WO2023151605A1 - 测量方法、装置、相关设备及存储介质 - Google Patents

测量方法、装置、相关设备及存储介质 Download PDF

Info

Publication number
WO2023151605A1
WO2023151605A1 PCT/CN2023/075063 CN2023075063W WO2023151605A1 WO 2023151605 A1 WO2023151605 A1 WO 2023151605A1 CN 2023075063 W CN2023075063 W CN 2023075063W WO 2023151605 A1 WO2023151605 A1 WO 2023151605A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
measurement
reference symbol
parameter
factor
Prior art date
Application number
PCT/CN2023/075063
Other languages
English (en)
French (fr)
Inventor
陈晶晶
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2023151605A1 publication Critical patent/WO2023151605A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present application relates to wireless communication technology, and in particular to a measurement method, device, related equipment and storage medium.
  • the handover of the target cell is first performed based on the measurement result of Layer 3 (L3) reported by the terminal, and then based on the reported result of the beam management in the target cell, the radio resource control (RRC) reconfiguration message Configure the transmission configuration indication state (TCI state) to enable the terminal to select an appropriate downlink beam for data reception.
  • L3 Layer 3
  • RRC radio resource control
  • the beam management described above is only performed in the serving cell.
  • data transmission and reception are performed only in the serving cell.
  • embodiments of the present application provide a measurement method, device, related equipment, and storage medium.
  • An embodiment of the present application provides a measurement method applied to a terminal, including:
  • the first information is information related to the measurement of the first cell
  • the measurement of the first cell includes at least one of the following:
  • CBD Candidate Beam Detection
  • BFD Beam Failure Detection
  • Radio Link Monitoring (RLM, Radio Link Monitoring).
  • the first cell includes a non-serving cell or a cell with a physical cell identity (PCI) different from that of the serving cell.
  • PCI physical cell identity
  • the first information includes a first factor, and the first factor is applied to measure delay.
  • the first factor includes one of the following:
  • the first factor K2/(1-A/Z); where K2 is a positive number, A represents the period of the reference symbol of the first cell L1, and Z represents the measurement Interval period;
  • the first factor satisfies one of the following:
  • the first factor is associated with parameter A and parameter B
  • parameter A represents the period of the reference symbol of the first cell L1
  • parameter B represents the reference symbol period of the serving cell L1 symbol period
  • the first factor is associated with a parameter A and a parameter Z
  • the parameter A represents the cycle of the reference symbol of the first cell L1
  • the parameter Z represents the measurement interval cycle
  • the first factor is associated with parameter A, parameter B, and parameter Z, and parameter A represents the first The period of the reference symbols of the cell L1, the parameter Z represents the measurement interval period, and the parameter B represents the period of the reference symbols of the serving cell L1.
  • the first information includes a second factor, and the second factor is used to measure the delay.
  • the second factor includes one of the following:
  • the second factor M2/(1-A/Z); wherein, M2 is a positive number, A represents the period of the reference symbol of the first cell L1, and Z represents the measurement interval period;
  • the second factor satisfies one of the following:
  • parameter A represents the period of the reference symbol of the first cell L1
  • parameter C represents the period of the second cell L1 The period of the reference symbol of cell L3;
  • parameter A represents the cycle of the reference symbol of the first cell L1
  • parameter Z represents the cycle of the measurement interval
  • the second factor is associated with parameter A, parameter C, and parameter Z
  • parameter A represents the first The cycle of the reference symbols of the cell L1
  • the parameter Z represents the measurement interval cycle
  • the parameter C represents the cycle of the reference symbols of the second cell L3.
  • the first information includes a third factor, and the third factor is used to measure the delay.
  • the third factor includes one of the following:
  • the third factor N2/(1-D/Z); wherein, N2 is a positive number, and D represents the period of the reference symbol of the BFD of the first cell, Z Indicates the measurement interval period;
  • the third factor N6/(1-F/Z); wherein, N6 is a positive number, F represents the period of the reference symbol of the CBD of the first cell, Z Indicates the measurement interval period;
  • the third factor satisfies one of the following:
  • the third factor is associated with parameter D and parameter E
  • parameter D represents the period of the reference symbol of the BFD of the first cell
  • parameter E represents the period of the reference symbol of the third cell The period of the reference symbol of the CBD
  • the third factor is associated with a parameter D and a parameter Z
  • the parameter D represents the period of the reference symbol of the BFD of the first cell
  • the parameter Z represents the measurement interval cycle
  • the third factor is associated with a parameter F and a parameter Z
  • the parameter F represents the cycle of the reference symbol of the CBD of the first cell
  • the parameter Z represents the measurement interval cycle
  • the third factor is associated with parameter D, parameter E, and parameter Z, and parameter D represents the first The cycle of the reference symbol of the cell BFD, the parameter Z represents the measurement interval cycle, and the parameter E represents the cycle of the reference symbol of the third cell CBD;
  • the third factor is associated with parameter F and parameter G
  • the parameter F represents the period of the reference symbol of the CBD of the first cell
  • the parameter G represents the period of the reference symbol of the third cell The period of the reference symbol of BFD
  • the third factor is associated with parameter F, parameter G, and parameter Z, and parameter F represents the first The period of the reference symbol of the cell CBD, the parameter Z represents the measurement interval period, and the parameter G represents the period of the reference symbol of the third cell BFD.
  • the first information includes at least one of the following:
  • First indication information indicates whether to measure simultaneously when the L1 measurement of the first cell overlaps with the L1 measurement of the serving cell
  • the second indication information indicates whether to measure simultaneously when the L1 measurement of the first cell and the L3 measurement of the second cell overlap
  • the third indication information indicates whether to measure simultaneously when the BFD measurement of the first cell and the CBD measurement of the third cell overlap, or indicates whether the BFD measurement of the first cell overlaps with the CBD measurement of the third cell. Whether to measure at the same time when the CBD measurement and the BFD measurement of the third cell overlap;
  • the fourth indication information indicates enabling or disabling the fast reporting of the L1 measurement result of the first cell or the first threshold.
  • the fourth indication information indicates that the rapid reporting of the L1 measurement result of the first cell is enabled or the measurement result of the first cell L1 is higher than or equal to the first threshold, obtain the first cell P1 L1 Report the measurement result to the network side after the measurement result;
  • the fourth indication information indicates that the fast reporting of the L1 measurement results of the first cell is disabled or the measurement results of the first cell L1 are lower than the first threshold, the Q1 L1 measurement results of the first cell are obtained backward
  • the network side reports the measurement result; P1 is an integer greater than or equal to 1, Q1 is an integer greater than or equal to 1, and P1 is less than Q1.
  • the fourth indication information when the fourth indication information indicates to enable or disable the fast reporting of the L1 measurement result of the first cell, the fourth indication information includes the first counter;
  • the method also includes:
  • the method also includes:
  • the third information includes a second counter
  • the method also includes:
  • the first beam includes one of the following:
  • the beam with the highest quality in the first cell is the beam with the highest quality in the first cell
  • the beam with the highest quality serving cell is the beam with the highest quality serving cell.
  • the method when reporting the measurement result of the first cell L1, the method further includes:
  • the method also includes:
  • the fifth information instructs the terminal to report the measurement result of the first cell L3, report the measurement result of the first cell L1 and report the measurement result of L3 at the same time.
  • the embodiment of the present application also provides a measurement method applied to network equipment, including:
  • the first information is information related to the measurement of the first cell
  • the measurement of the first cell includes at least one of the following:
  • the first cell includes a non-serving cell or a cell whose PCI is different from that of the serving cell.
  • the first information includes a first factor, and the first factor is used for measuring delay.
  • the first factor includes one of the following:
  • the first factor K2/(1-A/Z); where K2 is a positive number, A represents the period of the reference symbol of the first cell L1, and Z represents the measurement Interval period;
  • the first factor satisfies one of the following:
  • the first factor is associated with parameter A and parameter B
  • parameter A represents the period of the reference symbol of the first cell L1
  • parameter B represents the reference symbol period of the serving cell L1 symbol period
  • the first factor is associated with parameter A and parameter Z
  • parameter A represents the period of the reference symbol of the first cell L1
  • parameter Z represents the measurement interval cycle
  • the first factor is associated with parameter A, parameter B, and parameter Z, and parameter A represents the first cell
  • parameter A represents the first cell
  • the parameter Z represents the measurement interval period
  • the parameter B represents the period of the reference symbol of the serving cell L1.
  • the first information includes a second factor, and the second factor is used to measure the delay.
  • the second factor includes one of the following:
  • the second factor M2/(1-A/Z); wherein, M2 is a positive number, A represents the period of the reference symbol of the first cell L1, and Z represents the measurement Interval period;
  • the second factor satisfies one of the following:
  • parameter A represents the period of the reference symbol of the first cell L1
  • parameter C represents the period of the second cell L1 The period of the reference symbol of cell L3;
  • parameter A represents the cycle of the reference symbol of the first cell L1
  • parameter Z represents the cycle of the measurement interval
  • the second factor is associated with parameter A, parameter C, and parameter Z
  • parameter A represents the first The cycle of the reference symbols of the cell L1
  • the parameter Z represents the measurement interval cycle
  • the parameter C represents the cycle of the reference symbols of the second cell L3.
  • the first information includes a third factor, and the third factor is used to measure the delay.
  • the third factor includes one of the following:
  • the third factor N2/(1-D/Z); wherein, N2 is a positive number, and D represents the period of the reference symbol of the BFD of the first cell, Z Indicates the measurement interval period;
  • the third factor N6/(1-F/Z); wherein, N6 is a positive number, F represents the period of the reference symbol of the CBD of the first cell, Z Indicates the measurement interval period;
  • the third factor satisfies one of the following:
  • the third factor is associated with parameter D and parameter E
  • parameter D represents the period of the reference symbol of the BFD of the first cell
  • parameter E represents the period of the reference symbol of the third cell The period of the reference symbol of the CBD
  • the third factor is associated with a parameter D and a parameter Z
  • the parameter D represents the period of the reference symbol of the BFD of the first cell
  • the parameter Z represents the measurement interval cycle
  • the third factor is associated with a parameter F and a parameter Z
  • the parameter F represents the cycle of the reference symbol of the CBD of the first cell
  • the parameter Z represents the measurement interval cycle
  • the third factor is associated with parameter D, parameter E, and parameter Z, and parameter D represents the first The cycle of the reference symbol of the cell BFD, the parameter Z represents the measurement interval cycle, and the parameter E represents the cycle of the reference symbol of the third cell CBD;
  • the third factor is associated with parameter F and parameter G
  • the parameter F represents the period of the reference symbol of the CBD of the first cell
  • the parameter G represents the period of the reference symbol of the third cell The period of the reference symbol of BFD
  • the third factor is associated with parameter F, parameter G, and parameter Z, and parameter F represents the first The period of the reference symbol of the cell CBD, the parameter Z represents the measurement interval period, and the parameter G represents the period of the reference symbol of the third cell BFD.
  • the first information includes at least one of the following:
  • First indication information indicates whether to measure simultaneously when the L1 measurement of the first cell overlaps with the L1 measurement of the serving cell
  • the second indication information indicates whether to measure simultaneously when the L1 measurement of the first cell and the L3 measurement of the second cell overlap
  • the third indication information indicates whether to measure simultaneously when the BFD measurement of the first cell and the CBD measurement of the third cell overlap, or indicates the CBD measurement of the first cell and the BFD of the third cell Whether to measure at the same time if the measurements overlap;
  • the fourth indication information indicates enabling or disabling the fast reporting of the L1 measurement result of the first cell or the first threshold.
  • the method when the first information includes the fourth indication information, the method further includes:
  • the fourth indication information when the fourth indication information indicates to enable or disable the fast reporting of the L1 measurement result of the first cell, the fourth indication information includes a first counter, and the first counter is used to indicate that the terminal When the number of obtained measurement results of the first cell L1 meets the requirement of the first counter, the measurement results are reported.
  • the method also includes:
  • the second threshold is used for the terminal to report the measurement results higher than or equal to the second threshold among the measurement results of the first cell L1.
  • the method also includes:
  • the third threshold is used for the number of measurement results of the terminal that are higher than or equal to the second threshold in the L1 measurement results to meet the first threshold
  • the third threshold is used for the number of measurement results of the terminal that are higher than or equal to the second threshold in the L1 measurement results to meet the first threshold
  • the third information includes a second counter
  • the second timer is used to indicate Indicates that when the number of measurement results higher than or equal to the second threshold in the L1 measurement results meets the requirements of the second counter, the terminal reports to the network side that the number of measurement results higher than or equal to the second threshold in the L1 measurement results Threshold measurement results.
  • the method also includes:
  • the method when receiving the measurement result of the first cell L1, the method further includes:
  • the measurement result of the first cell L3 reported by the terminal is received.
  • the method also includes:
  • the embodiment of the present application also provides a measuring device, including:
  • An obtaining unit configured to obtain first information, where the first information is information related to the measurement of the first cell, and the measurement of the first cell includes at least one of the following:
  • the embodiment of the present application also provides a measuring device, including:
  • the sending unit is configured to send first information to the terminal, where the first information is information related to the measurement of the first cell, and the measurement of the first cell includes at least one of the following:
  • the embodiment of the present application also provides a terminal, including: a first processor and a first communication interface; wherein,
  • the first processor is configured to acquire first information, where the first information is information related to the measurement of the first cell, and the measurement of the first cell includes at least one of the following:
  • the embodiment of the present application also provides a network device, including: a second processor and a second communication interface; wherein,
  • the second communication interface is configured to send first information to the terminal, the first information is information related to the measurement of the first cell, and the measurement of the first cell includes at least one of the following:
  • An embodiment of the present application also provides a terminal, including: a first processor and a first memory configured to store a computer program that can run on the processor,
  • the first processor is configured to execute the steps of any method on the terminal side when running the computer program.
  • An embodiment of the present application also provides a network device, including: a second processor and a second memory configured to store a computer program that can run on the processor,
  • the second processor is configured to execute the steps of any method on the network device side when running the computer program.
  • the embodiment of the present application also provides a storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of any method on the terminal side are realized, or the steps of any method on the network device side are realized.
  • the terminal acquires first information, the first information is information related to the measurement of the first cell, and the measurement of the first cell includes at least one of the following One: L1 measurement; CBD; BFD; RLM, the solution provided by the embodiment of this application, the terminal obtains the information related to the L1 measurement of the neighboring cell, so that the measurement can be performed based on the information, and then the beam switching of the neighboring cell based on the L1 measurement can be improved. stability and improve mobile performance; the terminal obtains information related to the quality monitoring of neighboring cells, so that it can perform measurements based on the information, and then can realize data transmission and reception with one or more neighboring cells without cell handover , improve throughput, and improve system performance.
  • Figure 1a is a schematic diagram of a mobility scenario based on L1;
  • Figure 1b is a schematic diagram of another L1-based mobility scenario
  • Fig. 2 is a schematic flow chart of a measurement method in an embodiment of the present application
  • Fig. 3 is a schematic flow chart of another measurement method of the embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a measuring device according to an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of another measuring device according to the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of the measurement system of the embodiment of the present application.
  • L1 based mobility operation can be employed.
  • the basic idea of the L1-based mobility operation is: based on the L1 measurement results, data is transmitted and received based on the beams of adjacent cells through beam management without inter-cell handover.
  • L1-based mobility operations can have the following three application scenarios:
  • the first method is to perform beam switching for neighboring cells based on L1 measurements of neighboring cells for beam management (which may be called beam-level switching), and then perform neighboring cell switching (ie, cell-level switching).
  • the terminal performs L1 measurement of the neighboring cell
  • the network side refers to the L1 measurement result of the neighboring cell reported by the terminal, configures the terminal to receive the corresponding beam of the neighboring cell, and then configures the terminal to perform L3 measurement of the neighboring cell, Further, handover is performed with the neighboring cell as the target cell.
  • the second method is to perform L1 measurement for beam management of neighboring cells first, and then perform neighboring cell beam handover and neighboring cell handover at the same time.
  • the terminal performs L1 measurement of neighboring cells
  • the network refers to the L1 measurement results of neighboring cells reported by the terminal, and simultaneously triggers the terminal to perform beam switching and cell switching for neighboring cells.
  • the third method is to perform L1 measurement of adjacent cells for beam management first, and then only perform adjacent cell beam switching, that is, perform L3 unaware switching (no cell switching), and only receive data from neighboring cells through beam switching. .
  • the terminal needs to perform adjacent cell beam management related measurements (ie, adjacent cell L1 measurement), and then trigger other operations.
  • adjacent cell beam management related measurements ie, adjacent cell L1 measurement
  • the measurement results of the neighboring cell L1 have not been filtered (it can be understood that they have not been averaged, and the values are directly reported to the network side after sampling), so the measurement results are unstable and not robust, and are prone to ping-pong effects.
  • the adjacent cell beam management-related measurement is not performed (that is, the L1 measurement of the non-serving cell is not performed), and if the beam management-related measurement of the adjacent cell is performed, the L1 measurement of the serving cell will be performed.
  • the L3 measurement of the neighboring cell will be affected, for example, the L1 measurement of the serving cell and/or the L3 measurement of the neighboring cell will be interrupted due to beam scanning, etc., thereby affecting the system performance.
  • the terminal obtains information related to the L1 measurement of the neighboring cell, so that the measurement can be performed based on the information, thereby improving the stability of the beam switching of the neighboring cell based on the L1 measurement, and improving the mobility. performance.
  • the terminal acquires information related to the monitoring and measurement of the link quality of adjacent cells, so that data can be transmitted and received with one or more adjacent cells without cell handover, improving throughput and system performance.
  • the embodiment of this application provides a measurement method, which is applied to the terminal, as shown in Figure 2, the method include:
  • Step 201 Obtain first information, the first information is information related to the measurement of the first cell.
  • the measurement of the first cell includes at least one of the following: L1 measurement; CBD; BFD; RLM;
  • Step 202 Perform measurement based on the first information.
  • the terminal may be called user equipment (UE), terminal device, device or user, and so on.
  • UE user equipment
  • terminal device device or user
  • user and so on.
  • the terminal may obtain the first information in at least one of the following ways:
  • Predefine the first information that is, predefine the first information
  • the network side may send the first information to the terminal through broadcast or RRC signaling, which is not limited in this embodiment of the present application.
  • the first cell refers to a neighboring cell of the serving cell where the terminal is located.
  • the first cell may include one of the following:
  • a cell that is different from the PCI of the serving cell is different from the PCI of the serving cell.
  • the transmission reception point (TRP) of the non-serving cell is different from the TRP of the serving cell.
  • the PCI of the non-serving cell and the PCI of the serving cell may be the same or different.
  • the measurement of L1 may include at least one of the following:
  • L1 Reference Signal Received Power L1-RSRP
  • L1 Reference Signal Received Quality (L1-RSRQ);
  • L1 signal-to-interference-plus-noise ratio (L1-SINR).
  • the terminal only needs to perform L1 measurement of the serving cell.
  • the terminal performs data transmission and reception with one or more neighbor cells through beam switching (also called handover) without cell switching) Since the reference symbol beam of the neighboring cell L1 and the reference symbol beam of the serving cell L1 have different directions, if the reference symbols of the neighboring cell L1 and the reference symbol of the serving cell L1 overlap in the time domain, only one direction of reception is supported at the same time FR2 terminal, the terminal may only receive signals in a specific direction (reference symbols or data) at a certain moment, and cannot complete the L1 measurement of the neighboring cell and the L1 measurement of the serving cell at the same time, that is, if the signal of the serving cell and the signal of the neighboring cell come from Different directions, the terminal cannot receive at the same time. That is to say, when measuring the L1 of the first cell, there may be a situation that the L1 measurement of the serving cell overlaps with
  • the first information includes a first factor that can be applied when the L1 measurement of the serving cell overlaps with the L1 measurement of the first cell; that is, the first factor
  • the L1 measurement that can be applied to the serving cell overlaps with the L1 measurement of the first cell when.
  • the overlap may include that the L1 measurement of the serving cell and the L1 measurement of the first cell completely overlap or partially overlap.
  • the overlapping may include overlapping in the time domain and/or overlapping in the frequency domain.
  • the first factor may instruct the terminal how to allocate the L1 measurement of the serving cell and the L1 measurement of the first cell when there is a conflict between the L1 measurement of the serving cell and the L1 measurement of the first cell. Specifically, the first factor is applied to the measurement delay, and the terminal allocates resources between the L1 measurement of the serving cell and the L1 measurement of the first cell based on the first factor.
  • the terminal performs measurement based on the first information.
  • the first factor includes one of the following:
  • Percentage that is, the value of the first factor is a percentage
  • Positive numbers such as 0.8, or 1.5, or 3, etc., less than or equal to 100;
  • parameter A represents the period of the reference symbol of the first cell L1 (also referred to as the period used for L1 measurement period of the reference symbols of the serving cell L1)
  • the first factor is associated with parameters A, B, and Z;
  • A represents the reference symbol of the first cell L1
  • the first factor may be applied to the measurement of the first cell, and may also be applied to the measurement of the serving cell.
  • the first factor may implicitly or explicitly indicate the measurement resource of the L1 measurement of the first cell.
  • the value of the first factor is a percentage, such as P2%
  • the first factor when the first factor explicitly indicates the measurement resource of the L1 measurement of the first cell, it can be understood as the L1 measurement resource for the first cell measurement of measurement
  • the resource is P2%.
  • the time delay of the L1 measurement of the first cell needs to be extended by 1/P2 times.
  • the measurement resource used for the L1 measurement of the serving cell is (1-P2)%, and correspondingly, the time delay of the L1 measurement of the serving cell needs to be extended by 1/(1-P2) times.
  • the measurement resource of the L1 measurement of the serving cell is P2%, and correspondingly, the delay of the L1 measurement of the serving cell It needs to be extended by 1/P2 times.
  • the measurement resource used for the L1 measurement of the first cell is (1-P2)%.
  • the time delay of the L1 measurement of the first cell needs to be extended by 1/(1-P2) times.
  • the value of the first factor is a non-zero positive number, for example, the value of the first factor is P3 (such as 3), when the first factor is used for the L1 measurement of the first cell, then the L1 measurement of the first cell The time delay needs to be extended by P3 times; when the first factor is used for the L1 measurement of the serving cell, then the time delay of the L1 measurement of the serving cell needs to be extended by P3 times.
  • P3 such as 3
  • the value of the first factor is a percentage, or a positive number, or a fraction, and can be applied to a scene with complete overlap or a scene with incomplete overlap.
  • the value of the first factor is 1.
  • the values of K1, K2, and K3 can be determined according to needs, for example, based on the cycle of reference symbols, discontinuous reception cycle (DRX cycle), carrier measurement performance scaling factor (CSSF, Carrier-specific scaling factor), measurement At least one factor among the interval period (MGRP) and the like is determined, for example, the value is 1, or 1.5.
  • DRX cycle discontinuous reception cycle
  • CSSF carrier measurement performance scaling factor
  • MGRP Carrier-specific scaling factor
  • the values of K1, K2 and K3 may be the same or different.
  • the reference symbols may include at least one of the following:
  • CSI-RS Channel State Information Reference Signal
  • the period of the reference symbol may include at least one of the following:
  • the measurement time configuration (SMTC) period of the SSB SMTC period of the SSB
  • the periods of the reference symbols of the serving cell and the first cell may both be SSB periods, the periods of the reference symbols of the serving cell and the first cell may also be CSI-RS periods, and the periods of the serving cell and the first cell
  • the periods of the reference symbols can also be all SMTC periods, or the periods of the reference symbols of the serving cell and the first cell can be any combination of SSB period, CSI-RS period, and SMTC period.
  • the L1 measurement of the first cell is only performed at the position of the reference symbol that does not overlap with the measurement of the serving cell L1, that is, the terminal only L1 measurements are performed at reference symbol positions of the first cell that do not overlap with reference symbols of the serving cell.
  • the first factor K1/(1-A/B)
  • the first factor K1/(1-A/B)
  • the first factor is applied to the L1 measurement of the first cell, and the L1 measurement of the serving cell is not affected, that is, the terminal can be in the service
  • the locations of all reference symbols in the cell L1 are measured.
  • the first factor K1/(1-B/A)
  • the L1 measurement of the serving cell needs to be delayed by K1/(1-B/A).
  • this solution can be applied to the scenario where the L1 measurement of the neighboring cell (that is, the first cell) is measured outside the SMTC, and can also be applied to the scenario where the L1 measurement of the neighboring cell is measured inside the SMTC.
  • the terminal When the reference symbols of the serving cell L1 partially overlap with the reference symbols of the first cell L1, and the reference symbols of the first cell partially overlap with the measurement interval, the terminal only overlaps with the measurement interval and does not contact the serving cell.
