WO2023150985A1 - 信息反馈方法、信息接收方法以及装置 - Google Patents

信息反馈方法、信息接收方法以及装置 Download PDF

Info

Publication number
WO2023150985A1
WO2023150985A1 PCT/CN2022/075933 CN2022075933W WO2023150985A1 WO 2023150985 A1 WO2023150985 A1 WO 2023150985A1 CN 2022075933 W CN2022075933 W CN 2022075933W WO 2023150985 A1 WO2023150985 A1 WO 2023150985A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdsch
opportunity
semi
downlink control
statically configured
Prior art date
Application number
PCT/CN2022/075933
Other languages
English (en)
French (fr)
Inventor
蒋琴艳
张磊
Original Assignee
富士通株式会社
蒋琴艳
张磊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 蒋琴艳, 张磊 filed Critical 富士通株式会社
Priority to PCT/CN2022/075933 priority Critical patent/WO2023150985A1/zh
Publication of WO2023150985A1 publication Critical patent/WO2023150985A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiment of the present application relates to the technical field of communications.
  • a Physical Downlink Shared Channel is a type of physical downlink channel in a wireless communication system and is used to carry downlink data.
  • the PDSCH may be scheduled through downlink control information (DCI).
  • the DCI used to schedule the PDSCH includes at least information indicating the resources of the PDSCH.
  • DCI formats format for scheduling PDSCH are defined, such as DCI format 1_0 (PDSCH), DCI format 1_1 (PDSCH), DCI format 1_2 (PDSCH) , the DCI of different DCI formats includes different specific information and/or sizes to meet different scheduling requirements.
  • the PDSCH can also be semi-statically configured or semi-persistently scheduled.
  • the semi-persistently configured or semi-persistently scheduled PDSCH is called, for example, a Semi-Persistent Scheduling (Semi-Persistent Scheduling, SPS) PDSCH (SPS PDSCH).
  • SPS Semi-Persistent Scheduling
  • DCI can also be used to deactivate SPS, dormant cells, etc.
  • the terminal device In order for the network device to determine whether the terminal device successfully receives downlink data and/or control information, generally, the terminal device needs to feed back hybrid automatic repeat request (HARQ) feedback information (eg, ACK/NACK).
  • HARQ feedback information can be carried by the physical uplink control channel (PUCCH) or the physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • one PUCCH or PUSCH can carry one HARQ feedback codebook, and the codebook includes one or more HARQ feedback information bits.
  • the NR system supports multiple (multiple) transmit and receive points (TRP, Transmit Receive Point).
  • TRP transmit and receive points
  • TRP0 and TRP1 send the same TB0 to the terminal equipment.
  • multiple repetition schemes can be supported, including space division (SDM), frequency division (FDM), intra-slot time division (TDM) and inter-slot time division (TDM).
  • SDM space division
  • FDM frequency division
  • TDM intra-slot time division
  • TDM inter-slot time division
  • TDM inter-slot time division
  • the specific repetition scheme is configurable. For example, it is configured through the parameter repetitionScheme in the high-level signaling. If the repetitionScheme is set to 'tdmSchemeA', the repetition scheme uses 'tdmSchemeA'.
  • the terminal device When 'tdmSchemeA' is set, assuming that two transmission configuration indication (TCI) states TCI states are indicated in the DCI, the terminal device shall receive two PDSCH transmission opportunities.
  • the two transmission timings correspond to different TCI states, the first PDSCH transmission timing corresponds to the first TCI state, and the second PDSCH transmission timing corresponds to the second TCI state.
  • FIG. 2 is a schematic diagram of the two PDSCH transmission opportunities. As shown in FIG. 2 , the two PDSCH transmission opportunities are in the same time slot and do not overlap.
  • the symbol of the first PDSCH transmission occasion (1 st PDSCH transmission occasion) is indicated by DCI.
  • the number of symbols of the second PDSCH transmission occasion (2 nd PDSCH transmission occasion) is the same as the number of symbols of the first PDSCH transmission occasion, and the first symbol is based on an offset relative to the last symbol of the first PDSCH transmission occasion
  • the value is determined. Specifically, the first symbol starts after the offset value symbols of the last symbol of the first PDSCH transmission opportunity.
  • the NR system will support scheduling more than one PDSCH (multi-PDSCH scheduling) through one DCI (PDCCH).
  • multi-PDSCH scheduling PDSCH scheduling
  • DCI DCI
  • the above multi-TRP repetition scheme can only schedule one PDSCH based on one DCI, and does not consider the scheduling of more than one PDSCH by one DCI.
  • embodiments of the present application provide an information receiving method, sending method, feedback method, and device.
  • the embodiment of the present application provides an information receiving device, which is applied to a terminal device, and the device includes:
  • a first receiving unit which receives downlink control information sent by a network device for scheduling PDSCH, where the downlink control information indicates a first number of TCI states; wherein, the first number is an integer greater than 1; the downlink control information one or more rows in the corresponding TDRA table include more than one SLIV;
  • the second receiving unit is configured to receive one or more than one PDSCH in the PDSCHs scheduled by the downlink control information.
  • the embodiments of the present application provide an information feedback device, which is applied to a terminal device, and the device includes:
  • the second determination unit is configured to determine a set of candidate PDSCH reception opportunities according to the symbol corresponding to the first PDSCH transmission opportunity and/or the symbol corresponding to the second PDSCH transmission opportunity, and/or according to the first allocation table, the first allocation table and The offset value between the first PDSCH sending opportunity and the second PDSCH sending opportunity is related;
  • the second processing unit generates and sends a HARQ-ACK codebook, where the codebook includes HARQ-ACK information corresponding to the set of candidate PDSCH reception opportunities.
  • the embodiment of the present application provides an information sending device, which is applied to a network device, and the device includes:
  • a first sending unit which sends downlink control information for scheduling PDSCH to a terminal device, the downlink control information indicating a first number of TCI states; wherein, the first number is an integer greater than 1; the downlink control information one or more rows in the corresponding TDRA table include more than one SLIV;
  • the second sending unit is configured to send one or more than one PDSCH in the PDSCHs scheduled by the downlink control information.
  • One of the beneficial effects of the embodiments of the present application is that: in the case of supporting one DCI to schedule more than one PDSCH, it can also support the repetition scheme of multiple TRPs. complexity and power consumption, and at the same time reduce resource overhead for sending downlink control signaling (DCI) to improve data throughput.
  • DCI downlink control signaling
  • One of the beneficial effects of the embodiments of the present application is that it can support HARQ feedback (or HARQ-ACK information feedback) in the case of multi-TRP repetition scheme and/or multi-PDSCH scheduling, thereby reducing the UE's PDCCH monitoring burden and reducing power consumption. Loss and UE complexity.
  • Figure 1 is a schematic diagram of a multi-TRP scenario
  • FIG. 2 is a schematic diagram of two PDSCH transmission timings
  • FIG. 3 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an information receiving method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a PDSCH transmission timing according to an embodiment of the present application.
  • FIG. 6A and FIG. 6B are schematic diagrams of PDSCH transmission timing according to an embodiment of the present application.
  • FIG. 7A and FIG. 7B are schematic diagrams of PDSCH transmission timing according to an embodiment of the present application.
  • FIG. 8A and FIG. 8B are schematic diagrams of PDSCH transmission timing according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an information sending method according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an information feedback method in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an information receiving device according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of an information sending device according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of an information feedback device according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a network device according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • FIG. 16A is a schematic diagram of candidate PDSCH receiving timings when time domain bundling is configured
  • FIG. 16B is a schematic diagram of candidate PDSCH receiving timings in the case of no time domain bundling configured.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or time order of these elements, and these elements should not be referred to by these terms restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • the terms “comprising”, “including”, “having” and the like refer to the presence of stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term “communication network” or “wireless communication network” may refer to a network conforming to any of the following communication standards, such as long-term evolution (LTE), enhanced long-term evolution (LTE-A, LTE-Advanced), broadband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE long-term evolution
  • LTE-A enhanced long-term evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to any stage of communication protocols, such as but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and 5G , New Radio (NR, New Radio), etc., and/or other communication protocols that are currently known or will be developed in the future.
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • Network equipment may include but not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller) and so on.
  • the base station may include but not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), and 5G base station (gNB), etc., and may also include Remote Radio Head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay) or low-power nodes (such as femeto, pico, etc.).
  • NodeB Node B
  • eNodeB or eNB evolved Node B
  • gNB 5G base station
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low-power nodes such as femeto, pico, etc.
  • base station may include some or all of their functions, each of which may provide communication coverage for a particular geographic area.
  • the term "cell” can refer to a base station and/or its coverage area depending on the context in which the term is used.
  • the term "User Equipment” (UE, User Equipment) or “terminal equipment” (TE, Terminal Equipment or Terminal Device), for example, refers to a device that accesses a communication network through a network device and receives network services.
  • a terminal device may be fixed or mobile, and may also be called a mobile station (MS, Mobile Station), a terminal, a subscriber station (SS, Subscriber Station), an access terminal (AT, Access Terminal), a station, and the like.
  • the terminal equipment may include but not limited to the following equipment: Cellular Phone (Cellular Phone), Personal Digital Assistant (PDA, Personal Digital Assistant), wireless modem, wireless communication equipment, handheld equipment, machine type communication equipment, laptop computer, Cordless phones, wearables, smartphones, smart watches, digital cameras, and more.
  • Cellular Phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem wireless communication equipment
  • handheld equipment machine type communication equipment
  • laptop computer Cordless phones
  • wearables smartphones
  • smart watches digital cameras, and more.
  • the terminal device can also be a machine or device for monitoring or measurement, such as but not limited to: a machine type communication (MTC, Machine Type Communication) terminal, Vehicle communication terminals, industrial wireless equipment, surveillance cameras, device-to-device (D2D, Device to Device) terminals, machine-to-machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • Vehicle communication terminals such as but not limited to: a machine type communication (MTC, Machine Type Communication) terminal, Vehicle communication terminals, industrial wireless equipment, surveillance cameras, device-to-device (D2D, Device to Device) terminals, machine-to-machine (M2M, Machine to Machine) terminals, etc.
  • D2D Device to Device
  • M2M Machine to Machine
  • network side refers to a side of the network, which may be a certain base station or a certain core network device, and may also include one or more of the above network devices.
  • user side or “terminal side” or “terminal device side” refers to a side of a user or a terminal, which may be a certain UE, or may include one or more terminal devices as above.
  • device may refer to network devices or terminal devices.
  • the time unit may be a subframe, a time slot, or a set including at least one time domain symbol.
  • a set of at least one time-domain symbol may also be called a mini-slot or a non-slot.
  • subframes and time slots in the embodiments of the present application can be used interchangeably, and “time slots” can also be replaced with “subframes”. description, but can be replaced by other time units.
  • temporary resource and “resource” may be used interchangeably.
  • uplink control signal and “uplink control information (UCI, Uplink Control Information)” or “physical uplink control channel (PUCCH, Physical Uplink Control Channel)” can be used interchangeably without causing confusion.
  • uplink data signal and “uplink data information” or “physical uplink shared channel (PUSCH, Physical Uplink Shared Channel)” can be interchanged;
  • downlink control signal and “downlink control information (DCI, Downlink Control Information)” or “physical downlink control channel (PDCCH, Physical Downlink Control Channel)” are interchangeable, and the terms “downlink data signal” and “downlink data information” Or “Physical Downlink Shared Channel (PDSCH, Physical Downlink Shared Channel)” can be interchanged.
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • sending or receiving PUSCH can be understood as sending or receiving uplink data carried by PUSCH
  • sending or receiving PUCCH can be understood as sending or receiving uplink information (e.g.UCI) carried by PUCCH
  • sending or receiving PRACH can be understood as sending or receiving The preamble carried by PRACH
  • sending or receiving PDSCH can be understood as sending or receiving downlink data carried by PDSCH
  • sending or receiving PDCCH can be understood as sending or receiving downlink information (e.g.DCI) carried by PDCCH.
  • DCI downlink information
  • the high-level signaling may be, for example, radio resource control (RRC) signaling; for example, it is called an RRC message (RRC message), and includes, for example, a master information block (MIB), system information (system information), dedicated RRC Message; or called RRC information element (RRC information element, RRC IE).
  • RRC radio resource control
  • the high-level signaling may also be medium access control layer (Medium Access Control, MAC) signaling; or called MAC control element (MAC control element, MAC CE).
  • MAC Medium Access Control
  • MAC control element MAC control element
  • FIG. 3 is a schematic diagram of a communication system according to an embodiment of the present application, schematically illustrating a case where a terminal device and a network device are taken as examples.
  • a communication system 100 may include a network device 101 and terminal devices 102 and 103.
  • FIG. 3 only uses two terminal devices and one network device as an example for illustration, but this embodiment of the present application is not limited thereto.
  • eMBB enhanced mobile broadband
  • mMTC massive Machine Type Communication
  • URLLC Ultra-Reliable and Low -Latency Communication
  • URLLC Ultra-Reliable and Low -Latency Communication
  • Fig. 3 shows that both terminal devices 102 and 103 are within the coverage of the network device 101, but the present application is not limited thereto. Neither of the two terminal devices 102 , 103 may be within the coverage of the network device 101 , or one terminal device 102 may be within the coverage of the network device 101 while the other terminal device 103 is outside the coverage of the network device 101 .
  • the transport blocks carried by different PDSCHs are the same or different. Therefore, hereinafter, "more than one PDSCH (multiple PDSCHs)" or “at least two PDSCHs" all refer to different PDSCHs carrying different transport blocks. . More specifically, transport blocks carried by different PDSCHs may correspond to the same or different HARQ processes, where different HARQ processes have different HARQ process identifiers.
  • the PDSCH Time Domain Resource Allocation (TDRA) table (or simply called TDRA table) includes at least one row, and below, for convenience of description, a row is called a PDSCH TDRA configuration (or called TDRA configuration for short), i.e. PDSCH
  • the TDRA table includes at least one PDSCH TDRA configuration.
  • a PDSCH TDRA configuration includes at least one PDSCH time domain resource configuration (or simply referred to as time domain resource configuration), and the PDSCH time domain resource configuration includes at least the symbol position (start symbol + length) configuration in the time slot; in addition, a PDSCH TDRA
  • the configuration can also include at least one time slot offset K0 configuration, the K0 represents the time slot offset of PDSCH and PDCCH, and the K0 configuration is included in the PDSCH time domain resource configuration or not included in the PDSCH time domain resource configuration; the PDSCH TDRA
  • the configuration may also include other information, and the other information is included in the PDSCH time domain resource configuration or not included in the PDSCH time domain resource configuration, which is not limited in this embodiment of the present application.
