WO2023153212A1 - Projector, and measuring device - Google Patents

Projector, and measuring device Download PDF

Info

Publication number
WO2023153212A1
WO2023153212A1 PCT/JP2023/002296 JP2023002296W WO2023153212A1 WO 2023153212 A1 WO2023153212 A1 WO 2023153212A1 JP 2023002296 W JP2023002296 W JP 2023002296W WO 2023153212 A1 WO2023153212 A1 WO 2023153212A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting element
current flowing
surface light
surface emitting
Prior art date
Application number
PCT/JP2023/002296
Other languages
French (fr)
Japanese (ja)
Inventor
義朗 伊藤
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Publication of WO2023153212A1 publication Critical patent/WO2023153212A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present disclosure relates to projectors and measuring devices.
  • LiDAR Light Detection and Ranging
  • Patent Document 1 describes a LIDAR system mounted on a vehicle.
  • a LIDAR system consists of an illuminator (laser projector) that projects a light beam generated by a light source toward a target scene, a receiver that receives the light reflected from an object, and a controller that calculates distance information about the object from the reflected light ( processor), which scans a particular pattern of light across a desired range and field of view (FOV). Convert measurements to represent a point-by-point 3D map of an environment.
  • illuminator laser projector
  • receiver that receives the light reflected from an object
  • a controller that calculates distance information about the object from the reflected light ( processor), which scans a particular pattern of light across a desired range and field of view (FOV). Convert measurements to represent a point-by-point 3D map of an environment.
  • FOV field of view
  • a surface emitting element array (VCSEL (Vertical Cavity Surface Emitting Laser) array, etc. used as a light source for a projector that projects (irradiates) a light beam (scan beam) from LiDAR (Light Detection and Ranging) toward the area to be measured. )
  • VCSEL Vertical Cavity Surface Emitting Laser
  • the addressable VCSEL array it is also possible to individually control the emission intensity (optical density) of each light emitting element. It is possible to increase the measuring distance for the area where the light beam is projected by .
  • the emission intensity of a specific light-emitting element is increased as described above, the amount of heat generated by the light-emitting element increases, and as a result, the wavelength of the light beam emitted from the light-emitting element shifts to the longer wavelength side.
  • This wavelength shift reduces the measurement accuracy of LiDAR.
  • the LiDAR light receiver receives reflected light (return light) in a wavelength region with low sensitivity, which lowers the measurement accuracy of the LiDAR.
  • a band-pass filter is installed in the LiDAR receiver for the purpose of reducing solar noise, it is necessary to expand the transmission wavelength range of the band-pass filter according to the amount of wavelength shift. The solar noise that gets mixed in increases and the measurement accuracy of LiDAR decreases.
  • Patent Document 1 describes that an illuminator is configured using a two-dimensional VCSEL array.
  • this document does not specifically describe increasing the emission intensity of a specific light-emitting element, the above problems caused by increasing the emission intensity of a specific light-emitting element, and methods for solving the problems.
  • the present disclosure is a projector capable of increasing the intensity of a light beam irradiated toward a specific measurement area while suppressing a wavelength shift caused by an increase in the amount of heat generated by a specific light emitting device of a surface emitting device array. and to provide a measuring device.
  • a floodlight which includes a light emitting unit having a plurality of surface light emitting elements including a first surface light emitting element and a second surface light emitting element, and controlling a current flowing through each of the surface light emitting elements.
  • a control device for controlling the light emission intensity of the surface light-emitting element the control device increasing the current flowing through the first surface light-emitting element more than the current flowing through the second surface light-emitting element; Control is performed so that the length of the ON period per unit time of the current flowing through the first surface emitting element is shorter than the length of the ON period per unit time of the current flowing through the second surface emitting element.
  • the present disclosure it is possible to increase the intensity of the light beam irradiated toward the specific measurement area while suppressing the wavelength shift caused by the increase in the amount of heat generated by the specific light emitting element of the surface emitting element array.
  • FIG. 4 is a diagram showing an example of light distribution by a light projector mounted on a vehicle; 4 is a graph showing an example of emission intensity (optical density) of surface emitting elements of each group.
  • FIG. 4 is a diagram showing an example of waveforms of currents that flow through the surface emitting elements of each group.
  • FIG. 4 is a diagram showing an example of waveforms of currents that flow through the surface emitting elements of each group.
  • heat dissipation structure provided in the light emitting part It is an example of the heat dissipation structure provided in the light emitting part. It is an example of the heat dissipation structure provided in the light emitting part. It is an example of the heat dissipation structure provided in the light emitting part. It is an example of the heat dissipation structure provided in the light emitting part. It is an example of the heat dissipation structure provided in the light emitting part. It is an example of the heat dissipation structure provided in the light emitting part.
  • FIG. 1 shows a schematic configuration (block diagram) of a measuring device 100 shown as one embodiment.
  • the exemplified measurement device 100 includes functions as a LiDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging).
  • the measurement apparatus 100 measures the time (hereinafter referred to as “TOF” (Time Of Flight) from the time the light beam irradiated toward the measurement area is reflected by the object 50 until the reflected light (return light, scattered light) returns. ), the distance to the object 50 is measured.
  • TOF Time Of Flight
  • the light beam (irradiation light) that the measurement apparatus 100 irradiates toward the object 50 is referred to as "projected light”
  • the projected light is reflected by the object 50 and returns.
  • the incoming light is called "reflected light”.
  • the measurement device 100 is a flash LiDAR (Flash LiDAR) mounted on a vehicle equipped with AD (Autonomous Driving) or ADAS (Advanced Driver Assistance System) will be described as an example.
  • the measuring device 100 assists in the detection of people, vehicles, and objects, ensures the safety of the driver of the vehicle and those around the vehicle, and reduces damage to objects around the vehicle while driving. provide a variety of useful information for
  • the exemplified measuring apparatus 100 includes a light emitting unit 111, a light projection control device 112, a current source 113, a light projecting optical system 114, a light receiving optical system 115, a light receiving unit 116, a TOF measuring device 117, and an arithmetic unit. 150, and communication I/F 160.
  • the light emitting unit 111, the light projection control device 112, the current source 113, and the light projection optical system 114 constitute a "projector” that generates projection light.
  • the light receiving optical system 115 and the light receiving unit 116 constitute a "light receiver” that receives the reflected light.
  • the light-emitting unit 111 that constitutes the light projector has a plurality of surface-emitting type laser light-emitting elements arranged one-dimensionally or two-dimensionally on a substrate, and it is possible to independently turn on and off specific light-emitting elements. It is configured using a surface emitting element array (addressable VCSEL array).
  • the surface emitting type laser light emitting device is, for example, a VCSEL (Vertical Cavity Surface Emitting Laser).
  • a surface emitting type laser emitting device is hereinafter referred to as a “surface emitting device”.
  • a substrate on which a plurality of surface emitting devices are arranged is, for example, a semiconductor substrate, a ceramic substrate, or the like.
  • the surface emitting element of the light emitting unit 111 generates a light beam (laser light) that serves as projection light.
  • the arrangement form of the surface emitting elements in the substrate is not necessarily limited. are arranged in a grid pattern, a hexagonal grid pattern, etc.).
  • the light projection control device 112 generates a control signal for controlling the current source 113 that supplies the driving current of the surface light emitting element of the light emitting unit 111 and inputs it to the current source 113 , so that the light emitting unit 111 is driven from the current source 113 . controls the current (driving current) supplied to the surface emitting element.
  • the light projection control device 112 also inputs a signal indicating the timing at which the surface light emitting element emits light (the timing at which the projected light is emitted from the surface light emitting element; hereinafter referred to as “projection timing”) to the TOF measuring device 117. do.
  • the light projection control device 112 for example, periodically and repeatedly causes the surface light emitting elements to emit light by controlling the on/off of the current flowing through each of the surface light emitting elements of the light emitting section 111 periodically.
  • the current source 113 supplies a current corresponding to the control signal input from the projection control device 112 to the surface emitting element.
  • the current source 113 supplies, for example, a periodic square-wave current to the surface emitting elements for turning on and off the current flowing through each of the surface emitting elements.
  • the projection optical system 114 adjusts the light distribution of the projected light, for example, by applying an optical effect (refraction, scattering, diffraction, etc.) to the projected light emitted from the light emitting unit 111 .
  • the projection optical system 114 is configured using optical components such as various lenses such as a collimator lens, a diffraction grating, and a reflector (mirror).
  • the light-receiving optical system 115 collects the reflected light returning from the object 50 onto the light-receiving unit 116 .
  • the light receiving optical system 115 is configured using, for example, optical components such as various lenses such as a condenser lens, various optical filters, and reflectors (mirrors).
  • the light receiving optical system 115 of this embodiment includes a bandpass filter (wavelength filter) for removing sunlight noise included in the reflected light.
  • the light receiving unit 116 is configured using a light receiving element such as a SPAD (Single Photon Avalanche Diode), a photodiode, or a photodetector such as a balanced photodetector.
  • the light receiving unit 116 photoelectrically converts the reflected light incident from the light receiving optical system 115 to generate a current (hereinafter referred to as “light receiving current”) corresponding to the intensity of the reflected light.
  • the light receiving unit 116 inputs a signal indicating the timing of receiving the reflected light (hereinafter referred to as “light receiving timing”) and the generated light receiving current to the TOF measuring device 117 .
  • the TOF measurement device 117 obtains the TOF based on the signal indicating the light projection timing input from the light emission control device 112 and the signal indicating the light reception timing input from the light receiving unit 116 .
  • the TOF measurement device 117 is configured using, for example, a time measurement IC (Integrated Circuit) equipped with a TDC (Time to Digital Converter) circuit.
  • the TOF measuring device 117 inputs the obtained TOF and the received light current input from the light receiving unit 116 to the arithmetic device 150 .
  • the arithmetic unit 150 is configured using a processor (CPU (Central Processing Unit), MPU (Micro Processing Unit), ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), etc.). be.
  • the calculation device 150 generates information used for various measurements such as detection of the target object 50 and distance measurement based on the received light current and the TOF input from the TOF measurement device 117 .
  • the above information is, for example, a histogram used in Time Correlated Single Photon Counting, a distance to each point (point) of the object 50, a point cloud (point cloud information) etc.
  • the computing device 150 also controls the light projection control device 112 and the light receiving section 116 .
  • the calculation device 150 controls the light projection control device 112 and the light receiving unit 116, thereby adjusting the light projection timing and the light reception timing so that the processing related to the generation of the histogram is speeded up or optimized. Control.
  • the information generated by the computing device 150 is provided (transmitted) to devices that use the information (hereinafter referred to as “various devices 40”) via a communication I/F 160 (I/F: Interface). .
  • Various utilization devices 40 create an environment map by point cloud, self-location estimation (SLAM (Simultaneous Localization and Mapping)) using a scan matching algorithm (NDT (Normal Distribution Transform), ICP (Iterative Closest Point), etc.) etc.
  • SLAM Simultaneous Localization and Mapping
  • NDT Normal Distribution Transform
  • ICP Iterative Closest Point
  • FIG. 2 is a plan view of a surface emitting element array shown as an example of the light emitting section 111 shown in FIG.
  • the illustrated surface emitting element array has a substrate 22 on which a plurality of surface emitting elements 10 are mounted, and a mounting substrate 24 which is a plate material on which the substrate 22 is mounted.