  • the L1 measurement is performed at the position of the reference symbol of the first cell where the reference symbol of the cell L1 overlaps. Specifically, when the period of the reference symbol of the first cell L1 is shorter than the period of the measurement interval, and when the reference symbol of the first cell L1 partially overlaps with the reference symbol of the serving cell L1, the terminal only The L1 measurement is performed at the reference symbol position of the first cell that overlaps and does not overlap with the serving cell L1 reference symbol.
  • the measurement delay may include at least one of the following:
  • Measurement period (English can be expressed as measurement period);
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • Time index detection period (English can be expressed as Time period for time index detection) (can be understood as the time required for the terminal to obtain resource indexes (such as SSB indexes, etc.));
  • RLM detection period (English can be expressed as RLM evaluation period);
  • BFD detection period (English can be expressed as BFD evaluation period);
  • CBD detection period (English can be expressed as CBD evaluation period).
  • the terminal only needs to perform L3 measurement of neighboring cells.
  • the terminal In the case of data transmission and reception with one or more neighboring cells through beam switching (also called handover), since the reference symbol beam of L1 and the reference symbol beam direction of L3 are different, if the reference symbol of L1 and the reference symbol of L3 There is overlap in the time domain.
  • the terminal may only receive signals in a specific direction (reference symbols or data) at a certain time, and cannot complete the adjacent cell L3 measurement and the adjacent cell L1 at the same time.
  • the terminal For measurement, that is, if the signal for L1 measurement of the first cell and the signal for L3 measurement of the second cell come from different directions, the terminal cannot receive them at the same time. That is to say, when the measurement of the first cell L1 is performed, the L3 measurement of the second cell may overlap with the L1 measurement of the first cell, and at this time, the terminal performs the measurement based on the first information.
  • the first information includes a second factor that can be applied when the L1 measurement of the first cell overlaps with the L3 measurement of the second cell; that is, the second The factor may be applied when the L3 measurement of the second cell overlaps with the L1 measurement of the first cell.
  • the overlap may include that the L3 measurement of the second cell completely overlaps with the L1 measurement of the first cell, or partially overlaps.
  • the overlapping may include overlapping in the time domain and/or overlapping in the frequency domain.
  • the second factor may indicate to the terminal how to allocate the L3 measurement resources of the second cell and the L1 measurement resources of the first cell when there is a conflict between the L3 measurement of the second cell and the L1 measurement of the first cell. Specifically, the second factor is applied to the measurement delay, and the terminal allocates resources between the L3 measurement of the second cell and the L1 measurement of the first cell based on the second factor.
  • the terminal performs measurement based on the first information.
  • the second factor includes one of the following:
  • Percentage that is, the value of the second factor is a percentage
  • Positive numbers such as 0.8, or 1.5, or 3, etc., less than or equal to 100;
  • the second factor is associated with parameter A and parameter C
  • parameter A represents the period of the reference symbol of the first cell L1
  • parameter C represents the period of the second cell L1
  • M1 is a positive number
  • the reference symbol of the first cell overlaps with the reference symbol of the second cell and the reference symbol of the first cell
  • the second factor is associated with parameters A, C, and Z
  • parameter A represents the cycle of the reference symbol of the first cell L1
  • parameter Z represents the cycle of the measurement interval
  • parameter C represents the cycle of the second cell L3
  • the second cell includes at least one of the following:
  • a cell that is different from the PCI of the serving cell is different from the PCI of the serving cell.
  • the PCIs of the first cell and the second cell may be different.
  • the PCI of the first cell and the second cell are different.
  • the first cell and the second cell are TRPs
  • the first cell and the second cell have different PCIs or different TRP IDs, or correspond to different network nodes.
  • the second factor may be applied to the measurement of the first cell, and may also be applied to the measurement of the second cell.
  • the second factor may implicitly or explicitly indicate the measurement resource of the L1 measurement of the first cell.
  • the value of the second factor is a percentage, such as P4%
  • the first factor explicitly indicates the measurement resource of the L1 measurement of the first cell, it can be understood as the L1 measurement resource for the first cell
  • the measurement resource for the measurement is P4%.
  • the time delay of the L1 measurement of the first cell needs to be extended by 1/P4 times.
  • the measurement resource used for the L3 measurement of the second cell is (1-P4)%, and correspondingly, the time delay of the L3 measurement of the second cell needs to be extended by 1/(1-P4) times.
  • the measurement resource for the L3 measurement of the second cell is P4%, and correspondingly, the measurement resource for the L3 measurement of the second cell is P4%.
  • the delay needs to be extended by 1/P4 times.
  • the measurement resource used for the L1 measurement of the first cell is (1-P4)%.
  • the time delay of the L1 measurement of the first cell needs to be extended by 1/(1-P4) times.
  • the value of the second factor is a non-zero positive number, for example, the value of the second factor is P5 (such as 1.5), when the second factor is used for the L1 measurement of the first cell, then the corresponding L1 of the first cell The measurement time delay needs to be extended by P5 times, and when the second factor is used for the L3 measurement of the second cell, then the time delay of the L3 measurement of the second cell needs to be extended by P5 times.
  • P5 such as 1.5
  • the value of the second factor is a percentage, a positive number, or a fraction, and can be applied to a scene with complete overlap or a scene with incomplete overlap.
  • the value of the second factor is 1.
  • L3 measurements may include at least one of the following:
  • Synchronization signal (SS)-RSRP Synchronization signal
  • the values of M1, M2, and M3 can be determined according to needs, for example, they can be determined based on at least one factor among the period of the reference symbol, DRX cycle, CSSF, MGRP, etc., for example, the value is 1, or 1.5, etc.
  • the values of M1, M2 and M3 may be the same or different.
  • the periods of the reference symbols of the second cell and the first cell may both be SSB cycles, and the cycles of the reference symbols of the second cell and the first cell may also be both CSI-RS cycles, and the periods of the second cell and the first cell
  • the periods of the reference symbols can also be all SMTC periods, or the periods of the reference symbols of the second cell and the first cell can be any combination of SSB period, CSI-RS period, and SMTC period.
  • the L1 measurement of the first cell is only performed at the reference symbol position that does not overlap with the second cell L3 measurement, that is, the The terminal performs L1 measurement only at the position of the reference symbol of the first cell that does not overlap with the reference symbol of the second cell.
  • the second factor M1/(1-A/C)
  • the L1 measurement delay of the first cell needs to The delay is M1/(1-A/C) times, that is, the second factor is applied to the L1 measurement of the first cell, and the L3 measurement of the second cell is not affected, that is, the terminal can be in all reference symbols of the second cell L3
  • the second factor M1/(1-C/A)
  • the L3 measurement of the second cell needs to be delayed M1/(1-C/A) times, that is, the first factor is applied to the L3 measurement of the second cell, and the L1 measurement of the first cell is not affected, that is, the terminal can be in the position of all reference symbols of the first cell L1 Take measurements.
  • the terminal When the reference symbols of the second cell L3 partially overlap with the reference symbols of the first cell L1, and the reference symbols of the first cell L1 partially overlap with the measurement interval, the terminal only overlaps with the measurement interval and does not The L1 measurement is performed at the position of the reference symbol of the first cell that overlaps with the reference symbol of the second cell L3. Specifically, when the period of the reference symbols of the first cell L1 is shorter than the period of the measurement interval, and when the reference symbols of the first cell L1 partially overlap with the reference symbols of the second cell L3, the terminal only L1 measurements are performed on reference symbol positions of the first cell that overlap and do not overlap with reference symbols of the second cell L3.
  • the terminal only overlaps with the measurement interval and does not overlap with the first
  • the terminal only needs to send and receive data with the serving cell.
  • the terminal can also send and receive data with one or more neighboring cells without cell handover. But this will have additional requirements for the terminal, and when sending and receiving data with neighboring cells, it is also necessary to monitor the link quality, measure the related resources (which can be expressed as resource in English) for BFD and/or use Measurement of CBD-related resources.
  • the terminal cannot perform BFD and CBD simultaneously because the data directions of different cells are different. At this time, the terminal performs measurement based on the first information.
  • the first information includes a third factor, and when the BFD of the first cell overlaps with the CBD of the third cell, the third factor may be applied; that is, the third factor may be When the BFD applied to the first cell overlaps with the CBD of the third cell.
  • the overlap may include that the BFD measurement of the first cell completely overlaps with the CBD measurement of the third cell, or partially overlaps.
  • the overlapping may include overlapping in the time domain and/or overlapping in the frequency domain.
  • the third factor may instruct the terminal how to allocate the BFD of the first cell and the CBD resource of the third cell when there is a conflict between the BFD of the first cell and the CBD resource of the third cell.
  • the third factor is applied to the measurement delay, and the terminal allocates resources between the BFD of the first cell and the CBD measurement of the third cell based on the third factor.
  • the resource and measurement interval of BFD and/CBD of neighboring cells may also be overlap between the resource and measurement interval of BFD and/CBD of neighboring cells.
  • this overlap may include that the BFD and/CBD resources completely overlap or partially overlap with the measurement interval.
  • the overlapping may include overlapping in the time domain and/or overlapping in the frequency domain. In this case, the terminal performs measurement based on the first information.
  • the third factor includes one of the following:
  • Percentage that is, the value of the third factor is a percentage
  • Positive numbers such as 0.8, or 1.5, or 3, etc., less than or equal to 100;
  • the third factor is associated with parameter D and parameter E
  • parameter D represents the period of the reference symbol of BFD of the first cell
  • parameter E represents the cycle of the reference symbols of the CBD of the third cell
  • the third factor is associated with a parameter D and a parameter Z
  • the parameter D represents the period of the reference symbol of the BFD of the first cell
  • the third factor and The parameter F is associated with the parameter Z
  • the parameter F represents the period of the reference symbol of the CBD of the first cell
  • the parameter Z represents the measurement interval cycle
  • the third factor N6/(1-F/Z); Among them, N6 is a positive number
  • the third factor is associated with parameters D, E, and Z, and parameter D represents the BFD of the first cell , the parameter Z represents the measurement interval cycle, and the parameter E represents the cycle of the reference symbols of the CBD of the third cell; specifically, the BFD of the first cell overlaps with the reference symbols of the CBD of the third cell and the first cell
  • N3 is a positive number
  • the third factor is associated with parameter F and parameter G
  • the parameter F represents the period of the reference symbol of the CBD of the first cell
  • the parameter G represents the period of the reference symbol of the third cell
  • N4 is a positive number
  • the third factor is associated with parameters F, G, and Z, and the parameter F represents the CBD of the first cell , the parameter Z represents the measurement interval cycle, and the parameter G represents the cycle of the reference symbols of the BFD of the third cell; specifically, the CBD of the first cell overlaps with the reference symbols of the BFD of the third cell and the first cell
  • the third cell includes at least one of the following:
  • a cell that is different from the PCI of the serving cell is different from the PCI of the serving cell.
  • PCIs of the first cell and the third cell may be different.
  • the first cell and the third cell are different from the PCI of the serving cell, the PCI of the first cell and the third cell are different.
  • the first cell and the third cell are TRPs, the first cell and the third cell have different PCIs or different TRP IDs, or correspond to different network nodes.
  • the third factor may be applied to the measurement of the first cell, and may also be applied to the measurement of the third cell.
  • the value of the third factor is 1.
  • N1, N2, N3, N4, N5, and N6 can be determined according to needs, for example, they can be determined based on at least one of factors such as the cycle of reference symbols, DRX cycle, CSSF, MGRP, etc., for example, the value is 1 , or 1.5 etc. Values of N1, N2, N3, N4, N5 and N6 Can be the same or different.
  • the BFD measurement of the first cell is only performed at resource positions that do not overlap with the CBD measurement of the third cell, that is, the terminal only The measurement is performed at a position of a BFD reference symbol (also referred to as a reference symbol for BFD measurement) of the first cell that does not overlap with the CBD resource of the third cell.
  • a BFD reference symbol also referred to as a reference symbol for BFD measurement
  • the third factor N1/(1-D/E)
  • the third factor is applied to the BFD measurement of the first cell.
  • the reference symbol period of the BFD of the first cell is greater than the reference symbol period of the CBD of the third cell
  • the third factor N1/(1-E/D)
  • the terminal When the resources of the BFD of the first cell partially overlap with the resources of the CBD of the third cell and the BFD of the first cell partially overlaps with the measurement interval, the terminal only overlaps with the measurement interval and does not overlap with the CBD of the third cell. Measurement is performed at the reference symbol position of the BFD of the first cell where the reference symbols overlap. Specifically, when the period of the reference symbols of the BFD of the first cell is shorter than the period of the measurement interval, and when the reference symbols of the BFD of the first cell partially overlap with the reference symbols of the CBD of the third cell, the terminal only Measurement is performed at the reference symbol position of the BFD of the first cell that overlaps and does not overlap with the reference symbol of the CBD of the third cell.
  • the third factor is applied to the BFD measurement of the first cell.
  • the terminal only performs CBD measurement at the reference symbol position of the CBD of the third cell that does not overlap with the measurement interval and does not overlap with the BFD of the first cell, and at this time the third factor is applied to the CBD of the third cell Measurement.
  • the CBD measurement of the first cell is only performed at resource locations that do not overlap with the BFD measurement of the third cell, that is, the terminal only
  • the reference symbol position of the CBD of the first cell that does not overlap with the BFD resource of the third cell is measured.
  • the third factor is applied to the BFD of the first cell Measurement.
  • the reference symbol period of the CBD of the first cell is greater than the reference symbol period of the BFD of the third cell, the third factor is applied to the CBD measurement of the third cell.
  • the terminal only overlaps with the measurement interval and does not BFD with the third cell Measurement is performed at the reference symbol position of the CBD of the first cell where the reference symbols overlap.
  • the terminal only Measurement is performed at the reference symbol position of the CBD of the first cell that overlaps and does not overlap with the reference symbol of the BFD of the third cell.
  • the third factor is applied to the CBD measurement of the first cell.
  • the impact of the above factors on the measurement delay (at least one of the first cell, the second cell, and the third cell) can be expressed by one of the following formulas:
  • Measurement delay max(T, ceil(M*P)*period of reference symbol*factor);
  • Measurement delay M*P*period of reference symbol*factor
  • Measurement delay ceil(M*P)*period of reference symbol*factor
  • Measurement delay max(T, ceil(K*M*P)*max(DRX cycle, reference symbol period))*factor
  • Measurement delay K*M*P*max(DRX cycle, reference symbol period))*factor
  • Measurement delay ceil(M*P)*DRX cycle*factor
  • Measurement delay max(T, ceil(M*P*N)*period of reference symbol)*factor
  • Measurement delay max(T, ceil(1.5*M*P*N)*max(DRX cycle, reference symbol period))*factor
  • Measurement delay ceil(1.5*M*P*N)*DRX cycle*factor
  • Measurement delay max(600ms, ceil(M*P)*period of reference symbol)*CSSF*factor
  • Measurement delay max(600ms, ceil(K*M*P)*max(cycle of reference symbol, DRX cycle))*CSSF*factor;
  • Measurement delay ceil(M*P)*DRX cycle*CSSF*factor
  • Measurement delay max(600ms, ceil(M*P*Q)*period of reference symbol)*CSSF*factor
  • Measurement delay max(600ms, ceil(1.5*M*P*Q)*max(cycle of reference symbol, DRX cycle))*CSSF*factor;
  • Measurement delay ceil(M*P*Q)*DRX cycle*CSSF*factor
  • Measurement delay max(600ms, M*max(MGRP, period of reference symbol))*CSSF*factor
  • Measurement delay max(600ms, ceil(M*K)*max(MGRP, reference symbol cycle, DRX cycle))*CSSF*factor;
  • Measurement delay M*max(MGRP,DRX cycle)*CSSF*factor
  • Measurement delay max(600ms, M*max(MGRP, period of reference symbol))*CSSF*factor
  • Measurement delay max(600ms, ceil(1.5*M)*max(MGRP, reference symbol cycle, DRX cycle))*CSSF*factor;
  • Measurement delay M*max(MGRP,DRX cycle)*CSSF*factor.
  • the max() function is used to find the maximum value
  • the ceil() function is used to round up.
  • T is a specific time length, which can be used for measurement reporting or measurement;
  • M is an integer, and the value can be selected according to needs Setting, such as a value of 1, or 3, or 5, or 24, or 40, or 64;
  • the value of P can be 1 or other positive numbers, and the specific value is related to the reference symbol and measurement interval of the serving cell or SMTC related.
  • N is an integer, such as a value of 8, which can be understood as being related to the beam;
  • K is a positive number, and the value can be 1 or 1.5 or 7.5, which is related to the high-speed rail configuration and/or SMTC cycle;
  • CSSF is the carrier measurement performance scaling factor (English It can be expressed as Carrier-specific scaling factor), which can be understood as related to the number of frequency points and/or frequency bands;
  • the value of Q is 1 or 1.5, specifically related to the RLM, BFD, CBD or L1 reference symbols of the serving cell and SMTC related to time domain location.
  • the factor in the above formula can be the first factor, or the second factor or the third factor.
  • the above three factors when measuring, the above three factors may be used alone, or two of the above three factors may be used, or the three factors may be used simultaneously according to the scene.
  • the factors in the formula are: the product of the two or three factors.
  • the duration of the measurement delay is associated with the factor.
  • the factor there is a direct multiple relationship between the factor and the measurement delay.
  • timing offset when the factor is the first factor, it can be applied to the time offset between the serving cell and the first cell (English can be expressed as timing offset, which can be understood as the terminal receiving service A scenario in which the data or signal time difference between the cell and the first cell) is less than or equal to a certain threshold (for example, cyclic prefix (CP), or CP/2, etc.).
  • CP cyclic prefix
  • the factor when the factor is the second factor, it can be applied to the time offset between the second cell and the first cell (which can be understood as the time difference between the terminal receiving data or signals from the second cell and the first cell ) is less than or equal to a certain threshold (for example, CP, or CP/2, etc.).
  • a certain threshold for example, CP, or CP/2, etc.
  • the factor when the factor is the third factor, it can be applied to the time offset between the third cell and the first cell (which can be understood as the time difference between the terminal receiving data or signals from the third cell and the first cell ) is less than or equal to a certain threshold (for example, CP, or CP/2, etc.).
  • a certain threshold for example, CP, or CP/2, etc.
  • the formula for determining the measurement delay may additionally add the cell data of the non-serving cell, specifically , in addition to multiplying the corresponding factor in the above formula, it can also be multiplied by the number of cells that are not serving cells.
  • the terminal can also obtain auxiliary information (that is, indication information), and the terminal uses the auxiliary information to perform beam management measurement of neighboring cells and/or perform related measurement of link quality monitoring (that is, BFD measurement and/or CBD measurement).
  • auxiliary information that is, indication information
  • the terminal uses the auxiliary information to perform beam management measurement of neighboring cells and/or perform related measurement of link quality monitoring (that is, BFD measurement and/or CBD measurement).
  • the first information includes at least one of the following:
  • First indication information indicates whether to measure simultaneously when the L1 measurement of the first cell overlaps with the L1 measurement of the serving cell
  • the second indication information indicates whether to measure simultaneously when the L1 measurement of the first cell and the L3 measurement of the second cell overlap
  • the third indication information indicates whether to measure simultaneously when the BFD measurement of the first cell and the CBD measurement of the third cell overlap, or indicates the CBD measurement of the first cell and the BFD of the third cell Whether to measure at the same time if the measurements overlap;
  • the fourth indication information indicates enabling or disabling the fast reporting of the L1 measurement result of the first cell or the first threshold.
  • TRUE and FALSE may be used to indicate whether simultaneous measurement is required, for example, TRUE indicates that simultaneous measurement is required, and FALSE indicates that simultaneous measurement is not required. It can also be indicated by a bit sequence. For example, a bit sequence value of 0 means that simultaneous measurement is not required, and a bit sequence value of 1 means simultaneous measurement is required.
  • the first indication information indicates whether to give up the L1 measurement of the first cell when there is a conflict between the L1 measurement of the first cell and the L1 measurement of the serving cell (at this time, because the L1 measurement of the serving cell will affect the link quality monitoring , so as to configure a reasonable transceiving beam for the terminal, so it is not necessary to consider giving up the L1 measurement of the serving cell).
  • the terminal gives up the L1 measurement of the first cell, which has no influence on the L1 measurement of the serving cell at this time.
  • the terminal When the first indication information indicates not to give up the L1 measurement of the first cell, the terminal needs to take into account the L1 measurement of the first cell and the L1 measurement of the serving cell, and needs to perform resource allocation between the two, specifically, The terminal may perform measurements based on the first factor.
  • the first indication information may be issued by the network side (such as broadcast or RRC signaling).
  • the first factor may be issued by the network side (such as RRC signaling), and through network instructions, different allocation methods may be adopted for different scenarios, which is more adaptable. For example, when the network wants to ensure the beam management performance of the serving cell, the network can allocate more resources for the measurement of the serving cell L1 through the configuration of the first factor, so as to reduce the impact on the measurement of the serving cell L1.
  • the network when the network wants to quickly find a suitable neighboring cell beam and configure the neighboring cell beam for the terminal to realize high-speed data transmission and reception, the network can allocate more resources for the adjacent cell L1 measurement through the configuration of the first factor to speed up the L1 Measurement.
  • the second indication information indicates whether to enable the sharing mechanism when the L1 measurement of the first cell conflicts with the L3 measurement of the second cell.
  • the terminal needs to choose between the measurement of the second cell L3 and the measurement of the first cell L1 to give up one of the measurements; in this case, the second The instruction information may also instruct the terminal to give up the L1 measurement of the first cell, or instruct the terminal to give up the L3 measurement of the second cell.
  • the network side may instruct (such as RRC signaling) the terminal to perform adjacent cell L3 measurement (abandon adjacent cell L1 measurement) when time domain conflict occurs.
  • the network side when the network side wants to quickly find a suitable neighboring cell beam and configure a neighboring cell beam for the terminal to achieve high-speed data transmission and reception, the network side can instruct (such as RRC signaling) the terminal to perform neighboring cell L1 when there is a conflict in the time domain. measurement (abandon the adjacent cell L3 measurement).
  • the terminal needs to take into account both the L1 measurement of the first cell and the L3 measurement of the second cell, and needs to perform resource allocation between the two. Specifically, the terminal can be based on The second factor is measured.
  • the second indication information may be issued by the network side (such as broadcast or RRC signaling) in a manner indicated by the network, so that different allocation modes may be adopted in different scenarios, which is more adaptable.
  • the network side can allocate more resources for the L3 measurement of neighboring cells through the configuration of the second factor, so as to speed up the L3 measurement.
  • the network side can allocate more resources for the neighboring cell L1 measurement through the configuration of the second factor, Accelerated L1 measurement.
  • the third indication information may indicate whether to enable the sharing mechanism when there is a conflict between the BFD measurement of the first cell and the CBD measurement of the third cell.
  • the terminal needs to choose between the BFD measurement of the first cell and the CBD measurement of the third cell, so as to give up one of the measurements; in this case, the The second indication information may also instruct the terminal to give up the BFD measurement of the first cell, or instruct the terminal to give up the CBD measurement of the third cell.
  • the network side may instruct (for example, RRC signaling) the terminal to perform CBD measurement (abandon neighboring cell BFD measurement) when time domain conflict occurs.
  • the network side may instruct (such as RRC signaling) the terminal to perform BFD measurement of the first cell (abandon CBD measurement of neighboring cells) when time domain conflict occurs.
  • the terminal needs to take into account both the BFD measurement of the first cell and the CBD measurement of the third cell, and resource allocation needs to be performed between the two.
  • the terminal can be based on The third factor is measured.
  • the third indication information may be issued by the network side (for example, broadcast or RRC signaling) in a manner indicated by the network, so that different allocation modes may be adopted in different scenarios, which is more adaptable.
  • the network side when the network side wants to perform CBD quickly, the network side can allocate more resources for the CBD measurement of neighboring cells through the configuration of the third factor, so as to speed up the CBD measurement. For example, when the network side wants to better detect the link quality, the network side can allocate more resources for the neighbor cell BFD measurement through the configuration of the third factor, so as to speed up the BFD measurement.
  • the third indication information may indicate whether to enable the sharing mechanism when there is a conflict between the CBD measurement of the first cell and the BFD measurement of the third cell.
  • the terminal needs to choose between the CBD measurement of the first cell and the BFD measurement of the third cell, so as to give up one of the measurements; in this case, the The third indication information may also instruct the terminal to give up the CBD measurement of the first cell, or instruct the terminal to give up the BFD measurement of the third cell.
  • the network side may instruct (such as RRC signaling) the terminal to perform CBD measurement of the first cell (abandon BFD measurement of neighboring cells) when time domain conflict occurs.
  • the network side may instruct (such as RRC signaling) the terminal to perform BFD measurement of the third cell (abandon CBD measurement of neighboring cells) when time domain conflict occurs.
  • the terminal needs to take into account the CBD measurement of the first cell and the BFD measurement of the third cell, and needs to perform resource allocation between the two.
  • the terminal can Measurements are made based on a third factor.
  • the third indication information may be issued by the network side (for example, broadcast or RRC signaling) in a manner indicated by the network, so that different allocation modes may be adopted in different scenarios, which is more adaptable.
  • the network side when the network side wants to perform CBD quickly, the network side can allocate more resources for the CBD measurement of neighboring cells through the configuration of the third factor, so as to speed up the CBD measurement. For example, when the network side wants to better detect the link quality, the network side can allocate more resources for the neighbor cell BFD measurement through the configuration of the third factor, so as to speed up the BFD measurement.
  • the fourth indication information when the fourth indication information indicates that the rapid reporting of the L1 measurement result of the first cell is enabled or the measurement result of the first cell L1 is higher than or equal to the first threshold, obtain the first After the measurement results of cell P1 and L1 are reported to the network side; the fourth indication indicates that the fast reporting of the L1 measurement result of the first cell is disabled or the measurement result of the first cell L1 is lower than the first threshold In the case of the first cell Q1 and L1 measurement results are obtained, the measurement results are reported to the network side; P1 is an integer greater than or equal to 1, Q1 is an integer greater than or equal to 1, and P1 is less than Q1.