  • the symbol position configuration in the time slot includes, for example, a start and length indicator SLIV, which corresponds to a valid combination (valid combination) of a start symbol (S) and a length (L), or, for example, corresponds to a start symbol Starting symbol configuration and length configuration, the starting symbol configuration and length configuration are valid combinations.
  • the method of how to support the multi-TRP repeated transmission scheme in the case of supporting multi-PDSCH scheduling will be described below in combination with the embodiments of the first aspect and the second aspect.
  • the HARQ feedback method in the case of multi-TRP repetition scheme and/or multi-PDSCH scheduling is described with reference to the embodiment of the third aspect.
  • An embodiment of the present application provides a method for receiving information, which is described from a terminal device side.
  • Fig. 4 is a schematic diagram of an information receiving method according to an embodiment of the present application. As shown in Fig. 4, the method includes:
  • the terminal device receives the downlink control information sent by the network device for scheduling PDSCH, the downlink control information indicates a first number of TCI states; where the first number is an integer greater than 1; the TDRA table corresponding to the downlink control information
  • One or more of the lines in include more than one SLIV;
  • the terminal device receives one or more than one of the PDSCHs scheduled by the downlink control information.
  • the network device can pre-configure a series of channel condition association relationships through high-level signaling, each association relationship is identified by a TCI state, and a maximum of 128 groups of TCI states such as the PDSCH channel can be configured, and the PDCCH channel A maximum of 64 groups of TCI states can be configured.
  • Each TCI state includes parameters for configuring the approximate positioning relationship between the DMRS antenna port and the downlink reference signal (DL RS) in the PDSCH/PDCCH.
  • the downlink reference signal can be CSI-RS or SSB.
  • the terminal equipment dynamically evaluates the PDCCH/PDSCH channel transmission conditions according to the TCI state.
  • the DCI received in 401 is DCI format 1_1.
  • the DCI received in 401 may include a TCI field.
  • the TCI field may include an index value, and the index value may correspond to a first number of TCI states in a predetermined TCI state table, and the first number is an integer greater than 1.
  • the DCI may include a first information domain, which may be a time domain resource assignment domain Time domain resource assignment, and the first information domain indicates the (corresponding) PDSCH TDRA table applied by the DCI
  • the index corresponding to the PDSCH TDRA configuration (row index, e.g. the value of the row index is greater than or equal to 1) to indicate the PDSCH time domain resource, in other words, the DCI schedules the PDSCH by indicating the PDSCH TDRA configuration in the PDSCH TDRA table of its application , hereinafter referred to as the DCI scheduling PDSCH, that is, the PDSCH indicated by the DCI.
  • the value m of the first information field of the DCI corresponds to the PDSCH TDRA with the index m+1 (that is, row m+1) in the PDSCH TDRA table indicating that the DCI is applied configuration.
  • the PDSCH TDRA table may be predefined or configured through high-level signaling, and the table supports scheduling more than one PDSCHs through one DCI, or one or more than one row in the table includes more than one time Domain resource configuration (SLIV), for example, supports scheduling more than one PDSCH through one DCI, but when DCI applies this table, it can indicate/schedule one PDSCH (for example, the row of the TDRA table indicated by the first information field in DCI only includes one SLIV), and may also indicate/schedule more than one PDSCHs (for example, the row of the TDRA table indicated by the first information field in the DCI includes more than one SLIV).
  • SLIV time Domain resource configuration
  • RRC signaling (such as pdsch-TimeDomainAllocationListForMultiPDSCH, or pdsch-TimeDomainAllocationListForMultiPDSCH-r17) can be configured to support scheduling multiple PDSCHs through one DCI.
  • a TDRA table of (i.e. more than one) PDSCH the TDRA table includes at least one time domain resource allocation configuration for scheduling multiple (i.e. more than one) PDSCH/PUSCH, the time domain resource allocation configuration includes, for example, multiple SLIV , each SLIV corresponds to a PDSCH/PUSCH.
  • the TDRA table when the above TDRA table is configured, applies to/corresponds to DCI format 1_1.
  • the terminal device determines the first number of PDSCH transmission opportunities for each of the PDSCHs scheduled by the downlink control information.
  • Each of the PDSCHs scheduled by the downlink control information corresponds to the first number of PDSCH transmission opportunities.
  • the terminal device receives or does not receive the PDSCH at each PDSCH transmission occasion.
  • the following example illustrates the first number of PDSCH transmission occasions and how to determine whether to receive or not receive PDSCH on each PDSCH transmission occasion.
  • the DCI indicates/schedules more than one PDSCHs, each PDSCH in the more than one PDSCHs corresponds to the first number of PDSCH transmission opportunities, and the first number of PDSCH transmission opportunities corresponding to one PDSCH carry the same transmission Blocks corresponding to the first number of TCI states respectively; the number of symbols of each PDSCH transmission opportunity in the first number of PDSCH transmission opportunities is the same, and the first PDSCH transmission opportunity in the first number of PDSCH transmission opportunities is based on DCI indication/scheduling
  • the corresponding time domain resource configuration (for example, SLIV) of the PDSCH is determined, and the first symbol of the subsequent PDSCH transmission opportunity is determined according to an offset value relative to the last symbol of the first PDSCH transmission opportunity. Specifically, the first symbol starts after the offset value symbols of the last symbol of the first PDSCH transmission opportunity.
  • the offset value can be configured by radio resource control RRC signaling (StartingSymbolOffsetK), and when not configured, it is 0 by default.
  • Figure 5 is a schematic diagram of the timing of PDSCH transmission.
  • each PDSCH in more than one PDSCH indicated/scheduled by the DCI is respectively judged whether to receive it.
  • the terminal device may determine whether to receive a PDSCH at each PDSCH transmission opportunity (or whether to receive a corresponding PDSCH transmission opportunity) according to whether each PDSCH transmission opportunity collides with a semi-statically configured uplink symbol.
  • the conflict between the PDSCH transmission opportunity and the semi-statically configured uplink symbol means that at least one of the symbols corresponding to the PDSCH transmission opportunity overlaps with the semi-statically configured uplink symbol, or that at least one of the symbols corresponding to the PDSCH transmission opportunity is semi-statically configured as up.
  • the non-conflict between the PDSCH transmission timing and the semi-statically configured uplink symbols means that no symbol corresponding to the PDSCH transmission timing overlaps with the semi-statically configured uplink symbol, or that none of the symbols corresponding to the PDSCH transmission timing is semi-statically configured as uplink .
  • example 1 when a PDSCH exists and a semi-statically configured uplink symbol conflicts with a PDSCH transmission opportunity, the terminal device does not receive the PDSCH; when a PDSCH does not exist and a semi-statically configured uplink symbol conflicts When the PDSCH is sent at an opportunity, the terminal device receives the one PDSCH. If any of the PDSCH transmission opportunities corresponding to a PDSCH conflicts with the semi-statically configured uplink symbols, the PDSCH is not received (in other words, it is not received at the first number of PDSCH transmission opportunities corresponding to the PDSCH, or The first number of PDSCH transmission opportunities are not received).
  • the PDSCH is received (in other words, the PDSCH is received at the first number of PDSCH transmission opportunities corresponding to the PDSCH) PDSCH).
  • Figure 6A and Figure 6B are schematic diagrams of receiving PDSCH transmission opportunities. As shown in Figure 6A and Figure 6B, one of the two PDSCH transmission opportunities corresponding to the first PDSCH indicated/scheduled by the DCI has one (second) PDSCH transmission opportunity and If the semi-statically configured uplink symbols collide, the first PDSCH will not be received (in other words, neither will be received at the two PDSCH transmission opportunities corresponding to the first PDSCH).
  • the PDSCH transmission timing corresponding to the second PDSCH indicated/scheduled by the DCI does not conflict with the semi-statically configured uplink symbol, then the PDSCH is received, and the PDSCH is received (in other words, in the two PDSCHs corresponding to the second PDSCH The PDSCH is received at the PDSCH transmission timing).
  • example 2 when there is a PDSCH sending opportunity that does not conflict with semi-statically configured uplink symbols, the terminal device receives the PDSCH, for example, the terminal device does not conflict with semi-statically configured uplink symbols The terminal device does not receive the PDSCH when there is no PDSCH and the semi-statically configured uplink symbol does not conflict with the PDSCH transmission opportunity.
  • the PDSCH is received (in other words, at the PDSCH transmission opportunities corresponding to the PDSCH that do not conflict with the semi-statically configured uplink symbols) receiving the PDSCH, or receiving a PDSCH transmission opportunity that does not conflict with the semi-statically configured uplink symbols).
  • the PDSCH transmission opportunities corresponding to a PDSCH all conflict with the semi-statically configured uplink symbols, the PDSCH will not be received (in other words, the first number of PDSCH transmission opportunities corresponding to the PDSCH will not be received, or not received). receiving the first number of PDSCH transmission opportunities).
  • Figure 7A and Figure 7B are schematic diagrams of receiving PDSCH transmission opportunities. As shown in Figure 7A and Figure 7B, one of the two PDSCH transmission opportunities corresponding to the first PDSCH indicated/scheduled by the DCI has one (second) PDSCH transmission opportunity and If the semi-statically configured uplink symbols collide, the first PDSCH is received (in other words, it is received at the first PDSCH transmission opportunity corresponding to the first PDSCH, and not received at the second PDSCH transmission opportunity).
  • the first PDSCH is received (in other words, in Receive at the second PDSCH sending opportunity corresponding to the first PDSCH, not at the first PDSCH sending opportunity).
  • Example 3 when the first PDSCH transmission opportunity of a PDSCH does not conflict with the semi-statically configured uplink symbol, the terminal device receives the PDSCH; When the statically configured uplink symbols conflict, the terminal device does not receive the one PDSCH.
  • the first PDSCH transmission opportunity corresponding to a PDSCH (or the time-domain resource configuration (SLIV) of the PDSCH indicated by the DCI) does not conflict with the semi-statically configured uplink symbol, then no matter whether other subsequent PDSCH transmission opportunities are consistent with The semi-statically configured uplink symbols collide, and the PDSCH can be received (in other words, the PDSCH is received at the first PDSCH sending opportunity, or a PDSCH sending opportunity that does not conflict with the semi-statically configured uplink symbols is received).
  • SIV time-domain resource configuration
  • the PDSCH is not received (in other words, neither is received at the first number of PDSCH transmission opportunities corresponding to the PDSCH, or say not to receive the first number of PDSCH transmission opportunities).
  • Figures 8A and 8B are schematic diagrams of receiving PDSCH transmission opportunities.
  • the first PDSCH transmission opportunity of the two PDSCH transmission opportunities corresponding to the first PDSCH indicated/scheduled by the DCI conflicts with the semi-statically configured uplink symbol , then the first PDSCH is not received (in other words, neither is received at the two PDSCH sending opportunities corresponding to the first PDSCH, or the two PDSCH sending opportunities are not received).
  • FIG. 8A the first PDSCH transmission opportunity of the two PDSCH transmission opportunities corresponding to the first PDSCH indicated/scheduled by the DCI conflicts with the semi-statically configured uplink symbol , then the first PDSCH is not received (in other words, neither is received at the two PDSCH sending opportunities corresponding to the first PDSCH, or the two PDSCH sending opportunities are not received).
  • the first PDSCH (in other words In other words, receive at the first PDSCH sending opportunity corresponding to the first PDSCH, not receive at the second PDSCH sending opportunity).
  • the DCI may further include a second information field, where the second information field (for example, 'HARQ process number') is used to indicate the HARQ process identifier.
  • the method may also include: S1
  • the terminal device determines the DCI scheduling The HARQ process identifier of the PDSCH.
  • the terminal device can determine whether to allocate a HARQ process ID (HARQ process ID) for the PDSCH according to whether each PDSCH transmission timing conflicts with the semi-statically configured uplink symbol.
  • HARQ process ID HARQ process ID
  • the method may only include 201 and S1 and not include 202, which is not limited in this embodiment of the present application.
  • the PDSCH when a PDSCH has a PDSCH transmission opportunity that conflicts with a semi-statically configured uplink symbol, the PDSCH does not have a corresponding HARQ process ID; when a PDSCH does not exist and a semi-statically configured uplink symbol conflicts PDSCH transmission When the time is right, the PDSCH has a corresponding HARQ process ID. If any of the PDSCH transmission opportunities corresponding to a PDSCH conflicts with the semi-statically configured uplink symbol, the PDSCH does not have a corresponding HARQ process identifier, or the terminal device skips the PDSCH when determining the HARQ process identifier, or does not A HARQ process identifier is allocated for the PDSCH.
  • the PDSCH has a corresponding HARQ process ID, or the terminal device does not skip the PDSCH when determining the HARQ process ID, or assigns the HARQ process ID to the PDSCH.
  • the HARQ process ID corresponding to the PDSCH it can be indicated according to the DCI
  • the HARQ process identifier is determined. For details, reference may be made to the prior art, which will not be repeated here. This method can be implemented in combination with the foregoing example 1. For example, as shown in FIG. 6A and FIG. 6B , the first PDSCH has no corresponding HARQ process identifier.
  • the second PDSCH has a corresponding HARQ process identifier.
  • the PDSCH when a PDSCH exists and a semi-statically configured uplink symbol does not conflict with a PDSCH transmission opportunity, the PDSCH has a corresponding HARQ process ID; when a PDSCH does not exist and a semi-statically configured uplink symbol does not conflict When the PDSCH is sent, the PDSCH does not have a corresponding HARQ process ID.
  • the PDSCH has a corresponding HARQ process identifier, or the terminal device does not skip the PDSCH when determining the HARQ process identifier, or
  • Speaking of allocating a HARQ process ID for the PDSCH, as for the HARQ process ID corresponding to the PDSCH can be determined according to the HARQ process ID indicated by the DCI, reference can be made to the prior art for details, and will not be repeated here.
  • the PDSCH has no corresponding HARQ process ID, or the terminal device skips the PDSCH when determining the HARQ process ID, or does not assign the HARQ process ID to the PDSCH.