  • the exemplified surface emitting element array includes a plurality of groups arranged in a square lattice and belonging to a plurality of groups (hereinafter referred to as "groups 21a to 21e") partitioned into rectangular shapes of the same shape and size. It has a surface emitting element 10 .
  • groups 21a to 21e a plurality of surface emitting elements 10 are provided so that their emission directions (optical axes) are directed in a direction perpendicular to the plane of the paper (+z direction shown in the figure).
  • 18 surface emitting elements 10 belong to one group, but the group setting method (the number of divided groups, the number of surface emitting elements 10 belonging to each group, the number of surface emitting elements 10 belonging to each group, and to which the surface emitting element 10 belongs) is not necessarily limited.
  • a plurality of current supply lines 23 for supplying a current (driving current) for causing the surface emitting elements 10 to emit light from a current source 113 are electrically connected to the surface emitting element array.
  • the surface emitting element array can control the emission intensity (optical density) of the surface emitting elements 10 on a group basis by controlling the current flowing through the surface emitting elements 10 on a group basis.
  • the measuring device 100 mounted on the vehicle has a specific area (specific visual field range (visual field range)) among areas projected by the light emitting unit 111. There is a need to extend the measurement distance (detection distance, measurement range) for corners, FOV (Field Of View)).
  • the specific area is, for example, a region of interest (ROI), such as a distant oncoming lane of a vehicle traveling on a highway.
  • ROI region of interest
  • the measuring apparatus 100 can adjust the emission intensity of the surface emitting elements 10 of the light emitting unit 111 on a group-by-group basis. It is possible to extend the measurement distance of a specific area among the areas projected by the light emitting unit 111 by increasing the light emission intensity by increasing the current flowing through the surface light emitting elements 10 belonging to .
  • FIG. 3 is a schematic diagram showing an example of optical paths of projected light (light beams) emitted from the surface emitting elements 10 belonging to each of the groups 21a to 21e of the light emitting section 111.
  • projection light emitted from the surface light emitting elements 10 belonging to each of the groups 21a to 21e is adjusted in light distribution by the light projection optical system 114, and is projected onto different areas (light projection areas 51a to 51e). ) is projected (irradiated).
  • the current flowing through the surface emitting elements 10 belonging to the group 21c is changed to , is made larger than the current flowing through the surface emitting elements 10 belonging to .
  • FIG. 4 is a graph showing an example of the emission intensity (light density) of each of the surface emitting elements 10 of each group 21a to 21e shown in FIG.
  • the vertical axis of the graph represents the emission intensity.
  • FIG. 5 shows the light distribution by each of the groups 21a to 21e when the current flowing through the surface emitting elements 10 belonging to the group 21c is made larger than the current flowing through the surface emitting elements 10 belonging to the other groups 21a, 21b, 21d, and 21e.
  • the figure shows the arrangement when the measurement device 100 having the light emitting unit 111 (surface light emitting element array) and the light projecting optical system 114 shown in FIG. It shows an example of light.
  • the irradiation range 31 measurable range
  • the projected light emitted from the surface emitting elements 10 belonging to the group 21c is emitted from the surface emitting elements 10 belonging to the other groups 21a, 21b, 21d, and 21e. It extends farther than the irradiation range 32 of the projected light.
  • the surface emitting elements 10 belonging to the group 21c when more current is supplied to the surface emitting elements 10 belonging to the group 21c than the surface emitting elements 10 belonging to the other groups 21a, 21b, 21d, and 21e as described above, the surface emitting elements 10 belonging to the group 21c
  • the amount of heat generated is greater than that of the surface light emitting elements 10 belonging to the other groups 21a, 21b, 21d, and 21e, and the temperature of each surface light emitting element 10 becomes non-uniform in the light emitting section 111 as a whole.
  • the wavelength of the light emitted from the light-emitting element whose temperature has risen shifts to the longer wavelength side, and as a result, the light-receiving part receives the reflected light (return light) in a wavelength region with low sensitivity, resulting in a measurement device (flash LiDAR). Decreased measurement accuracy.
  • the transmission wavelength range of the band-pass filter provided on the side of the light-receiving element for the purpose of reducing solar noise is expanded. Therefore, the measurement accuracy of the measurement device 100 is reduced due to the increase in solar noise contamination.
  • the projection control device 112 of the present embodiment has a mechanism for uniformizing the temperature of each surface emitting element 10 as the entire light emitting section 111 .
  • the light projection control device 112 causes the surface emitting elements 10 belonging to the group 21c (hereinafter also referred to as "first surface emitting elements”) to flow currents belonging to the other groups 21a, 21b, 21d, and 21e.
  • first surface emitting elements the surface emitting elements 10 belonging to the group 21c
  • the ON period per unit time of the current flowing through the first surface emitting element is set to the second surface emitting element.
  • the light emitting section 111 as a whole has a mechanism for uniformizing the temperature of each surface emitting element 10 .
  • Fig. 6A shows an example of the above mechanism.
  • the light projection control device 112 controls each cycle 3
  • the length of the ON period of the current of the first surface emitting element is controlled to be shorter than the length of the ON period of the second surface emitting element (hereinafter referred to as "first method").
  • the amount of heat generated by the first surface light emitting element is suppressed while the ON period of the first surface light emitting element is shortened and the light emission intensity is increased by increasing the current flowing through the first surface light emitting element. can be achieved, and the amount of heat generated by the first surface emitting element and the second surface emitting element can be made uniform over time.
  • the length of the ON period of the first surface light-emitting element is determined by, for example, the ratio of the magnitudes of the currents flowing through the first surface light-emitting element and the second surface light-emitting element, or
  • the temperature of each surface emitting element 10 as a whole of the light emitting section 111 is set so as to be efficiently uniformed while considering the ratio of the lengths of the ON periods of the second surface emitting elements.
  • Fig. 6B shows another example of the above mechanism.
  • the light projection control device 112 Control is performed so that the on/off period of the current of the first surface light emitting element is longer than the on/off period of the second surface light emitting element (hereinafter referred to as "second method").
  • the OFF period (heat dissipation period) of the first surface emitting element per unit time is longer than the OFF period (heat dissipation period) of the second surface emitting element per unit time, and the first surface emitting element emits light. It is possible to make the amount of heat generated by the element and the second surface emitting element uniform over time.
  • the timing to turn on the first surface emitting element and the timing to turn on the second surface emitting element are matched, but they do not necessarily have to match.
  • the on/off period of the current of the first surface light emitting element and the on/off period of the second surface light emitting element are, for example, the ratio of the magnitudes of the currents flowing through the first surface light emitting element and the second surface light emitting element.
  • the temperature of each surface emitting element 10 as a whole of the light emitting section 111 is set so as to be efficiently homogenized while taking into consideration the ratio of the ON periods of the surface emitting element and the second surface emitting element.
  • the first method has the advantage of increasing the number of light emissions per unit time of the first surface light-emitting element, compared to the second method, for example.
  • the ON period of the first surface emitting element and the ON period of the second surface emitting element can be made common.
  • the waveform of the current flowing through the first surface emitting element and the second surface emitting element is a square wave, but it does not necessarily have to be a square wave.
  • the measuring device 100 of the present embodiment it is possible to make the amounts of heat generated by the first and second surface emitting elements uniform over time. Therefore, it is possible to suppress a wavelength shift caused by an increase in the amount of heat generated by a specific light emitting element of the surface emitting element array, and prevent deterioration in the sensitivity of the measurement apparatus 100 caused by the wavelength shift. In addition, it is possible to increase the intensity of the light beam that the measurement device 100 (projector) irradiates toward a specific measurement area.
  • each surface emitting element 10 is made uniform in the entire light emitting section 111 by controlling the waveform of the current flowing through the surface emitting element.
  • the temperature of each surface light emitting element 10 in the entire light emitting section 111 is made uniform.
  • the basic configurations of the measuring device 100 and the surface emitting device 10 in the second embodiment are the same as those shown in FIGS. 1 to 5.
  • FIG. 1 to 5 The basic configurations of the measuring device 100 and the surface emitting device 10 in the second embodiment are the same as those shown in FIGS. 1 to 5.
  • FIGS. 7A to 7E are views of the light emitting unit 111 shown in FIG. 2 as viewed from the side (+y direction). These figures show a substrate 22 on which the surface emitting element 10 is mounted and a mounting substrate 24 which is a plate material on which the substrate 22 is mounted.
  • the mounting substrate 24 is provided on the rear surface side ( ⁇ z side) of the substrate 22 with a heat dissipating agent 42 (silicon grease or the like) interposed therebetween.
  • other groups 21a, 21b, 21d, and 21e are used as the material 24a of the mounting substrate 24 in the vicinity of the surface emitting elements 10 belonging to the group 21c (hereinafter also referred to as "first surface emitting elements").
  • a material for example, a material with high thermal conductivity
  • the material 24b of the mounting board 24 in the vicinity of the surface emitting element 10 (hereinafter also referred to as a "second surface emitting element") belonging to the .
  • the light emitting unit 111 can be configured compactly.
  • two types of materials 24a and 24b with different heat dissipation effects are used as materials for the mounting board 24 in the example of FIG. good too. By increasing the types of materials, it becomes possible to more finely adjust the temperature of each part of the substrate 22 .
  • heat dissipating agents 42a and 42b having different heat dissipating effects are prepared as the heat dissipating agent 42, and the heat dissipating agent 42a having a high heat dissipating effect is applied near the first surface light emitting element,
  • the heat-dissipating agent 42b having a lower heat-dissipating effect than the heat-dissipating agent 42a near the second surface-emitting elements the heat-dissipating effect near the first-surface light-emitting elements is greater than the heat-dissipating effect near the second-surface light-emitting elements.
  • the back surface of the substrate 22 near the first surface light-emitting elements is coated with a heat radiation agent 42a having a high heat radiation effect
  • the back surface of the substrate 22 near the second surface light emitting elements is coated with a heat radiation agent 42a having a higher heat radiation effect than the heat radiation agent 42a.
  • a low heat radiation agent 42b is applied.
  • the light emitting unit 111 can be configured compactly.
  • two types of heat dissipating agents 42 are used, but three or more types of heat dissipating agents 42 having different heat dissipating effects may be used.
  • the rear surface of the mounting board 24 (the -z side surface of the mounting board 24) is arranged so that the heat dissipation effect in the vicinity of the first surface light emitting element is higher than the heat dissipation effect in the vicinity of the second surface light emitting element. ) is provided with a plurality of radiation fins 43 .
  • a Peltier element 44 is provided as a cooling mechanism in the vicinity of the first surface emitting element.
  • a Peltier element 44 is provided on the rear surface of the mounting substrate 24 in the vicinity of the first surface emitting element.
  • a cooling fan 45 that blows air from the rear surface (-z side) of the mounting board 24 toward the vicinity of the first surface light emitting element is provided as a cooling mechanism.
  • a plurality of cooling fans 45 may be provided on the rear surface of the mounting board 24 and the number of revolutions of each cooling fan 45 may be individually controlled to more finely adjust the temperature of each part of the board 22 .
  • the amount of heat generated by each of the first and second surface emitting elements can be made uniform over time, and the surface emitting element array can have a specific characteristic.
  • a wavelength shift caused by an increase in the amount of heat generated by the light emitting element can be suppressed.
  • the present disclosure is not limited to the above embodiments, and includes various modifications.
  • the above-described embodiment describes the configuration in detail in order to explain the present disclosure in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