  • the fourth indication information indicates whether the terminal can quickly report the measurement result of the beam management of the first cell, that is, report the measurement result of the first cell L1.
  • the fourth indication information may be used to indicate that fast reporting is enabled, and the terminal may report immediately after obtaining the L1 measurement result.
  • the fourth indication information can be used to indicate that fast reporting is disabled, and the terminal can report after obtaining several (ie Q1) L1 measurement results.
  • the terminal when the fourth indication information indicates that the terminal can quickly report the measurement result of the first cell L1, and P1 is 1, the terminal immediately reports the L1 measurement result of the first cell every time it obtains; when P1 is When the integer is greater than 1, the terminal immediately reports every time it obtains the L1 measurement results of P1 first cells.
  • the terminal when reporting, the terminal may report P1 measurement results
  • the average value of the P1 measurement results may also be reported as the maximum or minimum value, which is not limited in this embodiment of the present application.
  • the terminal may report only after obtaining Q1 measurement results of the first cell L1.
  • the terminal may report the average value of the Q1 measurement results, or may report the maximum or minimum value among the Q1 measurement results, which is not limited in this embodiment of the present application.
  • the fourth indication information may implicitly indicate whether the terminal can quickly report the measurement result of the beam management of the first cell.
  • a counter may be used to indicate whether the terminal can quickly report the measurement result of the beam management of the first cell.
  • the fourth indication information indicates enabling or disabling the fast reporting of the L1 measurement result of the first cell
  • the fourth indication information includes the first counter
  • the terminal reports the measurement results.
  • the value of the counter can indicate whether the terminal can quickly report the measurement result of the beam management of the first cell.
  • the network side can configure different counter values according to different scenarios, so as to achieve both robustness and mobility performance.
  • the terminal When the fourth indication information indicates the first threshold, when the L1 measurement result of the first cell is higher than or equal to the first threshold (indicating that the current channel quality of the first cell is good, and the terminal can quickly report the measurement result), the When P1 is 1, the terminal immediately reports the L1 measurement result of a first cell; when P1 is an integer greater than 1, the terminal immediately reports the L1 measurement result of P1 first cells report.
  • the terminal may report the average value of the P1 measurement results, or may report the maximum or minimum value among the P1 measurement results, which is not limited in this embodiment of the present application.
  • the terminal obtains Q1 first cell
  • the measurement results of L1 can only be reported.
  • the terminal may report the average value of the Q1 measurement results, or may report the maximum or minimum value among the Q1 measurement results, which is not limited in this embodiment of the present application.
  • the values of P1 and Q1 can be configured by the network side, such as through broadcast or RRC signaling.
  • a threshold ie, quality threshold
  • a threshold for reporting beam management measurement results may also be introduced, and only beams whose beam quality is higher than the threshold will be reported.
  • the method may also include:
  • the network side may send the second information through broadcast or RRC signaling, which is not limited in this embodiment of the present application.
  • the method may also include:
  • the network side may send the third information through broadcast or RRC signaling, which is not limited in this embodiment of the present application.
  • the third information includes a second counter
  • the terminal reports to the network side that the number of the first cell L1 measurement results is higher than or equal to the The measurement result of the second threshold.
  • the network side can configure different counter values according to different scenarios, so as to achieve robustness.
  • the network side configures the maximum number of beams that the terminal can report, so that in combination with the above second threshold, the terminal can only report beams that meet the quality threshold. If the number of beams that meet the quality threshold is greater than the maximum number of beams configured by the network, the terminal can only start with the highest beam quality, sort by the quality threshold from high to low, and select the beam that meets the reporting requirements of the number of beams for reporting.
  • the method may also include:
  • the network side may send the fourth information through broadcast or RRC signaling, which is not limited in this embodiment of the present application.
  • the terminal may report an absolute value, that is, the terminal reports the absolute value of the measurement result of the first cell L1.
  • the network may also configure the terminal to report the relative value of the first beam measurement result, that is, the terminal reports the relative value of the first cell L1 measurement result relative to the first beam measurement result.
  • the first beam quality may be the beam with the highest quality in the first cell, or the beam with the highest quality in the serving cell.
  • the quality refers to the measured quantity, which may also be referred to as the measured result, including at least one of the following:
  • the terminal may also perform the mobility-related measurement (L3 measurement) of the neighboring cell on the cell where the beam management measurement is performed, for such a terminal, it can report the beam management measurement result of the target cell (that is, the first cell) while Report the L3 measurement results.
  • L3 measurement mobility-related measurement
  • the method when reporting the measurement result of the first cell L1, the method further includes:
  • the network side may instruct the terminal whether to report the L3 measurement result through signaling (such as RRC signaling).
  • signaling such as RRC signaling
  • the method may also include:
  • the fifth information instructs the terminal to report the measurement result of the first cell L3, report the measurement result of the first cell L1 and report the measurement result of L3 at the same time.
  • step 202 the terminal performs a measurement, and the measurement is related to the first information.
  • the reference symbol type of the RLM measurement is the same as the reference symbol type of the L1 measurement, CBD measurement, and BFD measurement, and the processing method of the measurement is also the same as that of these measurements . That is, the principles of the factors described above can be applied to RLM measurements.
  • the network side After the terminal reports the measurement result of the first cell to the network side, the network side performs beam switching configuration based on the reported measurement result, and accordingly, the terminal performs beam switching based on the network side configuration to switch to a beam of a neighboring cell.
  • the embodiment of the present application also provides a measurement method, which is applied to the network side, that is, to a network device (specifically, a base station). As shown in FIG. 3, the method includes:
  • Step 301 Determine first information, the first information is information related to the measurement of the first cell, and the measurement of the first cell includes at least one of the following: L1 measurement; CBD; BFD; RLM;
  • Step 302 Send the first information to the terminal.
  • the network device determines the first information according to a scenario, which is not limited in this embodiment of the present application.
  • the first information includes fourth indication information, and the fourth indication information indicates whether to enable or disable the rapid reporting of the L1 measurement result of the first cell or the first threshold;
  • the method may also include:
  • the second threshold is used for the terminal to report the measurement results higher than or equal to the second threshold among the measurement results of the first cell L1.
  • the method may also include:
  • the third threshold is used for the number of measurement results of the terminal that are higher than or equal to the second threshold in the L1 measurement results to meet the first threshold
  • the third threshold is used for the number of measurement results of the terminal that are higher than or equal to the second threshold in the L1 measurement results to meet the first threshold
  • the method may also include:
  • the method when receiving the measurement result of the first cell L1, the method may further include:
  • the measurement result of the first cell L3 reported by the terminal is received.
  • the method may also include:
  • the terminal obtains first information, the first information is information related to the measurement of the first cell, and the measurement of the first cell includes at least one of the following: L1 measurement; CBD; BFD ; RLM, the solution provided by the embodiment of the present application, the terminal obtains the information related to the L1 measurement of the neighboring cell, so that the measurement can be performed based on the information, and then the stability of the beam switching of the neighboring cell based on the L1 measurement is improved, and the mobility performance is improved; The terminal obtains the information related to the monitoring and measurement of the link quality of the adjacent cell, so that the measurement can be performed based on the information, and then the data can be transmitted and received with one or more adjacent cells without cell handover, so as to improve the throughput and improve the system quality. performance.
  • the embodiment of the present application also provides a measurement device, which is set on the terminal, as shown in FIG. 4 , the device includes:
  • the obtaining unit 401 is configured to obtain first information, where the first information is information related to measurement of the first cell, and the measurement of the first cell includes at least one of the following: L1 measurement; CBD; BFD; RLM.
  • the device may also include:
  • the measuring unit 402 is configured to perform measurement based on the first information, and perform measurement reporting.
  • the first information includes fourth indication information, and the fourth indication information indicates whether to enable or disable the rapid reporting of the L1 measurement result of the first cell or the first threshold;
  • the measuring unit 402 is configured as:
  • the fourth indication information indicates that the fast reporting of the L1 measurement result of the first cell or the first When the measurement result of cell L1 is higher than or equal to the first threshold, after obtaining the measurement results of L1 of the first cell P1, report the measurement result to the network side; when the fourth indication information indicates that fast reporting is disabled, the first When the L1 measurement result of a cell or the measurement result of the first cell L1 is lower than the first threshold, obtain the Q1 L1 measurement results of the first cell and report the measurement result to the network side; P1 is greater than or equal to An integer of 1, Q1 is an integer greater than or equal to 1, and P1 is smaller than Q1.
  • the fourth indication information when the fourth indication information indicates to enable or disable the fast reporting of the L1 measurement result of the first cell, the fourth indication information includes the first counter;
  • the measurement unit 402 reports the measurement results.
  • the acquiring unit 401 is further configured to receive second information sent by the network side, where the second information indicates a second threshold;
  • the measuring unit 402 is configured to report, among the measurement results of the first cell L1, the measurement results higher than or equal to the second threshold to the network side.
  • the acquiring unit 401 is further configured to receive third information sent by the network side, where the third information indicates a third threshold;
  • the measuring unit 402 is configured to report to the network side that the number of the L1 measurement results higher than or equal to the second threshold meets the third threshold. measurement results.
  • the third information includes a second counter
  • the measurement unit 402 reports to the network side that the number of L1 measurement results higher than or equal to the second threshold Measurement results of the second threshold.
  • the acquiring unit 401 is further configured to receive fourth information sent by the network side, where the fourth information indicates the maximum number of reported measurement results;
  • the measurement unit 402 is configured to select from the measurement results higher than or equal to the second threshold in the case that the number of measurement results higher than or equal to the second threshold in the L1 measurement results is greater than the maximum number The maximum number of measurement results is reported.
  • the measuring unit 402 is configured as:
  • the measuring unit 402 when reporting the measurement result of the first cell L1, is further configured to report the measurement result of the first cell L3.
  • the acquiring unit 401 is further configured to receive fifth information sent by the network side, where the fifth information indicates whether the terminal reports the measurement result of the first cell L3;
  • the measuring unit 402 is configured to report the measurement result of the first cell L1 and report the measurement result of the first cell L3 at the same time when the fifth information indicates that the terminal reports the measurement result of the first cell L3 Quantitative results.
  • the acquisition unit 401 and the measurement unit 402 may be implemented by a processor in the measurement device combined with a communication interface.
  • the embodiment of the present application also provides a measurement device, which is set on the network device, as shown in Figure 5, the device includes:
  • the sending unit 501 is configured to send first information to the terminal, where the first information is information related to the measurement of the first cell, and the measurement of the first cell includes at least one of the following: L1 measurement; CBD; BFD; RLM .
  • the device may also include:
  • the determining unit 502 is configured to determine the first information.
  • the device may also include a receiving unit; wherein,
  • the first information includes fourth indication information, and the fourth indication information indicates whether to enable or disable the rapid reporting of the L1 measurement result or the first threshold of the first cell;
  • the receiving unit is configured to receive the measurement result of the first cell L1 reported by the terminal based on the first information.
  • the sending unit 501 is further configured to send second information to the terminal, the second information indicates a second threshold, and the second threshold is used for the terminal to report the first cell L1 measurement The measurement results higher than or equal to the second threshold among the results.
  • the sending unit 501 is further configured to send third information to the terminal, where the third information indicates a third threshold; the third threshold is used by the terminal when the L1 measurement result is higher than Or when the number of measurement results equal to the second threshold meets a third threshold, report the measurement results of the L1 measurement results that are higher than or equal to the second threshold to the network side.
  • the sending unit 501 is further configured to send fourth information to the terminal, where the fourth information indicates the maximum number of reported measurement results.
  • the receiving unit is configured to receive the measurement result of the first cell L3 reported by the terminal when receiving the measurement result of the first cell L1.
  • the sending unit 501 is further configured to send fifth information to the terminal, where the fifth information indicates whether the terminal reports the measurement result of the first cell L3;
  • the receiving unit receives the measurement result of the first cell L1 reported by the terminal and at the same time receives the measurement of L3 reported by the terminal result.
  • the sending unit 501 and the receiving unit may be realized by a communication interface in the measuring device, and the determining unit 502 may be realized by a processor in the measuring device.
  • the measuring device provided by the above-mentioned embodiment when the measuring device provided by the above-mentioned embodiment is performing measurement, the division of the above-mentioned program modules is used as an example for illustration. The internal structure of the program is divided into different program modules to complete all or part of the processing described above.
  • the measurement device provided in the above-mentioned embodiments belongs to the same concept as the measurement method embodiment, and its specific implementation process is detailed in the method embodiment. I won't go into details here.
  • the embodiment of the present application also provides a terminal, as shown in FIG. 6 , the terminal 600 includes:
  • the first communication interface 601 is capable of exchanging information with the network side;
  • the first processor 602 is connected to the first communication interface 601 to implement information interaction with the network side, and is configured to execute the method provided by one or more technical solutions on the terminal side when running the computer program;
  • the first processor 602 is configured to acquire first information, where the first information is information related to the measurement of the first cell, and the measurement of the first cell includes at least one of the following: L1 measurement; CBD; BFD; RLM.
  • the first processor 602 receives the first information sent by the network side through the first communication interface 601 .
  • the first processor 602 is configured to perform measurement based on the first information through the first communication interface 601 , and perform measurement reporting through the first communication interface 601 .
  • the first information includes fourth indication information, and the fourth indication information indicates whether to enable or disable the rapid reporting of the L1 measurement result of the first cell or the first threshold;
  • the first processor 602 is configured to:
  • the fourth indication information indicates that the fast reporting of the L1 measurement result of the first cell is enabled or the measurement result of the first cell L1 is higher than or equal to the first threshold
  • P1 L1 measurement results Reporting the measurement result to the network side
  • the fourth instruction indicates that the fast reporting of the L1 measurement result of the first cell is disabled or the L1 measurement result of the first cell is lower than the first threshold, obtain the first cell
  • Q1 L1 measurement results report the measurement results to the network side
  • P1 is an integer greater than or equal to 1
  • Q1 is an integer greater than or equal to 1
  • P1 is smaller than Q1.
  • the fourth indication information when the fourth indication information indicates to enable or disable the fast reporting of the L1 measurement result of the first cell, the fourth indication information includes the first counter;
  • the first processor 602 reports the measurement results when the obtained number of measurement results of the first cell L1 satisfies the requirement of the first counter.
  • the first communication interface 601 is configured to receive second information sent by the network side, where the second information indicates a second threshold;
  • the first processor 602 is configured to report, among the measurement results of the first cell L1, the measurement results higher than or equal to the second threshold to the network side.
  • the first communication interface 601 is further configured to receive third information sent by the network side, where the third information indicates a third threshold;
  • the first processor 602 is configured to report to the network side the number of L1 measurement results higher than or equal to the second threshold when the number of L1 measurement results higher than or equal to the second threshold meets a third threshold. Measurement results of the second threshold.
  • the third information includes a second counter
  • the first processor 602 reports to the network side that the number of L1 measurement results higher than or equal to the number Describe the measurement results of the second threshold.
  • the first communication interface 601 is further configured to receive fourth information sent by the network side, where the fourth information indicates the maximum number of reported measurement results;
  • the first processor 602 is configured to, in the case that the number of the measurement results higher than or equal to the second threshold among the L1 measurement results is greater than the maximum number, select the measurement result higher than or equal to the second threshold Select the maximum number of measurement results for reporting.
  • the first processor 602 is configured to:
  • the first processor 602 when reporting the measurement result of the first cell L1, is further configured to report the measurement result of the first cell L3 through the first communication interface 601 .
  • the first communication interface 601 is further configured to receive fifth information sent by the network side, the fifth information indicating whether the terminal reports the measurement result of the first cell L3;
  • the first processor 602 is configured to report the measurement result of the first cell L1 and the measurement result of L3 at the same time when the fifth information indicates that the terminal reports the measurement result of the first cell L3.
  • bus system 604 is configured to enable connection communication between these components.
  • bus system 604 also includes a power bus, a control bus and a status signal bus.
  • the various buses are labeled as bus system 604 in FIG. 6 .
  • the first memory 603 in the embodiment of the present application is configured to store various types of data to support the operation of the terminal 600 .
  • Examples of such data include: any computer program for operating on terminal 600 .
  • the methods disclosed in the foregoing embodiments of the present application may be applied to the first processor 602 or implemented by the first processor 602 .
  • the first processor 602 may be an integrated circuit chip, which has a signal processing capability. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the first processor 602 or an instruction in the form of software.
  • the aforementioned first processor 602 may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • the first processor 602 may implement or execute various methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. In combination with the steps of the method disclosed in the embodiments of the present application, it is possible to It is directly reflected in the completion of execution by the hardware decoding processor, or by the combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, and the storage medium is located in the first memory 603, and the first processor 602 reads the information in the first memory 603, and completes the steps of the aforementioned method in combination with its hardware.
  • the terminal 600 may be implemented by one or more Application Specific Integrated Circuits (ASIC, Application Specific Integrated Circuit), DSP, Programmable Logic Device (PLD, Programmable Logic Device), Complex Programmable Logic Device (CPLD, Complex Programmable Logic Device), field programmable gate array (FPGA, Field-Programmable Gate Array), general-purpose processor, controller, microcontroller (MCU, Micro Controller Unit), microprocessor (Microprocessor), or other electronic components Implementation for executing the aforementioned method.
  • ASIC Application Specific Integrated Circuit
  • DSP Programmable Logic Device
  • PLD Programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • controller controller
  • microcontroller MCU, Micro Controller Unit
  • microprocessor Microprocessor
  • the embodiment of the present application also provides a network device, as shown in FIG. 7 , the network device 700 includes:
  • the second communication interface 701 is capable of information interaction with the terminal
  • the second processor 702 is connected to the second communication interface 701 to implement information interaction with the terminal, and is configured to execute the method provided by one or more technical solutions on the network device side when running the computer program;
  • the second communication interface 701 is configured to send first information to the terminal, the first information is information related to the measurement of the first cell, and the measurement of the first cell includes at least one of the following: L1 Measurement; CBD; BFD; RLM.
  • the second processor 702 is configured to determine the first information.
  • the first information includes fourth indication information, and the fourth indication information indicates whether to enable or disable the rapid reporting of the L1 measurement result of the first cell or the first threshold;
  • the second communication interface 701 is further configured to receive a measurement result of the first cell L1 reported by the terminal based on the first information.
  • the second communication interface 701 is further configured to send second information to the terminal, the second information indicates a second threshold, and the second threshold is used for the terminal to report the first cell A measurement result higher than or equal to the second threshold among the L1 measurement results.
  • the second communication interface 701 is further configured to send third information to the terminal, the third information indicating a third threshold; the third threshold is used for the measurement result of the terminal in L1 When the number of the measurement results higher than or equal to the second threshold meets the third threshold, report the measurement results of the L1 measurement results higher than or equal to the second threshold to the network side.
  • the second communication interface 701 is further configured to send fourth information to the terminal, where the fourth information indicates the maximum number of reported measurement results.
  • the receiving unit is configured to receive the measurement result of the first cell L3 reported by the terminal when receiving the measurement result of the first cell L1.
  • the second communication interface 701 is further configured to send the fifth information, the fifth information indicates whether the terminal reports the measurement result of the first cell L3;
  • the second communication interface 701 receives the measurement result of the first cell L1 reported by the terminal and at the same time receives the measurement result reported by the terminal. Measurement results of L3.
  • bus system 704 is configured to enable connection communication between these components.
  • bus system 704 also includes a power bus, a control bus and a status signal bus.
  • the various buses are labeled as bus system 704 in FIG. 7 .
  • the second memory 703 in the embodiment of the present application is configured to store various types of data to support the operation of the network device 700 .
  • Examples of such data include: any computer programs for operating on network device 700 .
  • the methods disclosed in the foregoing embodiments of the present application may be applied to the second processor 702 or implemented by the second processor 702 .
  • the second processor 702 may be an integrated circuit chip, which has a signal processing capability. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the second processor 702 or instructions in the form of software.
  • the aforementioned second processor 702 may be a general-purpose processor, DSP, or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • the second processor 702 may implement or execute various methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, and the storage medium is located in the second memory 703, and the second processor 702 reads the information in the second memory 703, and completes the steps of the aforementioned method in combination with its hardware.
  • the network device 700 may be implemented by one or more ASICs, DSPs, PLDs, CPLDs, FPGAs, general-purpose processors, controllers, MCUs, Microprocessors, or other electronic components for performing the aforementioned methods.
  • the memory in this embodiment of the present application may be a volatile memory or a nonvolatile memory, and may also include both volatile and nonvolatile memories.
  • the non-volatile memory can be a read-only memory (ROM, Read Only Memory), a programmable read-only memory (PROM, Programmable Read-Only Memory), an erasable programmable read-only memory (EPROM, Erasable Programmable Read-Only Memory), Only Memory), Electrically Erasable Programmable Read-Only Memory (EEPROM, Electrically Erasable Programmable Read-Only Memory), Magnetic Random Access Memory (FRAM, ferromagnetic random access memory), Flash Memory (Flash Memory), Magnetic Surface Memory , CD, or CD-ROM (CD-ROM, Compact Disc Read-Only Memory); the magnetic surface storage can be disk storage or tape storage.
  • Volatile memory can be random Access memory (RAM, Random Access Memory), which is used as an external cache.
  • RAM random Access Memory
  • RAM Random Access Memory
  • many forms of RAM are available, such as Static Random Access Memory (SRAM, Static Random Access Memory), Synchronous Static Random Access Memory (SSRAM, Synchronous Static Random Access Memory), Dynamic Random Access Memory Memory (DRAM, Dynamic Random Access Memory), synchronous dynamic random access memory (SDRAM, Synchronous Dynamic Random Access Memory), double data rate synchronous dynamic random access memory (DDRSDRAM, Double Data Rate Synchronous Dynamic Random Access Memory), enhanced Synchronous Dynamic Random Access Memory (ESDRAM, Enhanced Synchronous Dynamic Random Access Memory), Synchronous Link Dynamic Random Access Memory (SLDRAM, SyncLink Dynamic Random Access Memory), Direct Memory Bus Random Access Memory (DRRAM, Direct Rambus Random Access Memory ).
  • SRAM Static Random Access Memory
  • SSRAM Synchronous Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • the embodiment of the present application also provides a measurement system, as shown in FIG. 8 , the system includes: a terminal 801 and a network device 802 .
  • the embodiment of the present application also provides a storage medium, that is, a computer storage medium, specifically a computer-readable storage medium, for example, including a first memory 603 storing a computer program, and the above-mentioned computer program can be used by the terminal 600
  • the first processor 602 is executed to complete the steps described in the aforementioned terminal-side method, and another example includes a second memory 703 storing computer programs.
  • the above-mentioned computer program can be executed by the second processor 702 of the network device 700 to complete the aforementioned network device method steps.
  • the computer-readable storage medium can be memories such as FRAM, ROM, PROM, EPROM, EEPROM, Flash Memory, magnetic surface memory, optical disk, or CD-ROM.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种测量方法、装置、终端、网络设备及存储介质。其中,方法包括:终端获取第一信息,所述第一信息是与第一小区的测量有关的信息,所述第一小区的测量包含以下至少之一:层1测量;候选波束检测(CBD);波束失败检测(BFD);无线链路监测(RLM)。