  • the first PDSCH has no corresponding HARQ process identifier.
  • the PDSCH has a corresponding HARQ process identifier.
  • the PDSCH when the first PDSCH transmission opportunity of a PDSCH does not conflict with the semi-statically configured uplink symbol, the PDSCH has a corresponding HARQ process ID; the first PDSCH transmission opportunity of a PDSCH and the semi-static configuration When the configured uplink symbols conflict, the PDSCH does not have a corresponding HARQ process ID.
  • the PDSCH has a corresponding HARQ process ID, or the terminal device does not skip the PDSCH when determining the HARQ process ID, or assigns the HARQ process ID to the PDSCH.
  • the HARQ process identifier may be determined according to the HARQ process identifier indicated by the DCI, for details, reference may be made to the prior art, which will not be repeated here.
  • the PDSCH has no corresponding HARQ process ID, or the terminal device skips the PDSCH when determining the HARQ process ID, or does not assign the HARQ process ID to the PDSCH.
  • This method can be implemented in combination with the foregoing example 1 or example 3.
  • the first PDSCH has no corresponding HARQ process identifier
  • the first PDSCH has a corresponding HARQ process identifier.
  • the DCI only indicates/schedules one PDSCH
  • the table applied by the DCI supports scheduling more than one PDSCHs through one DCI (one or more rows of the table include more than one SLIV), for example, supports scheduling through one
  • the DCI schedules more than one PDSCH, but when the DCI applies the table, only one PDSCH is indicated/scheduled (for example, the row of the TDRA table indicated by the first information field in the DCI only includes one SLIV), that is, even if the corresponding DCI
  • the DCI format can indicate/schedule more than one PDSCH, but the DCI only/schedules one PDSCH, and the one PDSCH corresponds to two PDSCH transmission opportunities.
  • the terminal device receives the PDSCH at the first number of PDSCH sending opportunities, or, the terminal device receives the PDSCH at one or more of the first number of PDSCH sending opportunities according to whether it collides with the semi-statically configured uplink symbol
  • the PDSCH is received at a PDSCH transmission opportunity that does not conflict with a semi-statically configured uplink symbol.
  • the terminal device may receive the two PDSCH transmission opportunities, or receive one or more PDSCH transmission opportunities according to whether it collides with the semi-statically configured uplink symbols. For example, receiving a PDSCH transmission opportunity that does not conflict with a semi-statically configured uplink symbol.
  • the terminal device determines the first number of PDSCH transmission opportunities for valid PDSCHs in the PDSCHs scheduled by the downlink control information. Each valid PDSCH among the PDSCHs scheduled by the downlink control information corresponds to the first number of PDSCH transmission opportunities. The terminal device does not determine the first number of PDSCH transmission opportunities for invalid PDSCHs in the PDSCHs scheduled by the downlink control information. The terminal device receives or does not receive the PDSCH at each PDSCH transmission occasion. That is to say, only valid PDSCHs have corresponding PDSCH transmission opportunities, and invalid PDSCHs have no corresponding PDSCH transmission opportunities. The above example 3 is also applicable here.
  • the first PDSCH corresponds to two PDSCH transmission opportunities, and the terminal device receives the PDSCH at the first PDSCH transmission opportunity corresponding to the first PDSCH.
  • the first PDSCH is not received at the second PDSCH sending opportunity corresponding to the first PDSCH.
  • the DCI only indicates/schedules an effective PDSCH, and the effective PDSCH is a PDSCH whose time-domain resource configuration (such as SLIV) corresponding to the PDSCH does not conflict with semi-statically configured uplink symbols.
  • the DCI may indicate/ One or more PDSCHs are scheduled, but only one of them is valid.
  • the table of the DCI application supports the scheduling of more than one PDSCHs through a DCI (one or more rows of the table include more than one SLIV), for example, supports the scheduling of more than one PDSCH through a DCI, but when the DCI applies the table , only indicate/schedule one PDSCH (for example, the line of the TDRA table indicated by the first information field in the DCI only includes one SLIV), and the one PDSCH is a valid PDSCH; or, when the DCI applies the table, indicate/schedule more than One PDSCH, and the more than one PDSCH only includes one effective PDSCH. That is to say, even if the DCI format corresponding to the DCI can indicate/schedule more than one PDSCH, the DCI only/schedules one effective PDSCH.
  • the valid PDSCH corresponds to two PDSCH transmission opportunities. That is to say, the terminal device determines whether to apply the multi-TRP repeated transmission scheme 'tdmSchemeA' according to the number of effective PDSCHs indicated/scheduled in the DCI. When the number of effective PDSCHs is 1, the multi-TRP repeated transmission scheme 'tdmSchemeA' is applied.
  • the terminal device receives the effective PDSCH on the first number of PDSCH sending opportunities, or the terminal device receives the effective PDSCH on one or more of the first number of PDSCH sending opportunities according to whether it collides with the semi-statically configured uplink symbol
  • the effective PDSCH is received, for example, the effective PDSCH is received at a PDSCH transmission opportunity that does not conflict with the semi-statically configured uplink symbols.
  • the terminal device may receive the two PDSCH transmission opportunities, or receive one or more PDSCH transmission opportunities according to whether it collides with the semi-statically configured uplink symbols. For example, receiving a PDSCH transmission opportunity that does not conflict with a semi-statically configured uplink symbol.
  • the first number of PDSCH transmission opportunities includes a first PDSCH transmission opportunity and a second PDSCH transmission opportunity
  • the method may further include: (not shown) the terminal device according to the first PDSCH transmission opportunity corresponding symbol and/or the symbol corresponding to the second PDSCH transmission opportunity, and/or, determine the candidate PDSCH reception opportunity set according to the first allocation table, the first allocation table and the first PDSCH transmission opportunity and the second PDSCH transmission opportunity
  • the terminal device generates and sends a HARQ-ACK codebook, and the codebook includes the HARQ-ACK information corresponding to the candidate PDSCH receiving opportunity set.
  • the terminal device generates HARQ feedback information for the PDSCH received or not received in 402, and sends it to the network device.
  • the method for generating and sending the feedback information will be described in the embodiment of the third aspect, and will not be described here.
  • the embodiment of the first aspect and the embodiment of the third aspect may be implemented independently or in combination, and this embodiment of the present application is not limited thereto.
  • the repetition scheme of multiple TRPs can also be supported. Therefore, not only can the number of PDCCH monitoring of the terminal equipment be reduced to reduce the complexity and work of the terminal equipment monitoring the PDCCH. consumption, and at the same time, resource overhead for sending downlink control signaling (DCI) can be reduced to improve data throughput.
  • DCI downlink control signaling
  • An embodiment of the present application provides a method for sending information, which is described from a network device side.
  • FIG. 9 is a schematic diagram of a method for sending information according to an embodiment of the present application. As shown in FIG. 9, the method includes:
  • the network device sends downlink control information for scheduling PDSCH to the terminal device, where the downlink control information indicates a first number of TCI states; where the first number is an integer greater than 1; in the TDRA table corresponding to the downlink control information one or more rows of which include more than one SLIV;
  • the network device sends one or more than one PDSCHs in the PDSCHs scheduled by the downlink control information.
  • implementations of 901-902 correspond to 401-402 of the first aspect, and will not be repeated here.
  • the repetition scheme of multiple TRPs can also be supported. Therefore, not only can the number of PDCCH monitoring of the terminal equipment be reduced to reduce the complexity and work of the terminal equipment monitoring the PDCCH. consumption, and at the same time, resource overhead for sending downlink control signaling (DCI) can be reduced to improve data throughput.
  • DCI downlink control signaling
  • This embodiment provides an information feedback method, which is described from the terminal device side.
  • FIG. 10 is a schematic diagram of an information feedback method in an embodiment of the present application. As shown in FIG. 10, the method includes:
  • the terminal device determines a set of candidate PDSCH reception opportunities according to a symbol corresponding to a first PDSCH transmission opportunity and/or a symbol corresponding to a second PDSCH transmission opportunity, and/or according to a first allocation table, the first allocation table and the first
  • the PDSCH transmission opportunity is related to the offset value between the second PDSCH transmission opportunity;
  • the terminal device generates and sends a HARQ-ACK codebook, where the codebook includes HARQ-ACK information corresponding to the set of candidate PDSCH reception opportunities.
  • the terminal device needs to perform HARQ-ACK feedback on the received PDSCH (such as the PDSCH scheduled by DCI or the PDSCH of the SPS) or DCI (such as the DCI used to deactivate the SPS), and the HARQ-ACK feedback information can be Carried by a HARQ-ACK codebook (such as a Type-1 HARQ-ACK codebook, or called a semi-static HARQ-ACK codebook), the codebook may include HARQ-ACK information bits of one or more serving cells. The following only describes how to determine the HARQ-ACK information bits of a serving cell.
  • the determination method of the HARQ-ACK information bits of each serving cell is the same as the determination method of the HARQ-ACK information bits of one serving cell mentioned above.
  • the HARQ-ACK information bits of the cell are arranged in a certain order in the codebook, which will not be repeated here.
  • the following "HARQ-ACK” and “HARQ feedback” and “HARQ-ACK feedback” may be interchanged.
  • the codebook includes HARQ-ACK information bits corresponding to a second number (A) of candidate PDSCH reception occasions (occasion for candidate PDSCH reception), where the second number is a natural number.
  • the second number (A) of candidate PDSCH reception opportunities correspond to the same serving cell (ie, the aforementioned serving cell), that is, the second number (A) of candidate PDSCH reception opportunities belong to the candidate PDSCH reception opportunities of the serving cell Set M A,c .
  • each PDSCH TDRA configuration since only one PDSCH is supported through one DCI, each PDSCH TDRA configuration includes only one PDSCH time-domain resource configuration. Furthermore, when determining the set of candidate PDSCH receiving opportunities, only the PDSCH TDRA configuration is considered.
  • the repeated transmission scheme of the same TB in the multi-TRP scenario is not considered ( For example 'tdmSchemeA'), and in this application, in order to support the repeated transmission scheme (for example 'tdmSchemeA') of scheduling more than one PDSCH and/or the same TB under multiple TRP scenarios through one DCI, when determining the set of candidate PDSCH receiving opportunities, Taking into account the symbols corresponding to the first PDSCH transmission occasion and/or the symbols corresponding to the second PDSCH transmission occasion, and/or according to the first allocation related to the offset value between the first PDSCH transmission occasion and the second PDSCH transmission occasion The table determines the set of candidate PDSCH reception opportunities.
  • the terminal device before determining the receiving opportunity of the candidate PDSCH, the terminal device needs to determine the HARQ-ACK information feedback timing (that is, the terminal device needs to determine the time slot for sending the HARQ-ACK information (uplink time slot)).
  • the method may further include (not shown): the terminal device receives the DCI, and the terminal device indicates the timing of HARQ-ACK information feedback according to the third information field (PDSCH-to-HARQ_feedback timing indicator field) to determine the time slot in which the HARQ-ACK information needs to be sent.
  • the DCI may be the DCI in 401 of the embodiment of the first aspect, the DCI indicates a first number of TCI states, and at least one PDSCH is scheduled; wherein, the first number is an integer greater than 1; the at least one PDSCHs Each of the PDSCHs corresponds to the first number of PDSCH transmission opportunities; for the implementation of the DCI, reference may be made to the embodiment of the first aspect, which will not be repeated here.
  • HARQ-ACK information (or HARQ-ACK codebook) is carried by PUCCH or PUSCH.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Control Channel
  • the DCI may include a fourth information field
  • the fourth information field may be a HARQ acknowledgment (HARQ-ACK) feedback timing indicator (i.e.PDSCH-to-HARQ_feedback timing indicator) field
  • the fourth information field uses
  • the terminal device receives the second configuration information configured by high-level signaling (such as dl-DataToUL-ACK or dl -DataToUL-ACKForDCIFormat1_2for DCI format 1_2)
  • the second configuration information is used to indicate the feedback timing k of the HARQ acknowledgment (HARQ-ACK) information
  • the terminal device receives the second configuration information configured by high-layer signaling (for example, dl-DataToUL- ACK or dl-DataToUL-ACKForDCIFormat1_2for DCI format 1_2)
  • the second configuration information is used to configure the feedback timing of multiple HARQ
  • the HARQ-ACK information corresponding to one or more than one PDSCHs scheduled by the DCI can be fed back in the same PUCCH.
  • the HARQ-ACK information corresponding to one or more than one PDSCH scheduled by the DCI can be fed back in different (slotted) PUCCHs.
  • the HARQ-ACK information of the more than one PDSCH can be fed back on one PUCCH, so as to
  • the terminal device transmits HARQ-ACK information in the time slot with index n+k (slot n+k), where the time slot with index n (slot n) is the last PDSCH of more than one PDSCHs
  • the end slot, n and k are integers greater than 0, that is, the end time slot of the last PDSCH is n, k is the offset between the feedback time slot of HARQ-ACK information and time slot n, and the downlink end time slot n of PDSCH and
  • the relationship of the indexes of the corresponding uplink time slots may be determined according to the uplink and downlink subcarrier intervals, for details, reference may be made to the prior art, and the steps are described here.
  • the terminal device after the terminal device determines the time domain position or time slot that needs to feed back HARQ-ACK information, it can determine the candidate PDSCH receiving opportunity and generate a corresponding codebook. The following describes how to determine the candidate PDSCH receiving opportunity.
  • downlink time slots that may include (or correspond to) candidate PDSCH receiving opportunities need to be determined.
  • the above-mentioned downlink time slot is determined according to the time slot timing value K1 .
  • the time slot corresponding to each K 1 in the K 1 set can be determined respectively One or more downlink time slots n D , where K 1 represents the offset value of PDSCH relative to the HARQ-ACK information feedback time slot n D , when determining one or more downlink time slots corresponding to each K 1 , optional , it is also necessary to consider the subcarrier spacing of the uplink and downlink bandwidths.
  • One K 1 may correspond to multiple downlink time slots.
  • the determination of the K 1 set associated with the activated uplink partial bandwidth UL BWP may refer to the prior art. For example, for a downlink time slot nd , determine the PDSCH time domain resource configuration corresponding to the time slot (downlink time slot), and determine whether the time slot has a corresponding candidate PDSCH receiving opportunity, thereby determining a candidate PDSCH receiving opportunity set. It should be noted that the aforementioned determination of each downlink time slot and the PDSCH time domain resource configuration corresponding to the time slot may be performed sequentially or simultaneously, which is not a limitation in this application.
