WO2023151557A1 - A smart sop system for operating an industrial environment - Google Patents

A smart sop system for operating an industrial environment Download PDF

Info

Publication number
WO2023151557A1
WO2023151557A1 PCT/CN2023/074811 CN2023074811W WO2023151557A1 WO 2023151557 A1 WO2023151557 A1 WO 2023151557A1 CN 2023074811 W CN2023074811 W CN 2023074811W WO 2023151557 A1 WO2023151557 A1 WO 2023151557A1
Authority
WO
WIPO (PCT)
Prior art keywords
industrial processes
operating
smart
signals
procedure system
Prior art date
Application number
PCT/CN2023/074811
Other languages
French (fr)
Inventor
Yau Sang Stephen Cheng
Original Assignee
Yau Sang Stephen Cheng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yau Sang Stephen Cheng filed Critical Yau Sang Stephen Cheng
Publication of WO2023151557A1 publication Critical patent/WO2023151557A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing

Definitions

  • Embodiments of the present disclosure relate to the technical field of intelligence system, and in particular, relate to a smart SOP system for operating an industrial environment.
  • An industrial environment or entity such as a factory or laboratory
  • a chemical plant has many standard operating procedures in place to prevent these incidents from happening. For example, entering into a confined space is very dangerous, and the so-called vessel entry procedure details many steps to prevent accidents from happening. Yet, because the procedures rely on human judgment (or lack thereof) , errors occur, many times leading to deaths.
  • 2017 4 workers died in Taiwan during a routine cleaning operation of a waste water tank. Vessel entry procedures were in place, yet throughout the incident, procedures were ignored leading to a series of accidents resulting in 4 workers perishing.
  • the embodiments of the present disclosure provide a smart standard operating procedure system for operating industrial processes.
  • the smart standard operating procedure system includes a system of two or more elements electronically enabled to produce or receive signals which interact with each other directly or indirectly via one or more electronic controllers which monitor, process or interpret these signals, and the outcome of the interaction defines whether the particular underlying procedure was carried out as written without human interpretation or intervention.
  • the smart standard operating procedure system for operating industrial processes is configured to control and will allow or not allow all prior-defined processes to be carried out, and when not allowing processes failing to meet the required conditions can include but not limited to issuing warning signals for human intervention or automatic shutting down of a piece of equipment.
  • the two or more elements comprise workers, training manuals, safety glasses, laboratory door or reactor controller.
  • the one or more electronic controllers comprise RFID tags, IC chips with singular or multiple functions or any material or device which can generate or react to an electromagnetic signal.
  • the signals comprise magnetic, electrical, electromagnetic or chemical signal.
  • the industrial processes comprise goods or material production, services such as machine repairs or goods or material warehousing or delivery.
  • An industrial environment or entity is defined in the context of this application as the sum of repeatable operating procedures taking place in parallel and successively, which collectively result in producing a service or product.
  • the purpose of the application is not to make it vastly over-reaching, as the key point is “repeatable operating procedures” , which when taken in a consumer setting becomes much less unpredictable being subject to the whims of consumer mood and taste.
  • the operations such as consumers shopping at a supermarket would be excluded, while the warehousing operations in managing the inventory available or even the delivery service to the consumer would be within scope.
  • Industrial processes have defined and predictable outcomes, while consumer processes include human emotion leading to outcomes which cannot be easily predicted.
  • mRNA is one of the mechanisms where it is produced in the cell nucleus and sent out to other parts of the body to carry out biological tasks.
  • the human operator can be interpreted as one of the mRNA analogues.
  • the human operator gets trained on relevant SOPs (i.e. the DNA) , and then carries out various tasks (i.e. becomes the mRNA) armed with the instructions.
  • SOPs i.e. the DNA
  • carries out various tasks i.e. becomes the mRNA
  • Processes involving mRNA are complex with checks and corrective measures to prevent errors during carrying out of the instructions, yet diseases occur when this mechanism malfunctions, although they are astonishingly rare. Therefore, having erroneous outcomes during the course of carrying out a process is not the biggest problem, as errors can never be eliminated completely.