Description

测量方法、装置、相关设备及存储介质
相关申请的交叉引用
本申请基于申请号为202210130197.5、申请日为2022年02月11日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及无线通信技术,尤其涉及一种测量方法、装置、相关设备及存储介质。
背景技术
相关技术中,对于移动性操作,首先基于终端上报的层3(L3)的测量结果进行目标小区的切换,然后在目标小区中基于波束管理的上报结果,通过无线资源控制(RRC)重配消息进行传输配置指示状态(TCI state)的配置,使能终端选择合适的下行波束进行数据接收。
然而,上述的波束管理只在服务小区中进行。另外,数据的收发也只在服务小区中进行。
发明内容
为解决相关技术问题,本申请实施例提供一种测量方法、装置、相关设备及存储介质。
本申请实施例的技术方案是这样实现的:
本申请实施例提供一种测量方法,应用于终端,包括:
获取第一信息,所述第一信息是与第一小区的测量有关的信息,所述第一小区的测量包含以下至少之一:
层1(L1)测量;
候选波束检测(CBD,Candidate Beam Detection);
波束失败检测(BFD,Beam Failure Detection);
无线链路监测(RLM,Radio Link Monitoring)。
上述方案中,所述第一小区包括非服务小区或者与服务小区的物理小区标识(PCI)不同的小区。
上述方案中,所述第一信息包括第一因子,所述第一因子应用于测量 时延。
上述方案中,所述第一因子包括以下之一:
百分比;
正数;
分数;
服务小区的参考符号与第一小区的参考符号存在部分重叠时,第一因子=K1/(1-A/B),或者第一因子=K1/(1-B/A);其中,K1为正数,A表示第一小区L1的参考符号的周期,B表示服务小区L1的参考符号的周期;
第一小区的参考符号与测量间隔存在部分重叠时,第一因子=K2/(1-A/Z);其中,K2为正数,A表示第一小区L1的参考符号的周期,Z表示测量间隔周期;
服务小区的参考符号与第一小区的参考符号存在部分重叠,且第一小区的参考符号与测量间隔存在部分重叠时,第一因子=K3/(1-A/B-A/Z),或者第一因子=K3/(1-B/A-A/Z),或者第一因子=K3/(1-B/A-B/Z);其中,K3为正数,A表示第一小区L1的参考符号的周期,Z表示测量间隔周期,B表示服务小区L1的参考符号的周期。
上述方案中,所述第一因子满足以下之一:
服务小区的参考符号与第一小区的参考符号存在重叠时,所述第一因子与参数A和参数B关联,参数A表示第一小区L1的参考符号的周期,参数B表示服务小区L1的参考符号的周期;
第一小区的参考符号与测量间隔存在重叠时,所述第一因子与参数A和参数Z关联,参数A表示第一小区L1的参考符号的周期,参数Z表示测量间隔周期;
服务小区的参考符号与第一小区的参考符号存在重叠,且第一小区的参考符号与测量间隔存在重叠时,所述第一因子与参数A、参数B和参数Z关联,参数A表示第一小区L1的参考符号的周期,参数Z表示测量间隔周期,参数B表示服务小区L1的参考符号的周期。
上述方案中,所述第一信息包括第二因子,所述第二因子应用于测量时延。
上述方案中,所述第二因子包括以下之一:
百分比;
正数;
分数;
第一小区L1的参考符号与第二小区L3的参考符号存在部分重叠时,第二因子=M1/(1-A/C),或者第二因子=M1/(1-C/A);其中,M1为正数,A表示第一小区L1的参考符号的周期,C表示第二小区L3的参考符号的周期;
第一小区的参考符号与测量间隔存在部分重叠时,第二因子 =M2/(1-A/Z);其中,M2为正数,A表示第一小区L1的参考符号的周期,Z表示测量间隔周期;
第一小区的参考符号与第二小区的参考符号存在部分重叠且第一小区的参考符号与测量间隔存在部分重叠时,第二因子=M3/(1-A/C-A/Z),或者第二因子=M3/(1-C/A-A/Z),或者第二因子=M3/(1-C/A-C/Z);其中,M3为正数,A表示第一小区L1的参考符号的周期,Z表示测量间隔周期,C表示第二小区L3的参考符号的周期。
上述方案中,所述第二因子满足以下之一:
第一小区L1的参考符号与第二小区L3的参考符号存在重叠时,所述第二因子与参数A和参数C关联,参数A表示第一小区L1的参考符号的周期,参数C表示第二小区L3的参考符号的周期;
第一小区的参考符号与测量间隔存在重叠时,所述第二因子与参数A和参数Z关联,参数A表示第一小区L1的参考符号的周期,参数Z表示测量间隔周期;
第一小区的参考符号与第二小区的参考符号存在重叠且第一小区的参考符号与测量间隔存在重叠时,所述第二因子与参数A、参数C和参数Z关联,参数A表示第一小区L1的参考符号的周期,参数Z表示测量间隔周期,参数C表示第二小区L3的参考符号的周期。
上述方案中,所述第一信息包括第三因子,所述第三因子应用于测量时延。
上述方案中,所述第三因子包括以下之一:
百分比;
正数;
分数;
第一小区的BFD与第三小区的CBD的参考符号存在部分重叠时,第三因子=N1/(1-D/E),或者第三因子=N1/(1-E/D);其中,N1为正数,D表示第一小区BFD的参考符号的周期,E表示第三小区CBD的参考符号的周期;
第一小区的BFD的参考符号与测量间隔存在部分重叠时,第三因子=N2/(1-D/Z);其中,N2为正数,D表示第一小区BFD的参考符号的周期,Z表示测量间隔周期;
第一小区的CBD的参考符号与测量间隔存在部分重叠时,第三因子=N6/(1-F/Z);其中,N6为正数,F表示第一小区CBD的参考符号的周期,Z表示测量间隔周期;
第一小区的BFD与第三小区的CBD的参考符号存在部分重叠且第一小区的BFD与测量间隔存在部分重叠时,第三因子=N3/(1-D/E-D/Z),或者第三因子=N3/(1-E/D-D/Z),或者第三因子=N3/(1-E/D-E/Z);其中,N3为正数,D表示第一小区BFD的参考符号的周期,Z表示测量间隔周期,E表 示第三小区CBD的参考符号的周期;
第一小区的CBD与第三小区的BFD的参考符号存在部分重叠时,第三因子=N4/(1-F/G),或者第三因子=N4/(1-G/F);其中,N4为正数,F表示第一小区CBD的参考符号的周期,G表示第三小区BFD的参考符号的周期;
第一小区的CBD与第三小区的BFD的参考符号存在部分重叠且第一小区的CBD与测量间隔存在部分重叠时,第三因子=N5/(1-F/G-F/Z),或者第三因子=N5/(1-G/F-F/Z),或者第三因子=N5/(1-G/F-G/Z);其中,N5为正数,F表示第一小区CBD的参考符号的周期,Z表示测量间隔周期,G表示第三小区BFD的参考符号的周期。
上述方案中,所述第三因子满足以下之一:
第一小区的BFD与第三小区的CBD的参考符号存在重叠时,所述第三因子与参数D和参数E关联,参数D表示第一小区BFD的参考符号的周期,参数E表示第三小区CBD的参考符号的周期;
第一小区的BFD的参考符号与测量间隔存在重叠时,所述第三因子与参数D和参数Z关联,参数D表示第一小区BFD的参考符号的周期,参数Z表示测量间隔周期;
第一小区的CBD的参考符号与测量间隔存在重叠时,所述第三因子与参数F和参数Z关联,参数F表示第一小区CBD的参考符号的周期,参数Z表示测量间隔周期;
第一小区的BFD与第三小区的CBD的参考符号存在重叠且第一小区的BFD与测量间隔存在重叠时,所述第三因子与参数D、参数E和参数Z关联,参数D表示第一小区BFD的参考符号的周期,参数Z表示测量间隔周期,参数E表示第三小区CBD的参考符号的周期;
第一小区的CBD与第三小区的BFD的参考符号存在重叠时,所述第三因子与参数F和参数G关联,参数F表示第一小区CBD的参考符号的周期,参数G表示第三小区BFD的参考符号的周期;
第一小区的CBD与第三小区的BFD的参考符号存在重叠且第一小区的CBD与测量间隔存在重叠时,所述第三因子与参数F、参数G和参数Z关联,参数F表示第一小区CBD的参考符号的周期,参数Z表示测量间隔周期,参数G表示第三小区BFD的参考符号的周期。
上述方案中,所述第一信息包括以下至少之一:
第一指示信息,所述第一指示信息指示在第一小区的L1测量和服务小区的L1测量存在重叠的情况下是否同时测量;
第二指示信息,所述第二指示信息指示在第一小区的L1测量和第二小区的L3测量存在重叠的情况下是否同时测量;
第三指示信息,所述第三指示信息指示在第一小区的BFD测量和第三小区的CBD测量存在重叠的情况下是否同时测量,或者指示在第一小区的 CBD测量和第三小区的BFD测量存在重叠的情况下是否同时测量;
第四指示信息,所述第四指示信息指示开启或关闭快速上报第一小区的L1测量结果或第一门限。
上述方案中,在所述第四指示信息指示开启快速上报第一小区的L1测量结果或第一小区L1的测量结果高于或等于所述第一门限的情况下,获得第一小区P1个L1的测量结果后向所述网络侧上报测量结果;
或者在所述第四指示信息指示关闭快速上报第一小区的L1测量结果或第一小区L1的测量结果低于所述第一门限的情况下,获得第一小区Q1个L1的测量结果后向所述网络侧上报测量结果;P1为大于或等于1的整数,Q1为大于或等于1的整数,P1小于Q1。
上述方案中,在所述第四指示信息指示开启或关闭快速上报第一小区的L1测量结果的情况下,所述第四指示信息包括第一计数器;
在获得的第一小区L1的测量结果的个数满足所述第一计数器的要求时上报测量结果。
上述方案中,所述方法还包括:
接收所述网络侧发送的第二信息,所述第二信息指示第二门限;
向所述网络侧上报第一小区L1测量结果中高于或等于所述第二门限的测量结果。
上述方案中,所述方法还包括:
接收所述网络侧发送的第三信息,所述第三信息指示第三门限;
在L1测量结果中高于或等于所述第二门限的测量结果的个数满足第三门限时,向所述网络侧上报L1测量结果中高于或等于所述第二门限的测量结果。
上述方案中,所述第三信息包括第二计数器;
在L1测量结果中高于或等于所述第二门限的测量结果的个数满足所述第二计数器的要求时,向所述网络侧上报L1测量结果中高于或等于所述第二门限的测量结果。
上述方案中,所述方法还包括:
接收所述网络侧发送的第四信息,所述第四信息指示上报的测量结果的最大数目;
在L1测量结果中高于或等于所述第二门限的测量结果的个数大于所述最大数目的情况下,从高于或等于所述第二门限的测量结果中选择所述最大数目个测量结果进行上报。
上述方案中,上报测量结果的绝对值;
或者,
上报测量结果相对于第一波束测量结果的相对值。
上述方案中,所述第一波束包括以下之一:
第一小区质量最高的波束;
服务小区质量最高的波束。
上述方案中,上报第一小区L1的测量结果时,所述方法还包括:
上报第一小区L3的测量结果。
上述方案中,所述方法还包括:
接收所述网络侧发送的第五信息,所述第五信息指示所述终端是否上报第一小区L3的测量结果;
在所述第五信息指示所述终端上报第一小区L3的测量结果的情况下,上报第一小区L1的测量结果的同时上报L3的测量结果。
本申请实施例还提供一种测量方法,应用于网络设备,包括:
向终端发送第一信息,所述第一信息是与第一小区的测量有关的信息,所述第一小区的测量包含以下至少之一:
L1测量;
CBD;
BFD;
RLM。
上述方案中,所述第一小区包括非服务小区或者与服务小区的PCI不同的小区。
上述方案中,所述第一信息包括第一因子,所述第一因子应用于测量时延。
上述方案中,所述第一因子包括以下之一:
百分比;
正数;
分数;
服务小区的参考符号与第一小区的参考符号存在部分重叠时,第一因子=K1/(1-A/B),或者第一因子=K1/(1-B/A);其中,K1为正数,A表示第一小区L1的参考符号的周期,B表示服务小区L1的参考符号的周期;
第一小区的参考符号与测量间隔存在部分重叠时,第一因子=K2/(1-A/Z);其中,K2为正数,A表示第一小区L1的参考符号的周期,Z表示测量间隔周期;
服务小区的参考符号与第一小区的参考符号存在部分重叠且第一小区的参考符号与测量间隔存在部分重叠时,第一因子=K3/(1-A/B-A/Z),或者第一因子=K3/(1-B/A-A/Z),或者第一因子=K3/(1-B/A-B/Z);其中,K3为正数,A表示第一小区L1的参考符号的周期,Z表示测量间隔周期,B表示服务小区L1的参考符号的周期。
上述方案中,所述第一因子满足以下之一:
服务小区的参考符号与第一小区的参考符号存在重叠时,所述第一因子与参数A和参数B关联,参数A表示第一小区L1的参考符号的周期,参数B表示服务小区L1的参考符号的周期;
第一小区的参考符号与测量间隔存在重叠时,所述第一因子与参数A和参数Z关联,参数A表示第一小区L1的参考符号的周期,参数Z表示测量间隔周期;
服务小区的参考符号与第一小区的参考符号存在重叠且第一小区的参考符号与测量间隔存在重叠时,所述第一因子与参数A、参数B和参数Z关联,参数A表示第一小区L1的参考符号的周期,参数Z表示测量间隔周期,参数B表示服务小区L1的参考符号的周期。
上述方案中,所述第一信息包括第二因子,所述第二因子应用于测量时延。
上述方案中,所述第二因子包括以下之一:
百分比;
正数;
分数;
第一小区L1的参考符号与第二小区L3的参考符号存在部分重叠时,第二因子=M1/(1-A∑/C),或者第二因子=M1/1-C/A);其中,M1为正数,A表示第一小区L1的参考符号的周期,C表示第二小区L3的参考符号的周期;
第一小区的参考符号与测量间隔存在部分重叠时,第二因子=M2/(1-A/Z);其中,M2为正数,A表示第一小区L1的参考符号的周期,Z表示测量间隔周期;
第一小区的参考符号与第二小区的参考符号存在部分重叠且第一小区的参考符号与测量间隔存在部分重叠时,第二因子=M3/(1-A/C-A/Z),或者第二因子=M3/(1-C/A-A/Z),或者第二因子=M3/(1-C/A-C/Z);其中,M3为正数,A表示第一小区L1的参考符号的周期,Z表示测量间隔周期,C表示第二小区L3的参考符号的周期。
上述方案中,所述第二因子满足以下之一:
第一小区L1的参考符号与第二小区L3的参考符号存在重叠时,所述第二因子与参数A和参数C关联,参数A表示第一小区L1的参考符号的周期,参数C表示第二小区L3的参考符号的周期;
第一小区的参考符号与测量间隔存在重叠时,所述第二因子与参数A和参数Z关联,参数A表示第一小区L1的参考符号的周期,参数Z表示测量间隔周期;
第一小区的参考符号与第二小区的参考符号存在重叠且第一小区的参考符号与测量间隔存在重叠时,所述第二因子与参数A、参数C和参数Z关联,参数A表示第一小区L1的参考符号的周期,参数Z表示测量间隔周期,参数C表示第二小区L3的参考符号的周期。
上述方案中,所述第一信息包括第三因子,所述第三因子应用于测量时延。
上述方案中,所述第三因子包括以下之一:
百分比;
正数;
分数;
第一小区的BFD与第三小区的CBD的参考符号存在部分重叠时,第三因子=N1/(1-D/E),或者第三因子=N1/(1-E/D);其中,N1为正数,D表示第一小区BFD的参考符号的周期,E表示第三小区CBD的参考符号的周期;
第一小区的BFD的参考符号与测量间隔存在部分重叠时,第三因子=N2/(1-D/Z);其中,N2为正数,D表示第一小区BFD的参考符号的周期,Z表示测量间隔周期;
第一小区的CBD的参考符号与测量间隔存在部分重叠时,第三因子=N6/(1-F/Z);其中,N6为正数,F表示第一小区CBD的参考符号的周期,Z表示测量间隔周期;
第一小区的BFD与第三小区的CBD的参考符号存在部分重叠且第一小区的BFD与测量间隔存在部分重叠时,第三因子=N3/(1-D/E-D/Z),或者第三因子=N3/(1-E/D-D/Z),或者第三因子=N3/(1-E/D-E/Z);其中,N3为正数,D表示第一小区BFD的参考符号的周期,Z表示测量间隔周期,E表示第三小区CBD的参考符号的周期;
第一小区的CBD与第三小区的BFD的参考符号存在部分重叠时,第三因子=N4/(1-F/G),或者第三因子=N4/(1-G/F);其中,N4为正数,F表示第一小区CBD的参考符号的周期,G表示第三小区BFD的参考符号的周期;
第一小区的CBD与第三小区的BFD的参考符号存在部分重叠且第一小区的CBD与测量间隔存在部分重叠时,第三因子=N5/(1-F/G-F/Z),或者第三因子=N5/(1-G/F-F/Z),或者第三因子=N5/(1-G/F-G/Z);其中,N5为正数,F表示第一小区CBD的参考符号的周期,Z表示测量间隔周期,GE表示第三小区BFD的参考符号的周期。
上述方案中,所述第三因子满足以下之一:
第一小区的BFD与第三小区的CBD的参考符号存在重叠时,所述第三因子与参数D和参数E关联,参数D表示第一小区BFD的参考符号的周期,参数E表示第三小区CBD的参考符号的周期;
第一小区的BFD的参考符号与测量间隔存在重叠时,所述第三因子与参数D和参数Z关联,参数D表示第一小区BFD的参考符号的周期,参数Z表示测量间隔周期;
第一小区的CBD的参考符号与测量间隔存在重叠时,所述第三因子与参数F和参数Z关联,参数F表示第一小区CBD的参考符号的周期,参数Z表示测量间隔周期;
第一小区的BFD与第三小区的CBD的参考符号存在重叠且第一小区的BFD与测量间隔存在重叠时,所述第三因子与参数D、参数E和参数Z关联,参数D表示第一小区BFD的参考符号的周期,参数Z表示测量间隔周期,参数E表示第三小区CBD的参考符号的周期;
第一小区的CBD与第三小区的BFD的参考符号存在重叠时,所述第三因子与参数F和参数G关联,参数F表示第一小区CBD的参考符号的周期,参数G表示第三小区BFD的参考符号的周期;
第一小区的CBD与第三小区的BFD的参考符号存在重叠且第一小区的CBD与测量间隔存在重叠时,所述第三因子与参数F、参数G和参数Z关联,参数F表示第一小区CBD的参考符号的周期,参数Z表示测量间隔周期,参数G表示第三小区BFD的参考符号的周期。
上述方案中,所述第一信息包括以下至少之一:
第一指示信息,所述第一指示信息指示在第一小区的L1测量和服务小区的L1测量存在重叠的情况下是否同时测量;
第二指示信息,所述第二指示信息指示在第一小区的L1测量和第二小区的L3测量存在重叠的情况下是否同时测量;
第三指示信息,所述第三指示信息指示在第一小区的BFD测量和第三小区的CBD测量存在重叠的情况下是否同时测量,或者指示在第一小区的CBD测量和第三小区的BFD测量存在重叠的情况下是否同时测量;
第四指示信息,所述第四指示信息指示开启或关闭快速上报第一小区的L1测量结果或第一门限。
上述方案中,在所述第一信息包含所述第四指示信息的情况下,所述方法还包括:
接收所述终端基于所述第一信息上报的第一小区L1的测量结果。
上述方案中,在所述第四指示信息指示开启或关闭快速上报第一小区的L1测量结果的情况下,所述第四指示信息包括第一计数器,所述第一计数器用于指示所述终端获得的第一小区L1的测量结果的个数满足所述第一计数器的要求时上报测量结果。
上述方案中,所述方法还包括:
向所述终端发送第二信息,所述第二信息指示第二门限,所述第二门限用于所述终端上报第一小区L1测量结果中高于或等于所述第二门限的测量结果。
上述方案中,所述方法还包括:
向所述终端发送第三信息,所述第三信息指示第三门限;所述第三门限用于所述终端在L1测量结果中高于或等于所述第二门限的测量结果的个数满足第三门限时,向所述网络侧上报L1测量结果中高于或等于所述第二门限的测量结果。
上述方案中,所述第三信息包括第二计数器,所述第二计时器用于指 示所述终端在L1测量结果中高于或等于所述第二门限的测量结果的个数满足所述第二计数器的要求时,向所述网络侧上报L1测量结果中高于或等于所述第二门限的测量结果。
上述方案中,所述方法还包括:
向所述终端发送第四信息,所述第四信息指示上报的测量结果的最大数目。
上述方案中,接收第一小区L1的测量结果时,所述方法还包括:
接收所述终端上报的第一小区L3的测量结果。
上述方案中,所述方法还包括:
向所述终端发送第五信息,所述第五信息指示所述终端是否上报第一小区L3的测量结果;
在所述第五信息指示所述终端上报第一小区L3的测量结果的情况下,接收所述终端上报的第一小区L1的测量结果的同时接收所述终端上报的L3的测量结果。
本申请实施例还提供一种测量装置,包括:
获取单元,配置为获取第一信息,所述第一信息是与第一小区的测量有关的信息,所述第一小区的测量包含以下至少之一:
L1测量;
CBD;
BFD;
RLM。
本申请实施例还提供一种测量装置,包括:
发送单元,配置为向终端发送第一信息,所述第一信息是与第一小区的测量有关的信息,所述第一小区的测量包含以下至少之一:
L1测量;
CBD;
BFD;
RLM。
本申请实施例还提供一种终端,包括:第一处理器及第一通信接口;其中,
所述第一处理器,配置为获取第一信息,所述第一信息是与第一小区的测量有关的信息,所述第一小区的测量包含以下至少之一:
L1测量;
CBD;
BFD;
RLM。
本申请实施例还提供一种网络设备,包括:第二处理器及第二通信接口;其中,
所述第二通信接口,配置为向终端发送第一信息,所述第一信息是与第一小区的测量有关的信息,所述第一小区的测量包含以下至少之一:
L1测量;
CBD;
BFD;
RLM。
本申请实施例还提供一种终端,包括:第一处理器和配置为存储能够在处理器上运行的计算机程序的第一存储器,
其中,所述第一处理器配置为运行所述计算机程序时,执行上述终端侧任一方法的步骤。
本申请实施例还提供一种网络设备,包括:第二处理器和配置为存储能够在处理器上运行的计算机程序的第二存储器,
其中,所述第二处理器配置为运行所述计算机程序时,执行上述网络设备侧任一方法的步骤。
本申请实施例还提供一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述终端侧任一方法的步骤,或者实现上述网络设备侧任一方法的步骤。
本申请实施例提供的测量方法、装置、相关设备及存储介质,终端获取第一信息,所述第一信息是与第一小区的测量有关的信息,所述第一小区的测量包含以下至少之一:L1测量;CBD;BFD;RLM,本申请实施例提供的方案,终端获取与邻区的L1测量有关的信息,从而能够基于所述信息执行测量,进而提升基于L1测量进行邻区波束切换的稳定性,提升移动性能;终端获取与邻区链路质量监测有关的信息,从而能够基于所述信息执行测量,进而能够实现不进行小区切换的情况下与一个或多个邻区进行数据收发,提升吞吐率,提升系统性能。
附图说明
图1a为一种基于L1的移动性场景示意图;
图1b为另一种基于L1的移动性场景示意图;
图2为本申请实施例一种测量的方法流程示意图;
图3为本申请实施例另一种测量的方法流程示意图;
图4为本申请实施例一种测量装置结构示意图;
图5为本申请实施例另一种测量装置结构示意图;
图6为本申请实施例终端结构示意图;
图7为本申请实施例网络设备结构示意图;
图8为本申请实施例测量系统结构示意图。
具体实施方式
下面结合附图及实施例对本申请再作进一步详细的描述。
相关技术中,波束管理只在服务小区中进行,终端不需要对邻区进行波束管理的相关测量。然而,为了提高系统吞吐量,可以采用基于L1的移动性操作。基于L1的移动性操作的基本思想是:基于L1的测量结果,在不进行小区间切换的情况下,通过波束管理的方式基于邻区的波束进行数据收发。基于L1的移动性操作,可以有以下三种应用场景:
第一种,先基于邻区的用于波束管理的L1测量进行针对邻区的波束的切换(可以称为波束级别的切换),然后进行邻区切换(即进行小区级别的切换)。具体地,如图1a所示,终端进行邻区的L1测量,网络侧参考终端上报的邻区L1测量结果,配置终端接收邻区的相应波束,然后再配置终端进行该邻区的L3测量,进而进行以该邻区为目标小区的切换。
第二种,先进行邻区的用于波束管理的L1测量,然后同时进行邻区波束切换和邻区切换。具体地,如图1b所示,终端进行邻区的L1测量,网络参考终端上报的邻区L1测量结果,同时触发终端进行针对邻区的波束切换和小区切换。
第三种,先进行邻区的用于波束管理的L1测量,然后只进行邻区波束切换,即进行L3不感知的切换(不进行小区切换),只是通过波束切换的方式接收邻区的数据。
从上面的描述可以看出,上述三种应用场景的实现方式中,终端需要先进行邻区波束管理相关测量(即邻区L1测量),然后再触发其他操作。这种方式可能会存在以下问题:
第一,邻区L1的测量结果未经过滤波(可以理解为没有经过平均,抽样后就直接上报值网络侧),所以测量结果不稳定,鲁棒性不强,很容易产生乒乓效应。
第二,实际上,在相关技术中,不进行邻区波束管理相关测量(即不进行非服务小区的L1测量),如果进行邻区的波束管理相关测量,则会对服务小区的L1测量,邻区的L3测量产生影响,比如由于波束扫描等会导致服务小区的L1测量和/或邻区的L3测量中断,进而影响系统性能。
也就是说,对于邻区的L1测量,需要考虑如何测量(测量存在冲突)以及测量之后如何上报两个问题。
基于此,在本申请的各种实施例中,终端获取与邻区的L1测量有关的信息,从而能够基于所述信息执行测量,进而提升基于L1测量进行邻区波束切换的稳定性,提升移动性能。同时,终端获取与邻区链路质量监测测量有关的信息,从而能够实现不进行小区切换的情况下与一个或多个邻区进行数据收发,提升吞吐率,提升系统性能。
本申请实施例提供一种测量方法,应用于终端,如图2所示,该方法 包括:
步骤201:获取第一信息,所述第一信息是与第一小区的测量有关的信息所述第一小区的测量包含以下至少之一:L1测量;CBD;BFD;RLM;
步骤202:基于第一信息进行测量。
其中,实际应用时,所述终端可以称为用户设备(UE)、终端设备、设备或用户等。
步骤201中,实际应用时,所述终端可以通过以下方式至少之一获得所述第一信息:
接收网络侧发送的第一信息;
预先规定第一信息,即预先定义第一信息;
终端自身确定,即通过所述终端的内部实现来确定。
其中,实际应用时,所述网络侧可以通过广播或RRC信令等向所述终端发送第一信息,本申请实施例对此不作限定。
所述第一小区是指所述终端所在服务小区的邻区,具体地,所述第一小区可以包括以下之一:
非服务小区;
与服务小区的PCI不同的小区。
其中,对于非服务小区,非服务小区的传输接收点(TRP)与服务小区的TRP不同,在这种情况下,非服务小区的PCI与服务小区的PCI可能相同,也可能不同。
实际应用时,L1的测量可以包括以下至少之一:
L1参考信号接收功率(L1-RSRP);
L1参考信号接收质量(L1-RSRQ);
L1信号与干扰加噪声比(L1-SINR)。
相关技术中,终端只需要进行服务小区的L1测量。然而,当需要进行邻区L1测量(为了增加系统吞吐率,提升系统性能,终端在不进行小区切换的情况下通过波束转换(也可以称为切换)与一个或多个邻区进行数据收发)时,由于邻区L1的参考符号波束与服务小区L1的参考符号波束方向不同,如果邻区L1的参考符号与服务小区L1的参考符号在时域存在重叠,对于同一时刻只支持单方向接收的FR2终端,终端可能在某一时刻只能接收特定方向的信号(参考符号或者数据)无法同时完成邻区L1测量和服务小区L1测量,也就是说,如果服务小区的信号和邻区的信号来自不同的方向,终端无法同时接收。也就是说,在进行第一小区L1的测量时,可能会存在服务小区的L1测量和第一小区的L1测量存在重叠的情况,此时所述终端基于第一信息进行测量。
具体地,所述第一信息包含第一因子,在服务小区的L1测量和第一小区的L1测量存在重叠的情况下,所述第一因子可以被应用;也就是说,所述第一因子可以应用于服务小区的L1测量和第一小区的L1测量存在重叠 的时候。这里,所述存在重叠可以包括服务小区的L1测量和第一小区的L1测量完全重叠,或者部分重叠。所述重叠可以包括时域重叠和/或频域重叠。
所述第一因子可以指示终端在服务小区的L1测量和第一小区的L1测量存在冲突时,如何进行服务小区的L1测量和第一小区的L1测量的分配。具体地,所述第一因子应用于测量时延,所述终端基于所述第一因子在服务小区的L1测量与第一小区的L1测量二者之间进行资源的分配。
另外,实际应用时,邻区L1参考符号与测量间隔之间可能也会存在重叠。当然,这种重叠可以是包括邻区L1参考符号与测量间隔完全重叠,或者部分重叠。所述重叠可以包括时域重叠和/或频域重叠,此时,所述终端基于第一信息进行测量。
其中,在一实施例中,所述第一因子包括以下之一:
百分比,即所述第一因子的取值为百分比;
正数,比如0.8,或者1.5,或者3等,小于或等于100;
分数,比如4/5等;
服务小区的参考符号与第一小区的参考符号存在重叠时,所述第一因子与参数A和参数B关联;参数A表示第一小区L1的参考符号的周期(也可以称为用于L1测量的参考符号的周期),参数B表示服务小区L1的参考符号的周期;具体地,服务小区的参考符号与第一小区的参考符号存在部分重叠时,第一因子=K1/(1-A/B),或者第一因子=K1/(1-B/A);其中,K1为正数;
第一小区的参考符号与测量间隔存在重叠时,所述第一因子与参数A和参数Z关联;参数A表示第一小区L1的参考符号的周期,参数Z表示测量间隔周期;具体地,第一小区的参考符号与测量间隔存在部分重叠时,第一因子=K2/(1-A/Z);其中,K2为正数;
服务小区的参考符号与第一小区的参考符号存在重叠且第一小区的参考符号与测量间隔存在重叠时,所述第一因子与参数A、B、Z关联;A表示第一小区L1的参考符号的周期,Z表示测量间隔周期,B表示服务小区L1的参考符号的周期;具体地,服务小区的参考符号与第一小区的参考符号存在部分重叠且第一小区的参考符号与测量间隔存在部分重叠时,第一因子=K3/(1-A/B-A/Z),或者第一因子=K3/(1-B/A-A/Z),或者第一因子=K3/(1-B/A-B/Z);其中,K3为正数。
其中,实际应用时,所述第一因子可以应用于第一小区的测量,也可以应用于服务小区的测量。
