WO2023152439A1 - Dispositif de distribution de puissance électrique en tension continue, système de propulsion et aéronef associés - Google Patents

Dispositif de distribution de puissance électrique en tension continue, système de propulsion et aéronef associés Download PDF

Info

Publication number
WO2023152439A1
WO2023152439A1 PCT/FR2023/050155 FR2023050155W WO2023152439A1 WO 2023152439 A1 WO2023152439 A1 WO 2023152439A1 FR 2023050155 W FR2023050155 W FR 2023050155W WO 2023152439 A1 WO2023152439 A1 WO 2023152439A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching means
main
input terminals
source
supply line
Prior art date
Application number
PCT/FR2023/050155
Other languages
English (en)
Inventor
Franck BAQUE
Quentin CORNU
Fabrice Guerin
Guillaume PERCHERON
Alexis RENOTTE
Original Assignee
Safran Electrical & Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Electrical & Power filed Critical Safran Electrical & Power
Publication of WO2023152439A1 publication Critical patent/WO2023152439A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/084Three-wire systems; Systems having more than three wires for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J1/086Three-wire systems; Systems having more than three wires for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load or loads and source or sources when the main path fails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D2221/00Electric power distribution systems onboard aircraft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/44The network being an on-board power network, i.e. within a vehicle for aircrafts