  • SOPs govern an industrial entity’s operations minute and large, simple or complex, and are often comprehensive and well-thought out, just like DNA. In nature, natural selection weeds out non-optimal processes. In SOPs, procedures may not be perfect but continuous improvement address this just like natural selection. Therefore, imperfect SOPs are not the problem, rather it is the human operator not carrying out the SOP as intended that creates hazards. In the example of the confined space accident in Taiwan, SOPs called for safety gear when entering confined space, but that was not followed. SOPs called for human backup, and was supposed to mitigate this error. While the back-up colleague went for help as per SOPs, the helpers who came ignored SOP perhaps in panic, went into the vessel unprepared, and all perished in the end.
  • SOPs can be written to perfection, yet prone to deviation or even complete breakdown when implemented by the human operator. Tools are in place to address specific issues, yet no system exists to make SOPs a living dynamic system as the SOPs are static and non-interactive.
  • the current application turns a static non-living industrial entity into a dynamic and interactive ecosystem.
  • SOPs written on paper or electronic manuals are static, and the solution is to turn SOPs into smart SOPs or a SmSOP system which operate dynamically, interactively and in real-time.
  • SOPs detail actions or series of actions undertaken by humans or initiated by humans, such as an operator passing procedure training or wearing oxygen mask.
  • the outcomes of these tasks can be defined as SOP outputs.
  • SOP outputs are defined into rules, are represented as digital records or signals. For example, passing relevant procedure training would generate a flag against the training record on a computer or database. The operator having worn the oxygen mask correctly would result in a certain signal being transmitted, which would then be interpreted as having completed the required task. These outcomes would be received, transmitted, interpreted and analyzed, and finally determine if the SOPs were carried out as exactly as intended. Only one combination of data records and signals from the various elements (human or machinery or location) can represent the situation where the SOP was being done according to the definition. Any other deviations caused by human or non-human factors would not flag the SOP as having been carried out correctly, and subsequent actions cannot continue. No human interpretation is involved.
  • SmSOP SmSOP
  • management and experts knowledgeable in the operations of the industry entity need to decide which SOPs need to be made “smart” .
  • the more that can be converted to operate under SmSOP system the more benefit that can be achieved.
  • It is within the scope of this application that only parts of SOPs become smart, and not all SOPs need to be converted.
  • all relevant elements associated with the SOPs including records, human operators, equipment, supplies, materials and infrastructure/location such as doors and windows would be electronically enabled. This allows living and non-living data and objects to interact with each other when they are involved with carrying out the SOP.
  • SmSOP SmSOP
  • At least 1 operator needs to be outside the vessel to provide backup.
  • SmSOP Under and SmSOP system, these written SOPs would be enabled with electronic tools.
  • the safety equipment can be attached with RFID tags, while the human operator carries a more complex mobile device.
  • the resulting SmSOP system can be illustrated in the following way.
  • a computer has a program which has all the SmSOP rules put into place, and can send to or receive from signals or data the electronic tools in service.
  • the electronic tool may be a mobile device, which would represent his or her unique identification.
  • the computer would hold records or can access the database with records tied to the mobile device, and by proxy to the operator, such as his training record for relevant procedures.
  • the simplest form of implementation with the safety gear can be RFID tags with unique digital identifier for each piece of equipment. As RFID works in a relatively close proximity, the mobile device would determine that all required gear is worn if their respective RFID tags all respond with signals.
  • a more elaborate setup still within the scope of this inventive concept, may use IC chips with more functionality, such as detection of malfunction or monitoring of vital statistics of the wearer.
  • the entrance to the confined space would be controlled electronically, perhaps a switch controlled with IC chip having sensors and wired or wireless communication functionality to interact with other electronically enabled elements or with a controller or computer.
  • the SOP of entry into confined space the following conditions need to be met in order to grant entry:
  • the controller would not open the entrance door, and may optionally indicate which condition or conditions have not been met.

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Educational Administration (AREA)
  • Marketing (AREA)
  • Development Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A smart SOP system for operating an industrial environment includes a system of two or more elements electronically enabled to produce or receive signals which interact with each other directly or indirectly via one or more electronic controllers which monitor, process or interpret these signals, and the outcome of the interaction defines whether the particular underlying procedure was carried out as written without human interpretation or intervention.