当所述第一因子包括百分比、或分数时,实际应用时,所述第一因子可以隐式或显式地指示第一小区的L1测量的测量资源。示例性地,如果第一因子的取值是百分比,比如P2%,当所述第一因子显式地指示第一小区的L1测量的测量资源时,那么可以理解为用于第一小区的L1测量的测量 资源为P2%,相应地,第一小区的L1测量的时延需要延长1/P2倍。对应地,用于服务小区的L1测量的测量资源为(1-P2)%,相应地,服务小区的L1测量的时延需要延长1/(1-P2)倍。当所述第一因子隐式地指示第一小区的L1测量的测量资源时,那么可以理解为用于服务小区的L1测量的测量资源为P2%,相应地,服务小区的L1测量的时延需要延长1/P2倍。对应地,用于第一小区的L1测量的测量资源为(1-P2)%,相应地,第一小区的L1测量的时延需要延长1/(1-P2)倍。
如果第一因子的取值是非零正数,比如第一因子的取值是P3(比如3),当所述第一因子用于第一小区的L1测量时,那么第一小区的L1测量的时延需要延长P3倍;当所述第一因子用于服务小区的L1测量时,那么服务小区的L1测量的时延需要延长P3倍。
第一因子的取值为百分比、或为正数、或为分数,可以应用于完全重叠的场景,也可以应用于不完全重叠的场景。
在服务小区的L1测量和第一小区的L1测量不重叠的情况下,第一因子的取值是1。
实际应用时,K1、K2和K3的取值可以根据需要确定,比如可以基于参考符号的周期、非连续接收周期(DRX cycle)、载波测量性能缩放因子(CSSF,Carrier-specific scaling factor)、测量间隔周期(MGRP)等中至少一种因素确定,比如取值为1,或者1.5等。K1、K2和K3的取值可以相同,也可以不同。
本申请实施例中,所述参考符号可以包括以下至少之一:
同步信号块(SSB);
信道状态信息参考信号(CSI-RS)。
相应地,本申请实施例中,所述参考符号的周期可以包括以下至少之一:
SSB周期;
SSB的测量时间配置(SMTC)周期;
CSI-RS周期。
具体地,实际应用时,服务小区和第一小区的参考符号的周期可以都是SSB周期,服务小区和第一小区的参考符号的周期也可以都是CSI-RS周期,服务小区和第一小区的参考符号的周期也可以都是SMTC周期,也可以是服务小区和第一小区的参考符号的周期是SSB周期,CSI-RS周期,SMTC周期中的任意2种的组合。
当服务小区L1的参考符号与第一小区L1的参考符号存在部分重叠时,第一小区的L1测量只在未与服务小区L1测量发生重叠的参考符号位置进行,也就是说,所述终端只在没有与服务小区的参考符号存在重叠的第一小区的参考符号位置进行L1测量。示例性地,当第一小区L1的参考符号周期小于服务小区L1的参考符号周期时,第一因子=K1/(1-A/B),此时第 一小区的L1测量时延需要延时K1/(1-A/B)倍,即第一因子应用于第一小区的L1测量,服务小区的L1测量不受影响,即所述终端可以在服务小区L1的所有参考符号的位置进行测量。其中,当第一小区L1的参考符号周期大于服务小区L1的参考符号周期时,第一因子=K1/(1-B/A),此时服务小区的L1测量需要延时K1/(1-B/A)倍,即第一因子应用于服务小区的L1测量,第一小区的L1测量不受影响,即所述终端可以在第一小区L1的所有参考符号的位置进行测量。这里,实际应用时,该方案可以应用于邻区(即第一小区)的L1测量在SMTC之外进行测量的场景,也可以应用于邻区的L1测量在SMTC内进行测量的场景。
第一小区L1的参考符号与测量间隔(英文可以表达为MG)存在部分重叠时,所述终端只在没有与测量间隔存在重叠的第一小区的参考符号位置进行L1测量。具体地,当第一小区的L1的参考符号的周期小于测量间隔周期,并且第一小区的L1的参考符号与服务小区的L1的参考符号存在部分重叠的时候,所述终端只在没有与测量间隔存在重叠并且也没有与服务小区L1的参考符号存在重叠的第一小区的参考符号位置进行L1测量,此时第一因子=K2/(1-A/Z)。
当服务小区L1的参考符号与第一小区L1的参考符号存在部分重叠,且第一小区的参考符号与测量间隔存在部分重叠时,所述终端只在没有与测量间隔存在重叠并且也没有与服务小区L1的参考符号存在重叠的第一小区的参考符号位置进行L1测量。具体地,当第一小区L1的参考符号的周期小于测量间隔周期,且当第一小区L1的参考符号与服务小区L1的参考符号存在部分重叠的时候,所述终端只在没有与测量间隔存在重叠并且也没有与服务小区L1参考符号存在重叠的第一小区的参考符号位置进行L1测量。相应地,所述终端只在没有与测量间隔存在重叠且也没有与第一小区的L1测量的参考符号存在重叠的服务小区的参考符号位置进行L1测量。更具体地,第一因子=K3/(1-A/B-A/Z),和第一因子=K3/(1-B/A-A/Z)适用于第一小区的测量,第一因子=K3/(1-B/A-B/Z)适用于服务小区的测量。
在一实施例中,所述测量时延可以包括以下至少之一:
测量周期(英文可以表达为measurement period);
主同步信号(PSS)/辅同步信号(SSS)的检测周期(也可以称为检测时延,英文可以表达为Time period for PSS/SSS detection);
时间索引检测周期(英文可以表达为Time period for time index detection)(可以理解为终端获取资源索引(比如SSB索引等)需要的时间);
RLM检测周期(英文可以表达为RLM evaluation period);
BFD检测周期(英文可以表达为BFD evaluation period);
CBD检测周期(英文可以表达为CBD evaluation period)。
相关技术中,终端只需要进行邻区的L3测量。然而,当需要进行邻区L1测量(为了增加系统吞吐率,提升系统性能,终端在不进行小区切换的 情况下通过波束转换(也可以称为切换)与一个或多个邻区进行数据收发)时,由于L1的参考符号波束与L3的参考符号波束方向不同,如果L1的参考符号与L3的参考符号在时域存在重叠,对于同一时刻只支持单方向接收的FR2终端,即终端可能在某一时刻只能接收特定方向的信号(参考符号或者数据),无法同时完成邻区L3测量和邻区L1测量,也就是说,如果第一小区的用于L1测量的信号和第二小区的用于L3测量的信号来自不同的方向,终端无法同时接收。也就是说,在进行第一小区L1的测量时,可能会存在第二小区的L3测量和第一小区的L1测量存在重叠的情况,此时所述终端基于第一信息进行测量。
具体地,所述第一信息包含第二因子,在第一小区的L1测量与第二小区的L3测量存在重叠的情况下,所述第二因子可以被应用;也就是说,所述第二因子可以应用于第二小区的L3测量和第一小区的L1测量存在重叠的时候。这里,所述存在重叠可以包括第二小区的L3测量和第一小区的L1测量完全重叠,或者部分重叠。所述重叠可以包括时域重叠和/或频域重叠。
所述第二因子可以指示终端在第二小区的L3测量和第一小区的L1测量存在冲突时,如何进行第二小区的L3测量资源和第一小区的L1测量资源的分配。具体地,所述第二因子应用于测量时延,所述终端基于所述第二因子在第二小区的L3测量与第一小区的L1测量二者之间进行资源的分配。
另外,实际应用时,邻区L1的参考符号与测量间隔之间可能也会存在重叠。当然,这种重叠可以是包括邻区L1的参考符号与测量间隔完全重叠,或者部分重叠。所述重叠可以包括时域重叠和/或频域重叠,此时,所述终端基于第一信息进行测量。
其中,在一实施例中,所述第二因子包括以下之一:
百分比,即所述第二因子的取值为百分比;
正数,比如0.8,或者1.5,或者3等,小于或等于100;
分数,比如4/5等;
第一小区L1的参考符号与第二小区L3的参考符号存在重叠时,所述第二因子与参数A和参数C关联,参数A表示第一小区L1的参考符号的周期,参数C表示第二小区L3的参考符号的周期;具体地,在第一小区L1的参考符号与第二小区L3的参考符号存在部分重叠时,第二因子=M1/(1-A/C),或者第二因子=M1/(1-C/A);其中,M1为正数;
第一小区的参考符号与测量间隔存在重叠时,所述第二因子与参数A和参数Z关联,参数A表示第一小区L1的参考符号的周期,参数Z表示测量间隔周期;具体地,第一小区的参考符号与测量间隔存在部分重叠时,第二因子=M2/(1-A/Z);其中,M2为正数;
第一小区的参考符号与第二小区的参考符号存在重叠且第一小区的参 考符号与测量间隔存在重叠时,所述第二因子与参数A、C、Z关联,参数A表示第一小区L1的参考符号的周期,参数Z表示测量间隔周期,参数C表示第二小区L3的参考符号的周期;具体地,第一小区的参考符号与第二小区的参考符号存在部分重叠且第一小区的参考符号与测量间隔存在部分重叠时,第二因子=M3/(1-A/C-A/Z),或者第二因子=M3/(1-C/A-A/Z),或者第二因子=M3/(1-C/A-C/Z);其中,M3为正数。
其中,实际应用时,所述第二小区包括以下至少之一:
服务小区;
非服务小区;
与服务小区的PCI不同的小区。
这里,当第一小区和第二小区都是非服务小区,第一小区和第二小区的PCI可以不同。当第一小区和第二小区都是与服务小区的PCI不同的小区时,第一小区和第二小区的PCI不同。第一小区和第二小区都是TRP时,第一小区和第二小区的PCI不同或者TRP ID不同,或者对应于不同的网络节点。
实际应用时,所述第二因子可以应用于第一小区的测量,也可以应用于第二小区的测量。
当所述第二因子包括百分比、或分数时,实际应用时,所述第二因子可以隐式或显式地指示第一小区的L1测量的测量资源。示例性地,如果第二因子的取值是百分比,比如P4%,当所述第一因子显式地指示第一小区的L1测量的测量资源时,那么可以理解为用于第一小区的L1测量的测量资源为P4%,相应地,第一小区的L1测量的时延需要延长1/P4倍。对应地,用于第二小区的L3测量的测量资源为(1-P4)%,相应地,第二小区的L3测量的时延需要延长1/(1-P4)倍。当所述第二因子隐式地指示第一小区的L1测量的测量资源时,那么可以理解为用于第二小区的L3测量的测量资源为P4%,相应地,第二小区的L3测量的时延需要延长1/P4倍。对应地,用于第一小区的L1测量的测量资源为(1-P4)%,相应地,第一小区的L1测量的时延需要延长1/(1-P4)倍。
如果第二因子的取值是非零正数,比如第二因子的取值是P5(比如1.5),当所述第二因子用于第一小区的L1测量时,那么相应的第一小区的L1测量的时延需要延长P5倍,当所述第二因子用于第二小区的L3测量时,那么第二小区的L3测量的时延需要延长P5倍。
第二因子的取值为百分比、正数、分数,可以应用于完全重叠的场景,也可以应用于不完全重叠的场景。
在第二小区的L3测量和第一小区的L1测量不重叠的情况下,第二因子的取值是1。
L3测量可以包括以下至少之一:
同步信号(SS)-RSRP;
SS-RSRQ;
SS-SINR;
信道状态信息(CSI)-RSRP;
CSI-RSRQ;
CSI-SINR。
实际应用时,M1、M2和M3的取值可以根据需要确定,比如可以基于参考符号的周期、DRX cycle、CSSF、MGRP等中至少一种因素确定,比如取值为1,或者1.5等。M1、M2和M3的取值可以相同,也可以不同。
实际应用时,第二小区和第一小区的参考符号的周期可以都是SSB周期,第二小区和第一小区的参考符号的周期也可以都是CSI-RS周期,第二小区和第一小区的参考符号的周期也可以都是SMTC周期,也可以是第二小区和第一小区的参考符号的周期是SSB周期,CSI-RS周期,SMTC周期中的任意2种的组合。
当第一小区L1的参考符号与第二小区L3的参考符号存在部分重叠时,第一小区的L1测量只在未与第二小区L3测量发生重叠的参考符号位置进行,也就是说,所述终端只在没有与第二小区的参考符号存在重叠的第一小区的参考符号位置进行L1测量。示例性地,当第一小区L1的参考符号周期小于第二小区L3的参考符号周期时,第二因子=M1/(1-A/C)),此时第一小区的L1测量时延需要延时M1/(1-A/C)倍,即第二因子应用于第一小区的L1测量,第二小区的L3测量不受影响,即所述终端可以在第二小区L3的所有参考符号的位置进行测量;当第一小区L1的参考符号周期大于第二小区L3的参考符号周期时,第二因子=M1/(1-C/A),此时第二小区的L3测量需要延时M1/(1-C/A)倍,即第一因子应用于第二小区的L3测量,第一小区的L1测量不受影响,即所述终端可以在第一小区L1的所有参考符号的位置进行测量。
当第一小区L1的参考符号与测量间隔存在部分重叠时,所述终端只在没有与测量间隔存在重叠的第一小区的参考符号位置进行L1测量。具体地,当第一小区L1的参考符号的周期小于测量间隔周期的时候,所述终端只在没有与测量间隔存在重叠的第一小区的参考符号位置进行L1测量,此时第二因子=M2/(1-A/Z)。
当第二小区L3的参考符号与第一小区L1的参考符号存在部分重叠,且第一小区L1的参考符号与测量间隔存在部分重叠时,所述终端只在没有与测量间隔存在重叠并且也没有与第二小区L3的参考符号存在重叠的第一小区的参考符号位置进行L1测量。具体地,当第一小区L1的参考符号的周期小于测量间隔周期,且当第一小区L1的参考符号与第二小区L3的参考符号存在部分重叠的时候,所述终端只在没有与测量间隔存在重叠并且也没有与第二小区L3的参考符号存在重叠的第一小区的参考符号位置进行L1测量。相应地,所述终端只在没有与测量间隔存在重叠且也没有与第一 小区的L1的参考符号存在重叠的第二小区的参考符号位置进行L3测量。更具体地,第二因子=M3/(1-A/C-A/Z),和第二因子=M3/(1-C/A-A/Z)适用于第一小区的测量,第二因子=M3/(1-C/A-C/Z)适用于第二小区的测量。
相关技术中,终端只需要与服务小区进行数据收发。为了增加吞吐率,提升系统性能,终端还可以在不进行小区切换的情况下与一个或者多个邻区进行数据收发。但这会对终端有额外的要求,而且在与邻区进行数据收发的时候,也需要进行链路质量监测,进行用于BFD的相关资源(英文可以表达为resource)的测量和/或用于CBD的相关资源的测量。在这种情况下,如果不同小区的用于BFD和CBD的资源存在时域重叠,由于不同小区的数据方向不同,终端无法同时进行。此时,所述终端基于第一信息进行测量。
具体地,所述第一信息包含第三因子,在第一小区的BFD与第三小区的CBD存在重叠的情况下,所述第三因子可以被应用;也就是说,所述第三因子可以应用于第一小区的BFD与第三小区的CBD存在重叠的时候。这里,所述存在重叠可以包括服第一小区的BFD与第三小区的CBD测量完全重叠,或者部分重叠。所述重叠可以包括时域重叠和/或频域重叠。
所述第三因子可以指示终端在第一小区的BFD与第三小区的CBD资源存在冲突时,如何进行第一小区的BFD与第三小区的CBD资源的分配。具体地,所述第三因子应用于测量时延,所述终端基于所述第三因子在第一小区的BFD与第三小区的CBD测量二者之间进行资源的分配。
另外,实际应用时,邻区BFD和/CBD的资源与测量间隔之间可能也会存在重叠。当然,这种重叠可以是包括BFD和/CBD资源与测量间隔完全重叠,或者部分重叠。所述重叠可以包括时域重叠和/或频域重叠,此时,所述终端基于第一信息进行测量。
其中,在一实施例中,所述第三因子包括以下之一:
百分比,即所述第三因子的取值为百分比;
正数,比如0.8,或者1.5,或者3等,小于或等于100;
分数,比如4/5等;
在第一小区的BFD与第三小区的CBD的参考符号(即资源)存在重叠时,所述第三因子与参数D和参数E关联,参数D表示第一小区BFD的参考符号的周期,参数E表示第三小区CBD的参考符号的周期;具体地,第一小区的BFD与第三小区的CBD的参考符号(即资源)存在部分重叠时,第三因子=N1/(1-D/E),或者第三因子=N1/(1-E/D);其中,N1为正数;
第一小区的BFD的参考符号与测量间隔存在重叠时,所述第三因子与参数D和参数Z关联,参数D表示第一小区BFD的参考符号的周期,参数Z表示测量间隔周期;具体地,第一小区的BFD的参考符号与测量间隔存在部分重叠时,第三因子=N2/(1-D/Z);其中,N2为正数;
第一小区的CBD的参考符号与测量间隔存在重叠时,所述第三因子与 参数F和参数Z关联,参数F表示第一小区CBD的参考符号的周期,参数Z表示测量间隔周期;具体地,第一小区的CBD的参考符号与测量间隔存在部分重叠时,第三因子=N6/(1-F/Z);其中,N6为正数;
第一小区的BFD与第三小区的CBD的参考符号存在重叠且第一小区的BFD与测量间隔存在重叠时,所述第三因子与参数D、E、Z关联,参数D表示第一小区BFD的参考符号的周期,参数Z表示测量间隔周期,参数E表示第三小区CBD的参考符号的周期;具体地,第一小区的BFD与第三小区的CBD的参考符号存在部分重叠且第一小区的BFD与测量间隔存在部分重叠时,第三因子=N3/(1-D/E-D/Z),或者第三因子=N3/(1-E/D-D/Z),或者第三因子=N3/(1-E/D-E/Z);其中,N3为正数;
第一小区的CBD与第三小区的BFD的参考符号存在重叠时,所述第三因子与参数F和参数G关联,参数F表示第一小区CBD的参考符号的周期,参数G表示第三小区BFD的参考符号的周期;具体地,第一小区的CBD与第三小区的BFD的参考符号存在部分重叠时,第三因子=N4/(1-F/G),或者第三因子=N4/(1-G/F);其中,N4为正数;
第一小区的CBD与第三小区的BFD的参考符号存在重叠且第一小区的CBD与测量间隔存在重叠时,所述第三因子与参数F、G、Z关联,参数F表示第一小区CBD的参考符号的周期,参数Z表示测量间隔周期,参数G表示第三小区BFD的参考符号的周期;具体地,第一小区的CBD与第三小区的BFD的参考符号存在部分重叠且第一小区的CBD与测量间隔存在部分重叠时,第三因子=N5/(1-F/G-F/Z),或者第三因子=N5/(1-G/F-F/Z),或者第三因子=N5/(1-G/F-G/Z);其中,N5为正数。
其中,所述第三小区包括以下至少之一:
服务小区;
非服务小区;
与服务小区的PCI不同的小区。
这里,当第一小区和第三小区都是非服务小区,第一小区和第三小区的PCI可以不同。当第一小区和第三小区都是与服务小区的PCI不同的小区时,第一小区和第三小区的PCI不同。第一小区和第三小区都是TRP时,第一小区和第三小区的PCI不同或者TRP ID不同,或者对应于不同的网络节点。
实际应用时,所述第三因子可以应用于第一小区的测量,也可以应用于第三小区的测量。
在第一小区的BFD与第三小区的CBD的资源不重叠的情况下,第三因子的取值是1。
实际应用时,N1、N2、N3、N4、N5和N6的取值可以根据需要确定,比如可以基于参考符号的周期、DRX cycle、CSSF、MGRP等中至少一种因素确定,比如取值为1,或者1.5等。N1、N2、N3、N4、N5和N6的取值 可以相同,也可以不同。
当第一小区的BFD与第三小区的CBD的资源存在部分重叠时,第一小区的BFD测量只在未与第三小区的CBD测量发生重叠的资源位置进行,也就是说,所述终端只在没有与第三小区的CBD资源存在重叠的第一小区BFD的参考符号(也可以称为用于BFD测量的参考符号)位置进行测量。示例性地,当第一小区BFD的参考符号周期小于第三小区CBD的参考符号(也可以称为用于CBD测量的参考符号)周期时,第三因子=N1/(1-D/E),此时第三因子应用于第一小区的BFD测量。当第一小区BFD的参考符号周期大于第三小区CBD的参考符号周期时,第三因子=N1/(1-E/D),此时第三因子应用于第三小区的CBD测量。
当第一小区的BFD的资源与测量间隔存在部分重叠时,所述终端只在没有与测量间隔存在重叠的第一小区BFD的参考符号位置进行测量。具体地,当第一小区BFD的参考符号的周期小于测量间隔周期的时候,所述终端只在没有与测量间隔存在重叠的第一小区BFD的参考符号位置进行测量,此时第三因子=N2/(1-D/Z)。
当第一小区的CBD的资源与测量间隔存在部分重叠时,所述终端只在没有与测量间隔存在重叠的第一小区CBD的参考符号位置进行测量。具体地,当第一小区CBD的参考符号的周期小于测量间隔周期的时候,所述终端只在没有与测量间隔存在重叠的第一小区CBD的参考符号位置进行测量,此时第三因子=N6/(1-F/Z)。
当第一小区的BFD与第三小区的CBD的资源存在部分重叠且第一小区的BFD与测量间隔存在部分重叠时,所述终端只在没有与测量间隔存在重叠并且也没有与第三小区CBD的参考符号存在重叠的第一小区BFD的参考符号位置进行测量。具体地,当第一小区BFD的参考符号的周期小于测量间隔周期,且当第一小区BFD的参考符号与第三小区CBD的参考符号存在部分重叠的时候,所述终端只在没有与测量间隔存在重叠并且也没有与第三小区CBD的参考符号存在重叠的第一小区BFD的参考符号位置进行测量,此时第三因子应用于第一小区的BFD测量。当然,所述终端只在没有与测量间隔存在重叠并且也没有与第一小区的BFD存在重叠的第三小区的CBD的参考符号位置进行CBD测量,此时第三因子应用于第三小区的CBD测量。更具体地,第三因子=N3/(1-D/E-D/Z)和第三因子=N3/(1-E/D-D/Z)适用于第一小区的测量,第三因子=N3/(1-E/D-E/Z)适用于第三小区的测量。
第一小区的CBD与第三小区的BFD的资源存在部分重叠时,第一小区的CBD测量只在未与第三小区的BFD测量发生重叠的资源位置进行,也就是说,所述终端只在没有与第三小区的BFD资源存在重叠的第一小区CBD的参考符号位置进行测量。具体地,当第一小区CBD的参考符号周期小于第三小区BFD的参考符号周期时,第三因子应用于第一小区的BFD 测量。当第一小区CBD的参考符号周期大于第三小区BFD的参考符号周期时,第三因子应用于第三小区的CBD测量。
当第一小区的CBDD与第三小区的BFD的资源存在部分重叠且第一小区的CBD与测量间隔存在部分重叠时,所述终端只在没有与测量间隔存在重叠并且也没有与第三小区BFD的参考符号存在重叠的第一小区CBD的参考符号位置进行测量。具体地,当第一小区CBD的参考符号的周期小于测量间隔周期,且当第一小区CBD的参考符号与第三小区BFD的参考符号存在部分重叠的时候,所述终端只在没有与测量间隔存在重叠并且也没有与第三小区BFD的参考符号存在重叠的第一小区CBD的参考符号位置进行测量,此时第三因子应用于第一小区的CBD测量。当然,所述终端只在没有与测量间隔存在重叠并且也没有与第一小区的CBD存在重叠的第三小区的BFD的参考符号位置进行BFD测量,此时第三因子应用于第三小区的BFD测量。更具体地,第三因子=N5/(1-F/G-F/Z),和第三因子=N5/(1-G/F-F/Z)适用于第一小区的测量,第三因子=N5/(1-G/F-G/Z)适用于第三小区的测量。
在一实施例中,上述因子对测量时延(第一小区、第二小区、第三小区中至少之一)的影响可以通过以下公式之一表示:
测量时延=max(T,ceil(M*P)*参考符号的周期*因子);
测量时延=M*P*参考符号的周期*因子;
测量时延=ceil(M*P)*参考符号的周期*因子;
测量时延=max(T,ceil(K*M*P)*max(DRX cycle,参考符号的周期))*因子;
测量时延=K*M*P*max(DRX cycle,参考符号的周期))*因子;
测量时延=ceil(M*P)*DRX cycle*因子;
测量时延=max(T,ceil(M*P*N)*参考符号的周期)*因子;
测量时延=max(T,ceil(1.5*M*P*N)*max(DRX cycle,参考符号的周期))*因子;
测量时延=ceil(1.5*M*P*N)*DRX cycle*因子;
测量时延=max(600ms,ceil(M*P)*参考符号的周期)*CSSF*因子;
测量时延=max(600ms,ceil(K*M*P)*max(参考符号的周期,DRX cycle))*CSSF*因子;
测量时延=ceil(M*P)*DRX cycle*CSSF*因子;
测量时延=max(600ms,ceil(M*P*Q)*参考符号的周期)*CSSF*因子;
测量时延=max(600ms,ceil(1.5*M*P*Q)*max(参考符号的周期,DRX cycle))*CSSF*因子;
测量时延=ceil(M*P*Q)*DRX cycle*CSSF*因子;
测量时延=max(600ms,M*max(MGRP,参考符号的周期))*CSSF*因子;
测量时延=max(600ms,ceil(M*K)*max(MGRP,参考符号的周期,DRX cycle))*CSSF*因子;
测量时延=M*max(MGRP,DRX cycle)*CSSF*因子;
测量时延=max(600ms,M*max(MGRP,参考符号的周期))*CSSF*因子;
测量时延=max(600ms,ceil(1.5*M)*max(MGRP,参考符号的周期,DRX cycle))*CSSF*因子;
测量时延=M*max(MGRP,DRX cycle)*CSSF*因子。
其中,max()函数用于求最大值,ceil()函数用于向上取整,T是特定的时间长度,可以用于测量上报,也可以用于测量;M是整数,取值可以根据需要设置,比如取值为1,或者3,或者5,或者24,或者40,或者64;P的取值可以是1或者其他正数数值,具体取值与服务小区的参考符号和测量间隔或者SMTC有关。N是整数,比如取值为8,可以理解为与波束有关,K是正数,取值可以是1或者1.5或者7.5,与高铁配置和/或SMTC周期有关;CSSF是载波测量性能缩放因子(英文可以表达为Carrier-specific scaling factor),可以理解为与频点数目和/或频段数目有关;Q的取值为1或者1.5,具体与服务小区的RLM、BFD、CBD或者L1参考符号和SMTC的时域位置有关。
这里,需要说明的是,上述公式中的因子可以是第一因子、或是第二因子或是第三因子。
实际应用时,在进行测量时,根据场景可以单独使用上述三个因子,也可以使用上述三个因子中的两个因子,也可以同时使用三个因子。其中,当用上述两个因子或三个因子时,公式中的因子为:两个因子或三个因子的乘积。
另外,本申请实例中,测量时延的时长是与因子关联的,上述公式中因子与测量时延之间存在直接的倍数关系,实际应用时,因子与测量时延之间也可以存在其他的关系,示例性地,因子位于一个函数中,测量时延与该函数存在直接的倍数关系等。
其中,实际应用时,上述确定测量时延的公式中,当因子为第一因子时,可以应用于服务小区与第一小区的时间偏移(英文可以表达为timing offset,可以理解为终端接收服务小区与第一小区的数据或者信号的时间差)小于或者等于一定门限(比如,循环前缀(CP),或CP/2等)的场景。
上述确定测量时延的公式中,当因子为第二因子时,可以应用于第二小区与第一小区的时间偏移(可以理解为终端接收第二小区与第一小区的数据或者信号的时间差)小于或者等于一定门限(比如,CP,或CP/2等)的场景。
上述确定测量时延的公式中,当因子为第三因子时,可以应用于第三小区与第一小区的时间偏移(可以理解为终端接收第三小区与第一小区的数据或者信号的时间差)小于或者等于一定门限(比如,CP,或CP/2等)的场景。
需要说明的是,针对第一因子、第二因子和第三因子,当对应的时间偏差超过对应的门限时,确定测量时延的公式中,还可以额外增加非服务小区的小区数据,具体地,上述公式中除了乘以相应因子外,还可以乘以非服务小区的小区数目。
为了兼顾鲁棒性和移动性,所述终端还可以获得辅助信息(即指示信息),所述终端利用辅助信息进行邻区的波束管理测量和/或进行链路质量监测的相关测量(即BFD测量和/或CBD测量)。
基于此,在一实施例中,所述第一信息包括以下至少之一:
第一指示信息,所述第一指示信息指示在第一小区的L1测量和服务小区的L1测量存在重叠的情况下是否同时测量;
第二指示信息,所述第二指示信息指示在第一小区的L1测量和第二小区的L3测量存在重叠的情况下是否同时测量;
第三指示信息,所述第三指示信息指示在第一小区的BFD测量和第三小区的CBD测量存在重叠的情况下是否同时测量,或者指示在第一小区的CBD测量和第三小区的BFD测量存在重叠的情况下是否同时测量;
第四指示信息,所述第四指示信息指示开启或关闭快速上报第一小区的L1测量结果或第一门限。
其中,实际应用时,对于上述指示信息,可以通过TRUE和FALSE指示是否同时测量,比如TRUE代表需要同时测量,FALSE代表不需要同时测量。也可以通过比特序列进行指示。比如比特序列取值为0代表不需要同时测量,比特序列取值为1代表需要同时测量。
所述第一指示信息示指示在第一小区的L1测量和服务小区的L1测量存在冲突的时候下是否需要放弃第一小区的L1测量(此时由于服务小区的L1测量会影响链路质量监测,以便为终端配置合理的收发波束,因此可以不考虑放弃服务小区的L1测量)。当所述第一指示信息指示放弃第一小区的L1测量时,所述终端放弃第一小区的L1测量,此时对服务小区L1测量没有影响。当所述第一指示信息指示不放弃第一小区的L1测量时,所述终端需要兼顾第一小区的L1测量和和服务小区的L1测量,需要在二者之间进行资源分配,具体地,所述终端可以基于第一因子进行测量。所述第一指示信息可由网络侧下发(比如广播或RRC信令下发)。示例性地,所述第一因子可由网络侧下发(比如RRC信令下发),通过网络指示的方式,可以实现不同场景采用不同的分配方式,更具有适配性。例如,当网络希望确保服务小区的波束管理性能的时候,网络可以通过所述第一因子的配置为服务小区L1测量分配更多的资源,降低对服务小区L1测量的影响。 例如,当网络希望快速找到合适的邻区波束,为终端配置邻区波束,实现高速率数据收发时,网络可以通过所述第一因子的配置为邻区L1测量分配更多的资源,加速L1测量。