This projector comprises a light emitting unit having a plurality of surface light emitting elements including a first surface light emitting element and a second surface light emitting element, and a control device for controlling a light emission intensity of the surface light emitting elements by controlling a current flowing to each surface light emitting element, wherein the control device performs control such that the current flowing to the first surface light emitting element is increased more than the current flowing to the second surface light emitting element, and a length of an ON-period per unit of time of the current flowing to the first surface light emitting element is shorter than a length of an ON-period per unit time of the current flowing to the second surface light emitting element.

Description

投光器、及び測定装置Projector and measuring device
 本開示は、投光器、及び測定装置に関する。 The present disclosure relates to projectors and measuring devices.
 AD(Autonomous Driving:自動運転)やADAS(Advanced Driver Assistance System:先進運転支援システム)の進展に伴い、周囲環境の把握や自己位置推定に用いる測定装置の一つとして、光ビーム(レーザ光)を対象物に照射し、その反射光を利用して測距を行う装置(以下、「LiDAR」(Light Detection and Ranging)と称する。)の研究/開発が進められている。ADやADASに搭載されるLiDARに対する要求の幅は広く、上記光ビームの生成や走査を行う投光器についてもその照射方法や安定性等、様々な仕様や精度が要求される。 With the progress of AD (Autonomous Driving) and ADAS (Advanced Driver Assistance System), light beams (laser beams) have become one of the measuring devices used for understanding the surrounding environment and estimating self-location. Research/development of a device (hereinafter referred to as “LiDAR” (Light Detection and Ranging)) that irradiates an object and uses the reflected light to measure the distance is underway. There is a wide range of requirements for LiDARs mounted on ADs and ADASs, and various specifications and accuracy such as irradiation methods and stability are required for projectors that generate and scan the above light beams.
 特許文献1には、車両に実装されるLIDARシステムについて記載されている。LIDARシステムは、標的場面に向かって光源によって生成された光ビームを投影する照明器(レーザプロジェクタ)、物体から反射する光を受信する受信機、物体についての距離情報を反射光から算出するコントローラ(プロセッサ)、所望の範囲及び視野(FOV(Field Of View)を横断して光の特定のパターンを走査する要素を含む。受信機及びコントローラは、受信された信号光をLIDARシステム範囲およびFOV内にある周囲環境の点毎3Dマップを表す測定値に変換する。 Patent Document 1 describes a LIDAR system mounted on a vehicle. A LIDAR system consists of an illuminator (laser projector) that projects a light beam generated by a light source toward a target scene, a receiver that receives the light reflected from an object, and a controller that calculates distance information about the object from the reflected light ( processor), which scans a particular pattern of light across a desired range and field of view (FOV). Convert measurements to represent a point-by-point 3D map of an environment.
日本国特表2020-527724号公報Japanese special table 2020-527724
 LiDAR(Light Detection and Ranging)から測定対象となるエリアに向けて光ビーム(スキャンビーム)を投光(照射)する投光器の光源として用いられる面発光素子アレイ(VCSEL(Vertical Cavity Surface Emitting Laser)アレイ等)の一つとして、特定の発光素子を独立してオンオフ制御することが可能な面発光素子アレイ(以下、「アドレッサブルVCSELアレイ」と称する。)がある。投光器の光源として上記の面発光素子アレイを用いることで、省スペースで信頼性の高い高速ビームスキャンが可能な投光器を実現することが可能である。 A surface emitting element array (VCSEL (Vertical Cavity Surface Emitting Laser) array, etc. used as a light source for a projector that projects (irradiates) a light beam (scan beam) from LiDAR (Light Detection and Ranging) toward the area to be measured. ), there is a surface emitting element array (hereinafter referred to as an “addressable VCSEL array”) in which specific light emitting elements can be independently turned on and off. By using the surface emitting element array as the light source of the projector, it is possible to realize a space-saving projector capable of high-speed beam scanning with high reliability.
 アドレッサブルVCSELアレイは、個々の発光素子の発光強度(光密度)を個別に制御することも可能であり、例えば、特定の発光素子に流す電流を増加させて発光強度を高めることで、当該発光素子により光ビームが投光されるエリアについて測定距離を延ばすことが可能である。 In the addressable VCSEL array, it is also possible to individually control the emission intensity (optical density) of each light emitting element. It is possible to increase the measuring distance for the area where the light beam is projected by .
 ここで上記のように特定の発光素子の発光強度を高めた場合、当該発光素子の発熱量が増加し、その影響で当該発光素子から出射する光ビームの波長は長波長側にシフトするが、この波長シフトはLiDARの測定精度を低下させる。例えば、光ビームの波長が長波長側にシフトすることでLiDARの受光器は感度の低い波長領域で反射光(戻り光)を受光することとなり、LiDARの測定精度が低下する。また、太陽光ノイズの低減を目的としてLiDARの受光器にバンドパスフィルタを設けている場合、波長のシフト量に応じてバンドパスフィルタの透過波長域を拡張する必要があり、それにより受光器に混入する太陽光ノイズが増加してLiDARの測定精度が低下する。 Here, when the emission intensity of a specific light-emitting element is increased as described above, the amount of heat generated by the light-emitting element increases, and as a result, the wavelength of the light beam emitted from the light-emitting element shifts to the longer wavelength side. This wavelength shift reduces the measurement accuracy of LiDAR. For example, when the wavelength of the light beam shifts to the long wavelength side, the LiDAR light receiver receives reflected light (return light) in a wavelength region with low sensitivity, which lowers the measurement accuracy of the LiDAR. In addition, when a band-pass filter is installed in the LiDAR receiver for the purpose of reducing solar noise, it is necessary to expand the transmission wavelength range of the band-pass filter according to the amount of wavelength shift. The solar noise that gets mixed in increases and the measurement accuracy of LiDAR decreases.
 上記の特許文献1には、照明器を2次元のVCSELアレイを用いて構成することが記載されている。しかし、同文献には、特定の発光素子の発光強度を高めることや、特定の発光素子の発光強度を高めることにより生じる上記の課題やその解決方法についてはとくに記載されていない。 The above Patent Document 1 describes that an illuminator is configured using a two-dimensional VCSEL array. However, this document does not specifically describe increasing the emission intensity of a specific light-emitting element, the above problems caused by increasing the emission intensity of a specific light-emitting element, and methods for solving the problems.
 本開示は、面発光素子アレイの特定の発光素子の発熱量の増大に起因する波長シフトを抑制しつつ、特定の測定エリアに向けて照射する光ビームの強度を高めることが可能な、投光器、及び測定装置を提供することを目的とする。 The present disclosure is a projector capable of increasing the intensity of a light beam irradiated toward a specific measurement area while suppressing a wavelength shift caused by an increase in the amount of heat generated by a specific light emitting device of a surface emitting device array. and to provide a measuring device.
 本開示の一つは、投光器であって、第1面発光素子及び第2面発光素子を含む複数の面発光素子を有する発光部と、前記面発光素子の夫々に流す電流を制御することにより前記面発光素子の発光強度を制御する制御装置と、を有し、前記制御装置は、前記第1面発光素子に流す電流を前記第2面発光素子に流す電流よりも増大させるとともに、前記第1面発光素子に流す電流の単位時間あたりのオン期間の長さが前記第2面発光素子に流す電流の単位時間あたりのオン期間の長さよりも短くなるように制御する。 One aspect of the present disclosure is a floodlight, which includes a light emitting unit having a plurality of surface light emitting elements including a first surface light emitting element and a second surface light emitting element, and controlling a current flowing through each of the surface light emitting elements. a control device for controlling the light emission intensity of the surface light-emitting element, the control device increasing the current flowing through the first surface light-emitting element more than the current flowing through the second surface light-emitting element; Control is performed so that the length of the ON period per unit time of the current flowing through the first surface emitting element is shorter than the length of the ON period per unit time of the current flowing through the second surface emitting element.
 その他、本開示の課題、及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。 In addition, the problems of the present disclosure and their solutions will be clarified in the section of the description of the mode for carrying out the invention and the drawings.
 本開示によれば、面発光素子アレイの特定の発光素子の発熱量の増大に起因する波長シフトを抑制しつつ、特定の測定エリアに向けて照射する光ビームの強度を高めることができる。 According to the present disclosure, it is possible to increase the intensity of the light beam irradiated toward the specific measurement area while suppressing the wavelength shift caused by the increase in the amount of heat generated by the specific light emitting element of the surface emitting element array.
測定装置の概略的な構成を示す図である。It is a figure which shows the schematic structure of a measuring apparatus. 面発光素子アレイの一例を示す図である。It is a figure which shows an example of a surface emitting element array. 各グループに属する面発光素子から出射する投光光の光路の一例を模式的に描いた図である。It is the figure which drew typically an example of the optical path of the floodlight emitted from the surface emitting element which belongs to each group. 車両に搭載された投光器による配光の一例を示す図であるFIG. 4 is a diagram showing an example of light distribution by a light projector mounted on a vehicle; 各グループの面発光素子の発光強度(光密度)の一例を示すグラフである。4 is a graph showing an example of emission intensity (optical density) of surface emitting elements of each group. 各グループの面発光素子の夫々に流す電流の波形の例を示す図である。FIG. 4 is a diagram showing an example of waveforms of currents that flow through the surface emitting elements of each group. 各グループの面発光素子の夫々に流す電流の波形の例を示す図である。FIG. 4 is a diagram showing an example of waveforms of currents that flow through the surface emitting elements of each group. 発光部に設けられる放熱構造の一例である。It is an example of the heat dissipation structure provided in the light emitting part. 発光部に設けられる放熱構造の一例である。It is an example of the heat dissipation structure provided in the light emitting part. 発光部に設けられる放熱構造の一例である。It is an example of the heat dissipation structure provided in the light emitting part. 発光部に設けられる放熱構造の一例である。It is an example of the heat dissipation structure provided in the light emitting part. 発光部に設けられる放熱構造の一例である。It is an example of the heat dissipation structure provided in the light emitting part.
 以下、本開示を実施するための形態について図面を参照しつつ説明する。尚、以下の説明において、同一の又は類似する構成について共通の符号を付して重複した説明を省略することがある。 Embodiments for carrying out the present disclosure will be described below with reference to the drawings. In the following description, the same or similar configurations may be denoted by common reference numerals, and redundant description may be omitted.
[第1実施形態]
 図1に、一実施形態として示す測定装置100の概略的な構成(ブロック図)を示している。例示する測定装置100は、LiDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)としての機能を含む。測定装置100は、測定エリアに向けて照射した光ビームが対象物50で反射し、その反射光(戻り光、散乱光)が戻ってくるまでの時間(以下、「TOF」(Time Of Flight)と称する。)を測定することにより、対象物50までの距離を測定する。尚、以下の説明において、測定装置100が対象物50に向けて照射する光ビーム(照射光)のことを「投光光」と、また、投光光が対象物50に反射して戻ってくる光のことを「反射光」と称する。
[First embodiment]
FIG. 1 shows a schematic configuration (block diagram) of a measuring device 100 shown as one embodiment. The exemplified measurement device 100 includes functions as a LiDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging). The measurement apparatus 100 measures the time (hereinafter referred to as “TOF” (Time Of Flight) from the time the light beam irradiated toward the measurement area is reflected by the object 50 until the reflected light (return light, scattered light) returns. ), the distance to the object 50 is measured. In the following description, the light beam (irradiation light) that the measurement apparatus 100 irradiates toward the object 50 is referred to as "projected light", and the projected light is reflected by the object 50 and returns. The incoming light is called "reflected light".
