'-tetracarboxy Diphenyl ether, 3,3'-diamino-4,4'-dicarboxydiphenylsulfone
  • aromatic diamines examples include 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4, 4'-diaminodiphenylmethane, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide , 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene, benz
  • diamines include, for example, diamines having the structures shown below.
  • diamines having the structures shown below as the diamine, at least part of the hydroxyl group-containing diamine, the carboxyl group-containing diamine, the thiol group-containing diamine, the aromatic diamine, and the hydrogen atoms of these aromatic rings are substituted with an alkyl group or a halogen atom.
  • aliphatic diamines, and diamines having the structures shown below may be used.
  • R 5 is an oxygen atom, a group selected from C(CF 3 ) 2 , C(CH 3 ) 2 and SO 2
  • R 6 to R 9 are each independently a carboxyl group, hydroxyl group, sulfonic acid group and represents a group selected from thiol groups.
  • R 3 and R 4 each independently represent a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group or a thiol group, as described above.
  • a diamine having a siloxane structure at R2 may be copolymerized within a range that does not lower the heat resistance.
  • the diamine component bis(3-aminopropyl)tetramethyldisiloxane, bis(p-amino-phenyl)octamethylpentasiloxane, etc. may be copolymerized in an amount of 1 to 10 mol %.
  • X is derived from a primary monoamine that is a terminal blocking agent.
  • Primary monoamines used as terminal blockers include 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1 -hydroxy-4-aminonaphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, 1-carboxy-7-aminonaphthalene, 1-carboxy-6- aminonaphthalene, 1-carboxy-5-aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6-aminonaphthalene, 2-carboxy-5-aminonaphthalene, 2-aminobenzoic acid, 3-aminobenzoic acid , 4-aminobenzoic acid, 4-aminosalicylic acid, 5-aminosalicylic acid,
  • Y is derived from a dicarboxylic anhydride that is a terminal blocking agent.
  • acid anhydride used as the terminal blocking agent 4-carboxyphthalic anhydride, 3-hydroxyphthalic anhydride, cis-aconitic anhydride and the like are preferable. These are used alone or in combination of two or more.
  • the alkali-soluble polyimide (A) used in the present invention may consist of only the structures represented by the general formulas (1) to (3), or may be a mixture with other structures having alkali solubility. It can be.
  • the alkali-soluble polyimide (A) having the structure represented by the general formulas (1) to (3) is contained in an amount of 50% by weight or more based on the total weight of the alkali-soluble polyimide. Furthermore, it is preferably 60% by weight or more. When the content is 50% by weight or more, shrinkage during thermosetting can be suppressed, which is suitable for producing a thick film.
  • the type and amount of the alkali-soluble resin to be mixed is preferably selected within a range that does not impair the heat resistance of the polyimide finally obtained by heat treatment.
  • the alkali-soluble polyimide (A) replaces part of the diamine with a terminal blocking agent monoamine, or replaces the tetracarboxylic dianhydride with a terminal blocking agent dicarboxylic anhydride
  • known method can be used to synthesize. For example, a method of reacting a tetracarboxylic dianhydride, a diamine compound and a monoamine at a low temperature, a method of reacting a tetracarboxylic dianhydride, a dicarboxylic anhydride and a diamine compound at a low temperature, and a method of reacting a tetracarboxylic dianhydride with a diamine compound.
  • a polyimide precursor is obtained by using a method such as a method of obtaining a diester with an alcohol, and then reacting a diamine, a monoamine and a condensing agent. Thereafter, the obtained polyimide precursor can be completely imidized using a known imidization reaction method to synthesize a closed-ring polyimide.
  • the closed-ring polyimide used in the present invention is polymerized by the above method, then put into a large amount of water or a mixture of methanol and water, etc., precipitated, filtered, dried, and isolated.
  • the drying temperature is preferably 40-100°C, more preferably 50-80°C.
  • the imidization rate of the alkali-soluble polyimide (A) can be easily determined by, for example, the following method.
  • the imidization rate means what mol % of the polyimide precursor is converted to polyimide when synthesizing a closed-ring polyimide via the polyimide precursor as described above.
  • the infrared absorption spectrum of the polymer is measured to confirm the presence of absorption peaks (near 1780 cm ⁇ 1 and 1377 cm ⁇ 1 ) of the imide structure due to polyimide.
  • the infrared absorption spectrum is measured again, and the peak intensity near 1377 cm ⁇ 1 before and after the heat treatment is compared.
  • a polyimide having an imidization rate of 50% or more is defined as a closed-ring polyimide.
  • the alkali-soluble polyimide (A) is preferably a closed-ring polyimide, and in particular the imidization rate of the polymer is preferably 70% or more, more preferably 80% or more, and preferably 90% or more. More preferred.
  • the heating step (curing) a cured film can be obtained by heat treatment under low temperature conditions, so that the effect of reducing stress can be obtained, and cracks and breakage of the substrate can be suppressed. Moreover, since there are few carboxylic acid groups derived from the polyimide precursor, corrosion of metal wiring can be suppressed.
  • the terminal blocking agent introduced into the alkali-soluble polyimide (A) can be detected by the following method.
  • a polyimide into which a terminal blocking agent has been introduced is dissolved in an acidic solution to decompose into an amine component and a carboxylic acid anhydride component, which are constituent units of the polyimide, and this is analyzed by gas chromatography (GC) or NMR. Measure.
  • GC gas chromatography
  • NMR nuclear magnetic resonance
  • the content of the alkali-soluble polyimide (A) is preferably 20% by mass or more, more preferably 30% by mass or more, in 100% by mass of the solid content of the photosensitive resin layer, excluding the inorganic particles described later. It is preferably 40% by mass or more, and more preferably 40% by mass or more. As the content of the alkali-soluble polyimide (A) increases, the elastic modulus, pressure resistance, and heat resistance of the cured film can be improved. On the other hand, the content of the alkali-soluble polyimide (A) is preferably 80% by mass or less in 100% by mass of the solid content of the photosensitive resin layer, excluding the inorganic particles described later, and is 70% by mass or less. is more preferably 60% by mass or less. The lower the content of the alkali-soluble polyimide (A), the better the lamination properties of the photosensitive resin sheet.
  • the photosensitive resin composition forming the photosensitive resin layer in the photosensitive resin sheet of the present invention contains a photopolymerizable compound (B).
  • the photopolymerizable compound (B) means a compound having a functional group exhibiting radical polymerizability or cationic polymerizability in its molecule.
  • functional groups exhibiting radical polymerizability include vinyl groups, allyl groups, acryloyl groups, methacryloyl groups, propargyl groups, and the like.
  • compounds having an acryloyl group or a methacryloyl group are preferable from the standpoint of polymerizability.
  • a compound having an acryloyl group or a methacryloyl group is hereinafter referred to as a (meth)acrylic compound.
  • compounds having functional groups exhibiting cationic polymerizability include cyclic ether compounds (epoxy compounds, oxetane compounds, etc.), ethylenically unsaturated compounds (vinyl ethers, styrenes, etc.), bicycloorthoesters, spiroorthocarbonates and spiroortho Ester etc. are mentioned.
  • the equivalent weight of functional groups exhibiting radical polymerizability or cationic polymerizability (hereinafter referred to as photopolymerizable functional group equivalent weight) in the photopolymerizable compound (B) is 70 to 200 g/eq on average.
  • the photopolymerizable functional group equivalent of the photopolymerizable compound (B) is preferably 70 g/eq or more on average, more preferably 80 g/eq or more, further preferably 90 g/eq or more, 100 g/eq or more is particularly preferred.
  • the greater the photopolymerizable functional group equivalent the more the elongation of the cured film can be improved, and the more the occurrence of cracks can be suppressed.
  • the average photopolymerizable functional group equivalent of the photopolymerizable compound (B) is preferably 200 g/eq or less, more preferably 180 g/eq or less, and 160 g/eq or less. More preferably, it is particularly preferably 140 g/eq or less.
  • the photopolymerizable functional group equivalent is smaller, the heat resistance and elastic modulus of the cured film can be improved, and the reliability of the cured film is increased. Moreover, high-resolution pattern formation becomes possible. It is presumed that this is because the polymerization reaction in the exposed areas progressed more favorably during photocuring, resulting in a greater difference in dissolution contrast in the developer between the exposed areas and the unexposed areas.
  • the photopolymerizable functional group equivalent is obtained from the following formula.
  • Photopolymerizable functional group equivalent (molecular weight/number of radically polymerizable or cationic polymerizable functional groups in the same molecule)
  • the number of functional groups exhibiting radical polymerizability or cationic polymerizability of the photopolymerizable compound (B) is preferably 2 or more, more preferably 3 or more. As the number of functional groups increases, the heat resistance of the cured film can be improved. In addition, after photocuring, the solubility of the exposed portion in the developer is reduced, so that the pattern can be formed with high resolution.
  • the number of functional groups exhibiting radical polymerizability or cationic polymerizability of the photopolymerizable compound (B) is preferably 16 or less, more preferably 6 or less. The smaller the number of functional groups, the more it is possible to suppress the occurrence of cracks in the cured film.
  • the photopolymerizable compound (B) is not particularly limited as long as it has a photopolymerizable functional group equivalent weight of 70 to 200 g/eq.
  • epoxy compound suitable as the photopolymerizable compound (B) known compounds can be used, including aromatic epoxy compounds, alicyclic epoxy compounds and aliphatic epoxy compounds.
  • aromatic epoxy compounds include glycidyl ethers of monohydric or polyhydric phenols (phenol, bisphenol A, phenol novolak, and alkylene oxide adducts thereof) having at least one aromatic ring.
  • Examples of alicyclic epoxy compounds include compounds obtained by epoxidizing a compound having at least one cyclohexene or cyclopentene ring with an oxidizing agent (3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, etc. ).
  • Aliphatic epoxy compounds include aliphatic polyhydric alcohols or polyglycidyl ethers of alkylene oxide adducts thereof (1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, etc.), aliphatic polybasic acids polyglycidyl esters (diglycidyl tetrahydrophthalate, etc.), and epoxidized long-chain unsaturated compounds (epoxidized soybean oil, epoxidized polybutadiene, etc.).
  • oxetane compound known compounds can be used. -oxetanylmethyl)ether, 2-hydroxypropyl(3-ethyl-3-oxetanylmethyl)ether, 1,4-bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene, oxetanylsilsesquioxetane and phenol novolac oxetane etc.
  • known cationic polymerizable monomers can be used, including aliphatic monovinyl ethers, aromatic monovinyl ethers, polyfunctional vinyl ethers, styrene and cationic polymerizable nitrogen-containing monomers.
  • Aliphatic monovinyl ethers such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether and cyclohexyl vinyl ether; aromatic monovinyl ethers such as 2-phenoxyethyl vinyl ether, phenyl vinyl ether and p-methoxyphenyl vinyl ether; and polyfunctional vinyl ethers such as butane.
  • N- Bicycloorthoesters such as vinylcarbazole and N-vinylpyrrolidone
  • spiroorthocarbonates such as 1,5,7,11-tetraoxaspiro[5.5]undecane and 3,9-dibenzyl- 1,5,7,11-tetraoxaspiro[5.5]undecane, spiro orthoesters such
  • epoxy compounds, oxetane compounds and vinyl ethers are preferred, and epoxy compounds and oxetane compounds are particularly preferred.
  • "Denacol” which is a polyfunctional epoxy compound EX-810, EX-850, EX-821, EX-830, EX-841, EX-201, EX-211, EX-212, EX-252, EX-920EX-991L (trade names, both manufactured by Nakase ChemteX Co., Ltd.), "Epiclon” EXA-4850, HP-7250 (trade names, manufactured by DIC Corporation), YL-980, YL-983, YX-6677 ( (trade names, all manufactured by Mitsubishi Chemical Corporation), "Celoxide” 2021P, 2081 (trade names, manufactured by Daicel Corporation), "ADEKA GLYCIROL” ED-503, ED-506, ED-523T, ED505 (trade names, all manufactured by ADEKA Corporation), "
  • epoxy compound containing a nitrogen atom has improved compatibility with the alkali-soluble polyimide (A), fine pattern workability can be obtained, and a good glass transition temperature and good mechanical properties are not reduced.
  • Further examples of epoxy compounds containing an isocyanurate skeleton include triglycidyl isocyanurate TEPIC-S, TEPIC-L, TEPIC-VL, TEPIC-PASB22, and TEPIC-FL (trade names, all manufactured by Nissan Chemical Industries, Ltd.). ), etc. These photopolymerizable compounds are used alone or in combination of two or more.
  • the content of the photopolymerizable compound (B) in the photosensitive resin composition is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, relative to 100 parts by mass of the alkali-soluble polyimide (A), and 30 parts by mass. The above is more preferable. When the content is 10 parts by mass or more, it is possible to reduce film loss in the exposed portion during development.
  • the content of the photopolymerizable compound (B) in the photosensitive resin composition is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, relative to 100 parts by mass of the alkali-soluble polyimide (A). 120 parts by mass or less is more preferable. By making it 200 parts by mass or less, the heat resistance of the cured film can be improved.
  • Any one of the compounds represented by the general formulas (4), (5) and (6) is preferably contained as the photopolymerizable compound (B).
  • R 10 represents a hydrocarbon group having 1 to 5 carbon atoms
  • R 11 represents hydrogen or a methyl group
  • Z represents an organic group.
  • a represents an integer of 0-1, and b represents an integer of 2-10.
  • a is 0.
  • b is preferably 4 to 8.
  • Z has a cyclic skeleton b is preferably 2 to 4.
  • the cyclic skeleton is an alicyclic ring. A skeleton is preferred.
  • R 12 represents a hydrocarbon group having 1 to 5 carbon atoms
  • R 13 represents hydrogen, methyl group or ethyl group.
  • Z represents an organic group.
  • c represents an integer of 0-2, and d represents an integer of 2-10.
  • the content of the compounds represented by general formulas (4) to (6) is preferably 70% by mass or more and 100% by mass or less. , more preferably 80% by mass or more and 100% by mass or less, more preferably 90% by mass or more and 100% by mass or less.
  • the heat resistance and elastic modulus of the cured film can be improved.
  • the photopolymerizable compound (B) represented by the general formulas (4) to (6) in the photosensitive resin sheet of the present invention does not have a cyclic structure and has a photopolymerizable functional group equivalent weight of 80 to 120 g/eq. It is preferable to contain a photopolymerizable compound (hereinafter referred to as (BH) component).
  • a photopolymerizable compound hereinafter referred to as (BH) component.
  • the number of functional groups of the (BH) component is preferably 2 or more, more preferably 3 or more. By setting the number of functional groups to 3 or more, it is possible to improve the heat resistance of the cured film.
  • the number of functional groups of the component (BH) is preferably 16 or less, more preferably 12 or less, and more preferably 8 or less. By setting the number of functional groups to 16 or less, it becomes possible to suppress the occurrence of cracks in the cured film.
  • component (BH) include trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, ditrimethylolpropane tetraacrylate, Ditrimethylolpropane tetramethacrylate, dipentaerythritol pentaacrylate, dipentaerythritol pentamethacrylate, dipentaerythritol hexaacrylate, dipentaerythritol hexamethacrylate, polypentaerythritol acrylate, polypentaerythritol methacrylate, and the like, but are limited to these. not.
  • the photopolymerizable compound (B) represented by the general formulas (4) to (6) is a photopolymerizable compound having an alicyclic structure and a photopolymerizable functional group equivalent weight of 130 to 200 g/eq (hereinafter referred to as (BL) component) is preferably contained.
  • (BL) component a photopolymerizable compound having an alicyclic structure and a photopolymerizable functional group equivalent weight of 130 to 200 g/eq
  • the number of functional groups of the component (BL) is preferably 2 or more. By setting the number of functional groups to 2 or more, the heat resistance of the cured film can be improved. On the other hand, the number of functional groups of the component (BL) is preferably 6 or less, more preferably 4 or less. By setting the number of functional groups to 6 or less, the occurrence of cracks in the cured film can be suppressed.
  • component (BL) examples include dimethyloltricyclodecane diacrylate, dimethyloltricyclodecane dimethacrylate, 1,3-adamantane diacrylate, 1,3-adamantane dimethacrylate, 1,3,5- adamantane triacrylate, 1,3,5-adamantane trimethacrylate, 5-hydroxy-1,3-adamantane diacrylate, 5-hydroxy-1,3-adamantane dimethacrylate, bis-(2-acryloxyethyl)isocyanurate, Tris-(2-acryloxyethyl) isocyanurate, ethylene oxide-modified bisphenol A diacrylate and the like can be mentioned, but not limited to these.
  • the photosensitive resin composition forming the photosensitive resin layer in the photosensitive resin sheet of the present invention contains a photopolymerization initiator (C).
  • a photopolymerization initiator (C) By containing the photopolymerization initiator (C), the polymerization of the photopolymerizable compound (B) described above proceeds due to the active species generated by actinic rays, and the exposed portion of the photosensitive resin layer is exposed to the alkaline developer. A negative pattern can be formed by insolubilization.
  • Examples of the photopolymerization initiator (C) are preferably photoradical generators or photoacid generators. Specific examples include benzophenones, glycines, mercaptos, oximes, acylphosphines, ⁇ -aminoalkylphenones, etc. Among them, acylphosphines, oximes, aromatic iodonium complex salts, aromatic Sulfonium complex salts and the like are preferably used.
  • the photopolymerization initiator (C) may be used alone or in combination of two or more.
  • photoinitiator (C) examples include benzophenones such as benzophenone, Michler's ketone, 4,4,-bis(diethylamino)benzophenone, and 3,3,4,4,-tetra(t-butylperoxycarbonyl)benzophenone.
  • benzylidenes such as 3,5-bis(diethylaminobenzylidene)-N-methyl-4-piperidone, 3,5-bis(diethylaminobenzylidene)-N-ethyl-4-piperidone, 7-diethylamino-3-nonylcoumarin , 4,6-dimethyl-3-ethylaminocoumarin, 3,3-carbonylbis(7-diethylaminocoumarin), 7-diethylamino-3-(1-methylmethylbenzimidazolyl)coumarin, 3-(2-benzothiazolyl)-7 - coumarins such as diethylaminocoumarin, anthraquinones such as 2-t-butylanthraquinone, 2-ethylanthraquinone, 1,2-benzanthraquinone, benzoins such as benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, 2,4 -
  • acylphosphines and oximes examples include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, 1- Phenyl-1,2-propanedione-2-(o-ethoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-(o-benzoyl)oxime, bis( ⁇ -isonitrosopropiophenone oxime) isophthal, 1,2-octanedione-1-[4-(phenylthio)phenyl]-2-(o-benzoyloxime)], ethanone-1-[9-ethyl-6-(2-methylbenzoyl)-9H- Carbazol-3-yl]-1-(o-acetyloxime), ADEKA Co., Ltd.
  • ADEKA Arkles (registered trademark) N-1919, NCI-831, NCI-930, NCI-730, BASF Corporation "Irgacure "OXE-01, OXE-02, OXE-03, OXE-04, 250, 270, San-Apro Co., Ltd. CPI-110B, CPI-110S, CPI-210S, CPI-310B, CPI-310S, CPI-310FG, CPI -410B.
  • the content of the photopolymerization initiator (C) in the photosensitive resin composition is preferably 0.5 parts by mass or more, and is 1 part by mass or more, relative to 100 parts by mass of the alkali-soluble polyimide (A). is more preferable, and 2 parts by mass or more is even more preferable.
  • the content of the photopolymerization initiator (C) in the photosensitive resin composition is preferably 30 parts by mass or less in 100 parts by mass of the alkali-soluble polyimide (A), and is 25 parts by mass or less.
  • the content of the photopolymerization initiator (C) is more preferable, and 20 parts by mass or less is even more preferable.
  • the photosensitive resin composition forming the photosensitive resin layer in the photosensitive resin sheet of the present invention contains a coloring agent (D).
  • the colorant (D) of the present invention refers to an organic material that has an absorption maximum in the visible light region and is soluble in an organic solvent. By containing the coloring agent (D) in the photosensitive resin composition, light having a wavelength absorbed by the coloring agent (D) is blocked from the light transmitted through the photosensitive resin sheet or the light reflected from the photosensitive resin sheet. It is possible to impart light shielding properties.
  • the cured film obtained after exposing and heat-curing the photosensitive resin sheet described later is in a colored state without fading, and the coloring material has weather resistance and heat resistance that do not discolor in the post-process. It is preferable that the coloring material has Furthermore, it is preferable that the transparency is high in the wavelength region of actinic rays in the exposure process.
  • the coloring material (D) contains at least an organic dye, and examples thereof include a method using one type of dye, a method using a combination of two or more types of dyes, and the like.
  • the colorant (D) preferably has an absorption maximum at 500 to 800 nm, more preferably 530 to 750 nm, more preferably 530 to 700 nm. If the maximum absorption wavelength of the coloring material is less than 500 nm, absorption of actinic rays occurs in the exposure process, and the exposure sensitivity of the coating film may decrease. When the maximum absorption wavelength of the coloring material is 500 nm or more, the deterioration of the exposure sensitivity of the coating film can be suppressed, and a pattern with a favorable shape can be obtained.
  • the maximum absorption wavelength of the coloring material is longer than 800 nm, the absorption in the visible light region becomes weak, and the visibility is lowered, so it may be difficult to distinguish defects, defect locations, and pattern defect locations of the coating film.
  • the coloring material (D) is preferably an organic dye.
  • the organic dyes used as the coloring agent (D) by selecting a coloring agent that is soluble in an organic solvent or the like, the coloring agent can be easily dispersed when the coating material is prepared, and uneven distribution of the composition in the coating material can be suppressed. Therefore, the uniformity of the shielding ability in the photosensitive resin sheet can be improved.
  • the coloring agent (D) which is an organic dye soluble in an organic solvent, include oil-soluble dyes, disperse dyes, reactive dyes, and acid dyes.
  • the skeleton structure of the organic dye includes, but is not limited to, anthraquinone, azo, phthalocyanine, methine, oxazine, quinoline, triarylmethane, and xanthene.
  • anthraquinone, triarylmethane, and xanthene are preferred because of their solubility in organic solvents, weather resistance from the viewpoint of exposure process and curing film fading, and electrical reliability after heat curing. It preferably has a skeleton structure.
  • the coloring agent (D) preferably contains an anthraquinone compound having heat resistance.
  • Each of these dyes may be used alone or as a metal-containing complex salt.
  • organic dyes used for these are indicated by color index (CI) numbers.
  • yellow dyes include Solvent Yellow 16, 18, 21, 33, 34, 35, 43, 54, 93, 112, 128, 157, 159, 160, 201, Acid Yellow 17, 19, 23, 25, 39. , 40, 42, 44, 49, 50, 61, 64, 76, 79, 110, 127, 135, 143, 151, 159, 169, 174, 190, 195, 196, 197, 199, 218, 219, 222 227, basic yellow 1, 2, 4, 11, 13, 14, 15, 19, 21, 23, 24, 25, 28, 29, 32, 36, 39, or 40.
  • red dyes include Direct Red 2, 4, 26, 28, 31, 39, 62, 63, 72, 75, 76, 79, 80, 81, 83, 84, 89, 111, 173, 184, 207 , 211, 212, 225, 226, 240, 241, 242, 243 or 247, acid red 35, 42, 51, 52, 57, 62, 80, 82, 111, 114, 118, 119, 127, 128, 131 , 143, 145, 151, 154, 157, 158, 211, 249, 254, 257, 261, 263, 266, 289, 299, 301, 305, 319, 336, 337, 361, 396 or 397, basic red 1 , 12, 13, 14, 15, 18, 22, 23, 24, 25, 27, 29, 35, 36, 38, 39, 45 or 46, solvent red 18, 52, 111, 135, 168, 179, 207 , Sudan, Oil Red O and the like.
  • violet dyes examples include direct violet 7, 9, 47, 48, 51, 66, 90, 93, 94, 95, 98, 100 or 101, acid violet 5, 9, 11, 34, 43, 47, 48 , 51, 75, 90, 103 or 126, reactive violet 1, 3, 4, 5, 6, 7, 8, 9, 16, 17, 22, 23, 24, 26, 27, 33 or 34, basic violet 1, 2, 3, 7, 10, 15, 16, 20, 21, 25, 27, 28, 35, 37, 39, 40 or 48 and the like.
  • blue dyes examples include Direct Blue 55, 68, 83, 95, 158, 172, 190, 194, 196, 198, 211, 218, 226, 244, 271, 273, 274 or 277, Acid Blue 5, 13, 40, 52, 55, 56, 69, 86, 98, 142, 143, 145, 200, 202, 208, 209, 210, 243 or 252, reactive blue 11, 20, 24, 31, 34, 36, 60 , 76, 90, 108, 128, 131, 140, 146 or 151, basic blue 8, 12, 46, 48, 67, 75, 89, 91, 105, 106, 107, 108, 110, 115, 129, 131 , 135 or 137, solvent blue 7, 12, 34, 36, 44, 45, 49, 50, 52, 53, 78, 82, 87, 91, 92, 93, 94, 95, 97, 98, 99, 103 , 105, 109, 110, 111, 112,
  • green dyes examples include Acid Green 1, 5, 16, 65, 82, 83, 92, 94 or 104, Basic Green 10, Direct Green 6, 27, 30, 34 or 68 and the like. Dyes other than these can also be used. In particular, by using violet dyes and blue dyes that absorb little actinic rays in the exposure step, it is possible to suppress an increase in the amount of exposure and to prevent the pattern shape from becoming a reverse tapered shape.
  • the coloring material (D) used in the present invention preferably has heat resistance such that it does not decompose and/or sublime when a cured film obtained by heating and curing the photosensitive resin sheet described later is formed.
  • the content of the coloring material (D) when used in the present invention is preferably 0.1 parts by mass or more and 50 parts by mass or less, and 1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the alkali-soluble polyimide (A). is more preferable, and 3 parts by mass or more and 8 parts by mass or less is particularly preferable.
  • the content of the coloring material (D) is preferably 0.1 parts by mass or more and 50 parts by mass or less, and 1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the alkali-soluble polyimide (A). is more preferable, and 3 parts by mass or more and 8 parts by mass or less is particularly preferable.
  • the organic dye used as the coloring material (D) may be subjected to surface treatment such as rosin treatment, acidic group treatment, or basic group treatment, if necessary.
  • the colorant (D) can also be used together with a dispersant.
  • dispersants include cationic, anionic, nonionic, amphoteric, silicone and fluorine surfactants.
  • the photosensitive resin sheet of the present invention may further contain a thermochromic compound.
  • the thermochromic compound is a thermochromic compound that develops color in a heat treatment step described below and has an absorption maximum at 350 nm or more and 700 nm or less.
  • the thermochromic compound is preferably a thermochromic compound that exhibits little absorption in the exposure wavelength region of the photosensitive resin sheet, ie, 350 to 450 nm.
  • thermochromic compound does not shield visible light or ultraviolet light before heat curing, so it is difficult to accurately determine defects and defects in the resin sheet.
  • the shielding property after heat curing is weaker than that of a coloring agent added in the same amount, it is necessary to add a large amount of thermochromic compound in order to distinguish defects and defects. Strength decreases. Therefore, it is preferable to use the thermochromic compound together with the colorant (D) in accordance with various properties.
  • the thermochromic compound is preferably a compound that develops color at a temperature higher than 120°C, more preferably a thermochromic compound that develops color at a temperature higher than 180°C.
  • the higher the color-developing temperature of the thermochromic compound the better the heat resistance under high-temperature conditions, and the less the color fades due to long-term irradiation with ultraviolet light and visible light, and the better the light resistance.
  • thermochromic compound may be a general heat-sensitive dye or pressure-sensitive dye, or may be another compound.
  • thermochromic compounds include those that develop color by changing their chemical structure and charge state due to the action of acidic groups coexisting in the system during the heat treatment process, or those that undergo a thermal oxidation reaction due to the presence of oxygen in the air. and the like are exemplified.
  • thermochromic compound examples include a triarylmethane skeleton, a diarylmethane skeleton, a fluorane skeleton, a bislactone skeleton, a phthalide skeleton, a xanthene skeleton, a rhodamine lactam skeleton, a fluorene skeleton, a phenothiazine skeleton, a phenoxazine skeleton, and a spiropyran skeleton.
  • a triarylmethane skeleton is preferable because of its high thermal coloring temperature and excellent heat resistance.
  • triarylmethane skeleton examples include 2,4′,4′′-methylidenetrisphenol, 4,4′,4′′-methylidenetrisphenol, 4,4′-[(4-hydroxyphenyl) methylene]bis(benzenamine), 4,4'-[(4-aminophenyl)methylene]bisphenol, 4,4'-[(4-aminophenyl)methylene]bis[3,5-dimethylphenol], 4, 4′-[(2-hydroxyphenyl)methylene]bis[2,3,6-trimethylphenol], 4-[bis(4-hydroxyphenyl)methyl]-2-methoxyphenol, 4,4′-[(2 -hydroxyphenyl)methylene]bis[2-methylphenol], 4,4′-[(4-hydroxyphenyl)methylene]bis[2-methylphenol], 4-[bis(4-hydroxyphenyl)methyl]-2 -ethoxyphenol, 4,4'-[(4-hydroxyphenyl)methylene]bis[2,6-dimethylphenol], 2,2
  • the hydroxyl group-containing compound having a triarylmethane skeleton may be used as a quinonediazide compound by ester-bonding the sulfonic acid of naphthoquinonediazide to the compound.
  • the content when containing a thermochromic compound is preferably 0.5 to 50 parts by mass, more preferably 1 to 10 parts by mass, with respect to 100 parts by mass of the alkali-soluble polyimide (A). ⁇ 10 parts by mass is more preferable.
  • the content of the thermochromic compound is 0.5 parts by mass or more, the transmittance of the cured film in the ultraviolet and visible light regions can be reduced. Moreover, if it is 50 parts by mass or less, the heat resistance and strength of the cured film can be maintained.
  • the photosensitive resin sheet of the present invention may contain a known sensitizer in order to absorb actinic rays such as ultraviolet rays and provide the absorbed light energy to the photopolymerization initiator.
  • Preferred examples of sensitizers include anthracene compounds having alkoxy groups at the 9- and 10-positions (9,10-dialkoxy-anthracene derivatives).
  • alkoxy groups include C1-C4 alkoxy groups such as methoxy, ethoxy and propoxy groups.
  • the 9,10-dialkoxy-anthracene derivative may further have a substituent.
  • substituents include halogen atoms such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, C1 to C4 alkyl groups such as a methyl group, an ethyl group and a propyl group, a sulfonic acid alkyl ester group, and a carboxylic acid alkyl ester group. etc.
  • substituents include halogen atoms such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, C1 to C4 alkyl groups such as a methyl group, an ethyl group and a propyl group, a sulfonic acid alkyl ester group, and a carboxylic acid alkyl ester group. etc.
  • alkyl in the sulfonic acid alkyl ester group and carboxylic acid alkyl ester include C1-C4 alkyl such as methyl
  • the photosensitive resin composition forming the photosensitive resin layer in the photosensitive resin sheet of the present invention preferably contains inorganic particles.
  • inorganic particles By containing the inorganic particles, it is possible to improve mechanical properties such as elastic modulus and chemical resistance of the cured film formed by heat-curing the photosensitive resin layer. In addition, it is possible to change the light transmittance of the cured film and improve the visibility of defects and missing portions of the pattern.
  • inorganic particles include silicon oxides such as talc, amorphous silica, crystalline silica, fused silica and spherical silica, glass particles composed of various metal oxides, titanium oxide, aluminum oxide, calcium oxide, magnesium oxide, oxide Zinc, calcium carbonate, magnesium carbonate, calcium hydroxide, aluminum hydroxide, magnesium hydroxide, mica, hydrotalcite, aluminum silicate, magnesium silicate, calcium silicate, potassium titanate, magnesium sulfate, calcium sulfate, magnesium phosphate, nitriding Boron, aluminum borate, aluminum hydrate, hydrated gypsum, barium sulfate and the like. These are used singly or in combination.
  • silicon oxide, titanium oxide, aluminum oxide, magnesium oxide, aluminum hydroxide, and glass particles can be preferably used. Further, silicon oxide is preferable from the viewpoint of reducing the linear expansion of a cured film composed of a photosensitive resin layer.
  • the average particle diameter D50 of the inorganic particles is preferably 30 to 150 nm, more preferably 40 to 120 nm, even more preferably 60 to 120 nm.
  • the average particle diameter D50 of the inorganic particles is 30 nm or more, the inorganic particles are well dispersed in the paint, so that a pattern with a uniform line width can be obtained.
  • the average particle diameter D50 of the inorganic particles is set to 150 nm or less, the smoothness of the surface of the photosensitive resin sheet and the surface of the cured film after patterning can be improved. Moreover, scattering of ultraviolet rays during exposure can be suppressed, and a high-resolution pattern can be obtained.
  • the average particle diameter D50 of the inorganic particles is the value of the 50% volume particle diameter measured using a particle size distribution meter using a dynamic light scattering particle size distribution meter.
  • the shape of the inorganic particles includes, but is not particularly limited to, spherical, needle-like, fibrous, amorphous granular, plate-like, and crushed shapes.
  • the content of the inorganic particles is preferably 1% by mass or more, more preferably 3% by mass or more, when the total mass of the solid content in the photosensitive resin layer of the present invention is 100% by mass. , more preferably 5% by mass or more.
  • the content of the inorganic particles is preferably 40% by mass or less with respect to 100% by mass of the total solid content in the photosensitive resin layer, from the viewpoint of improving pattern processability and elongation. % mass % or less, and even more preferably 20 mass % or less.
  • silane coupling agents include Shin-Etsu Chemical's vinyltrimethoxysilane (KBM-1003), 3-glycidoxypropyltrimethoxysilane (KBM-403), 2-(3,4-epoxycyclohexyl)ethyl Trimethoxysilane (KBM-303), trimethoxysilane succinic anhydride (KBM-967TR-1), 3-methacryloxypropyltrimethoxysilane (KBM-503), N-2-(aminoethyl)-3-aminopropyl Trimethoxysilane (KBM-603), N-phenyl-3-aminopropyltrimethoxysilane (KBM-573) and the like can be used.
  • Surface treatment of inorganic particles includes a dry surface treatment method in which a silane coupling agent and a small amount of water are added to the inorganic particles and stirred, and a wet surface treatment method in which inorganic particles and a silane coupling agent are added in an organic solvent and stirred. methods of processing, and the like. In addition, a method of performing a wet surface treatment in which inorganic particles and a silane coupling agent are added to the photosensitive resin composition and stirred is also included.
  • the photosensitive resin layer of the photosensitive resin sheet of the present invention preferably contains a thermal crosslinking agent.
  • the thermal cross-linking agent is a component that is cured by heat treatment after patterning, and can improve the heat resistance, mechanical properties and chemical resistance of the cured product.
  • the thermal cross-linking agent is preferably a compound containing at least one of alkoxymethyl, methylol, epoxy and oxetane groups, and contains at least two of alkoxymethyl, methylol, epoxy and oxetane groups. Compounds are more preferred.
  • compounds having an alkoxymethyl group or a methylol group include, for example, 46DMOC, 46DMOEP (trade names, manufactured by Asahi Organic Chemicals Industry Co., Ltd.), DML-PC, DML-PEP, DML-OC, and DML.
  • compounds having an epoxy group include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, polymethyl(glycidyloxypropyl), epoxy group containing silicone and the like.
  • Epiclon (registered trademark) 850-S, HP-4032, HP-7200, HP-820, HP-4700, EXA-4710, HP-4770, EXA-859CRP, EXA-1514, EXA- 4880, EXA-4850-150, EXA-4850-1000, EXA-4816, EXA-4822 (trade names, manufactured by Dainippon Ink and Chemicals), "Rikaresin” (registered trademark) BEO-60E, BPO-20E , HBE-100, DME-100, L-200, BPO-20E, BEO-60E (trade names, manufactured by Shin Nippon Rika Co., Ltd.), ADEKA RESIN EP-4003S, EP-4000S, EP-4005, EP-4100G, (above, product names, manufactured by ADEKA), PG-100, CG-500, EG-200 (above, product names, manufactured by Osaka Gas Chemicals Co., Ltd.), NC-3000,
  • the content of the thermal cross-linking agent in the photosensitive resin sheet of the present invention is preferably 5% by mass or more, more preferably 10% by mass or more, and 15% by mass or more relative to 100% by mass of the alkali-soluble polyimide (A). is more preferred.
  • the content of the thermal cross-linking agent is preferably 100% by mass or less, more preferably 50% by mass or less, and 40% by mass or less with respect to 100% by mass of the alkali-soluble polyimide (A). is more preferred.
  • the photosensitive resin sheet of the present invention may further contain a polymerization inhibitor. Since the exciton concentration is adjusted by containing the polymerization inhibitor, a pattern having a rectangular cross section can be formed. In addition, the polymerization inhibitor can suppress excessive photoresponsivity, and the exposure margin can be widened. Furthermore, since the increase in the viscosity of the photosensitive resin composition paint and sheet can be suppressed, the quality can be improved.
  • polymerization inhibitors include, for example, hydroquinone, hydroquinone monomethyl ether, phenolic polymerization inhibitors such as t-butylcatechol, phenothiazine, 2-methoxyphenothiazine, 1-naphthol, 1,4-dihydroxynaphthalene, 4-methoxy- 1-naphthol, 1-methoxynaphthalene, 1,4-dimethoxynaphthalene, 2,6-dimethoxynaphthalene, 2,7-dimethoxynaphthalene, 1,4-diethoxynaphthalene, 2,6-diethoxynaphthalene, 2,7- Diethoxynaphthalene, 2,6-dibutoxynaphthalene, 2-ethyl-1,4-diethoxynaphthalene, 1,4-dibutoxynaphthalene, 1,4-diphenethyloxynaphthalene, 1,4-naphthoquinone,
  • the photosensitive resin sheet of the present invention can further contain an adhesion improver.
  • the adhesion improving material improves adhesion between the substrate and the circuit forming material formed on the substrate with the photosensitive resin layer in the photosensitive resin sheet and/or their cured film.
  • substrates include silicon wafers, organic circuit substrates, LTCC and HTCC ceramic substrates, and inorganic circuit substrates.
  • organic circuit boards include glass-based copper-clad laminates such as glass cloth and epoxy copper-clad laminates, composite copper-clad laminates such as glass nonwoven fabrics and epoxy copper-clad laminates, polyetherimide resin substrates, and polyetherimide resin substrates.
  • Examples include heat-resistant/thermoplastic substrates such as etherketone resin substrates and polysulfone resin substrates, and flexible substrates such as polyester copper-clad film substrates and polyimide copper-clad film substrates.
  • inorganic circuit substrates include ceramic substrates such as alumina substrates, aluminum nitride substrates and silicon carbide substrates, and metal substrates such as aluminum base substrates, copper base substrates and iron base substrates.
  • Examples of circuit constituent materials include conductors containing gold, silver, copper, aluminum, nickel, chromium, titanium, etc., and resistors such as inorganic oxides.
  • adhesion improvers examples include vinyltrimethoxysilane (KBM-1003), 3-glycidoxypropyltrimethoxysilane (KBM-403), and 2-(3,4-epoxycyclohexyl) manufactured by Shin-Etsu Chemical Co., Ltd.
  • 1,2,3-benzotriazole (BT-120), carboxybenzotriazole (CBT-1, CBT-SG), 5-carboxybenzotriazole (CBT-5), 1-(1',2'-)dicarboxy Ethyl)benzotriazole (BT-M), 1-[N,N-bis(2-ethylhexyl)aminomethyl]benzotriazole (BT-LX) 2,2′-[[methyl-1H-benzotriazol-1-yl ]methyl]imino]bisethanol, triazole compounds such as 5-methylbenzotriazole (5M-BTA), thiol compounds such as Karenz MT (registered trademark) PE1, BD1, NR1, TPMB manufactured by Showa Denko K.K. mentioned.
  • 5-methylbenzotriazole (5M-BTA)
  • thiol compounds such as Karenz MT (registered trademark) PE1, BD1, NR1, TPMB manufactured by Showa Denko K.K. mentioned.
  • the photosensitive resin sheet of the present invention may contain organic solvents, dispersants, plasticizers, etc., if necessary.
  • a first form of the photosensitive resin composition is a varnish material prepared by dissolving and diluting various raw materials in an organic solvent. Dissolving methods include ultrasonic waves, blade agitation, ball milling, and the like, and filter filtration may be performed as necessary.
  • the filtration method is not particularly limited, but a method of filtration by pressure filtration using a filter having a retained particle size of 1 ⁇ m to 50 ⁇ m is preferred.
  • the organic solvent to be diluted is not particularly limited, but ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ale, propylene glycol monoethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and ethylene glycol dibutyl ether.
  • ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ale, propylene glycol monoethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and ethylene glycol dibutyl ether.
  • a layer (hereinafter referred to as a photosensitive resin layer) made of a photosensitive resin composition is coated and dried on a film (also referred to as a support film) that supports the photosensitive resin composition. is formed on a support film.
  • the photosensitive resin sheet of the present invention is a sheet having a support film and a layer (photosensitive resin layer) formed from a photosensitive resin composition on the support film.
  • the support film used in the photosensitive resin sheet of the present invention is not particularly limited, but various commercially available films such as polyester films such as polyethylene terephthalate (PET) films, polyphenylene sulfide films, and polyimide films can be used. .
  • the bonding surface between the support film and the photosensitive resin layer may be surface-treated with a silicone agent, a silane coupling agent, an aluminum chelating agent, polyurea, or the like, in order to adjust adhesion and releasability.
  • the thickness of the support film is not particularly limited, but from the viewpoint of workability, it is preferably in the range of 10 to 100 ⁇ m, more preferably in the range of 30 to 80 ⁇ m.
  • the thickness of the support film is 10 ⁇ m or more, curling of the photosensitive resin sheet after the photosensitive resin composition is applied and dried can be suppressed, and the sheet can be wound up as a roll.
  • the thickness of the support film is 100 ⁇ m or less, when the photosensitive resin sheet is exposed through the support film, the exposure light spreads within the support film, resulting in deterioration of the pattern workability.
  • the haze of the support film is preferably 2.0% or less. If the haze is more than 2.0%, scattering of exposure light occurs, resulting in poor pattern workability.
  • a protective film may be provided on the side of the photosensitive resin layer in the photosensitive resin sheet composed of the photosensitive resin layer and the support film. That is, it is preferable to form a photosensitive resin sheet in which the support film, the photosensitive resin layer, and the protective film are directly laminated in this order. As a result, the surface of the photosensitive resin layer of the photosensitive resin sheet can be protected from contaminants such as dirt and dust in the air.
  • Protective films include polyethylene (PE) films, polypropylene (PP) films, polyester films, polyvinyl alcohol films, and the like.
  • the protective film is preferably such that the photosensitive resin layer and the protective film are not easily peeled off, and the adhesion strength between the photosensitive resin layer and the support film is preferably weaker.
  • Methods for applying the photosensitive resin composition to the support film include spin coating using a spinner, spray coating, roll coating, screen printing, blade coater, die coater, calendar coater, meniscus coater, bar coater, roll coater, A comma roll coater, a gravure coater, a screen coater, a slit die coater and the like can be used.
  • the coating film thickness varies depending on the coating method, the solid content concentration of the composition, the viscosity, etc., it is generally preferable that the film thickness of the photosensitive resin layer after drying is 3 ⁇ m or more and 100 ⁇ m or less.
  • the film thickness of the photosensitive resin layer is preferably 15-40 ⁇ m, more preferably 15-35 ⁇ m, even more preferably 18-35 ⁇ m.
  • the film thickness of the photosensitive resin layer is 15 ⁇ m or more, the metal wiring can be satisfactorily covered with the laminate, and the insulation between the metal wiring can be ensured. can do.
  • the thicker the photosensitive resin layer the more difficult it is to perform high-definition processing, the more the shrinkage stress in the curing process increases, the more the substrate warps, and the higher the material cost. is preferably
  • the photosensitive resin sheet of the present invention is produced by applying the photosensitive resin composition to a support film and then heat-drying the photosensitive resin composition in a drying facility such as a hot air oven, a hot plate, or an infrared drying oven. It is obtained by layering.
  • the drying temperature and drying time may be within a range in which the organic solvent can be volatilized, and it is preferable to appropriately set a range such that the photosensitive resin layer is in an uncured or semi-cured state. Specifically, it is preferably carried out at a temperature in the range of 40° C. to 120° C. within 1 minute to 120 minutes. Moreover, these temperatures and times may be combined and the temperature may be raised stepwise, and appropriate adjustments may be made so that the quality of the coating film after drying does not deteriorate due to roughness and foreign matter.
  • the photosensitive resin layer in the photosensitive resin sheet of the present invention preferably adjusts the light transmittance to actinic rays in the exposure step described later.
  • the photosensitive resin layer preferably satisfies the following relationship B when the transmittance at 365 nm is Tb365, the transmittance at 405 nm is Tb405, and the transmittance at 436 nm is Tb436.
  • Relation B At least one of formulas 3 to 5 is satisfied.
  • Formula 3 3.0% ⁇ Tb365 ⁇ 70%
  • Formula 4 3.0% ⁇ Tb405 ⁇ 70%
  • Formula 5 3.0% ⁇ Tb436 ⁇ 70%
  • the transmittance Tb405 of the photosensitive resin layer at a wavelength of 405 nm when the film thickness of the photosensitive resin layer is 26 ⁇ m is 3. It is preferably 0% or more and 70% or less, more preferably 5.0% or more and 50% or less, and even more preferably 5.0% or more and 40% or less.
  • the transmittance Tb405 When the transmittance Tb405 is 3.0% or more, the cross-sectional shape of the pattern becomes rectangular or forward tapered, which facilitates the formation of the metal wiring layer. On the other hand, when the transmittance is 70% or less, the photopolymerization reaction by the exposure light can proceed well.
  • the transmittance Tb365 is preferably 3.0% or more and 70% or less, and 5.0% or more and 50% or less. is more preferably 5.0% or more and 40% or less.
  • the transmittance Tb436 is preferably 3.0% or more and 70% or less, more preferably 5.0% or more and 50% or less, and 5.0%. % or more and 40% or less.
  • Tb365, Tb405 and Tb436 can be appropriately adjusted by light absorption at each wavelength depending on the types of materials contained in the photosensitive resin sheet and their compounding ratios.
  • the alkali-soluble polyimide (A), the photopolymerization initiator (C), the colorant (D) and the inorganic particles greatly contribute to the light transmittance at the exposure wavelength.
  • the photopolymerization initiator (C) efficiently absorbs the actinic rays of the exposure wavelength to promote the polymerization of the photopolymerizable compound (B).
  • other materials must be capable of high electrical properties, reliability and pattern inspectability while suppressing light absorption of actinic rays. Therefore, as described above, by selecting each material and setting the content within a predetermined range, a photosensitive resin sheet and a cured film pattern having excellent pattern processability while being a thick film can be obtained.
  • the photosensitive resin layer in the photosensitive resin sheet of the present invention has a transmittance Tb450 at a wavelength of 450 nm of 40% or more and 95% or less, preferably 50% or more and 90% or less, and 55% or more and 80% or less. is more preferable.
  • the transmittance Tb450 of the photosensitive resin layer at a wavelength of 450 nm is 40% or more and 95% or less regardless of the film thickness.
  • the transmittance Tb450 is 40% or more as described above, the alignment mark can be visually recognized when aligning the photomask and the substrate. In addition, a high-definition pattern can be obtained without cracks in the patterned cured film.
  • the transmittance Tb450 is 95% or less, it is possible to visually recognize and detect foreign matter and defects attached after pattern processing.
  • the photosensitive resin layer in the photosensitive resin sheet of the present invention satisfies the following relationship A when the transmittance at 600 nm is Tb600 and the minimum transmittance at 500 to 800 nm is TbVL. is a sheet.
  • Relation A At least one of Formula 1 and Formula 2 is satisfied.
  • the photosensitive resin layer in the photosensitive resin sheet of the present invention has a transmittance Tb600 at a wavelength of 600 nm of 0.10% or more and 40% or less, preferably 1.0% or more and 20% or less. It is more preferably 0% or more and 10% or less.
  • Tb600 transmittance Tb600 of the photosensitive resin layer at a wavelength of 600 nm is 0.10% or more and 40% or less regardless of the film thickness. If the transmittance Tb600 is less than 0.1%, the content of the necessary coloring material increases, and the heat resistance and mechanical strength of the cured film deteriorate. On the other hand, if the transmittance Tb600 is greater than 40%, the internal wiring pattern is transparent in the inspection after pattern processing, which may cause erroneous detection of foreign matter and defects.
  • the photosensitive resin layer in the photosensitive resin sheet of the present invention has a minimum value TbVL of transmittance at 500 to 800 nm of 0.10% or more and 40% or less, and 1.0% or more and 20% or less. It is preferably 3.0% or more and 10% or less.
  • TbVL transmittance at 500 to 800 nm of 0.10% or more and 40% or less, and 1.0% or more and 20% or less. It is preferably 3.0% or more and 10% or less.
  • the minimum transmittance value TbVL is greater than 40%, the internal wiring pattern is transparent in the inspection after pattern processing, which may cause erroneous detection of foreign matter and defects.
  • the wavelength of the inspection light used for inspection is selected to have the minimum transmit
  • the transmittances Tb365, Tb405, Tb436, Tb450, Tb600, and TbVL of the photosensitive resin layer were obtained by laminating the photosensitive sheet resin on the transparent base material by heating roll lamination, and then peeling off the support film.
  • the transmittance in the wavelength range of 350-800 nm is measured with a visible spectrophotometer.
  • Transmittances Tb365, Tb405, Tb436, Tb450, Tb600, and TbVL can be obtained by measuring the transmittance of a sample laminated with a photosensitive resin layer after calibrating the transmittance of the transparent substrate as 100%.
  • the melt viscosity of the photosensitive resin layer at 80°C is preferably 1,500 to 50,000 Pa ⁇ s.
  • the photosensitive resin layer can be adhered so as to cover a substrate that is flat or has irregularities due to wiring or the like, and the surface of the photosensitive resin layer after adhesion can be made flat.
  • the melt viscosity of the photosensitive resin layer is lower than 1,500 Pa s, the strength of the photosensitive resin layer is insufficient. The yield may deteriorate due to tearing of the film.
  • the amount of volatile components remaining in the photosensitive resin layer is large, so the surface of the photosensitive resin layer does not become sufficiently flat on substrates with unevenness, resulting in multi-layer coating. Defects occur in the wiring board, or the pattern line width and thickness of the metal wiring, the photosensitive resin layer, and the cured film are not as designed, resulting in a decrease in the yield of the multilayer wiring board.
  • the melt viscosity of the photosensitive resin layer is higher than 50,000 Pa ⁇ s, the adhesiveness of the photosensitive resin layer may deteriorate, resulting in poor bonding to the substrate and failure in filling the uneven portions with the resin layer. Therefore, the yield deteriorates.
  • the cured film of the present invention is a cured film formed by heating and curing the photosensitive resin layer contained in the photosensitive resin sheet of the present invention.
  • the cured film of the present invention can be obtained by heat-curing the photosensitive resin layer of the present invention.
  • the thickness of the cured film formed by heating and curing does not change much with respect to the thickness of the photosensitive resin layer.
  • the curing shrinkage ratio obtained by dividing the film thickness of the photosensitive resin layer with respect to the film thickness of the cured film is preferably 80 to 105%. If the curing shrinkage is less than 80%, decomposition and/or sublimation of the photosensitive resin composition occur, resulting in deterioration of heat resistance. In addition, cracks are likely to occur in the cured film. On the other hand, if the curing shrinkage is more than 105%, the cured film contains decomposition products of the photosensitive resin layer, which may deteriorate electrical properties and reliability.
  • the thickness of the cured film is preferably from 12 to 40 ⁇ m, more preferably from 12 to 35 ⁇ m, even more preferably from 14 to 30 ⁇ m.
  • the film thickness of the cured film is 12 ⁇ m or more, insulation between metal wirings can be ensured.
  • the shrinkage stress in the curing process increases and the decomposition products contained in the cured film increase.
  • the glass transition temperature (Tg) of the cured film of the present invention is preferably 250°C to 350°C. More specifically, the glass transition temperature (Tg) of the cured film is preferably 250°C or higher, more preferably 280°C or higher, and even more preferably 300°C or higher.
  • the glass transition temperature (Tg) of the cured film is 250° C. or higher, the cured film has excellent heat resistance, and when used as a surface protective film of a semiconductor device, an interlayer insulating film, or a wiring protective insulating film of a circuit board, peeling from the wiring. and cracks can be suppressed.
  • the glass transition temperature (Tg) in the present invention is measured by differential scanning calorimetry (DSC method), and the temperature when the curve obtained by differentiating the heat amount change curve when measuring the cured film shows the maximum value is the glass transition temperature (Tg).
  • the linear expansion coefficient ( ⁇ ) of the cured film of the present invention is preferably 30 ⁇ 10 ⁇ 6 /K or more and 55 ⁇ 10 ⁇ 6 /K or less, more preferably 35 ⁇ 10 ⁇ 6 /K or more and 50 ⁇ 10 -6 /K or less.
  • the coefficient of linear expansion ( ⁇ ) of the cured film is smaller than 30 ⁇ 10 ⁇ 6 /K, it becomes difficult to obtain a high-definition pattern.
  • the coefficient of linear expansion ( ⁇ ) in the present invention was determined by thermomechanical analysis (TMA) at a heating rate of 5°C/min, and the slope from 30°C to 150°C was defined as the coefficient of linear expansion ( ⁇ ).
  • the cured film of the present invention preferably satisfies the following formula 6 and relationship C when the transmittance at 450 nm is Tc450, the transmittance at 600 nm is Tc600, and the minimum transmittance at 500 to 800 nm is TcVL.
  • the cured film obtained by heat-curing the photosensitive resin layer in the photosensitive resin sheet of the present invention has a transmittance Tc450 at a wavelength of 450 nm of 20% or more and 90% or less. It is preferably 20% or more and 80% or less, and even more preferably 25% or more and 70% or less.
  • the transmittance Tc450 of the cured film at a wavelength of 450 nm is preferably 20% or more and 90% or less regardless of the film thickness.
  • the transmittance Tc450 of the cured film is 20% or more, a high-definition pattern can be obtained without cracks in the patterned cured film.
  • the transmittance Tc450 of the cured film is more than 90%, the coloring material is decomposed and/or sublimated, which may affect electrical properties and reliability.
  • the cured film obtained by heat-curing the photosensitive resin layer in the photosensitive resin sheet of the present invention preferably has a transmittance Tc600 at a wavelength of 600 nm of 0.10% or more and 50% or less. , more preferably 0.10% or more and 20% or less, and more preferably 1.0% or more and 10% or less.
  • the transmittance Tc600 of the cured film at a wavelength of 600 nm is preferably 0.10% or more and 50% or less regardless of the film thickness.
  • the transmittance Tc600 of the cured film is less than 0.10% as described above, the content of the necessary coloring material is increased, so that the heat resistance and mechanical strength of the cured film are lowered.
  • the transmittance Tc600 is greater than 50%, the internal wiring pattern is transparent in the pattern inspection after heat curing, causing an erroneous detection. Sometimes.
  • the photosensitive resin layer in the photosensitive resin sheet of the present invention has a minimum value TcVL of transmittance at 500 to 800 nm of 0.10% or more and 50% or less, and 0.10% or more and 20% or less. It is preferably 1.0% or more and 10% or less.
  • TcVL transmittance at 500 to 800 nm of 0.10% or more and 50% or less, and 0.10% or more and 20% or less. It is preferably 1.0% or more and 10% or less.
  • the minimum transmittance value TcVL is greater than 50%, the internal wiring pattern is transparent in the pattern inspection after heat curing, which may cause erroneous detection.
  • the wavelength of the inspection light used for inspection is selected to have the minimum transmitt
  • Tc/Tb The relationship between the transmittance Tb of the photosensitive resin layer and the transmittance Tc of the cured film can be expressed as Tc/Tb, and the change in film color before and after curing can be expressed.
  • Tc450/Tb450 which is the change in film color before and after curing, is preferably 0.3 to 1.0, more preferably 0.4 to 0.8, and 0.5 to 0.8. It is even more preferable to have It is presumed that changes in film color mainly occur due to changes in transmittance due to curing reaction of the photosensitive composition and changes in transmittance due to decomposition and/or sublimation of the coloring material.
  • the film color change Tc450/Tb450 When the film color change Tc450/Tb450 is 0.3 or more, the film has a high transmittance during exposure, so that a high-resolution pattern can be obtained, and inspection light in the ultraviolet region can be efficiently absorbed after the curing process. , making it easier to detect defects.
  • Tc450/Tb450 when Tc450/Tb450 is greater than 1.0, the coloring material in the photosensitive resin composition has lost its coloring property due to decomposition and sublimation, and inspection light cannot be efficiently absorbed, and defects cannot be detected. happens. Also, the decomposition products remaining in the cured film may affect the electrical properties and reliability.
  • Tc600/Tb600 which is the change in film color before and after curing, is preferably 0.5 to 2.0, and more preferably Tc600/Tb600 is 0.7 to 1.5. More preferably, Tb600 is between 0.8 and 1.2.
  • Tc600/Tb600 is 0.5 or more, the color variation of the cured film is small, and detection during inspection can be suppressed.
  • Tc600/Tb600 is less than 2.0, the coloring material loses its coloring property due to decomposition and sublimation, and inspection light cannot be efficiently absorbed, resulting in failure to detect defects.
  • decomposition products remaining in the cured film may affect electrical properties and reliability.
  • TcVL/TbVL which is the change in film color before and after curing
  • Tc600/Tb600 is more preferably 0.7 to 1.5
  • Tc600/Tb600 is More preferably 0.8 to 1.2.
  • Tc600/Tb600 is 0.5 or more, the color variation of the cured film is small, and detection during inspection can be suppressed.
  • Tc600/Tb600 is less than 2.0, the coloring material loses its coloring property due to decomposition and sublimation, and inspection light cannot be efficiently absorbed, resulting in failure to detect defects.
  • decomposition products remaining in the cured film may affect electrical properties and reliability.
  • thermocompression bonding if the photosensitive resin sheet has a protective film, it is peeled off, and the photosensitive resin sheet and the substrate are arranged so as to face each other and bonded together by thermocompression bonding.
  • thermocompression bonding method include heat press treatment, heat lamination treatment, and thermal vacuum lamination treatment.
  • the thermocompression bonding temperature is preferably 40° C. or higher from the viewpoint of improving the adhesion and embedding properties of the photosensitive resin layer to the substrate.
  • the thermocompression bonding temperature is preferably 150° C. or less.
  • the photosensitive resin layer is irradiated with actinic rays through a mask having a desired pattern, and the photosensitive resin layer is patterned. Then, an exposure step is performed.
  • Actinic rays in the exposure step include ultraviolet rays, visible rays, electron beams, X-rays and the like.
  • an ultra-high pressure mercury lamp, an ultraviolet LED lamp, a laser, etc. capable of outputting actinic rays of i-line (365 nm), h-line (405 nm), and g-line (436 nm) according to the absorption wavelength of the photopolymerization initiator. is preferably used.
  • the photosensitive resin layer has high sensitivity to actinic rays on the short wavelength side, i-line (365 nm), h-line (405 nm), and g-line (436 nm) output from an ultra-high pressure mercury lamp It means that it is substantially exposed to the i-line.
  • the pattern shape can be controlled by selecting the exposure wavelength for these actinic rays with a wavelength cut filter or a bandpass filter.
  • h-line exposure can be performed by using an i-line cut filter for i-line (365 nm) output from an extra-high pressure mercury lamp or the like.
  • an h-line bandpass filter h-line exposure that does not include i-line and g-line becomes possible.
  • i-line bandpass filter i-line exposure that does not include h-line and g-line becomes possible.
  • g-line bandpass filter g-line exposure that does not include i-line and h-line becomes possible.
  • exposure may be performed without peeling off the support film from the photosensitive resin sheet.
  • post-exposure baking it is preferable to bake the photosensitive resin layer after exposure.
  • post-exposure baking an oven, a hot plate, an infrared ray, a flash annealing device, a laser annealing device, or the like can be used.
  • the post-exposure baking temperature is preferably 40 to 150°C, more preferably 60 to 120°C.
  • the post-exposure bake time is preferably within 10 seconds to 60 minutes.
  • a developer is used to develop the exposed portion and the unexposed portion by utilizing the difference in solubility in the developer to dissolve and remove mainly the unexposed portion to form a pattern.
  • the developing solution include alkalis such as tetramethylammonium hydroxide (TMAH) aqueous solution, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, dimethylamine, and 2-aminoethanol.
  • TMAH tetramethylammonium hydroxide
  • diethanolamine diethylaminoethanol
  • sodium hydroxide potassium hydroxide
  • sodium carbonate potassium carbonate
  • triethylamine diethylamine, dimethylamine, and 2-aminoethanol.
  • Aqueous solutions of the indicated compounds are preferred.
  • methods such as spray, puddle, immersion, and ultrasonic waves are possible.
  • the developer temperature and development time are appropriately set depending on the pattern shape and the
  • the pattern formed by development may be rinsed with pure water.
  • the rinsing liquid is appropriately selected depending on the pattern residue after development. Alcohols such as ethanol and isopropyl alcohol, and esters such as ethyl lactate and propylene glycol monomethyl ether acetate are added to pure water for rinsing. may
  • the pattern after development is heat-treated at a temperature of 150 to 400°C to form a cured film.
  • a cured film with improved heat resistance and chemical resistance is obtained by polymerizing low-molecular-weight compounds such as photopolymerizable compounds and thermal cross-linking agents contained in the photosensitive resin layer.
  • the heating temperature is preferably 150 to 400.degree. C., more preferably 200 to 300.degree. C., even more preferably 250 to 290.degree.
  • the heating temperature is 150° C. or higher, the polymerization reaction can proceed satisfactorily.
  • the heating temperature is 150° C. or higher
  • Curing of a photosensitive resin layer using a closed-ring polyimide does not require a cyclization reaction of the polyimide precursor, so curing can be performed at a low temperature of 300° C. or less, suppressing the occurrence of cracks and reducing substrate warpage. becomes possible.
  • the heat treatment time is preferably within 15 minutes to 6 hours.
  • Various heating atmospheres such as air, oxygen, hydrogen, and nitrogen atmospheres can be selected, but curing in a nitrogen atmosphere is preferable from the viewpoint of heat resistance.
  • a patterned permanent resist is obtained by heat curing. It is preferable that the change rate of the film thickness of the cured film after exposure, development and heat curing is small with respect to the initial film thickness of the photosensitive resin layer.
  • a calculated value obtained by dividing the thickness of the cured film by the initial thickness of the photosensitive resin layer is defined as the residual film ratio of the cured film, and the residual film ratio is 70% or more. It is preferably 75% or more, more preferably 80% or more.
  • the use of the cured product is not particularly limited, for example, resists such as surface protective films built into substrates and packages that use semiconductors such as mounting substrates and wafer level packages, interlayer insulating films, wiring protective insulating films of circuit boards , various electronic components and devices.
  • the cured film is used as a permanent resist, that is, a patterned interlayer insulating film, a patterned substrate, glass, semiconductor element, etc., and an adherend for thermocompression bonding. It can be particularly suitably used for drug applications.
  • Alkali-soluble polyimide A1 was synthesized by the following method. Under a stream of dry nitrogen, 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (32.78 g (0.0895 mol)) and 1,3-bis(3-aminopropyl)tetramethyldichloromethane Siloxane (1.24 g (0.005 mol)) was dissolved in N-methyl-2-pyrrolidone (100 g).
  • NMP N-methyl-2-pyrrolidone
  • the obtained polyimide (A1) had an imidization rate of 94% and was a ring-closed polyimide. Moreover, the solubility of polyimide in a tetramethylammonium aqueous solution (2.38% by mass) at 23° C. was 0.5 g/100 g or more.
  • Alkali-soluble polyimide A2 was synthesized by the following method. Under a stream of dry nitrogen, 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (32.96 g, 0.09 mol) was added to 80 g of GBL and dissolved with stirring at 120°C. Then 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic dianhydride (30.03 g, 0.1 mol) It was added together with 20 g of GBL, stirred at 120° C. for 1 hour, and then stirred at 200° C. for 4 hours to obtain a resin solution.
  • the resin solution was then poured into water (3 L) to produce a white precipitate.
  • the precipitate was collected by filtration, washed with water three times, and dried in a vacuum dryer at 80° C. for 5 hours.
  • the obtained polyimide (A2) had an imidization rate of 91% and was a ring-closed polyimide.
  • the solubility of polyimide in a tetramethylammonium aqueous solution (2.38% by mass) at 23° C. was 0.5 g/100 g or more.
  • B2 BP-6EM (Kyoeisha Chemical Co., Ltd.). Chemical name: ethylene oxide-modified bisphenol A dimethacrylate, photopolymerizable functional group equivalent: 314, number of functional groups: 2. It corresponds to the (BL) component. Not applicable to general formula (4).
  • B6 BATG (Showa Denko KK). Photopolymerization functional group equivalent: 113, number of functional groups: 4. It corresponds to the (BH) component.
  • the photosensitive resin sheet After peeling off the support film of the obtained photosensitive resin sheet, the photosensitive resin sheet was exposed at an exposure amount of 1000 mJ/cm 2 (using an i-line cut filter, converted to h-line) using an exposure machine using an ultra-high pressure mercury lamp as a light source. Heat treatment was performed at 290° C. for 60 minutes in an inert oven in a nitrogen atmosphere to form a cured film on the silicon wafer. The obtained cured film was separated from the silicon wafer to prepare a single film.
  • a sample for measuring the glass transition temperature was obtained by cutting this single film into 5 mm ⁇ 50 mm pieces with a single edge, and using a viscoelasticity measuring device (DMS6100 manufactured by Seiko Instruments Inc.) to raise the temperature from 25 ° C. to 450 ° C. at a rate of 5 ° C./min. was measured at the temperature at which the curve obtained by differentiating was the maximum value.
  • the amplitude width was 5 ⁇ m
  • the minimum tension was 10 mN
  • the initial force amplitude was 50 mN.
  • a sample for measuring the coefficient of linear expansion was cut from this single film into 5 mm ⁇ 20 mm pieces with a single blade, and the temperature was raised/lowered from 25°C to 150°C at 5 minutes/min with a thermomechanical analyzer (manufactured by Shimadzu Corporation, TMA-60). The coefficient of linear expansion at the time of repeating the temperature rise for the second time was used as the evaluation result.
  • the protective film is peeled off from the photosensitive resin sheet, and the photosensitive resin layers are laminated together by a roll laminator heated to 80°C.
  • the support film on one side of the laminate is peeled off, and the photosensitive resin layers are bonded together again. This is repeated to obtain a photosensitive resin layer laminate having a thickness of 400 to 800 ⁇ m.
  • the support films on both sides of this laminate were peeled off, and the composite viscosity at 80° C. was measured by sandwiching it between probes of a viscoelasticity measuring device with a diameter of 15 mm and measuring the temperature in the range of 40° C. to 100° C. at a heating rate of 2° C./min. melt viscosity.
  • ⁇ Pattern workability evaluation (resolution/pattern cross-sectional shape)>
  • the protective film of the photosensitive resin sheet obtained in Example 1 was peeled off, the photosensitive resin sheet was placed facing the silicon wafer, and a 4-inch silicon wafer and copper wiring were placed under conditions of 80° C. and 0.3 MPa. (100 ⁇ m width, 5 ⁇ m height) was roll-laminated on a silicon wafer.
  • the unexposed portion was removed by shower development for 180 seconds, rinsed with water for 60 seconds, and then spin-dried. Further, heat treatment was performed at 290° C. for 60 minutes in an inert oven to form a cured film pattern in which a via pattern and a stripe pattern were processed on the silicon wafer.
  • the via pattern was observed with a microscope, and the minimum dimension at which the via was opened was defined as the resolution.
  • the opening of the via as referred to herein is defined as opening at 50% or more of the design value of the photomask.
  • Pattern resolution A is for vias with a via opening of 30 ⁇ m or less
  • pattern resolution B is for vias with a via opening of 35 ⁇ m to 50 ⁇ m
  • pattern resolution C is for vias with a via opening of 55 ⁇ m to 100 ⁇ m.
  • pattern cross-sectional shape A has a ⁇ W of less than 5 ⁇ m
  • pattern cross-sectional shape B has a ⁇ W of 5 to 10 ⁇ m
  • pattern cross-sectional shape C has a ⁇ W greater than 10 ⁇ m. I judged.
  • the minimum value of the transmittance at wavelengths of 500 to 800 nm was measured three times, and the average value of the transmittances at the minimum wavelengths in those wavelength regions was used as the evaluation result.
  • the transmittance measurement of the photosensitive resin layer was performed under the conditions of reference: soda glass substrate, scan speed: 300 nm/min, and sampling interval: 0.5 nm.
  • the cured film transmittance measurement sample was exposed to an exposure amount of 1000 mJ/cm 2 (using an i-line cut filter, converted to h-line) with an exposure machine using an ultra-high pressure mercury lamp as a light source for the sample for measuring the photosensitive resin layer. Then, heat treatment was performed in an inert oven at 290° C. for 60 minutes in a nitrogen atmosphere to form a cured film on a glass substrate.
  • a film of a photosensitive resin layer was formed on a substrate having copper wiring (width 100 ⁇ m/thickness 5 ⁇ m). Focusing on this film surface, defect detectability A if the contour of the embedded copper wiring cannot be detected, defect detectability B if the contour is unclear, and defect detectability if the contour of the copper wiring is clear. C. If the contour of the copper wiring is clear, the coating film surface may be erroneously detected in the automatic defect inspection, or interference of the inspection light may cause erroneous detection.
  • Both surface inspectability and defect detectability are preferably A or B.
  • Example 1 A method for preparing the photosensitive resin composition of Example 1 is shown below as an example.
  • Alkali-soluble polyimide (A1, 35 g), DPE-6A (B1, 2 g) as a photopolymerizable compound, BP-6EM (B2, 18 g), NCI-930 (3 g) as a photopolymerization initiator (C), coloring agent (D) as coloring material D1 (0.64 g), HMOM-TPHAP ⁇ -butyrolactone solution (30 g (6 g as solid content)) as thermal cross-linking agent, QS-30 (0.01 g) as polymerization inhibitor, adhesion improvement KBM-403 (2 g) as an agent and ethyl lactate (52 g) as a diluting solvent were added and stirred at room temperature for 120 minutes. A paint 1 of a flexible resin composition was obtained.
  • the obtained paint 1 of the photosensitive resin composition was applied onto a support film (PET film Lumirror S10 with a thickness of 38 ⁇ m) using a comma roll coater, dried at 85° C. for 5 minutes, and then applied to the protective film.
  • a PP film (Toretec 7332K) having a thickness of 30 ⁇ m was laminated as a photosensitive resin sheet having a photosensitive resin layer having a thickness of 26 ⁇ m.
  • the obtained photosensitive resin sheet was evaluated by the method described above, and the evaluation results of Example 1 are shown in Table 1.
  • the pattern processability was evaluated, and both the support film and the protective film of the photosensitive resin sheet could be peeled off from the photosensitive resin layer satisfactorily.
  • exposure was performed at the exposure wavelength and exposure amount shown in Table 1 to form a cured film pattern, and the pattern resolution and pattern cross-sectional shape were evaluated and judged.
  • the pattern resolution was A and the pattern cross-sectional shape was A, which were good results.
  • transmittance of the photosensitive resin layer and the cured film was evaluated.
  • transmittance Tb405 at 405 nm which is the exposure wavelength
  • transmittance Tb450 at 450 nm and Tb600 or TbVL, which is the minimum value of transmittance at a wavelength of 500 to 800 nm
  • Tc600 or TcVL which is the minimum value of transmittance at 500 to 800 nm
  • Examples 2 to 23 of the present invention and Comparative Examples 1 to 3 for the present invention the composition and film thickness of the photosensitive resin composition in Example 1 described above, and the pattern processing conditions for evaluating pattern processability are shown in Tables 1 to 3.
  • a photosensitive resin sheet was produced in the same manner as in Example 1 except that the composition and film thickness were changed as shown in .
  • evaluation was performed in the same manner as in Example 1 except that the patterning conditions shown in Tables 1 to 3 were changed in the above-described method, Examples 2 to 23, and Comparative Examples.
  • the evaluation results of 1 to 3 are shown in Tables 1 to 3.
  • Example 24 to 27 the support film in Example 1 described above was changed to a PET film (Cosmoshine A4160) having a thickness of 50 ⁇ m, and the composition and film thickness of the photosensitive resin composition and pattern processability were evaluated.
  • a photosensitive resin sheet was produced in the same manner as in Example 1, except that the patterning conditions were changed to the composition and film thickness shown in Table 3. Using the obtained photosensitive resin sheet, evaluation was performed in the same manner as in Example 1, except that the patterning conditions were changed to those shown in Table 3 in the above-described method.
  • An i-line bandpass filter was used with an exposure machine using an ultra-high pressure mercury lamp as a light source, and a predetermined amount of exposure was converted to i-line and exposed. Both the support film and the protective film can be peeled off from the photosensitive resin layer satisfactorily.
  • the photosensitive resin sheet having a photosensitive resin layer with high transmittance in the ultraviolet region has a rectangular cross-sectional shape of the pattern, can form a fine pattern, and can be used in the visible light region. By lowering the transmittance, excellent results were obtained for surface inspection and defect detection.
  • the photosensitive resin sheet having the photosensitive resin of the present invention has high electrical properties derived from polyimide, excellent mechanical properties and heat resistance, and has high reliability. Due to its excellent detectability, it is useful for multilayer wiring substrate applications such as surface protective films and interlayer insulating films for semiconductor devices and electronic parts, and wiring protective insulating films for circuit boards.
  • Substrate 2 Photosensitive resin layer 3: Foreign matter adhering to the surface 4: Foreign matter contained between the photosensitive resin layer and substrate 5: Metal wiring layer 6: Peeling portion of photosensitive resin layer 7: Top width of pattern 8: Pattern bottom width of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Materials For Photolithography (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