Description

A SMART SOP SYSTEM FOR OPERATING AN INDUSTRIAL ENVIRONMENT
CROSS-REFERENCE TO RELATED APPLICATION
This application claims the benefit of and priority to the American Patent Application No. 63/307,642, filed to the United States Patent and Trademark Office on February 08, 2022 and entitled “A smart SOP system for operating an industrial environment” , which is hereby incorporated by reference in its entirety.
TECHNICAL FIELD
Embodiments of the present disclosure relate to the technical field of intelligence system, and in particular, relate to a smart SOP system for operating an industrial environment.
BACKGROUND
The operation of an industrial environment or entity, such as a factory or laboratory, can be a hazardous process, causing harm to the workers within the factory or to the environment. A chemical plant has many standard operating procedures in place to prevent these incidents from happening. For example, entering into a confined space is very dangerous, and the so-called vessel entry procedure details many steps to prevent accidents from happening. Yet, because the procedures rely on human judgment (or lack thereof) , errors occur, many times leading to deaths. In 2017, 4 workers died in Taiwan during a routine cleaning operation of a waste water tank. Vessel entry procedures were in place, yet throughout the incident, procedures were ignored leading to a series of  accidents resulting in 4 workers perishing. Even companies adopting and certified under various management systems are prone to humans incorrectly interpreting and executing procedures, and while tools and measures may be in place to prevent specific incidents, the system has not changed. Human beings define the operating procedures, and at the same time are also the judge, jury and executioner. A holistic approach to take out as much as possible the human interpretation and intervention is required.
SUMMARY
The embodiments of the present disclosure provide a smart standard operating procedure system for operating industrial processes. The smart standard operating procedure system includes a system of two or more elements electronically enabled to produce or receive signals which interact with each other directly or indirectly via one or more electronic controllers which monitor, process or interpret these signals, and the outcome of the interaction defines whether the particular underlying procedure was carried out as written without human interpretation or intervention.
Optionally, the smart standard operating procedure system for operating industrial processes is configured to control and will allow or not allow all prior-defined processes to be carried out, and when not allowing processes failing to meet the required conditions can include but not limited to issuing warning signals for human intervention or automatic shutting down of a piece of equipment.
Optionally, the two or more elements comprise workers, training manuals, safety glasses, laboratory door or reactor controller.
Optionally, the one or more electronic controllers comprise RFID tags, IC chips with singular or multiple functions or any material or device which can generate or react to an electromagnetic signal.
Optionally, the signals comprise magnetic, electrical, electromagnetic or chemical signal.
Optionally, the industrial processes comprise goods or material production, services such as machine repairs or goods or material warehousing or delivery.
DETAILED DESCRIPTION
An industrial environment or entity is defined in the context of this application as the sum of repeatable operating procedures taking place in parallel and successively, which collectively result in producing a service or product. The purpose of the application is not to make it vastly over-reaching, as the key point is “repeatable operating procedures” , which when taken in a consumer setting becomes much less unpredictable being subject to the whims of consumer mood and taste. Under this definition, the operations such as consumers shopping at a supermarket would be excluded, while the warehousing operations in managing the inventory available or even the delivery service to the consumer would be within scope. Industrial processes have defined and predictable outcomes, while consumer processes include human emotion leading to outcomes which cannot be easily predicted.
To continue the explanation, a comparison can be made between an industrial entity and a living organism such as a human being to illustrate the current problem. DNA contains the instructions for a living organism. Similarly, the sum of all operating procedures whether formal or informal, represent an industrial entity’s instruction set or its DNA. Many companies have adopted and become certified in various management system accreditations, such as ISO 9000, 14000 or other industry specific systems. The principles of all these systems are based on operating procedures which can be defined, written and carried out with repeatable outcomes, so-called standard operating procedures or SOPs. Henceforth, operating procedures whether formal or informal would be referred to as SOPs, and SOPs do not imply that any industrial entity needs to be formally certified in any management system.
In many living organisms, mRNA is one of the mechanisms where it is produced in the cell nucleus and sent out to other parts of the body to carry out biological tasks. In an industrial entity, the human operator can be interpreted as one of the mRNA analogues. The human operator gets trained on relevant SOPs (i.e. the DNA) , and then carries out various tasks (i.e. becomes the mRNA) armed with the instructions. Processes involving mRNA are complex with checks and corrective measures to prevent errors  during carrying out of the instructions, yet diseases occur when this mechanism malfunctions, although they are astonishingly rare. Therefore, having erroneous outcomes during the course of carrying out a process is not the biggest problem, as errors can never be eliminated completely. Rather, the biggest flaw with SOPs today is that they are written on pieces of paper or as electronic documents, and used to train workers. Afterwards, the system relies on human operators to reproduce these instructions as accurately as possible. These original instructions then rely on human interpretation and memory, as well as physical and psychological conditions at the time of instruction or execution, to reproduce as closely as intended per instructions as originally written. Simple operations may almost never cause any errors, while more complex tasks deviate from the intended instructions and at times the desired results.
SOPs govern an industrial entity’s operations minute and large, simple or complex, and are often comprehensive and well-thought out, just like DNA. In nature, natural selection weeds out non-optimal processes. In SOPs, procedures may not be perfect but continuous improvement address this just like natural selection. Therefore, imperfect SOPs are not the problem, rather it is the human operator not carrying out the SOP as intended that creates hazards. In the example of the confined space accident in Taiwan, SOPs called for safety gear when entering confined space, but that was not followed. SOPs called for human backup, and was supposed to mitigate this error. While the back-up colleague went for help as per SOPs, the helpers who came ignored SOP perhaps in panic, went into the vessel unprepared, and all perished in the end.
In today’s systems of SOPs, only the human component is living and dynamic, and while they provide the greatest flexibility and ingenuity, they also pose the greatest danger to themselves and the environment. If the system of SOPs as a whole can be made dynamic and interactive, not just the between the human components, then human beings would not be relied upon to be the judge, jury and executioner which can result in costly or fatal mistakes.
With the proliferation of digital electronics, many companies have started to offer smart devices or solutions. In practice, this means different things to different people, and as technological capabilities expand, the definition will shift over time. One  interpretation of a smart environment embodies automation, such as automatic temperature adjustment in the home or automatic ordering of eggs if they run below a certain inventory in the refrigerator.