  • time domain bundling for example, RRC signaling carries enableTimeDomainHARQ-Bundling, and the HARQ feedback codebook enables time domain bundling
  • time domain bundling for example, RRC signaling carries enableTimeDomainHARQ-Bundling, and the HARQ feedback codebook enables time domain bundling
  • the row is reserved, that is, if at least one row in the TDRA table includes a SLIV that does not conflict with the semi-static configuration, the corresponding candidate PDSCH is reserved for reception opportunity.
  • the TDRA table has only two rows row 0 and row 1, where row 0 includes two PDSCH time domain resource configurations SLIV 0_0 and SLIV 0_1, and row 1 includes three PDSCH time domain resource configurations SLIV 1_0, SLIV 1_1, SLIV 1_2, K1 set includes ⁇ 1,2 ⁇ , wherein, the symbols in the slot Slot n-2, n are all uplink symbols (semi-static configuration), and some symbols in the slot Slot n-1 are uplink symbols, Some symbols are uplink (UL) symbols, and the symbols in the remaining time slots are all downlink (DL) symbols.
  • symbols corresponding to the first PDSCH transmission opportunity and/or symbols corresponding to the second PDSCH transmission opportunity also need to be considered, and/or, according to the first PDSCH transmission opportunity and the second PDSCH transmission opportunity
  • a first allocation table related to offset values between PDSCH transmission occasions is that in this application, symbols corresponding to the first PDSCH transmission opportunity and/or symbols corresponding to the second PDSCH transmission opportunity also need to be considered, and/or, according to the first PDSCH transmission opportunity and the second PDSCH transmission opportunity.
  • the first PDSCH transmission opportunity and the second PDSCH transmission opportunity correspond to the same PDSCH in at least one PDSCH scheduled by the DCI, for example, when each PDSCH in at least one PDSCH is associated with the first number of PDSCH transmission opportunities, the The first PDSCH transmission opportunity in the first number of PDSCHs is called the first PDSCH transmission opportunity, and the second PDSCH transmission opportunity or the last PDSCH transmission opportunity in the first number of PDSCHs is called the second PDSCH transmission opportunity .
  • the first PDSCH sending opportunity and the second PDSCH sending opportunity correspond to different TCI states (TRP), but carry the same TB.
  • the first PDSCH transmission opportunity is determined according to the SLIV indicated by the DCI
  • the second PDSCH transmission opportunity is determined according to the first PDSCH transmission opportunity and the offset value, for example, the offset value is the last one of the first PDSCH transmission opportunity
  • the offset value is the last one of the first PDSCH transmission opportunity
  • the PDSCH time domain resource corresponding to the time slot (downlink time slot) Whether the symbol corresponding to the first PDSCH transmission opportunity and/or the second PDSCH transmission opportunity in the configuration conflicts with the semi-statically configured uplink symbol Determine whether the time slot has a corresponding candidate PDSCH reception opportunity, for example, at the first PDSCH transmission opportunity and/or Or when the symbol corresponding to the second PDSCH sending opportunity collides with the semi-statically configured uplink symbol, it is determined that there is no corresponding candidate PDSCH receiving opportunity for the time slot; otherwise, there is a corresponding candidate PDSCH receiving opportunity.
  • the repeated transmission scheme such as 'tdmSchemeA'
  • the first allocation table is used for determining candidate PDSCH reception occasions and/or for scheduling PDSCHs.
  • the PDSCH TDRA configuration and/or the index corresponding to the configuration can be included in the first allocation table, for example, the PDSCH TDRA table that can be applied according to the respective DCI formats (the table supports scheduling more than one DCI through one DCI).
  • the PDSCH please refer to the embodiment of the first aspect for details) to determine the first allocation table, and then determine the PDSCH time domain resource configuration according to the first allocation table.
  • This first allocation table is also associated with the active DL BWP.
  • the first allocation table is a union of time-domain resource allocation tables of DCI formats that need to be monitored and configured by the terminal device on the serving cell c.
  • the first allocation table may include the union of all rows of the PDSCH TDRA table applied by the DCI formats to be monitored, and the configuration of each row is the same as the PDSCH TDRA table.
  • Table 1 is the The first allocation table example table, as shown in the following table 1, a PDSCH TDRA configuration (corresponding to a row of the first allocation table) includes at least one PDSCH time domain resource configuration, and the PDSCH time domain resource configuration includes at least the symbol position in the time slot ( start symbol + length) configuration; in addition, a PDSCH TDRA configuration can also (optionally) include at least one slot offset K0 configuration, the K0 represents the slot offset between PDSCH and PDCCH; in addition, a PDSCH TDRA configuration can also Including other information (for example, mapping method), other information configuration is included in the PDSCH time domain resource configuration or not included in the PDSCH time domain resource configuration, in addition, if the terminal device is configured with ReferenceofSL
  • the above-mentioned first allocation table (Table 1) can be extended according to the above-mentioned offset value, for example, for each existing SLIV in the first allocation table, it is used as the first PDSCH transmission opportunity , determining the second PDSCH transmission opportunity corresponding to each SLIV according to the above offset value, and adding the second PDSCH transmission opportunity to the first allocation table (by increasing the row index and/or increasing the SLIV corresponding to each row ).
  • each row of PDSCH time domain resource configuration ( For example, whether the SLIV) conflicts with the uplink symbol to determine the candidate PDSCH receiving opportunity, for example, in the case of configuring time domain binding, for one K 1 , there is at least one row of SLIV and semi-static configuration in the first allocation table When the uplink symbols do not collide, it is determined that there is a corresponding candidate PDSCH receiving opportunity; otherwise, there is no corresponding candidate PDSCH receiving opportunity.
  • At least one SLIV of the at least one row may be the first PDSCH transmission opportunity or the second PDSCH transmission opportunity, it can also be regarded as the symbol sum of at least one first PDSCH transmission opportunity and/or second PDSCH transmission opportunity
  • the semi-statically configured uplink symbols do not collide, it is determined that there is a corresponding candidate PDSCH receiving opportunity; otherwise, there is no corresponding candidate PDSCH receiving opportunity.
  • time domain binding is not configured, when at least one SLIV corresponding to a time slot corresponding to one K 1 in the first allocation table does not conflict with an uplink symbol configured semi-statically, it is determined that there is a corresponding candidate PDSCH receiving opportunity, Otherwise, there is no corresponding candidate PDSCH receiving opportunity.
  • the first allocation table may not be extended according to the offset value, and for each existing SLIV in the first allocation table, it is used as the first PDSCH transmission opportunity, according to Whether each line of PDSCH time domain resource configuration (such as SLIV) in the value-extended first allocation table conflicts with the uplink symbol determines the candidate PDSCH receiving opportunity, for example, in the case of configuring time domain binding, for a K 1
  • SLIV time domain resource configuration
  • each SLIV is equivalent to the first PDSCH transmission opportunity, it can also be considered that when at least one symbol of the first PDSCH transmission opportunity does not conflict with the semi-statically configured uplink symbol, it is determined that there is a corresponding candidate PDSCH reception opportunity, otherwise There is no corresponding candidate PDSCH reception opportunity.
  • time-domain bundling when at least one SLIV corresponding to a time slot corresponding to a K 1 in the first allocation table that has not been extended by the offset value does not conflict with the semi-statically configured uplink symbol, determine There is a corresponding candidate PDSCH receiving opportunity, otherwise there is no corresponding candidate PDSCH receiving opportunity.
  • a HARQ-ACK codebook including HARQ-ACK information corresponding to the set of candidate PDSCH receiving opportunities is further generated.
  • the set of reception opportunities generates the codebook.
  • the size of the codebook does not change dynamically with the actual data scheduling situation, but is determined according to pre-configuration (eg, configured by high-layer signaling) or predefined parameters. The following only describes how to determine the HARQ-ACK information bits of a serving cell.
  • the number of HARQ-ACK information bits corresponding to a candidate PDSCH receiving opportunity of a serving cell is related to the HARQ spatial bundling parameter (harq-ACK-SpatialBundlingPUCCH) configured for the cell , the code block group (CBG) configuration parameter (PDSCH-CodeBlockGroupTransmission), and the supported maximum codeword parameter (maxNrofCodeWordsScheduledByDCI) are related.
  • the following table 2 is an example of feeding back HARQ-ACK information on the PUCCH:
  • the number of HARQ-ACK information bits corresponding to the candidate PDSCH receiving opportunity of a serving cell is not limited to this, for example, in the case of configuring time domain bundling (time domain bundling), It is also possible to logically sum the bit values of the HARQ feedback information corresponding to the (valid valid) PDSCH associated with the candidate PDSCH receiving timing, and use the value of the logical sum as the bit value of the HARQ-ACK information corresponding to the candidate PDSCH receiving timing, Wherein, if a candidate PDSCH receiving opportunity has no corresponding PDSCH, its corresponding HARQ-ACK information bit is set as NACK. I won't repeat them here.
  • the bit value of the HARQ-ACK information corresponding to the candidate PDSCH receiving opportunity 0 is the logical sum of the bit values of the HARQ-ACK information corresponding to SLIV 1_0 and SLIV 1_1, and the HARQ-ACK information corresponding to the candidate PDSCH receiving opportunity 0
  • the bit value of is NACK.
  • the bit value of the HARQ-ACK information corresponding to the candidate PDSCH receiving opportunity 0 is the bit value of the HARQ-ACK information of the PDSCH corresponding to SLIV 1_0
  • the bit value of the HARQ-ACK information corresponding to the candidate PDSCH receiving opportunity 1 is The bit value of the HARQ-ACK information of the PDSCH corresponding to SLIV 1_1
  • the bit value of the HARQ-ACK information corresponding to the candidate PDSCH receiving opportunity 2 is NACK.
  • the HARQ-ACK information bits corresponding to each candidate PDSCH reception opportunity are arranged in the order of the second number of candidate PDSCH reception opportunities in the candidate PDSCH reception opportunity set, so that Obtain the HARQ-ACK information bits of a serving cell.
  • the codebook includes the HARQ-ACK information bits of one serving cell
  • the HARQ-ACK information bits of one serving cell are fed back as a codebook, and the codebook includes HARQ-ACK information bits of multiple serving cells.
  • the determination method of the HARQ-ACK information bits of each serving cell is the same as the determination method of the HARQ-ACK information bits of a serving cell, but in the specific determination, the corresponding PDSCH TDRA configuration of each serving cell and other
  • the parameters may be the same or different.
  • the above parameters may be individually configured for each serving cell, but this embodiment is not limited thereto.
  • the HARQ-ACK information bits corresponding to each serving cell may be arranged in ascending order according to the index of the serving cell, so as to generate a codebook for feedback.
  • the method may further include: the terminal device receiving high-layer signaling sent by the network device, the high-layer signaling (for example, the repetitionScheme parameter in the RRC signaling) is used to configure the repeated transmission scheme of the same TB in a multi-TRP scenario (eg configured as 'tdmSchemeA'). That is to say, only when the terminal device is configured with 'tdmSchemeA' and/or multi-PDSCH scheduling, when determining the set of candidate PDSCH receiving opportunities, the implementation method in 1001 is used, but the embodiment of this application It is not intended to be a limitation.
  • the high-layer signaling for example, the repetitionScheme parameter in the RRC signaling
  • An embodiment of the present application provides an information receiving device.
  • the apparatus may be, for example, a terminal device, or may be one or some components or components configured on the terminal device, and the content that is the same as that in the embodiment of the first aspect will not be repeated here.
  • FIG. 11 is a schematic diagram of an information receiving device according to an embodiment of the present application. As shown in FIG. 11 , the information receiving device 1100 includes:
  • the first receiving unit 1101 is configured to receive downlink control information sent by the network device for scheduling PDSCH, the downlink control information indicates a first number of TCI states; wherein, the first number is an integer greater than 1; the downlink control information corresponds to One or more rows in the TDRA table include more than one SLIV;
  • the second receiving unit 1102 is configured to receive one or more than one of the PDSCHs scheduled by the downlink control information.
  • the terminal device may further include (not shown): a third determination unit, which determines the first number of PDSCH transmission opportunities for each PDSCH in the PDSCHs scheduled by the downlink control information.
  • a third determination unit determines the first number of PDSCH transmission opportunities for each PDSCH in the PDSCHs scheduled by the downlink control information.
  • Each of the PDSCHs scheduled by the downlink control information corresponds to the first number of PDSCH transmission opportunities.
  • the second receiving unit receives or does not receive the PDSCH at each PDSCH sending opportunity.
  • the following example illustrates the first number of PDSCH transmission occasions and how to determine whether to receive or not receive PDSCH on each PDSCH transmission occasion.
  • the DCI schedules more than one PDSCHs.
  • the second receiving unit when a PDSCH has a PDSCH sending opportunity that conflicts with a semi-statically configured uplink symbol, the second receiving unit does not receive the PDSCH; when a PDSCH does not exist a PDSCH that conflicts with a semi-statically configured uplink symbol At a sending opportunity, the second receiving unit receives the one PDSCH.
  • the second receiving unit when a PDSCH exists and a semi-statically configured uplink symbol does not conflict with a PDSCH transmission opportunity, the second receiving unit receives the PDSCH; when a PDSCH does not exist and a semi-statically configured uplink symbol does not conflict When the PDSCH is sent at an opportunity, the second receiving unit does not receive the one PDSCH.
  • the second receiving unit receives the one PDSCH at a PDSCH sending opportunity that does not conflict with the semi-statically configured uplink symbols.
  • the second receiving unit when the first PDSCH transmission opportunity of a PDSCH does not conflict with the semi-statically configured uplink symbol, the second receiving unit receives the PDSCH; when the first PDSCH transmission opportunity of a PDSCH and the semi-static configuration When the configured uplink symbols collide, the second receiving unit does not receive the one PDSCH.
  • the apparatus may further include: (not shown) a fifth determining unit, configured to determine the HARQ process identifier of the PDSCH scheduled by the DCI.
  • the device may not include the second receiving unit, but include the first receiving unit and the fifth determining unit.
  • the PDSCH when a PDSCH has a PDSCH transmission opportunity that conflicts with a semi-statically configured uplink symbol, the PDSCH does not have a corresponding HARQ process ID; when a PDSCH does not exist and a semi-statically configured uplink symbol conflicts PDSCH transmission When the time is right, the PDSCH has a corresponding HARQ process ID.