The purpose of the present invention is to provide a photosensitive resin sheet in which the cross-sectional shape of a pattern is rectangular, a fine pattern can be formed and a pattern defect part can be identified easily, and through which a metal wiring in an underlayer part cannot be seen. Provided is a photosensitive resin sheet comprising a support film and a photosensitive resin layer, the photosensitive resin sheet being characterized in that the photosensitive resin layer is formed from a photosensitive resin composition, the photosensitive resin composition comprises an alkali-soluble polyimide (A), a photopolymerizable compound (B), a photopolymerization initiator (C) and a coloring material (D), the photosensitive resin layer satisfies the below-mentioned relationship A wherein Tb600 represents a transmittance at 600 nm and TbVL represents a minimum value among transmittances in a wavelength range from 500 to 800 nm. Relationship A: at least one of formulae 1 and 2 is satisfied. Formula 1: 0.10% ≤ Tb600 ≤ 40% Formula 2: 0.10% ≤ TbVL ≤ 40%

Description

感光性樹脂シート、硬化膜、及び多層配線基板Photosensitive resin sheet, cured film, and multilayer wiring board
 本発明は、感光性樹脂シート、硬化膜、及び多層配線基板に関する。 The present invention relates to a photosensitive resin sheet, a cured film, and a multilayer wiring board.
 ポリイミドは、電気特性、機械特性、および耐熱性に優れることから、半導体素子の表面保護膜、層間絶縁膜、回路基板の配線保護絶縁膜としての用途に有用である。特に、感光性を付与した感光性ポリイミド材料は、フォトリソグラフィー技術により微細加工が可能であり、配線の高密度化が可能となる。感光性ポリイミド材料は液状もしくはシート状の材料が一般的であり、特に、シート状材料は液状材料に比べ、厚膜形成が容易であること、工程の削減が可能なことから、生産効率が高いといった利点を備えている。 Due to its excellent electrical properties, mechanical properties, and heat resistance, polyimide is useful as a surface protective film for semiconductor elements, an interlayer insulating film, and a wiring protective insulating film for circuit boards. In particular, a photosensitive polyimide material to which photosensitivity has been imparted can be microfabricated by photolithography technology, and wiring density can be increased. Photosensitive polyimide materials are generally liquid or sheet-like materials, and in particular, sheet-like materials are easier to form thick films than liquid materials, and the number of processes can be reduced, so production efficiency is high. It has advantages such as
 これまでに感光性ポリイミド樹脂組成物として、炭素-炭素不飽和二重結合を有するポリイミドまたはポリイミド前駆体と、活性光線放射によってラジカルを発生する化合物とを含有する感光性樹脂組成物が提案されている(特許文献1)。しかしながら、ポリイミド前駆体を閉環させるためには、300℃を超える高い温度における熱処理が必要であることから、配線材料である金属材料を酸化させ易く、それ故、電子部品の電気的性質や信頼性に課題があった。 So far, as a photosensitive polyimide resin composition, a photosensitive resin composition containing a polyimide or a polyimide precursor having a carbon-carbon unsaturated double bond and a compound that generates radicals by actinic ray radiation has been proposed. (Patent Document 1). However, in order to ring-close the polyimide precursor, heat treatment at a high temperature exceeding 300 ° C. is required, so the metal material that is the wiring material is easily oxidized, and therefore the electrical properties and reliability of the electronic component are improved. had a problem.
 そこで、既閉環ポリイミドを用いた感光性樹脂組成物として、主鎖末端に、カルボキシル基、フェノール性水酸基、スルホン酸基およびチオール基からなる群より選ばれる少なくとも一つの基を有するポリイミド、不飽和結合含有重合性化合物、イミダゾールシランおよび光重合開始剤を含有する感光性樹脂組成物が提案されている(特許文献2)。かかる技術により、高温における熱処理を必要とすることなく、ポリイミド樹脂組成物をフォトパターニングすることが可能となり、更なる配線の高密度化の要求が高まっている。 Therefore, as a photosensitive resin composition using a ring-closed polyimide, a polyimide having at least one group selected from the group consisting of a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group and a thiol group at the main chain terminal, an unsaturated bond A photosensitive resin composition containing a polymerizable compound, imidazole silane, and a photopolymerization initiator has been proposed (Patent Document 2). Such techniques enable photopatterning of polyimide resin compositions without the need for heat treatment at high temperatures, and there is an increasing demand for higher wiring densities.
 多層配線構造とする場合、保護絶縁膜は厚膜加工が必要とされる。一般的に、既閉環ポリイミドは活性光線に光吸収が大きいため、フォトパターニングの露光工程において、感光性樹脂組成物の厚膜の深部まで十分に光硬化することが困難である。この場合、感光性樹脂組成物に形成されるパターンは、断面形状が逆テーパ形状(活性光線の入射側を表面とし、裏面に向かって細る形状)になり易く、矩形のパターンを得ることが困難である課題がある。そのため、逆テーパ形状のパターンを半導体素子の配線絶縁膜などに用いる場合、配線となる金属の埋り込みが不十分となり、導通不良が生じ易いことから矩形のパターンを形成することが求められる。そのため、光透過性を高めるために、種々感光性樹脂組成物が発明されてきた(例えば、特許文献3)。  In the case of a multilayer wiring structure, a thick film processing is required for the protective insulating film. In general, closed-ring polyimides have a large absorption of actinic rays, so that it is difficult to sufficiently photo-cure deep portions of the thick film of the photosensitive resin composition in the exposure step of photopatterning. In this case, the pattern formed on the photosensitive resin composition tends to have a reverse tapered cross-sectional shape (a shape in which the actinic ray incident side is the front surface and tapers toward the back surface), making it difficult to obtain a rectangular pattern. There is a problem. Therefore, when an inversely tapered pattern is used for a wiring insulating film of a semiconductor element, etc., it is necessary to form a rectangular pattern because the embedding of the metal used as the wiring becomes insufficient, and conduction failure tends to occur. Therefore, various photosensitive resin compositions have been invented in order to increase the light transmittance (for example, Patent Document 3).
特開2016-8992号公報JP-A-2016-8992 特開2011-17897号公報JP 2011-17897 A 国際公開第2016/158389号WO2016/158389
 一般的にパターンの断面形状が矩形形状であり、微細なパターン形成が可能となる厚膜な感光性樹脂シートは光透過性を高めた材料となる。そのため、パターン形成後のパターン部の視認性が悪く、パターンの欠損箇所の判別が困難となる。また、多層配線形成基板における検査において、下層部の金属配線パターンが透けるため、保護絶縁膜のパターンの検査において誤検出が起こるため、品質不良な製品が後工程に流動し歩留まりの低下、コスト増加の要因となる。 In general, the cross-sectional shape of the pattern is rectangular, and a thick photosensitive resin sheet that enables the formation of fine patterns is a material with enhanced light transmission. As a result, the visibility of the pattern portion after pattern formation is poor, making it difficult to determine the missing portion of the pattern. In addition, in the inspection of multi-layered wiring boards, since the metal wiring pattern in the lower layer is transparent, false detection occurs in the inspection of the pattern of the protective insulating film. be a factor.
 かかる状況に鑑み、本発明は、パターンの断面形状が矩形形状であり、微細なパターン形成が可能であり、パターン欠損箇所の判別が容易で、下層部の金属配線が透けない感光性樹脂シートを提供することを目的とする。 In view of such circumstances, the present invention provides a photosensitive resin sheet which has a rectangular cross-sectional shape of the pattern, which enables the formation of a fine pattern, makes it easy to determine where the pattern is defective, and prevents the metal wiring in the lower layer from being seen through. intended to provide
 上記課題を解決するための本発明は、以下の構成からなる。
[1] 支持フィルム、及び、感光性樹脂層を有する、感光性樹脂シートであって、
 前記感光性樹脂層は、感光性樹脂組成物から形成された層であり、
 前記感光性樹脂組成物は、アルカリ可溶性ポリイミド(A)、光重合性化合物(B)、光重合開始剤(C)、及び着色材(D)を含有する樹脂組成物であって、
 前記感光性樹脂層は、600nmにおける透過率Tb600、500~800nmにおける透過率の最小値TbVLとした際に、以下の関係Aを満たすことを特徴とする、感光性樹脂シート。
関係A:式1及び式2の少なくとも1つを満たす
式1:0.10%≦Tb600≦40%
式2:0.10%≦TbVL≦40%
[2] 前記感光性樹脂層は、365nmにおける透過率Tb365、405nmにおける透過率Tb405、436nmにおける透過率Tb436とした際に、以下の関係Bを満たすことを特徴とする、[1]に記載の感光性樹脂シート。
関係B:式3から式5の少なくとも1つを満たす
式3:3.0%≦Tb365≦70%
式4:3.0%≦Tb405≦70%
式5:3.0%≦Tb436≦70%
[3] 前記アルカリ可溶性ポリイミド(A)は、既閉環ポリイミドであることを特徴とする、[1]または[2]のいずれかに記載の感光性樹脂シート。
[4] さらに保護フィルムを有し、前記支持フィルム、前記感光性樹脂層、及び前記保護フィルムをこの順に直接積層する、[1]~[3]のいずれかに記載の感光性樹脂シート。
[5] 前記感光性樹脂層は、450nmにおける透過率Tb450が以下の関係を満たすことを特徴とする、[1]~[4]のいずれかに記載の感光性樹脂シート。
The present invention for solving the above problems consists of the following configurations.
[1] A photosensitive resin sheet having a support film and a photosensitive resin layer,
The photosensitive resin layer is a layer formed from a photosensitive resin composition,
The photosensitive resin composition is a resin composition containing an alkali-soluble polyimide (A), a photopolymerizable compound (B), a photopolymerization initiator (C), and a coloring agent (D),
A photosensitive resin sheet characterized in that the photosensitive resin layer satisfies the following relationship A when the transmittance at 600 nm is Tb600 and the minimum transmittance at 500 to 800 nm is TbVL.
Relationship A: Formula 1 that satisfies at least one of formulas 1 and 2: 0.10% ≤ Tb600 ≤ 40%
Formula 2: 0.10% ≤ TbVL ≤ 40%
[2] The photosensitive resin layer according to [1], wherein the following relationship B is satisfied when the transmittance at 365 nm is Tb365, the transmittance at 405 nm is Tb405, and the transmittance at 436 nm is Tb436. Photosensitive resin sheet.
Relationship B: Formula 3 that satisfies at least one of formulas 3 to 5: 3.0% ≤ Tb365 ≤ 70%
Formula 4: 3.0% ≤ Tb405 ≤ 70%
Formula 5: 3.0% ≤ Tb436 ≤ 70%
[3] The photosensitive resin sheet according to any one of [1] and [2], wherein the alkali-soluble polyimide (A) is a ring-closed polyimide.
[4] The photosensitive resin sheet according to any one of [1] to [3], further comprising a protective film, wherein the support film, the photosensitive resin layer, and the protective film are directly laminated in this order.
[5] The photosensitive resin sheet according to any one of [1] to [4], wherein the photosensitive resin layer has a transmittance Tb450 at 450 nm that satisfies the following relationship.
 40%≦Tb450≦95%
[6] 前記着色材(D)の含有量が、前記アルカリ可溶性ポリイミド(A)100質量部に対して0.1質量部以上50質量部以下であることを特徴とする、[1]~[5]のいずれかに記載の感光性樹脂シート。
[7] 前記着色材(D)は、アントラキノン系化合物を含むことを特徴とする、[1]~[6]のいずれかに記載の感光性樹脂シート。
[8] 前記感光性樹脂組成物が無機粒子を含有することを特徴とする、[1]~[7]のいずれかに記載の感光性樹脂シート。
[9] 前記無機粒子の平均粒子径D50が30~150nmであることを特徴とする、[8]に記載の感光性樹脂シート。
[10] 前記感光性樹脂層の膜厚が15~40μmであることを特徴とする、[1]~[9]のいずれかに記載の感光性樹脂シート。
[11] 前記感光性樹脂組成物の80℃における溶融粘度が1500~50000Pa・sであることを特徴とする、[1]~[10]のいずれかに記載の感光性樹脂シート。
[12] [1]~[11]のいずれかに記載の感光性樹脂シートの感光性樹脂層を加熱硬化して形成された硬化膜。 
[13] 450nmにおける透過率Tc450と、600nmにおける透過率Tc600、500~800nmにおける透過率の最小値TcVLとした際に、以下の式6及び関係Cを満たすことを特徴とする、[12]に記載の硬化膜。
40%≤Tb450≤95%
[6] The content of the coloring material (D) is 0.1 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the alkali-soluble polyimide (A) [1] to [ 5]. The photosensitive resin sheet according to any one of the above items.
[7] The photosensitive resin sheet according to any one of [1] to [6], wherein the coloring agent (D) contains an anthraquinone compound.
[8] The photosensitive resin sheet according to any one of [1] to [7], wherein the photosensitive resin composition contains inorganic particles.
[9] The photosensitive resin sheet of [8], wherein the inorganic particles have an average particle diameter D50 of 30 to 150 nm.
[10] The photosensitive resin sheet according to any one of [1] to [9], wherein the photosensitive resin layer has a thickness of 15 to 40 μm.
[11] The photosensitive resin sheet according to any one of [1] to [10], wherein the photosensitive resin composition has a melt viscosity of 1500 to 50000 Pa·s at 80°C.
[12] A cured film formed by heating and curing the photosensitive resin layer of the photosensitive resin sheet according to any one of [1] to [11].
[13] In [12], the following formula 6 and relationship C are satisfied when the transmittance Tc450 at 450 nm, the transmittance Tc600 at 600 nm, and the minimum transmittance TcVL at 500 to 800 nm are satisfied. Cured film as described.
 式6:20%≦Tc450≦90%
関係C:式7及び式8の少なくとも1つを満たす
 式7:0.10%≦Tc600≦50%
 式8:0.10%≦TcVL≦50%
[14] 線膨張係数(α)が30×10-6/K以上55×10-6/K以下であることを特徴とする、[12]または[13]に記載の硬化膜。
[15] ガラス転移温度が250℃~350℃であることを特徴とする、[12]~[14]のいずれかに記載の硬化膜。
[16] [12]に記載の硬化膜を有する多層配線基板。
Formula 6: 20% ≤ Tc450 ≤ 90%
Relationship C: satisfying at least one of formulas 7 and 8 Formula 7: 0.10% ≤ Tc600 ≤ 50%
Formula 8: 0.10% ≤ TcVL ≤ 50%
[14] The cured film of [12] or [13], which has a linear expansion coefficient (α) of 30×10 −6 /K or more and 55×10 −6 /K or less.
[15] The cured film according to any one of [12] to [14], which has a glass transition temperature of 250°C to 350°C.
[16] A multilayer wiring board having the cured film according to [12].
 本発明によれば、パターンの断面形状が矩形形状であり、微細なパターン形成が可能であり、パターン欠損箇所の判別が容易である感光性樹脂シートを得ることができる。本発明の感光性樹脂シートから得られる硬化膜は、電気特性、機械特性、および耐熱性に優れるため、半導体素子の表面保護膜、層間絶縁膜、回路基板の配線保護絶縁膜としての用途に有用である。 According to the present invention, it is possible to obtain a photosensitive resin sheet whose pattern has a rectangular cross-sectional shape, which enables formation of a fine pattern, and which facilitates determination of pattern defect locations. The cured film obtained from the photosensitive resin sheet of the present invention is excellent in electrical properties, mechanical properties, and heat resistance, and is therefore useful as a surface protective film for semiconductor elements, an interlayer insulating film, and a wiring protective insulating film for circuit boards. is.
本発明の感光性樹脂シートを用いて凹部が形成された一態様を示した断面模式図である。It is a cross-sectional schematic diagram which showed one aspect|mode by which the recessed part was formed using the photosensitive resin sheet of this invention. 本発明の感光性樹脂シートを用いて凹部を形成したパターンの不良箇所が含まれた一態様を示した断面模式図である。FIG. 2 is a schematic cross-sectional view showing one mode in which a defective portion is included in a pattern in which recesses are formed using the photosensitive resin sheet of the present invention. 金属配線上に本発明の感光性樹脂シートを用いて凹部を形成したパターンの剥離箇所が発生した一態様を示した断面模式図である。It is the cross-sectional schematic diagram which showed the one aspect|mode in which the peeling location of the pattern which formed the recessed part using the photosensitive resin sheet of this invention was generated on the metal wiring. 本発明の感光性樹脂シートを用いて形成したパターン断面の頂部幅と底部幅の測定位置を示した断面模式図である。It is a cross-sectional schematic diagram showing the measurement positions of the top width and the bottom width of the cross section of the pattern formed using the photosensitive resin sheet of the present invention.
 本発明は、支持フィルム、及び、感光性樹脂層を有する、感光性樹脂シートであって、前記感光性樹脂層は、感光性樹脂組成物から形成された層であり、前記感光性樹脂組成物は、アルカリ可溶性ポリイミド(A)、光重合性化合物(B)、光重合開始剤(C)、及び着色材(D)を含有する樹脂組成物であって、前記感光性樹脂層は、600nmにおける透過率Tb600、500~800nmおける透過率の最小値TbVLとした際に、以下の関係Aを満たすことを特徴とする、感光性樹脂シート。
関係A:式1及び式2の少なくとも1つを満たす
 式1:0.10≦Tb600≦40%
 式2:0.10%≦TbVL≦40%
 以下、これについて詳細を下記する。
The present invention is a photosensitive resin sheet having a support film and a photosensitive resin layer, wherein the photosensitive resin layer is a layer formed from a photosensitive resin composition, and the photosensitive resin composition is an alkali-soluble polyimide (A), a photopolymerizable compound (B), a photopolymerization initiator (C), and a resin composition containing a coloring agent (D), wherein the photosensitive resin layer is at 600 nm A photosensitive resin sheet characterized by satisfying the following relation A when the transmittance Tb is 600 and the minimum value TbVL of the transmittance at 500 to 800 nm.
Relationship A: satisfying at least one of formulas 1 and 2 Formula 1: 0.10 ≤ Tb600 ≤ 40%
Formula 2: 0.10% ≤ TbVL ≤ 40%
Details of this are given below.
 〔アルカリ可溶性ポリイミド(A)〕
 本発明の感光性樹脂シート中の感光性樹脂層を形成する感光性樹脂組成物は、アルカリ可溶性ポリイミド(A)を含有する。アルカリ可溶性ポリイミド(A)を含有することで、感光性樹脂シートの厚膜形成が容易となり、用途に応じた膜厚調整が容易となる。
[Alkali-soluble polyimide (A)]
The photosensitive resin composition forming the photosensitive resin layer in the photosensitive resin sheet of the present invention contains an alkali-soluble polyimide (A). Containing the alkali-soluble polyimide (A) facilitates formation of a thick photosensitive resin sheet, and facilitates adjustment of the film thickness according to the application.
 アルカリ可溶性ポリイミド(A)の主骨格は特に限定されないが、(メタ)アクリルポリマー、エポキシポリマー、ポリウレタン、ポリベンゾオキサジン、ポリベンゾオキサゾール前駆体、ポリベンゾオキサゾール、ポリイミド前駆体、ポリイミドなどを用いることができる。中でも耐熱性の観点から、アルカリ可溶性ポリイミド(A)は、ポリイミド、ポリベンゾオキサゾール、それらいずれかの前駆体、及びそれらの共重合体からなる群より選択される少なくとも1つの樹脂であること、つまり、ポリベンゾオキサゾール前駆体、ポリベンゾオキサゾール、ポリイミド前駆体、既閉環ポリイミド、これらの共重合体が好ましい。そしてアルカリ可溶性ポリイミド(A)は、ポリイミド前駆体、既閉環ポリイミドであることがより好ましく、金属配線の腐食を抑え配線基板の電気的信頼性を高めること、パターン加工後の加熱処理温度を下げられる観点から既閉環ポリイミドであることが特に好ましい。 The main skeleton of the alkali-soluble polyimide (A) is not particularly limited, but (meth)acrylic polymer, epoxy polymer, polyurethane, polybenzoxazine, polybenzoxazole precursor, polybenzoxazole, polyimide precursor, polyimide, etc. can be used. can. Among them, from the viewpoint of heat resistance, the alkali-soluble polyimide (A) is at least one resin selected from the group consisting of polyimide, polybenzoxazole, precursors thereof, and copolymers thereof, that is, , polybenzoxazole precursors, polybenzoxazoles, polyimide precursors, ring-closed polyimides, and copolymers thereof. The alkali-soluble polyimide (A) is more preferably a polyimide precursor or a closed-ring polyimide, which suppresses corrosion of metal wiring, improves the electrical reliability of the wiring board, and can lower the heat treatment temperature after patterning. From the point of view, it is particularly preferable to use a closed-ring polyimide.
 アルカリ可溶性ポリイミド(A)は、現像液に溶解することが好ましく、少なくともアルカリ可溶性を有する。ここでいうアルカリ可溶性とは、2.38重量%水酸化テトラメチルアンモニウム(TMAH)水溶液への溶解度が0.1g/100mL以上になることを指す。感光性樹脂シート中のアルカリ可溶性ポリイミド(A)にアルカリ可溶性を付与することで、感光性樹脂シートのアルカリ現像液への溶解が促進されて、良好なパターン形状を得ることができる。アルカリ可溶性ポリイミド(A)に対してアルカリ可溶性を付与する官能基、つまりアルカリ可溶性基としては、フェノール性水酸基、チオール基、カルボキシル基、スルホン酸基などが挙げられるが、アルカリ可溶性基としてフェノール性水酸基、カルボキシル基のいずれか又は両方を有することが好ましい。 The alkali-soluble polyimide (A) preferably dissolves in a developer and has at least alkali solubility. The term "alkali-soluble" as used herein means that the solubility in a 2.38% by weight tetramethylammonium hydroxide (TMAH) aqueous solution is 0.1 g/100 mL or more. By imparting alkali-solubility to the alkali-soluble polyimide (A) in the photosensitive resin sheet, the dissolution of the photosensitive resin sheet in an alkali developer is promoted, and a favorable pattern shape can be obtained. The functional group that imparts alkali solubility to the alkali-soluble polyimide (A), that is, the alkali-soluble group includes a phenolic hydroxyl group, a thiol group, a carboxyl group, a sulfonic acid group, etc. As the alkali-soluble group, a phenolic hydroxyl group , carboxyl groups or both.
 アルカリ可溶性ポリイミド(A)について、ポリイミドの好適な例を以下に示す。 Suitable examples of polyimides for alkali-soluble polyimides (A) are shown below.
 アルカリ可溶性ポリイミド(A)として、下記一般式(1)で表される構造単位を有する一種以上のポリイミドを含有することが好ましく、下記一般式(2)または(3)で表される一種以上のポリイミドを含有することがさらに好ましい。 As the alkali-soluble polyimide (A), it is preferable to contain one or more polyimides having a structural unit represented by the following general formula (1), and one or more polyimides represented by the following general formula (2) or (3) It is more preferable to contain polyimide.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(1)~(3)中、Xは、カルボキシル基、フェノール性水酸基、スルホン酸基およびチオール基のうち少なくとも一つを有する1価の有機基を表す。Yは、カルボキシル基、フェノール性水酸基、スルホン酸基およびチオール基のうち少なくとも一つを有する2価の有機基を表す。XおよびYは、フェノール性水酸基またはチオール基を有することが好ましく、フェノール性水酸基を有することが特に好ましい。 In general formulas (1) to (3), X represents a monovalent organic group having at least one of a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group and a thiol group. Y represents a divalent organic group having at least one of a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group and a thiol group. X and Y preferably have a phenolic hydroxyl group or a thiol group, and particularly preferably have a phenolic hydroxyl group.
 また、Rは4~22価の有機基を表し、Rは2~20価の有機基を表す。RおよびRは、それぞれ独立にカルボキシル基、フェノール性水酸基、スルホン酸基またはチオール基を表す。RおよびRは、フェノール性水酸基またはカルボキシル基であることが好ましく、フェノール性水酸基であることが特に好ましい。 R 1 represents a 4- to 22-valent organic group, and R 2 represents a 2- to 20-valent organic group. R3 and R4 each independently represent a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group or a thiol group. R 3 and R 4 are preferably phenolic hydroxyl groups or carboxyl groups, particularly preferably phenolic hydroxyl groups.
 また、αおよびβは、それぞれ独立に0~10の範囲の整数を表す。このようなαおよびβにおいて、α+βが1以上であることが好ましい。nは、ポリマーの構造単位の繰り返し数を表す。このnの範囲は、3~200である。nが3以上であれば、感光性樹脂シートの厚膜加工性をより向上させることができる。この厚膜加工性の向上という観点から、nは5以上であることが好ましい。一方、nが200以下であれば、アルカリ現像液に対するアルカリ可溶性ポリイミド(A)の溶解性を向上させることができる。この溶解性の向上という観点から、nは100以下であることが好ましい。 Also, α and β each independently represent an integer ranging from 0 to 10. Among such α and β, it is preferable that α+β is 1 or more. n represents the number of repeating structural units of the polymer. The range of n is 3-200. If n is 3 or more, it is possible to further improve the thick film workability of the photosensitive resin sheet. From the viewpoint of improving the thick film workability, n is preferably 5 or more. On the other hand, when n is 200 or less, the solubility of the alkali-soluble polyimide (A) in an alkali developer can be improved. From the viewpoint of improving the solubility, n is preferably 100 or less.
 上記一般式(1)~(3)において、Rは、テトラカルボン酸二無水物由来の構造を有する4~22価の有機基である。なかでもRは、芳香族基または環状脂肪族基を含有する炭素原子数5~45の有機基であることが好ましい。 In the above general formulas (1) to (3), R 1 is a 4- to 22-valent organic group having a structure derived from tetracarboxylic dianhydride. Among them, R 1 is preferably an organic group having 5 to 45 carbon atoms containing an aromatic group or a cycloaliphatic group.
 テトラカルボン酸二無水物としては、例えば、芳香族テトラカルボン酸二無水物、脂肪族のテトラカルボン酸二無水物などを挙げることができる。芳香族テトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン酸二無水物、9,9-ビス{4-(3,4-ジカルボキシフェノキシ)フェニル}フルオレン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、2,2’,3,3’-ジフェニルスルホン酸テトラカルボン酸二無水物、エチレンテトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物、4-(2,5-ジオキソテトラヒドロフラン)-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-4メチル-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-7メチル-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸二無水物、ノルボルナン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物、ノルボルナン-2-スピロ-2’-シクロヘキサノン-6’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物などが挙げられる。 Examples of tetracarboxylic dianhydrides include aromatic tetracarboxylic dianhydrides and aliphatic tetracarboxylic dianhydrides. Examples of aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 2,3,3′,4′-biphenyltetracarboxylic dianhydride, Carboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 2,2',3,3 '-benzophenonetetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl)propane dianhydride, 1, 1-bis(3,4-dicarboxyphenyl)ethane dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride , bis(2,3-dicarboxyphenyl)methane dianhydride, bis(3,4-dicarboxyphenyl)sulfone dianhydride, bis(3,4-dicarboxyphenyl)ether dianhydride, 1,2, 5,6-naphthalenetetracarboxylic dianhydride, 9,9-bis(3,4-dicarboxyphenyl)fluoric dianhydride, 9,9-bis{4-(3,4-dicarboxyphenoxy)phenyl } Fluoric dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic Acid dianhydride, 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride, 2,2',3,3'-diphenylsulfonic acid tetracarboxylic dianhydride, ethylenetetracarboxylic acid dianhydride, cyclohexane-1,2,4,5-tetracarboxylic dianhydride, 4-(2,5-dioxotetrahydrofuran)-3-yl)-1,2,3,4-tetrahydronaphthalene-1 ,2-dicarboxylic anhydride, 4-(2,5-dioxotetrahydrofuran-3-yl)-4methyl-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic dianhydride, 4- (2,5-dioxotetrahydrofuran-3-yl)-7methyl-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic dianhydride, norbornane-2-spiro-2′-cyclopentanone -5′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride, norbornane-2-spiro-2′-cyclohexanone-6′-spiro-2″ -Norbornane-5,5'',6,6''-tetracarboxylic dianhydride and the like.
 脂肪族のテトラカルボン酸二無水物としては、例えば、ブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、2,3,5,6-シクロヘキサンテトラカルボン酸二無水物、エピクロン(登録商標)B-4400(大日本インキ化学工業(株))、リカシッドTDA-100およびBT-100(新日本理化(株))などが挙げられる。 Examples of aliphatic tetracarboxylic dianhydrides include butanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, and 2,3,5,6-cyclohexanetetracarboxylic acid. acid dianhydride, Epiclon (registered trademark) B-4400 (Dainippon Ink & Chemicals, Inc.), Rikacid TDA-100 and BT-100 (Shin Nippon Rika Co., Ltd.), and the like.
 また、テトラカルボン酸二無水物としては、下記に示す構造を有する酸二無水物を挙げることができる。本実施形態では、テトラカルボン酸二無水物として、上述した芳香族テトラカルボン酸二無水物、脂肪族のテトラカルボン酸二無水物、および下記に示す構造を有する酸二無水物のうちの2種類以上を用いてもよい。 In addition, examples of tetracarboxylic dianhydrides include acid dianhydrides having the structures shown below. In the present embodiment, as the tetracarboxylic dianhydride, two types of the aromatic tetracarboxylic dianhydride described above, the aliphatic tetracarboxylic dianhydride, and the acid dianhydride having the structure shown below The above may be used.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 ここで、Rは酸素原子、C(CF、C(CHおよびSOより選ばれる基を、RおよびRは、それぞれ独立に、カルボキシル基、水酸基、スルホン酸基およびチオール基より選ばれる基を表す。 wherein R5 is an oxygen atom, a group selected from C( CF3 ) 2 , C( CH3 ) 2 and SO2 ; and represents a group selected from a thiol group.
 上記一般式(1)~(3)において、Rは、ジアミン由来の構造を有する2~12価の有機基である。なかでも芳香族基または環状脂肪族基を含有する炭素原子数5~40の有機基であることが好ましい。 In the above general formulas (1) to (3), R 2 is a divalent to dodecavalent organic group having a diamine-derived structure. Among them, an organic group having 5 to 40 carbon atoms containing an aromatic group or a cycloaliphatic group is preferred.
 ジアミンとしては、例えば、ヒドロキシル基含有ジアミン、カルボキシル基含有ジアミン、チオール基含有ジアミン、芳香族ジアミン、これらの芳香族環の水素原子のうち少なくとも一部をアルキル基やハロゲン原子で置換した化合物、脂肪族ジアミンなどが挙げられる。 Diamines include, for example, hydroxyl group-containing diamines, carboxyl group-containing diamines, thiol group-containing diamines, aromatic diamines, compounds in which at least some of the hydrogen atoms of these aromatic rings are substituted with alkyl groups or halogen atoms, fatty group diamines and the like.
 ヒドロキシル基含有ジアミンとしては、例えば、ビス-(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)メチレン、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、ビス(3-アミノ-4-ヒドロキシ)ビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)フルオレン、2,2‘-ジトリフルオロメチル-5,5’-4,4‘-ジアミノビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)フルオレン、2,2’-ビス(トリフルオロメチル)-5-5‘-ジヒドロキシベンジジンなどが挙げられる。カルボキシル基含有ジアミンとしては、例えば、2,2-ビス[3-アミノ-4-カルボキシフェニル]プロパン、2,2-ビス[4-アミノ-3-カルボキシフェニル]プロパン、2,2-ビス[3-アミノ-4-カルボキシフェニル]ヘキサフルオロプロパン、4,4’-ジアミノ-2,2‘,5,5’-テトラカルボキシジフェニルメタン、3,3‘-ジアミノ-4,4’-ジカルボキシジフェニルエーテル、4,4‘-ジアミノ-3,3’-ジカルボキシジフェニルエーテル、4,4‘-ジアミノ-2,2’-ジカルボキシジフェニルエーテル、4,4‘-ジアミノ-2,2’,5,5‘-テトラカルボキシジフェニルエーテル、3,3’-ジアミノ-4,4‘-ジカルボキシジフェニルスルフォン、4,4’-ジアミノ-3,3‘-ジカルボキシジフェニルスルフォン、4,4’-ジアミノ-2,2‘-ジカルボキシジフェニルスルフォン、4,4’-ジアミノ-2,2‘,5,5’-テトラカルボキシジフェニルスルフォン、2,2-ビス[4-(4-アミノ-3-カルボキシフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノ-3-カルボキシフェノキシ)フェニル]スルフォンなどが挙げられる。チオール基含有ジアミンとしては、例えば、ジメルカプトフェニレンジアミンなどが挙げられる。 Examples of hydroxyl group-containing diamines include bis-(3-amino-4-hydroxyphenyl)hexafluoropropane, bis(3-amino-4-hydroxyphenyl)sulfone, bis(3-amino-4-hydroxyphenyl)propane. , bis(3-amino-4-hydroxyphenyl)methylene, bis(3-amino-4-hydroxyphenyl)ether, bis(3-amino-4-hydroxy)biphenyl, bis(3-amino-4-hydroxyphenyl) Fluorene, 2,2'-ditrifluoromethyl-5,5'-4,4'-diaminobiphenyl, bis(3-amino-4-hydroxyphenyl)fluorene, 2,2'-bis(trifluoromethyl)-5 -5'-dihydroxybenzidine and the like. Carboxyl group-containing diamines include, for example, 2,2-bis[3-amino-4-carboxyphenyl]propane, 2,2-bis[4-amino-3-carboxyphenyl]propane, 2,2-bis[3 -amino-4-carboxyphenyl]hexafluoropropane, 4,4'-diamino-2,2',5,5'-tetracarboxydiphenylmethane, 3,3'-diamino-4,4'-dicarboxydiphenyl ether, 4 ,4'-diamino-3,3'-dicarboxydiphenyl ether, 4,4'-diamino-2,2'-dicarboxydiphenyl ether, 4,4'-diamino-2,2',5,5'-tetracarboxy Diphenyl ether, 3,3'-diamino-4,4'-dicarboxydiphenylsulfone, 4,4'-diamino-3,3'-dicarboxydiphenylsulfone, 4,4'-diamino-2,2'-dicarboxy Diphenylsulfone, 4,4'-diamino-2,2',5,5'-tetracarboxydiphenylsulfone, 2,2-bis[4-(4-amino-3-carboxyphenoxy)phenyl]propane, 2,2 -bis[4-(4-amino-3-carboxyphenoxy)phenyl]sulfone and the like. Thiol group-containing diamines include, for example, dimercaptophenylenediamine.
 芳香族ジアミンとしては、例えば、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ベンジジン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ビス(4-アミノフェノキシフェニル)スルホン、ビス(3-アミノフェノキシフェニル)スルホン、ビス(4-アミノフェノキシ)ビフェニル、ビス{4-(4-アミノフェノキシ)フェニル}エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジエチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジエチル-4,4’-ジアミノビフェニル、2,2’,3,3’-テトラメチル-4,4’-ジアミノビフェニル、3,3’,4,4’-テトラメチル-4,4’-ジアミノビフェニル、2,2’-ジ(トリフルオロメチル)-4,4’-ジアミノビフェニル、9,9-ビス(4-アミノフェニル)フルオレンなどが挙げられる。脂肪族ジアミンとしては、例えば、シクロヘキシルジアミン、メチレンビスシクロヘキシルアミンなどが挙げられる。 Examples of aromatic diamines include 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4, 4'-diaminodiphenylmethane, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide , 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene, benzidine, m-phenylenediamine, p-phenylene Diamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine, bis(4-aminophenoxyphenyl)sulfone, bis(3-aminophenoxyphenyl)sulfone, bis(4-aminophenoxy)biphenyl, bis{4-( 4-aminophenoxy)phenyl}ether, 1,4-bis(4-aminophenoxy)benzene, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-diethyl-4,4'-diamino biphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-diethyl-4,4'-diaminobiphenyl, 2,2',3,3'-tetramethyl-4,4'- Diaminobiphenyl, 3,3′,4,4′-tetramethyl-4,4′-diaminobiphenyl, 2,2′-di(trifluoromethyl)-4,4′-diaminobiphenyl, 9,9-bis( 4-aminophenyl)fluorene and the like. Examples of aliphatic diamines include cyclohexyldiamine and methylenebiscyclohexylamine.
 また、ジアミンとしては、例えば、下記に示す構造を有するジアミンが挙げられる。本実施形態では、ジアミンとして、上述したヒドロキシル基含有ジアミン、カルボキシル基含有ジアミン、チオール基含有ジアミン、芳香族ジアミン、これらの芳香族環の水素原子のうち少なくとも一部をアルキル基やハロゲン原子で置換した化合物、脂肪族ジアミン、および下記に示す構造を有するジアミンのうちの2種類以上を用いてもよい。 In addition, diamines include, for example, diamines having the structures shown below. In this embodiment, as the diamine, at least part of the hydroxyl group-containing diamine, the carboxyl group-containing diamine, the thiol group-containing diamine, the aromatic diamine, and the hydrogen atoms of these aromatic rings are substituted with an alkyl group or a halogen atom. , aliphatic diamines, and diamines having the structures shown below may be used.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 ここで、Rは酸素原子、C(CF、C(CHおよびSOより選ばれる基を、R~Rはそれぞれ独立に、カルボキシル基、水酸基、スルホン酸基およびチオール基より選ばれる基を表す。 Here, R 5 is an oxygen atom, a group selected from C(CF 3 ) 2 , C(CH 3 ) 2 and SO 2 , R 6 to R 9 are each independently a carboxyl group, hydroxyl group, sulfonic acid group and represents a group selected from thiol groups.
 上述したジアミンのうち、ビス-(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)メチレン、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、ビス(3-アミノ-4-ヒドロキシ)ビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)フルオレン、2,2-ビス[3-アミノ-4-カルボキシフェニル]プロパン、2,2-ビス[4-アミノ-3-カルボキシフェニル]プロパン、2,2-ビス[3-アミノ-4-カルボキシフェニル]ヘキサフルオロプロパン、4,4’-ジアミノ-2,2‘,5,5’-テトラカルボキシジフェニルメタン、3,3‘-ジアミノ-4,4’-ジカルボキシジフェニルエーテル、4,4‘-ジアミノ-3,3’-ジカルボキシジフェニルエーテル、4,4‘-ジアミノ-2,2’-ジカルボキシジフェニルエーテル、4,4‘-ジアミノ-2,2’,5,5‘-テトラカルボキシジフェニルエーテル、3,3’-ジアミノ-4,4‘-ジカルボキシジフェニルスルフォン、4,4’-ジアミノ-3,3‘-ジカルボキシジフェニルスルフォン、4,4’-ジアミノ-2,2‘-ジカルボキシジフェニルスルフォン、4,4’-ジアミノ-2,2‘,5,5’-テトラカルボキシジフェニルスルフォン、2,2-ビス[4-(4-アミノ-3-カルボキシフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノ-3-カルボキシフェノキシ)フェニル]スルフォン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、m-フェニレンジアミン、p-フェニレンジアミン、1,4-ビス(4-アミノフェノキシ)ベンゼン、9,9-ビス(4-アミノフェニル)フルオレンおよび下記に示す構造を有するジアミンが好ましい。 Among the diamines mentioned above, bis-(3-amino-4-hydroxyphenyl)hexafluoropropane, bis(3-amino-4-hydroxyphenyl)sulfone, bis(3-amino-4-hydroxyphenyl)propane, bis( 3-amino-4-hydroxyphenyl)methylene, bis(3-amino-4-hydroxyphenyl)ether, bis(3-amino-4-hydroxy)biphenyl, bis(3-amino-4-hydroxyphenyl)fluorene, 2 , 2-bis[3-amino-4-carboxyphenyl]propane, 2,2-bis[4-amino-3-carboxyphenyl]propane, 2,2-bis[3-amino-4-carboxyphenyl]hexafluoro Propane, 4,4'-diamino-2,2',5,5'-tetracarboxydiphenylmethane, 3,3'-diamino-4,4'-dicarboxydiphenyl ether, 4,4'-diamino-3,3' -dicarboxydiphenyl ether, 4,4'-diamino-2,2'-dicarboxydiphenyl ether, 4,4'-diamino-2,2',5,5'-tetracarboxydiphenyl ether, 3,3'-diamino-4 ,4'-dicarboxydiphenylsulfone, 4,4'-diamino-3,3'-dicarboxydiphenylsulfone, 4,4'-diamino-2,2'-dicarboxydiphenylsulfone, 4,4'-diamino- 2,2',5,5'-tetracarboxydiphenylsulfone, 2,2-bis[4-(4-amino-3-carboxyphenoxy)phenyl]propane, 2,2-bis[4-(4-amino- 3-carboxyphenoxy)phenyl]sulfone, 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4 , 4'-diaminodiphenylmethane, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl Sulfides, m-phenylenediamine, p-phenylenediamine, 1,4-bis(4-aminophenoxy)benzene, 9,9-bis(4-aminophenyl)fluorene and diamines having the structures shown below are preferred.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 また、上記一般式(1)~(3)において、RおよびRは、上述したように、それぞれ独立にカルボキシル基、フェノール性水酸基、スルホン酸基またはチオール基を表す。これらのRおよびRのアルカリ可溶性基の量を調整することにより、アルカリ可溶性ポリイミド(A)のアルカリ水溶液に対する溶解速度が変化するため、所望の溶解速度を有する感光性樹脂シートを得ることができる。 In general formulas (1) to (3) above, R 3 and R 4 each independently represent a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group or a thiol group, as described above. By adjusting the amount of these alkali-soluble groups of R3 and R4 , the dissolution rate of the alkali-soluble polyimide (A) in an alkaline aqueous solution changes, so that a photosensitive resin sheet having a desired dissolution rate can be obtained. can.
 さらに、基板との接着性を向上させるために、耐熱性を低下させない範囲でRにシロキサン構造を有するジアミンを共重合してもよい。具体的には、ジアミン成分として、ビス(3-アミノプロピル)テトラメチルジシロキサン、ビス(p-アミノ-フェニル)オクタメチルペンタシロキサンなどを1~10モル%共重合したものなどがあげられる。 Furthermore, in order to improve the adhesiveness to the substrate, a diamine having a siloxane structure at R2 may be copolymerized within a range that does not lower the heat resistance. Specifically, as the diamine component, bis(3-aminopropyl)tetramethyldisiloxane, bis(p-amino-phenyl)octamethylpentasiloxane, etc. may be copolymerized in an amount of 1 to 10 mol %.
 一般式(2)において、Xは末端封止剤である1級モノアミンに由来する。末端封止剤として用いられる1級モノアミンとしては、5-アミノ-8-ヒドロキシキノリン、1-ヒドロキシ-7-アミノナフタレン、1-ヒドロキシ-6-アミノナフタレン、1-ヒドロキシ-5-アミノナフタレン、1-ヒドロキシ-4-アミノナフタレン、2-ヒドロキシ-7-アミノナフタレン、2-ヒドロキシ-6-アミノナフタレン、2-ヒドロキシ-5-アミノナフタレン、1-カルボキシ-7-アミノナフタレン、1-カルボキシ-6-アミノナフタレン、1-カルボキシ-5-アミノナフタレン、2-カルボキシ-7-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、2-カルボキシ-5-アミノナフタレン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、3-アミノ-4,6-ジヒドロキシピリミジン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノールなどが好ましい。これらは単独でまたは2種以上を組み合わせて使用される。 In general formula (2), X is derived from a primary monoamine that is a terminal blocking agent. Primary monoamines used as terminal blockers include 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1 -hydroxy-4-aminonaphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, 1-carboxy-7-aminonaphthalene, 1-carboxy-6- aminonaphthalene, 1-carboxy-5-aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6-aminonaphthalene, 2-carboxy-5-aminonaphthalene, 2-aminobenzoic acid, 3-aminobenzoic acid , 4-aminobenzoic acid, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzenesulfonic acid, 3-aminobenzenesulfonic acid, 4-aminobenzenesulfonic acid, 3-amino-4,6 -dihydroxypyrimidine, 2-aminophenol, 3-aminophenol, 4-aminophenol, 2-aminothiophenol, 3-aminothiophenol, 4-aminothiophenol and the like are preferred. These are used alone or in combination of two or more.
 また、一般式(3)において、Yは末端封止剤であるジカルボン酸無水物に由来する。末端封止剤として用いられる酸無水物としては、4-カルボキシフタル酸無水物、3-ヒドロキシフタル酸無水物、シス-アコニット酸無水物などが好ましい。これらは単独でまたは2種以上を組み合わせて使用される。 Also, in general formula (3), Y is derived from a dicarboxylic anhydride that is a terminal blocking agent. As the acid anhydride used as the terminal blocking agent, 4-carboxyphthalic anhydride, 3-hydroxyphthalic anhydride, cis-aconitic anhydride and the like are preferable. These are used alone or in combination of two or more.
 本発明に用いられるアルカリ可溶性ポリイミド(A)は、一般式(1)~(3)で表される構造のみからなるものであっても良いし、アルカリ可溶性を有する他の構造との混合体であっても良い。その際、一般式(1)~(3)で表される構造のアルカリ可溶性ポリイミド(A)を、アルカリ可溶性ポリイミド全体の重量に対して50重量%以上含有していることが好ましい。さらに、好ましくは60重量%以上である。50重量%以上であれば、熱硬化時の収縮を抑えることができ、厚膜作製に好適である。混合されるアルカリ可溶性樹脂の種類および量は、最終的に加熱処理によって得られるポリイミドの耐熱性を損なわない範囲で選択することが好ましい。 The alkali-soluble polyimide (A) used in the present invention may consist of only the structures represented by the general formulas (1) to (3), or may be a mixture with other structures having alkali solubility. It can be. At that time, it is preferable that the alkali-soluble polyimide (A) having the structure represented by the general formulas (1) to (3) is contained in an amount of 50% by weight or more based on the total weight of the alkali-soluble polyimide. Furthermore, it is preferably 60% by weight or more. When the content is 50% by weight or more, shrinkage during thermosetting can be suppressed, which is suitable for producing a thick film. The type and amount of the alkali-soluble resin to be mixed is preferably selected within a range that does not impair the heat resistance of the polyimide finally obtained by heat treatment.