Definitions

  • TITLE DC voltage electrical power distribution device, associated propulsion system and aircraft
  • the invention relates to aircraft electrical propulsion systems, and more particularly to direct voltage electrical power distribution devices.
  • the invention further relates to an electric propulsion system comprising such devices and an aircraft comprising such a system.
  • turbomachines of the turboprop, turbojet or turbine type.
  • turbomachines is accompanied by significant noise emissions and high consumption of fossil fuel, in particular kerosene, generating equally significant polluting emissions.
  • aircraft propulsion can be electric, replacing the turbomachines intended to produce the thrust of the aircraft with electric motors.
  • the electrical networks on board aircraft generally comprise a combination of an alternating voltage network, for example 115 volts alternating or 230 volts alternating and a low voltage direct network, for example 28 volts direct, or a network single DC voltage, for example 28 volts DC.
  • an alternating voltage network for example 115 volts alternating or 230 volts alternating
  • a low voltage direct network for example 28 volts direct
  • a network single DC voltage for example 28 volts DC.
  • An alternating voltage network on board an aircraft provides a total on-board electrical power of between 50 to 500 kW, and up to 1 MW.
  • a DC voltage network on board an aircraft provides electrical power of less than OOkW. Furthermore, the electrical architecture of such a network is usually developed for a given application and for a given type of aircraft, preventing the network from being reused by another type of aircraft.
  • the electric propulsion system is a critical system of the aircraft so that it must meet stringent operational safety requirements to be certified.
  • Redundancy of the critical elements of the propulsion system is required increasing the mass of the aircraft.
  • Document EP 3703220 discloses a method for regulating a voltage delivered by an active rectifier connected to a battery.
  • EP368391 1 discloses interconnected DC high voltage electrical networks.
  • Such components would be particularly advantageous for electrically powered aircraft comprising rotating electrical machines driving propulsion propellers.
  • the object of the invention is to overcome all or part of these drawbacks.
  • the subject of the invention is a direct voltage electric power distribution device for the propulsion channel of an aircraft, comprising a main supply line intended to supply at least one propulsion assembly of the propulsion channel from a source DC high voltage power supply and comprising main switching means for connecting said source to said propulsion assembly.
  • the device further comprises a secondary supply line intended to be connected to another distribution device and configured to supply said propulsion assembly from another device when the main switching means are open.
  • said device Upon detection of a failure of the device's power source, powertrain, or main power line, said device is reconfigured to power the powertrain from another device.
  • the architecture of the devices makes it possible to ensure power supply redundancy of the propulsion unit connected to the device.
  • DC high voltage is defined as DC voltage greater than 270 volts.
  • the main power supply line extends between input terminals intended to be connected to the source and output terminals intended to be connected to the propulsion assembly, the main power supply line comprising a power connected to the output terminals and connected to the input terminals via main switching means and fast switching means, and the secondary power supply line is connected to the bus via secondary switching means and comprising input terminals intended to be connected to input terminals of the secondary power supply line of the other device, the device further comprising control means configured to open the main switching means and the fast switching, and second control means configured to close the secondary switching means upon detection of failure of the propulsion unit, the main power line or the source.
  • the main power supply line extends between input terminals intended to be connected to the source and output terminals intended to be connected to the propulsion assembly, the main power supply line comprising a power bus and a power line, the bus being connected to the output terminals and connected to the input terminals via the main switching means and fast switching means, the power line being connected between the input terminals and the main switching means and being intended to be connected to the secondary power supply line of the other device, and the secondary power supply line is connected to the bus via switching means secondary and comprising input terminals intended to be connected to input terminals of the power line of the other device, the device further comprising control means configured to open the main switching means and the rapid switching, and second control means for closing the secondary switching means upon detection of failure of the propulsion unit, the main power line or the source.
  • the device further comprises load terminals connected between the input terminals and the main switching means or between the main switching means and the fast switching means via load switching means and intended charging the reversible power source from a charger, the control means being further configured to close the load switching means to charge the reversible source.
  • the main power supply line extends between input terminals intended to be connected to the source and output terminals intended to be connected to the propulsion assembly, the main power supply line comprising a power bus connected to the output terminals via fast switching means and connected to the input terminals via the main switching means and including load terminals connected via the load switching means between the terminals input and the main switching means and intended to be connected to a charger and to the charging terminals of the other device, and the secondary power supply line comprises second output terminals connected to the bus via means secondary switching means and intended to be connected to the output terminals of the other device, the device further comprising control means configured to open the main switching means, the fast switching means and the secondary switching means upon detection of a failure of the propulsion unit, the main power line or the source.
  • propulsion system comprising at least two identical devices as defined above, in which the input terminals of the secondary power supply line of a first device are connected to the input terminals of the secondary power supply line. secondary power supply of the second device.
  • the propulsion system comprises at least two identical devices as defined previously, in which the input terminals of the power line of a first device are connected to the input terminals of the secondary power supply line of the second device.
  • the propulsion system comprises at least four identical devices as defined previously, in which the input terminals of the power line of a first device are connected to the input terminals of the secondary power supply line of a second device, the input terminals of the secondary power supply line of the first device are connected to the input terminals of the power line of a third device, the input terminals of the power line of the second device are connected to the input terminals of the secondary power supply line of the fourth device, and the input terminals of the power line of the fourth device are connected to the input terminals of the secondary power supply line of the third device.
  • the propulsion system comprises at least two identical devices as defined previously, in which the load terminals of a first device are connected to the load terminals of the second device, and in which at least one pair of output terminals of the main power supply line of the first device is connected to a pair of input terminals of the secondary power supply line of the second device.
  • FIG 1 schematically illustrates an aircraft according to the invention
  • FIG 2 schematically illustrates a first embodiment of an electrical distribution module according to the invention
  • FIG 3 schematically illustrates a second embodiment of the electrical distribution module according to the invention
  • FIG 4 schematically illustrates a third embodiment of the electrical distribution module according to the invention.
  • FIG 5 schematically illustrates a fourth embodiment of the electrical distribution module according to the invention.
  • FIG. 1 schematically illustrates an aircraft 1 comprising a propulsion system 2 .
  • the propulsion system 2 comprises two rotating electrical machines 3, 4 each arranged on either side of a longitudinal axis of the aircraft 1 and each provided with a propeller to propel the aircraft 1.
  • the aircraft 1 may comprise more than two rotating electrical machines 3, 4 arranged in equal numbers on either side of the longitudinal axis of the aircraft 1.
  • the aircraft 1 may comprise a single rotating electrical machine.
  • the propulsion system 2 further comprises an electrical distribution module 5 comprising two identical electrical power distribution devices 6, 7, four power converters 8, 9, 10, 11 each supplying one of the rotating electrical machines 3, 4, and two sources 12, 13 of direct electrical voltage.
  • a first converter 8 is connected to a first and a second output terminals 14, 15 of a first electrical power distribution device 6, and a second converter 9 is connected to a third and a fourth output terminals 16, 17 of the first device 6 for distributing electrical power.
  • the first converter 8 supplies the first machine 3 and the second converter 9 supplies the second machine 4.
  • a first source 12 is connected to input terminals 18, 19 of the first device 6.
  • a third converter 10 is connected to a first and a second output terminals 20, 21 of the second electrical power distribution device 7, and the fourth converter 11 is connected to a third and a fourth output terminals 22, 23 of the second device 7 for distributing electrical power.
  • the third converter 10 supplies the first 3 and the fourth converter 11 supplies the second machine 4.
  • the second source 13 is connected to input terminals 24, 25 of the second device 7.
  • first converter 8 and the third converter 10 can be integrated into the first rotary electric machine 3
  • second converter 9 and the fourth converter 11 can be integrated into the second rotary electric machine 4.
  • Each source 12, 13 comprises for example a fuel cell, a battery or a DC voltage generator.
  • Each source 12, 13 can be reversible so that it can be recharged from an electrical power supply network to the aircraft 1 or from the electrical energy produced by an electrical generator arranged in the aircraft 1 or outside the aircraft 1 and connected to the source 12, 13.
  • the first device 6 is supplied by the first source 12, and supplies the first and second converters 8, 9 with direct voltage.
  • the second device 7 is powered by the second source 13, and supplies DC voltage to the third and fourth converters 10, 11.
  • the first converter 8 supplies the first machine 3 and the second converter 9 supplies the second machine 4.
  • the third converter 10 supplies the first machine 3 and the fourth converter 11 supplies the second machine 4.
  • the first and second machines 3, 4 are each powered independently by two converters 8, 10, 9, 11 so that if one of the two converters fails, said machine is powered by the other converter.
  • each machine can be powered by more than two independent power converters.
  • the converters 8 to 11 are of the inverter type and transform a DC voltage received from the first and second devices 6, 7 into a variable voltage to control the machines 3, 4.
  • the first and second machines 3, 4 supplied by the first and second converters 8, 9 form a first propulsion unit.
  • the first device 6, the first source 12, and the first propulsion assembly form a first propulsion channel 26.
  • the first and second machines 3, 4 powered by the third and fourth converters 10, 11 form a second propulsion unit.
  • the second device 7, the second source 13, and the second propulsion assembly form a second propulsion channel 27.
  • system 2 can comprise more than two propulsion channels.
  • Each propulsion channel 26, 27 operates independently so that if one of the channels 26, 27 fails, the other channel keeps the aircraft 1 in flight.
  • Figure 2 schematically illustrates a first embodiment of the electrical distribution module 5.
  • the first and second devices 6, 7 further comprise second input terminals 28, 29, 30, 31.
  • the second input terminals 28, 29 of the first device 6 are connected to the second input terminals 30, 31 of the second device 7.
  • Each device 6, 7 may further comprise charging terminals 32, 33, 34, 35. As the first and second devices 6, 7 are identical, only the first device 6 is detailed.
  • the first device 6 comprises a main supply line 36, a secondary supply line 37, and control means 38.
  • the control means 38 are made for example from an aeronautical controller.