 本実施形態では、測定装置100が、AD(Autonomous Driving:自動運転システム)やADAS(Advanced Driver Assistance System:先進運転支援システム)が実装される車両に搭載されるフラッシュLiDAR(Flash LiDAR)である場合を例として説明する。測定装置100は、例えば、人、車両、物体の検出を補助するとともに、車両の運転者や車両の周囲に存在する者の安全確保、車両の運転中に周囲に存在する物体に与える損傷を低減するために有用な各種の情報を提供する。 In the present embodiment, if the measurement device 100 is a flash LiDAR (Flash LiDAR) mounted on a vehicle equipped with AD (Autonomous Driving) or ADAS (Advanced Driver Assistance System) will be described as an example. The measuring device 100, for example, assists in the detection of people, vehicles, and objects, ensures the safety of the driver of the vehicle and those around the vehicle, and reduces damage to objects around the vehicle while driving. provide a variety of useful information for
 同図に示すように、例示する測定装置100は、発光部111、投光制御装置112、電流源113、投光光学系114、受光光学系115、受光部116、TOF測定装置117、演算装置150、及び通信I/F160の各構成を含む。このうち、発光部111、投光制御装置112、電流源113、及び投光光学系114は、投光光を生成する「投光器」を構成する。また、受光光学系115及び受光部116は、反射光を受光する「受光器」を構成する。 As shown in the figure, the exemplified measuring apparatus 100 includes a light emitting unit 111, a light projection control device 112, a current source 113, a light projecting optical system 114, a light receiving optical system 115, a light receiving unit 116, a TOF measuring device 117, and an arithmetic unit. 150, and communication I/F 160. Among them, the light emitting unit 111, the light projection control device 112, the current source 113, and the light projection optical system 114 constitute a "projector" that generates projection light. The light receiving optical system 115 and the light receiving unit 116 constitute a "light receiver" that receives the reflected light.
 投光器を構成する発光部111は、一次元的又は二次元的に基板に配置された複数の面発光タイプのレーザ発光素子を有し、特定の発光素子を独立してオンオフ制御することが可能な面発光素子アレイ(アドレッサブルVCSELアレイ)を用いて構成される。面発光タイプのレーザ発光素子は、例えば、VCSEL(Vertical Cavity Surface Emitting Laser)である。面発光タイプのレーザ発光素子は、以下、「面発光素子」と称する。複数の面発光素子が配置される基板は、例えば、半導体基板、セラミック基板等である。発光部111の面発光素子は、投光光となる光ビーム(レーザ光)を生成する。尚、基板内の面発光素子の配置形態は必ずしも限定されないが、例えば、複数の面発光素子は、基板の一方の面上に格子状(斜方格子状、三角格子状、正方格子状、矩形格子状、六角格子状等)に配置される。 The light-emitting unit 111 that constitutes the light projector has a plurality of surface-emitting type laser light-emitting elements arranged one-dimensionally or two-dimensionally on a substrate, and it is possible to independently turn on and off specific light-emitting elements. It is configured using a surface emitting element array (addressable VCSEL array). The surface emitting type laser light emitting device is, for example, a VCSEL (Vertical Cavity Surface Emitting Laser). A surface emitting type laser emitting device is hereinafter referred to as a “surface emitting device”. A substrate on which a plurality of surface emitting devices are arranged is, for example, a semiconductor substrate, a ceramic substrate, or the like. The surface emitting element of the light emitting unit 111 generates a light beam (laser light) that serves as projection light. The arrangement form of the surface emitting elements in the substrate is not necessarily limited. are arranged in a grid pattern, a hexagonal grid pattern, etc.).
 投光制御装置112は、発光部111の面発光素子の駆動電流を供給する電流源113を制御するための制御信号を生成して電流源113に入力することにより、電流源113から発光部111の面発光素子に供給される電流(駆動電流)を制御する。また、投光制御装置112は、面発光素子が発光したタイミング(投光光が面発光素子から出射したタイミング。以下、「投光タイミング」と称する。)を示す信号をTOF測定装置117に入力する。投光制御装置112は、例えば、発光部111の面発光素子の夫々に流す電流のオンオフを周期的に繰り返す制御を行うことにより、面発光素子を周期的に繰り返し発光させる。 The light projection control device 112 generates a control signal for controlling the current source 113 that supplies the driving current of the surface light emitting element of the light emitting unit 111 and inputs it to the current source 113 , so that the light emitting unit 111 is driven from the current source 113 . controls the current (driving current) supplied to the surface emitting element. The light projection control device 112 also inputs a signal indicating the timing at which the surface light emitting element emits light (the timing at which the projected light is emitted from the surface light emitting element; hereinafter referred to as “projection timing”) to the TOF measuring device 117. do. The light projection control device 112, for example, periodically and repeatedly causes the surface light emitting elements to emit light by controlling the on/off of the current flowing through each of the surface light emitting elements of the light emitting section 111 periodically.
 電流源113は、投光制御装置112から入力される制御信号に応じた電流を面発光素子に供給する。電流源113は、例えば、面発光素子の夫々に流す電流をオンオフするための周期的な方形波の電流を面発光素子に供給する。 The current source 113 supplies a current corresponding to the control signal input from the projection control device 112 to the surface emitting element. The current source 113 supplies, for example, a periodic square-wave current to the surface emitting elements for turning on and off the current flowing through each of the surface emitting elements.
 投光光学系114は、例えば、発光部111から出射する投光光に光学的な作用(屈折、散乱、回折等)を与えることにより投光光の配光を調節する。投光光学系114は、例えば、コリメートレンズ等の各種レンズ、回折格子、反射鏡(ミラー)等の光学部品を用いて構成される。 The projection optical system 114 adjusts the light distribution of the projected light, for example, by applying an optical effect (refraction, scattering, diffraction, etc.) to the projected light emitted from the light emitting unit 111 . The projection optical system 114 is configured using optical components such as various lenses such as a collimator lens, a diffraction grating, and a reflector (mirror).
 受光光学系115は、対象物50から戻ってくる反射光を受光部116に集光する。受光光学系115は、例えば、集光レンズ等の各種レンズ、各種光学フィルタ、反射鏡(ミラー)等の光学部品を用いて構成される。尚、本実施形態の受光光学系115は、反射光に含まれている太陽光ノイズを除去するためのバンドパスフィルタ(波長フィルタ)を含む。 The light-receiving optical system 115 collects the reflected light returning from the object 50 onto the light-receiving unit 116 . The light receiving optical system 115 is configured using, for example, optical components such as various lenses such as a condenser lens, various optical filters, and reflectors (mirrors). The light receiving optical system 115 of this embodiment includes a bandpass filter (wavelength filter) for removing sunlight noise included in the reflected light.
 受光部116は、例えば、SPAD(Single Photon Avalanche Diode)、フォトダイオード、バランス型光検出器等の光検出器等の受光素子を用いて構成される。受光部116は、受光光学系115から入射する反射光を光電変換することにより、反射光の強度に応じた電流(以下、「受光電流」と称する。)を生成する。受光部116は、反射光を受光したタイミング(以下、「受光タイミング」と称する。)を示す信号、及び生成した受光電流を、TOF測定装置117に入力する。 The light receiving unit 116 is configured using a light receiving element such as a SPAD (Single Photon Avalanche Diode), a photodiode, or a photodetector such as a balanced photodetector. The light receiving unit 116 photoelectrically converts the reflected light incident from the light receiving optical system 115 to generate a current (hereinafter referred to as “light receiving current”) corresponding to the intensity of the reflected light. The light receiving unit 116 inputs a signal indicating the timing of receiving the reflected light (hereinafter referred to as “light receiving timing”) and the generated light receiving current to the TOF measuring device 117 .
 TOF測定装置117は、投光制御装置112から入力される投光タイミングを示す信号と受光部116から入力される受光タイミングを示す信号とに基づき、TOFを求める。TOF測定装置117は、例えば、TDC(Time to Digital Converter)回路を搭載した時間測定IC(集積回路:Integrated Circuit)を用いて構成される。TOF測定装置117は、求めたTOFと受光部116から入力された受光電流を、演算装置150に入力する。 The TOF measurement device 117 obtains the TOF based on the signal indicating the light projection timing input from the light emission control device 112 and the signal indicating the light reception timing input from the light receiving unit 116 . The TOF measurement device 117 is configured using, for example, a time measurement IC (Integrated Circuit) equipped with a TDC (Time to Digital Converter) circuit. The TOF measuring device 117 inputs the obtained TOF and the received light current input from the light receiving unit 116 to the arithmetic device 150 .
 演算装置150は、プロセッサ(CPU(Central Processing Unit)、MPU(Micro Processing Unit)、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、DSP(Digital Signal Processor)等)を用いて構成される。演算装置150は、TOF測定装置117から入力される受光電流やTOFに基づき、対象物50の検出や測距等の各種測定に用いる情報を生成する。上記情報は、例えば、時間相関単一光子計数法(Time Correlated Single Photon Counting)で用いるヒストグラム(histogram)、対象物50の各点(ポイント)までの距離、ポイントクラウド(点群情報:point cloud)等である。また、演算装置150は、投光制御装置112や受光部116を制御する。演算装置150は、例えば、投光制御装置112や受光部116を制御することにより、上記のヒストグラムの生成にかかる処理が高速化もしくは最適化されるように、前述した投光タイミングや受光タイミングを制御する。演算装置150によって生成された情報は、通信I/F160(I/F:Interface)を介して当該情報を利用する装置(以下、「各種利用装置40」と称する。)に提供(送信)される。 The arithmetic unit 150 is configured using a processor (CPU (Central Processing Unit), MPU (Micro Processing Unit), ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), etc.). be. The calculation device 150 generates information used for various measurements such as detection of the target object 50 and distance measurement based on the received light current and the TOF input from the TOF measurement device 117 . The above information is, for example, a histogram used in Time Correlated Single Photon Counting, a distance to each point (point) of the object 50, a point cloud (point cloud information) etc. The computing device 150 also controls the light projection control device 112 and the light receiving section 116 . The calculation device 150, for example, controls the light projection control device 112 and the light receiving unit 116, thereby adjusting the light projection timing and the light reception timing so that the processing related to the generation of the histogram is speeded up or optimized. Control. The information generated by the computing device 150 is provided (transmitted) to devices that use the information (hereinafter referred to as “various devices 40”) via a communication I/F 160 (I/F: Interface). .
 各種利用装置40は、例えば、ポイントクラウドによる環境地図の作成、スキャンマッチングアルゴリズム(NDT(Normal Distributions Transform)、ICP(Iterative Closest Point)等)を用いた自己位置推定(SLAM(Simultaneous Localization and Mapping))等を行う。 Various utilization devices 40, for example, create an environment map by point cloud, self-location estimation (SLAM (Simultaneous Localization and Mapping)) using a scan matching algorithm (NDT (Normal Distribution Transform), ICP (Iterative Closest Point), etc.) etc.
 図2は、図1に示した発光部111の一例として示す面発光素子アレイの平面図である。例示する面発光素子アレイは、複数の面発光素子10が実装される基板22と、当該基板22が搭載される板材である搭載基板24とを有する。 FIG. 2 is a plan view of a surface emitting element array shown as an example of the light emitting section 111 shown in FIG. The illustrated surface emitting element array has a substrate 22 on which a plurality of surface emitting elements 10 are mounted, and a mounting substrate 24 which is a plate material on which the substrate 22 is mounted.
 例示する面発光素子アレイは、同形同大の長方形状に区画された複数のグループ(以下、「グループ21a~21e」と称する。)の夫々に所属する、正方格子状に配列された複数の面発光素子10を有する。同図において、複数の面発光素子10は、いずれもその放出方向(光軸)を紙面に対して垂直方向(同図に示す+z方向)に向けて設けられている。 The exemplified surface emitting element array includes a plurality of groups arranged in a square lattice and belonging to a plurality of groups (hereinafter referred to as "groups 21a to 21e") partitioned into rectangular shapes of the same shape and size. It has a surface emitting element 10 . In the figure, a plurality of surface emitting elements 10 are provided so that their emission directions (optical axes) are directed in a direction perpendicular to the plane of the paper (+z direction shown in the figure).
 尚、本例では1つのグループに面発光素子10を18個ずつ所属させているが、グループの設定方法(区画するグループの数、各グループに所属させる面発光素子10の数、各グループにいずれの面発光素子10を所属させるか等)は、必ずしも限定されない。 In this example, 18 surface emitting elements 10 belong to one group, but the group setting method (the number of divided groups, the number of surface emitting elements 10 belonging to each group, the number of surface emitting elements 10 belonging to each group, and to which the surface emitting element 10 belongs) is not necessarily limited.