 アルカリ可溶性ポリイミド(A)は、ジアミンの一部を末端封止剤であるモノアミンに置き換えて、または、テトラカルボン酸二無水物を、末端封止剤であるジカルボン酸無水物に置き換えて、公知の方法を利用して合成することができる。例えば、低温中でテトラカルボン酸二無水物とジアミン化合物とモノアミンを反応させる方法、低温中でテトラカルボン酸二無水物とジカルボン酸無水物とジアミン化合物を反応させる方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得て、その後ジアミンとモノアミンと縮合剤の存在下で反応させる方法などの方法を利用して、ポリイミド前駆体を得る。その後、得られたポリイミド前駆体を、公知のイミド化反応法を用いて完全イミド化させる方法を利用して既閉環ポリイミドを合成することができる。 The alkali-soluble polyimide (A) replaces part of the diamine with a terminal blocking agent monoamine, or replaces the tetracarboxylic dianhydride with a terminal blocking agent dicarboxylic anhydride, known method can be used to synthesize. For example, a method of reacting a tetracarboxylic dianhydride, a diamine compound and a monoamine at a low temperature, a method of reacting a tetracarboxylic dianhydride, a dicarboxylic anhydride and a diamine compound at a low temperature, and a method of reacting a tetracarboxylic dianhydride with a diamine compound. A polyimide precursor is obtained by using a method such as a method of obtaining a diester with an alcohol, and then reacting a diamine, a monoamine and a condensing agent. Thereafter, the obtained polyimide precursor can be completely imidized using a known imidization reaction method to synthesize a closed-ring polyimide.
 本発明に用いる既閉環ポリイミドは、上記の方法で重合させた後、多量の水またはメタノールおよび水の混合液などに投入し、沈殿させて濾別乾燥し、単離することが好ましい。乾燥温度は40~100℃が好ましく、より好ましくは50~80℃である。この方法によって、未反応のモノマーやオリゴマー成分が除去され、熱硬化膜の膜特性を向上させることができる。 It is preferable that the closed-ring polyimide used in the present invention is polymerized by the above method, then put into a large amount of water or a mixture of methanol and water, etc., precipitated, filtered, dried, and isolated. The drying temperature is preferably 40-100°C, more preferably 50-80°C. By this method, unreacted monomer and oligomer components are removed, and the film properties of the thermoset film can be improved.
 また、アルカリ可溶性ポリイミド(A)のイミド化率は、例えば、以下の方法で容易に求めることができる。ここで、イミド化率とは、前記のようにポリイミド前駆体を経て既閉環ポリイミドを合成するにあたって、ポリイミド前駆体のうち、何モル%がポリイミドに転換しているかを意味する。まず、ポリマーの赤外吸収スペクトルを測定し、ポリイミドに起因するイミド構造の吸収ピーク(1780cm-1付近、1377cm-1付近)の存在を確認する。次に、そのポリマーについて、350℃で1時間熱処理した後、再度、赤外吸収スペクトルを測定し、熱処理前と熱処理後の1377cm-1付近のピーク強度を比較する。熱処理後のポリマーのイミド化率を100%として、熱処理前のポリマーのイミド化率を求める。本発明において、ポリマーのイミド化率が50%以上であるものを既閉環ポリイミドとする。アルカリ可溶性ポリイミド(A)は、既閉環ポリイミドであることが好ましく、特にポリマーのイミド化率は70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましい。加熱工程(キュア)において低温の温度条件での加熱処理で硬化膜が得られるため、低応力化の効果が得られ、クラックや基板の割れを抑えることができる。また、ポリイミド前駆体由来のカルボン酸基が少ないため、金属配線の腐食を抑えることができる。 Also, the imidization rate of the alkali-soluble polyimide (A) can be easily determined by, for example, the following method. Here, the imidization rate means what mol % of the polyimide precursor is converted to polyimide when synthesizing a closed-ring polyimide via the polyimide precursor as described above. First, the infrared absorption spectrum of the polymer is measured to confirm the presence of absorption peaks (near 1780 cm −1 and 1377 cm −1 ) of the imide structure due to polyimide. Next, after heat-treating the polymer at 350° C. for 1 hour, the infrared absorption spectrum is measured again, and the peak intensity near 1377 cm −1 before and after the heat treatment is compared. Assuming that the imidization rate of the polymer after the heat treatment is 100%, the imidization rate of the polymer before the heat treatment is obtained. In the present invention, a polyimide having an imidization rate of 50% or more is defined as a closed-ring polyimide. The alkali-soluble polyimide (A) is preferably a closed-ring polyimide, and in particular the imidization rate of the polymer is preferably 70% or more, more preferably 80% or more, and preferably 90% or more. More preferred. In the heating step (curing), a cured film can be obtained by heat treatment under low temperature conditions, so that the effect of reducing stress can be obtained, and cracks and breakage of the substrate can be suppressed. Moreover, since there are few carboxylic acid groups derived from the polyimide precursor, corrosion of metal wiring can be suppressed.
 アルカリ可溶性ポリイミド(A)に導入された末端封止剤は、以下の方法で検出できる。例えば、末端封止剤が導入されたポリイミドを、酸性溶液に溶解して、ポリイミドの構成単位であるアミン成分とカルボン酸無水物成分に分解し、これをガスクロマトグラフィー(GC)や、NMRにより測定する。これとは別に、末端封止剤が導入されたポリイミドを直接、熱分解ガスクロマトグラフ(PGC)や赤外スペクトルおよび13CNMRスペクトルを用いて測定しても、検出可能である。 The terminal blocking agent introduced into the alkali-soluble polyimide (A) can be detected by the following method. For example, a polyimide into which a terminal blocking agent has been introduced is dissolved in an acidic solution to decompose into an amine component and a carboxylic acid anhydride component, which are constituent units of the polyimide, and this is analyzed by gas chromatography (GC) or NMR. Measure. Apart from this, it can also be detected by directly measuring polyimide into which a terminal blocker has been introduced using a pyrolysis gas chromatograph (PGC), an infrared spectrum, and a 13 CNMR spectrum.
 アルカリ可溶性ポリイミド(A)の含有量は、後述する無機粒子を除いた、感光性樹脂層の固形分100質量%中、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることがさらに好ましい。アルカリ可溶性ポリイミド(A)の含有量が多いほど、硬化膜の弾性率および耐圧性、耐熱性を向上することが可能である。一方で、アルカリ可溶性ポリイミド(A)の含有量は、後述する無機粒子を除いた、感光性樹脂層の固形分100質量%中、80質量%以下であることが好ましく、70質量%以下であることがより好ましく、60質量%以下であることがさらに好ましい。アルカリ可溶性ポリイミド(A)の含有量が少ないほど、感光性樹脂シートのラミネート性を向上することができる。 The content of the alkali-soluble polyimide (A) is preferably 20% by mass or more, more preferably 30% by mass or more, in 100% by mass of the solid content of the photosensitive resin layer, excluding the inorganic particles described later. It is preferably 40% by mass or more, and more preferably 40% by mass or more. As the content of the alkali-soluble polyimide (A) increases, the elastic modulus, pressure resistance, and heat resistance of the cured film can be improved. On the other hand, the content of the alkali-soluble polyimide (A) is preferably 80% by mass or less in 100% by mass of the solid content of the photosensitive resin layer, excluding the inorganic particles described later, and is 70% by mass or less. is more preferably 60% by mass or less. The lower the content of the alkali-soluble polyimide (A), the better the lamination properties of the photosensitive resin sheet.
 〔光重合性化合物(B)〕
 本発明の感光性樹脂シート中の感光性樹脂層を形成する感光性樹脂組成物は、光重合性化合物(B)を含有する。光重合性化合物(B)は、分子内にラジカル重合性やカチオン重合性を示す官能基を有する化合物を意味する。ラジカル重合性を示す官能基としては、例えば、ビニル基、アリル基、アクリロイル基、メタクリロイル基、プロパルギル基等などが挙げられる。これらの中でも、アクリロイル基、メタクリロイル基を有する化合物が重合性の面で好ましい。以下、アクリロイル基またはメタクリロイル基を有する化合物を(メタ)アクリル化合物と称する。また、カチオン重合性を示す官能基を有する化合物としては、環状エーテル化合物(エポキシ化合物及びオキセタン化合物等)、エチレン性不飽和化合物(ビニルエーテル及びスチレン類等)、ビシクロオルトエステル、スピロオルトカーボネート及びスピロオルトエステル等が挙げられる。
[Photopolymerizable compound (B)]
The photosensitive resin composition forming the photosensitive resin layer in the photosensitive resin sheet of the present invention contains a photopolymerizable compound (B). The photopolymerizable compound (B) means a compound having a functional group exhibiting radical polymerizability or cationic polymerizability in its molecule. Examples of functional groups exhibiting radical polymerizability include vinyl groups, allyl groups, acryloyl groups, methacryloyl groups, propargyl groups, and the like. Among these, compounds having an acryloyl group or a methacryloyl group are preferable from the standpoint of polymerizability. A compound having an acryloyl group or a methacryloyl group is hereinafter referred to as a (meth)acrylic compound. Examples of compounds having functional groups exhibiting cationic polymerizability include cyclic ether compounds (epoxy compounds, oxetane compounds, etc.), ethylenically unsaturated compounds (vinyl ethers, styrenes, etc.), bicycloorthoesters, spiroorthocarbonates and spiroortho Ester etc. are mentioned.
 光重合性化合物(B)中のラジカル重合性やカチオン重合性を示す官能基の当量(以下、光重合性官能基当量、と記す)は、平均で70~200g/eqである。光重合性化合物(B)の光重合性官能基当量は、平均で70g/eq以上であることが好ましく、80g/eq以上であることがより好ましく、90g/eq以上であることがさらに好ましく、100g/eq以上であることが特に好ましい。光重合性官能基当量が大きいほど、硬化膜の伸度を向上することができ、クラックの発生を抑制することが可能となる。一方で、(B)光重合性化合物の光重合性官能基当量が平均で、200g/eq以下であることが好ましく、180g/eq以下であることがより好ましく、160g/eq以下であることがさらに好ましく、140g/eq以下であることが特に好ましい。光重合性官能基当量が小さいほど、硬化膜の耐熱性や弾性率を向上することが可能であり、硬化膜の信頼性が高まる。また、高解像度なパターン形成が可能となる。これは、光硬化時により露光部の重合反応が良好に進んだだめ、露光部と未露光部における現像液への溶解コントラスト差が大きくなったためと推測される。 The equivalent weight of functional groups exhibiting radical polymerizability or cationic polymerizability (hereinafter referred to as photopolymerizable functional group equivalent weight) in the photopolymerizable compound (B) is 70 to 200 g/eq on average. The photopolymerizable functional group equivalent of the photopolymerizable compound (B) is preferably 70 g/eq or more on average, more preferably 80 g/eq or more, further preferably 90 g/eq or more, 100 g/eq or more is particularly preferred. The greater the photopolymerizable functional group equivalent, the more the elongation of the cured film can be improved, and the more the occurrence of cracks can be suppressed. On the other hand, the average photopolymerizable functional group equivalent of the photopolymerizable compound (B) is preferably 200 g/eq or less, more preferably 180 g/eq or less, and 160 g/eq or less. More preferably, it is particularly preferably 140 g/eq or less. As the photopolymerizable functional group equivalent is smaller, the heat resistance and elastic modulus of the cured film can be improved, and the reliability of the cured film is increased. Moreover, high-resolution pattern formation becomes possible. It is presumed that this is because the polymerization reaction in the exposed areas progressed more favorably during photocuring, resulting in a greater difference in dissolution contrast in the developer between the exposed areas and the unexposed areas.
 光重合性官能基当量は、下記式より求められる。
光重合性官能基当量=(分子量/同一分子中のラジカル重合性又はカチオン重合性を示す官能基の数)
 光重合性化合物(B)のラジカル重合性又はカチオン重合性を示す官能基数としては、2以上であることが好ましく、3以上であることがより好ましい。官能基数が大きいほど、硬化膜の耐熱性を向上することが可能となる。また、光硬化後に露光部の現像液への溶解性を低減させ、パターンの高解像化が可能となる。一方で、光重合性化合物(B)のラジカル重合性やカチオン重合性を示す官能基数としては、16以下であることが好ましく、6以下であることがより好ましい。官能基数が小さいほど、硬化膜のクラックの発生を抑制することが可能となる。
The photopolymerizable functional group equivalent is obtained from the following formula.
Photopolymerizable functional group equivalent = (molecular weight/number of radically polymerizable or cationic polymerizable functional groups in the same molecule)
The number of functional groups exhibiting radical polymerizability or cationic polymerizability of the photopolymerizable compound (B) is preferably 2 or more, more preferably 3 or more. As the number of functional groups increases, the heat resistance of the cured film can be improved. In addition, after photocuring, the solubility of the exposed portion in the developer is reduced, so that the pattern can be formed with high resolution. On the other hand, the number of functional groups exhibiting radical polymerizability or cationic polymerizability of the photopolymerizable compound (B) is preferably 16 or less, more preferably 6 or less. The smaller the number of functional groups, the more it is possible to suppress the occurrence of cracks in the cured film.
 光重合性化合物(B)は、光重合性官能基当量が70~200g/eqとなれば特に限定されず、(メタ)アクリル化合物としては、例えば、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジメタクリレート、トリメチロールプロパントリメタクリレート、ブチルアクリレート、ブチルメタクリレート、イソブチルアクリレート、ヘキシルアクリレート、イソオクチルアクリレート、イソボルニルアクリレート、イソボルニルメタクリレート、シクロヘキシルメタクリレート、グリシジルメタクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル、1,3-ブタンジオールジアクリレート、1,3-ブタンジオールジメタクリレート、ネオペンチルグリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジアクリレート、1,6-ヘキサンジオールジメタクリレート、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ジメチロールトリシクロデカンジアクリレート、ジメチロールトリシクロデカンジメタクリレート、1,3-アダマンタンジアクリレート、1,3-アダマンタンジメタクリレート、1,3,5-アダマンタントリアクリレート、1,3,5-アダマンタントリメタクリレート、5-ヒドロキシ-1,3-アダマンタンジアクリレート、5-ヒドロキシ-1,3-アダマンタンジメタクリレート、ペンタシクロペンタデカンジメタノールジアクリレート、ペンタシクロペンタデカンジメタノールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、1,3-ジアクリロイルオキシ-2-ヒドロキシプロパン、1,3-ジメタクリロイルオキシ-2-ヒドロキシプロパン、2,2,6,6-テトラメチルピペリジニルメタクリレート、2,2,6,6-テトラメチルピペリジニルアクリレート、N-メチル-2,2,6,6-テトラメチルピペリジニルメタクリレート、N-メチル-2,2,6,6-テトラメチルピペリジニルアクリレート、ジオキサングリコールジアクリレート、エチレンオキシド変性ビスフェノールAジアクリレート、エチレンオキシド変性ビスフェノールAジメタクリレート、プロピレンオキシド変性ビスフェノールAジアクリレート、プロピレンオキシド変性ビスフェノールAメタクリレート、プロポキシ化エトキシ化ビスフェノールAジアクリレート、プロポキシ化エトキシ化ビスフェノールAジメタクリレート、エチレンオキシド変性ペンタエリスリトールテトラメタクリレート、プロピレンオキシド変性ペンタエリスリトールテトラアクリレート、イソシアヌル酸エチレンオキシド変性ジアクリレート、イソシアヌル酸エチレンオキシド変性ジメタクリレート、イソシアヌル酸エチレンオキシド変性トリアクリレート、イソシアヌル酸エチレンオキシド変性トリメタクリレート等が挙げられる。 The photopolymerizable compound (B) is not particularly limited as long as it has a photopolymerizable functional group equivalent weight of 70 to 200 g/eq. Ethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, trimethylolpropane diacrylate, trimethylolpropane triacrylate, trimethylolpropane dimethacrylate, trimethylolpropane trimethacrylate, butyl acrylate, butyl methacrylate , isobutyl acrylate, hexyl acrylate, isooctyl acrylate, isobornyl acrylate, isobornyl methacrylate, cyclohexyl methacrylate, glycidyl methacrylate, 4-hydroxybutyl acrylate glycidyl ether, 1,3-butanediol diacrylate, 1,3-butanediol Dimethacrylate, neopentyl glycol diacrylate, 1,4-butanediol diacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, 1,9-nonane diol dimethacrylate, 1,10-decanediol dimethacrylate, dimethyloltricyclodecane diacrylate, dimethyloltricyclodecane dimethacrylate, 1,3-adamantane diacrylate, 1,3-adamantane dimethacrylate, 1,3,5 - adamantane triacrylate, 1,3,5-adamantane trimethacrylate, 5-hydroxy-1,3-adamantane diacrylate, 5-hydroxy-1,3-adamantane dimethacrylate, pentacyclopentadecane dimethanol diacrylate, pentacyclopentadecane dimethanol diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol hexaacrylate, dipentaerythritol hexamethacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 1 ,3-diacryloyloxy-2-hydroxypropane, 1,3-dimethacryloyloxy-2-hydroxypropane, 2,2,6,6-tetramethylpiperidinyl methacrylate, 2,2,6,6-tetramethyl piperidinyl acrylate, N-methyl-2,2,6,6-tetramethylpiperidinyl methacrylate, N-methyl-2,2,6,6-tetramethylpiperidinyl acrylate, dioxane glycol diacrylate, ethylene oxide modified Bisphenol A diacrylate, ethylene oxide-modified bisphenol A dimethacrylate, propylene oxide-modified bisphenol A diacrylate, propylene oxide-modified bisphenol A methacrylate, propoxylated ethoxylated bisphenol A dimethacrylate, propoxylated ethoxylated bisphenol A dimethacrylate, ethylene oxide-modified pentaerythritol tetra Methacrylate, propylene oxide-modified pentaerythritol tetraacrylate, ethylene oxide isocyanurate-modified diacrylate, ethylene oxide isocyanurate-modified dimethacrylate, ethylene oxide isocyanurate-modified triacrylate, and ethylene oxide isocyanurate-modified trimethacrylate.
 光重合性化合物(B)として好適なエポキシ化合物としては、公知のもの等が使用でき、芳香族エポキシ化合物、脂環式エポキシ化合物及び脂肪族エポキシ化合物が挙げられる。 As the epoxy compound suitable as the photopolymerizable compound (B), known compounds can be used, including aromatic epoxy compounds, alicyclic epoxy compounds and aliphatic epoxy compounds.
 芳香族エポキシ化合物としては、少なくとも1個の芳香環を有する1価又は多価のフェノール(フェノール、ビスフェノールA、フェノールノボラック及びこれらのアルキレンオキシド付加体した化合物)のグリシジルエーテル等が挙げられる。 Examples of aromatic epoxy compounds include glycidyl ethers of monohydric or polyhydric phenols (phenol, bisphenol A, phenol novolak, and alkylene oxide adducts thereof) having at least one aromatic ring.
 脂環式エポキシ化合物としては、少なくとも1個のシクロヘキセンやシクロペンテン環を有する化合物を酸化剤でエポキシ化することによって得られる化合物(3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、等)が挙げられる。 Examples of alicyclic epoxy compounds include compounds obtained by epoxidizing a compound having at least one cyclohexene or cyclopentene ring with an oxidizing agent (3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, etc. ).
 脂肪族エポキシ化合物としては、脂肪族多価アルコール又はこのアルキレンオキシド付加体のポリグリシジルエーテル(1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル等)、脂肪族多塩基酸のポリグリシジルエステル(ジグリシジルテトラヒドロフタレート等)、長鎖不飽和化合物のエポキシ化物(エポキシ化大豆油及びエポキシ化ポリブタジエン等)が挙げられる。 Aliphatic epoxy compounds include aliphatic polyhydric alcohols or polyglycidyl ethers of alkylene oxide adducts thereof (1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, etc.), aliphatic polybasic acids polyglycidyl esters (diglycidyl tetrahydrophthalate, etc.), and epoxidized long-chain unsaturated compounds (epoxidized soybean oil, epoxidized polybutadiene, etc.).
 オキセタン化合物としては、公知のもの等が使用でき、例えば、3-エチル-3-ヒドロキシメチルオキセタン、2-エチルヘキシル(3-エチル-3-オキセタニルメチル)エーテル、2-ヒドロキシエチル(3-エチル-3-オキセタニルメチル)エーテル、2-ヒドロキシプロピル(3-エチル-3-オキセタニルメチル)エーテル、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、オキセタニルシルセスキオキセタン及びフェノールノボラックオキセタン等が挙げられる。 As the oxetane compound, known compounds can be used. -oxetanylmethyl)ether, 2-hydroxypropyl(3-ethyl-3-oxetanylmethyl)ether, 1,4-bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene, oxetanylsilsesquioxetane and phenol novolac oxetane etc.
 エチレン性不飽和化合物としては、公知のカチオン重合性単量体等が使用でき、脂肪族モノビニルエーテル、芳香族モノビニルエーテル、多官能ビニルエーテル、スチレン及びカチオン重合性窒素含有モノマーが含まれる。 As the ethylenically unsaturated compound, known cationic polymerizable monomers can be used, including aliphatic monovinyl ethers, aromatic monovinyl ethers, polyfunctional vinyl ethers, styrene and cationic polymerizable nitrogen-containing monomers.
 脂肪族モノビニルエーテルとしては、メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル及びシクロヘキシルビニルエーテル等、芳香族モノビニルエーテルとしては、2-フェノキシエチルビニルエーテル、フェニルビニルエーテル及びp-メトキシフェニルビニルエーテル等、多官能ビニルエーテルとしては、ブタンジオール-1,4-ジビニルエーテル及びトリエチレングリコールジビニルエーテル等、スチレン類としては、スチレン、α-メチルスチレン、p-メトキシスチレン及びtert-ブトキシスチレン等、カチオン重合性窒素含有モノマーとしては、N-ビニルカルバゾール及びN-ビニルピロリドン等、ビシクロオルトエステルとしては、1-フェニル-4-エチル-2,6,7-トリオキサビシクロ[2.2.2]オクタン及び1-エチル-4-ヒドロキシメチル-2,6,7-トリオキサビシクロ-[2.2.2]オクタン等、スピロオルトカーボネートとしては、1,5,7,11-テトラオキサスピロ[5.5]ウンデカン及び3,9-ジベンジル-1,5,7,11-テトラオキサスピロ[5.5]ウンデカン等、スピロオルトエステルとしては、1,4,6-トリオキサスピロ[4.4]ノナン、2-メチル-1,4,6-トリオキサスピロ[4.4]ノナン及び1,4,6-トリオキサスピロ[4.5]デカン等が挙げられる。 Aliphatic monovinyl ethers such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether and cyclohexyl vinyl ether; aromatic monovinyl ethers such as 2-phenoxyethyl vinyl ether, phenyl vinyl ether and p-methoxyphenyl vinyl ether; and polyfunctional vinyl ethers such as butane. diol-1,4-divinyl ether and triethylene glycol divinyl ether; styrenes such as styrene, α-methylstyrene, p-methoxystyrene and tert-butoxystyrene; cationic polymerizable nitrogen-containing monomers such as N- Bicycloorthoesters such as vinylcarbazole and N-vinylpyrrolidone include 1-phenyl-4-ethyl-2,6,7-trioxabicyclo[2.2.2]octane and 1-ethyl-4-hydroxymethyl- 2,6,7-trioxabicyclo-[2.2.2]octane and the like, spiroorthocarbonates such as 1,5,7,11-tetraoxaspiro[5.5]undecane and 3,9-dibenzyl- 1,5,7,11-tetraoxaspiro[5.5]undecane, spiro orthoesters such as 1,4,6-trioxaspiro[4.4]nonane, 2-methyl-1,4,6 -trioxaspiro[4.4]nonane and 1,4,6-trioxaspiro[4.5]decane.
 これらのカチオン重合性化合物のうち、エポキシ化合物、オキセタン化合物及びビニルエーテルが好ましく、特にエポキシ化合物及びオキセタン化合物が好ましい。多官能エポキシ化合物である“デナコール”EX-810、EX-850、EX-821、EX-830,EX-841、EX-201、EX-211、EX-212、EX-252、EX-920EX-991L(商品名、いずれもナカセケムテックス(株)製)、“エピクロン”EXA-4850、HP-7250(商品名、いずれもDIC(株)製)、YL-980、YL-983、YX-6677(商品名、いずれも三菱ケミカル(株)製)、“セロキサイド”2021P、2081(商品名、いずれもダイセル(株)製)、“アデカグリシロール”ED-503、ED-506、ED-523T、ED505(商品名、いずれも(株)ADEKA製)、“ショウフリー”CDMDG、PETG、BATG(商品名、いずれも昭和電工(株)製)、多官能オキセタン化合物である“ETERNACOLL” OXBP、OXIPA(商品名、いずれも宇部興産(株)製)、“エポカリック”DE-102、DE-103(商品名、いずれもENEOS(株)製)、“アロンオキセタン” OXT-121、OXT-191、OXT-221(商品名、いずれも東亜合成(株)製)などが挙げられる。窒素原子を含有するエポキシ化合物がアルカリ可溶性ポリイミド(A)との相溶性が向上し、微細なパターン加工性が得られる点、及び、良好なガラス転移温度および良好な機械特性を低下させない観点からより好ましい。さらにイソシアヌレート骨格を含有するエポキシ化合物としては、例えばトリグリシジルイソシアヌレートであるTEPIC-S,TEPIC-L、TEPIC-VL、TEPIC-PASB22、TEPIC-FL(商品名、いずれも日産化学(株)製)等があげられる。
これらの光重合性化合物は単独でまたは2種類以上を組み合わせて使用される。
Among these cationic polymerizable compounds, epoxy compounds, oxetane compounds and vinyl ethers are preferred, and epoxy compounds and oxetane compounds are particularly preferred. "Denacol" which is a polyfunctional epoxy compound EX-810, EX-850, EX-821, EX-830, EX-841, EX-201, EX-211, EX-212, EX-252, EX-920EX-991L (trade names, both manufactured by Nakase ChemteX Co., Ltd.), "Epiclon" EXA-4850, HP-7250 (trade names, manufactured by DIC Corporation), YL-980, YL-983, YX-6677 ( (trade names, all manufactured by Mitsubishi Chemical Corporation), "Celoxide" 2021P, 2081 (trade names, manufactured by Daicel Corporation), "ADEKA GLYCIROL" ED-503, ED-506, ED-523T, ED505 (trade names, all manufactured by ADEKA Corporation), "Showfree" CDMDG, PETG, BATG (trade names, manufactured by Showa Denko K.K.), polyfunctional oxetane compounds "ETERNACOLL" OXBP, OXIPA (trade names) name, both manufactured by Ube Industries, Ltd.), “Epocalic” DE-102, DE-103 (trade names, manufactured by ENEOS Corporation), “Aron oxetane” OXT-121, OXT-191, OXT-221 (trade name, both manufactured by Toagosei Co., Ltd.) and the like. From the viewpoint that the epoxy compound containing a nitrogen atom has improved compatibility with the alkali-soluble polyimide (A), fine pattern workability can be obtained, and a good glass transition temperature and good mechanical properties are not reduced. preferable. Further examples of epoxy compounds containing an isocyanurate skeleton include triglycidyl isocyanurate TEPIC-S, TEPIC-L, TEPIC-VL, TEPIC-PASB22, and TEPIC-FL (trade names, all manufactured by Nissan Chemical Industries, Ltd.). ), etc.
These photopolymerizable compounds are used alone or in combination of two or more.
 感光性樹脂組成物中の光重合性化合物(B)の含有量は、アルカリ可溶性ポリイミド(A)100質量部に対して、10質量部以上が好ましく、20質量部以上がより好ましく、30質量部以上がさらに好ましい。10質量部以上とすることで、現像時の露光部の膜減りを低減することができる。一方で、感光性樹脂組成物中の光重合性化合物(B)の含有量は、アルカリ可溶性ポリイミド(A)100質量部に対して、200質量部以下が好ましく、150質量部以下がより好ましく、120質量部以下がさらに好ましい。200質量部以下とすることで、硬化膜の耐熱性を向上させることができる。 The content of the photopolymerizable compound (B) in the photosensitive resin composition is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, relative to 100 parts by mass of the alkali-soluble polyimide (A), and 30 parts by mass. The above is more preferable. When the content is 10 parts by mass or more, it is possible to reduce film loss in the exposed portion during development. On the other hand, the content of the photopolymerizable compound (B) in the photosensitive resin composition is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, relative to 100 parts by mass of the alkali-soluble polyimide (A). 120 parts by mass or less is more preferable. By making it 200 parts by mass or less, the heat resistance of the cured film can be improved.
 光重合性化合物(B)として、一般式(4)(5)(6)で表される化合物のいずれかを含有することが好ましい。 Any one of the compounds represented by the general formulas (4), (5) and (6) is preferably contained as the photopolymerizable compound (B).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(4)中、R10は炭素数1~5の炭化水素基、R11は水素又はメチル基を表す。Zは有機基を表す。aは0~1の整数を表し、bは2~10の整数を表す。aは0であることが好ましい。Zが環状骨格を持たない場合、bは4~8であることが好ましく、Zが環状骨格を持つ場合、bは2~4であることが好ましく、環状骨格を持つ場合、環状骨格が脂環骨格であることが好ましい。 In general formula (4), R 10 represents a hydrocarbon group having 1 to 5 carbon atoms, and R 11 represents hydrogen or a methyl group. Z represents an organic group. a represents an integer of 0-1, and b represents an integer of 2-10. Preferably, a is 0. When Z does not have a cyclic skeleton, b is preferably 4 to 8. When Z has a cyclic skeleton, b is preferably 2 to 4. When Z has a cyclic skeleton, the cyclic skeleton is an alicyclic ring. A skeleton is preferred.
 一般式(5)、(6)中、R12は炭素数1~5の炭化水素基、R13は水素、メチル基またはエチル基を表す。Zは有機基を表す。cは0~2の整数を表し、dは2~10の整数を表す。 In general formulas (5) and (6), R 12 represents a hydrocarbon group having 1 to 5 carbon atoms, and R 13 represents hydrogen, methyl group or ethyl group. Z represents an organic group. c represents an integer of 0-2, and d represents an integer of 2-10.
 光重合性化合物(B)の総質量を100質量%とした際に、一般式(4)~(6)で表される化合物の含有量が70質量%以上100質量%以下であることが好ましく、80質量%以上100質量%以下であることがより好ましく、90質量%以上100質量%以下であることがさらに好ましい。硬化膜の耐熱性および弾性率を向上することができる。 When the total mass of the photopolymerizable compound (B) is 100% by mass, the content of the compounds represented by general formulas (4) to (6) is preferably 70% by mass or more and 100% by mass or less. , more preferably 80% by mass or more and 100% by mass or less, more preferably 90% by mass or more and 100% by mass or less. The heat resistance and elastic modulus of the cured film can be improved.
 さらに本発明の感光性樹脂シート中の一般式(4)~(6)で表される光重合性化合物(B)は、環状構造を持たず、光重合性官能基当量が80~120g/eqである光重合性化合物(以下、(B-H)成分という)を含有することが好ましい。(B-H)成分を含有することで、フォトリソ加工時に組成物の高感度化が可能となる。また硬化膜の耐熱性および弾性率を向上することができる。 Furthermore, the photopolymerizable compound (B) represented by the general formulas (4) to (6) in the photosensitive resin sheet of the present invention does not have a cyclic structure and has a photopolymerizable functional group equivalent weight of 80 to 120 g/eq. It is preferable to contain a photopolymerizable compound (hereinafter referred to as (BH) component). By containing the (BH) component, it is possible to increase the sensitivity of the composition during photolithographic processing. Moreover, the heat resistance and elastic modulus of the cured film can be improved.
 (B-H)成分の官能基数は2以上であることが好ましく、3以上であることがさらに好ましい。官能基数を3以上とすることで、硬化膜の耐熱性を向上することが可能である。一方で、(B-H)成分の官能基数は、16以下が好ましく、12以下がより好ましく、8以下がより好ましい。官能基数を16以下とすることで、硬化膜のクラックの発生を抑制することが可能となる。 The number of functional groups of the (BH) component is preferably 2 or more, more preferably 3 or more. By setting the number of functional groups to 3 or more, it is possible to improve the heat resistance of the cured film. On the other hand, the number of functional groups of the component (BH) is preferably 16 or less, more preferably 12 or less, and more preferably 8 or less. By setting the number of functional groups to 16 or less, it becomes possible to suppress the occurrence of cracks in the cured film.
 (B-H)成分の具体例としては、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジトリメチロールプロパンテトラアクリレート、ジトリメチロールプロパンテトラメタクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、ポリペンタエリスリトールアクリレート、ポリペンタエリスリトールメタクリレート等を挙げることができるが、これらに限定されない。 Specific examples of the component (BH) include trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, ditrimethylolpropane tetraacrylate, Ditrimethylolpropane tetramethacrylate, dipentaerythritol pentaacrylate, dipentaerythritol pentamethacrylate, dipentaerythritol hexaacrylate, dipentaerythritol hexamethacrylate, polypentaerythritol acrylate, polypentaerythritol methacrylate, and the like, but are limited to these. not.
 一般式(4)~(6)で表される光重合性化合物(B)は、脂環構造を有し、光重合性官能基当量が130~200g/eqである光重合性化合物(以下、(B-L)成分という)を含有することが好ましい。(B-L)成分を含有することで、硬化膜の伸度向上および吸水率を低減することができる。 The photopolymerizable compound (B) represented by the general formulas (4) to (6) is a photopolymerizable compound having an alicyclic structure and a photopolymerizable functional group equivalent weight of 130 to 200 g/eq (hereinafter referred to as (BL) component) is preferably contained. By containing the component (BL), the elongation of the cured film can be improved and the water absorption can be reduced.
 (B-L)成分の官能基数は2以上であることが好ましい。官能基数を2以上とすることで、硬化膜の耐熱性を向上することができる。一方で、(B-L)成分の官能基数は、6以下が好ましく、4以下がより好ましい。官能基数を6以下とすることで硬化膜のクラックの発生を抑制することができる。 The number of functional groups of the component (BL) is preferably 2 or more. By setting the number of functional groups to 2 or more, the heat resistance of the cured film can be improved. On the other hand, the number of functional groups of the component (BL) is preferably 6 or less, more preferably 4 or less. By setting the number of functional groups to 6 or less, the occurrence of cracks in the cured film can be suppressed.
 (B-L)成分の具体例としては、ジメチロールトリシクロデカンジアクリレート、ジメチロールトリシクロデカンジメタクリレート、1,3-アダマンタンジアクリレート、1,3-アダマンタンジメタクリレート、1,3,5-アダマンタントリアクリレート、1,3,5-アダマンタントリメタクリレート、5-ヒドロキシ-1,3-アダマンタンジアクリレート、5-ヒドロキシ-1,3-アダマンタンジメタクリレート、ビス-(2-アクリロキシエチル)イソシアヌレート、トリス-(2-アクリロキシエチル)イソシアヌレート、エチレンオキシド変性ビスフェノールAジアクリレート等を挙げることができるが、これらに限定されない。 Specific examples of the component (BL) include dimethyloltricyclodecane diacrylate, dimethyloltricyclodecane dimethacrylate, 1,3-adamantane diacrylate, 1,3-adamantane dimethacrylate, 1,3,5- adamantane triacrylate, 1,3,5-adamantane trimethacrylate, 5-hydroxy-1,3-adamantane diacrylate, 5-hydroxy-1,3-adamantane dimethacrylate, bis-(2-acryloxyethyl)isocyanurate, Tris-(2-acryloxyethyl) isocyanurate, ethylene oxide-modified bisphenol A diacrylate and the like can be mentioned, but not limited to these.
 〔光重合開始剤(C)〕
 本発明の感光性樹脂シート中の感光性樹脂層を形成する感光性樹脂組成物は、光重合開始剤(C)を含有する。光重合開始剤(C)を含有することで、活性光線により生成した活性種により前述した光重合性化合物(B)の重合が進行し、感光性樹脂層の露光部がアルカリ現像液に対して不溶化することで、ネガ型のパターンを形成することができる。
[Photopolymerization initiator (C)]
The photosensitive resin composition forming the photosensitive resin layer in the photosensitive resin sheet of the present invention contains a photopolymerization initiator (C). By containing the photopolymerization initiator (C), the polymerization of the photopolymerizable compound (B) described above proceeds due to the active species generated by actinic rays, and the exposed portion of the photosensitive resin layer is exposed to the alkaline developer. A negative pattern can be formed by insolubilization.
 光重合開始剤(C)の例としては、光ラジカル発生剤もしくは光酸発生剤であることが好ましい。具体的には、ベンゾフェノン類、グリシン類、メルカプト類、オキシム類、アシルフォスフィン類、α-アミノアルキルフェノン類、などが挙げられ、中でもアシルフォスフィン類、オキシム類、芳香族ヨードニウム錯塩、芳香族スルホニウム錯塩等が好適に用いられる。光重合開始剤(C)は1種で用いてもよく、2種以上を組み合わせて使用してもよい。 Examples of the photopolymerization initiator (C) are preferably photoradical generators or photoacid generators. Specific examples include benzophenones, glycines, mercaptos, oximes, acylphosphines, α-aminoalkylphenones, etc. Among them, acylphosphines, oximes, aromatic iodonium complex salts, aromatic Sulfonium complex salts and the like are preferably used. The photopolymerization initiator (C) may be used alone or in combination of two or more.
 光重合開始剤(C)の具体例としては、ベンゾフェノン、ミヒラーズケトン、4,4,-ビス(ジエチルアミノ)ベンゾフェノン、3,3,4,4,-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノンなどのベンゾフェノン類、3,5-ビス(ジエチルアミノベンジリデン)-N-メチル-4-ピペリドン、3,5-ビス(ジエチルアミノベンジリデン)-N-エチル-4-ピペリドンなどのベンジリデン類、7-ジエチルアミノ-3-ノニルクマリン、4,6-ジメチル-3-エチルアミノクマリン、3,3-カルボニルビス(7-ジエチルアミノクマリン)、7-ジエチルアミノ-3-(1-メチルメチルベンゾイミダゾリル)クマリン、3-(2-ベンゾチアゾリル)-7-ジエチルアミノクマリンなどのクマリン類、2-t-ブチルアントラキノン、2-エチルアントラキノン、1,2-ベンズアントラキノンなどのアントラキノン類、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルなどのベンゾイン類、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン、2-イソプロピルチオキサントンなどのチオキサントン類、エチレングリコールジ(3-メルカプトプロピオネート)、2-メルカプトベンズチアゾール、2-メルカプトベンゾキサゾール、2-メルカプトベンズイミダゾールなどのメルカプト類、N-フェニルグリシン、N-メチル-N-フェニルグリシン、N-エチル-N-(p-クロロフェニル)グリシン、N-(4-シアノフェニル)グリシンなどのグリシン類、1-フェニル-1,2-ブタンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-ベンゾイル)オキシム、ビス(α-イソニトロソプロピオフェノンオキシム)イソフタル、1,2-オクタンジオン-1-[4-(フェニルチオ)フェニル]-2-(o-ベンゾイルオキシム)、エタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(o-アセチルオキシム)などのオキシム類、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドなどのアシルフォスフィン類、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、2-メチル-1[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オンなどのα-アミノアルキルフェノン類、2,2’-ビス(o-クロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジ(4-ノニルフェニル)ヨードニウムヘキサフルオロホスフェートなどの芳香族ヨードニウム錯塩類などが挙げられる。 Specific examples of the photoinitiator (C) include benzophenones such as benzophenone, Michler's ketone, 4,4,-bis(diethylamino)benzophenone, and 3,3,4,4,-tetra(t-butylperoxycarbonyl)benzophenone. benzylidenes such as 3,5-bis(diethylaminobenzylidene)-N-methyl-4-piperidone, 3,5-bis(diethylaminobenzylidene)-N-ethyl-4-piperidone, 7-diethylamino-3-nonylcoumarin , 4,6-dimethyl-3-ethylaminocoumarin, 3,3-carbonylbis(7-diethylaminocoumarin), 7-diethylamino-3-(1-methylmethylbenzimidazolyl)coumarin, 3-(2-benzothiazolyl)-7 - coumarins such as diethylaminocoumarin, anthraquinones such as 2-t-butylanthraquinone, 2-ethylanthraquinone, 1,2-benzanthraquinone, benzoins such as benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, 2,4 - Thioxanthones such as dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, 2-isopropylthioxanthone, ethylene glycol di(3-mercaptopropionate), 2-mercaptobenzthiazole, 2-mercaptobenzoxanthone mercaptos such as sol, 2-mercaptobenzimidazole, N-phenylglycine, N-methyl-N-phenylglycine, N-ethyl-N-(p-chlorophenyl)glycine, N-(4-cyanophenyl)glycine glycines, 1-phenyl-1,2-butanedione-2-(o-methoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-(o-methoxycarbonyl)oxime, 1-phenyl-1, 2-propanedione-2-(o-ethoxycarbonyl) oxime, 1-phenyl-1,2-propanedione-2-(o-benzoyl) oxime, bis(α-isonitrosopropiophenone oxime) isophthal, 1, 2-octanedione-1-[4-(phenylthio)phenyl]-2-(o-benzoyloxime), ethanone-1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl ]-1-(o-acetyloxime) and other oximes, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide and other acylphos Fins, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butan-1-one, 2-methyl-1[4-(methylthio)phenyl]-2-morpholinopropane-1 -one and other α-aminoalkylphenones, 2,2′-bis(o-chlorophenyl)-4,4′,5,5′-tetraphenylbiimidazole, diphenyliodonium tetrakis(pentafluorophenyl)borate, diphenyliodonium aromatic iodonium complex salts such as hexafluorophosphate, diphenyliodonium hexafluoroantimonate and di(4-nonylphenyl)iodonium hexafluorophosphate;
 なかでも好ましいアシルフォスフィン類、およびオキシム類の例としては、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-ベンゾイル)オキシム、ビス(α-イソニトロソプロピオフェノンオキシム)イソフタル、1,2-オクタンジオン-1-[4-(フェニルチオ)フェニル]-2-(o-ベンゾイルオキシム)]、エタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(o-アセチルオキシム)、株式会社ADEKA製のアデカアークルズ(登録商標)N-1919、NCI-831、NCI-930、NCI-730、BASF株式会社製“イルガキュア”OXE-01、OXE-02、OXE-03、OXE-04、250、270、サンアプロ株式会社製CPI-110B、CPI-110S、CPI-210S、CPI-310B、CPI-310S、CPI-310FG、CPI-410Bから選ばれた化合物である。 Examples of particularly preferred acylphosphines and oximes include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, 1- Phenyl-1,2-propanedione-2-(o-ethoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-(o-benzoyl)oxime, bis(α-isonitrosopropiophenone oxime) isophthal, 1,2-octanedione-1-[4-(phenylthio)phenyl]-2-(o-benzoyloxime)], ethanone-1-[9-ethyl-6-(2-methylbenzoyl)-9H- Carbazol-3-yl]-1-(o-acetyloxime), ADEKA Co., Ltd. ADEKA Arkles (registered trademark) N-1919, NCI-831, NCI-930, NCI-730, BASF Corporation "Irgacure "OXE-01, OXE-02, OXE-03, OXE-04, 250, 270, San-Apro Co., Ltd. CPI-110B, CPI-110S, CPI-210S, CPI-310B, CPI-310S, CPI-310FG, CPI -410B.
 感光性樹脂組成物中の光重合開始剤(C)の含有量は、アルカリ可溶性ポリイミド(A)100質量部に対して、0.5質量部以上であることが好ましく、1質量部以上であることがより好ましく、2質量部以上であることがさらに好ましい。光重合開始剤(C)の含有量を0.5質量部以上とすることで、感光性樹脂組成物の露光に対する感度を向上することができる。一方で、感光性樹脂組成物中の光重合開始剤(C)の含有量は、アルカリ可溶性ポリイミド(A)100質量部中、30質量部以下であることが好ましく、25質量部以下であることがより好ましく、20質量部以下であることがさらに好ましい。光重合開始剤(C)の含有量を30質量部以下とすることで、感光性樹脂シートの深部まで光を透過することが可能となり、現像後に良好なパターン形状を得ることができる。 The content of the photopolymerization initiator (C) in the photosensitive resin composition is preferably 0.5 parts by mass or more, and is 1 part by mass or more, relative to 100 parts by mass of the alkali-soluble polyimide (A). is more preferable, and 2 parts by mass or more is even more preferable. By setting the content of the photopolymerization initiator (C) to 0.5 parts by mass or more, the sensitivity of the photosensitive resin composition to exposure can be improved. On the other hand, the content of the photopolymerization initiator (C) in the photosensitive resin composition is preferably 30 parts by mass or less in 100 parts by mass of the alkali-soluble polyimide (A), and is 25 parts by mass or less. is more preferable, and 20 parts by mass or less is even more preferable. By setting the content of the photopolymerization initiator (C) to 30 parts by mass or less, it becomes possible to allow light to penetrate deep into the photosensitive resin sheet, and a favorable pattern shape can be obtained after development.
 〔着色材(D)〕
 本発明の感光性樹脂シート中の感光性樹脂層を形成する感光性樹脂組成物は、着色材(D)を含有する。本発明の着色材は(D)は、可視光領域に吸収極大を有し、有機溶媒に溶解可能な有機材料を指す。感光性樹脂組成物が着色材(D)を含有することで、感光性樹脂シートを透過する光、または感光性樹脂シートから反射する光から、着色材(D)が吸収する波長の光を遮光する、遮光性を付与することができる。遮光性を付与することで、本発明の感光性樹脂シートおよび硬化膜に含まれる欠陥・欠点箇所を高精度に判別することが可能となるため、歩留まり向上および製品の信頼性向上を向上させることができる。また、後述する感光性樹脂シートを、露光・加熱硬化させた後に得られる硬化膜が、退色せず着色した状態であることが好ましく、着色材は後工程で脱色しない対候性および耐熱性を有する着色材であることが好ましい。さらに、露光工程における活性光線の波長領域では透過性が高いことが好ましい。
[Colorant (D)]