  • the PDSCH when a PDSCH exists and a semi-statically configured uplink symbol does not conflict with a PDSCH transmission opportunity, the PDSCH has a corresponding HARQ process ID; when a PDSCH does not exist and a semi-statically configured uplink symbol does not conflict When the PDSCH is sent, the PDSCH does not have a corresponding HARQ process ID.
  • the PDSCH when the first PDSCH transmission opportunity of a PDSCH does not conflict with the semi-statically configured uplink symbol, the PDSCH has a corresponding HARQ process ID; the first PDSCH transmission opportunity of a PDSCH and the semi-static configuration When the configured uplink symbols conflict, the PDSCH does not have a corresponding HARQ process ID.
  • the DCI schedules a PDSCH.
  • the second receiving unit receives the PDSCH at the first number of PDSCH transmission opportunities, or, the second receiving unit transmits the PDSCH at the first number of PDSCHs according to whether it collides with semi-statically configured uplink symbols.
  • the PDSCH is received on one or more of the occasions.
  • the terminal device may further include (not shown): a fourth determination unit, which determines the first number of PDSCH transmission opportunities for valid PDSCHs in the PDSCHs scheduled by the downlink control information. Each valid PDSCH among the PDSCHs scheduled by the downlink control information corresponds to the first number of PDSCH transmission opportunities.
  • the second determination unit does not determine the first number of PDSCH transmission opportunities for invalid PDSCHs among the PDSCHs scheduled by the downlink control information.
  • the second receiving unit receives or does not receive the PDSCH at each PDSCH sending opportunity.
  • the DCI schedules one or more than one PDSCH, and the one or more than one PDSCH only includes one valid PDSCH, and the valid PDSCH corresponds to the first number of PDSCH transmission opportunities.
  • the effective PDSCH is a PDSCH in which the time-domain resource configuration corresponding to the PDSCH does not conflict with the semi-statically configured uplink symbols.
  • the second receiving unit receives the effective PDSCH at the first number of PDSCH transmission opportunities, or, the second receiving unit receives the valid PDSCH at the first number of The valid PDSCH is received on one or more of the PDSCH transmission occasions.
  • the first number of PDSCH transmission opportunities includes a first PDSCH transmission opportunity and a second PDSCH transmission opportunity
  • the device further includes: (not shown)
  • the first determining unit is configured to determine a set of candidate PDSCH receiving opportunities according to the symbol corresponding to the first PDSCH transmission opportunity and/or the symbol corresponding to the second PDSCH transmission opportunity, and/or according to the first allocation table, the first allocation table related to the offset value between the first PDSCH sending opportunity and the second PDSCH sending opportunity;
  • the first processing unit generates and sends a HARQ-ACK codebook, where the codebook includes HARQ-ACK information corresponding to the candidate PDSCH receiving opportunity set.
  • An embodiment of the present application provides an information sending device.
  • the apparatus may be, for example, a network device, or may be one or some components or components configured on the network device, and the content that is the same as that in the embodiment of the second aspect will not be repeated here.
  • FIG. 12 is another schematic diagram of an information sending device according to an embodiment of the present application. As shown in FIG. 12 , the information sending device 1200 includes:
  • the first sending unit 1201 which sends downlink control information for scheduling PDSCH to the terminal equipment, the downlink control information indicates a first number of TCI states; wherein, the first number is an integer greater than 1; the downlink control information corresponds to One or more rows in the TDRA table include more than one SLIV;
  • the second sending unit 1202 is configured to send one or more than one of the PDSCHs scheduled by the downlink control information.
  • the repetition scheme of multiple TRPs can also be supported. Therefore, not only can the number of PDCCH monitoring of the terminal equipment be reduced to reduce the complexity and work of the terminal equipment monitoring the PDCCH. consumption, and at the same time, resource overhead for sending downlink control signaling (DCI) can be reduced to improve data throughput.
  • DCI downlink control signaling
  • An embodiment of the present application provides an information feedback device.
  • the apparatus may be, for example, a terminal device, or may be one or some components or components configured on the terminal device, and the content that is the same as that in the embodiment of the third aspect will not be repeated here.
  • FIG. 13 is a schematic diagram of an information feedback device according to an embodiment of the present application. As shown in FIG. 13 , the information feedback device 1300 includes:
  • the second determination unit 1301 is configured to determine a set of candidate PDSCH reception opportunities according to the symbol corresponding to the first PDSCH transmission opportunity and/or the symbol corresponding to the second PDSCH transmission opportunity, and/or according to the first allocation table, the first allocation table and The offset value between the first PDSCH sending opportunity and the second PDSCH sending opportunity is related;
  • the second processing unit 1302 is configured to generate and send a HARQ-ACK codebook, where the codebook includes HARQ-ACK information corresponding to the candidate PDSCH receiving opportunity set.
  • the device may also include: (not shown)
  • the third receiving unit which receives downlink control information sent by the network device, the downlink control information indicates a first number of TCI states, the first PDSCH sending timing and the second PDSCH sending timing correspond to a PDSCH, and the first PDSCH sending The timing and the second PDSCH sending timing correspond to different TCI states respectively.
  • the offset value is a time domain offset value between the last symbol of the first PDSCH transmission opportunity and the first symbol of the second PDSCH transmission opportunity.
  • the HARQ-ACK information feedback for scheduling multiple PDSCHs for one DCI is supported, and the scheduling method for scheduling multiple PDSCHs for one DCI is supported, thereby reducing the PDCCH monitoring burden of the UE, reducing power consumption and UE complexity.
  • FIGS. 11-13 may also include other components or modules, and for specific content of these components or modules, reference may be made to related technologies.
  • Figs. 11-13 only exemplarily show the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection may be used.
  • the above-mentioned components or modules may be implemented by hardware facilities such as processors, memories, transmitters, receivers, etc.; the implementation of the present application is not limited thereto.
  • the embodiment of the present application also provides a communication system, and reference may be made to FIG. 3 , and the same content as the embodiments of the first aspect to the sixth aspect will not be repeated here.
  • the communication system 100 may at least include: a terminal device 102 and a network device 101 .
  • the embodiment of the present application also provides a network device, which may be, for example, a base station, but the present application is not limited thereto, and may also be other network devices.
  • a network device which may be, for example, a base station, but the present application is not limited thereto, and may also be other network devices.
  • FIG. 14 is a schematic diagram of a network device according to an embodiment of the present application.
  • a network device 1400 may include: a processor 1410 (such as a central processing unit CPU) and a memory 1420 ; the memory 1420 is coupled to the processor 1410 .
  • the memory 1420 can store various data; in addition, it also stores a program 1430 for information processing, and executes the program 1430 under the control of the processor 1410 .
  • the processor 1410 may be configured to execute a program to implement the information sending method described in the embodiment of the second aspect.
  • the network device 1400 may further include: a transceiver 1440 and an antenna 1450 ; wherein, the functions of the above components are similar to those of the prior art, and will not be repeated here. It should be noted that the network device 1400 does not necessarily include all components shown in FIG. 14 ; in addition, the network device 1400 may also include components not shown in FIG. 14 , and reference may be made to the prior art.
  • the embodiment of the present application also provides a terminal device, but the present application is not limited thereto, and may be other devices.
  • Fig. 15 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 1500 may include a processor 1510 and a memory 1520 ; the memory 1520 stores data and programs, and is coupled to the processor 1510 .
  • this figure is exemplary; other types of structures may also be used in addition to or instead of this structure to implement telecommunication functions or other functions.
  • the processor 1510 may be configured to execute a program to implement the information receiving method described in the embodiment of the first aspect or the information feedback method described in the embodiment of the third aspect.
  • the terminal device 1500 may further include: a communication module 1530 , an input unit 1540 , a display device 1550 , and a power supply 1560 .
  • a communication module 1530 the terminal device 1500 may further include: a communication module 1530 , an input unit 1540 , a display device 1550 , and a power supply 1560 .
  • the functions of the above components are similar to those of the prior art, and will not be repeated here. It should be noted that the terminal device 1500 does not necessarily include all the components shown in FIG. have technology.
  • An embodiment of the present application further provides a computer program, wherein when the program is executed in a terminal device, the program causes the terminal device to execute the information receiving method described in the embodiment of the first aspect.
  • An embodiment of the present application further provides a storage medium storing a computer program, wherein the computer program causes a terminal device to execute the information receiving method described in the embodiment of the first aspect.
  • An embodiment of the present application further provides a computer program, wherein when the program is executed in a network device, the program causes the network device to execute the information sending method described in the embodiment of the second aspect.
  • the embodiment of the present application also provides a storage medium storing a computer program, wherein the computer program causes the network device to execute the information sending method described in the embodiment of the second aspect.
  • An embodiment of the present application further provides a computer program, wherein when the program is executed in a terminal device, the program causes the terminal device to execute the information feedback method described in the embodiment of the third aspect.
  • An embodiment of the present application further provides a storage medium storing a computer program, wherein the computer program causes a terminal device to execute the information feedback method described in the embodiment of the third aspect.
  • the above devices and methods in this application can be implemented by hardware, or by combining hardware and software.
  • the present application relates to a computer-readable program that, when executed by a logic component, enables the logic component to realize the above-mentioned device or constituent component, or enables the logic component to realize the above-mentioned various methods or steps.
  • the present application also relates to storage media for storing the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memories, and the like.
  • the method/device described in conjunction with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams shown in the figure and/or one or more combinations of the functional block diagrams may correspond to each software module or each hardware module of the computer program flow.
  • These software modules may respectively correspond to the steps shown in the figure.
  • These hardware modules for example, can be realized by solidifying these software modules by using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor such that the processor can read information from, and write information to, the storage medium, or it can be an integral part of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or large-capacity flash memory device.
  • One or more of the functional blocks described in the accompanying drawings and/or one or more combinations of the functional blocks can be implemented as a general-purpose processor, a digital signal processor (DSP) for performing the functions described in this application ), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or any suitable combination thereof.
  • DSP digital signal processor
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors processor, one or more microprocessors in communication with a DSP, or any other such configuration.
  • a method for receiving information characterized in that the method comprises:
  • the terminal device receives the downlink control information DCI sent by the network device for scheduling the PDSCH, the downlink control information indicates a first number of TCI states; wherein the first number is an integer greater than 1; the downlink control information corresponds to One or more rows in the TDRA table include more than one SLIV;
  • the terminal device receives one or more than one PDSCHs in the PDSCHs scheduled by the downlink control information.
  • the terminal device determines the first number of PDSCH transmission opportunities for each of the PDSCHs scheduled by the downlink control information.
  • each PDSCH in the PDSCH scheduled by the downlink control information corresponds to the first number of PDSCH transmission opportunities.
  • the DCI schedules more than one PDSCHs.
  • the terminal device When a PDSCH has a PDSCH sending opportunity that conflicts with a semi-statically configured uplink symbol, the terminal device does not receive the one PDSCH;
  • the terminal device When a PDSCH does not have a PDSCH transmission opportunity that conflicts with a semi-statically configured uplink symbol, the terminal device receives the one PDSCH.
  • the terminal device When a PDSCH has a PDSCH transmission opportunity that does not conflict with a semi-statically configured uplink symbol, the terminal device receives the one PDSCH;
  • the terminal device When a PDSCH does not exist and a semi-statically configured uplink symbol does not conflict with a PDSCH sending opportunity, the terminal device does not receive the one PDSCH.
  • the terminal device receives the one PDSCH at a PDSCH sending opportunity that does not conflict with the semi-statically configured uplink symbols.
  • the terminal device When the first PDSCH transmission opportunity of a PDSCH does not conflict with the semi-statically configured uplink symbol, the terminal device receives the one PDSCH;
  • the terminal device When the first PDSCH sending opportunity of a PDSCH collides with the semi-statically configured uplink symbol, the terminal device does not receive the one PDSCH.
  • the PDSCH When a PDSCH does not have a PDSCH transmission opportunity that conflicts with a semi-statically configured uplink symbol, the PDSCH has a corresponding HARQ process ID.
  • the PDSCH When a PDSCH has a PDSCH transmission opportunity that does not conflict with a semi-statically configured uplink symbol, the PDSCH has a corresponding HARQ process ID;
  • the PDSCH does not have a corresponding HARQ process ID.
  • the PDSCH When the first PDSCH transmission opportunity of a PDSCH does not conflict with the semi-statically configured uplink symbol, the PDSCH has a corresponding HARQ process ID;
  • the PDSCH When the first PDSCH transmission opportunity of a PDSCH collides with the semi-statically configured uplink symbols, the PDSCH does not have a corresponding HARQ process ID.
  • the DCI schedules a PDSCH.
  • the terminal device receives the PDSCH on the first number of PDSCH transmission opportunities, or,
  • the terminal device receives the PDSCH at one or more of the first number of PDSCH transmission opportunities according to whether it collides with the semi-statically configured uplink symbols.
  • the terminal device determines the first number of PDSCH transmission opportunities for effective PDSCHs in the PDSCHs scheduled by the downlink control information.
  • each effective PDSCH in the PDSCH scheduled by the downlink control information corresponds to the first number of PDSCH transmission opportunities.
  • the method further comprises that the terminal device does not determine the first number of PDSCH transmission opportunities for invalid PDSCHs among the PDSCHs scheduled by the downlink control information.
  • the DCI schedules one or more than one PDSCH, and the one or more than one PDSCH includes only one effective PDSCH, and the effective PDSCH corresponds to the first number of PDSCH transmission opportunities.
  • the effective PDSCH is a PDSCH in which the time-domain resource configuration corresponding to the PDSCH does not conflict with the semi-static configured uplink symbols.
  • the terminal device receives the effective PDSCH on the first number of PDSCH transmission opportunities, or,
  • the terminal device receives the effective PDSCH at one or more of the first number of PDSCH transmission opportunities according to whether it collides with the semi-statically configured uplink symbols.
  • the terminal device determines a set of candidate PDSCH reception opportunities according to the symbol corresponding to the first PDSCH transmission opportunity and/or the symbol corresponding to the second PDSCH transmission opportunity, and/or according to the first allocation table, the first allocation The table is related to the offset value between the first PDSCH transmission opportunity and the second PDSCH transmission opportunity;
  • the terminal device generates and sends a HARQ-ACK codebook, where the codebook includes HARQ-ACK information corresponding to the set of candidate PDSCH receiving opportunities.