  • the main power supply line 36 comprises main switching means 39 comprising for example a main contactor, fast switching means 40 made from semiconductors, and a power bus 41 of the high voltage DC type.
  • DC high voltage is defined as DC voltage greater than 270 volts.
  • the control means 38 are interfaced to the main switching means 39 and to the fast switching means 40.
  • the main switching means 39 are connected to the input terminals 18, 19 and to input terminals of the fast switching means 40.
  • Output terminals of fast switching means 40 are connected to bus 41 supplying output terminals 14 to 17.
  • the output terminals 14 to 17 can each be connected to the bus 41 via protection means 80 comprising for example a pyrotechnic switch (“pyroswitch” in English) or a contactor.
  • protection means 80 comprising for example a pyrotechnic switch (“pyroswitch” in English) or a contactor.
  • the protection means 80 make it possible to electrically isolate one of the faulty converters 8, 9 while continuing to supply the other converter 9, 8.
  • the fast switching means 40 known by the acronym "SSPC””Solid state power controller” control and protect the power supply of the output terminals 14 to 17 from the first source 12 connected to the input terminals 18, 19 , and are connected to the control means 38.
  • the secondary power supply line 37 comprises secondary switching means 42 comprising for example a contactor connected to the second input terminals 28, 29 and to the bus 41.
  • the fast switching means 40 comprise a device for precharging the capacitors connected to the bus 41.
  • the precharging device is active when the fast switching means 40 are closed in order to ensure a rise in voltage of the bus 41 sufficiently slow to minimize the calls of current from the source 12 connected to the input terminals 18, 19.
  • the secondary switching means 42 comprise a device for precharging the capacitors connected to the bus 41.
  • the precharging device is active when the secondary switching means 40 are closed in order to ensure a rise in voltage of the bus 41 sufficiently slow to minimize the calls current from the source 12 connected to the second input terminals 28, 29.
  • the secondary switching means 42 are controlled by the control means 38.
  • Each terminal 14 to 19, 28, 29, 32 and 33 is equipped with a voltage sensor and a current sensor connected to control means 38.
  • control means 38 When the control means 38 detect a failure of the first propulsion assembly, of the main power supply line 36 or of the first source 12, for example a short-circuit or an overload, from the quantities measured by the voltage sensors, the current sensors, and information transmitted by the fast switching means 39, the control means 38 control the main switching means 39 and the fast switching means 40 so that the main switching means 39 and the switching means quick 40 open.
  • the main switching means 39 and the fast switching means 40 make it possible to isolate the first set propellant or the first source in order to prevent propagation of the failure to other parts of the aircraft 1.
  • Bus 41 is no longer supplied with DC voltage by first source 12.
  • Each device 6, 7 further comprises second control means 43 made for example from an aeronautical controller.
  • the second control means 43 of the first and second devices 6, 7 communicate with each other.
  • control means 38 can control the secondary switching means 42 so that it is in closed position when the main switching means 39 are open, and communicate with the second control means 43 so that the control means of the second device 7 closes the secondary contactor of the second device 7.
  • the fault upstream of the main switching means 39 is isolated by the source 12 supplying the first device 6 so that the fault does not propagate in the propulsion channel.
  • the main switching means 39 and the secondary switching means 42 are not simultaneously closed to prevent the paralleling of the sources 12, 13 to the input terminals 18, 19 and to the second input terminals 28, 29.
  • the closing of the secondary switching means of the first and second devices 6, 7 makes it possible to supply the bus 41 of the first device 6 from the second source 13 so as to supply redundantly the first and second machines 3, 4 during the failure of the first source 12.
  • the devices 6, 7 are configured so that the first device 6 supplies the power bus of the second device 7.
  • the reconfiguration of the first and second devices 6, 7 upon detection of a failure of one of the sources 12, 13 allows to supply the propulsion unit connected to the faulty source by the functional source.
  • the fast switching means 40 and the main secondary switching means 42 are of different technology so as to obtain an asymmetry of the switching elements to improve the reliability of the devices 6, 7.
  • the main 39 and secondary 42 switching means will be controlled independently to ensure dissimilarity of the control of the device 6, 7.
  • the main switching means 39 are controlled by the control means 38 while the secondary switching means 42 are controlled by the second control means 43.
  • the first device 6 further comprises load switching means 44 ensuring the load of the reversible source 12 controlled by the means 38 and connecting the load terminals 32, 33 to the main power supply line 36 between the input terminals 18, 19 and the main switching means 39.
  • the load switching means 44 comprise for example a contactor.
  • the charging terminals 32, 33 recharge the first source 12 from a charger 100 connected to a terrestrial power supply network when the aircraft 1 is on the ground, the first source 12 each comprising a reversible battery.
  • the load switching means 44 are connected between the main switching means 39 and the fast switching means 40.
  • the first device 6 does not include charging terminals 32, 33 and charging contactor 44.
  • the charging of the source 12 is then carried out through the secondary switching means 42.
  • Figure 3 schematically illustrates a second embodiment of the electrical distribution module 5.
  • first and second devices 6, 7 comprising the main supply line 36, the secondary supply line 37, the load terminals 32, 33, 34, 35, and the protection means 80 as previously described.
  • the first and second devices 6, 7 further comprise power terminals 45, 46, 47, 48 connected to the input terminals 18, 19, 30, 31 via a power line 49.
  • the power terminals 45, 46 of the first device 6 are connected to the second input terminals 30, 31 of the second device 7, and the power terminals 47, 48 of the second device 7 are connected to the second input terminals 28, 29 of the first device 6.
  • control means 38 when the control means 38 detect a failure of the first propulsion assembly or of the first source 12, the control means 38 control the main switching means 39 and the fast switching 40 so that the main switching means 39 and the fast switching means 40 are open.
  • control means 38 control the secondary switching means 42 so that they are in the closed position.
  • the closing of the secondary switching means 42 of the first device 6 makes it possible to supply the bus 41 of the first device 6 from the second source 13 so as to supply redundantly the first and second machines 3, 4 during the failure of the first spring 12.
  • the total electrical power exchanged between the two devices 6, 7 passes through the main supply line 36 and the power line 49 making it possible to size the main switching means 39 and the fast switching means 40, and the bus 41 of the main power supply line 36, and furthermore the secondary switching means 42 according to the electrical powers delivered to the output terminals 14 to 17 and 20 to 23 of the two devices 6, 7 reducing the size and the weight of the switching means 39, 40, 42 and of the bus 41.
  • Figure 4 schematically illustrates a third embodiment of the electrical distribution module 5.
  • the module 5 comprises four identical devices 6, 7, 50, 51 as defined in the second embodiment of the electrical distribution module 5 illustrated in figure 3.
  • the four devices 6, 7, 50, 51 are interconnected by circular permutation.
  • Each device 6, 7, 50, 51 supplies a different propulsion unit.
  • Each device 6, 7, 50, 51 and its associated propulsion assembly form a propulsion channel so that the four propulsion channels supply, for example, four rotating electrical machines.
  • the input terminals 45, 46 of the power line of the first device 6 are connected to the input terminals 30, 31 of the secondary power supply line of the second device 7.
  • the input terminals 28, 29 of the secondary power supply line of the first device 6 are connected to the input terminals 56, 57 of the power line of a third device 50.
  • the input terminals 47, 48 of the power line of the second device 7 are connected to the input terminals 54, 55 of the secondary power supply line of the fourth device 51.
  • the input terminals of the power line 58, 59 of the fourth device 51 are connected to the input terminals 52, 53 of the secondary power supply line of the third device 50.
  • Figure 5 schematically illustrates a fourth embodiment of the electrical distribution module 5.
  • first and second devices 6, 7 identical comprising the output terminals 14 to 17 and 20 to 23, the input terminals 18, 19, 24, 25, the load terminals 32, 33, 34, 35.
  • the devices 6 and 7 are identical, only the architecture of the first device 6 is described.
  • the first device 6 comprises a main supply line 60 extending between input terminals 18, 19 and output terminals 14 to 17.
  • the main power supply line 60 comprises the power bus 41 connected to the output terminals 14 to 17 via two fast switching means of the SSPC semiconductor type 61, 62 each controlling a pair of output terminals 14 to 17 different, and connected to the input terminals 18, 19 via the main switching means 39.
  • the load terminals 32, 33 are connected to the main supply line 60 between the input terminals 18, 19 and the main switching means 39 via the load switching means 44.
  • the fast switching means 61 and 62 include the precharging device to prevent overcurrent when connecting the rotating electrical machines 3, 4 to the bus 41.
  • the first device 6 further comprises a secondary power supply line 63 comprising second output terminals 64 to 67 connected to the bus 41 by first and second secondary switching means 68, 69, the first secondary switching means 68 connecting the second output terminals 64, 65 to bus 41, and the second secondary switching means 69 connecting the second output terminals 66, 67 to bus 41.
  • the switching means 68 and 69 comprise a device for precharging the capacitors of the rotating electrical machines 3, 4 making it possible to slowly charge the capacitors of said electrical machines to prevent overcurrent when the motors are connected to the bus 41 .
  • the fast switching means 61 and 62 on the one hand and the secondary switching means 68 and 69 on the other hand are of dissimilar technology and are dissimilar in their control in order to guard against the common modes of the fast switching means and the means secondary switches.
  • the first device 6 further comprises control means 70 made for example from a controller.
  • the input terminals of the secondary power supply line of the second device 7 are denoted 71, 72, 73, 74.
  • the load terminals 32, 33 of the first device 6 are connected to the load terminals 34, 35 of the second device 7.
  • a first pair of second output terminals 64, 65 connected to the first secondary switching means 68 is connected to a second pair of output terminals 22, 23 of the second device 7.
  • the second pair of output terminals 66, 67 connected to the second secondary switching means 69 is connected to the first pair of output terminals 21, 22 of the second device 7.
  • a first pair of output terminals 71, 72 of the secondary power supply line of the second device 7 is connected to a first pair of output terminals 14, 15.
  • the second pair of output terminals 73, 74 of the secondary power supply line of the second device 7 is connected to the second pair of output terminals 16, 17.
  • the main switching means 39, the fast switching means 61, 62 of the devices 6 and 7 are closed while the first and second secondary switching means 68, 69 of the devices 6 and 7 are open in normal operation.
  • the load switching means 44 of the first and second devices 6, 7 are initially open.
  • control means 70 open the main switching means 39, the fast switching means 61, 62, and the secondary switching means 68, 69 .
  • the first propulsion assembly is powered by the second device 7.
  • the means 70 close the load switching means 44 making it possible to parallelize the sources 12, 13.
  • the first and second devices 6, 7 are reconfigured to supply the propulsion assembly from a functional source.
  • the control means 70 close the load switching means.
  • control means 70 Upon detection of a failure during the charging of the source 12, the control means 70 open the charging switching means.
  • the architecture of the devices 6, 7 makes it possible to ensure power redundancy of the propulsion assemblies from identical sources or from sources of different natures, the first device 6 being for example powered by a fuel cell and the second device 7 being for example powered by a DC voltage generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