 面発光素子アレイには、面発光素子10を発光させるための電流(駆動電流)を電流源113から供給するための複数の電流供給線23が電気的に接続されている。面発光素子アレイは、グループを単位として面発光素子10に流す電流を制御することにより、グループ単位で面発光素子10の発光強度(光密度)を制御することができる。 A plurality of current supply lines 23 for supplying a current (driving current) for causing the surface emitting elements 10 to emit light from a current source 113 are electrically connected to the surface emitting element array. The surface emitting element array can control the emission intensity (optical density) of the surface emitting elements 10 on a group basis by controlling the current flowing through the surface emitting elements 10 on a group basis.
 ところで、例えば、ADやADASが適用された車両においては、当該車両に搭載される測定装置100(LiDAR)について、発光部111により投光されるエリアのうち特定のエリア(特定の視野範囲(視野角、FOV(Field Of View)))について測定距離(検知距離、測定レンジ)を延ばしたいというニーズが存在する。上記特定のエリアは、例えば、高速道路を走行中の車両の対向車線の遠方等の主たる関心領域(ROI:Region of Interest)である。 By the way, for example, in a vehicle to which AD or ADAS is applied, the measuring device 100 (LiDAR) mounted on the vehicle has a specific area (specific visual field range (visual field range)) among areas projected by the light emitting unit 111. There is a need to extend the measurement distance (detection distance, measurement range) for corners, FOV (Field Of View)). The specific area is, for example, a region of interest (ROI), such as a distant oncoming lane of a vehicle traveling on a highway.
 前述したように、測定装置100は、発光部111の面発光素子10の発光強度をグループ単位で調節することが可能であり、特定のグループに所属する面発光素子10に流す電流を他のグループに所属する面発光素子10に流す電流よりも増大させて発光強度を高めることにより、発光部111により投光されるエリアのうち特定のエリアの測定距離を延ばすことが可能である。 As described above, the measuring apparatus 100 can adjust the emission intensity of the surface emitting elements 10 of the light emitting unit 111 on a group-by-group basis. It is possible to extend the measurement distance of a specific area among the areas projected by the light emitting unit 111 by increasing the light emission intensity by increasing the current flowing through the surface light emitting elements 10 belonging to .
 図3は、発光部111の各グループ21a~21eに属する面発光素子10から出射する投光光(光ビーム)の光路の一例を描いた模式図である。同図に示すように、各グループ21a~21eに属する面発光素子10から出射する投光光は、投光光学系114にて配光が調節されて、夫々異なるエリア(投光エリア51a~51e)に向けて投光(照射)される。 FIG. 3 is a schematic diagram showing an example of optical paths of projected light (light beams) emitted from the surface emitting elements 10 belonging to each of the groups 21a to 21e of the light emitting section 111. FIG. As shown in the figure, projection light emitted from the surface light emitting elements 10 belonging to each of the groups 21a to 21e is adjusted in light distribution by the light projection optical system 114, and is projected onto different areas (light projection areas 51a to 51e). ) is projected (irradiated).
 ここで同図に示す構成において、例えば、グループ21cが担当する測定エリアについて測定距離を延ばしたい場合には、グループ21cに属する面発光素子10に流す電流を他のグループ21a,21b,21d,21eに属する面発光素子10に流す電流よりも増大させる。 Here, in the configuration shown in the figure, for example, when it is desired to extend the measurement distance in the measurement area in charge of the group 21c, the current flowing through the surface emitting elements 10 belonging to the group 21c is changed to , is made larger than the current flowing through the surface emitting elements 10 belonging to .
 図4は、図2に示した各グループ21a~21eの夫々の面発光素子10の発光強度(光密度)の一例を示したグラフである。グラフの縦軸は発光強度を表す。 FIG. 4 is a graph showing an example of the emission intensity (light density) of each of the surface emitting elements 10 of each group 21a to 21e shown in FIG. The vertical axis of the graph represents the emission intensity.
 図5は、グループ21cに属する面発光素子10に流す電流を他のグループ21a,21b,21d,21eに属する面発光素子10に流す電流よりも増大させた場合における各グループ21a~21eによる配光の様子を示す図である。同図は、図3に示した発光部111(面発光素子アレイ)及び投光光学系114を有する測定装置100を、車両7の中央前方(例えば、バンパーの中央部)に搭載した場合における配光の例を表している。同図に示すように、グループ21cに属する面発光素子10から出射する投光光の照射範囲31(測定可能範囲)が、他のグループ21a,21b,21d,21eに属する面発光素子10から出射する投光光の照射範囲32よりも遠方に延長されている。 FIG. 5 shows the light distribution by each of the groups 21a to 21e when the current flowing through the surface emitting elements 10 belonging to the group 21c is made larger than the current flowing through the surface emitting elements 10 belonging to the other groups 21a, 21b, 21d, and 21e. It is a figure which shows the state of. The figure shows the arrangement when the measurement device 100 having the light emitting unit 111 (surface light emitting element array) and the light projecting optical system 114 shown in FIG. It shows an example of light. As shown in the figure, the irradiation range 31 (measurable range) of the projected light emitted from the surface emitting elements 10 belonging to the group 21c is emitted from the surface emitting elements 10 belonging to the other groups 21a, 21b, 21d, and 21e. It extends farther than the irradiation range 32 of the projected light.
 ここで上記のようにグループ21cに属する面発光素子10に他のグループ21a,21b,21d,21eに属する面発光素子10よりも多くの電流を流した場合、グループ21cに属する面発光素子10の発熱量が他のグループ21a,21b,21d,21eに属する面発光素子10の発熱量よりも多くなり、発光部111全体として各面発光素子10の温度が不均一となる。そして温度が上昇した発光素子から出射される光の波長は長波長側にシフトし、それにより受光部が感度の低い波長領域で反射光(戻り光)を受光し、測定装置(フラッシュLiDAR)の測定精度が低下する。また、温度が上昇した発光素子から出射される光の波長が長波長側にシフトすることで、太陽光ノイズを低減を目的として受光素子側に設けているバンドパスフィルタの透過波長域を拡張する必要が生じ、それにより太陽光ノイズの混入が増加して測定装置100の測定精度が低下してしまう。 Here, when more current is supplied to the surface emitting elements 10 belonging to the group 21c than the surface emitting elements 10 belonging to the other groups 21a, 21b, 21d, and 21e as described above, the surface emitting elements 10 belonging to the group 21c The amount of heat generated is greater than that of the surface light emitting elements 10 belonging to the other groups 21a, 21b, 21d, and 21e, and the temperature of each surface light emitting element 10 becomes non-uniform in the light emitting section 111 as a whole. The wavelength of the light emitted from the light-emitting element whose temperature has risen shifts to the longer wavelength side, and as a result, the light-receiving part receives the reflected light (return light) in a wavelength region with low sensitivity, resulting in a measurement device (flash LiDAR). Decreased measurement accuracy. In addition, by shifting the wavelength of light emitted from the light-emitting element whose temperature rises to the long wavelength side, the transmission wavelength range of the band-pass filter provided on the side of the light-receiving element for the purpose of reducing solar noise is expanded. Therefore, the measurement accuracy of the measurement device 100 is reduced due to the increase in solar noise contamination.
 そこで、こうした課題を解決するため、本実施形態の投光制御装置112は、発光部111全体として各面発光素子10の温度の均一化する仕組みを備える。具体的には、投光制御装置112は、グループ21cに属する面発光素子10(以下、「第1面発光素子」とも称する。)に流す電流を他のグループ21a,21b,21d,21eに属する面発光素子10(以下、「第2面発光素子」とも称する。)に流す電流よりも増大させるにあたり、第1面発光素子に流す電流の単位時間あたりのオン期間が第2面発光素子に流す電流の単位時間あたりのオン期間よりも短くなるように制御することにより、発光部111全体として各面発光素子10の温度の均一化する仕組みを備える。 Therefore, in order to solve such problems, the projection control device 112 of the present embodiment has a mechanism for uniformizing the temperature of each surface emitting element 10 as the entire light emitting section 111 . Specifically, the light projection control device 112 causes the surface emitting elements 10 belonging to the group 21c (hereinafter also referred to as "first surface emitting elements") to flow currents belonging to the other groups 21a, 21b, 21d, and 21e. In order to increase the current flowing through the surface emitting element 10 (hereinafter also referred to as "second surface emitting element"), the ON period per unit time of the current flowing through the first surface emitting element is set to the second surface emitting element. By controlling the ON period of the current to be shorter than the ON period per unit time, the light emitting section 111 as a whole has a mechanism for uniformizing the temperature of each surface emitting element 10 .
 図6Aに、上記仕組みの一例を示す。この例では、発光部111に設けられている面発光素子10の夫々に流す電流のオンオフを周期的に繰り返すことによる面発光素子の点灯/消灯の制御に際し、投光制御装置112が、各周期において、第1面発光素子の電流のオン期間の長さが第2面発光素子のオン期間の長さよりも短くなるように制御する(以下、「第1の方法」と称する。)。 Fig. 6A shows an example of the above mechanism. In this example, when controlling the lighting/extinguishing of the surface light-emitting elements by periodically turning on and off the current flowing through each of the surface light-emitting elements 10 provided in the light-emitting unit 111, the light projection control device 112 controls each cycle 3, the length of the ON period of the current of the first surface emitting element is controlled to be shorter than the length of the ON period of the second surface emitting element (hereinafter referred to as "first method").
 第1の方法によれば、第1面発光素子のオン期間が短くなり、第1面発光素子に流す電流を増大させて発光強度を高めつつ、第1面発光素子の発熱量を抑制することができ、第1面発光素子及び第2面発光素子の夫々の発熱量の時間的な均一化を図ることができる。 According to the first method, the amount of heat generated by the first surface light emitting element is suppressed while the ON period of the first surface light emitting element is shortened and the light emission intensity is increased by increasing the current flowing through the first surface light emitting element. can be achieved, and the amount of heat generated by the first surface emitting element and the second surface emitting element can be made uniform over time.
 第1の方法において、第1面発光素子のオン期間の長さは、例えば、第1面発光素子及び第2面発光素子の夫々に流す電流の大きさの比や、第1面発光素子及び第2面発光素子の夫々のオン期間の長さの比を考慮しつつ、発光部111全体として各面発光素子10の温度が効率よく均一化されるように設定する。 In the first method, the length of the ON period of the first surface light-emitting element is determined by, for example, the ratio of the magnitudes of the currents flowing through the first surface light-emitting element and the second surface light-emitting element, or The temperature of each surface emitting element 10 as a whole of the light emitting section 111 is set so as to be efficiently uniformed while considering the ratio of the lengths of the ON periods of the second surface emitting elements.
 図6Bに、上記仕組みの他の一例を示す。この例では、発光部111に設けられている面発光素子10の夫々に流す電流のオンオフを周期的に繰り返すことによる面発光素子10の点灯/消灯の制御に際し、投光制御装置112が、第1面発光素子の電流のオンオフ周期が第2面発光素子のオンオフ周期よりも長くなるように制御する(以下、「第2の方法」と称する。)。 Fig. 6B shows another example of the above mechanism. In this example, when controlling the lighting/extinguishing of the surface light-emitting elements 10 by periodically turning on and off the current flowing through each of the surface light-emitting elements 10 provided in the light emitting unit 111, the light projection control device 112 Control is performed so that the on/off period of the current of the first surface light emitting element is longer than the on/off period of the second surface light emitting element (hereinafter referred to as "second method").
 第2の方法によれば、第1面発光素子の単位時間あたりのオフ期間(放熱期間)が第2面発光素子の単位時間あたりのオフ期間(放熱期間)よりも長くなり、第1面発光素子及び第2面発光素子の夫々の発熱量の時間的な均一化を図ることができる。 According to the second method, the OFF period (heat dissipation period) of the first surface emitting element per unit time is longer than the OFF period (heat dissipation period) of the second surface emitting element per unit time, and the first surface emitting element emits light. It is possible to make the amount of heat generated by the element and the second surface emitting element uniform over time.
 図6Bの例では、第1面発光素子をオンするタイミングと第2面発光素子をオンするタイミングとを一致させているが、必ずしも両者は一致していなくてもよい。また、第1面発光素子の電流のオンオフ周期や第2面発光素子のオンオフ周期は、例えば、第1面発光素子及び第2面発光素子の夫々に流す電流の大きさの比や、第1面発光素子及び第2面発光素子の夫々のオン期間の長さの比を考慮しつつ、発光部111全体として各面発光素子10の温度が効率よく均一化されるように設定する。 In the example of FIG. 6B, the timing to turn on the first surface emitting element and the timing to turn on the second surface emitting element are matched, but they do not necessarily have to match. Further, the on/off period of the current of the first surface light emitting element and the on/off period of the second surface light emitting element are, for example, the ratio of the magnitudes of the currents flowing through the first surface light emitting element and the second surface light emitting element, The temperature of each surface emitting element 10 as a whole of the light emitting section 111 is set so as to be efficiently homogenized while taking into consideration the ratio of the ON periods of the surface emitting element and the second surface emitting element.