The photosensitive resin composition forming the photosensitive resin layer in the photosensitive resin sheet of the present invention contains a coloring agent (D). The colorant (D) of the present invention refers to an organic material that has an absorption maximum in the visible light region and is soluble in an organic solvent. By containing the coloring agent (D) in the photosensitive resin composition, light having a wavelength absorbed by the coloring agent (D) is blocked from the light transmitted through the photosensitive resin sheet or the light reflected from the photosensitive resin sheet. It is possible to impart light shielding properties. By imparting a light-shielding property, it becomes possible to determine with high accuracy defects and defect points contained in the photosensitive resin sheet and the cured film of the present invention, so that the yield improvement and the reliability improvement of the product are improved. can be done. In addition, it is preferable that the cured film obtained after exposing and heat-curing the photosensitive resin sheet described later is in a colored state without fading, and the coloring material has weather resistance and heat resistance that do not discolor in the post-process. It is preferable that the coloring material has Furthermore, it is preferable that the transparency is high in the wavelength region of actinic rays in the exposure process.
 前述のとおり、着色材(D)は少なくとも有機染料を含み、例えば、1種の染料を用いる方法、2種以上の染料を混合して用いる方法を組み合わせて用いる方法等が挙げられる。 As described above, the coloring material (D) contains at least an organic dye, and examples thereof include a method using one type of dye, a method using a combination of two or more types of dyes, and the like.
 着色材(D)は、500~800nmに吸収極大を持つものが好ましく、530~750nm、さらに好ましくは530~700nmに吸収極大を持つものがより好ましく選択される。着色材の吸収極大波長が500nm未満であると、露光工程において活性光線の吸収が発生し、塗膜の露光感度が低下することがある。着色材の吸収極大波長が500nm以上の場合、塗膜の露光感度の低下を抑えることができ、良好な形状のパターンを得ることができる。一方、着色材の吸収極大波長が800nmより大きい場合、可視光領域の吸収が弱くなり、視認性が低下するため塗膜の欠陥・欠点箇所、およびパターン欠損箇所の判別が困難となることがある。 The colorant (D) preferably has an absorption maximum at 500 to 800 nm, more preferably 530 to 750 nm, more preferably 530 to 700 nm. If the maximum absorption wavelength of the coloring material is less than 500 nm, absorption of actinic rays occurs in the exposure process, and the exposure sensitivity of the coating film may decrease. When the maximum absorption wavelength of the coloring material is 500 nm or more, the deterioration of the exposure sensitivity of the coating film can be suppressed, and a pattern with a favorable shape can be obtained. On the other hand, when the maximum absorption wavelength of the coloring material is longer than 800 nm, the absorption in the visible light region becomes weak, and the visibility is lowered, so it may be difficult to distinguish defects, defect locations, and pattern defect locations of the coating film. .
 着色材(D)は、有機染料であることが好ましい。着色剤(D)として用いる有機染料の中でも、有機溶媒等に溶解可能な着色剤を選択することで、塗材調合時に着色材の分散が簡便であり、塗材中での組成偏在を抑制できるため、感光性樹脂シート中の遮蔽能の均一性を高めることができる。有機溶媒に溶解可能な有機染料である着色剤(D)としては、例えば、油溶性染料、分散染料、反応性染料、もしくは酸性染料等が挙げられる。 The coloring material (D) is preferably an organic dye. Among the organic dyes used as the coloring agent (D), by selecting a coloring agent that is soluble in an organic solvent or the like, the coloring agent can be easily dispersed when the coating material is prepared, and uneven distribution of the composition in the coating material can be suppressed. Therefore, the uniformity of the shielding ability in the photosensitive resin sheet can be improved. Examples of the coloring agent (D), which is an organic dye soluble in an organic solvent, include oil-soluble dyes, disperse dyes, reactive dyes, and acid dyes.
 有機染料の骨格構造としては、アントラキノン系、アゾ系、フタロシアニン系、メチン系、オキサジン系、キノリン系、トリアリールメタン系、キサンテン系などが挙げられるが、これらに限定されない。これらのうち、有機溶媒に対する溶解性や、露光工程および硬化膜の退色の観点から耐候性を有すること、加熱硬化後に電気的信頼性を有することから、アントラキノン系、トリアリールメタン系、キサンテン系の骨格構造を有することが好ましい。さらに、加熱硬化工程時の退色の観点から、着色材(D)は、耐熱性を有するアントラキノン系化合物を含むことが好ましい。またこれら各染料は、単独でも含金属錯塩系として用いてもよい。具体的には、Sumilan、Lanyl染料(住友化学工業(株)製) 、Orasol、Oracet、Filamid、Irgasperse染料(チバ・スペシャリティ・ケミカルズ(株)製)、Zapon、 Neozapon、Neptune、Acidol染料(BASF(株)製)、Kayaset、Kayakalan染料(日本化薬(株)製)、Valifast Colors染料(オリエント化学工業(株)製)、Savinyl、Sandoplast、Polysynthren、Lanasyn染料(クラリアントジャパン(株)製)、Aizen Spilon染料(保土谷化学工業(株)製)、機能性色素(山田化学工業(株)製)、Plast Color染料、Oil Color染料(有本化学工業(株)製)等からそれぞれ入手できるが、それらに限定されるものではない。これらの染料は単独または混合することで用いられる。 The skeleton structure of the organic dye includes, but is not limited to, anthraquinone, azo, phthalocyanine, methine, oxazine, quinoline, triarylmethane, and xanthene. Among these, anthraquinone, triarylmethane, and xanthene are preferred because of their solubility in organic solvents, weather resistance from the viewpoint of exposure process and curing film fading, and electrical reliability after heat curing. It preferably has a skeleton structure. Furthermore, from the viewpoint of discoloration during the heat curing step, the coloring agent (D) preferably contains an anthraquinone compound having heat resistance. Each of these dyes may be used alone or as a metal-containing complex salt. Specifically, Sumilan, Lanyl dyes (manufactured by Sumitomo Chemical Co., Ltd.), Orasol, Oracet, Filamid, Irgasperse dyes (manufactured by Ciba Specialty Chemicals Co., Ltd.), Zapon, Neozapon, Neptune, Acidol dyes (BASF ( Co., Ltd.), Kayaset, Kayakalan dyes (manufactured by Nippon Kayaku Co., Ltd.), Valifast Colors dyes (manufactured by Orient Chemical Industry Co., Ltd.), Savinyl, Sandoplast, Polysynthren, Lanasyn dyes (manufactured by Clariant Japan Co., Ltd.), Aizen Spilon dyes (manufactured by Hodogaya Chemical Industry Co., Ltd.), functional dyes (manufactured by Yamada Chemical Industry Co., Ltd.), Plast Color dyes, Oil Color dyes (manufactured by Arimoto Chemical Industry Co., Ltd.), etc. It is not limited to them. These dyes are used singly or in combination.
 これらに用いる有機染料の具体例を、カラーインデックス(CI)ナンバーで示す。黄色染料の例としては、ソルベントイエロー16、18、21、33、34、35、43、54、93、112、128、157、159,160、201、アシッドイエロー17、19、23、25、39、40、42、44、49、50、61、64、76、79、110、127、135、143、151、159、169、174、190、195、196、197、199、218、219、222もしくは227、ベーシックイエロー1、2、4、11、13、14、15、19、21、23、24、25、28、29、32、36、39もしくは40などが挙げられる。 Specific examples of organic dyes used for these are indicated by color index (CI) numbers. Examples of yellow dyes include Solvent Yellow 16, 18, 21, 33, 34, 35, 43, 54, 93, 112, 128, 157, 159, 160, 201, Acid Yellow 17, 19, 23, 25, 39. , 40, 42, 44, 49, 50, 61, 64, 76, 79, 110, 127, 135, 143, 151, 159, 169, 174, 190, 195, 196, 197, 199, 218, 219, 222 227, basic yellow 1, 2, 4, 11, 13, 14, 15, 19, 21, 23, 24, 25, 28, 29, 32, 36, 39, or 40.
 赤色染料の例としては、ダイレクトレッド2、4、26、28、31、39、62、63、72、75、76、79、80、81、83、84、89、111、173、184、207、211、212、225、226、240、241、242、243もしくは247、アシッドレッド35、42、51、52、57、62、80、82、111、114、118、119、127、128、131、143、145、151、154、157、158、211、249、254、257、261、263、266、289、299、301、305、319、336、337、361、396もしくは397、ベーシックレッド1、12、13、14、15、18、22、23、24、25、27、29、35、36、38、39、45もしくは46、ソルベントレッド18、52、111、135、168、179、207、スダン、オイルレッドOなどが挙げられる。 Examples of red dyes include Direct Red 2, 4, 26, 28, 31, 39, 62, 63, 72, 75, 76, 79, 80, 81, 83, 84, 89, 111, 173, 184, 207 , 211, 212, 225, 226, 240, 241, 242, 243 or 247, acid red 35, 42, 51, 52, 57, 62, 80, 82, 111, 114, 118, 119, 127, 128, 131 , 143, 145, 151, 154, 157, 158, 211, 249, 254, 257, 261, 263, 266, 289, 299, 301, 305, 319, 336, 337, 361, 396 or 397, basic red 1 , 12, 13, 14, 15, 18, 22, 23, 24, 25, 27, 29, 35, 36, 38, 39, 45 or 46, solvent red 18, 52, 111, 135, 168, 179, 207 , Sudan, Oil Red O and the like.
 紫色染料の例としては、ダイレクトバイオレット7、9、47、48、51、66、90、93、94、95、98、100もしくは101、アシッドバイオレット5、9、11、34、43、47、48、51、75、90、103もしくは126、リアクティブバイオレット1、3、4、5、6、7、8、9、16、17、22、23、24、26、27、33もしくは34、ベーシックバイオレット1、2、3、7、10、15、16、20、21、25、27、28、35、37、39、40もしくは48などが挙げられる。 Examples of violet dyes include direct violet 7, 9, 47, 48, 51, 66, 90, 93, 94, 95, 98, 100 or 101, acid violet 5, 9, 11, 34, 43, 47, 48 , 51, 75, 90, 103 or 126, reactive violet 1, 3, 4, 5, 6, 7, 8, 9, 16, 17, 22, 23, 24, 26, 27, 33 or 34, basic violet 1, 2, 3, 7, 10, 15, 16, 20, 21, 25, 27, 28, 35, 37, 39, 40 or 48 and the like.
 青色染料の例としてはダイレクトブルー55、68、83、95、158、172、190、194、196、198、211、218、226、244、271、273、274もしくは277、アシッドブルー5、13、40、52、55、56、69、86、98、142、143、145、200、202、208、209、210、243もしくは252、リアクティブブルー11、20、24、31,34、36、60、76、90、108、128、131、140、146もしくは151、ベーシックブルー8、12、46、48、67、75、89、91、105、106、107、108、110、115、129、131、135もしくは137、ソルベントブルー7、12、34、36、44、45、49、50、52、53、78、82、87、91、92、93、94、95、97、98、99、103、105、109、110、111、112、116もしくは134、ディスパースブルー9、31、59、70、149、189、190、192、200、201、205、222、224、225、227、240、247、250、251、252、253、254、257、266、267、270、297、301、310もしくは312などが挙げられる。 Examples of blue dyes include Direct Blue 55, 68, 83, 95, 158, 172, 190, 194, 196, 198, 211, 218, 226, 244, 271, 273, 274 or 277, Acid Blue 5, 13, 40, 52, 55, 56, 69, 86, 98, 142, 143, 145, 200, 202, 208, 209, 210, 243 or 252, reactive blue 11, 20, 24, 31, 34, 36, 60 , 76, 90, 108, 128, 131, 140, 146 or 151, basic blue 8, 12, 46, 48, 67, 75, 89, 91, 105, 106, 107, 108, 110, 115, 129, 131 , 135 or 137, solvent blue 7, 12, 34, 36, 44, 45, 49, 50, 52, 53, 78, 82, 87, 91, 92, 93, 94, 95, 97, 98, 99, 103 , 105, 109, 110, 111, 112, 116 or 134, Disperse Blue 9, 31, 59, 70, 149, 189, 190, 192, 200, 201, 205, 222, 224, 225, 227, 240 247, 250, 251, 252, 253, 254, 257, 266, 267, 270, 297, 301, 310 or 312 and the like.
 緑色染料の例としてはアシッドグリーン1、5、16、65、82、83、92、94もしくは104、ベーシックグリーン10、ダイレクトグリーン6、27、30、34もしくは68などが挙げられる。また、これら以外の染料を用いることもできる。特に、露光工程で活性光線に対して吸収が少ない紫色染料、青色染料を用いることで、露光量の増大を抑え、パターン形状が逆テーパ形状となることを抑えることができる。 Examples of green dyes include Acid Green 1, 5, 16, 65, 82, 83, 92, 94 or 104, Basic Green 10, Direct Green 6, 27, 30, 34 or 68 and the like. Dyes other than these can also be used. In particular, by using violet dyes and blue dyes that absorb little actinic rays in the exposure step, it is possible to suppress an increase in the amount of exposure and to prevent the pattern shape from becoming a reverse tapered shape.
 本発明で用いる着色材(D)は、後述する感光性樹脂シートを加熱硬化させた硬化膜とした場合に、分解および/または昇華しない耐熱性を有することが好ましい。 The coloring material (D) used in the present invention preferably has heat resistance such that it does not decompose and/or sublime when a cured film obtained by heating and curing the photosensitive resin sheet described later is formed.
 本発明で用いる場合の着色材(D)の含有量は、アルカリ可溶性ポリイミド(A)100質量部に対して、0.1質量部以上50質量部以下が好ましく、1質量部以上10質量部以下がさらに好ましく、3質量部以上8質量部以下が特に好ましい。着色材(D)の含有量を0.1質量部以上とすることで、検査工程で後述する検査機に対応する可視光波長の光を吸収させることができる。また、50質量部以下とすることで、感光性樹脂シートと基板の密着強度や熱処理後硬化膜の耐熱性、機械特性を維持しつつ、良好な形状のパターンを得ることができる。 The content of the coloring material (D) when used in the present invention is preferably 0.1 parts by mass or more and 50 parts by mass or less, and 1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the alkali-soluble polyimide (A). is more preferable, and 3 parts by mass or more and 8 parts by mass or less is particularly preferable. By setting the content of the coloring material (D) to 0.1 part by mass or more, it is possible to absorb light of a visible wavelength corresponding to an inspection machine to be described later in the inspection step. Further, by setting the amount to 50 parts by mass or less, it is possible to obtain a pattern with a favorable shape while maintaining the adhesive strength between the photosensitive resin sheet and the substrate, the heat resistance of the cured film after heat treatment, and the mechanical properties.
 本発明において、着色材(D)として用いられる有機染料は、必要に応じて、ロジン処理、酸性基処理、塩基性基処理などの表面処理が施されているものを使用してもよい。また、場合により、着色剤(D)は分散剤とともに使用することができる。分散剤は、例えば、カチオン系、アニオン系、非イオン系、両性、シリコーン系、フッ素系の界面活性剤を挙げることができる。 In the present invention, the organic dye used as the coloring material (D) may be subjected to surface treatment such as rosin treatment, acidic group treatment, or basic group treatment, if necessary. In some cases, the colorant (D) can also be used together with a dispersant. Examples of dispersants include cationic, anionic, nonionic, amphoteric, silicone and fluorine surfactants.
 <熱発色性化合物>
 本発明の感光性樹脂シートは、さらに熱発色性化合物を含有してもよい。熱発色性化合物は後述する加熱処理工程により発色し、350nm以上、700nm以下に吸収極大を有する熱発色性化合物である。熱発色性化合物は、感光性樹脂シートの露光波長領域である350~450nmにおいて吸収が少ない熱発色性化合物であることが好ましい。前述の(D)成分と併用して、熱発色性化合物を使用することにより、感光性樹脂シートの露光波長領域350~450nmの吸収が低減され、感度の低下を抑えることが出来る。
<Thermochromic compound>
The photosensitive resin sheet of the present invention may further contain a thermochromic compound. The thermochromic compound is a thermochromic compound that develops color in a heat treatment step described below and has an absorption maximum at 350 nm or more and 700 nm or less. The thermochromic compound is preferably a thermochromic compound that exhibits little absorption in the exposure wavelength region of the photosensitive resin sheet, ie, 350 to 450 nm. By using a thermochromic compound in combination with the component (D), the absorption of the photosensitive resin sheet in the exposure wavelength range of 350 to 450 nm is reduced, and the decrease in sensitivity can be suppressed.
 熱発色性化合物は、加熱硬化前は可視光や紫外光に対して遮蔽性が無いため、樹脂シートの欠陥・欠点を高精度に判別することが難しい。また、加熱硬化後の遮蔽性は、同量添加した着色材に比べて弱いため、欠陥・欠点を判別するには多量の熱発色性化合物を添加する必要があり、硬化膜の耐熱性や機械強度が低下する。そのため、種々特性に合わせ、熱発色性化合物は着色材(D)と併用することが好ましい。  The thermochromic compound does not shield visible light or ultraviolet light before heat curing, so it is difficult to accurately determine defects and defects in the resin sheet. In addition, since the shielding property after heat curing is weaker than that of a coloring agent added in the same amount, it is necessary to add a large amount of thermochromic compound in order to distinguish defects and defects. Strength decreases. Therefore, it is preferable to use the thermochromic compound together with the colorant (D) in accordance with various properties.
 本発明において、熱発色性化合物は、120℃より高温で発色する化合物が好ましく、180℃より高温で発色する熱発色性化合物がより好ましい。熱発色性化合物の発色温度が高いほど高温条件下での耐熱性に優れ、また長時間の紫外光および可視光の照射により退色することが少なく、耐光性に優れる。 In the present invention, the thermochromic compound is preferably a compound that develops color at a temperature higher than 120°C, more preferably a thermochromic compound that develops color at a temperature higher than 180°C. The higher the color-developing temperature of the thermochromic compound, the better the heat resistance under high-temperature conditions, and the less the color fades due to long-term irradiation with ultraviolet light and visible light, and the better the light resistance.
 本発明において、熱発色性化合物は、一般の感熱色素または感圧色素であってもよいし、その他の化合物であってもよい。熱発色性化合物の例としては、加熱処理工程時に系中に共存する酸性基の作用により、その化学構造や電荷状態を変化させることによって発色するもの、あるいは空気中の酸素の存在により熱酸化反応等を起こして発色するもの等が挙げられる。 In the present invention, the thermochromic compound may be a general heat-sensitive dye or pressure-sensitive dye, or may be another compound. Examples of thermochromic compounds include those that develop color by changing their chemical structure and charge state due to the action of acidic groups coexisting in the system during the heat treatment process, or those that undergo a thermal oxidation reaction due to the presence of oxygen in the air. and the like are exemplified.
 熱発色性化合物の骨格構造としては、トリアリールメタン骨格、ジアリールメタン骨格、フルオラン骨格、ビスラクトン骨格、フタリド骨格、キサンテン骨格、ローダミンラクタム骨格、フルオレン骨格、フェノチアジン骨格、フェノキサジン骨格、スピロピラン骨格等が挙げられる。中でも、熱発色温度が高く耐熱性に優れるためトリアリールメタン骨格が好ましい。 Examples of the skeleton structure of the thermochromic compound include a triarylmethane skeleton, a diarylmethane skeleton, a fluorane skeleton, a bislactone skeleton, a phthalide skeleton, a xanthene skeleton, a rhodamine lactam skeleton, a fluorene skeleton, a phenothiazine skeleton, a phenoxazine skeleton, and a spiropyran skeleton. be done. Among them, a triarylmethane skeleton is preferable because of its high thermal coloring temperature and excellent heat resistance.
 トリアリールメタン骨格の具体例としては、2,4’,4’’-メチリデントリスフェノール、4,4’,4’’-メチリデントリスフェノール、4,4’-[(4-ヒドロキシフェニル)メチレン]ビス(ベンゼンアミン)、4,4’-[(4-アミノフェニル)メチレン]ビスフェノール、4,4’-[(4-アミノフェニル)メチレン]ビス[3,5-ジメチルフェノール]、4,4’-[(2-ヒドロキシフェニル)メチレン]ビス[2,3,6-トリメチルフェノール]、4-[ビス(4-ヒドロキシフェニル)メチル]-2-メトキシフェノール、4,4’-[(2-ヒドロキシフェニル)メチレン]ビス[2-メチルフェノール]、4,4’-[(4 -ヒドロキシフェニル)メチレン]ビス[2-メチルフェノール]、4-[ビス(4-ヒドロキシフェニル)メチル]-2-エトキシフェノール、4,4’-[(4-ヒドロキシフェニル)メチレン]ビス[2,6-ジメチルフェノール]、2,2’-[(4-ヒドロキシフェニル)メチレン]ビス[3,5-ジメチルフェノール]、4,4’-[(4-ヒドロキシ-3-メトキシフェニル)メチレン]ビス[2,6-ジメチルフェノール]、2,2’-[(2-ヒドロキシフェニル)メチレン]ビス[2,3,5-トリメチルフェノール]、4,4’-[(4-ヒドロキシフェニル)メチレン]ビス[2,3,6-トリメチルフェノール]、4,4’-[(2-ヒドロキシフェニル)メチレン]ビス[2-シクロヘキシル-5-メチルフェノール]、4,4’-[(4-ヒドロキシフェニル)メチレン]ビス[2-シクロヘキシル-5-メチルフェノール]、4,4’-[(3-メトキシ-4-ヒドロキシフェニル)メチレン]ビス[2-シクロヘキシル-5-メチルフェノール]、4,4’-[(3,4-ジヒドロキシフェニル)メチレン]ビス[2-メチルフェノール]、4,4’-[(3,4-ジヒドロキシフェニル)メチレン]ビス[2,6-ジメチルフェノール]、4,4’-[(3,4-ジヒドロキシフェニル)メチレン]ビス[2,3,6-トリメチルフェノール]、等が挙げられる。これらは単独でもしくは混合して用いられる。なお、トリアリールメタン骨格を有する水酸基含有化合物は当該化合物にナフトキノンジアジドのスルホン酸をエステル結合させて、キノンジアジド化合物として用いてもよい。 Specific examples of the triarylmethane skeleton include 2,4′,4″-methylidenetrisphenol, 4,4′,4″-methylidenetrisphenol, 4,4′-[(4-hydroxyphenyl) methylene]bis(benzenamine), 4,4'-[(4-aminophenyl)methylene]bisphenol, 4,4'-[(4-aminophenyl)methylene]bis[3,5-dimethylphenol], 4, 4′-[(2-hydroxyphenyl)methylene]bis[2,3,6-trimethylphenol], 4-[bis(4-hydroxyphenyl)methyl]-2-methoxyphenol, 4,4′-[(2 -hydroxyphenyl)methylene]bis[2-methylphenol], 4,4′-[(4-hydroxyphenyl)methylene]bis[2-methylphenol], 4-[bis(4-hydroxyphenyl)methyl]-2 -ethoxyphenol, 4,4'-[(4-hydroxyphenyl)methylene]bis[2,6-dimethylphenol], 2,2'-[(4-hydroxyphenyl)methylene]bis[3,5-dimethylphenol ], 4,4′-[(4-hydroxy-3-methoxyphenyl)methylene]bis[2,6-dimethylphenol], 2,2′-[(2-hydroxyphenyl)methylene]bis[2,3, 5-trimethylphenol], 4,4′-[(4-hydroxyphenyl)methylene]bis[2,3,6-trimethylphenol], 4,4′-[(2-hydroxyphenyl)methylene]bis[2- cyclohexyl-5-methylphenol], 4,4′-[(4-hydroxyphenyl)methylene]bis[2-cyclohexyl-5-methylphenol], 4,4′-[(3-methoxy-4-hydroxyphenyl) methylene]bis[2-cyclohexyl-5-methylphenol], 4,4′-[(3,4-dihydroxyphenyl)methylene]bis[2-methylphenol], 4,4′-[(3,4-dihydroxy phenyl)methylene]bis[2,6-dimethylphenol], 4,4′-[(3,4-dihydroxyphenyl)methylene]bis[2,3,6-trimethylphenol], and the like. These are used singly or in combination. The hydroxyl group-containing compound having a triarylmethane skeleton may be used as a quinonediazide compound by ester-bonding the sulfonic acid of naphthoquinonediazide to the compound.
 本発明において、熱発色性化合物を含有する場合の含有量は、アルカリ可溶性ポリイミド(A)100質量部に対して、0.5~50質量部が好ましく、1~10質量部がより好ましく、5~10質量部がさらに好ましい。熱発色性化合物の含有量が0.5質量部以上であれば、硬化膜の紫外光や可視光領域における透過率を低減させることができる。また、50質量部以下であれば、硬化膜の耐熱性や強度を維持することができる。 In the present invention, the content when containing a thermochromic compound is preferably 0.5 to 50 parts by mass, more preferably 1 to 10 parts by mass, with respect to 100 parts by mass of the alkali-soluble polyimide (A). ~10 parts by mass is more preferable. When the content of the thermochromic compound is 0.5 parts by mass or more, the transmittance of the cured film in the ultraviolet and visible light regions can be reduced. Moreover, if it is 50 parts by mass or less, the heat resistance and strength of the cured film can be maintained.
 <増感剤>
 本発明の感光性樹脂シートは、紫外線等の活性光線を吸収し、吸収した光エネルギーを光重合開始剤に供与するために、公知の増感剤を含有してもよい。増感剤の一例としては、例えば9位と10位にアルコキシ基を有するアントラセン化合物(9,10-ジアルコキシ-アントラセン誘導体)が好ましい。アルコキシ基としては、例えばメトキシ基、エトキシ基、プロポキシ基等のC1~C4のアルコキシ基が挙げられる。9,10-ジアルコキシ-アントラセン誘導体は、さらに置換基を有していても良い。置換基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、メチル基、エチル基、プロピル基等のC1~C4のアルキル基やスルホン酸アルキルエステル基、カルボン酸アルキルエステル基等が挙げられる。スルホン酸アルキルエステル基やカルボン酸アルキルエステルにおけるアルキルとしては、例えばメチル、エチル、プロピル等のC1~C4のアルキルが挙げられる。これらの置換基の置換位置は2位が好ましい。
<Sensitizer>
The photosensitive resin sheet of the present invention may contain a known sensitizer in order to absorb actinic rays such as ultraviolet rays and provide the absorbed light energy to the photopolymerization initiator. Preferred examples of sensitizers include anthracene compounds having alkoxy groups at the 9- and 10-positions (9,10-dialkoxy-anthracene derivatives). Examples of alkoxy groups include C1-C4 alkoxy groups such as methoxy, ethoxy and propoxy groups. The 9,10-dialkoxy-anthracene derivative may further have a substituent. Examples of substituents include halogen atoms such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, C1 to C4 alkyl groups such as a methyl group, an ethyl group and a propyl group, a sulfonic acid alkyl ester group, and a carboxylic acid alkyl ester group. etc. Examples of the alkyl in the sulfonic acid alkyl ester group and carboxylic acid alkyl ester include C1-C4 alkyl such as methyl, ethyl and propyl. The substitution position of these substituents is preferably 2-position.
 〔無機粒子〕
 本発明の感光性樹脂シート中の感光性樹脂層を形成する感光性樹脂組成物は、無機粒子を含有することが好ましい。無機粒子を含有することにより、感光性樹脂層を加熱硬化して形成された硬化膜の弾性率などの機械特性や耐薬品性を向上させることができる。また、硬化膜の光透過性を変化させ、パターンの欠点・欠損部の視認性を向上することができる。
[Inorganic particles]
The photosensitive resin composition forming the photosensitive resin layer in the photosensitive resin sheet of the present invention preferably contains inorganic particles. By containing the inorganic particles, it is possible to improve mechanical properties such as elastic modulus and chemical resistance of the cured film formed by heat-curing the photosensitive resin layer. In addition, it is possible to change the light transmittance of the cured film and improve the visibility of defects and missing portions of the pattern.
 無機粒子としては、タルク、無定形シリカ、結晶性シリカ、溶融シリカおよび球状シリカ等の酸化ケイ素、種々の金属酸化物で構成されるガラス粒子、酸化チタン、酸化アルミニウム、酸化カルシウム、酸化マグネシウム、酸化亜鉛、炭酸カルシウム、炭酸マグネシウム、水酸化カルシウム、水酸化アルミニウム、水酸化マグネシウム、マイカ、ハイドロタルサイト、珪酸アルミニウム、珪酸マグネシウム、ケイ酸カルシウム、チタン酸カリウム、硫酸マグネシウム、硫酸カルシウム、燐酸マグネシウム、窒化ホウ素、ホウ酸アルミニウム、水和アルミニウム、水和石膏および硫酸バリウム等が挙げられる。これらは単独でもしくは混合して用いられる。特に、絶縁信頼性の観点から、酸化ケイ素、酸化チタン、酸化アルミニウム、酸化マグネシウム、水酸化アルミニウム、ガラス粒子が好適に用いることができる。さらに、感光性樹脂層からなる硬化膜の線膨張を下げる観点から酸化ケイ素であることが好ましい。 Examples of inorganic particles include silicon oxides such as talc, amorphous silica, crystalline silica, fused silica and spherical silica, glass particles composed of various metal oxides, titanium oxide, aluminum oxide, calcium oxide, magnesium oxide, oxide Zinc, calcium carbonate, magnesium carbonate, calcium hydroxide, aluminum hydroxide, magnesium hydroxide, mica, hydrotalcite, aluminum silicate, magnesium silicate, calcium silicate, potassium titanate, magnesium sulfate, calcium sulfate, magnesium phosphate, nitriding Boron, aluminum borate, aluminum hydrate, hydrated gypsum, barium sulfate and the like. These are used singly or in combination. In particular, from the viewpoint of insulation reliability, silicon oxide, titanium oxide, aluminum oxide, magnesium oxide, aluminum hydroxide, and glass particles can be preferably used. Further, silicon oxide is preferable from the viewpoint of reducing the linear expansion of a cured film composed of a photosensitive resin layer.
 無機粒子の平均粒子径D50は30~150nmであることが好ましく、40~120nmであることがより好ましく、60~120nmであることが更に好ましい。無機粒子の平均粒子径D50が30nm以上であることで、塗料中で無機粒子が良好に分散するため、均一な線幅のパターン得ることができる。無機粒子の平均粒子径D50を150nm以下とすることで、パターン加工後の感光性樹脂シート表面および硬化膜表面の平滑性をよくすることができる。また、露光時の紫外線の散乱を抑えることができ、高解像なパターンを得ることができる。無機粒子の平均粒子径D50は、動的光散乱粒度分布計を用いて測定した粒度分布計を用いて測定した50%体積粒径の値である。 The average particle diameter D50 of the inorganic particles is preferably 30 to 150 nm, more preferably 40 to 120 nm, even more preferably 60 to 120 nm. When the average particle diameter D50 of the inorganic particles is 30 nm or more, the inorganic particles are well dispersed in the paint, so that a pattern with a uniform line width can be obtained. By setting the average particle diameter D50 of the inorganic particles to 150 nm or less, the smoothness of the surface of the photosensitive resin sheet and the surface of the cured film after patterning can be improved. Moreover, scattering of ultraviolet rays during exposure can be suppressed, and a high-resolution pattern can be obtained. The average particle diameter D50 of the inorganic particles is the value of the 50% volume particle diameter measured using a particle size distribution meter using a dynamic light scattering particle size distribution meter.
 無機粒子の形状としては、球状、針状、繊維状、無定形の粒状、板状、破砕状などが挙げられるが、特に限定されない。 The shape of the inorganic particles includes, but is not particularly limited to, spherical, needle-like, fibrous, amorphous granular, plate-like, and crushed shapes.
 無機粒子の含有量は、本発明の感光性樹脂層中の固形分の総質量を100質量%とした際に、1質量%以上であることが好ましく、3質量%以上であることがより好ましく、5質量%以上であることがさらに好ましい。一方で、無機粒子の含有量は、パターン加工性や伸度向上の観点から、感光性樹脂層中の固形分の総質量100質量%に対して、40質量%以下であることが好ましく、30%質量%以下であることがより好ましく、20質量%以下であることが更に好ましい。無機粒子の含有量を1質量%以上とすることで、硬化膜の機械特性、耐薬品性、パターン欠点部の視認性が向上する。一方、無機粒子の含有量を40質量%以下とすることで、感光性樹脂シートのラミネート性が良好、微細なパターン形成が可能となる。 The content of the inorganic particles is preferably 1% by mass or more, more preferably 3% by mass or more, when the total mass of the solid content in the photosensitive resin layer of the present invention is 100% by mass. , more preferably 5% by mass or more. On the other hand, the content of the inorganic particles is preferably 40% by mass or less with respect to 100% by mass of the total solid content in the photosensitive resin layer, from the viewpoint of improving pattern processability and elongation. % mass % or less, and even more preferably 20 mass % or less. By setting the content of the inorganic particles to 1% by mass or more, the cured film has improved mechanical properties, chemical resistance, and visibility of pattern defects. On the other hand, by setting the content of the inorganic particles to 40% by mass or less, the photosensitive resin sheet has good lamination properties and fine pattern formation becomes possible.
 また、無機粒子を感光性樹脂シートの感光性樹脂層中に分散させるため、必要に応じてシランカップリング剤による表面処理を行ってもよい。シランカップリング剤の具体例としては、信越化学工業のビニルトリメトキシシラン(KBM-1003)、3-グリシドキシプロピルトリメトキシシラン(KBM-403)、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(KBM-303)、無水コハク酸トリメトキシシラン(KBM-967TR-1)、3-メタクリロキシプロピルトリメトキシシラン(KBM-503)、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(KBM-603)、N-フェニル-3-アミノプロピルトリメトキシシラン(KBM-573)などを用いることができる。無機粒子の表面処理は、無機粒子に対してシランカップリング剤、及び少量の水を添加し撹拌する乾式表面処理する方法、有機溶媒中で無機粒子とシランカップリング剤を添加し撹拌する湿式表面処理する方法などが挙げられる。また、感光性樹脂組成物中に無機粒子とシランカップリング剤を添加し撹拌する湿式表面処理する方法等が挙げられる。 In addition, in order to disperse the inorganic particles in the photosensitive resin layer of the photosensitive resin sheet, surface treatment with a silane coupling agent may be performed as necessary. Specific examples of silane coupling agents include Shin-Etsu Chemical's vinyltrimethoxysilane (KBM-1003), 3-glycidoxypropyltrimethoxysilane (KBM-403), 2-(3,4-epoxycyclohexyl)ethyl Trimethoxysilane (KBM-303), trimethoxysilane succinic anhydride (KBM-967TR-1), 3-methacryloxypropyltrimethoxysilane (KBM-503), N-2-(aminoethyl)-3-aminopropyl Trimethoxysilane (KBM-603), N-phenyl-3-aminopropyltrimethoxysilane (KBM-573) and the like can be used. Surface treatment of inorganic particles includes a dry surface treatment method in which a silane coupling agent and a small amount of water are added to the inorganic particles and stirred, and a wet surface treatment method in which inorganic particles and a silane coupling agent are added in an organic solvent and stirred. methods of processing, and the like. In addition, a method of performing a wet surface treatment in which inorganic particles and a silane coupling agent are added to the photosensitive resin composition and stirred is also included.
 <熱架橋剤>
 本発明の感光性樹脂シートの感光性樹脂層は、熱架橋剤を含有することが好ましい。熱架橋剤は、パターン加工後の加熱処理によって硬化する成分であり、これによって硬化物の耐熱性、機械特性や耐薬品性を向上させることができる。熱架橋剤としては、アルコキシメチル基、メチロール基、エポキシ基およびオキセタン基のうち少なくとも1種類を含有する化合物が好ましく、アルコキシメチル基、メチロール基、エポキシ基およびオキセタン基のうち少なくとも2つを含有する化合物がより好ましい。
<Thermal cross-linking agent>
The photosensitive resin layer of the photosensitive resin sheet of the present invention preferably contains a thermal crosslinking agent. The thermal cross-linking agent is a component that is cured by heat treatment after patterning, and can improve the heat resistance, mechanical properties and chemical resistance of the cured product. The thermal cross-linking agent is preferably a compound containing at least one of alkoxymethyl, methylol, epoxy and oxetane groups, and contains at least two of alkoxymethyl, methylol, epoxy and oxetane groups. Compounds are more preferred.
 熱架橋剤のうち、アルコキシメチル基またはメチロール基を有する化合物としては、例えば、46DMOC、46DMOEP(以上、商品名、旭有機材工業社製)、DML-PC、DML-PEP、DML-OC、DML-OEP、DML-34X、DML-PTBP、DML-PCHP、DML-OCHP、DML-PFP、DML-PSBP、DML-POP、DML-MBOC、DML-MBPC、DML-MTrisPC、DML-BisOC-Z、DML-BisOCHP-Z、DML-BPC、DMLBisOC-P、DMOM-PC、DMOM-PTBP、DMOM-MBPC、TriML-P、TriML-35XL、TML-HQ、TML-BP、TML-pp-BPF、TML-BPE、TML-BPA、TML-BPAF、TML-BPAP、TMOM-BP、TMOM-BPE、TMOM-BPA、TMOM-BPAF、TMOM-BPAP、HML-TPPHBA、HML-TPHAP、HMOM-TPPHBA、HMOM-TPHAP、HMOM-HAP(以上、商品名、本州化学工業社製)、“NIKALAC”(登録商標)MX-290、MX-280、MX-270、MX-279、MW-100LM、MX-750LM(以上、商品名、三和ケミカル社製)などが挙げられる。 Among thermal cross-linking agents, compounds having an alkoxymethyl group or a methylol group include, for example, 46DMOC, 46DMOEP (trade names, manufactured by Asahi Organic Chemicals Industry Co., Ltd.), DML-PC, DML-PEP, DML-OC, and DML. -OEP, DML-34X, DML-PTBP, DML-PCHP, DML-OCHP, DML-PFP, DML-PSBP, DML-POP, DML-MBOC, DML-MBPC, DML-MTrisPC, DML-BisOC-Z, DML -BisOCHP-Z, DML-BPC, DMLBisOC-P, DMOM-PC, DMOM-PTBP, DMOM-MBPC, TriML-P, TriML-35XL, TML-HQ, TML-BP, TML-pp-BPF, TML-BPE , TML-BPA, TML-BPAF, TML-BPAP, TMOM-BP, TMOM-BPE, TMOM-BPA, TMOM-BPAF, TMOM-BPAP, HML-TPPHBA, HML-TPHAP, HMOM-TPPHBA, HMOM-TPHAP, HMOM -HAP (above, product name, manufactured by Honshu Chemical Industry Co., Ltd.), "NIKALAC" (registered trademark) MX-290, MX-280, MX-270, MX-279, MW-100LM, MX-750LM (above, product name , manufactured by Sanwa Chemical Co., Ltd.).
 熱架橋剤のうち、エポキシ基を有する化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリメチル(グリシジロキシプロピル)、エポキシ基含有シリコーンなどが挙げられる。具体的には、“エピクロン”(登録商標)850-S、HP-4032、HP-7200、HP-820、HP-4700、EXA-4710、HP-4770、EXA-859CRP、EXA-1514、EXA-4880、EXA-4850-150、EXA-4850-1000、EXA-4816、EXA-4822(以上、商品名、大日本インキ化学工業社製)、“リカレジン”(登録商標)BEO-60E、BPO-20E、HBE-100、DME-100、L-200、BPO-20E、BEO-60E(以上、商品名、新日本理化社製)、アデカレジンEP-4003S、EP-4000S、EP-4005、EP-4100G、(以上、商品名、ADEKA社製)、PG-100、CG-500、EG-200(以上、商品名、大阪ガスケミカル社製)、NC-3000、NC-6000(以上、商品名、日本化薬社製)、“EPOX”(登録商標)-MK R508、R540、R710、R1710、VG3101L、VG3101M80(以上、商品名、プリンテック社製)、“セロキサイド”(登録商標)2021P、2081、2083、2085(以上、商品名、ダイセル化学工業社製)などが挙げられる。 Among thermal cross-linking agents, compounds having an epoxy group include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, polymethyl(glycidyloxypropyl), epoxy group containing silicone and the like. Specifically, "Epiclon" (registered trademark) 850-S, HP-4032, HP-7200, HP-820, HP-4700, EXA-4710, HP-4770, EXA-859CRP, EXA-1514, EXA- 4880, EXA-4850-150, EXA-4850-1000, EXA-4816, EXA-4822 (trade names, manufactured by Dainippon Ink and Chemicals), "Rikaresin" (registered trademark) BEO-60E, BPO-20E , HBE-100, DME-100, L-200, BPO-20E, BEO-60E (trade names, manufactured by Shin Nippon Rika Co., Ltd.), ADEKA RESIN EP-4003S, EP-4000S, EP-4005, EP-4100G, (above, product names, manufactured by ADEKA), PG-100, CG-500, EG-200 (above, product names, manufactured by Osaka Gas Chemicals Co., Ltd.), NC-3000, NC-6000 (above, product names, manufactured by Nippon Kayaku Yakusha), "EPOX" (registered trademark)-MK R508, R540, R710, R1710, VG3101L, VG3101M80 (trade names, manufactured by Printec), "Celoxide" (registered trademark) 2021P, 2081, 2083, 2085 (trade name, manufactured by Daicel Chemical Industries, Ltd.) and the like.
 熱架橋剤は2種類以上を組み合わせて用いることができる。
本発明の感光性樹脂シートにおける熱架橋剤の含有量は、アルカリ可溶性ポリイミド(A)100質量%に対して、5質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上であることが更に好ましい。熱架橋剤の含有量を5質量%以上とすることで、硬化物の耐熱性、機械特性や耐薬品性を向上させることができる。一方、熱架橋剤の含有量は、アルカリ可溶性ポリイミド(A)100質量%に対して、100質量%以下であることが好ましく、50質量%以下であることがより好ましく、40質量%以下であることが更に好ましい。熱架橋剤の含有量を100質量%以下とすることで、感光性樹脂組成物の保存安定性を向上することができる。また、硬化膜を得る加熱工程で硬化収縮を抑えることができる。
Two or more thermal cross-linking agents can be used in combination.
The content of the thermal cross-linking agent in the photosensitive resin sheet of the present invention is preferably 5% by mass or more, more preferably 10% by mass or more, and 15% by mass or more relative to 100% by mass of the alkali-soluble polyimide (A). is more preferred. By setting the content of the thermal cross-linking agent to 5% by mass or more, the heat resistance, mechanical properties and chemical resistance of the cured product can be improved. On the other hand, the content of the thermal crosslinking agent is preferably 100% by mass or less, more preferably 50% by mass or less, and 40% by mass or less with respect to 100% by mass of the alkali-soluble polyimide (A). is more preferred. By setting the content of the thermal cross-linking agent to 100% by mass or less, the storage stability of the photosensitive resin composition can be improved. In addition, curing shrinkage can be suppressed in the heating process for obtaining a cured film.
 <その他の成分>
 また、本発明の感光性樹脂シートは、重合禁止剤をさらに含有することもできる。重合禁止剤を含有することで、励起子の濃度が調節されるため、断面形状が矩形状のパターンを形成することができる。また、重合禁止剤により過度な光応答性の抑制が可能であり、露光マージンを広くすることができる。さらに、感光性樹脂組成物の塗料およびシートの粘度上昇を抑えることができるため、品質の向上が可能となる。
<Other ingredients>
Moreover, the photosensitive resin sheet of the present invention may further contain a polymerization inhibitor. Since the exciton concentration is adjusted by containing the polymerization inhibitor, a pattern having a rectangular cross section can be formed. In addition, the polymerization inhibitor can suppress excessive photoresponsivity, and the exposure margin can be widened. Furthermore, since the increase in the viscosity of the photosensitive resin composition paint and sheet can be suppressed, the quality can be improved.
 重合禁止剤の例としては、例えば、ハイドロキノン、ヒドロキノンモノメチルエーテル、t-ブチルカテコールなどのフェノール系重合禁止剤、フェノチアジン、2-メトキシフェノチアジン、1-ナフトール、1,4-ジヒドロキシナフタレン、4-メトキシ-1-ナフトール、1-メトキシナフタレン、1,4-ジメトキシナフタレン、2,6-ジメトキシナフタレン、2,7-ジメトキシナフタレン、1,4-ジエトキシナフタレン、2,6-ジエトキシナフタレン、2,7-ジエトキシナフタレン、2,6-ジブトキシナフタレン、2-エチル-1,4-ジエトキシナフタレン、1,4-ジブトキシナフタレン、1,4-ジフェネチルオキシナフタレン、1,4-ナフトキノン、2-ヒドロキシ-1,4-ナフトキノン、2-メチル-1,4-ナフトキノン、9-ブトキシアントラセン、9,10-ブトキシアントラセン、9-アントロン、9,10-アントラキノン、2-エチル-9,10-アントラキノンなどが挙げられる。これらの重合禁止剤は、単独でまたは二種類以上を組み合わせて使用される。 Examples of polymerization inhibitors include, for example, hydroquinone, hydroquinone monomethyl ether, phenolic polymerization inhibitors such as t-butylcatechol, phenothiazine, 2-methoxyphenothiazine, 1-naphthol, 1,4-dihydroxynaphthalene, 4-methoxy- 1-naphthol, 1-methoxynaphthalene, 1,4-dimethoxynaphthalene, 2,6-dimethoxynaphthalene, 2,7-dimethoxynaphthalene, 1,4-diethoxynaphthalene, 2,6-diethoxynaphthalene, 2,7- Diethoxynaphthalene, 2,6-dibutoxynaphthalene, 2-ethyl-1,4-diethoxynaphthalene, 1,4-dibutoxynaphthalene, 1,4-diphenethyloxynaphthalene, 1,4-naphthoquinone, 2-hydroxy -1,4-naphthoquinone, 2-methyl-1,4-naphthoquinone, 9-butoxyanthracene, 9,10-butoxyanthracene, 9-anthrone, 9,10-anthraquinone, 2-ethyl-9,10-anthraquinone, etc. mentioned. These polymerization inhibitors are used alone or in combination of two or more.
 また、本発明の感光性樹脂シートは、密着改良材をさらに含有することもできる。密着改良材は、基板および基板に形成された回路構成材料に対して、感光性樹脂シート中の感光性樹脂層および/またはそれらの硬化膜との密着性を良好とするものである。基板としてはシリコンウェハ、有機系回路基板、LTCCやHTCCなどのセラミックス基板、無機系回路基板などが挙げられる。有機系回路基板の例としては、ガラス布・エポキシ銅張積層板などのガラス基材銅張積層板、ガラス不織布・エポキシ銅張積層板などのコンポジット銅張積層板、ポリエーテルイミド樹脂基板、ポリエーテルケトン樹脂基板、ポリサルフォン系樹脂基板などの耐熱・熱可塑性基板、ポリエステル銅張フィルム基板、ポリイミド銅張フィルム基板などのフレキシブル基板が挙げられる。無機系回路基板の例としては、アルミナ基板、窒化アルミニウム基板、炭化ケイ素基板などのセラミック基板、アルミニウムベース基板、銅ベース基板、鉄ベース基板などの金属系基板が挙げられる。回路の構成材料は金、銀、銅、アルミ、ニッケル、クロム、チタンなどを含有する導体、無機系酸化物などの抵抗体などが挙げられる。 In addition, the photosensitive resin sheet of the present invention can further contain an adhesion improver. The adhesion improving material improves adhesion between the substrate and the circuit forming material formed on the substrate with the photosensitive resin layer in the photosensitive resin sheet and/or their cured film. Examples of substrates include silicon wafers, organic circuit substrates, LTCC and HTCC ceramic substrates, and inorganic circuit substrates. Examples of organic circuit boards include glass-based copper-clad laminates such as glass cloth and epoxy copper-clad laminates, composite copper-clad laminates such as glass nonwoven fabrics and epoxy copper-clad laminates, polyetherimide resin substrates, and polyetherimide resin substrates. Examples include heat-resistant/thermoplastic substrates such as etherketone resin substrates and polysulfone resin substrates, and flexible substrates such as polyester copper-clad film substrates and polyimide copper-clad film substrates. Examples of inorganic circuit substrates include ceramic substrates such as alumina substrates, aluminum nitride substrates and silicon carbide substrates, and metal substrates such as aluminum base substrates, copper base substrates and iron base substrates. Examples of circuit constituent materials include conductors containing gold, silver, copper, aluminum, nickel, chromium, titanium, etc., and resistors such as inorganic oxides.