所述第二指示信息示指示在第一小区的L1测量和第二小区的L3测量存在冲突的时候下是否需要开启共享机制。当所述第二指示信息指示不开启共享机制,那么终端需要在第二小区L3测量和第一小区L1测量中进行选择,以放弃其中的一种测量;在这种情况下,所述第二指示信息还可以指示所述终端放弃第一小区的L1测量,或是指示所述终端放弃第二小区的L3测量。示例性地,当网络侧希望快速完成小区切换的时候,网络侧可以指示(比如RRC信令)终端在时域冲突的时候,进行邻区L3测量(放弃邻区L1测量)。例如,当网络侧希望快速找到合适的邻区波束,为终端配置邻区波束,实现高速率数据收发时,网络侧可以指示(比如RRC信令)终端在时域冲突的时候,进行邻区L1测量(放弃邻区L3测量)。当所述第二指示信息指示开启共享机制时,所述终端需要兼顾第一小区的L1测量和第二小区的L3测量,需要在二者之间进行资源分配,具体地,所述终端可以基于第二因子进行测量。示例性地,所述第二指示信息可由网络侧下发(比如广播或RRC信令下发)通过网络指示的方式,可以实现不同场景采用不同的分配方式,更具有适配性。例如,当网络侧希望快速完成小区切换的时候,网络侧可以通过所述第二因子的配置为邻区L3测量分配更多的资源,加速L3测量。例如,当网络侧希望快速找到合适的邻区波束,为终端配置邻区波束,实现高速率数据收发时,网络侧可以通过所述第二因子的配置为邻区L1测量分配更多的资源,加速L1测量。
所述第三指示信息可以指示第一小区的BFD测量和第三小区的CBD测量存在冲突的时候是否开启共享机制。当所述第三指示信息指示不开启共享机制时,那么终端需要在第一小区的BFD测量和第三小区的CBD测量中进行选择,以放弃其中的一种测量;在这种情况下,所述第二指示信息还可以指示所述终端放弃第一小区的BFD测量,或是指示所述终端放弃第三小区的CBD测量。示例性地,当网络侧希望快速进行CBD的时候,网络侧可以指示(比如RRC信令)终端在时域冲突的时候,进行CBD测量(放弃邻区BFD测量)。例如,当网络侧希望更好地检测链路质量时,网络侧可以指示(比如RRC信令)终端在时域冲突的时候,进行第一小区的BFD测量(放弃邻区CBD测量)。当所述第三指示信息指示开启共享机制时,所述终端需要兼顾第一小区的BFD测量和第三小区的CBD测量,需要在二者之间进行资源分配,具体地,所述终端可以基于第三因子进行测量。示例性地,所述第三指示信息可由网络侧下发(比如广播或RRC信令下发)通过网络指示的方式,可以实现不同场景采用不同的分配方式,更具有适配性。例如,当网络侧希望快速进行CBD的时候,网络侧可以通过所述第三因子的配置为邻区CBD测量分配更多的资源,加速CBD测量。 例如,当网络侧希望更好地检测链路质量发时,网络侧可以通过所述第三因子的配置为邻区BFD测量分配更多的资源,加速BFD测量。
所述第三指示信息可以指示第一小区的CBD测量和第三小区的BFD测量存在冲突的时候是否开启共享机制。当所述第三指示信息指示不开启共享机制时,那么终端需要在第一小区的CBD测量和第三小区的BFD测量中进行选择,以放弃其中的一种测量;在这种情况下,所述第三指示信息还可以指示所述终端放弃第一小区的CBD测量,或是指示所述终端放弃第三小区的BFD测量。示例性地,当网络侧希望快速进行CBD的时候,网络侧可以指示(比如RRC信令)终端在时域冲突的时候,进行第一小区的CBD测量(放弃邻区BFD测量)。例如,当网络侧希望更好地检测链路质量时,网络侧可以指示(比如RRC信令)终端在时域冲突的时候,进行第三小区的BFD测量(放弃邻区CBD测量)。当所述第三指示信息指示开启共享机制时,所述终端需要兼顾第一小区的CBD测量和第三小区的BFD测测量,需要在二者之间进行资源分配,具体地,所述终端可以基于第三因子进行测量。示例性地,所述第三指示信息可由网络侧下发(比如广播或RRC信令下发)通过网络指示的方式,可以实现不同场景采用不同的分配方式,更具有适配性。例如,当网络侧希望快速进行CBD的时候,网络侧可以通过所述第三因子的配置为邻区CBD测量分配更多的资源,加速CBD测量。例如,当网络侧希望更好地检测链路质量发时,网络侧可以通过所述第三因子的配置为邻区BFD测量分配更多的资源,加速BFD测量。
对于所述第四指示信息,在所述第四指示信息指示开启快速上报第一小区的L1测量结果或第一小区L1的测量结果高于或等于所述第一门限的情况下,获得第一小区P1个L1的测量结果后向所述网络侧上报测量结果;在所述第四指示信息指示关闭快速上报第一小区的L1测量结果或第一小区L1的测量结果低于所述第一门限的情况下,获得第一小区Q1个L1的测量结果后向所述网络侧上报测量结果;P1为大于或等于1的整数,Q1为大于或等于1的整数,P1小于Q1。
其中,所述第四指示信息指示所述终端是否可以快速上报第一小区波束管理的测量结果,即上报第一小区L1的测量结果。示例性地,当网络侧有数据传输,希望快速进行邻区的波束切换时,可以通过所述第四指示信息指示开启快速上报,那么终端可以在获取L1测量结果之后立即上报。当网络侧希望确保邻区波束切换的稳定性的时候,可以通过所述第四指示信息指示关闭快速上报,那么终端可以在获取若干个(即Q1个)L1测量结果之后才可以上报。
其中,当所述第四指示信息指示所述终端可以快速上报第一小区L1的测量结果,且P1为1时,所述终端每获得一个第一小区的L1测量结果就立即上报;当P1为大于1的整数时,所述终端每获得P1个第一小区的L1测量结果就立即上报。这里,在上报时,所述终端可以上报P1个测量结果 的平均值,也可以上报P1个测量结果中的最大值或最小值,本申请实施例对此不作限定。
当所述第四指示信息指示所述终端关闭快速上报第一小区L1的测量结果时,所述终端在获取Q1个第一小区L1的测量结果后才可以上报。其中,在上报时,所述终端可以上报Q1个测量结果的平均值,也可以上报Q1个测量结果中的最大值或最小值,本申请实施例对此不作限定。
实际应用时,所述第四指示信息可以隐式方式指示所述终端是否可以快速上报第一小区波束管理的测量结果。具体地,可以通过计数器的方式来指示所述终端是否可以快速上报第一小区波束管理的测量结果。
更具体地,在所述第四指示信息指示开启或关闭快速上报第一小区的L1测量结果的情况下,所述第四指示信息包括第一计数器;
在获得的第一小区L1的测量结果的个数满足所述第一计数器的要求时所述终端上报测量结果。
其中,计数器的取值能够指示出所述终端是否可以快速上报第一小区波束管理的测量结果。这里,实际应用时,网络侧可以根据不同场景需求配置不同的计数器的取值,以实现鲁棒性和移动性能的兼顾。
当所述第四指示信息指示第一门限时,当第一小区的L1测量结果高于或等于第一门限(说明第一小区当前信道质量较好,所述终端可以快速上报测量结果),所述终端且P1为1时,所述终端每获得一个第一小区的L1测量结果就立即上报;当P1为大于1的整数时,所述终端每获得P1个第一小区的L1测量结果就立即上报。这里,在上报时,所述终端可以上报P1个测量结果的平均值,也可以上报P1个测量结果中的最大值或最小值,本申请实施例对此不作限定。相应地,当第一小区的L1测量结果低于所述第一门限(说明第一小区当前信道质量较差,所述终端不能快速上报测量结果)时,所述终端在获取Q1个第一小区L1的测量结果后才可以上报。其中,在上报时,所述终端可以上报Q1个测量结果的平均值,也可以上报Q1个测量结果中的最大值或最小值,本申请实施例对此不作限定。
实际应用时,P1和Q1的取值可由网络侧配置,比如通过广播或RRC信令等配置。
为了增加鲁棒性,还可以引入波束管理测量结果上报的门限(即质量门限),只有波束质量高于该门限的波束才会被上报。
基于此,在一实施例中,该方法还可以包括:
接收所述网络侧发送的第二信息,所述第二信息指示第二门限;
向所述网络侧上报第一小区L1测量结果中高于或等于所述第二门限的测量结果。
其中,所述网络侧可以通过广播或RRC信令等发送第二信息,本申请实施例对此不作限定。
实际应用时,为了增加鲁棒性,只有高于或等于所述第二门限的第一 小区的波束数目满足一定门限才会被上报。
基于此,在一实施例中,该方法还可以包括:
接收所述网络侧发送的第三信息,所述第三信息指示第三门限;
在第一小区L1测量结果中高于或等于所述第二门限的测量结果的个数满足第三门限时,向所述网络侧上报L1测量结果中高于或等于所述第二门限的测量结果。
其中,所述网络侧可以通过广播或RRC信令等发送第三信息,本申请实施例对此不作限定。
具体地,在一实施例中,所述第三信息包括第二计数器;
在L1测量结果中高于或等于所述第二门限的测量结果的个数满足所述第二计数器的要求时,所述终端向所述网络侧上报第一小区L1测量结果中高于或等于所述第二门限的测量结果。
这里,实际应用时,网络侧可以根据不同场景需求配置不同的计数器的取值,以实现鲁棒性。
对于所述终端的第一小区L1测量上报,网络侧配置所述终端可以上报的波束数目的最大值,以便与上述第二门限结合,终端只能上报满足质量门限的波束。如果满足质量门限的波束数目大于网络配置的波束数目的最大值,那么终端只能从最高的波束质量开始,按质量门限从高到低排序,选择满足波束数目上报要求的波束进行上报。
基于此,在一实施例中,该方法还可以包括:
接收所述网络侧发送的第四信息,所述第四信息指示上报的测量结果的最大数目;
在L1测量结果中高于或等于所述第二门限的测量结果的个数大于所述最大数目的情况下,从高于或等于所述第二门限的测量结果中选择所述最大数目个测量结果进行上报。
其中,所述网络侧可以通过广播或RRC信令等发送第四信息,本申请实施例对此不作限定。
关于波束管理相关的测量结果的上报,终端可以上报绝对值,即所述终端上报第一小区L1测量结果的绝对值。网络也可以配置终端上报相对于第一波束测量结果的相对值,即所述终端上报第一小区L1测量结果相对于第一波束测量结果的相对值。
其中,第一波束质量可以是第一小区质量最高的波束,也可以是服务小区质量最高的波束。这里,所述质量是指测量量,也可以称为测量结果,包括以下至少之一:
SS-RSRP;
SS-SINR;
SS-RSRQ;
L1-RSRP;
L1-SINR;
L1-RSRQ;
CSI-RSRP;
CSI-RSRQ;
CSI-SINR。
考虑到终端可能对进行波束管理测量的小区也进行了邻区的移动性相关的测量(L3测量),对于这种终端,在上报目标小区(即第一小区)的波束管理测量结果的同时可以上报L3测量结果。
基于此,在一实施例中,上报第一小区L1的测量结果时,所述方法还包括:
上报第一小区L3的测量结果。
其中,网络侧可以通过信令(比如RRC信令)指示终端是否上报L3测量结果。这种方式可以辅助网络更好的了解目标小区情况,由于后续调度决策。
基于此,在一实施例中,该方法还可以包括:
接收所述网络侧发送的第五信息,所述第五信息指示所述终端是否上报第一小区L3的测量结果;
在所述第五信息指示所述终端上报第一小区L3的测量结果的情况下,上报第一小区L1的测量结果的同时上报L3的测量结果。
在步骤202中,所述终端进行测量,所述测量与所述第一信息有关。
需要说明的是,当所述第一小区的测量包含RLM时,RLM测量的参考符号与L1测量、CBD测量、BFD测量的参考符号类型相同,测量时的处理方式也与这些测量的处理方式相同。也就是说,上述因子的原理可以适用于RLM测量。
所述终端向网络侧上报第一小区的测量结果后,网络侧基于上报的测量结果进行波束切换配置,相应地,所述终端基于网络侧的配置进行波束切换,以切换到邻区的波束。
相应地,本申请实施例还提供了一种测量方法,应用于网络侧,即应用于网络设备(具体为基站),如图3所示,该方法包括:
步骤301:确定第一信息,所述第一信息是与第一小区的测量有关的信息,所述第一小区的测量包含以下至少之一:L1测量;CBD;BFD;RLM;
步骤302:向终端发送第一信息。
其中,实际应用时,所述网络设备根据场景需要确定第一信息,本申请实施例对此不作限定。
在一实施例中,所述第一信息包含第四指示信息,所述第四指示信息指示开启或关闭快速上报第一小区的L1测量结果或第一门限;
接收所述终端基于所述第一信息上报的第一小区L1的测量结果。
在一实施例中,该方法还可以包括:
向所述终端发送第二信息,所述第二信息指示第二门限,所述第二门限用于所述终端上报第一小区L1测量结果中高于或等于所述第二门限的测量结果。
在一实施例中,该方法还可以包括:
向所述终端发送第三信息,所述第三信息指示第三门限;所述第三门限用于所述终端在L1测量结果中高于或等于所述第二门限的测量结果的个数满足第三门限时,向所述网络侧上报L1测量结果中高于或等于所述第二门限的测量结果。
在一实施例中,该方法还可以包括:
向所述终端发送第四信息,所述第四信息指示上报的测量结果的最大数目。
在一实施例中,接收第一小区L1的测量结果时,该方法还可以包括:
接收所述终端上报的第一小区L3的测量结果。
在一实施例中,该方法还可以包括:
向所述终端发送第五信息,所述第五信息指示所述终端是否上报第一小区L3的测量结果;
在所述第五信息指示所述终端上报第一小区L3的测量结果的情况下,接收所述终端上报的第一小区L1的测量结果的同时接收所述终端上报的L3的测量结果。
本申请实施例提供的测量方法,终端获取第一信息,所述第一信息是与第一小区的测量有关的信息,所述第一小区的测量包含以下至少之一:L1测量;CBD;BFD;RLM,本申请实施例提供的方案,终端获取与邻区的L1测量有关的信息,从而能够基于所述信息执行测量,进而提升基于L1测量进行邻区波束切换的稳定性,提升移动性能;终端获取与邻区链路质量监测测量有关的信息,从而能够基于所述信息执行测量,进而能够实现不进行小区切换的情况下与一个或多个邻区进行数据收发,提升吞吐率,提升系统性能。
为了实现本申请实施例终端侧的方法,本申请实施例还提供了一种测量装置,设置在终端上,如图4所示,该装置包括:
获取单元401,配置为获取第一信息,所述第一信息是与第一小区的测量有关的信息,所述第一小区的测量包含以下至少之一:L1测量;CBD;BFD;RLM。
其中,在一实施例中,如图4所示,该装置还可以包括:
测量单元402,配置为基于第一信息进行测量,并进行测量上报。
在一实施例中,所述第一信息包括第四指示信息,所述第四指示信息指示开启或关闭快速上报第一小区的L1测量结果或第一门限;
所述测量单元402,配置为:
在所述第四指示信息指示开启快速上报第一小区的L1测量结果或第一 小区L1的测量结果高于或等于所述第一门限的情况下,获得第一小区P1个L1的测量结果后向所述网络侧上报测量结果;在所述第四指示信息指示关闭快速上报第一小区的L1测量结果或第一小区L1的测量结果低于所述第一门限的情况下,获得第一小区Q1个L1的测量结果后向所述网络侧上报测量结果;P1为大于或等于1的整数,Q1为大于或等于1的整数,P1小于Q1。
其中,在一实施例中,在所述第四指示信息指示开启或关闭快速上报第一小区的L1测量结果的情况下,所述第四指示信息包括第一计数器;
在获得的第一小区L1的测量结果的个数满足所述第一计数器的要求时所述测量单元402上报测量结果。
在一实施例中,所述获取单元401,还配置为接收所述网络侧发送的第二信息,所述第二信息指示第二门限;
所述测量单元402配置为向所述网络侧上报第一小区L1测量结果中高于或等于所述第二门限的测量结果。
在一实施例中,所述获取单元401还配置为接收所述网络侧发送的第三信息,所述第三信息指示第三门限;
所述测量单元402配置为在L1测量结果中高于或等于所述第二门限的测量结果的个数满足第三门限时,向所述网络侧上报L1测量结果中高于或等于所述第二门限的测量结果。
在一实施例中,所述第三信息包括第二计数器;
在L1测量结果中高于或等于所述第二门限的测量结果的个数满足所述第二计数器的要求时,所述测量单元402向所述网络侧上报L1测量结果中高于或等于所述第二门限的测量结果。
在一实施例中,所述获取单元401还配置为接收所述网络侧发送的第四信息,所述第四信息指示上报的测量结果的最大数目;
所述测量单元402配置为在L1测量结果中高于或等于所述第二门限的测量结果的个数大于所述最大数目的情况下,从高于或等于所述第二门限的测量结果中选择所述最大数目个测量结果进行上报。
在一实施例中,所述测量单元402,配置为:
上报测量结果的绝对值;
或者,
上报测量结果相对于第一波束测量结果的相对值。
在一实施例中,上报第一小区L1的测量结果时,所述测量单元402还配置为上报第一小区L3的测量结果。
在一实施例中,所述获取单元401,还配置为接收所述网络侧发送的第五信息,所述第五信息指示所述终端是否上报第一小区L3的测量结果;
所述测量单元402,配置为在所述第五信息指示所述终端上报第一小区L3的测量结果的情况下,上报第一小区L1的测量结果的同时上报L3的测 量结果。
实际应用时,所述获取单元401和测量单元402可由测量装置中的处理器结合通信接口实现。
为了实现本申请实施例网络设备侧的方法,本申请实施例还提供了一种测量装置,设置在网络设备上,如图5所示,该装置包括:
发送单元501,配置为向终端发送第一信息,所述第一信息是与第一小区的测量有关的信息,所述第一小区的测量包含以下至少之一:L1测量;CBD;BFD;RLM。
其中,在一实施例中,如图5所示,该装置还可以包括:
确定单元502,配置为确定所述第一信息。
在一实施例中,该装置还可以包括接收单元;其中,
所述第一信息包含第四指示信息,所述第四指示信息指示开启或关闭快速上报第一小区的L1测量结果或第一门限;
所述接收单元,配置为接收所述终端基于所述第一信息上报的第一小区L1的测量结果。
在一实施例中,所述发送单元501,还配置为向所述终端发送第二信息,所述第二信息指示第二门限,所述第二门限用于所述终端上报第一小区L1测量结果中高于或等于所述第二门限的测量结果。
在一实施例中,所述发送单元501,还配置为向所述终端发送第三信息,所述第三信息指示第三门限;所述第三门限用于所述终端在L1测量结果中高于或等于所述第二门限的测量结果的个数满足第三门限时,向所述网络侧上报L1测量结果中高于或等于所述第二门限的测量结果。
在一实施例中,所述发送单元501,还配置为向所述终端发送第四信息,所述第四信息指示上报的测量结果的最大数目。
在一实施例中,所述接收单元,配置为接收第一小区L1的测量结果时,接收所述终端上报的第一小区L3的测量结果。
在一实施例中,所述发送单元501,还配置为向所述终端发送第五信息,所述第五信息指示所述终端是否上报第一小区L3的测量结果;
在所述第五信息指示所述终端上报第一小区L3的测量结果的情况下,所述接收单元接收所述终端上报的第一小区L1的测量结果的同时接收所述终端上报的L3的测量结果。
实际应用时,所述发送单元501和接收单元可由测量装置中的通信接口实现,所述确定单元502可由测量装置中的处理器实现。
需要说明的是:上述实施例提供的测量装置在进行测量时,仅以上述各程序模块的划分进行举例说明,实际应用中,可以根据需要而将上述处理分配由不同的程序模块完成,即将装置的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分处理。另外,上述实施例提供的测量装置与测量方法实施例属于同一构思,其具体实现过程详见方法实施例, 这里不再赘述。
基于上述程序模块的硬件实现,且为了实现本申请实施例终端侧的方法,本申请实施例还提供了一种终端,如图6所示,该终端600包括:
第一通信接口601,能够与网络侧进行信息交互;
第一处理器602,与所述第一通信接口601连接,以实现与网络侧进行信息交互,配置为运行计算机程序时,执行上述终端侧一个或多个技术方案提供的方法;
第一存储器603,所述计算机程序存储在第一存储器603上。
具体地,所述第一处理器602,配置为获取第一信息,所述第一信息是与第一小区的测量有关的信息,所述第一小区的测量包含以下至少之一:L1测量;CBD;BFD;RLM。
其中,在一实施例中,所述第一处理器602通过所述第一通信接口601接收网络侧发送的第一信息。
在一实施例中,所述第一处理器602,配置为通过所述第一通信接口601基于第一信息进行测量,并通过所述第一通信接口601进行测量上报。
在一实施例中,所述第一信息包括第四指示信息,所述第四指示信息指示开启或关闭快速上报第一小区的L1测量结果或第一门限;
所述第一处理器602,配置为:
在所述第四指示信息指示开启快速上报第一小区的L1测量结果或第一小区L1的测量结果高于或等于所述第一门限的情况下,获得第一小区P1个L1的测量结果后向所述网络侧上报测量结果;在所述第四指示信息指示关闭快速上报第一小区的L1测量结果或第一小区L1的测量结果低于所述第一门限的情况下,获得第一小区Q1个L1的测量结果后向所述网络侧上报测量结果;P1为大于或等于1的整数,Q1为大于或等于1的整数,P1小于Q1。
其中,在一实施例中,在所述第四指示信息指示开启或关闭快速上报第一小区的L1测量结果的情况下,所述第四指示信息包括第一计数器;
在获得的第一小区L1的测量结果的个数满足所述第一计数器的要求时所述第一处理器602上报测量结果。
在一实施例中,所述第一通信接口601,配置为接收所述网络侧发送的第二信息,所述第二信息指示第二门限;
所述第一处理器602配置为向所述网络侧上报第一小区L1测量结果中高于或等于所述第二门限的测量结果。
在一实施例中,所述第一通信接口601还配置为接收所述网络侧发送的第三信息,所述第三信息指示第三门限;
所述第一处理器602配置为在L1测量结果中高于或等于所述第二门限的测量结果的个数满足第三门限时,向所述网络侧上报L1测量结果中高于或等于所述第二门限的测量结果。
在一实施例中,所述第三信息包括第二计数器;
在L1测量结果中高于或等于所述第二门限的测量结果的个数满足所述第二计数器的要求时,所述第一处理器602向所述网络侧上报L1测量结果中高于或等于所述第二门限的测量结果。
在一实施例中,所述第一通信接口601还配置为接收所述网络侧发送的第四信息,所述第四信息指示上报的测量结果的最大数目;
所述第一处理器602配置为在L1测量结果中高于或等于所述第二门限的测量结果的个数大于所述最大数目的情况下,从高于或等于所述第二门限的测量结果中选择所述最大数目个测量结果进行上报。
在一实施例中,所述第一处理器602,配置为:
上报测量结果的绝对值;
或者,
上报测量结果相对于第一波束测量结果的相对值。
在一实施例中,上报第一小区L1的测量结果时,所述第一处理器602还配置为通过所述第一通信接口601上报第一小区L3的测量结果。
在一实施例中,所述第一通信接口601,还配置为接收所述网络侧发送的第五信息,所述第五信息指示所述终端是否上报第一小区L3的测量结果;
所述第一处理器602,配置为在所述第五信息指示所述终端上报第一小区L3的测量结果的情况下,上报第一小区L1的测量结果的同时上报L3的测量结果。
需要说明的是:第一处理器602及第一通信接口601的具体处理过程可参照上述方法理解。
当然,实际应用时,终端600中的各个组件通过总线系统604耦合在一起。可理解,总线系统604配置为实现这些组件之间的连接通信。总线系统604除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图6中将各种总线都标为总线系统604。
本申请实施例中的第一存储器603配置为存储各种类型的数据以支持终端600的操作。这些数据的示例包括:用于在终端600上操作的任何计算机程序。
上述本申请实施例揭示的方法可以应用于所述第一处理器602中,或者由所述第一处理器602实现。所述第一处理器602可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过所述第一处理器602中的硬件的集成逻辑电路或者软件形式的指令完成。上述的所述第一处理器602可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。所述第一处理器602可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤,可以 直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于第一存储器603,所述第一处理器602读取第一存储器603中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,终端600可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或者其他电子元件实现,用于执行前述方法。
基于上述程序模块的硬件实现,且为了实现本申请实施例网络设备侧的方法,本申请实施例还提供了一种网络设备,如图7所示,该网络设备700包括:
第二通信接口701,能够与终端进行信息交互;
第二处理器702,与所述第二通信接口701连接,以实现与终端进行信息交互,配置为运行计算机程序时,执行上述网络设备侧一个或多个技术方案提供的方法;
第二存储器703,所述计算机程序存储在第二存储器703上。
具体地,所述第二通信接口701,配置为向终端发送第一信息,所述第一信息是与第一小区的测量有关的信息,所述第一小区的测量包含以下至少之一:L1测量;CBD;BFD;RLM。
其中,在一实施例中,所述第二处理器702,配置为确定所述第一信息。
在一实施例中,所述第一信息包含第四指示信息,所述第四指示信息指示开启或关闭快速上报第一小区的L1测量结果或第一门限;
所述第二通信接口701,还配置为接收所述终端基于所述第一信息上报的第一小区L1的测量结果。
在一实施例中,所述第二通信接口701,还配置为向所述终端发送第二信息,所述第二信息指示第二门限,所述第二门限用于所述终端上报第一小区L1测量结果中高于或等于所述第二门限的测量结果。
在一实施例中,所述第二通信接口701,还配置为向所述终端发送第三信息,所述第三信息指示第三门限;所述第三门限用于所述终端在L1测量结果中高于或等于所述第二门限的测量结果的个数满足第三门限时,向所述网络侧上报L1测量结果中高于或等于所述第二门限的测量结果。
在一实施例中,所述第二通信接口701,还配置为向所述终端发送第四信息,所述第四信息指示上报的测量结果的最大数目。
在一实施例中,所述接收单元,配置为接收第一小区L1的测量结果时,接收所述终端上报的第一小区L3的测量结果。
在一实施例中,所述第二通信接口701,还配置为向所述终端发送第五 信息,所述第五信息指示所述终端是否上报第一小区L3的测量结果;
在所述第五信息指示所述终端上报第一小区L3的测量结果的情况下,所述第二通信接口701接收所述终端上报的第一小区L1的测量结果的同时接收所述终端上报的L3的测量结果。
需要说明的是:所述第二处理器702及第二通信接口701的具体处理过程可参照上述方法理解。
当然,实际应用时,网络设备700中的各个组件通过总线系统704耦合在一起。可理解,总线系统704配置为实现这些组件之间的连接通信。总线系统704除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图7中将各种总线都标为总线系统704。
本申请实施例中的第二存储器703配置为存储各种类型的数据以支持网络设备700操作。这些数据的示例包括:用于在网络设备700上操作的任何计算机程序。
上述本申请实施例揭示的方法可以应用于所述第二处理器702中,或者由所述第二处理器702实现。所述第二处理器702可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过所述第二处理器702中的硬件的集成逻辑电路或者软件形式的指令完成。上述的所述第二处理器702可以是通用处理器、DSP,或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。所述第二处理器702可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于第二存储器703,所述第二处理器702读取第二存储器703中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,网络设备700可以被一个或多个ASIC、DSP、PLD、CPLD、FPGA、通用处理器、控制器、MCU、Microprocessor、或其他电子元件实现,用于执行前述方法。
可以理解,本申请实施例的存储器(第一存储器603、第二存储器703)可以是易失性存储器或者非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(ROM,Read Only Memory)、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机 存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本申请实施例描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种测量系统,如图8所示,该系统包括:终端801和网络设备802。
这里,需要说明的是:所述终端801和网络设备802的具体处理过程已在上文详述,这里不再赘述。
在示例性实施例中,本申请实施例还提供了一种存储介质,即计算机存储介质,具体为计算机可读存储介质,例如包括存储计算机程序的第一存储器603,上述计算机程序可由终端600的第一处理器602执行,以完成前述终端侧方法所述步骤,再比如包括存储计算机程序的第二存储器703,上述计算机程序可由网络设备700的第二处理器702执行,以完成前述网络设备侧方法所述步骤。计算机可读存储介质可以是FRAM、ROM、PROM、EPROM、EEPROM、Flash Memory、磁表面存储器、光盘、或CD-ROM等存储器。
需要说明的是:“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
另外,本申请实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。