Le dispositif (6) de distribution de puissance électrique en tension continue pour canal de propulsion d'un aéronef, comprend une ligne d' alimentation principale (36) destinée à alimenter au moins un ensemble propulsif du canal de propulsion à partir d'une source d' alimentation électrique en haute tension continue et comportant des moyens de commutation principaux (39) et des moyens de commutation rapide pour relier ladite source audit ensemble propulsif. Le dispositif comprend une ligne d' alimentation secondaire (37) destinée à être reliée à un autre dispositif de distribution (7) et configurée pour alimenter ledit ensemble propulsif à partir de l' autre dispositif lorsque les moyens de commutation principaux sont ouverts.

Description

DESCRIPTION
TITRE : Dispositif de distribution de puissance électrique en tension continue, système de propulsion et aéronef associés
Domaine technique de l’invention
L’ invention concerne les systèmes de propulsion électrique d’ aéronef, et plus particulièrement les dispositifs de distribution de puissance électrique en tension continue.
L’ invention concerne en outre un système de propulsion électrique comportant de tels dispositifs et un aéronef comportant un tel système.
Etat de la technique antérieure
Généralement, les aéronefs sont propulsés par des turbomachines du type turbopropulseur, turboréacteur ou turbine.
Cependant, l’utilisation de turbomachines s’ accompagne d’ émissions de bruit importantes et d’une consommation élevée de combustible fossile, notamment de kérosène, engendrant des émissions polluantes également importantes.
Afin de réduire les émissions de polluant et de bruit, la propulsion des aéronefs peut être électrique, en remplaçant les turbomachines destinées à produire la poussée de l’ aéronef par des moteurs électriques.
Les réseaux électriques à bord d’ aéronefs comprennent généralement une combinaison d’un réseau de tension alternative, par exemple de 1 15 volts alternatif ou 230 volts alternatif et d’un réseau basse tension continu, par exemple de 28 volts continus, ou un réseau de tension continue unique, par exemple de 28 volts continus.
Un réseau de tension alternative embarquée dans un aéronef fournit une puissance électrique embarquée totale comprise entre 50 à 500 kW, et jusqu’ à 1 MW.
Un réseau de tension continue embarquée dans un aéronef fournit une puissance électrique inférieure à l OOkW. En outre, l’ architecture électrique d’un tel réseau est habituellement développée pour une application donnée et pour un type d’ aéronef donné empêchant la réutilisation du réseau à un autre type d’ aéronef.
De plus, le système de propulsion électrique est un système critique de l’ aéronef de sorte qu’il doit remplir des exigences contraignantes de sûreté de fonctionnement pour être certifié.
Une redondance des éléments critiques du système de propulsion est requise augmentant la masse de l’ aéronef.
Les documents WO 2020/174165 et FR 3 098 663 divulguent des architectures de système de propulsion électrique.
Les documents EP 3588729, EP 2980946 et FR 3050882 divulguent des réseaux d’ alimentation électriques pour aéronef.
Le document EP 3703220 divulgue une méthode de régulation d’une tension délivrée par un redresseur actif connecté à une batterie.
Le document EP368391 1 divulgue des réseaux électriques haute tension continue interconnectés.
Il existe une demande pour des composants permettant d’ opérer à une tension de 800 VDC, et à des puissances de l’ ordre de 100 à 250 kW permettant de mettre en œuvre un réseau en haute tension continue.
De tels composants seraient particulièrement avantageux pour des aéronefs à propulsion électrique comportant des machines électriques tournantes entraînant des hélices de propulsion.
Exposé de l’invention
Le but de l’ invention est de pallier tout ou partie de ces inconvénients.
L’invention a pour objet un dispositif de distribution de puissance électrique en tension continue pour canal de propulsion d’un aéronef, comprenant une ligne d’ alimentation principale destinée à alimenter au moins un ensemble propulsif du canal de propulsion à partir d’une source d’ alimentation électrique en haute tension continue et comportant des moyens de commutation principaux pour relier ladite source audit ensemble propulsif. Le dispositif comprend en outre une ligne d’ alimentation secondaire destinée à être reliée à un autre dispositif de distribution et configurée pour alimenter ledit ensemble propulsif à partir d’un autre dispositif lorsque les moyens de commutation principaux sont ouverts.
Lors de la détection d’une défaillance de la source d’ alimentation, de l’ ensemble propulsif ou de la ligne d’ alimentation principale du dispositif, ledit dispositif est reconfiguré pour alimenter l’ ensemble propulsif à partir d’un autre dispositif.
L’ architecture des dispositifs permet d’ assurer une redondance d’ alimentation de l’ ensemble propulsif relié au dispositif.
Une haute tension continue est définie comme étant une tension continue supérieure à 270 volts.
De préférence, la ligne d’ alimentation principale s’ étend entre des bornes d’ entrée destinées à être reliées à la source et des bornes de sorties destinées à être reliées à l’ensemble propulsif, la ligne d’ alimentation principale comprenant un bus de puissance relié aux bornes de sortie et relié aux bornes d’ entrée par l’ intermédiaire de moyens de commutation principaux et de moyens de commutation rapide, et la ligne d’ alimentation secondaire est reliée au bus par l’ intermédiaire de moyens de commutation secondaires et comportant des bornes d’ entrée destinées à être reliées à des bornes d’ entrée de la ligne d’ alimentation secondaire de l’ autre dispositif, le dispositif comportant en outre des moyens de commande configurés pour ouvrir les moyens de commutation principaux et les moyens de commutation rapide, et des deuxièmes moyens de commande configurés pour fermer les moyens de commutation secondaires lors de la détection d’une défaillance de l’ ensemble propulsif, de la ligne d’ alimentation principale ou de la source.
Avantageusement, la ligne d’ alimentation principale s’ étend entre des bornes d’ entrée destinées à être reliées à la source et des bornes de sorties destinées à être reliées à l’ ensemble propulsif, la ligne d’ alimentation principale comprenant un bus de puissance et une ligne de puissance, le bus étant relié aux bornes de sortie et relié aux bornes d’ entrée par l’intermédiaire des moyens de commutation principaux et de moyens de commutation rapide, la ligne de puissance étant reliée entre les bornes d’ entrée et les moyens de commutation principaux et étant destinée à être reliée à la ligne d’ alimentation secondaire de l’ autre dispositif, et la ligne d’ alimentation secondaire est reliée au bus par l’intermédiaire de moyens de commutation secondaires et comportant des bornes d’ entrée destinées à être reliées à des bornes d’ entrée de la ligne de puissance de l’ autre dispositif, le dispositif comportant en outre des moyens de commande configurés pour ouvrir les moyens de commutation principaux et les moyens de commutation rapide, et des deuxièmes moyens de commande pour fermer les moyens de commutation secondaires lors de la détection d’une défaillance de l’ ensemble propulsif, de la ligne d’ alimentation principale ou de la source.
De préférence, le dispositif comprend en outre des bornes de charge reliées entre les bornes d’ entrée et les moyens de commutation principaux ou entre les moyens de commutation principaux et les moyens de commutation rapide par l’ intermédiaire de moyens de commutation de charge et destinées à charger la source d’ alimentation réversible à partir d’un chargeur, les moyens de commande étant en outre configurés pour fermer les moyens de commutation de charge pour charger la source réversible.
Avantageusement, la ligne d’ alimentation principale s’ étend entre des bornes d’ entrée destinées à être reliées à la source et des bornes de sorties destinées à être reliées à l’ ensemble propulsif, la ligne d’ alimentation principale comprenant un bus de puissance relié aux bornes de sortie par l’ intermédiaire de moyens de commutation rapide et relié aux bornes d’ entrée par l’intermédiaire des moyens de commutation principaux et comprenant des bornes de charge reliées par l’ intermédiaire des moyens de commutation de charge entre les bornes d’ entrée et les moyens de commutation principaux et destinées à être reliées à un chargeur et aux bornes de charge de l’ autre dispositif, et la ligne d’ alimentation secondaire comprend des deuxièmes bornes de sortie reliées au bus par l’intermédiaire de moyens de commutation secondaires et destinées à être reliées aux bornes de sortie de l’ autre dispositif, le dispositif comprenant en outre des moyens de commande configurés pour ouvrir les moyens de commutation principaux, les moyens de commutation rapide et les moyens de commutation secondaires lors de la détection d’une défaillance de l’ ensemble propulsif, de la ligne d’ alimentation principale ou de la source.
Il est également proposé un système de propulsion comprenant au moins deux dispositifs identiques tels que définis précédemment, dans lequel les bornes d’ entrée de la ligne d’ alimentation secondaire d’un premier dispositif sont reliées aux bornes d’ entrée de la ligne d’ alimentation secondaire du deuxième dispositif.
De préférence, le système de propulsion comprend au moins deux dispositifs identiques tels que définis précédemment, dans lequel les bornes d’ entrée de la ligne de puissance d’un premier dispositif sont reliées aux bornes d’ entrée de la ligne d’ alimentation secondaire du deuxième dispositif.
Avantageusement, le système de propulsion comprend au moins quatre dispositifs identiques tels que définis précédemment, dans lequel les bornes d’ entrée de la ligne de puissance d’un premier dispositif sont reliées aux bornes d’ entrée de la ligne d’ alimentation secondaire d’un deuxième dispositif, les bornes d’entrée de la ligne d’ alimentation secondaire du premier dispositif sont reliées aux bornes d’ entrée de la ligne de puissance d’un troisième dispositif, les bornes d’ entrée de la ligne de puissance du deuxième dispositif sont reliées aux bornes d’ entrée de la ligne d’ alimentation secondaire du quatrième dispositif, et les bornes d’ entrée de la ligne de puissance du quatrième dispositif sont reliées aux bornes d’ entrée de la ligne d’ alimentation secondaire du troisième dispositif.
De préférence, le système de propulsion comprend au moins deux dispositifs identiques tels que définis précédemment, dans lequel les bornes de charge d’un premier dispositif sont reliées aux bornes de charge du deuxième dispositif, et dans lequel au moins une paire de bornes de sortie de la ligne d’ alimentation principale du premier dispositif est reliée à une paire de bornes d’ entrée de la ligne d’ alimentation secondaire du deuxième dispositif.
Il est également proposé un aéronef comprenant un système de propulsion tel que défini précédemment. Brève description des dessins
D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d'exemple non limitatif, et faite en référence aux dessins annexés sur lesquels :
[Fig 1 ] illustre schématiquement un aéronef selon l’invention ;