 密着改良材の例としては、信越化学工業(株)製のビニルトリメトキシシラン(KBM-1003)、3-グリシドキシプロピルトリメトキシシラン(KBM-403)、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(KBM-303)、無水コハク酸トリメトキシシラン(KBM-967TR-1)、3-メタクリロキシプロピルトリメトキシシラン(KBM-503)、3-アクリロキシプロピルトリメトキシシラン(KBM-5103)、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(KBM-603)、N-フェニル-3-アミノプロピルトリメトキシシラン(KBM-573)、トリス-(トリメトキシシリルプロピル)イソシアヌレート(KBE-9007N)、3-メルカプトプロピルトリメトキシシラン(KBM-803)、モメンティブ(株)製のSilquest(登録商標) A-151、A-174、A-187、A-1871、CoatOSil(登録商標)2287、MP200などのシランカップリング剤、マツモトファインケミカル(株)製のチタンアセチルアセトネート(TC-100)、チタンテトラアセチルアセトネート(TC-401)などのチタンキレート剤、城北化学工業の1,2,3-ベンゾトリアゾール(BT-120)、カルボキシベンゾトリアゾール(CBT-1、CBT-SG)、5-カルボキシベンゾトリアゾール(CBT-5)、1-(1‘,2’-)ジカルボキシエチル)ベンゾトリアゾール(BT-M)、1-[N,N-ビス(2-エチルヘキシル)アミノメチル]ベンゾトリアゾール(BT-LX)2,2‘-[[メチル-1H-ベンゾトリアゾール-1-イル]メチル]イミノ]ビスエタノール、5-メチルベンゾトリアゾール(5M-BTA)などのトリアゾール化合物、昭和電工(株)製のカレンズMT(登録商標)PE1、BD1、NR1、TPMBなどのチオール系化合物などが挙げられる。 Examples of adhesion improvers include vinyltrimethoxysilane (KBM-1003), 3-glycidoxypropyltrimethoxysilane (KBM-403), and 2-(3,4-epoxycyclohexyl) manufactured by Shin-Etsu Chemical Co., Ltd. ) Ethyltrimethoxysilane (KBM-303), succinic anhydride trimethoxysilane (KBM-967TR-1), 3-methacryloxypropyltrimethoxysilane (KBM-503), 3-acryloxypropyltrimethoxysilane (KBM- 5103), N-2-(aminoethyl)-3-aminopropyltrimethoxysilane (KBM-603), N-phenyl-3-aminopropyltrimethoxysilane (KBM-573), tris-(trimethoxysilylpropyl) Isocyanurate (KBE-9007N), 3-mercaptopropyltrimethoxysilane (KBM-803), Momentive's Silquest (registered trademark) A-151, A-174, A-187, A-1871, CoatOSil ( (registered trademark) 2287, silane coupling agents such as MP200, titanium acetylacetonate (TC-100) manufactured by Matsumoto Fine Chemical Co., Ltd., titanium chelating agents such as titanium tetraacetylacetonate (TC-401), Johoku Chemical Industry Co., Ltd. 1,2,3-benzotriazole (BT-120), carboxybenzotriazole (CBT-1, CBT-SG), 5-carboxybenzotriazole (CBT-5), 1-(1',2'-)dicarboxy Ethyl)benzotriazole (BT-M), 1-[N,N-bis(2-ethylhexyl)aminomethyl]benzotriazole (BT-LX) 2,2′-[[methyl-1H-benzotriazol-1-yl ]methyl]imino]bisethanol, triazole compounds such as 5-methylbenzotriazole (5M-BTA), thiol compounds such as Karenz MT (registered trademark) PE1, BD1, NR1, TPMB manufactured by Showa Denko K.K. mentioned.
 本発明の感光性樹脂シートは必要に応じて、有機溶媒、分散剤、可塑剤などを含有してもよい。 The photosensitive resin sheet of the present invention may contain organic solvents, dispersants, plasticizers, etc., if necessary.
 〔感光性樹脂組成物の製造方法〕
 次に本発明の感光性樹脂シートを製造するための、感光性樹脂組成物の製造方法の例を示す。感光性樹脂組成物の第一の形態は、各種原料を有機溶媒に溶解、希釈したワニス材料である。溶解する方法としては、超音波、羽根撹拌、ボールミルなどが挙げられ、必要に応じてフィルターろ過を行ってもよい。濾過方法は特に限定されないが、保留粒子径1μm~50μmのフィルターを用いて加圧濾過により濾過する方法が好ましい。希釈する有機溶媒としては特に限定されないが、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエール、プロピレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテルなどのエーテル類、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチルなどのアセテート類、アセトン、メチルエチルケトン、アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、シクロペンタノン、2-ヘプタノンなどのケトン類、ブチルアルコール、イソブチルアルコール、ペンタノ-ル、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシブタノール、ジアセトンアルコールなどのアルコール類、トルエン、キシレンなどの芳香族炭化水素類、その他、N-メチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトンなどが挙げられる。
[Method for producing photosensitive resin composition]
Next, an example of a method for producing a photosensitive resin composition for producing the photosensitive resin sheet of the present invention is shown. A first form of the photosensitive resin composition is a varnish material prepared by dissolving and diluting various raw materials in an organic solvent. Dissolving methods include ultrasonic waves, blade agitation, ball milling, and the like, and filter filtration may be performed as necessary. The filtration method is not particularly limited, but a method of filtration by pressure filtration using a filter having a retained particle size of 1 μm to 50 μm is preferred. The organic solvent to be diluted is not particularly limited, but ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ale, propylene glycol monoethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and ethylene glycol dibutyl ether. , ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propyl acetate, butyl acetate, isobutyl acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl lactate, ethyl lactate, butyl lactate and other acetates acetone, methyl ethyl ketone, acetylacetone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, cyclopentanone, ketones such as 2-heptanone, butyl alcohol, isobutyl alcohol, pentanol, 4-methyl-2-pentanol , 3-methyl-2-butanol, 3-methyl-3-methoxybutanol, diacetone alcohol and other alcohols, toluene, xylene and other aromatic hydrocarbons, others, N-methyl-2-pyrrolidone, N-cyclohexyl -2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, γ-butyrolactone and the like.
 〔感光性樹脂シートの製造方法〕
 本発明の感光性樹脂シートの形態は、感光性樹脂組成物を支持するフィルム(支持フィルムともいう)上に塗工、乾燥し、感光性樹脂組成物からなる層(以下、感光性樹脂層)を支持フィルム上に形成した感光性樹脂シートである。つまり本発明の感光性樹脂シートは、支持フィルム、及び、その支持フィルム上に感光性樹脂組成物から形成された層(感光性樹脂層)を有するシートである。
[Method for producing photosensitive resin sheet]
In the form of the photosensitive resin sheet of the present invention, a layer (hereinafter referred to as a photosensitive resin layer) made of a photosensitive resin composition is coated and dried on a film (also referred to as a support film) that supports the photosensitive resin composition. is formed on a support film. That is, the photosensitive resin sheet of the present invention is a sheet having a support film and a layer (photosensitive resin layer) formed from a photosensitive resin composition on the support film.
 本発明の感光性樹脂シートで用いられる支持フィルムは特に限定されないが、ポリエチレンテレフタレート(PET)フィルム等のポリエステルフィルム、ポリフェニレンサルファイドフィルム、ポリイミドフィルムなど、通常市販されている各種のフィルムが使用可能である。支持フィルムと感光性樹脂層との接合面には、密着性と剥離性を調整させるために、シリコーン剤、シランカップリング剤、アルミキレート剤、ポリ尿素などの表面処理を施してもよい。支持フィルムの厚みは特に限定されないが、作業性の観点から、10~100μmの範囲であることが好ましく、30~80μmの範囲であることがより好ましい。支持フィルムの厚みが10μm以上であれば、感光性樹脂組成物を塗工、乾燥後の感光性樹脂シートのカールが抑えられ、ロールとして巻き取ることが可能となる。一方、支持フィルムの厚みが100μm以下であれば、支持フィルムを介して感光性樹脂シートに露光を場合、露光光が支持フィルム内で広がり、パターン加工性が悪化する。また、支持フィルムのヘイズは2.0%以下であることが好ましい。ヘイズが2.0%より大きいと露光光の散乱が発生するため、パターン加工性が悪化する。 The support film used in the photosensitive resin sheet of the present invention is not particularly limited, but various commercially available films such as polyester films such as polyethylene terephthalate (PET) films, polyphenylene sulfide films, and polyimide films can be used. . The bonding surface between the support film and the photosensitive resin layer may be surface-treated with a silicone agent, a silane coupling agent, an aluminum chelating agent, polyurea, or the like, in order to adjust adhesion and releasability. The thickness of the support film is not particularly limited, but from the viewpoint of workability, it is preferably in the range of 10 to 100 μm, more preferably in the range of 30 to 80 μm. When the thickness of the support film is 10 μm or more, curling of the photosensitive resin sheet after the photosensitive resin composition is applied and dried can be suppressed, and the sheet can be wound up as a roll. On the other hand, if the thickness of the support film is 100 μm or less, when the photosensitive resin sheet is exposed through the support film, the exposure light spreads within the support film, resulting in deterioration of the pattern workability. Moreover, the haze of the support film is preferably 2.0% or less. If the haze is more than 2.0%, scattering of exposure light occurs, resulting in poor pattern workability.
 また、感光性樹脂シートを保護するために、感光性樹脂層及び支持フィルムから構成される感光性樹脂シートにおける感光性樹脂層の側に、保護フィルムを有してもよい。すなわち、前記支持フィルム、前記感光性樹脂層、および保護フィルムをこの順に直接積層した状態である感光性樹脂シートとすることが好ましい。これにより、大気中のゴミやチリ等の汚染物質から感光性樹脂シートの感光性樹脂層の表面を保護することができる。保護フィルムとしては、ポリエチレン(PE)フィルム、ポリプロピレン(PP)フィルム、ポリエステルフィルム、ポリビニルアルコールフィルム等が挙げられる。また、保護フィルムは、感光性樹脂層と保護フィルムが容易に剥離しない程度となるものが好ましく、また、感光性樹脂層と支持フィルムとの密着力よりも弱いものが好ましい。 In addition, in order to protect the photosensitive resin sheet, a protective film may be provided on the side of the photosensitive resin layer in the photosensitive resin sheet composed of the photosensitive resin layer and the support film. That is, it is preferable to form a photosensitive resin sheet in which the support film, the photosensitive resin layer, and the protective film are directly laminated in this order. As a result, the surface of the photosensitive resin layer of the photosensitive resin sheet can be protected from contaminants such as dirt and dust in the air. Protective films include polyethylene (PE) films, polypropylene (PP) films, polyester films, polyvinyl alcohol films, and the like. Moreover, the protective film is preferably such that the photosensitive resin layer and the protective film are not easily peeled off, and the adhesion strength between the photosensitive resin layer and the support film is preferably weaker.
 感光性樹脂組成物を支持フィルムに塗工する方法としては、スピンナーを用いた回転塗布、スプレー塗布、ロールコーティング、スクリーン印刷、ブレードコーター、ダイコーター、カレンダーコーター、メニスカスコーター、バーコーター、ロールコーター、コンマロールコーター、グラビアコーター、スクリーンコーター、スリットダイコーターなどの方法が挙げられる。また、塗布膜厚は、塗布手法、組成物の固形分濃度、粘度などによって異なるが、通常、感光性樹脂層の乾燥後膜厚が、3μm以上100μm以下であることが好ましい。 Methods for applying the photosensitive resin composition to the support film include spin coating using a spinner, spray coating, roll coating, screen printing, blade coater, die coater, calendar coater, meniscus coater, bar coater, roll coater, A comma roll coater, a gravure coater, a screen coater, a slit die coater and the like can be used. In addition, although the coating film thickness varies depending on the coating method, the solid content concentration of the composition, the viscosity, etc., it is generally preferable that the film thickness of the photosensitive resin layer after drying is 3 μm or more and 100 μm or less.
 本発明の感光性樹脂シートは、感光性樹脂層の膜厚が、15~40μmであることが好ましく、15~35μmであることがより好ましく、18~35μmであることがさらに好ましい。本発明の感光樹脂シートを用いて多層配線を形成する場合、感光性樹脂層の膜厚が15μm以上であると、金属配線をラミネートで良好に被覆でき、かつ、金属配線間の絶縁性を確保することができる。一方で、感光性樹脂層の膜厚が厚くなるほど、高精細な加工が困難、硬化工程での収縮応力が増加することによる基板反り量の増加、材料コストが増加するため、膜厚は40μm以下であることが好ましい。 In the photosensitive resin sheet of the present invention, the film thickness of the photosensitive resin layer is preferably 15-40 μm, more preferably 15-35 μm, even more preferably 18-35 μm. When multilayer wiring is formed using the photosensitive resin sheet of the present invention, if the film thickness of the photosensitive resin layer is 15 μm or more, the metal wiring can be satisfactorily covered with the laminate, and the insulation between the metal wiring can be ensured. can do. On the other hand, the thicker the photosensitive resin layer, the more difficult it is to perform high-definition processing, the more the shrinkage stress in the curing process increases, the more the substrate warps, and the higher the material cost. is preferably
 本発明の感光性樹脂シートは、感光性樹脂組成物を支持フィルムに塗工後、熱風オーブン、ホットプレート、赤外線乾燥炉などの乾燥設備で加熱乾燥することで感光性樹脂組成物を感光性樹脂層とすることにより得られる。乾燥温度および乾燥時間は、有機溶媒を揮発させることが可能な範囲であればよく、感光性樹脂層が未硬化または半硬化状態となるような範囲を適宜設定することが好ましい。具体的には、40℃から120℃の範囲で、1分から120分以内で行うことが好ましい。また、これらの温度や時間を組み合わせて段階的に昇温してもよく、乾燥後の塗膜の荒れや異物など品位が低下しないよう、適宜調整してもよい。 The photosensitive resin sheet of the present invention is produced by applying the photosensitive resin composition to a support film and then heat-drying the photosensitive resin composition in a drying facility such as a hot air oven, a hot plate, or an infrared drying oven. It is obtained by layering. The drying temperature and drying time may be within a range in which the organic solvent can be volatilized, and it is preferable to appropriately set a range such that the photosensitive resin layer is in an uncured or semi-cured state. Specifically, it is preferably carried out at a temperature in the range of 40° C. to 120° C. within 1 minute to 120 minutes. Moreover, these temperatures and times may be combined and the temperature may be raised stepwise, and appropriate adjustments may be made so that the quality of the coating film after drying does not deteriorate due to roughness and foreign matter.
 本発明の感光性樹脂シート中の感光性樹脂層は、後述する露光工程における活性光線に対する光透過性を調整することが好ましい。感光性樹脂層は、365nmにおける透過率Tb365、405nmにおける透過率Tb405、436nmにおける透過率Tb436とした際に、以下の関係Bを満たすことが好ましい。 The photosensitive resin layer in the photosensitive resin sheet of the present invention preferably adjusts the light transmittance to actinic rays in the exposure step described later. The photosensitive resin layer preferably satisfies the following relationship B when the transmittance at 365 nm is Tb365, the transmittance at 405 nm is Tb405, and the transmittance at 436 nm is Tb436.
 関係B:式3から式5の少なくとも一つを満たす。 Relation B: At least one of formulas 3 to 5 is satisfied.
 式3:3.0%≦Tb365≦70%
 式4:3.0%≦Tb405≦70%
 式5:3.0%≦Tb436≦70%
 これについて詳細を説明する。本発明の感光性樹脂シートは、露光工程で波長405nmの紫外線で露光する場合、その感光性樹脂層の膜厚を26μmとした際の感光性樹脂層の波長405nmにおける透過率Tb405が、3.0%以上70%以下であることが好ましく、5.0%以上50%以下であることがより好ましく、5.0%以上40%以下であることがさらに好ましい。透過率Tb405が3.0%以上の場合、パターンの断面形状が矩形もしくは順テーパ形状となり、金属配線層の形成が容易となる。一方、透過率が70%以下とすることで、露光光による光重合反応を良好に進行させることができる。
Formula 3: 3.0% ≤ Tb365 ≤ 70%
Formula 4: 3.0% ≤ Tb405 ≤ 70%
Formula 5: 3.0% ≤ Tb436 ≤ 70%
This will be explained in detail. When the photosensitive resin sheet of the present invention is exposed to ultraviolet rays having a wavelength of 405 nm in the exposure step, the transmittance Tb405 of the photosensitive resin layer at a wavelength of 405 nm when the film thickness of the photosensitive resin layer is 26 μm is 3. It is preferably 0% or more and 70% or less, more preferably 5.0% or more and 50% or less, and even more preferably 5.0% or more and 40% or less. When the transmittance Tb405 is 3.0% or more, the cross-sectional shape of the pattern becomes rectangular or forward tapered, which facilitates the formation of the metal wiring layer. On the other hand, when the transmittance is 70% or less, the photopolymerization reaction by the exposure light can proceed well.
 同様に、本発明の感光性樹脂シートを、露光工程で波長365nmの紫外線で露光する場合、透過率Tb365が3.0%以上70%以下であることが好ましく、5.0%以上50%以下であることがより好ましく、5.0%以上40%以下であることがさらに好ましい。また、露光工程で波長436nmの紫外線で露光する場合、透過率Tb436が3.0%以上70%以下であることが好ましく、5.0%以上50%以下であることがより好ましく、5.0%以上40%以下であることがさらに好ましい。 Similarly, when the photosensitive resin sheet of the present invention is exposed to ultraviolet rays having a wavelength of 365 nm in the exposure step, the transmittance Tb365 is preferably 3.0% or more and 70% or less, and 5.0% or more and 50% or less. is more preferably 5.0% or more and 40% or less. Further, when exposing with ultraviolet light having a wavelength of 436 nm in the exposure step, the transmittance Tb436 is preferably 3.0% or more and 70% or less, more preferably 5.0% or more and 50% or less, and 5.0%. % or more and 40% or less.
 Tb365、Tb405及びTb436は、感光性樹脂シート中に含まれる材料の種類やそれらの配合比率により、各波長における光吸収により適宜調整することができる。特に、アルカリ可溶性ポリイミド(A)、光重合開始剤(C)、着色材(D)および無機粒子は、露光波長における光透過性を大きく寄与する。ネガ型パターンを形成するために、光重合開始剤(C)が露光波長の活性光線を効率的に吸収し、光重合性化合物(B)の重合を進行させる必要がある。一方、他材料は活性光線の光吸収を抑えつつ、高い電気的性質、信頼性およびパターン検査性を可能とする必要がある。そのため、前述のとおり、各材料を選定した上で、含有量の所定範囲内とすることで、厚膜でありながら優れたパターン加工性を有する感光性樹脂シートおよび硬化膜パターンが得られる。 Tb365, Tb405 and Tb436 can be appropriately adjusted by light absorption at each wavelength depending on the types of materials contained in the photosensitive resin sheet and their compounding ratios. In particular, the alkali-soluble polyimide (A), the photopolymerization initiator (C), the colorant (D) and the inorganic particles greatly contribute to the light transmittance at the exposure wavelength. In order to form a negative pattern, it is necessary that the photopolymerization initiator (C) efficiently absorbs the actinic rays of the exposure wavelength to promote the polymerization of the photopolymerizable compound (B). On the other hand, other materials must be capable of high electrical properties, reliability and pattern inspectability while suppressing light absorption of actinic rays. Therefore, as described above, by selecting each material and setting the content within a predetermined range, a photosensitive resin sheet and a cured film pattern having excellent pattern processability while being a thick film can be obtained.
 本発明の感光性樹脂シート中の感光性樹脂層は、波長450nmにおける透過率Tb450が、40%以上95%以下であり、50%以上90%以下であることが好ましく、55%以上80%以下であることがより好ましい。ここで感光性樹脂層の波長450nmにおける透過率Tb450は、その膜厚を問わず、40%以上95%以下であることが重要である。このように透過率Tb450が40%以上の場合、フォトマスクと基板のアライメントを行う際に位置合わせマークを視認することができる。また、パターン加工された硬化膜にクラック無く高精細なパターンを得ることできる。一方、透過率Tb450が95%以下であると、パターン加工後に付着した異物や欠点を視認・検出することができる。 The photosensitive resin layer in the photosensitive resin sheet of the present invention has a transmittance Tb450 at a wavelength of 450 nm of 40% or more and 95% or less, preferably 50% or more and 90% or less, and 55% or more and 80% or less. is more preferable. Here, it is important that the transmittance Tb450 of the photosensitive resin layer at a wavelength of 450 nm is 40% or more and 95% or less regardless of the film thickness. When the transmittance Tb450 is 40% or more as described above, the alignment mark can be visually recognized when aligning the photomask and the substrate. In addition, a high-definition pattern can be obtained without cracks in the patterned cured film. On the other hand, when the transmittance Tb450 is 95% or less, it is possible to visually recognize and detect foreign matter and defects attached after pattern processing.
 本発明の感光性樹脂シート中の感光性樹脂層は、600nmにおける透過率Tb600、500~800nmにおける透過率の最小値TbVLとした際に、以下の関係Aを満たすことを特徴とする感光性樹脂シートである。 The photosensitive resin layer in the photosensitive resin sheet of the present invention satisfies the following relationship A when the transmittance at 600 nm is Tb600 and the minimum transmittance at 500 to 800 nm is TbVL. is a sheet.
 関係A:式1及び式2の少なくとも一つを満たす。 Relation A: At least one of Formula 1 and Formula 2 is satisfied.
 式1:0.10%≦Tb600≦40%
 式2:0.10%≦TbVL≦40%
 本発明の感光性樹脂シート中の感光性樹脂層は、波長600nmにおける透過率Tb600が、0.10%以上40%以下であり、1.0%以上20%以下であることが好ましく、3.0%以上10%以下であることがより好ましい。ここで感光性樹脂層の波長600nmにおける透過率Tb600は、その膜厚を問わず、0.10%以上40%以下であることが重要である。透過率Tb600が0.1%より小さくなる場合、必要とされる着色材の含有量が増加するため、硬化膜の耐熱性や機械強度が低下する。一方、透過率Tb600が40%より大きい場合、パターン加工後の検査において内部の配線パターンが透けるため、異物や欠点の誤検出を起こすことがある。
Formula 1: 0.10% ≤ Tb600 ≤ 40%
Formula 2: 0.10% ≤ TbVL ≤ 40%
3. The photosensitive resin layer in the photosensitive resin sheet of the present invention has a transmittance Tb600 at a wavelength of 600 nm of 0.10% or more and 40% or less, preferably 1.0% or more and 20% or less. It is more preferably 0% or more and 10% or less. Here, it is important that the transmittance Tb600 of the photosensitive resin layer at a wavelength of 600 nm is 0.10% or more and 40% or less regardless of the film thickness. If the transmittance Tb600 is less than 0.1%, the content of the necessary coloring material increases, and the heat resistance and mechanical strength of the cured film deteriorate. On the other hand, if the transmittance Tb600 is greater than 40%, the internal wiring pattern is transparent in the inspection after pattern processing, which may cause erroneous detection of foreign matter and defects.
 本発明の感光性樹脂シート中の感光性樹脂層は、500~800nmにおける透過率の最小値TbVLが、0.10%以上40%以下であり、1.0%以上20%以下であることが好ましく、3.0%以上10%以下であることがより好ましい。ここで、透過率の最小値TbVLは、その膜厚を問わず、0.10%以上40%以下であることが重要である。透過率の最小値TbVLが0.1%より小さくなる場合、必要とされる着色材の含有量が増加するため、硬化膜の耐熱性や機械強度が低下する。一方、透過率の最小値TbVLが40%より大きい場合、パターン加工後の検査において内部の配線パターンが透けるため、異物や欠点の誤検出を起こすことがある。パターン加工後の検査工程において、検査に使用する検査光の波長は、500~800nmにおける透過率が最小となる波長を選択することで、パターンの欠点・欠陥部の視認性を向上させることができる。 The photosensitive resin layer in the photosensitive resin sheet of the present invention has a minimum value TbVL of transmittance at 500 to 800 nm of 0.10% or more and 40% or less, and 1.0% or more and 20% or less. It is preferably 3.0% or more and 10% or less. Here, it is important that the minimum transmittance TbVL be 0.10% or more and 40% or less regardless of the film thickness. If the minimum transmittance value TbVL is less than 0.1%, the content of the required coloring material increases, and the heat resistance and mechanical strength of the cured film deteriorate. On the other hand, if the minimum transmittance value TbVL is greater than 40%, the internal wiring pattern is transparent in the inspection after pattern processing, which may cause erroneous detection of foreign matter and defects. In the inspection process after pattern processing, the wavelength of the inspection light used for inspection is selected to have the minimum transmittance in the range of 500 to 800 nm, thereby improving the visibility of defects and defects in the pattern. .
 感光性樹脂層の透過率Tb365、Tb405、Tb436、Tb450、Tb600、TbVLは、透明基材に加熱ロールラミで感光性シート樹脂を貼り合わせた後、支持フィルムを剥離することでサンプルを準備し、紫外可視分光光度計で350~800nmの波長領域の透過率を測定する。透明基材の透過率を100%として校正した後、感光性樹脂層を貼り合わせたサンプルの透過率を測定することで透過率Tb365、Tb405、Tb436、Tb450、Tb600、TbVLを得ることができる。 The transmittances Tb365, Tb405, Tb436, Tb450, Tb600, and TbVL of the photosensitive resin layer were obtained by laminating the photosensitive sheet resin on the transparent base material by heating roll lamination, and then peeling off the support film. The transmittance in the wavelength range of 350-800 nm is measured with a visible spectrophotometer. Transmittances Tb365, Tb405, Tb436, Tb450, Tb600, and TbVL can be obtained by measuring the transmittance of a sample laminated with a photosensitive resin layer after calibrating the transmittance of the transparent substrate as 100%.
 本発明の感光性樹脂シートは、感光性樹脂層の80℃における溶融粘度が1,500~50,000Pa・sである事が好ましい。これにより、平坦もしくは、配線などで凹凸を有する基板を覆う形で感光性樹脂層を接着させることができ、接着後の感光性樹脂層の表面を平坦な状態とすることができる。感光性樹脂層の溶融粘度が1,500Pa・sより低い場合、感光性樹脂層の強度が不足するため、支持フィルムの剥離工程において、感光性樹脂層の表面にスジが入る、感光性樹脂層の破れが発生するため、歩留まりが悪化することがある。また、有機溶媒などを含むワニスや塗料同様に、感光性樹脂層中に残存する揮発成分の残存量が多いため、凹凸を有する基板において感光性樹脂層の表面が十分に平坦とならず、多層配線基板に欠点が発生する、もしくは金属配線や感光性樹脂層や硬化膜のパターン線幅や厚みが設計どおりとならないため、多層配線基板の歩留まりが悪化する。一方、感光性樹脂層の溶融粘度が50,000Pa・sより高い場合、感光性樹脂層の接着性低下による基板への貼り合わせ不良、凹凸部に樹脂層を埋め込めない不良の発生することがあるため、歩留まりが悪化する。 In the photosensitive resin sheet of the present invention, the melt viscosity of the photosensitive resin layer at 80°C is preferably 1,500 to 50,000 Pa·s. As a result, the photosensitive resin layer can be adhered so as to cover a substrate that is flat or has irregularities due to wiring or the like, and the surface of the photosensitive resin layer after adhesion can be made flat. When the melt viscosity of the photosensitive resin layer is lower than 1,500 Pa s, the strength of the photosensitive resin layer is insufficient. The yield may deteriorate due to tearing of the film. In addition, as with varnishes and paints containing organic solvents, the amount of volatile components remaining in the photosensitive resin layer is large, so the surface of the photosensitive resin layer does not become sufficiently flat on substrates with unevenness, resulting in multi-layer coating. Defects occur in the wiring board, or the pattern line width and thickness of the metal wiring, the photosensitive resin layer, and the cured film are not as designed, resulting in a decrease in the yield of the multilayer wiring board. On the other hand, if the melt viscosity of the photosensitive resin layer is higher than 50,000 Pa·s, the adhesiveness of the photosensitive resin layer may deteriorate, resulting in poor bonding to the substrate and failure in filling the uneven portions with the resin layer. Therefore, the yield deteriorates.
 〔感光性樹脂シートの硬化膜〕
 本発明の硬化膜は、本発明の感光性樹脂シートに含まれる感光性樹脂層を加熱硬化して形成される硬化膜である。本発明の硬化膜は、本発明の感光性樹脂層を加熱硬化させることによって得ることができる。
[Cured film of photosensitive resin sheet]
The cured film of the present invention is a cured film formed by heating and curing the photosensitive resin layer contained in the photosensitive resin sheet of the present invention. The cured film of the present invention can be obtained by heat-curing the photosensitive resin layer of the present invention.
 加熱硬化して形成される硬化膜の膜厚は、感光性樹脂層の膜厚に対して変化が少ないことが好ましい。具体的には、硬化膜の膜厚に対して、感光性樹脂層の膜厚を除算して得られる硬化収縮率が80~105%であることが好ましい。硬化収縮率が80%より小さい場合、感光性樹脂組成物の分解および/または昇華が発生し、耐熱性が低下する。また、硬化膜にクラックが発生しやすくなる。一方、硬化収縮率が105%より大きい場合、硬化膜中に感光性樹脂層の分解物を内包するため、電気特性や信頼性が低下することがある。 It is preferable that the thickness of the cured film formed by heating and curing does not change much with respect to the thickness of the photosensitive resin layer. Specifically, the curing shrinkage ratio obtained by dividing the film thickness of the photosensitive resin layer with respect to the film thickness of the cured film is preferably 80 to 105%. If the curing shrinkage is less than 80%, decomposition and/or sublimation of the photosensitive resin composition occur, resulting in deterioration of heat resistance. In addition, cracks are likely to occur in the cured film. On the other hand, if the curing shrinkage is more than 105%, the cured film contains decomposition products of the photosensitive resin layer, which may deteriorate electrical properties and reliability.
 硬化膜の膜厚は、12~40μmであることが好ましく、12~35μmであることがより好ましく、14~30μmであることがさらに好ましい。硬化膜の膜厚が12μm以上であると、金属配線間の絶縁性を確保することができる。一方、硬化膜の膜厚が厚くなるほど硬化工程での収縮応力が増加、また、硬化膜中に内包する分解物が増加するため、硬化膜の膜厚は40μm以下であることが好ましい。 The thickness of the cured film is preferably from 12 to 40 μm, more preferably from 12 to 35 μm, even more preferably from 14 to 30 μm. When the film thickness of the cured film is 12 μm or more, insulation between metal wirings can be ensured. On the other hand, as the thickness of the cured film increases, the shrinkage stress in the curing process increases and the decomposition products contained in the cured film increase.
 本発明の硬化膜のガラス転移温度(Tg)は、250℃~350℃であることが好ましい。硬化膜のガラス転移温度(Tg)についてより詳細には、好ましくは250℃以上であり、より好ましくは280℃以上であり、さらに好ましくは300℃以上である。硬化膜のガラス転移温度(Tg)が250℃以上であると硬化膜の耐熱性が優れ、半導体素子の表面保護膜、層間絶縁膜、回路基板の配線保護絶縁膜とした場合、配線からの剥離やクラックを抑制することができる。一方、硬化膜のガラス転移温度が350℃よりも大きい場合、感光性樹脂層から硬化膜を得る加熱硬化工程においる硬化収縮により硬化膜自体に微細なクラックが発生することがある。本発明におけるガラス転移温度(Tg)は、示差走査熱量測定法(DSC法)によって測定されるものであり、硬化膜を測定した時の熱量変化曲線を微分した曲線が最大値を示すときの温度をガラス転移温度(Tg)とする。 The glass transition temperature (Tg) of the cured film of the present invention is preferably 250°C to 350°C. More specifically, the glass transition temperature (Tg) of the cured film is preferably 250°C or higher, more preferably 280°C or higher, and even more preferably 300°C or higher. When the glass transition temperature (Tg) of the cured film is 250° C. or higher, the cured film has excellent heat resistance, and when used as a surface protective film of a semiconductor device, an interlayer insulating film, or a wiring protective insulating film of a circuit board, peeling from the wiring. and cracks can be suppressed. On the other hand, when the glass transition temperature of the cured film is higher than 350° C., fine cracks may occur in the cured film itself due to curing shrinkage in the heat curing step of obtaining the cured film from the photosensitive resin layer. The glass transition temperature (Tg) in the present invention is measured by differential scanning calorimetry (DSC method), and the temperature when the curve obtained by differentiating the heat amount change curve when measuring the cured film shows the maximum value is the glass transition temperature (Tg).
 本発明の硬化膜の線膨張係数(α)は、30×10-6/K以上55×10-6/K以下であることが好ましく、より好ましくは35×10-6/K以上50×10-6/K以下である。硬化膜の線膨張係数(α)が55×10-6/K以下とすることで、半導体素子の表面保護膜、層間絶縁膜、回路基板の配線保護絶縁膜とした場合、配線からの剥離やクラックを抑制することができる。一方、硬化膜の線膨張係数(α)30×10-6/Kよりも小さい場合、高精細なパターンを得ることが難しくなる。本発明における線膨張係数(α)は、熱機械分析(TMA)により、昇温速度5℃/minで、30℃から150℃の傾きを線膨張係数(α)とした。 The linear expansion coefficient (α) of the cured film of the present invention is preferably 30×10 −6 /K or more and 55×10 −6 /K or less, more preferably 35×10 −6 /K or more and 50×10 -6 /K or less. By setting the linear expansion coefficient (α) of the cured film to 55 × 10 -6 /K or less, when used as a surface protective film for a semiconductor device, an interlayer insulating film, or a wiring protective insulating film for a circuit board, peeling from the wiring or Cracks can be suppressed. On the other hand, if the coefficient of linear expansion (α) of the cured film is smaller than 30×10 −6 /K, it becomes difficult to obtain a high-definition pattern. The coefficient of linear expansion (α) in the present invention was determined by thermomechanical analysis (TMA) at a heating rate of 5°C/min, and the slope from 30°C to 150°C was defined as the coefficient of linear expansion (α).
 本発明の硬化膜は、450nmにおける透過率Tc450と、600nmにおける透過率Tc600、500~800nmにおける透過率の最小値TcVLとした際に、以下の式6及び関係Cを満たすことが好ましい。 The cured film of the present invention preferably satisfies the following formula 6 and relationship C when the transmittance at 450 nm is Tc450, the transmittance at 600 nm is Tc600, and the minimum transmittance at 500 to 800 nm is TcVL.
 関係C:式7及び式8の少なくとも1つを満たす
 式6:20%≦Tc450≦90%
 式7:0.10%≦Tc600≦50%
 式8:0.10%≦TcVL≦50%
 これについて詳細を説明する。本発明の硬化膜は、本発明の感光性樹脂シート中の感光性樹脂層を加熱硬化させることで得られる硬化膜について、波長450nmにおける透過率Tc450が、20%以上90%以下であることが好ましく、20%以上80%以下であることがより好ましく、25%以上70%以下であることがさらに好ましい。ここで硬化膜の波長450nmにおける透過率Tc450は、その膜厚を問わず、20%以上90%以下であることが好ましい。このように硬化膜の透過率Tc450が20%以上の場合、パターン加工された硬化膜にクラック無く高精細なパターンを得ることできる。一方、硬化膜の透過率Tc450が90%より大きい場合、着色材が分解および/または昇華しており、電気特性や信頼性に影響することがある。
Relationship C: Satisfies at least one of Formula 7 and Formula 8 Formula 6: 20% ≤ Tc450 ≤ 90%
Formula 7: 0.10% ≤ Tc600 ≤ 50%
Formula 8: 0.10% ≤ TcVL ≤ 50%
This will be explained in detail. In the cured film of the present invention, the cured film obtained by heat-curing the photosensitive resin layer in the photosensitive resin sheet of the present invention has a transmittance Tc450 at a wavelength of 450 nm of 20% or more and 90% or less. It is preferably 20% or more and 80% or less, and even more preferably 25% or more and 70% or less. Here, the transmittance Tc450 of the cured film at a wavelength of 450 nm is preferably 20% or more and 90% or less regardless of the film thickness. Thus, when the transmittance Tc450 of the cured film is 20% or more, a high-definition pattern can be obtained without cracks in the patterned cured film. On the other hand, when the transmittance Tc450 of the cured film is more than 90%, the coloring material is decomposed and/or sublimated, which may affect electrical properties and reliability.
 本発明の硬化膜は、本発明の感光性樹脂シート中の感光性樹脂層を加熱硬化させた硬化膜について、波長600nmにおける透過率Tc600が、0.10%以上50%以下であることが好ましく、0.10%以上20%以下であることがより好ましく、1.0%以上10%以下であることがさらに好ましい。ここで硬化膜の波長600nmにおける透過率Tc600は、その膜厚を問わず、0.10%以上50%以下であることが好ましい。このように硬化膜の透過率Tc600が0.10%より小さい場合、必要とされる着色材の含有量が増加するため、硬化膜の耐熱性や機械強度が低下する。一方、透過率Tc600が50%より大きい場合、加熱硬化後のパターン検査において内部の配線パターンが透けるため誤検出を起こす、着色材が分解および/または昇華しており電気特性や信頼性に影響することがある。 In the cured film of the present invention, the cured film obtained by heat-curing the photosensitive resin layer in the photosensitive resin sheet of the present invention preferably has a transmittance Tc600 at a wavelength of 600 nm of 0.10% or more and 50% or less. , more preferably 0.10% or more and 20% or less, and more preferably 1.0% or more and 10% or less. Here, the transmittance Tc600 of the cured film at a wavelength of 600 nm is preferably 0.10% or more and 50% or less regardless of the film thickness. When the transmittance Tc600 of the cured film is less than 0.10% as described above, the content of the necessary coloring material is increased, so that the heat resistance and mechanical strength of the cured film are lowered. On the other hand, if the transmittance Tc600 is greater than 50%, the internal wiring pattern is transparent in the pattern inspection after heat curing, causing an erroneous detection. Sometimes.
 本発明の感光性樹脂シート中の感光性樹脂層は、500~800nmにおける透過率の最小値TcVLが、0.10%以上50%以下であり、0.10%以上20%以下であることが好ましく、1.0%以上10%以下であることがより好ましい。ここで、透過率の最小値TcVLは、その膜厚を問わず、0.10%以上50%以下であることが重要である。透過率の最小値TcVLが0.1%より小さくなる場合、必要とされる着色材の含有量が増加するため、硬化膜の耐熱性や機械強度が低下する。一方、透過率の最小値TcVLが50%より大きい場合、加熱硬化後のパターン検査において内部の配線パターンが透けるため誤検出を起こすことがある。加熱硬化後のパターン検査工程において、検査に使用する検査光の波長は、500~800nmにおける透過率が最小となる波長を選択することで、パターンの欠点・欠陥部の視認性を向上させることができる。 The photosensitive resin layer in the photosensitive resin sheet of the present invention has a minimum value TcVL of transmittance at 500 to 800 nm of 0.10% or more and 50% or less, and 0.10% or more and 20% or less. It is preferably 1.0% or more and 10% or less. Here, it is important that the minimum transmittance TcVL be 0.10% or more and 50% or less regardless of the film thickness. If the minimum transmittance value TcVL is less than 0.1%, the content of the required coloring material increases, and the heat resistance and mechanical strength of the cured film deteriorate. On the other hand, if the minimum transmittance value TcVL is greater than 50%, the internal wiring pattern is transparent in the pattern inspection after heat curing, which may cause erroneous detection. In the pattern inspection process after heat curing, the wavelength of the inspection light used for inspection is selected to have the minimum transmittance in the range of 500 to 800 nm, thereby improving the visibility of defects and defects in the pattern. can.
 感光性樹脂層の透過率Tbと硬化膜の透過率Tcの関係は、Tc/Tbで表すことができ、硬化前後での膜色味の変化を表すことができる。硬化前後での膜色味の変化であるTc450/Tb450は0.3~1.0であることが好ましく、0.4~0.8であることがより好ましく、0.5~0.8であることがさらに好ましい。膜色味の変化は、主に感光性組成物の硬化反応による透過率変化と、着色材の分解および/または昇華による透過率変化により膜色味の変化が起こるものと推定される。膜色味の変化Tc450/Tb450が0.3以上であると、露光時は高い透過率を有するため高解像なパターンが得られ、硬化工程後に紫外領域の検査光を効率的に吸収できるため、欠点の検出が容易となる。一方、Tc450/Tb450が1.0より大きい場合、感光性樹脂組成物中の着色材が分解・昇華により着色性を失っており、検査光を効率的に吸収できず、欠点の検出ができないことが起こる。また、硬化膜中に残存する分解物が、電気特性や信頼性に影響することがある。 The relationship between the transmittance Tb of the photosensitive resin layer and the transmittance Tc of the cured film can be expressed as Tc/Tb, and the change in film color before and after curing can be expressed. Tc450/Tb450, which is the change in film color before and after curing, is preferably 0.3 to 1.0, more preferably 0.4 to 0.8, and 0.5 to 0.8. It is even more preferable to have It is presumed that changes in film color mainly occur due to changes in transmittance due to curing reaction of the photosensitive composition and changes in transmittance due to decomposition and/or sublimation of the coloring material. When the film color change Tc450/Tb450 is 0.3 or more, the film has a high transmittance during exposure, so that a high-resolution pattern can be obtained, and inspection light in the ultraviolet region can be efficiently absorbed after the curing process. , making it easier to detect defects. On the other hand, when Tc450/Tb450 is greater than 1.0, the coloring material in the photosensitive resin composition has lost its coloring property due to decomposition and sublimation, and inspection light cannot be efficiently absorbed, and defects cannot be detected. happens. Also, the decomposition products remaining in the cured film may affect the electrical properties and reliability.
 また、硬化前後での膜色味の変化であるTc600/Tb600は0.5~2.0であることが好ましく、Tc600/Tb600は0.7~1.5であることがより好ましく、Tc600/Tb600は0.8~1.2であることがさらに好ましい。Tc600/Tb600が0.5以上であると、硬化膜の色味バラツキが少なく検査時のご検出を抑制することができる。一方、Tc600/Tb600が2.0以下であると、着色材が分解・昇華により着色性を失っており、検査光を効率的に吸収できず、欠点の検出ができないことが起こる。または、硬化膜中に残存する分解物が、電気特性や信頼性に影響することがある。
硬化前後での膜色味の変化であるTcVL/TbVLは0.5~2.0であることが好ましく、Tc600/Tb600は0.7~1.5であることがより好ましく、Tc600/Tb600は0.8~1.2であることがさらに好ましい。Tc600/Tb600が0.5以上であると、硬化膜の色味バラツキが少なく検査時のご検出を抑制することができる。一方、Tc600/Tb600が2.0以下であると、着色材が分解・昇華により着色性を失っており、検査光を効率的に吸収できず、欠点の検出ができないことが起こる。または、硬化膜中に残存する分解物が、電気特性や信頼性に影響することがある。
In addition, Tc600/Tb600, which is the change in film color before and after curing, is preferably 0.5 to 2.0, and more preferably Tc600/Tb600 is 0.7 to 1.5. More preferably, Tb600 is between 0.8 and 1.2. When the Tc600/Tb600 is 0.5 or more, the color variation of the cured film is small, and detection during inspection can be suppressed. On the other hand, if Tc600/Tb600 is less than 2.0, the coloring material loses its coloring property due to decomposition and sublimation, and inspection light cannot be efficiently absorbed, resulting in failure to detect defects. Alternatively, decomposition products remaining in the cured film may affect electrical properties and reliability.
TcVL/TbVL, which is the change in film color before and after curing, is preferably 0.5 to 2.0, Tc600/Tb600 is more preferably 0.7 to 1.5, and Tc600/Tb600 is More preferably 0.8 to 1.2. When the Tc600/Tb600 is 0.5 or more, the color variation of the cured film is small, and detection during inspection can be suppressed. On the other hand, if Tc600/Tb600 is less than 2.0, the coloring material loses its coloring property due to decomposition and sublimation, and inspection light cannot be efficiently absorbed, resulting in failure to detect defects. Alternatively, decomposition products remaining in the cured film may affect electrical properties and reliability.
 [感光性樹脂シートの加工例]