Claims (49)

  1. 一种测量方法,应用于终端,包括:
    获取第一信息,所述第一信息是与第一小区的测量有关的信息,所述第一小区的测量包含以下至少之一:
    层1测量;
    候选波束检测CBD;
    波束失败检测BFD;
    无线链路监测RLM。
  2. 根据权利要求1所述的方法,其中,所述第一小区包括非服务小区或者与服务小区的物理小区标识PCI不同的小区。
  3. 根据权利要求1所述的方法,其中,所述第一信息包括第一因子,所述第一因子应用于测量时延。
  4. 根据权利要求3所述的方法,其中,所述第一因子包括以下之一:
    百分比;
    正数;
    分数;
    服务小区的参考符号与第一小区的参考符号存在部分重叠时,第一因子=K1/(1-A/B),或者第一因子=K1/(1-B/A);其中,K1为正数,A表示第一小区层1的参考符号的周期,B表示服务小区层1的参考符号的周期;
    第一小区的参考符号与测量间隔存在部分重叠时,第一因子=K2/(1-A/Z);其中,K2为正数,A表示第一小区层1的参考符号的周期,Z表示测量间隔周期;
    服务小区的参考符号与第一小区的参考符号存在部分重叠,且第一小区的参考符号与测量间隔存在部分重叠时,第一因子=K3/(1-A/B-A/Z),或者第一因子=K3/(1-B/A-A/Z),或者第一因子=K3/(1-B/A-B/Z);其中,K3为正数,A表示第一小区层1的参考符号的周期,Z表示测量间隔周期,B表示服务小区层1的参考符号的周期。
  5. 根据权利要求3所述的方法,其中,所述第一因子满足以下之一:
    服务小区的参考符号与第一小区的参考符号存在重叠时,所述第一因子与参数A和参数B关联,参数A表示第一小区层1的参考符号的周期,参数B表示服务小区层1的参考符号的周期;
    第一小区的参考符号与测量间隔存在重叠时,所述第一因子与参数A和参数Z关联,参数A表示第一小区层1的参考符号的周期,参数Z表示测量间隔周期;
    服务小区的参考符号与第一小区的参考符号存在重叠,且第一小区的参考符号与测量间隔存在重叠时,所述第一因子与参数A、参数B和参数Z 关联,参数A表示第一小区层1的参考符号的周期,参数Z表示测量间隔周期,参数B表示服务小区层1的参考符号的周期。
  6. 根据权利要求1所述的方法,其中,所述第一信息包括第二因子,所述第二因子应用于测量时延。
  7. 根据权利要求6所述的方法,其中,所述第二因子包括以下之一:
    百分比;
    正数;
    分数;
    第一小区层1的参考符号与第二小区层3的参考符号存在部分重叠时,第二因子=M1/(1-A/C),或者第二因子=M1/(1-C/A);其中,M1为正数,A表示第一小区层1的参考符号的周期,C表示第二小区层3的参考符号的周期;
    第一小区的参考符号与测量间隔存在部分重叠时,第二因子=M2/(1-A/Z);其中,M2为正数,A表示第一小区层1的参考符号的周期,Z表示测量间隔周期;
    第一小区的参考符号与第二小区的参考符号存在部分重叠且第一小区的参考符号与测量间隔存在部分重叠时,第二因子=M3/(1-A/C-A/Z),或者第二因子=M3/(1-C/A-A/Z),或者第二因子=M3/(1-C/A-C/Z);其中,M3为正数,A表示第一小区层1的参考符号的周期,Z表示测量间隔周期,C表示第二小区层3的参考符号的周期。
  8. 根据权利要求6所述的方法,其中,所述第二因子满足以下之一:
    第一小区层1的参考符号与第二小区层3的参考符号存在重叠时,所述第二因子与参数A和参数C关联,参数A表示第一小区层1的参考符号的周期,参数C表示第二小区层3的参考符号的周期;
    第一小区的参考符号与测量间隔存在重叠时,所述第二因子与参数A和参数Z关联,参数A表示第一小区层1的参考符号的周期,参数Z表示测量间隔周期;
    第一小区的参考符号与第二小区的参考符号存在重叠且第一小区的参考符号与测量间隔存在重叠时,所述第二因子与参数A、参数C和参数Z关联,参数A表示第一小区层1的参考符号的周期,参数Z表示测量间隔周期,参数C表示第二小区层3的参考符号的周期。
  9. 根据权利要求1所述的方法,其中,所述第一信息包括第三因子,所述第三因子应用于测量时延。
  10. 根据权利要求9所述的方法,其中,所述第三因子包括以下之一:
    百分比;
    正数;
    分数;
    第一小区的BFD与第三小区的CBD的参考符号存在部分重叠时,第 三因子=N1/(1-D/E),或者第三因子=N1/(1-E/D);其中,N1为正数,D表示第一小区BFD的参考符号的周期,E表示第三小区CBD的参考符号的周期;
    第一小区的BFD的参考符号与测量间隔存在部分重叠时,第三因子=N2/(1-D/Z);其中,N2为正数,D表示第一小区BFD的参考符号的周期,Z表示测量间隔周期;
    第一小区的CBD的参考符号与测量间隔存在部分重叠时,第三因子=N6/(1-F/Z);其中,N6为正数,F表示第一小区CBD的参考符号的周期,Z表示测量间隔周期;
    第一小区的BFD与第三小区的CBD的参考符号存在部分重叠且第一小区的BFD与测量间隔存在部分重叠时,第三因子=N3/(1-D/E-D/Z),或者第三因子=N3/(1-E/D-D/Z),或者第三因子=N3/(1-E/D-E/Z);其中,N3为正数,D表示第一小区BFD的参考符号的周期,Z表示测量间隔周期,E表示第三小区CBD的参考符号的周期;
    第一小区的CBD与第三小区的BFD的参考符号存在部分重叠时,第三因子=N4/(1-F/G),或者第三因子=N4/(1-G/F);其中,N4为正数,F表示第一小区CBD的参考符号的周期,G表示第三小区CBD的参考符号的周期;
    第一小区的CBD与第三小区的BFD的参考符号存在部分重叠且第一小区的CBD与测量间隔存在部分重叠时,第三因子=N5/(1-F/G-F/Z),或者第三因子=N5/(1-G/F-F/Z),或者第三因子=N5/(1-G/F-G/Z);其中,N5为正数,F表示第一小区CBD的参考符号的周期,Z表示测量间隔周期,G表示第三小区BFD的参考符号的周期。
  11. 根据权利要求9所述的方法,其中,所述第三因子满足以下之一:
    第一小区的BFD与第三小区的CBD的参考符号存在重叠时,所述第三因子与参数D和参数E关联,参数D表示第一小区BFD的参考符号的周期,参数E表示第三小区CBD的参考符号的周期;
    第一小区的BFD的参考符号与测量间隔存在重叠时,所述第三因子与参数D和参数Z关联,参数D表示第一小区BFD的参考符号的周期,参数Z表示测量间隔周期;
    第一小区的CBD的参考符号与测量间隔存在重叠时,所述第三因子与参数F和参数Z关联,参数F表示第一小区CBD的参考符号的周期,参数Z表示测量间隔周期;
    第一小区的BFD与第三小区的CBD的参考符号存在重叠且第一小区的BFD与测量间隔存在重叠时,所述第三因子与参数D、参数E和参数Z关联,参数D表示第一小区BFD的参考符号的周期,参数Z表示测量间隔周期,参数E表示第三小区CBD的参考符号的周期;
    第一小区的CBD与第三小区的BFD的参考符号存在重叠时,所述第 三因子与参数F和参数G关联,参数F表示第一小区CBD的参考符号的周期,参数G表示第三小区BFD的参考符号的周期;
    第一小区的CBD与第三小区的BFD的参考符号存在重叠且第一小区的CBD与测量间隔存在重叠时,所述第三因子与参数F、参数G和参数Z关联,参数F表示第一小区CBD的参考符号的周期,参数Z表示测量间隔周期,参数G表示第三小区BFD的参考符号的周期。
  12. 根据权利要求1所述的方法,其中,所述第一信息包括以下至少之一:
    第一指示信息,所述第一指示信息指示在第一小区的层1测量和服务小区的层1测量存在重叠的情况下是否同时测量;
    第二指示信息,所述第二指示信息指示在第一小区的层1测量和第二小区的层3测量存在重叠的情况下是否同时测量;
    第三指示信息,所述第三指示信息指示在第一小区的BFD测量和第三小区的CBD测量存在重叠的情况下是否同时测量,或者指示在第一小区的CBD测量和第三小区的BFD测量存在重叠的情况下是否同时测量;
    第四指示信息,所述第四指示信息指示开启或关闭快速上报第一小区的层1测量结果或第一门限。
  13. 根据权利要求12所述的方法,其中,
    在所述第四指示信息指示开启快速上报第一小区的层1测量结果或第一小区层1的测量结果高于或等于所述第一门限的情况下,获得第一小区P1个层1的测量结果后向所述网络侧上报测量结果;
    或者在所述第四指示信息指示关闭快速上报第一小区的层1测量结果或第一小区层1的测量结果低于所述第一门限的情况下,获得第一小区Q1个层1的测量结果后向所述网络侧上报测量结果;P1为大于或等于1的整数,Q1为大于或等于1的整数,P1小于Q1。
  14. 根据权利要求12所述的方法,其中,在所述第四指示信息指示开启或关闭快速上报第一小区的层1测量结果的情况下,所述第四指示信息包括第一计数器;
    在获得的第一小区层1的测量结果的个数满足所述第一计数器的要求时上报测量结果。
  15. 根据权利要求13所述的方法,其中,所述方法还包括:
    接收所述网络侧发送的第二信息,所述第二信息指示第二门限;
    向所述网络侧上报第一小区层1测量结果中高于或等于所述第二门限的测量结果。
  16. 根据权利要求13所述的方法,其中,所述方法还包括:
    接收所述网络侧发送的第三信息,所述第三信息指示第三门限;
    在层1测量结果中高于或等于所述第二门限的测量结果的个数满足第 三门限时,向所述网络侧上报层1测量结果中高于或等于所述第二门限的测量结果。
  17. 根据权利要求16所述的方法,其中,所述第三信息包括第二计数器;
    在层1测量结果中高于或等于所述第二门限的测量结果的个数满足所述第二计数器的要求时,向所述网络侧上报层1测量结果中高于或等于所述第二门限的测量结果。
  18. 根据权利要求16所述的方法,其中,所述方法还包括:
    接收所述网络侧发送的第四信息,所述第四信息指示上报的测量结果的最大数目;
    在层1测量结果中高于或等于所述第二门限的测量结果的个数大于所述最大数目的情况下,从高于或等于所述第二门限的测量结果中选择所述最大数目个测量结果进行上报。
  19. 根据权利要求13所述的方法,其中,
    上报测量结果的绝对值;
    或者,
    上报测量结果相对于第一波束测量结果的相对值。
  20. 根据权利要求19所述的方法,其中,所述第一波束包括以下之一:
    第一小区质量最高的波束;
    服务小区质量最高的波束。
  21. 根据权利要求13所述的方法,其中,上报第一小区层1的测量结果时,所述方法还包括:
    上报第一小区层3的测量结果。
  22. 根据权利要求21所述的方法,其中,所述方法还包括:
    接收所述网络侧发送的第五信息,所述第五信息指示所述终端是否上报第一小区层3的测量结果;
    在所述第五信息指示所述终端上报第一小区层3的测量结果的情况下,上报第一小区层1的测量结果的同时上报层3的测量结果。
  23. 一种测量方法,应用于网络设备,包括:
    向终端发送第一信息,所述第一信息是与第一小区的测量有关的信息,所述第一小区的测量包含以下至少之一:
    层1测量;
    CBD;
    BFD;
    RLM。
  24. 根据权利要求23所述的方法,其中,所述第一小区包括非服务小区或者与服务小区的PCI不同的小区。
  25. 根据权利要求23所述的方法,其中,所述第一信息包括第一因子,所述第一因子应用于测量时延。
  26. 根据权利要求25所述的方法,其中,所述第一因子包括以下之一:
    百分比;
    正数;
    分数;
    服务小区的参考符号与第一小区的参考符号存在部分重叠时,第一因子=K1/(1-A/B),或者第一因子=K1/(1-B/A);其中,K1为正数,A表示第一小区层1的参考符号的周期,B表示服务小区层1的参考符号的周期;
    第一小区的参考符号与测量间隔存在部分重叠时,第一因子=K2/(1-A/Z);其中,K2为正数,A表示第一小区层1的参考符号的周期,Z表示测量间隔周期;
    服务小区的参考符号与第一小区的参考符号存在部分重叠且第一小区的参考符号与测量间隔存在部分重叠时,第一因子=K3/(1-A/B-A/Z),或者第一因子=K3/(1-B/A-A/Z),或者第一因子=K3/(1-B/A-B/Z);其中,K3为正数,A表示第一小区层1的参考符号的周期,Z表示测量间隔周期,B表示服务小区层1的参考符号的周期。
  27. 根据权利要求25所述的方法,其中,所述第一因子满足以下之一:
    服务小区的参考符号与第一小区的参考符号存在重叠时,所述第一因子与参数A和参数B关联,参数A表示第一小区层1的参考符号的周期,参数B表示服务小区层1的参考符号的周期;
    第一小区的参考符号与测量间隔存在重叠时,所述第一因子与参数A和参数Z关联,参数A表示第一小区层1的参考符号的周期,参数Z表示测量间隔周期;
    服务小区的参考符号与第一小区的参考符号存在重叠,且第一小区的参考符号与测量间隔存在重叠时,所述第一因子与参数A、参数B和参数Z关联,参数A表示第一小区层1的参考符号的周期,参数Z表示测量间隔周期,参数B表示服务小区层1的参考符号的周期数。
  28. 根据权利要求23所述的方法,其中,所述第一信息包括第二因子,所述第二因子应用于测量时延。
  29. 根据权利要求28所述的方法,其中,所述第二因子包括以下之一:
    百分比;
    正数;
    分数;
    第一小区层1的参考符号与第二小区层3的参考符号存在部分重叠时,第二因子=M1/(1-A/C),或者第二因子=M1/1-C/A);其中,M1为正数,A 表示第一小区层1的参考符号的周期,C表示第二小区层3的参考符号的周期;
    第一小区的参考符号与测量间隔存在部分重叠时,第二因子=M2/(1-A/Z);其中,M2为正数,A表示第一小区层1的参考符号的周期,Z表示测量间隔周期;
    第一小区的参考符号与第二小区的参考符号存在部分重叠且第一小区的参考符号与测量间隔存在部分重叠时,第二因子=M3/(1-A/C-A/Z),或者第二因子=M3/(1-C/A-A/Z),或者第二因子=M3/(1-C/A-C/Z);其中,M3为正数,A表示第一小区层1的参考符号的周期,Z表示测量间隔周期,C表示第二小区层3的参考符号的周期。
  30. 根据权利要求28所述的方法,其中,所述第二因子满足以下之一:
    第一小区层1的参考符号与第二小区层3的参考符号存在重叠时,所述第二因子与参数A和参数C关联,参数A表示第一小区层1的参考符号的周期,参数C表示第二小区层3的参考符号的周期;
    第一小区的参考符号与测量间隔存在重叠时,所述第二因子与参数A和参数Z关联,参数A表示第一小区层1的参考符号的周期,参数Z表示测量间隔周期;
    第一小区的参考符号与第二小区的参考符号存在重叠且第一小区的参考符号与测量间隔存在重叠时,所述第二因子与参数A、参数C和参数Z关联,参数A表示第一小区层1的参考符号的周期,参数Z表示测量间隔周期,参数C表示第二小区层3的参考符号的周期。
  31. 根据权利要求23所述的方法,其中,所述第一信息包括第三因子,所述第三因子应用于测量时延。
  32. 根据权利要求31所述的方法,其中,所述第三因子包括以下之一:
    百分比;
    正数;
    分数;
    第一小区的BFD与第三小区的CBD的参考符号存在部分重叠时,第三因子=N1/(1-D/E),或者第三因子=N1/(1-E/D);其中,N1为正数,D表示第一小区BFD的参考符号的周期,E表示第三小区CBD的参考符号的周期;
    第一小区的BFD的参考符号与测量间隔存在部分重叠时,第三因子=N2/(1-D/Z);其中,N2为正数,D表示第一小区BFD的参考符号的周期,Z表示测量间隔周期;
    第一小区的CBD的参考符号与测量间隔存在部分重叠时,第三因子=N6/(1-F/Z);其中,N6为正数,F表示第一小区CBD的参考符号的周期,Z表示测量间隔周期;
    第一小区的BFD与第三小区的CBD的参考符号存在部分重叠且第一 小区的BFD与测量间隔存在部分重叠时,第三因子=N3/(1-D/E-D/Z),或者第三因子=N3/(1-E/D-D/Z),或者第三因子=N3/(1-E/D-E/Z);其中,N3为正数,D表示第一小区BFD的参考符号的周期,Z表示测量间隔周期,E表示第三小区CBD的参考符号的周期;
    第一小区的CBD与第三小区的BFD的参考符号存在部分重叠时,第三因子=N4/(1-F/G),或者第三因子=N4/(1-G/F);其中,N4为正数,F表示第一小区CBD的参考符号的周期,G表示第三小区BFD的参考符号的周期;
    第一小区的CBD与第三小区的BFD的参考符号存在部分重叠且第一小区的CBD与测量间隔存在部分重叠时,第三因子=N5/(1-F/G-F/Z),或者第三因子=N5/(1-G/F-F/Z),或者第三因子=N5/(1-G/F-G/Z);其中,N5为正数,F表示第一小区CBD的参考符号的周期,Z表示测量间隔周期,G表示第三小区BFD的参考符号的周期。
  33. 根据权利要求31所述的方法,其中,所述第三因子满足以下之一:
    第一小区的BFD与第三小区的CBD的参考符号存在重叠时,所述第三因子与参数D和参数E关联,参数D表示第一小区BFD的参考符号的周期,参数E表示第三小区CBD的参考符号的周期;
    第一小区的BFD的参考符号与测量间隔存在重叠时,所述第三因子与参数D和参数Z关联,参数D表示第一小区BFD的参考符号的周期,参数Z表示测量间隔周期;
    第一小区的CBD的参考符号与测量间隔存在重叠时,所述第三因子与参数F和参数Z关联,参数F表示第一小区CBD的参考符号的周期,参数Z表示测量间隔周期;
    第一小区的BFD与第三小区的CBD的参考符号存在重叠且第一小区的BFD与测量间隔存在重叠时,所述第三因子与参数D、参数E和参数Z关联,参数D表示第一小区BFD的参考符号的周期,参数Z表示测量间隔周期,参数E表示第三小区CBD的参考符号的周期;
    第一小区的CBD与第三小区的BFD的参考符号存在重叠时,所述第三因子与参数F和参数G关联,参数F表示第一小区CBD的参考符号的周期,参数G表示第三小区BFD的参考符号的周期;
    第一小区的CBD与第三小区的BFD的参考符号存在重叠且第一小区的CBD与测量间隔存在重叠时,所述第三因子与参数F、参数G和参数Z关联,参数F表示第一小区CBD的参考符号的周期,参数Z表示测量间隔周期,参数G表示第三小区BFD的参考符号的周期。
  34. 根据权利要求23所述的方法,其中,所述第一信息包括以下至少之一:
    第一指示信息,所述第一指示信息指示在第一小区的层1测量和服务 小区的层1测量存在重叠的情况下是否同时测量;
    第二指示信息,所述第二指示信息指示在第一小区的层1测量和第二小区的层3测量存在重叠的情况下是否同时测量;
    第三指示信息,所述第三指示信息指示在第一小区的BFD测量和第三小区的CBD测量存在重叠的情况下是否同时测量,或者指示在第一小区的CBD测量和第三小区的BFD测量存在重叠的情况下是否同时测量;
    第四指示信息,所述第四指示信息指示开启或关闭快速上报第一小区的层1测量结果或第一门限。
  35. 根据权利要求34所述的方法,其中,在所述第一信息包含所述第四指示信息的情况下,所述方法还包括:
    接收所述终端基于所述第一信息上报的第一小区层1的测量结果。
  36. 根据权利要求35所述的方法,其中,在所述第四指示信息指示开启或关闭快速上报第一小区的层1测量结果的情况下,所述第四指示信息包括第一计数器,所述第一计数器用于指示所述终端获得的第一小区层1的测量结果的个数满足所述第一计数器的要求时上报测量结果。
  37. 根据权利要求35所述的方法,其中,所述方法还包括:
    向所述终端发送第二信息,所述第二信息指示第二门限,所述第二门限用于所述终端上报第一小区层1测量结果中高于或等于所述第二门限的测量结果。
  38. 根据权利要求37所述的方法,其中,所述方法还包括:
    向所述终端发送第三信息,所述第三信息指示第三门限;所述第三门限用于所述终端在层1测量结果中高于或等于所述第二门限的测量结果的个数满足第三门限时,向所述网络侧上报层1测量结果中高于或等于所述第二门限的测量结果。
  39. 根据权利要求36所述的方法,其中,所述第三信息包括第二计数器,所述第二计时器用于指示所述终端在层1测量结果中高于或等于所述第二门限的测量结果的个数满足所述第二计数器的要求时,向所述网络侧上报层1测量结果中高于或等于所述第二门限的测量结果。
  40. 根据权利要求37所述的方法,其中,所述方法还包括:
    向所述终端发送第四信息,所述第四信息指示上报的测量结果的最大数目。
  41. 根据权利要求35所述的方法,其中,接收第一小区层1的测量结果时,所述方法还包括:
    接收所述终端上报的第一小区层3的测量结果。
  42. 根据权利要求41所述的方法,其中,所述方法还包括:
    向所述终端发送第五信息,所述第五信息指示所述终端是否上报第一小区层3的测量结果;
    在所述第五信息指示所述终端上报第一小区层3的测量结果的情况下, 接收所述终端上报的第一小区层1的测量结果的同时接收所述终端上报的层3的测量结果。
  43. 一种测量装置,包括:
    获取单元,配置为获取第一信息,所述第一信息是与第一小区的测量有关的信息,所述第一小区的测量包含以下至少之一:
    层1测量;
    CBD;
    BFD;
    RLM。
  44. 一种测量装置,包括:
    发送单元,配置为向终端发送第一信息,所述第一信息是与第一小区的测量有关的信息,所述第一小区的测量包含以下至少之一:
    层1测量;
    CBD;
    BFD;
    RLM。
  45. 一种终端,包括:第一处理器及第一通信接口;其中,
    所述第一处理器,配置为获取第一信息,所述第一信息是与第一小区的测量有关的信息,所述第一小区的测量包含以下至少之一:
    层1测量;
    CBD;
    BFD;
    RLM。
  46. 一种网络设备,包括:第二处理器及第二通信接口;其中,
    所述第二通信接口,配置为向终端发送第一信息,所述第一信息是与第一小区的测量有关的信息,所述第一小区的测量包含以下至少之一:
    层1测量;
    CBD;
    BFD;
    RLM。
  47. 一种终端,包括:第一处理器和配置为存储能够在处理器上运行的计算机程序的第一存储器,
    其中,所述第一处理器配置为运行所述计算机程序时,执行权利要求1至22任一项所述方法的步骤。
  48. 一种网络设备,包括:第二处理器和配置为存储能够在处理器上运行的计算机程序的第二存储器,
    其中,所述第二处理器配置为运行所述计算机程序时,执行权利要求23至42任一项所述方法的步骤。
  49. 一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至22任一项所述方法的步骤,或者实现权利要求23至42任一项所述方法的步骤。
PCT/CN2023/075063 2022-02-11 2023-02-08 测量方法、装置、相关设备及存储介质 WO2023151605A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210130197.5 2022-02-11
CN202210130197.5A CN116634476A (zh) 2022-02-11 2022-02-11 测量方法、装置、相关设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023151605A1 true WO2023151605A1 (zh) 2023-08-17