An industrial entity is like a living organism, and all the pieces or elements work together to fulfill the function to deliver a service or produce a product. For many modern companies certified on various management systems, all the relevant work are detailed in standard operating procedures or SOPs. Currently, SOPs can be written to perfection, yet prone to deviation or even complete breakdown when implemented by the human operator. Tools are in place to address specific issues, yet no system exists to make SOPs a living dynamic system as the SOPs are static and non-interactive.
The current application turns a static non-living industrial entity into a dynamic and interactive ecosystem. SOPs written on paper or electronic manuals are static, and the solution is to turn SOPs into smart SOPs or a SmSOP system which operate dynamically, interactively and in real-time.
SOPs detail actions or series of actions undertaken by humans or initiated by humans, such as an operator passing procedure training or wearing oxygen mask. The outcomes of these tasks can be defined as SOP outputs. Under a SmSOP system, these SOP outputs are defined into rules, are represented as digital records or signals. For example, passing relevant procedure training would generate a flag against the training record on a computer or database. The operator having worn the oxygen mask correctly would result in a certain signal being transmitted, which would then be interpreted as having completed the required task. These outcomes would be received, transmitted, interpreted and analyzed, and finally determine if the SOPs were carried out as exactly as intended. Only one combination of data records and signals from the various elements (human or machinery or location) can represent the situation where the SOP was being done according to the definition. Any other deviations caused by human or non-human factors would not flag the SOP as having been carried out correctly, and subsequent actions cannot continue. No human interpretation is involved.
To implement an SmSOP system, management and experts knowledgeable in the operations of the industry entity need to decide which SOPs need to be made “smart” .  The more that can be converted to operate under SmSOP system, the more benefit that can be achieved. It is within the scope of this application that only parts of SOPs become smart, and not all SOPs need to be converted. For those SOPs which would become smart, all relevant elements associated with the SOPs, including records, human operators, equipment, supplies, materials and infrastructure/location such as doors and windows would be electronically enabled. This allows living and non-living data and objects to interact with each other when they are involved with carrying out the SOP. Many tools or components are available today, such as records database, RFID tags, IC chips or components which can generate, receive or interact with signals, so that they can interact with each other directly or indirectly through microprocessors or computers. Some components may have limited capability today, but will have improved capabilities in the future. Some components may not exist today, which may replace multiple components in use today or enable certain features to exist not available today. All this does not bypass the intent of an SmSOP system. The basis of an SmSOP system is to defined SOPs outputs into digital records or signals which represent the outcome of the associated SOP actions carried out by humans or non-human elements, which are analyzed individually, in combination or collectively to determine if the SOP has been performed exactly as written. These signals can be chemical, electronic or electromagnetic in nature. There is currently no proposal of an SmSOP system with such an intent as described here. The current industry talk of AI or IOT either speaks on general terms without any clearly explained use cases or the use cases pinpoint very narrowly defined problems or circumstances. The SmSOP system in this application can be adopted by any industrial entity using SOPs to run its operations.
Depending on the capability of the signal generator and receiver, as well as the processing capability of these signals and interactions of signals, other objectives can also be achieved, such as but not limited to status checks or audits in automatically or in real time quality system, inventory or equipment maintenance. Quality management systems such as ISO 9000 rely on audits carried out by human beings routinely to determine if a company certified under the said quality system have incidents of non-compliance versus its written SOPs. Implementation of SmSOP would enable audits to be conducted in real  time, almost instantaneously. Root cause analysis can be done much more effectively with human and non-human sources of non-compliance readily identified without human interpretation.
To ensure that SOP outputs are not tampered with, such records can be validated using block-chain or other temper-proof techniques.
Example
Using the confined space situation as an example, some SOPs, but not an exhaustive list, would be the following.
1. Approval granted by supervisor to carry out the action.
2. Operator must be trained.
3. Training must be up-to-date.
4. Operators need all prescribed equipment worn properly.
5.2 or more operators need to be present.
6. At least 1 operator needs to be outside the vessel to provide backup.
Under and SmSOP system, these written SOPs would be enabled with electronic tools. For example, the safety equipment can be attached with RFID tags, while the human operator carries a more complex mobile device. The resulting SmSOP system can be illustrated in the following way.
1. A computer has a program which has all the SmSOP rules put into place, and can send to or receive from signals or data the electronic tools in service.
2. For each operator, the electronic tool may be a mobile device, which would represent his or her unique identification. The computer would hold records or can access the database with records tied to the mobile device, and by proxy to the operator, such as his training record for relevant procedures.
3. The simplest form of implementation with the safety gear can be RFID tags with unique digital identifier for each piece of equipment. As RFID works in a relatively close proximity, the mobile device would determine that all required gear is worn if their respective RFID tags all respond with signals. A more elaborate setup, still within the scope of this inventive concept, may use IC chips with more functionality, such as detection of malfunction or monitoring of vital statistics of the wearer.
4. During routine operation, the entrance to the confined space would be controlled electronically, perhaps a switch controlled with IC chip having sensors and wired or wireless communication functionality to interact with other electronically enabled elements or with a controller or computer. According to the SOP of entry into confined space, the following conditions need to be met in order to grant entry:
● Supervisor granted approval for the procedure, which the door sensor compares against record in the computer.
● The minimum number of operators need to be present, which the door sensor determines from the presence of operators’ mobile devices.
● The minimum number of operators need to be outside as per safety requirement, which the door sensor determines from the location of the operator.
● Whether the operators present have been trained, and whether the training is up-to-date would be flagged in the computer records, which the door sensor would access.
● Operators need to be properly geared up, which would either result from all the equipment sending and receiving signals to the sensor or they would send the information to the computer which the door sensor can access.
5. When one or more conditions are not met, the controller would not open the entrance door, and may optionally indicate which condition or conditions have not been met.
6. If SmSOP was in place during the Taiwan incident mentioned earlier, the first worker would not have been able to gain entry in the first place, let alone the continued to propagate the tragedy of having more people gaining entry improperly in the subsequent panic.