 尚、第1の方法の場合は、例えば、第2の方法に比べ、第1面発光素子の単位時間あたりの発光回数を増やせるという利点がある。また、第2の方法の場合は、例えば、第1面発光素子のオン期間と第2面発光素子のオン期間とを共通にすることができるという利点がある。図6A及び図6Bの例では、第1面発光素子及び第2面発光素子に流す電流の波形を方形波としているが、必ずしも方形波でなくてもよい。 Note that the first method has the advantage of increasing the number of light emissions per unit time of the first surface light-emitting element, compared to the second method, for example. Moreover, in the case of the second method, for example, there is an advantage that the ON period of the first surface emitting element and the ON period of the second surface emitting element can be made common. In the example of FIGS. 6A and 6B, the waveform of the current flowing through the first surface emitting element and the second surface emitting element is a square wave, but it does not necessarily have to be a square wave.
 以上に説明したように、本実施形態の測定装置100によれば、第1面発光素子及び第2面発光素子の夫々の発熱量の時間的な均一化を図ることができる。そのため、面発光素子アレイの特定の発光素子の発熱量の増大に起因する波長シフトを抑制することができ、波長シフトに起因する測定装置100の感度低下を防ぐことができる。また、測定装置100(投光器)が特定の測定エリアに向けて照射する光ビームの強度を高めることができる。 As described above, according to the measuring device 100 of the present embodiment, it is possible to make the amounts of heat generated by the first and second surface emitting elements uniform over time. Therefore, it is possible to suppress a wavelength shift caused by an increase in the amount of heat generated by a specific light emitting element of the surface emitting element array, and prevent deterioration in the sensitivity of the measurement apparatus 100 caused by the wavelength shift. In addition, it is possible to increase the intensity of the light beam that the measurement device 100 (projector) irradiates toward a specific measurement area.
[第2実施形態]
 第1実施形態では、面発光素子に流す電流の波形を制御することにより発光部111全体として各面発光素子10の温度が均一化されるようにした。第2実施形態では、発光部111に放熱構造を設けることにより、発光部111全体における各面発光素子10の温度の均一化を図る。尚、第2実施形態における測定装置100や面発光素子10の基本的な構成については図1乃至図5に示したものと同様である。
[Second embodiment]
In the first embodiment, the temperature of each surface emitting element 10 is made uniform in the entire light emitting section 111 by controlling the waveform of the current flowing through the surface emitting element. In the second embodiment, by providing a heat dissipation structure in the light emitting section 111, the temperature of each surface light emitting element 10 in the entire light emitting section 111 is made uniform. The basic configurations of the measuring device 100 and the surface emitting device 10 in the second embodiment are the same as those shown in FIGS. 1 to 5. FIG.
 図7A~図7Eに、上記放熱構造の具体例を示す。図7A~図7Eは、いずれも図2に示した発光部111を側方(+y方向)から眺めた図である。これらの図には、面発光素子10が実装される基板22と、当該基板22が搭載される板材である搭載基板24を示している。搭載基板24は、当該基板22の裏面側(-z側)に放熱剤42(シリコングリス等)を介して設けられる。 Specific examples of the heat dissipation structure are shown in FIGS. 7A to 7E. 7A to 7E are views of the light emitting unit 111 shown in FIG. 2 as viewed from the side (+y direction). These figures show a substrate 22 on which the surface emitting element 10 is mounted and a mounting substrate 24 which is a plate material on which the substrate 22 is mounted. The mounting substrate 24 is provided on the rear surface side (−z side) of the substrate 22 with a heat dissipating agent 42 (silicon grease or the like) interposed therebetween.
 図7Aに示す例では、グループ21cに属する面発光素子10(以下、「第1面発光素子」とも称する。)の近傍における搭載基板24の素材24aとして、他のグループ21a,21b,21d,21eに属する面発光素子10(以下、「第2面発光素子」とも称する。)の近傍における搭載基板24の素材24bよりも放熱効果の高い素材(例えば、熱伝導率の高い素材)を用いている。この方法によれば、特別な構成を別途設ける必要がないため、例えば、発光部111をコンパクトに構成することができる。尚、同図の例では、搭載基板24の素材として放熱効果の異なる2種類の素材24a,24bを用いているが、放熱効果の異なる3種類以上の素材を用いて搭載基板24を構成してもよい。素材の種類を増やすことで、基板22の各部の温度をより細かく調整することが可能になる。 In the example shown in FIG. 7A, other groups 21a, 21b, 21d, and 21e are used as the material 24a of the mounting substrate 24 in the vicinity of the surface emitting elements 10 belonging to the group 21c (hereinafter also referred to as "first surface emitting elements"). A material (for example, a material with high thermal conductivity) having a higher heat dissipation effect than the material 24b of the mounting board 24 in the vicinity of the surface emitting element 10 (hereinafter also referred to as a "second surface emitting element") belonging to the . According to this method, since there is no need to separately provide a special configuration, for example, the light emitting unit 111 can be configured compactly. Although two types of materials 24a and 24b with different heat dissipation effects are used as materials for the mounting board 24 in the example of FIG. good too. By increasing the types of materials, it becomes possible to more finely adjust the temperature of each part of the substrate 22 .
 図7Bに示す例では、放熱剤42として放熱効果の異なる複数種のもの(放熱剤42a,42b)を用意し、第1面発光素子の近傍には放熱効果の高い放熱剤42aを塗布し、第2面発光素子の近傍には放熱剤42aよりも放熱効果の低い放熱剤42bを塗布することにより、第1面発光素子の近傍における放熱効果が第2面発光素子の近傍における放熱効果よりも高くなるようにしている。本例においては、第1面発光素子の近傍における基板22の裏面に放熱効果の高い放熱剤42aを塗布し、第2面発光素子の近傍における基板22の裏面に放熱剤42aよりも放熱効果の低い放熱剤42bを塗布している。この方法によれば、特別な構成を別途設ける必要がないため、例えば、発光部111をコンパクトに構成することができる。尚、同図の例では、放熱剤42の種類を2種類としているが、放熱効果の異なる3種類以上の放熱剤42を用いてもよい。塗布する位置によって放熱剤42の種類を細かく変えることで、基板22の各部の温度をより細かく調整することが可能になる。 In the example shown in FIG. 7B, a plurality of types of heat dissipating agents ( heat dissipating agents 42a and 42b) having different heat dissipating effects are prepared as the heat dissipating agent 42, and the heat dissipating agent 42a having a high heat dissipating effect is applied near the first surface light emitting element, By applying the heat-dissipating agent 42b having a lower heat-dissipating effect than the heat-dissipating agent 42a near the second surface-emitting elements, the heat-dissipating effect near the first-surface light-emitting elements is greater than the heat-dissipating effect near the second-surface light-emitting elements. I'm trying to get higher. In this example, the back surface of the substrate 22 near the first surface light-emitting elements is coated with a heat radiation agent 42a having a high heat radiation effect, and the back surface of the substrate 22 near the second surface light emitting elements is coated with a heat radiation agent 42a having a higher heat radiation effect than the heat radiation agent 42a. A low heat radiation agent 42b is applied. According to this method, since there is no need to separately provide a special configuration, for example, the light emitting unit 111 can be configured compactly. In the example shown in the figure, two types of heat dissipating agents 42 are used, but three or more types of heat dissipating agents 42 having different heat dissipating effects may be used. By finely changing the type of the heat dissipation agent 42 depending on the application position, the temperature of each part of the substrate 22 can be adjusted more finely.
 図7Cに示す例では、第1面発光素子の近傍における放熱効果が第2面発光素子の近傍における放熱効果よりも高くなるように、搭載基板24の裏面(搭載基板24の-z側の面)に複数の放熱フィン43を設けている。同図の例では、第1面発光素子に近い程、放熱効果の高い(表面積の大きい)放熱フィンを配置している。尚、搭載基板24のいずれの位置にどの程度の放熱効果の放熱フィン43を設けるかは、第1面発光素子及び第2面発光素子の発熱量に応じて決定する。 In the example shown in FIG. 7C, the rear surface of the mounting board 24 (the -z side surface of the mounting board 24) is arranged so that the heat dissipation effect in the vicinity of the first surface light emitting element is higher than the heat dissipation effect in the vicinity of the second surface light emitting element. ) is provided with a plurality of radiation fins 43 . In the example shown in the figure, the closer to the first surface light-emitting element, the higher the radiation effect (larger surface area) the radiation fins are arranged. It should be noted that the position of the mounting board 24 and the degree of heat dissipation effect of the heat dissipation fins 43 is determined according to the amounts of heat generated by the first and second surface light emitting elements.
 図7Dに示す例では、第1面発光素子の近傍に冷却機構としてペルチェ素子44を設けている。本例においては、第1面発光素子の近傍における搭載基板24の裏面にペルチェ素子44を設けている。尚、搭載基板24に複数のペルチェ素子44を設けて夫々のペルチェ素子44に流す電流を制御することにより、基板22の各部の温度をより細かく調整するようにしてもよい。 In the example shown in FIG. 7D, a Peltier element 44 is provided as a cooling mechanism in the vicinity of the first surface emitting element. In this example, a Peltier element 44 is provided on the rear surface of the mounting substrate 24 in the vicinity of the first surface emitting element. By providing a plurality of Peltier elements 44 on the mounting board 24 and controlling the current flowing through each Peltier element 44, the temperature of each part of the board 22 may be adjusted more finely.
 図7Eに示す例では、冷却機構として搭載基板24の裏面(-z側)から第1面発光素子の近傍の方向に向けて送風する冷却ファン45を設けている。尚、搭載基板24の裏面に複数の冷却ファン45を設けて各冷却ファン45の回転数を個別に制御することにより、基板22の各部の温度をより細かく調整するようにしてもよい。 In the example shown in FIG. 7E, a cooling fan 45 that blows air from the rear surface (-z side) of the mounting board 24 toward the vicinity of the first surface light emitting element is provided as a cooling mechanism. A plurality of cooling fans 45 may be provided on the rear surface of the mounting board 24 and the number of revolutions of each cooling fan 45 may be individually controlled to more finely adjust the temperature of each part of the board 22 .
 このように、第2実施形態の測定装置100によっても、第1面発光素子及び第2面発光素子の夫々の発熱量の時間的な均一化を図ることができ、面発光素子アレイの特定の発光素子の発熱量の増大に起因する波長シフトを抑制することができる。また、測定装置100の感度低下を防ぐことができる。また、測定装置100(投光器)が特定の測定エリアに向けて照射する光ビームの強度を高めることができる。 As described above, even with the measurement apparatus 100 of the second embodiment, the amount of heat generated by each of the first and second surface emitting elements can be made uniform over time, and the surface emitting element array can have a specific characteristic. A wavelength shift caused by an increase in the amount of heat generated by the light emitting element can be suppressed. Also, it is possible to prevent a decrease in sensitivity of the measuring device 100 . In addition, it is possible to increase the intensity of the light beam that the measurement device 100 (projector) irradiates toward a specific measurement area.
 以上、本開示の実施形態につき詳述したが、本開示は上記の実施形態に限定されるものではなく、様々な変形例が含まれる。また、上記の実施形態は本開示を分かりやすく説明するために構成を詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、上記の実施形態の構成の一部について、他の構成に追加、削除、置換することが可能である。 Although the embodiments of the present disclosure have been described in detail above, the present disclosure is not limited to the above embodiments, and includes various modifications. In addition, the above-described embodiment describes the configuration in detail in order to explain the present disclosure in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. Moreover, it is possible to add, delete, or replace a part of the configuration of the above embodiment with another configuration.
 例えば、第1実施形態の構成と第2実施形態の構成の双方を適切に組み合わせて適用することで、より効果的に波長シフトを抑制することが可能である。 For example, by appropriately combining and applying both the configuration of the first embodiment and the configuration of the second embodiment, it is possible to suppress the wavelength shift more effectively.
 本出願は、2022年2月9日出願の日本特許出願2022-019001号に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2022-019001 filed on February 9, 2022, the contents of which are incorporated herein by reference.