  • a method for sending information characterized in that the method comprises:
  • the network device sends downlink control information for scheduling the PDSCH to the terminal device, the downlink control information indicates a first number of TCI states, wherein the first number is an integer greater than 1; the TDRA table corresponding to the downlink control information One or more of the lines in include more than one SLIV;
  • the network device sends one or more than one PDSCHs in the PDSCHs scheduled by the downlink control information.
  • An information feedback method characterized in that the method comprises:
  • the terminal device determines a set of candidate PDSCH reception opportunities according to the symbol corresponding to the first PDSCH transmission opportunity and/or the symbol corresponding to the second PDSCH transmission opportunity, and/or according to the first allocation table, the first allocation table and the first PDSCH transmission
  • the timing is related to the offset value between the second PDSCH sending timing
  • the terminal device generates and sends a HARQ-ACK codebook, where the codebook includes HARQ-ACK information corresponding to the set of candidate PDSCH receiving opportunities.
  • the terminal device receives downlink control information sent by the network device, the downlink control information indicates a first number of TCI states, the first PDSCH sending opportunity and the second PDSCH sending opportunity correspond to a PDSCH, and the first The PDSCH sending timing and the second PDSCH sending timing correspond to different TCI states respectively.
  • a method for receiving information characterized in that the method comprises:
  • the terminal device receives the downlink control information sent by the network device for scheduling the PDSCH, the downlink control information indicates a first number of TCI states; wherein the first number is an integer greater than 1; the TDRA corresponding to the downlink control information one or more rows in the table include more than one SLIV;
  • the terminal device determines the HARQ process identifier corresponding to the scheduled PDSCH.
  • the terminal device determines the first number of PDSCH transmission opportunities for each of the PDSCHs scheduled by the downlink control information.
  • each PDSCH in the PDSCHs scheduled by the downlink control information corresponds to the first number of PDSCH transmission opportunities.
  • the DCI schedules more than one PDSCHs.
  • the PDSCH When a PDSCH does not have a PDSCH transmission opportunity that conflicts with a semi-statically configured uplink symbol, the PDSCH has a corresponding HARQ process ID.
  • the PDSCH When a PDSCH has a PDSCH transmission opportunity that does not conflict with a semi-statically configured uplink symbol, the PDSCH has a corresponding HARQ process ID;
  • the PDSCH does not have a corresponding HARQ process ID.
  • the PDSCH When the first PDSCH transmission opportunity of a PDSCH does not conflict with the semi-statically configured uplink symbol, the PDSCH has a corresponding HARQ process ID;
  • the PDSCH When the first PDSCH transmission opportunity of a PDSCH collides with the semi-statically configured uplink symbols, the PDSCH does not have a corresponding HARQ process ID.
  • a network device comprising a memory and a processor, the memory stores a computer program, and the processor is configured to execute the computer program to implement the information sending method described in Supplement 23.
  • a terminal device comprising a memory and a processor
  • the memory stores a computer program
  • the processor is configured to execute the computer program to implement the information described in any one of Supplements 1 to 22, 24 to 33. Methods.
  • a communication system comprising:
  • An information receiving device characterized in that it is applied to a terminal device, and the device includes:
  • a first receiving unit which receives downlink control information sent by a network device for scheduling PDSCH, where the downlink control information indicates a first number of TCI states; wherein, the first number is an integer greater than 1; the downlink control One or more rows in the TDRA table to which the information corresponds include more than one SLIV;
  • a fifth determining unit configured to determine the HARQ process identifier corresponding to the scheduled PDSCH.
  • the terminal device determines the first number of PDSCH transmission opportunities for each of the PDSCHs scheduled by the downlink control information.
  • each PDSCH in the PDSCH scheduled by the downlink control information corresponds to the first number of PDSCH transmission opportunities.
  • the DCI schedules more than one PDSCHs.
  • the PDSCH When a PDSCH does not have a PDSCH transmission opportunity that conflicts with a semi-statically configured uplink symbol, the PDSCH has a corresponding HARQ process ID.
  • the PDSCH When a PDSCH has a PDSCH transmission opportunity that does not conflict with a semi-statically configured uplink symbol, the PDSCH has a corresponding HARQ process ID;
  • the PDSCH does not have a corresponding HARQ process ID.
  • the PDSCH When the first PDSCH transmission opportunity of a PDSCH does not conflict with the semi-statically configured uplink symbol, the PDSCH has a corresponding HARQ process ID;
  • the PDSCH When the first PDSCH transmission opportunity of a PDSCH collides with the semi-statically configured uplink symbols, the PDSCH does not have a corresponding HARQ process ID.

Abstract

本申请提供一种信息接收方法,信息发送方法,信息反馈方法以及装置,其中,该信息接收装置(1100)包括:第一接收单元,其接收网络设备发送用于调度PDSCH的下行控制信息,所述下行控制信息指示第一数量个TCI states;其中,所述第一数量为大于1的整数;所述下行控制信息对应的TDRA表中的一行或多于一行包括多于一个SLIV(1101);第二接收单元,其接收所述下行控制信息调度的PDSCH中的一个或多于一个PDSCH(1102)。

Description

信息反馈方法、信息接收方法以及装置 技术领域
本申请实施例涉及通信技术领域。
背景技术
物理下行共享信道(Physical Downlink Shared Channel,PDSCH)是无线通信系统中物理下行信道的一种,用于承载下行数据。PDSCH可以是通过下行控制信息(downlink control information,DCI)调度的。用于调度PDSCH的DCI中至少包括用于指示该PDSCH的资源的信息。在目前的新无线(new radio,NR)系统中,定义了多种用于调度PDSCH的DCI格式(format),例如DCI format 1_0(PDSCH)、DCI format 1_1(PDSCH)、DCI format 1_2(PDSCH),不同DCI format的DCI包括的具体信息和/或大小是不一样的,以满足不同的调度需求。
PDSCH还可以是半静态配置或半持续调度的。在新无线NR中,半静态配置或半持续调度的PDSCH例如称为半静态调度(Semi-Persistent Scheduling,SPS)PDSCH(SPS PDSCH)。在一些情况下,网络设备在通过无线资源控制(RRC)信令提供SPS配置后,还需要通过DCI激活SPS配置,终端设备才相应地接收SPS PDSCH。另外,除了调度PDSCH和激活SPS,DCI还可以用于去激活SPS、休眠小区等。
为了使得网络设备确定终端设备是否成功接收下行数据和/或控制信息,一般地,终端设备需要反馈混合自动重传请求(HARQ)反馈信息(例如ACK/NACK)。根据网络设备的调度,HARQ反馈信息可以由物理上行控制信道(PUCCH)或物理上行共享信道(PUSCH)承载。一般地,一个PUCCH或PUSCH可以承载一个HARQ反馈码本,该码本中包括一个或多个HARQ反馈信息比特。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
目前NR系统支持多(multiple)发送接收点(TRP,Transmit Receive Point),在 multiple TRPs的场景下,支持不同TRP重复发送相同传输块(TB),图1是2个TRP场景示意图,如图1所示,TRP0和TRP1向终端设备发送相同的TB0。对于TB的重复发送方式,可以支持多种重复方案,包括空分(SDM)、频分(FDM)、时隙内时分(TDM)和时隙间时分(TDM)。例如'fdmSchemeA','fdmSchemeB','tdmSchemeA'。具体的重复方案是可配的,例如通过高层信令中的参数repetitionScheme配置,如果repetitionScheme设置为'tdmSchemeA',则重复方案采用'tdmSchemeA'。
以下进一步解释'tdmSchemeA':
在设置了'tdmSchemeA'的情况下,假设DCI中指示了两个传输配置指示(transmission configuration indication,TCI)状态TCI states,则终端设备应接收两个PDSCH发送时机。两个发送时机分别对应不同的TCI state,第一个PDSCH发送时机对应第一个TCI state,第二个PDSCH发送时机对应第二个TCI state。
图2是该两个PDSCH发送时机示意图,如图2所示,两个PDSCH发送时机在同一时隙中,且没有交叠。第一个PDSCH发送时机(1 st PDSCH transmission occasion)的符号是DCI指示的。第二个PDSCH发送时机(2 nd PDSCH transmission occasion)的符号数和第一个PDSCH发送时机的符号数相同,其第一个符号根据一个相对于第一个PDSCH发送时机的最后一个符号的偏移值确定。具体地,其第一个符号在第一个PDSCH发送时机的最后一个符号的偏移值个符号后开始。该偏移值可以是无线资源控制RRC信令(StartingSymbolOffsetK)配置的,当没有配置时,缺省为0。如图2所示,该偏移值=0。