[Fig 2] illustre schématiquement un premier mode de réalisation d’un module de distribution électrique selon l’invention ;
[Fig 3] illustre schématiquement un deuxième mode de réalisation du module de distribution électrique selon l’ invention ;
[Fig 4] illustre schématiquement un troisième mode de réalisation du module de distribution électrique selon l’ invention ; et
[Fig 5] illustre schématiquement un quatrième mode de réalisation du module de distribution électrique selon l’ invention.
Exposé détaillé d’au moins un mode de réalisation
On se réfère à la figure 1 qui illustre schématiquement un aéronef 1 comprenant un système 2 de propulsion.
Le système 2 de propulsion comprend deux machines électriques tournantes 3 , 4 disposées chacune de part et d’ autre d’un axe longitudinal de l’ aéronef 1 et munies chacune d’une hélice pour propulser l’ aéronef 1.
En variante, l’ aéronef 1 peut comprendre plus de deux machines électriques tournantes 3, 4 disposées en nombre égal de part et d’ autre de l’ axe longitudinal de l’ aéronef 1.
Selon encore une autre variante, l’ aéronef 1 peut comprendre une seule machine électrique tournante.
Le système 2 de propulsion comprend en outre un module de distribution électrique 5 comportant deux dispositifs 6, 7 de distribution de puissance électrique identiques, quatre convertisseurs de puissance 8, 9, 10, 1 1 alimentant chacun l’une des machines électriques tournantes 3, 4, et deux sources 12, 13 de tension électrique continue.
Un premier convertisseur 8 est relié à une première et une deuxième bornes de sortie 14, 15 d’un premier dispositif 6 de distribution de puissance électrique, et un deuxième convertisseur 9 est relié à une troisième et une quatrième bornes de sortie 16, 17 du premier dispositif 6 de distribution de puissance électrique.
Le premier convertisseur 8 alimente la première machine 3 et le deuxième convertisseur 9 alimente la deuxième machine 4.
Une première source 12 est reliée à des bornes d’ entrée 18, 19 du premier dispositif 6.
Un troisième convertisseur 10 est relié à une première et une deuxième bornes de sortie 20, 21 du deuxième dispositif 7 de distribution de puissance électrique, et le quatrième convertisseur 1 1 est relié à une troisième et une quatrième bornes de sortie 22, 23 du deuxième dispositif 7 de distribution de puissance électrique.
Le troisième convertisseur 10 alimente la première 3 et le quatrième convertisseur 1 1 alimente la deuxième machine 4.
La deuxième source 13 est reliée à des bornes d’ entrée 24, 25 du deuxième dispositif 7.
En variante, le premier convertisseur 8 et le troisième convertisseur 10 peuvent être intégrés dans la première machine électrique tournante 3, et le deuxième convertisseur 9 et le quatrième convertisseur 1 1 peuvent être intégrés dans la deuxième machine électrique tournante 4.
Chaque source 12, 13 comprend par exemple une pile à combustible, une batterie ou une génératrice de tension continue.
Chaque source 12, 13 peut être réversible de sorte qu’ elle peut être rechargée à partir d’un réseau d’ alimentation électrique à l’ aéronef 1 ou à partir de l’ énergie électrique produite par une génératrice électrique disposée dans l’ aéronef 1 ou à l’ extérieur de l’ aéronef 1 et reliée à la source 12, 13.
Le premier dispositif 6 est alimenté par la première source 12, et alimente en tension continue les premier et deuxième convertisseurs 8, 9.
Le deuxième dispositif 7 est alimenté par la deuxième source 13 , et alimente en tension continue les troisième et quatrième convertisseurs 10, 1 1.
Le premier convertisseur 8 alimente la première machine 3 et le deuxième convertisseur 9 alimente la deuxième machine 4. Le troisième convertisseur 10 alimente la première machine 3 et le quatrième convertisseur 1 1 alimente la deuxième machine 4.
Les première et deuxième machines 3, 4 sont chacune alimentées indépendamment par deux convertisseurs 8, 10, 9, 1 1 de sorte que si l’un des deux convertisseurs est défaillant, ladite machine est alimentée par l’ autre convertisseur.
En variante, chaque machine peut être alimentée par plus de deux convertisseurs de puissance indépendants.
Les convertisseurs 8 à 1 1 sont du type onduleur et transforment une tension continue reçue des premier et deuxième dispositifs 6, 7 en une tension variable pour piloter les machines 3, 4.
Les première et deuxième machines 3, 4 alimentées par les premier et deuxième convertisseurs 8 , 9 forment un premier ensemble propulsif.
Le premier dispositif 6, la première source 12, et le premier ensemble propulsif forment un premier canal de propulsion 26.
Les première et deuxième machines 3, 4 alimentées par les troisième et quatrième convertisseurs 10, 1 1 forment un deuxième ensemble propulsif.
Le deuxième dispositif 7, la deuxième source 13, et le deuxième ensemble propulsif forment un deuxième canal de propulsion 27.
Bien entendu, le système 2 peut comprendre plus de deux canaux de propulsion.
Chaque canal de propulsion 26, 27 fonctionne de manière indépendante de sorte que si l’un des canaux 26, 27 est défaillant, l’ autre canal permet de maintenir l’ aéronef 1 en vol.
La figure 2 illustre schématiquement un premier mode de réalisation du module de distribution électrique 5.
Les premier et deuxième dispositifs 6, 7 comprennent en outre des deuxièmes bornes d’ entrée 28, 29, 30, 31.
Les deuxièmes bornes d’ entrée 28, 29 du premier dispositif 6 sont reliées aux deuxièmes bornes d’ entrée 30, 31 du deuxième dispositif 7.
Chaque dispositif 6, 7 peut en outre comprendre des bornes de charge 32, 33, 34, 35. Comme les premier et deuxième dispositifs 6, 7 sont identiques, seul le premier dispositif 6 est détaillé.
Le premier dispositif 6 comprend une ligne d’ alimentation principale 36, une ligne d’ alimentation secondaire 37, et des moyens de commande 38.
Les moyens de commande 38 sont réalisés par exemple à partir d’un contrôleur aéronautique.
La ligne d’ alimentation principale 36 comporte des moyens de commutation principaux 39 comportant par exemple un contacteur principal, des moyens de commutation rapide 40 réalisés à partir de semi-conducteurs, et un bus de puissance 41 de type haute tension continue.
Une haute tension continue est définie comme étant une tension continue supérieure à 270 volts.
Les moyens de commande 38 sont interfacés aux moyens de commutation principaux 39 et aux moyens de commutation rapide 40.
Les moyens de commutation principaux 39 sont reliés aux bornes d’ entrée 18, 19 et à des bornes d’ entrée des moyens de commutation rapide 40.
Des bornes de sortie des moyens de commutation rapide 40 sont reliées au bus 41 alimentant les bornes de sortie 14 à 17.
Les bornes de sortie 14 à 17 peuvent chacune être reliées au bus 41 par l’ intermédiaire de moyens de protection 80 comportant par exemple un interrupteur pyrotechnique (« pyroswitch » en anglais) ou un contacteur.
Les moyens de protection 80 permettent d’ isoler électriquement l’un des convertisseurs 8, 9 défaillant en continuant d’ alimenter l’ autre convertisseur 9, 8.
Les moyens de commutation rapide 40 connus sous l’ acronyme « SSPC » « Solide state power controller » contrôlent et protègent l’ alimentation électrique des bornes de sortie 14 à 17 à partir de la première source 12 reliée aux bornes d’ entrée 18, 19, et sont reliés aux moyens de commande 38. La ligne d’ alimentation secondaire 37 comprend des moyens de commutation secondaires 42 comportant par exemple un contacteur relié aux deuxièmes bornes d’entrée 28, 29 et au bus 41.
Les moyens de commutation rapide 40 comprennent un dispositif de précharge des condensateurs connectés au bus 41. Le dispositif de précharge est actif à la fermeture des moyens de commutation rapide 40 afin d’ assurer une montée en tension du bus 41 suffisamment lente pour minimiser les appels de courant de la source 12 connectée aux bornes d’ entrée 18 , 19.
Les moyens de commutation secondaires 42 comprennent un dispositif de précharge des condensateurs connectés au bus 41. Le dispositif de précharge est actif à la fermeture des moyens de commutation secondaires 40 afin d’ assurer une montée en tension du bus 41 suffisamment lente pour minimiser les appels de courant de la source 12 connectée aux deuxièmes bornes d’entrée 28, 29.
Les moyens de commutation secondaires 42 sont pilotés par les moyens de commande 38.
Chaque borne 14 à 19, 28 , 29, 32 et 33 est équipée d’un capteur de tension et d’un capteur de courant relié aux moyens de commande 38.
On suppose que les moyens de commutation principaux 39 et les moyens de commutation rapide 40 sont fermés de sorte que la première source 12 alimente les bornes de sortie 14 à 17 , et les moyens de commutation secondaires 42 sont ouverts.
Lorsque les moyens de commande 38 détectent une défaillance du premier ensemble propulsif, de la ligne d’ alimentation principale 36 ou de la première source 12, par exemple un court-circuit ou une surcharge, à partir des grandeurs mesurées par les capteurs de tension, les capteurs de courants, et des informations transmises par les moyens de commutation rapide 39, les moyens de commande 38 commandent les moyens de commutation principaux 39 et les moyens de commutation rapide 40 de sorte que les moyens de commutation principaux 39 et les moyens de commutation rapide 40 s’ ouvrent.
Les moyens de commutation principaux 39 et les moyens de commutation rapide 40 permettent d’ isoler le premier ensemble propulsif ou la première source afin d’ empêcher une propagation de la défaillance à d’ autres organes de l’ aéronef 1.
Le bus 41 n’ est plus alimenté en tension continue par la première source 12.
Chaque dispositif 6, 7 comprend en outre des deuxièmes moyens de commande 43 réalisés par exemple à partir d’un contrôleur aéronautique.
Les deuxièmes moyens de commande 43 des premier et deuxième dispositifs 6, 7 communiquent entre eux.
Si la défaillance est localisée en amont des moyens de commutation principaux 39, entre les moyens de commutation 39 et les bornes d’ entrée 18, 19, les moyens de commande 38 peuvent piloter les moyens de commutation secondaires 42 de sorte qu’ il soit en position fermée lorsque que les moyens de commutation principaux 39 sont ouverts, et communiquent avec les deuxièmes moyens de commande 43 de sorte que les moyens de commande du deuxième dispositif 7 ferment le contacteur secondaire du deuxième dispositif 7.
En outre, le défaut en amont des moyens de commutation principaux 39 est isolé par la source 12 alimentant le premier dispositif 6 de sorte que le défaut ne se propage pas dans le canal de propulsion.
Les moyens de commutation principaux 39 et les moyens de commutation secondaires 42 ne sont pas simultanément fermés pour empêcher la mise en parallèle des sources 12, 13 aux bornes d’ entrée 18, 19 et aux bornes deuxièmes bornes d’ entrée 28, 29.
La fermeture des moyens de commutation secondaires des premier et deuxième dispositifs 6, 7 permet d’ alimenter le bus 41 du premier dispositif 6 à partir de la deuxième source 13 de manière à alimenter de manière redondante les première et deuxième machines 3, 4 lors de la défaillance de la première source 12.
Bien entendu, si la deuxième source 13 est défaillante, les dispositifs 6, 7 sont configurés de sorte que le premier dispositif 6 alimente le bus de puissance du deuxième dispositif 7.