 次に、本発明の感光性樹脂シートをパターン加工し、永久レジストを形成する方法について、例を挙げて説明するが、これに限定されるものではない。
[Processing example of photosensitive resin sheet]
Next, the method of patterning the photosensitive resin sheet of the present invention to form a permanent resist will be described with an example, but the method is not limited to this.
 まず、感光性樹脂シートに保護フィルムを有する場合には、これを剥離し、感光性樹脂シートと基板とを、互いに対向するように配置して熱圧着により貼り合わせる。この熱圧着方法としては、例えば、熱プレス処理、熱ラミネート処理、熱真空ラミネート処理などが挙げられる。熱圧着温度は、感光性樹脂層の基板への密着性、埋め込み性を向上させるという観点から、40℃以上であることが好ましい。一方、熱圧着時の感光性樹脂層の過度の硬化を抑制するという観点から、熱圧着温度は150℃以下であることが好ましい。 First, if the photosensitive resin sheet has a protective film, it is peeled off, and the photosensitive resin sheet and the substrate are arranged so as to face each other and bonded together by thermocompression bonding. Examples of the thermocompression bonding method include heat press treatment, heat lamination treatment, and thermal vacuum lamination treatment. The thermocompression bonding temperature is preferably 40° C. or higher from the viewpoint of improving the adhesion and embedding properties of the photosensitive resin layer to the substrate. On the other hand, from the viewpoint of suppressing excessive curing of the photosensitive resin layer during thermocompression bonding, the thermocompression bonding temperature is preferably 150° C. or less.
 次に、上記方法によって基板に形成された感光性樹脂シート上の支持フィルムを剥離した後、所望のパターンを有するマスクを通して感光性樹脂層に活性光線を照射し、この感光性樹脂層をパターン状に露光する露光工程を行う。露光工程における活性光線としては、紫外線、可視光線、電子線、X線などが挙げられる。本発明においては、光重合開始剤の吸収波長に合わせ、i線(365nm)、h線(405nm)、g線(436nm)の活性光線を出力可能な超高圧水銀ランプ、紫外LEDランプ、レーザーなどを用いることが好ましい。 Next, after peeling off the support film on the photosensitive resin sheet formed on the substrate by the above method, the photosensitive resin layer is irradiated with actinic rays through a mask having a desired pattern, and the photosensitive resin layer is patterned. Then, an exposure step is performed. Actinic rays in the exposure step include ultraviolet rays, visible rays, electron beams, X-rays and the like. In the present invention, an ultra-high pressure mercury lamp, an ultraviolet LED lamp, a laser, etc., capable of outputting actinic rays of i-line (365 nm), h-line (405 nm), and g-line (436 nm) according to the absorption wavelength of the photopolymerization initiator. is preferably used.
 一般的に、短波長側の活性光線に対して感光性樹脂層は感度が高いため、超高圧水銀ランプで出力されたi線(365nm)、h線(405nm)、g線(436nm)では、実質的にi線で露光されたこととなる。これらの活性光線に対して、波長カットフィルタやバンドパスフィルタで露光波長を選択することでパターン形状を制御することができる。具体的には、超高圧水銀ランプなど出力したi線(365nm)を、i線カットフィルタを用いることでh線露光が可能となる。また、h線バンドパスフィルタを用いることで、i線およびg線を含まないh線露光が可能となる。また、i線バンドパスフィルタを用いることでh線およびg線を含まないi線露光が可能となる。さらに、g線バンドパスフィルタを用いることでi線およびh線を含まないg線露光が可能となる。感光性樹脂シートにおいて、支持フィルムがこれらの活性光線に対して透明な材質である場合は、感光性樹脂シートから支持フィルムを剥離せずに露光を行ってもよい。 In general, since the photosensitive resin layer has high sensitivity to actinic rays on the short wavelength side, i-line (365 nm), h-line (405 nm), and g-line (436 nm) output from an ultra-high pressure mercury lamp It means that it is substantially exposed to the i-line. The pattern shape can be controlled by selecting the exposure wavelength for these actinic rays with a wavelength cut filter or a bandpass filter. Specifically, h-line exposure can be performed by using an i-line cut filter for i-line (365 nm) output from an extra-high pressure mercury lamp or the like. Also, by using an h-line bandpass filter, h-line exposure that does not include i-line and g-line becomes possible. Also, by using an i-line bandpass filter, i-line exposure that does not include h-line and g-line becomes possible. Furthermore, by using a g-line bandpass filter, g-line exposure that does not include i-line and h-line becomes possible. In the photosensitive resin sheet, when the support film is made of a material transparent to these actinic rays, exposure may be performed without peeling off the support film from the photosensitive resin sheet.
 感光性樹脂層の露光後にベークをすることが好ましい。露光後ベークを行うことによって、硬化反応が良好に進行し、現像後の解像度向上又は現像条件の許容幅増大などの効果が期待できる。露光後ベークは、オーブン、ホットプレート、赤外線、フラッシュアニール装置又はレーザーアニール装置などを使用することができる。露光後ベーク温度としては、40~150℃が好ましく、60~120℃がより好ましい。露光後ベーク時間は、10秒~60分以内であることが好ましい。感光性樹脂シートの支持フィルムを剥離せず、露光する場合は、露光後ベーク前に支持フィルムを剥離することが好ましい。 It is preferable to bake the photosensitive resin layer after exposure. By performing post-exposure baking, the curing reaction proceeds satisfactorily, and effects such as an improvement in resolution after development and an increase in the allowable range of development conditions can be expected. For post-exposure baking, an oven, a hot plate, an infrared ray, a flash annealing device, a laser annealing device, or the like can be used. The post-exposure baking temperature is preferably 40 to 150°C, more preferably 60 to 120°C. The post-exposure bake time is preferably within 10 seconds to 60 minutes. When exposure is performed without removing the support film of the photosensitive resin sheet, the support film is preferably removed before baking after exposure.
 上記感光性樹脂層の露光後もしくはベーク後に、現像液を用いて露光部分と未露光部分の現像液に対する溶解度差を利用して現像を行い、主に未露光部を溶解・除去し、パターンを形成する。この現像液としては、テトラメチルアンモニウムヒドロキシド(TMAH)水溶液、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、ジメチルアミン、2-アミノエタノールなどのアルカリ性を示す化合物の水溶液が好ましい。現像方式としては、スプレー、パドル、浸漬、超音波等の方式が可能である。現像液温度や現像時間は、パターン形状などにより適宜設定されるが、それぞれ15~35℃、30秒~10分であることが好適である。 After the exposure or baking of the photosensitive resin layer, a developer is used to develop the exposed portion and the unexposed portion by utilizing the difference in solubility in the developer to dissolve and remove mainly the unexposed portion to form a pattern. Form. Examples of the developing solution include alkalis such as tetramethylammonium hydroxide (TMAH) aqueous solution, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, dimethylamine, and 2-aminoethanol. Aqueous solutions of the indicated compounds are preferred. As a developing method, methods such as spray, puddle, immersion, and ultrasonic waves are possible. The developer temperature and development time are appropriately set depending on the pattern shape and the like, and are preferably 15 to 35° C. and 30 seconds to 10 minutes, respectively.
 続いて、現像によって形成されたパターンに純水でリンス処理を行ってもよい。このリンス液としては、現像後のパターン残渣によって適宜選択されるが、エタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類などを純水に加えてリンス処理をしてもよい。 Subsequently, the pattern formed by development may be rinsed with pure water. The rinsing liquid is appropriately selected depending on the pattern residue after development. Alcohols such as ethanol and isopropyl alcohol, and esters such as ethyl lactate and propylene glycol monomethyl ether acetate are added to pure water for rinsing. may
 現像後のパターンを、150~400℃の温度条件で加熱処理して硬化膜にする。この加熱工程(キュア)は、感光性樹脂層中に含まれる光重合性化合物や熱架橋剤などの低分子化合物を重合させることで耐熱性、耐薬品性を向上させた硬化膜が得られる。この加熱硬化工程は、加熱温度150~400℃であることが好ましく、200~300℃がより好ましく、250℃~290℃がさらに好ましい。加熱温度150℃以上であると、重合反応を良好に進行させることができる。一方、加熱温度400℃以下とすることで、基板と硬化膜の線膨張差による硬化膜のクラックや基板の割れを抑えることができる。既閉環ポリイミドを用いた感光性樹脂層の硬化は、ポリイミド前駆体の環化反応が必要でないため、300℃以下の低温での硬化が可能であり、クラックの発生を抑え、基板反りを低減することが可能となる。加熱処理時間は、15分~6時間以内であることが好ましい。加熱雰囲気は、大気、酸素、水素、窒素雰囲気など種々選択可能であるが、耐熱性の観点から窒素雰囲気下で硬化させることが好ましい。 The pattern after development is heat-treated at a temperature of 150 to 400°C to form a cured film. In this heating step (curing), a cured film with improved heat resistance and chemical resistance is obtained by polymerizing low-molecular-weight compounds such as photopolymerizable compounds and thermal cross-linking agents contained in the photosensitive resin layer. In this heat curing step, the heating temperature is preferably 150 to 400.degree. C., more preferably 200 to 300.degree. C., even more preferably 250 to 290.degree. When the heating temperature is 150° C. or higher, the polymerization reaction can proceed satisfactorily. On the other hand, by setting the heating temperature to 400° C. or lower, it is possible to suppress cracks in the cured film and breakage of the substrate due to the difference in linear expansion between the substrate and the cured film. Curing of a photosensitive resin layer using a closed-ring polyimide does not require a cyclization reaction of the polyimide precursor, so curing can be performed at a low temperature of 300° C. or less, suppressing the occurrence of cracks and reducing substrate warpage. becomes possible. The heat treatment time is preferably within 15 minutes to 6 hours. Various heating atmospheres such as air, oxygen, hydrogen, and nitrogen atmospheres can be selected, but curing in a nitrogen atmosphere is preferable from the viewpoint of heat resistance.
 感光性樹脂層を露光および現像を行った後、加熱硬化させることで、パターン化した永久レジストが得られる。感光性樹脂層の初期膜厚に対して、露光・現像・加熱硬化後の硬化膜の膜厚の変化率が小さいことが好ましい。具体的には、硬化膜の膜厚を、感光性樹脂層の初期膜厚で除算して算出される計算値を、硬化膜の残膜率と定義し、この残膜率は70%以上であることが好ましく、75%以上であることがより好ましく、80%以上であることがさらに好ましい。残膜率を70%以上とすることで、凹凸を有する基板上で平坦性の高い硬化膜パターンが得られる。 After exposing and developing the photosensitive resin layer, a patterned permanent resist is obtained by heat curing. It is preferable that the change rate of the film thickness of the cured film after exposure, development and heat curing is small with respect to the initial film thickness of the photosensitive resin layer. Specifically, a calculated value obtained by dividing the thickness of the cured film by the initial thickness of the photosensitive resin layer is defined as the residual film ratio of the cured film, and the residual film ratio is 70% or more. It is preferably 75% or more, more preferably 80% or more. By setting the residual film rate to 70% or more, a cured film pattern with high flatness can be obtained on a substrate having unevenness.
 硬化物の用途は特に限定されないが、例えば、実装基板やウェハレベルパッケージなどの半導体を用いるシステム用の基板やパッケージに内蔵する表面保護膜、層間絶縁膜、回路基板の配線保護絶縁膜などのレジスト、多種の電子部品、装置への適用が可能である。また、硬化膜の優れた耐熱性から、硬化膜は、永久レジスト、すなわち、パターン形成された層間絶縁膜や、パターン形成後の基板、ガラス、半導体素子等と被着体とを熱圧着する接着剤用途に特に好適に用いることができる。 Although the use of the cured product is not particularly limited, for example, resists such as surface protective films built into substrates and packages that use semiconductors such as mounting substrates and wafer level packages, interlayer insulating films, wiring protective insulating films of circuit boards , various electronic components and devices. In addition, due to the excellent heat resistance of the cured film, the cured film is used as a permanent resist, that is, a patterned interlayer insulating film, a patterned substrate, glass, semiconductor element, etc., and an adherend for thermocompression bonding. It can be particularly suitably used for drug applications.
 以下に実施例等をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。 The present invention will be described below with reference to examples, etc., but the present invention is not limited to these examples.
 <アルカリ可溶性ポリイミド(A)>
 以下の方法により合成したアルカリ可溶性ポリイミドを用いた。
<Alkali-soluble polyimide (A)>
An alkali-soluble polyimide synthesized by the following method was used.
 アルカリ可溶性ポリイミドA1は以下の方法で合成した。
乾燥窒素気流下、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(32.78g(0.0895モル))と、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(1.24g(0.005モル))とを、N-メチル-2-ピロリドン(100g)に溶解させた。以下、「N-メチル-2-ピロリドン」は、「NMP」と称する。この溶液に、ビス(3,4-ジカルボキシフェニル)エーテル二無水物(31.02g(0.10モル))をNMP(30g)とともに加えて、20℃で1時間撹拌し、次いで50℃で4時間撹拌した。この攪拌後の溶液に、3-アミノフェノール(1.09g(0.01モル))を加え、50℃で2時間撹拌した後、180℃で5時間撹拌して樹脂溶液を得た。次に、この樹脂溶液を水(3L)に投入して、白色沈殿を生成させた。この白色沈殿を、濾過で集めて水で3回洗浄した後、80℃の真空乾燥機で5時間乾燥した。得られたポリイミド(A1)のイミド化率は94%の既閉環ポリイミドであった。また、23℃のテトラメチルアンモニウム水溶液(2.38質量%)に対するポリイミドの溶解度は、0.5g/100g以上であった。
Alkali-soluble polyimide A1 was synthesized by the following method.
Under a stream of dry nitrogen, 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (32.78 g (0.0895 mol)) and 1,3-bis(3-aminopropyl)tetramethyldichloromethane Siloxane (1.24 g (0.005 mol)) was dissolved in N-methyl-2-pyrrolidone (100 g). Hereinafter, "N-methyl-2-pyrrolidone" is referred to as "NMP". To this solution was added bis(3,4-dicarboxyphenyl)ether dianhydride (31.02 g (0.10 mol)) along with NMP (30 g) and stirred at 20°C for 1 hour, then at 50°C. Stirred for 4 hours. 3-Aminophenol (1.09 g (0.01 mol)) was added to the stirred solution, and the mixture was stirred at 50°C for 2 hours and then stirred at 180°C for 5 hours to obtain a resin solution. The resin solution was then poured into water (3 L) to produce a white precipitate. This white precipitate was collected by filtration, washed with water three times, and then dried in a vacuum dryer at 80° C. for 5 hours. The obtained polyimide (A1) had an imidization rate of 94% and was a ring-closed polyimide. Moreover, the solubility of polyimide in a tetramethylammonium aqueous solution (2.38% by mass) at 23° C. was 0.5 g/100 g or more.
 アルカリ可溶性ポリイミドA2は、以下の方法で合成した。
乾燥窒素気流下、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(32.96g、0.09モル)をGBL80gに添加し、120℃で撹拌溶解した。次に、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸二無水物(30.03g、0.1モル)をGBL20gとともに加えて、120℃で1時間攪拌し、次いで200℃で4時間攪拌して樹脂溶液を得た。次に、この樹脂溶液を水(3L)に投入して、白色沈殿を生成させた。この沈殿を、濾過で集めて水で3回洗浄した後、80℃の真空乾燥機で5時間乾燥した。得られたポリイミド(A2)のイミド化率は91%の既閉環ポリイミドであった。また、23℃のテトラメチルアンモニウム水溶液(2.38質量%)に対するポリイミドの溶解度は、0.5g/100g以上であった。
Alkali-soluble polyimide A2 was synthesized by the following method.
Under a stream of dry nitrogen, 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (32.96 g, 0.09 mol) was added to 80 g of GBL and dissolved with stirring at 120°C. Then 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic dianhydride (30.03 g, 0.1 mol) It was added together with 20 g of GBL, stirred at 120° C. for 1 hour, and then stirred at 200° C. for 4 hours to obtain a resin solution. The resin solution was then poured into water (3 L) to produce a white precipitate. The precipitate was collected by filtration, washed with water three times, and dried in a vacuum dryer at 80° C. for 5 hours. The obtained polyimide (A2) had an imidization rate of 91% and was a ring-closed polyimide. Moreover, the solubility of polyimide in a tetramethylammonium aqueous solution (2.38% by mass) at 23° C. was 0.5 g/100 g or more.
 <光重合性化合物(B)>
 B1:DPE-6A(共栄者化学株式会社)。化合物名:ジペンタエリスリトールヘキサアクリレート、光重合性官能基当量:96、官能基数:6。(BH)成分に該当。一般式(4)に該当。
<Photopolymerizable compound (B)>
B1: DPE-6A (Kyoeisha Chemical Co., Ltd.). Compound name: dipentaerythritol hexaacrylate, photopolymerizable functional group equivalent: 96, number of functional groups: 6. (BH) corresponds to the component. Corresponds to general formula (4).
 B3:DCP-A(共栄社化学株式会社)。化合物名:ジメチロールトリシクロデカンジアクリレート、光重合性官能基当量:152、官能基数:2。(B-H)成分に該当。一般式(4)に該当。 B3: DCP-A (Kyoeisha Chemical Co., Ltd.). Compound name: dimethyloltricyclodecane diacrylate, photopolymerizable functional group equivalent: 152, number of functional groups: 2. It corresponds to the (BH) component. Corresponds to general formula (4).
 B2:BP-6EM(共栄社化学株式会社)。化学名:エチレンオキシド変性ビスフェノールAジメタクリレート、光重合性官能基当量:314、官能基数:2。(B-L)成分に該当。一般式(4)に非該当。 B2: BP-6EM (Kyoeisha Chemical Co., Ltd.). Chemical name: ethylene oxide-modified bisphenol A dimethacrylate, photopolymerizable functional group equivalent: 314, number of functional groups: 2. It corresponds to the (BL) component. Not applicable to general formula (4).
 B4:TEPIC-VL(日産化学株式会社)。光重合性官能基等量:138、官能基数:3。(B-L)成分に該当。 B4: TEPIC-VL (Nissan Chemical Co., Ltd.). Photopolymerizable functional group equivalent: 138, number of functional groups: 3. (BL) corresponds to the component.
 B5:PETG(昭和電工株式会社)。光重合官能基等量:90、官能基数:4。(B-H)成分に該当。 B5: PETG (Showa Denko KK). Photopolymerization functional group equivalent: 90, number of functional groups: 4. It corresponds to the (BH) component.
 B6:BATG(昭和電工株式会社)。光重合官能基等量:113、官能基数:4。(B-H)成分に該当。 B6: BATG (Showa Denko KK). Photopolymerization functional group equivalent: 113, number of functional groups: 4. It corresponds to the (BH) component.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 <光重合開始剤(C)>
 “イルガキュア” OXE-04(BASF株式会社)
 “アデカアークルズ” NCI-930(株式会社ADEKA)
 CPI-310FG(サンアプロ株式会社)
 <着色材(D)>
着色材A:C.I.ソルベントブルー5とロジン変性スチレンマレイン酸イソプロピル共重合物の混合染料(OilBlue613、オリエント化学工業((株)、トリアリールメタン系染料)
着色材B:C.I.ソルベントブルー44(フタロシアニン系染料)
着色材C:C.I.ソルベントブルー45(アントラキノン系染料)
着色材D:C.I.ベーシックバイオレット3(トリアリールメタン系染料)
着色材E:Oil Red O(富士フイルム(株)、アゾ系染料)
 <無機粒子>
無機粒子A:SE2050-YNB(アドマテックス株式会社)シリカ、平均粒子径:500nm(固形分70重量%/乳酸エチル分散液)
 無機粒子B:Y50SZ-AY1(アドマテックス株式会社)平均粒子径:50nm、シリカ(固形分40重量%/乳酸エチル分散液)
 無機粒子C:Y100SZ-AY1(アドマテックス株式会社)平均粒子径:100nm、シリカ(固形分40重量%/乳酸エチル分散液)
無機粒子D:“オプトレイク”(登録商標)TR-527(触媒化成工業株式会社)シリカ/チタニア複合粒子、平均粒子径:15nm、(固形分20重量%/PGMEA分散液)
 <熱架橋材>
 HMOM-TPHAP(本州化学工業株式会社)
 <重合禁止剤>
 フェノチアジン(東京化成工業株式会社)
 キノパワーQS-30(川崎化成工業株式会社)
 <密着改良剤>
 KBM-403(信越化学工業株式会社)
 CBT-1(城北化学工業株式会社)
 <増感剤>
 UVS-1331(川崎化成工業株式会社)
 <硬化膜のガラス転移温度、線膨張係数の評価>
 各実施例および各比較例により得られた感光性樹脂シートの保護フィルムを剥離し、感光性樹脂組成物からなる層がシリコンウエハに向くように配置し、80℃、0.3MPaの条件で4インチのシリコンウエハ上にロールラミネートした。
<Photoinitiator (C)>
“Irgacure” OXE-04 (BASF Corporation)
“ADEKA Arkles” NCI-930 (ADEKA Corporation)
CPI-310FG (San-Apro Co., Ltd.)
<Colorant (D)>
Colorant A: C.I. I. Mixed dye of solvent blue 5 and rosin-modified styrene maleate isopropyl copolymer (OilBlue613, Orient Chemical Industry Co., Ltd., triarylmethane dye)
Colorant B: C.I. I. Solvent Blue 44 (phthalocyanine dye)
Colorant C: C.I. I. Solvent Blue 45 (anthraquinone dye)
Colorant D: C.I. I. Basic Violet 3 (triarylmethane dye)
Colorant E: Oil Red O (Fuji Film Co., Ltd., azo dye)
<Inorganic particles>
Inorganic particles A: SE2050-YNB (Admatechs Co., Ltd.) silica, average particle size: 500 nm (solid content 70% by weight / ethyl lactate dispersion)
Inorganic particles B: Y50SZ-AY1 (Admatechs Co., Ltd.) average particle size: 50 nm, silica (solid content 40% by weight / ethyl lactate dispersion)
Inorganic particles C: Y100SZ-AY1 (Admatechs Co., Ltd.) average particle size: 100 nm, silica (solid content 40% by weight / ethyl lactate dispersion)
Inorganic Particles D: “Optolake” (registered trademark) TR-527 (Catalysts & Chemicals Co., Ltd.) silica/titania composite particles, average particle size: 15 nm, (solid content 20% by weight/PGMEA dispersion)
<Thermal cross-linking material>
HMOM-TPHAP (Honshu Chemical Industry Co., Ltd.)
<Polymerization inhibitor>
Phenothiazine (Tokyo Chemical Industry Co., Ltd.)
Kino Power QS-30 (Kawasaki Kasei Co., Ltd.)
<Adhesion improver>
KBM-403 (Shin-Etsu Chemical Co., Ltd.)
CBT-1 (Johoku Chemical Industry Co., Ltd.)
<Sensitizer>
UVS-1331 (Kawasaki Kasei Co., Ltd.)
<Evaluation of glass transition temperature and linear expansion coefficient of cured film>
The protective film of the photosensitive resin sheet obtained in each example and each comparative example was peeled off, arranged so that the layer made of the photosensitive resin composition faced the silicon wafer, and heated at 80 ° C. and 0.3 MPa for 4 times. It was roll laminated onto an inch silicon wafer.
 得られた感光性樹脂シートの支持フィルムを剥離した後、超高圧水銀灯を光源とした露光機にて露光量1000mJ/cm(i線カットフィルター使用、h線換算)で露光を行った。イナートオーブンにて窒素雰囲気下、290℃、60分の熱処理を行い、シリコンウエハ上に硬化膜を形成した。得られた硬化膜について、シリコンウエハから剥離し、単膜を作製した。 After peeling off the support film of the obtained photosensitive resin sheet, the photosensitive resin sheet was exposed at an exposure amount of 1000 mJ/cm 2 (using an i-line cut filter, converted to h-line) using an exposure machine using an ultra-high pressure mercury lamp as a light source. Heat treatment was performed at 290° C. for 60 minutes in an inert oven in a nitrogen atmosphere to form a cured film on the silicon wafer. The obtained cured film was separated from the silicon wafer to prepare a single film.
 ガラス転移温度測定用サンプルは、この単膜を5mm×50mmに片刃で切り取り、粘弾性測定装置(セイコーインスツルメンツ社製DMS6100)で25℃から450℃まで5℃/minで昇温し、熱量変化曲線を微分した曲線が最大値を示す温度を測定した。なお、振幅幅5μm、最小張力は10mN、力振幅初期値50mNとして測定した。
線膨張係数測定用サンプルは、この単膜を5mm×20mm に片刃で切り取り、熱機械分析装置(島津製作所製、TMA-60)で25℃から150℃まで5分/minで昇温/降温を繰り返し、2度目の昇温時の線膨張係数を評価結果とした。
A sample for measuring the glass transition temperature was obtained by cutting this single film into 5 mm × 50 mm pieces with a single edge, and using a viscoelasticity measuring device (DMS6100 manufactured by Seiko Instruments Inc.) to raise the temperature from 25 ° C. to 450 ° C. at a rate of 5 ° C./min. was measured at the temperature at which the curve obtained by differentiating was the maximum value. The amplitude width was 5 μm, the minimum tension was 10 mN, and the initial force amplitude was 50 mN.
A sample for measuring the coefficient of linear expansion was cut from this single film into 5 mm × 20 mm pieces with a single blade, and the temperature was raised/lowered from 25°C to 150°C at 5 minutes/min with a thermomechanical analyzer (manufactured by Shimadzu Corporation, TMA-60). The coefficient of linear expansion at the time of repeating the temperature rise for the second time was used as the evaluation result.
 <感光性樹脂層の溶融粘度の評価>
感光性樹脂シートから保護フィルムを剥離し、感光性樹脂層同士を80℃に加温したロールラミネーターで貼り合わせる。積層物のうち片面の支持フィルムを剥離し、再び感光性樹脂層同士を貼り合わせる。これを繰り返し、膜厚400~800μmの感光性樹脂層積層物を得る。この積層物の両面の支持フィルムを剥離し、粘弾性測定装置の直径15mmのプローブにはさみ、40℃から100℃の範囲で昇温速度2℃/分で測定を行い、80℃における複素粘度を溶融粘度とした。
<Evaluation of Melt Viscosity of Photosensitive Resin Layer>
The protective film is peeled off from the photosensitive resin sheet, and the photosensitive resin layers are laminated together by a roll laminator heated to 80°C. The support film on one side of the laminate is peeled off, and the photosensitive resin layers are bonded together again. This is repeated to obtain a photosensitive resin layer laminate having a thickness of 400 to 800 μm. The support films on both sides of this laminate were peeled off, and the composite viscosity at 80° C. was measured by sandwiching it between probes of a viscoelasticity measuring device with a diameter of 15 mm and measuring the temperature in the range of 40° C. to 100° C. at a heating rate of 2° C./min. melt viscosity.
 <パターン加工性評価(解像性・パターン断面形状)>
 実施例1より得られた感光性樹脂シートの保護フィルムを剥離し、感光性樹脂シートがシリコンウエハに向くように配置し、80℃、0.3MPaの条件で4インチのシリコンウエハと、銅配線(100μm幅、高さ5μm)を形成したシリコンウェハ上にロールラミネートした。
<Pattern workability evaluation (resolution/pattern cross-sectional shape)>
The protective film of the photosensitive resin sheet obtained in Example 1 was peeled off, the photosensitive resin sheet was placed facing the silicon wafer, and a 4-inch silicon wafer and copper wiring were placed under conditions of 80° C. and 0.3 MPa. (100 μm width, 5 μm height) was roll-laminated on a silicon wafer.
 得られた支持フィルムと感光性樹脂層からなる感光性樹脂シートの支持フィルムを剥離した後に、ビアの径が5、10、15、と5μm刻みで100μmまでのビアパターンが20個配置されたビア形成箇所と、ラインアンドスペースがピッチ100μmで等間隔に配置されたストライプパターンが20列配置されたストライプパターン形成箇所とを有するフォトマスクを載せ、超高圧水銀灯を光源とした露光機にて露光量1000mJ/cm(i線カットフィルター使用、h線換算)で露光を行った。露光後、100℃のホットプレートで5分間加熱した。次に、水酸化テトラメチルアンモニウムの2.38重量%水溶液を用いて、180秒間のシャワー現像により未露光部を除去し、水にてリンス処理を60秒間行い、その後、スピン乾燥を行った。さらに、イナートオーブンにて290℃、60分の熱処理を行い、シリコンウエハ上にビアパターンおよびストライプパターンが加工された硬化膜パターンをシリコンウエハ上に形成した。 After peeling off the support film of the photosensitive resin sheet composed of the obtained support film and the photosensitive resin layer, vias in which 20 via patterns with via diameters of 5, 10, 15, and up to 100 μm in increments of 5 μm were arranged. A photomask having a formation area and a stripe pattern formation area in which 20 rows of stripe patterns in which lines and spaces are arranged at equal intervals with a pitch of 100 μm is placed, and an exposure amount is obtained with an exposure machine using an ultra-high pressure mercury lamp as a light source. Exposure was performed at 1000 mJ/cm 2 (using an i-line cut filter, converted to h-line). After exposure, it was heated on a hot plate at 100° C. for 5 minutes. Next, using a 2.38% by weight aqueous solution of tetramethylammonium hydroxide, the unexposed portion was removed by shower development for 180 seconds, rinsed with water for 60 seconds, and then spin-dried. Further, heat treatment was performed at 290° C. for 60 minutes in an inert oven to form a cured film pattern in which a via pattern and a stripe pattern were processed on the silicon wafer.
 ビアパターンを顕微鏡で観察し、ビアが開口した最小寸法を解像性とした。ここでいうビアの開口は、フォトマスクの設計値に対して50%以上が開口することを以てビア開口とした。ビア開口が30μm以下のビアが開口したものをパターン解像性A、35μm~50μmのビアが開口したものをパターン解像性B、55μm~100μmのビアが開口したものをパターン解像性Cと判定した。 The via pattern was observed with a microscope, and the minimum dimension at which the via was opened was defined as the resolution. The opening of the via as referred to herein is defined as opening at 50% or more of the design value of the photomask. Pattern resolution A is for vias with a via opening of 30 μm or less, pattern resolution B is for vias with a via opening of 35 μm to 50 μm, and pattern resolution C is for vias with a via opening of 55 μm to 100 μm. Judged.
 また、ストライプパターンに直交するように割断した後、光学顕微鏡でパターン断面の観察を行う。シリコンウェハ上の接地するパターン幅を底部幅、シリコンウェハに対向するパターン表面側の幅を頂部幅として測定した。頂部幅と底部幅の差の絶対値ΔWとして、ΔWが5μm未満のものをパターン断面形状A、ΔWが5~10μmのものをパターン断面形状B、ΔWが10μmよりも大きいものをパターン断面形状Cと判定した。 In addition, after cutting perpendicular to the stripe pattern, the cross section of the pattern is observed with an optical microscope. The width of the grounded pattern on the silicon wafer was measured as the bottom width, and the width of the pattern surface side facing the silicon wafer was measured as the top width. As the absolute value ΔW of the difference between the top width and the bottom width, pattern cross-sectional shape A has a ΔW of less than 5 μm, pattern cross-sectional shape B has a ΔW of 5 to 10 μm, and pattern cross-sectional shape C has a ΔW greater than 10 μm. I judged.
 <感光性樹脂層および硬化膜の透過率評価>
 各実施例および各比較例により得られた感光性樹脂シートの保護フィルムを剥離した感光性樹脂シートをソーダガラス基板(1.1mm厚み)に80℃、0.3MPaの条件でロールラミネートした後、支持フィルムを剥離することで、感光性樹脂層の透過率測定サンプルを作製した。このサンプルを紫外可視分光光度計(日立ハイテクサイエンス社製、U-3900)を用いて波長350~800nmの透過率を3回測定し、波長365nm、405nm、436nmのうち露光波長となる波長における透過率、450nmおよび600nmにおける透過率の平均値を評価結果とした。波長500~800nmにおける透過率の最小値は、3回測定し、それらの波長領域で最小となった波長における透過率の平均値を評価結果とした。なお、感光性樹脂層の透過率測定は、リファレンス:ソーダガラス基板、スキャンスピード:300nm/min、サンプリング間隔:0.5nmの条件にて実施した。
<Evaluation of transmittance of photosensitive resin layer and cured film>
The photosensitive resin sheet from which the protective film was removed from the photosensitive resin sheet obtained in each example and each comparative example was roll-laminated on a soda glass substrate (thickness of 1.1 mm) at 80° C. and 0.3 MPa. A transmittance measurement sample of the photosensitive resin layer was prepared by peeling off the support film. The transmittance of this sample at a wavelength of 350 to 800 nm was measured three times using an ultraviolet-visible spectrophotometer (manufactured by Hitachi High-Tech Science Co., Ltd., U-3900). The average transmittance at 450 nm and 600 nm was used as the evaluation result. The minimum value of the transmittance at wavelengths of 500 to 800 nm was measured three times, and the average value of the transmittances at the minimum wavelengths in those wavelength regions was used as the evaluation result. The transmittance measurement of the photosensitive resin layer was performed under the conditions of reference: soda glass substrate, scan speed: 300 nm/min, and sampling interval: 0.5 nm.
 硬化膜透過率測定用サンプルは、感光性樹脂層測定用サンプルに対して超高圧水銀灯を光源とした露光機にて露光量1000mJ/cm(i線カットフィルター使用、h線換算)で露光を行い、イナートオーブンにて窒素雰囲気下、290℃、60分の熱処理を行い、ガラス基板上に硬化膜を形成したものを測定サンプルとして、感光性樹脂層と同測定条件で実施した。 The cured film transmittance measurement sample was exposed to an exposure amount of 1000 mJ/cm 2 (using an i-line cut filter, converted to h-line) with an exposure machine using an ultra-high pressure mercury lamp as a light source for the sample for measuring the photosensitive resin layer. Then, heat treatment was performed in an inert oven at 290° C. for 60 minutes in a nitrogen atmosphere to form a cured film on a glass substrate.
 <塗膜検査性の判定>
 感光性樹脂層の膜を形成したシリコンウェハに、超純水で洗浄した後、異物を付着させた。異物の付着させた基板上を10倍レンズの光学顕微鏡で塗膜表面に焦点を合わせて観察し、明瞭に異物を検出できれば表面検査性A、異物の輪郭が不明瞭であるものを表面検査性B、異物を検出できなければ表面検査性Cとした。
<Determination of Coating Inspectability>
A silicon wafer having a film of a photosensitive resin layer formed thereon was washed with ultrapure water, and then foreign matters were adhered thereto. Observe the surface of the coating film with an optical microscope with a 10x lens and focus on the surface of the coating film on which the foreign matter has adhered. B, and if no foreign matter could be detected, the surface inspectability was rated as C.
 また、銅配線(幅100μm/厚み5μm)を有する基板に感光性樹脂層の膜を形成した。この膜表面に焦点を合わせて、埋め込まれた銅配線の輪郭を検出できなければ欠点検出性A、輪郭が不明瞭であれば欠点検出性B、銅配線の輪郭が明瞭であれば欠点検出性Cとした。銅配線の輪郭が明瞭である場合、自動欠点検査において塗膜表面の誤検出を起こす、もしくは検査光の干渉が起こり誤検出を起こすことがある。 In addition, a film of a photosensitive resin layer was formed on a substrate having copper wiring (width 100 μm/thickness 5 μm). Focusing on this film surface, defect detectability A if the contour of the embedded copper wiring cannot be detected, defect detectability B if the contour is unclear, and defect detectability if the contour of the copper wiring is clear. C. If the contour of the copper wiring is clear, the coating film surface may be erroneously detected in the automatic defect inspection, or interference of the inspection light may cause erroneous detection.
 表面検査性および欠点検出性のいずれもがAもしくはBであることが好ましい。 Both surface inspectability and defect detectability are preferably A or B.
 <実施例1>
 以下に一例として実施例1の感光性樹脂組成物の調合方法を示す。
<Example 1>
A method for preparing the photosensitive resin composition of Example 1 is shown below as an example.
 アルカリ可溶性ポリイミド(A1、35g)、光重合性化合物として、DPE-6A(B1、2g)、BP-6EM(B2、18g)、光重合開始剤(C)としてNCI-930(3g)、着色材(D)として着色材D1(0.64g)、熱架橋材としてHMOM-TPHAPのγ-ブチロラクトン溶液(30g(固形分として6g))、重合禁止剤としてQS-30(0.01g)、密着改良剤としてKBM-403(2g)、希釈溶剤として乳酸エチル(52g)を添加し、120分間室温にて攪拌し、得られた溶液を、保留粒子径10μmのフィルターを用いて加圧濾過し、感光性樹脂組成物の塗料1を得た。 Alkali-soluble polyimide (A1, 35 g), DPE-6A (B1, 2 g) as a photopolymerizable compound, BP-6EM (B2, 18 g), NCI-930 (3 g) as a photopolymerization initiator (C), coloring agent (D) as coloring material D1 (0.64 g), HMOM-TPHAP γ-butyrolactone solution (30 g (6 g as solid content)) as thermal cross-linking agent, QS-30 (0.01 g) as polymerization inhibitor, adhesion improvement KBM-403 (2 g) as an agent and ethyl lactate (52 g) as a diluting solvent were added and stirred at room temperature for 120 minutes. A paint 1 of a flexible resin composition was obtained.
 得られた感光性樹脂組成物の塗料1を、コンマロールコーターを用いて、支持フィルム(厚さ38μmのPETフィルム ルミラーS10)上に塗布し、85℃で5分間乾燥を行った後、保護フィルムとして、厚さ30μmのPPフィルム(トレテック7332K)をラミネートし、感光性樹脂層の膜厚が26μmの感光性樹脂シートを得た。得られた感光性樹脂シートを前述の方法により評価し、実施例1の評価結果を表1に示した。 The obtained paint 1 of the photosensitive resin composition was applied onto a support film (PET film Lumirror S10 with a thickness of 38 μm) using a comma roll coater, dried at 85° C. for 5 minutes, and then applied to the protective film. A PP film (Toretec 7332K) having a thickness of 30 μm was laminated as a photosensitive resin sheet having a photosensitive resin layer having a thickness of 26 μm. The obtained photosensitive resin sheet was evaluated by the method described above, and the evaluation results of Example 1 are shown in Table 1.
 前記記載の通り、パターン加工性評価を行い、感光性樹脂シートは、支持フィルムと保護フィルムともに感光性樹脂層から良好に剥離可能であった。所定のフォトマスクを用いて表1に記載の露光波長および露光量で露光を行い、硬化膜パターンを形成し、パターン解像性とパターン断面形状の評価を行い、判定を行った。パターン解像性A、パターン断面形状Aであり、良好な結果であった。 As described above, the pattern processability was evaluated, and both the support film and the protective film of the photosensitive resin sheet could be peeled off from the photosensitive resin layer satisfactorily. Using a predetermined photomask, exposure was performed at the exposure wavelength and exposure amount shown in Table 1 to form a cured film pattern, and the pattern resolution and pattern cross-sectional shape were evaluated and judged. The pattern resolution was A and the pattern cross-sectional shape was A, which were good results.
 また、感光性樹脂層および硬化膜の透過率評価を行った。感光性樹脂層は露光波長である405nmにおける透過率Tb405、450nmにおける透過率Tb450、波長500~800nmにおける透過率の最小値となるTb600もしくはTbVLを算出し、硬化膜は450nmにおける透過率Tc450、波長500~800nmにおける透過率の最小値となるTc600もしくはTcVLを算出した。 In addition, the transmittance of the photosensitive resin layer and the cured film was evaluated. For the photosensitive resin layer, transmittance Tb405 at 405 nm, which is the exposure wavelength, transmittance Tb450 at 450 nm, and Tb600 or TbVL, which is the minimum value of transmittance at a wavelength of 500 to 800 nm, are calculated. Tc600 or TcVL, which is the minimum value of transmittance at 500 to 800 nm, was calculated.
 前記記載の通り、塗膜の検査性評価を行い、明瞭に塗膜表面の異物を観察でき、銅配線の輪郭が明瞭であったため、表面検査性Aおよび欠点検出性Cと判定した。 As described above, the inspectability of the coating film was evaluated, and foreign matter on the surface of the coating film could be clearly observed, and the outline of the copper wiring was clear.
 <実施例2~23、比較例1~3>
 本発明の実施例2~23および本発明に対する比較例1~3では、上述した実施例1における感光性樹脂組成物の組成および膜厚、パターン加工性評価を行うパターン加工条件を表1~3に示す組成および膜厚に変更したこと以外は実施例1と同様の方法に沿って感光性樹脂シートを作製した。得られた感光性樹脂シートを用いて、前述の方法で表1~3に示すパターン加工条件に変更した以外、実施例1と同様の方法に沿って評価し、実施例2~23、比較例1~3の評価結果は表1~3に示した。
<Examples 2 to 23, Comparative Examples 1 to 3>
In Examples 2 to 23 of the present invention and Comparative Examples 1 to 3 for the present invention, the composition and film thickness of the photosensitive resin composition in Example 1 described above, and the pattern processing conditions for evaluating pattern processability are shown in Tables 1 to 3. A photosensitive resin sheet was produced in the same manner as in Example 1 except that the composition and film thickness were changed as shown in . Using the obtained photosensitive resin sheet, evaluation was performed in the same manner as in Example 1 except that the patterning conditions shown in Tables 1 to 3 were changed in the above-described method, Examples 2 to 23, and Comparative Examples. The evaluation results of 1 to 3 are shown in Tables 1 to 3.
 <実施例24~27>
 本発明の実施例24~27では、上述した実施例1における支持フィルムを厚さ50μmのPETフィルム(コスモシャインA4160)に変更し、感光性樹脂組成物の組成および膜厚、パターン加工性評価を行うパターン加工条件を表3に示す組成および膜厚に変更したこと以外は実施例1と同様の方法に沿って感光性樹脂シートを作製した。得られた感光性樹脂シートを用いて、前述の方法で表3に示すパターン加工条件に変更した以外、実施例1と同様の方法に沿って評価した。超高圧水銀灯を光源とした露光機にて、i線バンドパスフィルタを使用して、所定量の露光量をi線換算で露光を行った。支持フィルムと保護フィルムともに感光性樹脂層から良好に剥離可能であり、実施例24~27の評価結果は表3に示した。
<Examples 24 to 27>
In Examples 24 to 27 of the present invention, the support film in Example 1 described above was changed to a PET film (Cosmoshine A4160) having a thickness of 50 μm, and the composition and film thickness of the photosensitive resin composition and pattern processability were evaluated. A photosensitive resin sheet was produced in the same manner as in Example 1, except that the patterning conditions were changed to the composition and film thickness shown in Table 3. Using the obtained photosensitive resin sheet, evaluation was performed in the same manner as in Example 1, except that the patterning conditions were changed to those shown in Table 3 in the above-described method. An i-line bandpass filter was used with an exposure machine using an ultra-high pressure mercury lamp as a light source, and a predetermined amount of exposure was converted to i-line and exposed. Both the support film and the protective film can be peeled off from the photosensitive resin layer satisfactorily.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表中、「組成」欄の数値は、質量(g)を意味する。 In the table, the numerical value in the "composition" column means mass (g).
 表1~3に示すように、紫外線領域における透過率が高い感光性樹脂層を有する感光性樹脂シートはパターンの断面形状が矩形であり、微細なパターン形成が可能であり、かつ可視光領域における透過率が低くすることで表面検査性、欠点検出性に優れる結果を示した。 As shown in Tables 1 to 3, the photosensitive resin sheet having a photosensitive resin layer with high transmittance in the ultraviolet region has a rectangular cross-sectional shape of the pattern, can form a fine pattern, and can be used in the visible light region. By lowering the transmittance, excellent results were obtained for surface inspection and defect detection.
 本発明の感光性樹脂を有する感光性樹脂シートは、ポリイミド由来の高い電気特性、機械特性および耐熱性に優れ、高い信頼性を有することに加え、厚膜でありながら優れたパターン加工性および欠点検出性に優れることから、半導体素子や電子部品の表面保護膜や層間絶縁膜、回路基板の配線保護絶縁膜などの多層配線基板用途に有用である。 The photosensitive resin sheet having the photosensitive resin of the present invention has high electrical properties derived from polyimide, excellent mechanical properties and heat resistance, and has high reliability. Due to its excellent detectability, it is useful for multilayer wiring substrate applications such as surface protective films and interlayer insulating films for semiconductor devices and electronic parts, and wiring protective insulating films for circuit boards.
1:基板
2:感光性樹脂層
3:表面付着異物
4:感光性樹脂層と基板間に内包した異物
5:金属配線層
6:感光性樹脂層の剥離箇所
7:パターンの頂部幅
8:パターンの底部幅
1: Substrate 2: Photosensitive resin layer 3: Foreign matter adhering to the surface 4: Foreign matter contained between the photosensitive resin layer and substrate 5: Metal wiring layer 6: Peeling portion of photosensitive resin layer 7: Top width of pattern 8: Pattern bottom width of