目前,NR系统将支持通过一个DCI(PDCCH)调度多于一个PDSCH(multi-PDSCH scheduling),然而上述多TRP的重复方案基于一个DCI仅能调度一个PDSCH,没有考虑一个DCI调度多于一个PDSCH的情况,也没有明确在多TRP的重复方案和/或多PDSCH调度情况下的HARQ反馈方法。
针对上述问题的至少之一,本申请实施例提供一种信息接收方法、发送方法、反馈方法以及装置。
根据本申请实施例的一个方面,本申请实施例提供一种信息接收装置,应用于终端设备,所述装置包括:
第一接收单元,其接收网络设备发送用于调度PDSCH的下行控制信息,所述下行控制信息指示第一数量个TCI states;其中,所述第一数量为大于1的整数;所述 下行控制信息对应的TDRA表中的一行或多于一行包括多于一个SLIV;
第二接收单元,其接收所述下行控制信息调度的PDSCH中的一个或多于一个PDSCH。
根据本申请实施例的另一个方面,本申请实施例提供一种信息反馈装置,应用于终端设备,所述装置包括:
第二确定单元,其根据第一PDSCH发送时机对应的符号和/或第二PDSCH发送时机对应的符号,和/或,根据第一分配表确定候选PDSCH接收时机集合,所述第一分配表与第一PDSCH发送时机和第二PDSCH发送时机之间的偏移值有关;
第二处理单元,其生成并发送HARQ-ACK码本,所述码本包括所述候选PDSCH接收时机集合对应的HARQ-ACK信息。
根据本申请实施例的另一个方面,本申请实施例提供一种信息发送装置,应用于网络设备,所述装置包括:
第一发送单元,其向终端设备发送用于调度PDSCH的下行控制信息,所述下行控制信息指示第一数量个TCI states;其中,所述第一数量为大于1的整数;所述下行控制信息对应的TDRA表中的一行或多于一行包括多于一个SLIV;
第二发送单元,其发送所述下行控制信息调度的PDSCH中的一个或多于一个PDSCH。
本申请实施例的有益效果之一在于:在支持一个DCI调度多于一个PDSCH的情况,也能够支持多TRP的重复方案,因此,不仅可以减少终端设备的PDCCH的监听次数以降低终端设备监听PDCCH的复杂度和功耗,同时也可以减小用于发送下行控制信令(DCI)的资源开销以提升数据吞吐量。
本申请实施例的有益效果之一在于:可以支持在多TRP的重复方案和/或多PDSCH调度情况下的HARQ反馈(或者说HARQ-ACK信息反馈),从而减轻UE的PDCCH监听负担,降低电量损耗和UE复杂度。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的 特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是多TRP场景示意图;
图2是两个PDSCH发送时机示意图;
图3是本申请实施例的通信系统的示意图;
图4是本申请实施例的信息接收方法一示意图;
图5是本申请实施例PDSCH发送时机示意图;
图6A和图6B是本申请实施例PDSCH发送时机示意图;
图7A和图7B是本申请实施例PDSCH发送时机示意图;
图8A和图8B是本申请实施例PDSCH发送时机示意图;
图9是本申请实施例的信息发送方法的一示意图;
图10是本申请实施例的信息反馈方法的一示意图;
图11是本申请实施例的信息接收装置的一示意图;
图12是本申请实施例的信息发送装置的一示意图;
图13是本申请实施例的信息反馈装置的一示意图;
图14是本申请实施例的网络设备的示意图;
图15是本申请实施例的终端设备的示意图;
图16A是配置了时域绑定情况下候选PDSCH接收时机示意图;
图16B是没有配置时域绑定情况下候选PDSCH接收时机示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原 则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其它特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及5G、新无线(NR,New Radio)等等,和/或其它目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femeto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站 可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment或Terminal Device)例如是指通过网络设备接入通信网络并接收网络服务的设备。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、可穿戴设备、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、工业无线设备、监控摄像头、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
此外,术语“网络侧”或“网络设备侧”是指网络的一侧,可以是某一基站或某一核心网设备,也可以包括如上的一个或多个网络设备。术语“用户侧”或“终端侧”或“终端设备侧”是指用户或终端的一侧,可以是某一UE,也可以包括如上的一个或多个终端设备。本文在没有特别指出的情况下,“设备”可以指网络设备,也可以指终端设备。
在本申请实施例中,时间单元可以是子帧、时隙或者包含至少一个时域符号的集合。至少一个时域符号的集合也可以称为mini-slot或non-slot。例如,本申请实施例中的子帧和时隙可以互换使用,“时隙”也可以替换为“子帧”,本申请不限于此,以下为方便描述均以“时隙”为例进行说明,但还可以替换为其他的时间单元。此外,术语“时域资源”和“资源”可以互换使用。
在以下的说明中,在不引起混淆的情况下,术语“上行控制信号”和“上行控制信息(UCI,Uplink Control Information)”或“物理上行控制信道(PUCCH,Physical Uplink Control Channel)”可以互换,术语“上行数据信号”和“上行数据信息”或“物理上行共享信道(PUSCH,Physical Uplink Shared Channel)”可以互换;
术语“下行控制信号”和“下行控制信息(DCI,Downlink Control Information)”或 “物理下行控制信道(PDCCH,Physical Downlink Control Channel)”可以互换,术语“下行数据信号”和“下行数据信息”或“物理下行共享信道(PDSCH,Physical Downlink Shared Channel)”可以互换。
另外,发送或接收PUSCH可以理解为发送或接收由PUSCH承载的上行数据,发送或接收PUCCH可以理解为发送或接收由PUCCH承载的上行信息(e.g.UCI),发送或接收PRACH可以理解为发送或接收由PRACH承载的preamble;发送或接收PDSCH可以理解为发送或接收由PDSCH承载的下行数据,发送或接收PDCCH可以理解为发送或接收由PDCCH承载的下行信息(e.g.DCI)。
在本申请实施例中,高层信令例如可以是无线资源控制(RRC)信令;例如称为RRC消息(RRC message),例如包括主信息块(MIB)、系统信息(system information)、专用RRC消息;或者称为RRC信息元素(RRC information element,RRC IE)。高层信令例如还可以是媒体接入控制层(Medium Access Control,MAC)信令;或者称为MAC控制元素(MAC control element,MAC CE)。但本申请不限于此。
以下通过示例对本申请实施例的场景进行说明,但本申请不限于此。
图3是本申请实施例的通信系统的示意图,示意性说明了以终端设备和网络设备为例的情况,如图3所示,通信系统100可以包括网络设备101和终端设备102、103。为简单起见,图3仅以两个终端设备和一个网络设备为例进行说明,但本申请实施例不限于此。
在本申请实施例中,网络设备101和终端设备102、103之间可以进行现有的业务或者未来可实施的业务发送。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)、高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication)和减少能力的终端设备的相关通信,等等。
值得注意的是,图3示出了两个终端设备102、103均处于网络设备101的覆盖范围内,但本申请不限于此。两个终端设备102、103可以均不在网络设备101的覆盖范围内,或者一个终端设备102在网络设备101的覆盖范围之内而另一个终端设备103在网络设备101的覆盖范围之外。
在本申请实施例中,不同的PDSCH承载的传输块相同或不同,因此,下文中“多于一个PDSCH(多个PDSCH)”或“至少两个PDSCH”都是指承载不同传输块的不同 PDSCH。更具体的,不同的PDSCH承载的传输块可能对应相同或不同的HARQ进程,其中,不同的HARQ进程有不同的HARQ进程标识。
在一些实施例中,PDSCH时域资源分配(TDRA)表(或者简称为TDRA表)包括至少一行,以下,为方便描述,将一行称为一个PDSCH TDRA配置(或者简称为TDRA配置),即PDSCH TDRA表包括至少一个PDSCH TDRA配置。一个PDSCH TDRA配置包括至少一个PDSCH时域资源配置(或者简称为时域资源配置),PDSCH时域资源配置中至少包括时隙中的符号位置(起始符号+长度)配置;另外,一个PDSCH TDRA配置还可以包括至少一个时隙偏移K0配置,该K0表示PDSCH与PDCCH的时隙偏移,K0配置包括在PDSCH时域资源配置中或者不包括在PDSCH时域资源配置中;该一个PDSCH TDRA配置还可以包括其他信息,且该其他信息包括在PDSCH时域资源配置中或者不包括在PDSCH时域资源配置中,本申请实施例并不以此作为限制。其中,关于时隙中的符号位置配置,其例如包括start and length indicator SLIV,该SLIV对应起始符号(S)和长度(L)的有效组合(valid combination),或者,其例如对应起始符号starting symbol配置和长度length配置,该starting symbol配置和length配置是有效组合。
以下结合第一方面和第二方面的实施例对支持multi-PDSCH scheduling的情况下如何支持多TRP重复发送方案的方法进行说明。结合第三方面的实施例对在多TRP的重复方案和/或多PDSCH调度情况下的HARQ反馈方法进行说明。
第一方面的实施例
本申请实施例提供一种信息接收方法,从终端设备侧进行说明。
图4是本申请实施例的信息接收方法一示意图,如图4所示,该方法包括:
401,终端设备接收网络设备发送的用于调度PDSCH的下行控制信息,该下行控制信息指示第一数量个TCI states;其中,该第一数量为大于1的整数;该下行控制信息对应的TDRA表中的一行或多于一行包括多于一个SLIV;
402,该终端设备接收该下行控制信息调度的PDSCH中的一个或多于一个。
在一些实施例中,网络设备通过高层信令可以预先配置一系列信道条件关联关系,每一种关联关系以一个TCI状态进行标识,关于PDSCH信道这样的TCI状态最多可以配置128组,而PDCCH信道的TCI状态最多可以配置64组。每个TCI状态包含 了配置PDSCH/PDCCH中DMRS天线端口和下行参考信号(DL RS)近似定位关系的参数,该下行参考信号可以是CSI-RS,也可以是SSB。终端设备根据TCI状态动态评估PDCCH/PDSCH信道传输条件。
在一些实施例中,401中接收的该DCI是DCI format 1_1。
在一些实施例中,401中接收的该DCI可以包括TCI域。该TCI域中可包括一个索引值,该索引值在预定的TCI状态表中可对应第一数量个TCI状态,该第一数量为大于1的整数。
在一些实施例中,该DCI可以包括第一信息域,该第一信息域可以是时域资源分配域Time domain resource assignment,该第一信息域通过指示该DCI应用的(对应的)PDSCH TDRA表中PDSCH TDRA配置对应的索引(行索引,e.g.行索引的值大于或等于1)来指示PDSCH时域资源,换句话说,该DCI通过指示其应用的PDSCH TDRA表中的PDSCH TDRA配置来调度PDSCH,以下称为DCI调度PDSCH,也即DCI指示的PDSCH。例如,该DCI的第一信息域的值m(假设m为大于或等于0的整数)对应指示该DCI应用的PDSCH TDRA表中索引为m+1(也就是第m+1行)的PDSCH TDRA配置。
在一些实施例中,PDSCH TDRA表可以是预定义的或通过高层信令配置的,该表支持通过一个DCI调度多于一个PDSCHs,或者说该表中的一行或多于一行包括多于一个时域资源配置(SLIV),例如,支持通过一个DCI调度多于一个PDSCH,但DCI应用该表时,可以指示/调度一个PDSCH(例如,DCI中第一信息域指示的TDRA表的行仅包括一个SLIV),也可以指示/调度多于一个PDSCHs(例如,DCI中第一信息域指示的TDRA表的行包括多于一个SLIV)。
在一些实施例中,为了支持通过一个DCI调度多个PDSCH(mutli-PDSCH scheduling),可以支持通过RRC信令(例如pdsch-TimeDomainAllocationListForMultiPDSCH,或者pdsch-TimeDomainAllocationListForMultiPDSCH-r17)配置用于支持通过一个DCI调度多个(即多于一个)PDSCH的TDRA表,该TDRA表包括至少一个用于调度多个(即多于一个)PDSCH/PUSCH的时域资源分配配置,该时域资源分配配置例如包括多个SLIV,每个SLIV分别对应一个PDSCH/PUSCH。
在一些实施例中,在配置了上述TDRA表的情况下,该TDRA表应用于/对应 DCI format 1_1。
在一些实施例中,该终端设备针对该下行控制信息调度的PDSCH中的各PDSCH确定该第一数量个PDSCH发送时机。该下行控制信息调度的PDSCH中的各个PDSCH对应该第一数量个PDSCH发送时机。该终端设备在各个PDSCH发送时机上接收或不接收PDSCH。以下示例说明第一数量个PDSCH发送时机以及如何确定是否在各个PDSCH发送时机上接收或不接收PDSCH。
在一些实施例中,该DCI指示/调度多于一个PDSCHs,该多于一个PDSCHs中的各个PDSCH对应该第一数量个PDSCH发送时机,一个PDSCH对应的第一数量个PDSCH发送时机承载相同的传输块,分别与第一数量个TCI state对应;该第一数量个PDSCH发送时机中各个PDSCH发送时机的符号数相同,第一数量个PDSCH发送时机中第一个PDSCH发送时机根据DCI指示/调度的该一个PDSCH相应的时域资源配置(例如SLIV)确定,在后的PDSCH发送时机的第一个符号根据一个相对于第一个PDSCH发送时机的最后一个符号的偏移值确定。具体地,该第一个符号在第一个PDSCH发送时机的最后一个符号的偏移值个符号后开始。该偏移值可以是无线资源控制RRC信令(StartingSymbolOffsetK)配置的,当没有配置时,缺省为0。
图5是PDSCH发送时机示意图,如图5所示,以第一数量等于2为例,DCI指示了两个TCI state,且指示/调度2个PDSCH(图4箭头所示),每个PDSCH都对应两个PDSCH发送时机,该两个PDSCH发送时机分别对应指示的2个TCI state,也可以看作分别对应TRP1和TRP2,第二个PDSCH发送时机的符号数和第一个PDSCH发送时机的符号数相同,其第一个符号根据一个相对于第一个PDSCH发送时机的最后一个符号的偏移值确定。具体地,其第一个符号在第一个PDSCH发送时机的最后一个符号的偏移值个符号后开始。该偏移值=1。
在一些实施例中,在402中,针对该DCI指示/调度的多于一个PDSCH中的各个PDSCH分别判断是否接收。终端设备可以根据各个PDSCH发送时机是否和半静态配置的上行符号冲突,确定各个PDSCH发送时机上是否接收PDSCH(或者说是否接收对应的PDSCH发送时机)。其中,PDSCH发送时机和半静态配置的上行符号冲突是指PDSCH发送时机对应的符号中至少一个与被半静态配置的上行符号重叠,或者说PDSCH发送时机对应的符号中至少一个被半静态配置为上行。PDSCH发送时机和半静态配置的上行符号不冲突是指PDSCH发送时机对应的符号中没有符号与 被半静态配置的上行符号重叠,或者说PDSCH发送时机对应的符号中都没有被半静态配置为上行。
在一些实施例中,例1:在一个PDSCH存在和半静态配置的上行符号冲突的PDSCH发送时机时,该终端设备不接收该一个PDSCH;在一个PDSCH不存在和半静态配置的上行符号冲突的PDSCH发送时机时,该终端设备接收该一个PDSCH。如果一个PDSCH对应的PDSCH发送时机中的任一个和半静态配置的上行符号冲突,则不接收该PDSCH(换句话说,在该PDSCH对应的第一数量个PDSCH发送时机上都不接收,或者说不接收该第一数量个PDSCH发送时机)。反之,如果一个PDSCH对应的PDSCH发送时机中的任一个和半静态配置的上行符号都不冲突,则接收该PDSCH,(换句话说,在该PDSCH对应的第一数量个PDSCH发送时机上接收该PDSCH)。