La reconfiguration des premier et deuxième dispositifs 6, 7 lors de la détection d’une défaillance de l’une des sources 12, 13 permet d’ alimenter l’ ensemble propulsif relié à la source défaillante par la source fonctionnelle.
Les moyens de commutation rapide 40 et les moyens de commutation principaux secondaires 42 sont de technologie différente de manière à obtenir une dissymétrie des organes de commutation pour améliorer la fiabilité des dispositifs 6, 7.
Les moyens de commutation principaux 39 et secondaires 42 seront pilotés de façon indépendante pour assurer une dissimilarité du contrôle du dispositif 6, 7. Les moyens de commutation principaux 39 sont pilotés par les moyens de commande 38 tandis que les moyens de commutation secondaires 42 sont pilotés par les deuxièmes moyens de commande 43.
Le premier dispositif 6 comprend en outre des moyens de commutation de charge 44 assurant la charge de la source 12 réversible commandés par les moyens 38 et reliant les bornes de charge 32, 33 à la ligne d’ alimentation principale 36 entre les bornes d’ entrée 18, 19 et les moyens de commutation principaux 39.
Les moyens de commutation de charge 44 comportent par exemple un contacteur.
Lorsque les moyens de commutation de charge 44 sont fermés, les bornes de charge 32, 33 rechargent la première source 12 à partir d’un chargeur 100 relié à un réseau d’ alimentation électrique terrestre lorsque l’ aéronef 1 est au sol, la première source 12 comprenant chacune une batterie réversible.
En variante, les moyens de commutation de charge 44 sont reliés entre les moyens de commutation principaux 39 et les moyens de commutation rapide 40.
Selon une autre variante, le premier dispositif 6 ne comprend pas de bornes de charge 32, 33 et de contacteur de charge 44. La charge de la source 12 est alors effectuée à travers les moyens de commutation secondaires 42.
La figure 3 illustre schématiquement un deuxième mode de réalisation du module de distribution électrique 5.
On retrouve les premier et deuxième dispositifs 6, 7 comportant la ligne d’ alimentation principale 36, la ligne d’ alimentation secondaire 37, les bornes de charges 32, 33, 34, 35 , et les moyens de protection 80 tels que décrites précédemment.
Les premier et deuxième dispositifs 6, 7 comprennent en outre des bornes de puissance 45, 46, 47, 48 reliées aux bornes d’ entrée 18 , 19, 30, 31 par l’ intermédiaire d’une ligne de puissance 49.
Les bornes de puissance 45, 46 du premier dispositif 6 sont reliées aux deuxièmes bornes 30, 31 d’ entrée du deuxième dispositif 7, et les bornes de puissance 47, 48 du deuxième dispositif 7 sont reliées aux deuxièmes bornes 28 , 29 d’ entrée du premier dispositif 6.
De manière analogue au premier mode de réalisation illustré à la figure 2, lorsque les moyens de commande 38 détectent une défaillance du premier ensemble propulsif ou de la première source 12, les moyens de commande 38 commandent les moyens de commutation principaux 39 et les moyens de commutation rapide 40 de sorte que les moyens de commutation principaux 39 et les moyens de commutation rapide 40 sont ouverts.
Si la défaillance est localisée en amont du bus 41 , entre le bus 41 et les bornes d’ entrée 18, 19, les moyens de commande 38 pilotent les moyens de commutation secondaires 42 de sorte qu’ils sont en position fermée.
La fermeture des moyens de commutation secondaires 42 du premier dispositif 6 permet d’ alimenter le bus 41 du premier dispositif 6 à partir de la deuxième source 13 de manière à alimenter de manière redondante les première et deuxième machines 3, 4 lors de la défaillance de la première source 12.
Dans ce mode de réalisation, la puissance électrique totale échangée entre les deux dispositifs 6, 7 transite par la ligne d’ alimentation principale 36 et la ligne de puissance 49 permettant de dimensionner les moyens de commutation principaux 39 et les moyens de commutation rapide 40, et le bus 41 de la ligne d’ alimentation principale 36, et en outre les moyens de commutation secondaires 42 selon les puissances électriques délivrées aux bornes de sorties 14 à 17 et 20 à 23 des deux dispositifs 6, 7 réduisant l’encombrement et le poids des moyens de commutation 39, 40, 42 et du bus 41.
La masse et le volume des deux dispositifs 6, 7 sont réduits. La figure 4 illustre schématiquement un troisième mode de réalisation du module de distribution électrique 5.
Le module 5 comprend quatre dispositifs 6, 7, 50, 51 identiques tels que définis dans le deuxième mode de réalisation du module de distribution électrique 5 illustré à la figure 3.
Dans ce mode de réalisation, les quatre dispositifs 6, 7, 50, 51 sont reliés entre eux par permutation circulaire.
Chaque dispositif 6, 7, 50, 51 alimente un ensemble propulsif différent.
Chaque dispositif 6, 7, 50, 51 et son ensemble propulsif associé forment un canal de propulsion de sorte que les quatre canaux de propulsion alimentent par exemple quatre machines électriques tournantes.
Seules les bornes d’ entrée 28, 29, 30, 31 , 52, 53, 54, 55 de la ligne d’ alimentation secondaire des dispositifs 6, 7, 50, 51 et les bornes d’ entrée 45, 46, 47 , 48, 56, 57, 58, 59 de la ligne de puissance des dispositifs 6, 7, 50, 51 sont illustrées.
Les bornes d’ entrée 45, 46 de la ligne de puissance du premier dispositif 6 sont reliées aux bornes d’ entrée 30, 31 de la ligne d’ alimentation secondaire du deuxième dispositif 7.
Les bornes d’ entrée 28, 29 de la ligne d’ alimentation secondaire du premier dispositif 6 sont reliées aux bornes d’ entrée 56, 57 de la ligne de puissance d’un troisième dispositif 50.
Les bornes d’ entrée 47, 48 de la ligne de puissance du deuxième dispositif 7 sont reliées aux bornes d’ entrée 54, 55 de la ligne d’ alimentation secondaire du quatrième dispositif 51.
Les bornes d’entrée de la ligne de puissance 58 , 59 du quatrième dispositif 51 sont reliées aux bornes d’ entrée 52, 53 de la ligne d’ alimentation secondaire du troisième dispositif 50.
La figure 5 illustre schématiquement un quatrième mode de réalisation du module de distribution électrique 5.
On retrouve les premier et deuxième dispositifs 6, 7 identiques comportant les bornes de sortie 14 à 17 et 20 à 23, les bornes d’ entrée 18, 19, 24, 25, les bornes de charges 32, 33, 34, 35. Comme les dispositifs 6 et 7 sont identiques, seule l’ architecture du premier dispositif 6 est décrite.
Le premier dispositif 6 comprend une ligne d’ alimentation principale 60 s’ étendant entre des bornes d’ entrée 18 , 19 et les bornes de sorties 14 à 17.
La ligne d’ alimentation principale 60 comprend le bus de puissance 41 relié aux bornes de sortie 14 à 17 par l’intermédiaire de deux moyens de commutation rapide de type semi-conducteurs SSPC 61 , 62 contrôlant chacun une paire de bornes de sortie 14 à 17 différente, et relié aux bornes d’ entrée 18, 19 par l’ intermédiaire des moyens de commutation principaux 39.
Les bornes de charge 32, 33 sont reliées à la ligne d’ alimentation principale 60 entre les bornes d’entrée 18, 19 et les moyens de commutation principaux 39 par l’ intermédiaire des moyens de commutation de charge 44.
Les moyens de commutation rapide 61 et 62 comprennent le dispositif de précharge pour empêcher un sur-courant lors de la connexion des machines électriques tournantes 3, 4 au bus 41.
Le premier dispositif 6 comprend en outre une ligne d’ alimentation secondaire 63 comprenant des deuxièmes bornes de sortie 64 à 67 reliées au bus 41 par des premiers et deuxièmes moyens de commutation secondaires 68, 69, les premiers moyens de commutation secondaires 68 reliant les deuxièmes bornes de sortie 64, 65 au bus 41 , et les deuxièmes moyens de commutation secondaires 69 reliant les deuxièmes bornes de sortie 66, 67 au bus 41.
Les moyens de commutation 68 et 69 comprennent un dispositif de précharge de condensateurs des machines électriques tournantes 3, 4 permettant de charger lentement les condensateurs desdites machines électriques pour empêcher un sur-courant lors de la connexion des moteurs au bus 41 .
Les moyens de commutation rapide 61 et 62 d’une part et les moyens de commutation secondaires 68 et 69 d’ autre part sont de technologie dissimilaire et sont dissimilaires sur leur contrôle afin de se prémunir des modes communs des moyens de commutation rapide et des moyens de commutation secondaires. Le premier dispositif 6 comprend en outre des moyens de commande 70 réalisés par exemple à partir d’un contrôleur.
Les bornes d’ entrée de la ligne d’ alimentation secondaire du deuxième dispositif 7 sont notées 71 , 72, 73, 74.
Les bornes de charges 32, 33 du premier dispositif 6 sont reliées aux bornes de charges 34, 35 du deuxième dispositif 7.
Une première paire de deuxièmes bornes de sortie 64, 65 reliées aux premiers moyens de commutation secondaires 68 est reliée à une deuxième paire de bornes de sortie 22, 23 du deuxième dispositif 7.
La deuxième paire de bornes de sortie 66, 67 reliées aux deuxièmes moyens de commutation secondaires 69 est reliée à la première paire de bornes de sortie 21 , 22 du deuxième dispositif 7.
Une première paire de bornes de sortie 71 , 72 de la ligne d’ alimentation secondaire du deuxième dispositif 7 est reliée à une première paire de bornes de sorties 14, 15.
La deuxième paire de bornes de sortie 73, 74 de la ligne d’ alimentation secondaire du deuxième dispositif 7 est reliée à la deuxième paire de bornes de sorties 16, 17.
Les moyens de commutation principaux 39, les moyens de commutation rapide 61 , 62 des dispositifs 6 et 7 sont fermés tandis que les premiers et deuxièmes moyens de commutation secondaires 68, 69 des dispositifs 6 et 7 sont ouverts en fonctionnement normal.
Les moyens de commutation de charge 44 des premier et deuxième dispositifs 6, 7 sont initialement ouvert.
Lors de la défaillance de la source 12 ou de l’ ensemble propulsif du premier dispositif 6, les moyens de commande 70 ouvrent les moyens de commutation principaux 39, les moyens de commutation rapide 61 , 62, et les moyens de commutation secondaires 68 , 69.
Comme les bornes de sortie 14 à 17 du premier dispositif 6 sont reliées aux bornes d’ entrée 71 , 72, 73, 74 de la ligne d’ alimentation secondaire du deuxième dispositif 7, le premier ensemble propulsif est alimenté par le deuxième dispositif 7.
En outre, si la source 12 n’ est pas défaillante, les moyens 70 ferment les moyens de commutation de charge 44 permettant de paralléliser les sources 12, 13. Lors de la détection d’une défaillance d’une source ou de la ligne d’ alimentation principale, les premier et deuxième dispositifs 6, 7 sont reconfigurés pour alimenter l’ ensemble propulsif à partir d’une source fonctionnelle. Lors de la charge de la source 12 réversible par le chargeur 100, les moyens de commande 70 ferment les moyens de commutation de charge.
Lors de la détection d’une défaillance durant la charge de la source 12, les moyens de commande 70 ouvrent les moyens de commutation de charge.
L’ architecture des dispositifs 6, 7 permet d’ assurer une redondance d’ alimentation des ensembles propulsifs à partir de sources identiques ou à partir de sources de différentes natures, le premier dispositif 6 étant par exemple alimenté par une pile à combustible et le deuxième dispositif 7 étant par exemple alimenté par une génératrice de tension continue.