Claims (16)

  1.  支持フィルム、及び、感光性樹脂層を有する、感光性樹脂シートであって、
     前記感光性樹脂層は、感光性樹脂組成物から形成された層であり、
     前記感光性樹脂組成物は、アルカリ可溶性ポリイミド(A)、光重合性化合物(B)、光重合開始剤(C)、及び着色材(D)を含有する樹脂組成物であって、
     前記感光性樹脂層は、600nmにおける透過率Tb600、500~800nmにおける透過率の最小値TbVLとした際に、以下の関係Aを満たすことを特徴とする、感光性樹脂シート。
    関係A:式1及び式2の少なくとも1つを満たす
    式1:0.10%≦Tb600≦40%
    式2:0.10%≦TbVL≦40%
    A photosensitive resin sheet having a support film and a photosensitive resin layer,
    The photosensitive resin layer is a layer formed from a photosensitive resin composition,
    The photosensitive resin composition is a resin composition containing an alkali-soluble polyimide (A), a photopolymerizable compound (B), a photopolymerization initiator (C), and a coloring agent (D),
    A photosensitive resin sheet characterized in that the photosensitive resin layer satisfies the following relationship A when the transmittance at 600 nm is Tb600 and the minimum transmittance at 500 to 800 nm is TbVL.
    Relationship A: Formula 1 that satisfies at least one of formulas 1 and 2: 0.10% ≤ Tb600 ≤ 40%
    Formula 2: 0.10% ≤ TbVL ≤ 40%
  2.  前記感光性樹脂層は、365nmにおける透過率Tb365、405nmにおける透過率Tb405、436nmにおける透過率Tb436とした際に、以下の関係Bを満たすことを特徴とする、請求項1に記載の感光性樹脂シート。
    関係B:式3から式5の少なくとも1つを満たす
    式3:3.0%≦Tb365≦70%
    式4:3.0%≦Tb405≦70%
    式5:3.0%≦Tb436≦70%
    2. The photosensitive resin according to claim 1, wherein the photosensitive resin layer satisfies the following relationship B when the transmittance at 365 nm is Tb365, the transmittance at 405 nm is Tb405, and the transmittance at 436 nm is Tb436. sheet.
    Relationship B: Formula 3 that satisfies at least one of formulas 3 to 5: 3.0% ≤ Tb365 ≤ 70%
    Formula 4: 3.0% ≤ Tb405 ≤ 70%
    Formula 5: 3.0% ≤ Tb436 ≤ 70%
  3.  前記アルカリ可溶性ポリイミド(A)は、既閉環ポリイミドであることを特徴とする、請求項1または2のいずれかに記載の感光性樹脂シート。 The photosensitive resin sheet according to claim 1 or 2, wherein the alkali-soluble polyimide (A) is a ring-closed polyimide.
  4.  さらに保護フィルムを有し、前記支持フィルム、前記感光性樹脂層、及び前記保護フィルムをこの順に直接積層する、請求項1または2のいずれかに記載の感光性樹脂シート。 The photosensitive resin sheet according to claim 1 or 2, further comprising a protective film, wherein the support film, the photosensitive resin layer, and the protective film are directly laminated in this order.
  5.  前記感光性樹脂層は、450nmにおける透過率Tb450が以下の関係を満たすことを特徴とする、請求項1または2のいずれかに記載の感光性樹脂シート。
     40%≦Tb450≦95%
    3. The photosensitive resin sheet according to claim 1, wherein the photosensitive resin layer has a transmittance Tb450 at 450 nm that satisfies the following relationship.
    40%≤Tb450≤95%
  6.  前記着色材(D)の含有量が、前記アルカリ可溶性ポリイミド(A)100質量部に対して0.1質量部以上50質量部以下であることを特徴とする、請求項1または2のいずれかに記載の感光性樹脂シート。 The content of the coloring material (D) is 0.1 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the alkali-soluble polyimide (A), either of claim 1 or 2 The photosensitive resin sheet according to .
  7.  前記着色材(D)は、アントラキノン系化合物を含むことを特徴とする、請求項1または2のいずれかに記載の感光性樹脂シート。 The photosensitive resin sheet according to claim 1 or 2, wherein the coloring material (D) contains an anthraquinone compound.
  8.  前記感光性樹脂組成物が無機粒子を含有することを特徴とする、請求項1または2のいずれかに記載の感光性樹脂シート。 The photosensitive resin sheet according to claim 1 or 2, wherein the photosensitive resin composition contains inorganic particles.
  9.  前記無機粒子の平均粒子径D50が30~150nmであることを特徴とする、請求項8に記載の感光性樹脂シート。 The photosensitive resin sheet according to claim 8, wherein the inorganic particles have an average particle diameter D50 of 30 to 150 nm.
  10.  前記感光性樹脂層の膜厚が15~40μmであることを特徴とする、請求項1または2のいずれかに記載の感光性樹脂シート。 The photosensitive resin sheet according to claim 1 or 2, wherein the thickness of the photosensitive resin layer is 15 to 40 µm.
  11.  前記感光性樹脂組成物の80℃における溶融粘度が1500~50000Pa・sであることを特徴とする、請求項1または2のいずれかに記載の感光性樹脂シート。 The photosensitive resin sheet according to claim 1 or 2, wherein the photosensitive resin composition has a melt viscosity of 1500 to 50000 Pa·s at 80°C.
  12.  請求項1または2のいずれかに記載の感光性樹脂シートの感光性樹脂層を加熱硬化して形成された硬化膜。 A cured film formed by heating and curing the photosensitive resin layer of the photosensitive resin sheet according to claim 1 or 2.
  13.  450nmにおける透過率Tc450と、600nmにおける透過率Tc600、500~800nmにおける透過率の最小値TcVLとした際に、以下の式6及び関係Cを満たすことを特徴とする、請求項12に記載の硬化膜。
     式6:20%≦Tc450≦90%
    関係C:式7及び式8の少なくとも1つを満たす
     式7:0.10%≦Tc600≦50%
     式8:0.10%≦TcVL≦50%
    The curing according to claim 12, wherein the following formula 6 and relationship C are satisfied when the transmittance Tc450 at 450 nm, the transmittance Tc600 at 600 nm, and the minimum transmittance TcVL at 500 to 800 nm are satisfied. film.
    Formula 6: 20% ≤ Tc450 ≤ 90%
    Relationship C: satisfying at least one of formulas 7 and 8 Formula 7: 0.10% ≤ Tc600 ≤ 50%
    Formula 8: 0.10% ≤ TcVL ≤ 50%
  14.  線膨張係数(α)が30×10-6/K以上55×10-6/K以下であることを特徴とする、請求項12に記載の硬化膜。 13. The cured film according to claim 12, wherein the coefficient of linear expansion (α) is 30×10 −6 /K or more and 55×10 −6 /K or less.
  15.  ガラス転移温度が250℃~350℃であることを特徴とする、請求項12に記載の硬化膜。 The cured film according to claim 12, which has a glass transition temperature of 250°C to 350°C.
  16.  請求項12に記載の硬化膜を有する多層配線基板。 A multilayer wiring board having the cured film according to claim 12.
PCT/JP2023/003951 2022-02-14 2023-02-07 Photosensitive resin sheet, cured film, and multilayer wiring substrate WO2023153390A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023509675A JPWO2023153390A1 (en) 2022-02-14 2023-02-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022020213 2022-02-14
JP2022-020213 2022-02-14