Claims (6)

  1. A smart standard operating procedure system for operating industrial processes, comprising:
    a system of two or more elements electronically enabled to produce or receive signals which interact with each other directly or indirectly via one or more electronic controllers which monitor, process or interpret these signals, and the outcome of the interaction defines whether the particular underlying procedure was carried out as written without human interpretation or intervention.
  2. The smart standard operating procedure system for operating industrial processes according to claim 1, wherein
    the smart standard operating procedure system for operating industrial processes is configured to control and will allow or not allow all prior-defined processes to be carried out, and when not allowing processes failing to meet the required conditions can include but not limited to issuing warning signals for human intervention or automatic shutting down of a piece of equipment.
  3. The smart standard operating procedure system for operating industrial processes according to claim 1, wherein
    the two or more elements comprise workers, training manuals, safety glasses, laboratory door or reactor controller.
  4. The smart standard operating procedure system for operating industrial processes according to claim 1, wherein
    the one or more electronic controllers comprise RFID tags, IC chips with singular or multiple functions or any material or device which can generate or react to an electromagnetic signal.
  5. The smart standard operating procedure system for operating industrial processes according to claim 1, wherein the signals comprise magnetic, electrical, electromagnetic or chemical signal.
  6. The smart standard operating procedure system for operating industrial processes according to claim 1, wherein
    the industrial processes comprise goods or material production, services such as machine repairs or goods or material warehousing or delivery.
PCT/CN2023/074811 2022-02-08 2023-02-07 A smart sop system for operating an industrial environment WO2023151557A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263307642P 2022-02-08 2022-02-08
US63/307,642 2022-02-08