Claims

REVENDICATIONS
1. Dispositif (6, 7) de distribution de puissance électrique en tension continue pour canal de propulsion (26, 27) d’un aéronef ( 1 ), comprenant une ligne d’ alimentation principale (36, 60) destinée à alimenter au moins un ensemble propulsif du canal de propulsion à partir d’une source d’ alimentation électrique ( 12, 13) en haute tension continue et comportant des moyens de commutation principaux (39) pour relier ladite source audit ensemble propulsif, le dispositif comprenant une ligne d’ alimentation secondaire (37, 63) destinée à être reliée à un autre dispositif de distribution (7, 6) et configurée pour alimenter ledit ensemble propulsif à partir de l’ autre dispositif lorsque les moyens de commutation principaux sont ouverts, la ligne d’ alimentation principale (36) s’ étendant entre des bornes d’ entrée ( 18, 19) destinées à être reliées à la source ( 12) et des bornes de sorties ( 14, 15, 16, 17) destinées à être reliées à l’ ensemble propulsif (26), la ligne d’ alimentation principale comprenant un bus de puissance (41 ) relié aux bornes de sortie et relié aux bornes d’ entrée par l’ intermédiaire des moyens de commutation principaux (39) et de moyens de commutation rapide (40), et la ligne d’ alimentation secondaire (37) étant reliée au bus par l’ intermédiaire de moyens de commutation secondaires (42) et comportant des bornes d’ entrée (28 , 29) destinées à être reliées à des bornes d’ entrée (30, 31 ) de la ligne d’ alimentation secondaire de l’ autre dispositif (7), le dispositif comportant en outre des moyens de commande (38) configurés pour ouvrir les moyens de commutation principaux et les moyens de commutation rapide, et des deuxièmes moyens de commande (43) configurés pour fermer les moyens de commutation secondaires lors de la détection d’une défaillance de l’ ensemble propulsif, de la ligne d’ alimentation principale ou de la source, caractérisé en ce que le dispositif comprend en outre des bornes de charge (32, 33) reliées entre les bornes d’ entrée ( 18 , 19) et les moyens de commutation principaux (39) ou entre les moyens de commutation principaux (39) et les moyens de commutation rapide (40) par l’ intermédiaire de moyens de commutation de charge (44) et destinées à charger la source d’ alimentation ( 12) réversible à partir d’un chargeur ( 100), les moyens de commande étant en outre configurés pour fermer les moyens de commutation de charge pour charger la source réversible.
2. Système de propulsion (2) comprenant au moins deux dispositifs (6, 7) identiques selon la revendication 1 , dans lequel les bornes d’ entrée (28, 29) de la ligne d’ alimentation secondaire (37) d’un premier dispositif (6) sont reliées aux bornes d’ entrée (30, 31 ) de la ligne d’ alimentation secondaire du deuxième dispositif (7) .
3. Aéronef ( 1 ) comprenant un système de propulsion (2) selon la revendication 2.
PCT/FR2023/050155 2022-02-14 2023-02-06 Dispositif de distribution de puissance électrique en tension continue, système de propulsion et aéronef associés WO2023152439A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2201288A FR3132696A1 (fr) 2022-02-14 2022-02-14 Dispositif de distribution de puissance électrique en tension continue, système de propulsion et aéronef associés
FR2201288 2022-02-14