Family

ID=87563632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075063 WO2023151605A1 (zh) 2022-02-11 2023-02-08 测量方法、装置、相关设备及存储介质

Country Status (2)

Country Link
CN (1) CN116634476A (zh)
WO (1) WO2023151605A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110381531A (zh) * 2019-08-16 2019-10-25 北京展讯高科通信技术有限公司 测量配置及上报方法、装置和用户设备
WO2022021335A1 (en) * 2020-07-31 2022-02-03 Qualcomm Incorporated Inter-cell mobility across serving and non-serving cells
WO2022028373A1 (zh) * 2020-08-06 2022-02-10 维沃移动通信有限公司 测量上报方法、装置及设备
WO2022028475A1 (zh) * 2020-08-06 2022-02-10 维沃移动通信有限公司 参考信号测量方法、终端及网络侧设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110381531A (zh) * 2019-08-16 2019-10-25 北京展讯高科通信技术有限公司 测量配置及上报方法、装置和用户设备
WO2022021335A1 (en) * 2020-07-31 2022-02-03 Qualcomm Incorporated Inter-cell mobility across serving and non-serving cells
WO2022028373A1 (zh) * 2020-08-06 2022-02-10 维沃移动通信有限公司 测量上报方法、装置及设备
WO2022028475A1 (zh) * 2020-08-06 2022-02-10 维沃移动通信有限公司 参考信号测量方法、终端及网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Impact to RRM requirements for inter-cell beam management in FeMIMO", 3GPP DRAFT; R4-2119095, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Electronic Meeting; 20211101 - 20211112, 22 October 2021 (2021-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052070469 *

Also Published As

Publication number Publication date
CN116634476A (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
KR102448050B1 (ko) 인접 셀 구성 방법, 네트워크 기기 및 사용자 기기
US9392542B2 (en) Method and device for detecting inter-frequency cell signals in a heterogeneous network
EP2673978B1 (en) Priority measurement rules for channel measurement occasions
BR112020009582A2 (pt) método de processamento de sinal de referência, dispositivo de rede, e dispositivo terminal
US10827369B2 (en) Cell discovery and measurement method, base station and UE
WO2020164538A1 (zh) 最小化路测信息的上报、配置方法、终端及网络设备
US20220159492A1 (en) Measurement method, measurement indication method, and device
WO2019144399A1 (zh) 一种小区重选方法及装置、计算机存储介质
US9226214B2 (en) Method and apparatus for a terminal to select a cell in a heterogeneous network
RU2759592C1 (ru) Способ и устройство для приема информации и компьютерочитаемый носитель
EP2428075A1 (en) Methods and apparatus to process signal strengths of not allowed cells during cell reselection
US20220232391A1 (en) PCI Conflict Detection, Adjustment Method, and Device
US8615246B2 (en) Method for receiving information on network configuration
US20170006532A1 (en) Small Cell Discovery Method and System, Base Station, and User Equipment, and Communication Apparatus
US11553444B2 (en) Method, network apparatus, and terminal apparatus for indicating position of synchronization signal block
WO2023151605A1 (zh) 测量方法、装置、相关设备及存储介质
BR112018002783B1 (pt) Método de relatório e medição de rede de área local sem fio wlan, aparelho e mídia não transitória legível por processador
WO2021016928A1 (en) Discontinuous reception (drx) configuration for automatic neighbor relation (anr)
WO2020132904A1 (zh) 信号质量测量方法、装置及终端
US20200359385A1 (en) Information transmission method, network device, and terminal device
WO2022228050A1 (zh) 测量方法、装置、终端及存储介质
CN113630820B (zh) 小区切换方法、装置及计算设备
US20240187912A1 (en) Measuring radio characteristics of measurement objects
CN109561475B (zh) 指示和获取邻区时序信息的方法、装置、基站及用户设备
CN116133024A (zh) 通信方法、装置、终端及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752385

Country of ref document: EP

Kind code of ref document: A1