Claims (11)

  1.  第1面発光素子及び第2面発光素子を含む複数の面発光素子を有する発光部と、
     前記面発光素子の夫々に流す電流を制御することにより前記面発光素子の発光強度を制御する制御装置と、
     を有し、
     前記制御装置は、前記第1面発光素子に流す電流を前記第2面発光素子に流す電流よりも増大させるとともに、前記第1面発光素子に流す電流の単位時間あたりのオン期間の長さが前記第2面発光素子に流す電流の単位時間あたりのオン期間の長さよりも短くなるように制御する、
     投光器。
    a light emitting unit having a plurality of surface emitting elements including a first surface emitting element and a second surface emitting element;
    a control device for controlling the light emission intensity of the surface light-emitting elements by controlling the current flowing through each of the surface light-emitting elements;
    has
    The control device increases the current flowing through the first surface light-emitting element more than the current flowing through the second surface light-emitting element, and increases the length of the ON period per unit time of the current flowing through the first surface light-emitting element. controlling the current flowing through the second surface emitting element to be shorter than the length of the ON period per unit time;
    floodlight.
  2.  複数の前記面発光素子は、グループを単位として点灯及び消灯の制御が可能であり、
     前記第1面発光素子は一の前記グループに属する面発光素子群であり、前記第2面発光素子は他の前記グループに属する面発光素子群である、請求項1に記載の投光器。
    The plurality of surface emitting elements can be controlled to turn on and off on a group-by-group basis,
    2. The light projector according to claim 1, wherein said first surface emitting element is a surface emitting element group belonging to one said group, and said second surface emitting element is a surface emitting element group belonging to another said group.
  3.  前記制御装置は、前記面発光素子に流す電流のオンオフを周期的に繰り返すことにより前記面発光素子の点灯及び消灯を制御し、各周期において前記第1面発光素子の電流のオン期間の長さが前記第2面発光素子のオン期間の長さよりも短くなるように制御する、
     請求項1に記載の投光器。
    The control device controls lighting and extinguishing of the surface light-emitting element by periodically turning on and off the current flowing through the surface light-emitting element, and determines the length of the on period of the current of the first surface light-emitting element in each cycle. is shorter than the length of the ON period of the second surface emitting element,
    A light projector according to claim 1.
  4.  前記制御装置は、前記面発光素子に流す電流のオンオフを周期的に繰り返すことにより前記面発光素子の点灯及び消灯を制御し、前記第1面発光素子の電流のオンオフ周期が前記第2面発光素子のオンオフ周期よりも長くなるように制御する、
     請求項1に記載の投光器。
    The control device controls lighting and extinguishing of the surface light-emitting element by periodically turning on and off the current flowing through the surface light-emitting element, and the on-off cycle of the current flowing through the first surface light-emitting element corresponds to the second surface light-emitting element. Control to be longer than the on/off period of the element,
    A light projector according to claim 1.
  5.  請求項1~4のいずれか一項に記載の投光器と、
     前記投光器から投光された光の測定対象からの反射光を受光する受光器と、
     を備え、
     前記受光器の受光結果に基づき検知対象までの距離を測定する、
     測定装置。
    a light projector according to any one of claims 1 to 4;
    a light receiver that receives reflected light from a measurement target of the light projected from the light projector;
    with
    measuring the distance to the detection target based on the light reception result of the light receiver;
    measuring device.
  6.  共通の基板に配置され、第1面発光素子及び第2面発光素子を含む複数の面発光素子を有する発光部と、
     前記面発光素子の夫々に流す電流を制御することにより前記面発光素子の発光強度を制御する制御装置と、
     前記第1面発光素子の近傍における放熱効果が前記第2面発光素子の近傍よりも高くなるように構成された放熱構造と、
     を有し、
     前記制御装置は、前記第1面発光素子に流す電流を前記第2面発光素子に流す電流よりも増大させる制御を行う、
     投光器。
    a light emitting unit disposed on a common substrate and having a plurality of surface emitting elements including a first surface emitting element and a second surface emitting element;
    a control device for controlling the light emission intensity of the surface light-emitting elements by controlling the current flowing through each of the surface light-emitting elements;
    a heat dissipation structure configured such that a heat dissipation effect in the vicinity of the first surface light emitting element is higher than in the vicinity of the second surface light emitting element;
    has
    The control device performs control to increase the current flowing through the first surface light-emitting element more than the current flowing through the second surface light-emitting element.
    floodlight.
  7.  前記放熱構造は、前記基板が搭載される板材である搭載基板を含み、
     前記搭載基板において、前記第1面発光素子の近傍の部分は、前記第2面発光素子の近傍の部分を構成する素材よりも放熱効果の高い素材で構成されている、
     請求項6に記載の投光器。
    The heat dissipation structure includes a mounting substrate, which is a plate material on which the substrate is mounted,
    In the mounting substrate, a portion in the vicinity of the first surface emitting element is made of a material having a higher heat dissipation effect than a material forming a portion in the vicinity of the second surface emitting element,
    7. A light projector according to claim 6.
  8.  前記放熱構造は、前記基板の前記第1面発光素子の近傍の部分に塗布された第1放熱剤と、前記基板の前記第2面発光素子の近傍の部分に塗布され、前記第1放熱剤よりも放熱効果が低い第2放熱剤とを含む、
     請求項6に記載の投光器。
    The heat dissipation structure includes a first heat dissipation agent applied to a portion of the substrate near the first surface light emitting device, and a portion of the substrate near the second surface light emitting device. and a second heat dissipating agent having a lower heat dissipating effect than
    7. A light projector according to claim 6.
  9.  前記放熱構造は、前記第1面発光素子の近傍に設けられた冷却機構を含む、
     請求項6に記載の投光器。
    The heat dissipation structure includes a cooling mechanism provided near the first surface light emitting element,
    7. A light projector according to claim 6.
  10.  前記冷却機構は、ペルチェ素子又は冷却ファンを含む、
     請求項9に記載の投光器。
    The cooling mechanism includes a Peltier element or a cooling fan,
    10. A light projector according to claim 9.
  11.  請求項6~10のいずれか一項に記載の投光器と、
     前記投光器から投光された光の測定対象からの反射光を受光する受光器と、
     を備え、
     前記受光器の受光結果に基づき検知対象までの距離を測定する、
     測定装置。
     