Publications (1)

Publication Number Publication Date
WO2023152439A1 true WO2023152439A1 (fr) 2023-08-17

Family

ID=81346611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/050155 WO2023152439A1 (fr) 2022-02-14 2023-02-06 Dispositif de distribution de puissance électrique en tension continue, système de propulsion et aéronef associés

Country Status (2)

Country Link
FR (1) FR3132696A1 (fr)
WO (1) WO2023152439A1 (fr)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8344544B2 (en) * 2010-05-19 2013-01-01 Hamilton Sundstrand Corporation Bus-tie SSPCS for DC power distribution system
EP2980946A1 (fr) 2014-08-01 2016-02-03 Thales Reseau electrique d'un aeronef
EP3123009A1 (fr) * 2014-03-27 2017-02-01 Safran Helicopter Engines Dispositif d'assistance pour une turbomachine à turbine libre d'aéronef
FR3050882A1 (fr) 2016-04-29 2017-11-03 Thales Sa Reseau electrique d'un aeronef
FR3065840A1 (fr) * 2017-04-28 2018-11-02 Airbus Helicopters Systeme de generation et de distribution electrique et aeronef
WO2019145777A1 (fr) * 2018-01-25 2019-08-01 H55 Sa Système d'alimentation ou d'entraînement électrique pour un moteur dans un aéronef à propulsion électrique
EP3588729A1 (fr) 2018-06-22 2020-01-01 Thales Architecture électrique d'aéronef, aéronef comprenant l'architecture et procédé de fonctionnement de l'architecture
EP3683911A1 (fr) 2019-01-15 2020-07-22 Mitsubishi Electric R & D Centre Europe B.V. Procédé de protection contre les défaillances pour un réseau de courant continu à haute tension
EP3703220A1 (fr) 2019-03-01 2020-09-02 The Boeing Company Commande de tension active pour aéronef électrique hybride
WO2020174165A1 (fr) 2019-02-26 2020-09-03 Safran Helicopter Engines Architecture propulsive hybride-électrique et procédé de dissipation d'énergie électrique dans une telle architecture
FR3098663A1 (fr) 2019-07-08 2021-01-15 Safran Electrical & Power Architecture de transfert de l’énergie électrique régénérée dans un aéronef et procédé de transfert de l’énergie électrique régénérée dans une telle architecture

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8344544B2 (en) * 2010-05-19 2013-01-01 Hamilton Sundstrand Corporation Bus-tie SSPCS for DC power distribution system
EP3123009A1 (fr) * 2014-03-27 2017-02-01 Safran Helicopter Engines Dispositif d'assistance pour une turbomachine à turbine libre d'aéronef
EP2980946A1 (fr) 2014-08-01 2016-02-03 Thales Reseau electrique d'un aeronef
FR3050882A1 (fr) 2016-04-29 2017-11-03 Thales Sa Reseau electrique d'un aeronef
FR3065840A1 (fr) * 2017-04-28 2018-11-02 Airbus Helicopters Systeme de generation et de distribution electrique et aeronef
WO2019145777A1 (fr) * 2018-01-25 2019-08-01 H55 Sa Système d'alimentation ou d'entraînement électrique pour un moteur dans un aéronef à propulsion électrique
EP3588729A1 (fr) 2018-06-22 2020-01-01 Thales Architecture électrique d'aéronef, aéronef comprenant l'architecture et procédé de fonctionnement de l'architecture
EP3683911A1 (fr) 2019-01-15 2020-07-22 Mitsubishi Electric R & D Centre Europe B.V. Procédé de protection contre les défaillances pour un réseau de courant continu à haute tension
WO2020174165A1 (fr) 2019-02-26 2020-09-03 Safran Helicopter Engines Architecture propulsive hybride-électrique et procédé de dissipation d'énergie électrique dans une telle architecture
EP3703220A1 (fr) 2019-03-01 2020-09-02 The Boeing Company Commande de tension active pour aéronef électrique hybride
FR3098663A1 (fr) 2019-07-08 2021-01-15 Safran Electrical & Power Architecture de transfert de l’énergie électrique régénérée dans un aéronef et procédé de transfert de l’énergie électrique régénérée dans une telle architecture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARK JAE-DO ET AL: "DC Ring-Bus Microgrid Fault Protection and Identification of Fault Location", IEEE TRANSACTIONS ON POWER DELIVERY, IEEE SERVICE CENTER, NEW YORK, NY, US, vol. 28, no. 4, 1 October 2013 (2013-10-01), pages 2574 - 2584, XP011528444, ISSN: 0885-8977, [retrieved on 20130930], DOI: 10.1109/TPWRD.2013.2267750 *

Also Published As

Publication number Publication date
FR3132696A1 (fr) 2023-08-18

Similar Documents

Publication Publication Date Title
EP3823899B1 (fr) Aeronef multi-rotors comprenant un systeme de propulsion et de generation electrique non propulsive
EP2830938B1 (fr) Dispositif d'alimentation électrique d'un aéronef au sol
FR3039313B1 (fr) Dispositif reconfigurable de stockage d'energie par effet capacitif, systeme d'alimentation et vehicule electrique integrant ce dispositif
EP2845806B1 (fr) Aéronef comprenant un dispositif de commande d'une tuyère à section variable alimentè par deux alimentations électriques indépendantes
WO2020217007A1 (fr) Réseau d'alimentation en énergie électrique pour aéronef
EP4061718A1 (fr) Architecture électrique pour un aéronef à propulsion hybride thermique/électrique et aéronef bimoteurs comprenant une telle architecture
EP3276774B1 (fr) Architecture électrique a doublé réseau électrique secondaire pour le démarrage des moteurs d'un aéronef
EP3771059A1 (fr) Procédé d'alimentation électrique d'un réseau électrique et architecture électrique
FR3053851A1 (fr) Dispositif de commande d'un systeme d'alimentation pour vehicule a couplage pile a combustible/batteries
WO2023152439A1 (fr) Dispositif de distribution de puissance électrique en tension continue, système de propulsion et aéronef associés
EP3981056B1 (fr) Dispositif et systeme rechargeables de stockage d'energie electrique, vehicule et installation munis d'un tel systeme
WO2020201639A1 (fr) Installation propulsive hybride pour un aéronef
WO2022148926A1 (fr) Aeronef a source d'energie hybride
WO2021089948A1 (fr) Architecture propulsive hybride et aéronef comportant une telle architecture
EP3972901B1 (fr) Chaine propulsive hybride pour aéronef comportant un système auxiliaire d'entrainement mécanique
WO2020157403A1 (fr) Systeme de propulsion d'aeronef
EP1519467B1 (fr) Dispositif d'alimentation d'un équipement et système d'alimentation d'équipement
FR3095195A1 (fr) Procéde de commande d’un réseau d’alimentation électrique d’un aéronef
WO2023198998A1 (fr) Aeronef a source d'energie hybride
WO2023148451A1 (fr) Unité de commande de la puissance d'au moins une batterie, aéronef comprenant ladite unité de commande et procédé de commande correspondant
FR3095415A1 (fr) Système propulsif pour aéronef multi-rotor avec réseau d’unités de stockage d’énergie électrique reconfigurable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23706825

Country of ref document: EP

Kind code of ref document: A1