Publications (1)

Publication Number Publication Date
WO2023151557A1 true WO2023151557A1 (en) 2023-08-17

Family

ID=87563587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074811 WO2023151557A1 (en) 2022-02-08 2023-02-07 A smart sop system for operating an industrial environment

Country Status (1)

Country Link
WO (1) WO2023151557A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080177612A1 (en) * 2007-01-24 2008-07-24 Sciformatix Corporation Method And System For Designing, Storing, and Executing Workflows For Laboratory Processes
CN101387882A (en) * 2007-09-10 2009-03-18 费舍-柔斯芒特系统股份有限公司 Location dependent control access in a process control system
CN104049585A (en) * 2013-03-15 2014-09-17 费希尔-罗斯蒙特系统公司 Context sensitive mobile control in process plant
CN113039497A (en) * 2018-08-24 2021-06-25 思拓凡瑞典有限公司 Monitoring system and method for biopharmaceutical products
CN114594739A (en) * 2021-04-09 2022-06-07 江苏全卓软件科技有限公司 Intelligent storage tank area control system with MES system and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080177612A1 (en) * 2007-01-24 2008-07-24 Sciformatix Corporation Method And System For Designing, Storing, and Executing Workflows For Laboratory Processes
CN101387882A (en) * 2007-09-10 2009-03-18 费舍-柔斯芒特系统股份有限公司 Location dependent control access in a process control system
CN104049585A (en) * 2013-03-15 2014-09-17 费希尔-罗斯蒙特系统公司 Context sensitive mobile control in process plant
CN113039497A (en) * 2018-08-24 2021-06-25 思拓凡瑞典有限公司 Monitoring system and method for biopharmaceutical products
CN114594739A (en) * 2021-04-09 2022-06-07 江苏全卓软件科技有限公司 Intelligent storage tank area control system with MES system and application thereof

Similar Documents

Publication Publication Date Title
US9898001B2 (en) Systems and methods for enhancing monitoring of an industrial automation system
Romero et al. Digital lean cyber-physical production systems: the emergence of digital lean manufacturing and the significance of digital waste
US7616095B2 (en) Electronic token to provide sequential event control and monitoring
US20080097626A1 (en) Configuration methodology for validation industries
US5926621A (en) Method for automatic diagnosis of malfunctions
WO2012022358A1 (en) Method of control of technical equipment
JP2003263212A (en) Risk assessment support device and program product
US20110166912A1 (en) Plant analysis system
CN108293074A (en) For in Internet of Things(IOT)Distributed system architecture is used in edge instrument(DSA)Device and method
EP3125172A1 (en) Data reliability analysis
US20190258214A1 (en) Information processing system and information processing method
Powell et al. Digitally enhanced quality management for zero defect manufacturing
Bao et al. Risk‐based fault diagnosis and safety management for process systems
CN107431715A (en) For carrying out the technology of collection network security risk data using infrastructure monitoring software
Kong et al. A study on a general cyber machine tools monitoring system in smart factories
WO2023151557A1 (en) A smart sop system for operating an industrial environment
Romero et al. Intelligent poka-yokes: error-proofing and continuous improvement in the digital lean manufacturing world
CN109074065B (en) Device and method for adapting a numerical control device to a machine to be controlled, and numerical control device
Jenab et al. Fuzzy quality feature monitoring model
US10606239B2 (en) Shaping plant and safety program
May et al. Predictive maintenance platform based on integrated strategies for increased operating life of factories
US11520323B2 (en) 360° assistance for QCS scanner with mixed reality and machine learning technology
Kuftinova et al. Predictive diagnostics and maintenance of industrial equipment
RU2699330C1 (en) Software and hardware control system integrated into production of ceramic articles
Soliman et al. A methodology to upgrade legacy industrial systems to meet safety regulations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752337

Country of ref document: EP

Kind code of ref document: A1