    a light projector according to any one of claims 6 to 10;
    a light receiver that receives reflected light from a measurement target of the light projected from the light projector;
    with
    measuring the distance to the detection target based on the light reception result of the light receiver;
    measuring device.
PCT/JP2023/002296 2022-02-09 2023-01-25 Projector, and measuring device WO2023153212A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-019001 2022-02-09
JP2022019001A JP2023116281A (en) 2022-02-09 2022-02-09 Floodlight and measurement apparatus

Publications (1)

Publication Number Publication Date
WO2023153212A1 true WO2023153212A1 (en) 2023-08-17

Family

ID=87564042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002296 WO2023153212A1 (en) 2022-02-09 2023-01-25 Projector, and measuring device

Country Status (2)

Country Link
JP (1) JP2023116281A (en)
WO (1) WO2023153212A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063638A1 (en) * 2007-11-15 2009-05-22 Panasonic Corporation Semiconductor light emitting device
JP2018505548A (en) * 2014-12-19 2018-02-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Laser sensor module
JP2019516101A (en) * 2016-04-22 2019-06-13 オプシス テック リミテッド Multi-wavelength LIDAR system
JP2019109143A (en) * 2017-12-19 2019-07-04 パイオニア株式会社 Optical scanning device and ranging device
US20190372304A1 (en) * 2018-06-04 2019-12-05 Hsun-Fu Lee Laser diode surface mounting structure
JP2020515812A (en) * 2016-12-13 2020-05-28 センスル テクノロジーズ リミテッド Rider device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063638A1 (en) * 2007-11-15 2009-05-22 Panasonic Corporation Semiconductor light emitting device
JP2018505548A (en) * 2014-12-19 2018-02-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Laser sensor module
JP2019516101A (en) * 2016-04-22 2019-06-13 オプシス テック リミテッド Multi-wavelength LIDAR system
JP2020515812A (en) * 2016-12-13 2020-05-28 センスル テクノロジーズ リミテッド Rider device
JP2019109143A (en) * 2017-12-19 2019-07-04 パイオニア株式会社 Optical scanning device and ranging device
US20190372304A1 (en) * 2018-06-04 2019-12-05 Hsun-Fu Lee Laser diode surface mounting structure

Also Published As

Publication number Publication date
JP2023116281A (en) 2023-08-22

Similar Documents

Publication Publication Date Title
KR101977315B1 (en) A lidar device
WO2021128587A1 (en) Adjustable depth measuring device and measuring method
CN110018481B (en) Laser radar device
JP2021507212A (en) IDAR system with laser light source containing gallium and nitrogen
US9641825B2 (en) Gated 3D camera
CN111142088A (en) Light emitting unit, depth measuring device and method
WO2018133089A1 (en) Tof distance measurement system and movable platform
US11467261B2 (en) Distance measuring device and moving object
US11762151B2 (en) Optical radar device
TWI742448B (en) Laser detection device
US11609311B2 (en) Pulsed light irradiation/detection device, and optical radar device
JP2007144024A (en) Three-dimensional measurement endoscope using self-mixing laser
JP2023086904A (en) Road surface state detection system
WO2023153212A1 (en) Projector, and measuring device
WO2021114497A1 (en) Time-of-flight-based depth camera and three-dimensional imaging method
WO2020087337A1 (en) Laser diode chip, packaging module, transmission apparatus, ranging apparatus, and electronic device
JP2020148747A (en) Object detection device
WO2022198386A1 (en) Laser ranging apparatus, laser ranging method and movable platform
WO2023153438A1 (en) Light projector, light receiver, and measurement device
US20220349998A1 (en) Optoelectronic device and lidar system
WO2020166412A1 (en) Optical distance measurement device
US20160033263A1 (en) Measurement device for the three-dimensional optical measurement of objects with a topometric sensor and use of a multi-laser-chip device
WO2023153139A1 (en) Projector, and measuring device
JP2024017519A (en) Measuring device, light reception unit, and light projection unit
CN216133199U (en) Laser projection device and depth camera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752677

Country of ref document: EP

Kind code of ref document: A1