Publications (1)

Publication Number Publication Date
WO2023153390A1 true WO2023153390A1 (en) 2023-08-17

Family

ID=87564416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003951 WO2023153390A1 (en) 2022-02-14 2023-02-07 Photosensitive resin sheet, cured film, and multilayer wiring substrate

Country Status (3)

Country Link
JP (1) JPWO2023153390A1 (en)
TW (1) TW202340860A (en)
WO (1) WO2023153390A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087238A1 (en) * 2009-01-29 2010-08-05 東レ株式会社 Resin composition and display device formed using same
JP2016180929A (en) * 2015-03-25 2016-10-13 日立化成株式会社 Photosensitive resin composition, photosensitive film, photosensitive sheet, resin pattern, semiconductor wafer with resin layer and semiconductor device
JP2020112685A (en) * 2019-01-11 2020-07-27 太陽インキ製造株式会社 Laminate structure, dry film, cured product of the same, and electronic component
JP2020148815A (en) * 2019-03-11 2020-09-17 太陽インキ製造株式会社 Curable resin composition, dry film and cured product of the same, electronic component having the same, and method for producing cured product of curable resin composition
JP2021042268A (en) * 2019-09-06 2021-03-18 太陽インキ製造株式会社 Curable resin composition
US20210109443A1 (en) * 2019-01-23 2021-04-15 Microcosm Technology Co., Ltd. Photosensitive polyimide resin composition and polyimide film thereof
JP2021081751A (en) * 2019-03-29 2021-05-27 太陽インキ製造株式会社 Photoresist composition and cured product of the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087238A1 (en) * 2009-01-29 2010-08-05 東レ株式会社 Resin composition and display device formed using same
JP2016180929A (en) * 2015-03-25 2016-10-13 日立化成株式会社 Photosensitive resin composition, photosensitive film, photosensitive sheet, resin pattern, semiconductor wafer with resin layer and semiconductor device
JP2020112685A (en) * 2019-01-11 2020-07-27 太陽インキ製造株式会社 Laminate structure, dry film, cured product of the same, and electronic component
US20210109443A1 (en) * 2019-01-23 2021-04-15 Microcosm Technology Co., Ltd. Photosensitive polyimide resin composition and polyimide film thereof
JP2020148815A (en) * 2019-03-11 2020-09-17 太陽インキ製造株式会社 Curable resin composition, dry film and cured product of the same, electronic component having the same, and method for producing cured product of curable resin composition
JP2021081751A (en) * 2019-03-29 2021-05-27 太陽インキ製造株式会社 Photoresist composition and cured product of the same
JP2021042268A (en) * 2019-09-06 2021-03-18 太陽インキ製造株式会社 Curable resin composition

Also Published As

Publication number Publication date
TW202340860A (en) 2023-10-16
JPWO2023153390A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
KR101314513B1 (en) Photosensitive resin composition
JP4371110B2 (en) Photosensitive resin composition, electronic component using the same, and display device
JP4834949B2 (en) Thermosetting resin composition and electronic component using the same
EP3933906A1 (en) Photosensitive resin composition, photosensitive resin sheet, method for producing hollow structure, and electronic component
WO2017169574A1 (en) Photosensitive adhesive composition, cured product, photosensitive adhesive sheet, and method for manufacturing laminated substrate and laminated substrate with adhesive pattern
JP5740915B2 (en) Film laminate
JP5402332B2 (en) Photosensitive resin composition, photosensitive resin composition film and multilayer wiring board using the same
JP7088004B2 (en) Photosensitive resin composition, photosensitive resin composition film, insulating film and electronic components
JP2009258471A (en) Photosensitive resin composition film and method for forming resist using the same
JP6740899B2 (en) Photosensitive resin composition, photosensitive resin composition film, cured product, insulating film and multilayer wiring board
KR102614299B1 (en) Photosensitive resin composition, photosensitive resin sheet, hollow structure, cured product, manufacturing method of hollow structure, electronic components, and elastic wave filter
JP2007264028A (en) Photosensitive resin composition and metal-resin complex using same
JP2018070829A (en) Resin composition
JP2018173469A (en) Photosensitive resin composition film, insulation film, and wiring board
WO2023153390A1 (en) Photosensitive resin sheet, cured film, and multilayer wiring substrate
JP7315127B1 (en) Photosensitive resin composition, photosensitive resin composition film, cured product, electronic component using these
WO2022163610A1 (en) Photosensitive resin composition, photosensitive resin sheet, cured product, hollow structure, electronic component, and elastic wave filter
WO2021193091A1 (en) Photosensitive resin sheet, electronic component, acoustic wave filter, and acoustic wave filter production method
JP2020101657A (en) Method for manufacturing hollow structure, and electronic component and elastic wave filter having hollow structure
JP2022117560A (en) Resin composition, resin sheet, cured product, hollow structure, and electronic component

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023509675

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752854

Country of ref document: EP

Kind code of ref document: A1