图6A和图6B是PDSCH发送时机接收示意图,如图6A和图6B所示,DCI指示/调度的第一个PDSCH对应的两个PDSCH发送时机中的有一个(第二个)PDSCH发送时机和半静态配置的上行符号冲突,则不接收该第一个PDSCH(换句话说,在该第一个PDSCH对应的2个PDSCH发送时机上都不接收)。DCI指示/调度的第二个PDSCH对应的PDSCH发送时机都和半静态配置的上行符号都不冲突,则接收该PDSCH,则接收该PDSCH(换句话说,在该第二个PDSCH对应的2个PDSCH发送时机上接收该PDSCH)。
在一些实施例中,例2:在一个PDSCH存在和半静态配置的上行符号不冲突的PDSCH发送时机时,该终端设备接收该一个PDSCH,例如该终端设备在不和半静态配置的上行符号冲突的PDSCH发送时机上接收该一个PDSCH;在一个PDSCH不存在和半静态配置的上行符号不冲突的PDSCH发送时机时,该终端设备不接收该一个PDSCH。如果一个PDSCH对应的PDSCH发送时机中的任一个不和半静态配置的上行符号冲突,则接收该PDSCH(换句话说,在该PDSCH对应的不和半静态配置的上行符号冲突的PDSCH发送时机上接收该PDSCH,或者接收和半静态配置的上行符号不冲突的PDSCH发送时机)。反之,如果一个PDSCH对应的PDSCH发送时机都和半静态配置的上行符号冲突,则不接收该PDSCH(换句话说,在该PDSCH对应的第一数量个PDSCH发送时机上都不接收,或者说不接收该第一数量个PDSCH发送时机)。
图7A和图7B是PDSCH发送时机接收示意图,如图7A和图7B所示,DCI指示/调度的第一个PDSCH对应的两个PDSCH发送时机中的有一个(第二个)PDSCH发送时机和半静态配置的上行符号冲突,则接收该第一个PDSCH(换句话说,在该第一个PDSCH对应的第一个PDSCH发送时机上接收,不在第二个PDSCH发送是上接收)。DCI指示/调度的第一个PDSCH对应的两个PDSCH发送时机中的有一个(第一个)PDSCH发送时机和半静态配置的上行符号冲突,则接收该第一个PDSCH(换句话说,在该第一个PDSCH对应的第二个PDSCH发送时机上接收,不在第一个PDSCH发送时机上接收)。
在一些实施例中,例3:在一个PDSCH的第一个PDSCH发送时机不和半静态配置的上行符号冲突时,该终端设备接收该一个PDSCH;在一个PDSCH的第一个PDSCH发送时机和半静态配置的上行符号冲突时,该终端设备不接收该一个PDSCH。如果一个PDSCH对应的第一个PDSCH发送时机(或者说DCI指示的该一个PDSCH的时域资源配置(SLIV))不和半静态配置的上行符号冲突,则无论在后的其他PDSCH发送时机是否和半静态配置的上行符号冲突,可以接收该PDSCH(换句话说,在第一个PDSCH发送时机上接收该PDSCH,或者接收和半静态配置的上行符号不冲突的PDSCH发送时机)。反之,如果一个PDSCH对应的第一个PDSCH发送时机和半静态配置的上行符号冲突,则不接收该PDSCH(换句话说,在该PDSCH对应的第一数量个PDSCH发送时机上都不接收,或者说不接收该第一数量个PDSCH发送时机)。
图8A和图8B是PDSCH发送时机接收示意图,如图8A所示,DCI指示/调度的第一个PDSCH对应的两个PDSCH发送时机中的第一个PDSCH发送时机和半静态配置的上行符号冲突,则不接收该第一个PDSCH(换句话说,在该第一个PDSCH对应的两个PDSCH发送时机上都不接收,或者不接收该两个PDSCH发送时机)。如图8B所示,DCI指示/调度的第一个PDSCH对应的两个PDSCH发送时机中的第一个PDSCH发送时机和半静态配置的上行符号不冲突,则接收该第一个PDSCH(换句话说,在该第一个PDSCH对应的第一个PDSCH发送时机上接收,不在第二个PDSCH发送时机上接收)。
在一些实施例中,该DCI还可以包括第二信息域,该第二信息域(例如是‘HARQ process number’)用于指示HARQ进程标识。针对该DCI指示/调度的多于一个PDSCH 中的各个PDSCH,可能所有PDSCH都有对应的HARQ进程,或者仅有部分PDSCH有对应的HARQ进程,该方法还可以包括:S1终端设备确定该DCI调度的PDSCH的HARQ进程标识。终端设备可以根据各个PDSCH发送时机是否和半静态配置的上行符号冲突,其中,确定是否为该PDSCH分配HARQ进程标识(HARQ process ID),以下“进程”和“进程标识”可以互换。需要说明的是,该方法可以仅包括201和S1,不包括202,本申请实施例并不以此作为限制。
在一些实施例中,在一个PDSCH存在和半静态配置的上行符号冲突的PDSCH发送时机时,该一个PDSCH没有对应的HARQ process ID;在一个PDSCH不存在和半静态配置的上行符号冲突的PDSCH发送时机时,该一个PDSCH有对应的HARQ process ID。如果一个PDSCH对应的PDSCH发送时机中的任一个和半静态配置的上行符号冲突,则该PDSCH没有对应的HARQ进程标识,或者说终端设备在确定HARQ进程标识时,跳过该PDSCH,或者说不为该PDSCH分配HARQ进程标识。否则,该PDSCH有对应的HARQ进程标识,或者说终端设备在确定HARQ进程标识时,不跳过该PDSCH,或者说为该PDSCH分配HARQ进程标识,至于该PDSCH对应的HARQ进程标识可以根据DCI指示的HARQ进程标识确定,具体可以参考现有技术,此处不再赘述。该方法可以与前述例1结合实施,例如图6A和图6B所示,该第一个PDSCH没有对应的HARQ进程标识。该第二个PDSCH有对应的HARQ进程标识。
在一些实施例中,在一个PDSCH存在和半静态配置的上行符号不冲突的PDSCH发送时机时,该一个PDSCH有对应的HARQ process ID;在一个PDSCH不存在和半静态配置的上行符号不冲突的PDSCH发送时机时,该一个PDSCH没有对应的HARQ process ID。如果一个PDSCH对应的PDSCH发送时机中的任一个不和半静态配置的上行符号冲突,则该PDSCH有对应的HARQ进程标识,或者说终端设备在确定HARQ进程标识时,不跳过该PDSCH,或者说为该PDSCH分配HARQ进程标识,至于该PDSCH对应的HARQ进程标识可以根据DCI指示的HARQ进程标识确定,具体可以参考现有技术,此处不再赘述。否则,该PDSCH没有对应的HARQ进程标识,或者说终端设备在确定HARQ进程标识时,跳过该PDSCH,或者说不为该PDSCH分配HARQ进程标识。该方法可以与前述例1或例2或例3结合实施,例如图8A所示,该第一个PDSCH没有对应的HARQ进程标识,如图7A和图7B,图8B所示,该第 一个PDSCH有对应的HARQ进程标识。
在一些实施例中,在一个PDSCH的第一个PDSCH发送时机不和半静态配置的上行符号冲突时,该一个PDSCH有对应的HARQ process ID;在一个PDSCH的第一个PDSCH发送时机和半静态配置的上行符号冲突时,该一个PDSCH没有对应的HARQ process ID。如果一个PDSCH对应的第一个PDSCH发送时机(或者说DCI指示的该一个PDSCH的时域资源配置(SLIV))不和半静态配置的上行符号冲突,则无论在后的其他PDSCH发送时机是否和半静态配置的上行符号冲突,则该PDSCH有对应的HARQ进程标识,或者说终端设备在确定HARQ进程标识时,不跳过该PDSCH,或者说为该PDSCH分配HARQ进程标识,至于该PDSCH对应的HARQ进程标识可以根据DCI指示的HARQ进程标识确定,具体可以参考现有技术,此处不再赘述。否则,该PDSCH没有对应的HARQ进程标识,或者说终端设备在确定HARQ进程标识时,跳过该PDSCH,或者说不为该PDSCH分配HARQ进程标识。该方法可以与前述例1或例3结合实施,例如图8A所示,该第一个PDSCH没有对应的HARQ进程标识,如图8B所示,该第一个PDSCH有对应的HARQ进程标识。
在一些实施例中,该DCI仅指示/调度一个PDSCH,该DCI应用的表支持通过一个DCI调度多于一个PDSCHs(该表的一行或多于一行包括多于一个SLIV),例如,支持通过一个DCI调度多于一个PDSCH,但DCI应用该表时,仅指示/调度一个PDSCH(例如,DCI中第一信息域指示的TDRA表的行仅包括一个SLIV),也就是说,即使该DCI相应的DCI format可以指示/调度多于一个PDSCH,但该DCI也只是/调度一个PDSCH,该一个PDSCH对应两个PDSCH发送时机。该终端设备在该第一数量个PDSCH发送时机上接收该PDSCH,或者,该终端设备根据是否和半静态配置的上行符号冲突在该第一数量个PDSCH发送时机中的一个或多个上接收该PDSCH,例如在不和半静态配置的上行符号冲突的PDSCH发送时机上接收PDSCH。或者说,该终端设备可能接收该两个PDSCH发送时机,或者根据是否和半静态配置的上行符号冲突接收一个或多个PDSCH发送时机。例如,接收不和半静态配置的上行符号冲突的PDSCH发送时机。
在一些实施例中,该终端设备针对该下行控制信息调度的PDSCH中的有效的PDSCH确定该第一数量个PDSCH发送时机。该下行控制信息调度的PDSCH中的各有效的PDSCH对应该第一数量个PDSCH发送时机。该终端设备不针对该下行控制 信息调度的PDSCH中的无效的PDSCH确定该第一数量个PDSCH发送时机。该终端设备在各个PDSCH发送时机上接收或不接收PDSCH。也就是说,仅针对有效的PDSCH有对应的PDSCH发送时机,针对无效的PDSCH没有对应的PDSCH发送时机。上述例3同样适用于此处,假设第一个PDSCH确定为有效的,则该第一个PDSCH对应两个PDSCH发送时机,终端设备在第一个PDSCH对应的第一个PDSCH发送时机上接收该第一个PDSCH,不在在第一个PDSCH对应的第二个PDSCH发送时机上接收该第一个PDSCH。
在一些实施例中,该DCI仅指示/调度一个有效的PDSCH,该有效的PDSCH是PDSCH对应的时域资源配置(例如SLIV)和半静态配置的上行符号不冲突的PDSCH,该DCI可以指示/调度一个或多个PDSCH,但其中仅有一个有效的PDSCH。例如,该DCI应用的表支持通过一个DCI调度多于一个PDSCHs(该表的一行或多于一行包括多于一个SLIV),例如,支持通过一个DCI调度多于一个PDSCH,但DCI应用该表时,仅指示/调度一个PDSCH(例如,DCI中第一信息域指示的TDRA表的行仅包括一个SLIV),且该一个PDSCH是有效的PDSCH;或者,DCI应用该表时,指示/调度多于一个PDSCH,且该多于一个PDSCH中仅包括一个有效的PDSCH。也就是说,即使该DCI相应的DCI format可以指示/调度多于一个PDSCH,但该DCI也只是/调度一个有效的PDSCH。
在一些实施例中,该有效的PDSCH对应两个PDSCH发送时机。也就是说,该终端设备根据DCI中指示/调度有效的PDSCH数确定是否应用多TRP重复发送方案'tdmSchemeA'。在有效的PDSCH数为1时,应用多TRP重复发送方案'tdmSchemeA'。该终端设备在该第一数量个PDSCH发送时机上接收该有效的PDSCH,或者,该终端设备根据是否和半静态配置的上行符号冲突在该第一数量个PDSCH发送时机中的一个或多个上接收该有效的PDSCH,例如在不和半静态配置的上行符号冲突的PDSCH发送时机上接收该有效的PDSCH。或者说,该终端设备可能接收该两个PDSCH发送时机,或者根据是否和半静态配置的上行符号冲突接收一个或多个PDSCH发送时机。例如,接收不和半静态配置的上行符号冲突的PDSCH发送时机。
在一些实施例中,该第一数量个PDSCH发送时机包括第一PDSCH发送时机和第二PDSCH发送时机,该方法还可以包括:(未图示)该终端设备根据该第一PDSCH发送时机对应的符号和/或该第二PDSCH发送时机对应的符号,和/或,根据第一分 配表确定候选PDSCH接收时机集合,该第一分配表与该第一PDSCH发送时机和该第二PDSCH发送时机之间的偏移值有关;该终端设备生成并发送HARQ-ACK码本,该码本包括该候选PDSCH接收时机集合对应的HARQ-ACK信息。也就是说,该终端设备针对402中接收或不接收的PDSCH生成HARQ反馈信息,并发送给网络设备,关于该反馈信息的生成和发送方法将在第三方面的实施例进行说明,此处不再赘述,也就是说第一方面的实施例和第三方面的实施例可以单独实施或者结合实施,本申请实施例并不以此作为限制。
由上述实施例可知,在支持一个DCI调度多于一个PDSCH的情况,也能够支持多TRP的重复方案,因此,不仅可以减少终端设备的PDCCH的监听次数以降低终端设备监听PDCCH的复杂度和功耗,同时也可以减小用于发送下行控制信令(DCI)的资源开销以提升数据吞吐量。
第二方面的实施例
本申请实施例提供一种信息发送方法,从网络设备侧进行说明。
图9是本申请实施例的信息发送方法一示意图,如图9所示,该方法包括:
901,网络设备向终端设备发送用于调度PDSCH的下行控制信息,该下行控制信息指示第一数量个TCI states;其中,该第一数量为大于1的整数;该下行控制信息对应的TDRA表中的一行或多于一行包括多于一个SLIV;
902,该网络设备发送该下行控制信息调度的PDSCH中的一个或多于一个PDSCH。
在一些实施例中,901-902的实施方式与第一方面的401-402对应,此处不再赘述。
由上述实施例可知,在支持一个DCI调度多于一个PDSCH的情况,也能够支持多TRP的重复方案,因此,不仅可以减少终端设备的PDCCH的监听次数以降低终端设备监听PDCCH的复杂度和功耗,同时也可以减小用于发送下行控制信令(DCI)的资源开销以提升数据吞吐量。
第三方面的实施例
本实施例提供一种信息反馈方法,从终端设备侧进行说明。
图10是本申请实施例的信息反馈方法的一示意图,如图10所示,该方法包括:
1001,终端设备根据第一PDSCH发送时机对应的符号和/或第二PDSCH发送时机对应的符号,和/或,根据第一分配表确定候选PDSCH接收时机集合,所述第一分配表与第一PDSCH发送时机和第二PDSCH发送时机之间的偏移值有关;
1002,该终端设备生成并发送HARQ-ACK码本,该码本包括所述候选PDSCH接收时机集合对应的HARQ-ACK信息。
在一些实施例中,终端设备需要对接收的PDSCH(例如DCI调度的PDSCH或SPS的PDSCH)或DCI(例如,用于去激活SPS的DCI)进行HARQ-ACK反馈,该HARQ-ACK反馈信息可以通过HARQ-ACK码本(例如Type-1HARQ-ACK codebook,或者称为半静态HARQ-ACK码本)承载,该码本可以包括一个或多个服务小区的HARQ-ACK信息比特。以下仅针对如何确定一个服务小区的HARQ-ACK信息比特进行说明。在该码本包括多个服务小区的HARQ-ACK信息比特的情况下,各个服务小区的HARQ-ACK信息比特的确定方式与前述一个服务小区的HARQ-ACK信息比特的确定方式相同,多个服务小区的HARQ-ACK信息比特以一定的顺序在该码本中以一定顺序排列,此处不再一一赘述。以下“HARQ-ACK”和“HARQ反馈”和“HARQ-ACK反馈”可以互换。
在一些实施例中,该码本包括第二数量(A)个候选PDSCH接收时机(occasion for candidate PDSCH reception)对应的HARQ-ACK信息比特,该第二数量是自然数。其中,该第二数量个(A个)候选PDSCH接收时机对应同一服务小区(i.e.前述一个服务小区),即,该第二数量个(A个)候选PDSCH接收时机属于服务小区的候选PDSCH接收时机集合M A,c。在现有技术中,由于仅支持通过一个DCI调度一个PDSCH,每个PDSCH TDRA配置中仅包括一个PDSCH时域资源配置,进而,在确定候选PDSCH接收时机集合时,仅考虑每个PDSCH TDRA配置都只包括一个PDSCH时域资源配置(即时隙中的符号位置(起始符号+长度)配置,e.g.SLIV)的情况,另外,现有技术中,也没有考虑多TRP场景下相同TB的重复发送方案(例如'tdmSchemeA'),而本申请中,为了支持通过一个DCI调度多于一个PDSCH和/或多TRP场景下相同TB的重复发送方案(例如'tdmSchemeA'),在确定候选PDSCH接收时机集合时,考虑了第一PDSCH发送时机对应的符号和/或第二PDSCH发送时机对应的符号,和/或,根据与第一PDSCH发送时机和第二PDSCH发送时机之间的偏移值有关的第一 分配表确定候选PDSCH接收时机集合,通过考虑上述因素,可以支持针对一个DCI调度多于一个PDSCH和/或多TRP场景下相同TB的重复发送方案(例如'tdmSchemeA')的情况下的HARQ-ACK信息反馈,从而减轻UE的PDCCH监听负担,降低电量损耗和UE复杂度。以下分别进行说明。
在一些实施例中,在确定候选PDSCH接收时机前,该终端设备需要确定HARQ-ACK信息反馈定时(也就是说,终端设备需要确定发送HARQ-ACK信息的时隙(上行时隙))。
在一些实施例中,该方法还可以包括(未图示):终端设备接收DCI,该终端设备根据该DCI中的用于指示HARQ-ACK信息反馈定时的第三信息域(PDSCH-to-HARQ_feedback timing indicator field)确定需要发送HARQ-ACK信息的时隙。例如,该DCI可以是第一方面实施例的401中的DCI,该DCI指示第一数量个TCI states,且调度至少一个PDSCH;其中,该第一数量为大于1的整数;该至少一个PDSCHs中的各个PDSCH对应第一数量个PDSCH发送时机;关于该DCI的实施方式可以参考第一方面的实施例,此处不再赘述。
在一些实施例中,HARQ-ACK信息(或者说HARQ-ACK codebook)由PUCCH或PUSCH承载。以下以由PUCCH承载HARQ-ACK信息为例进行HARQ-ACK反馈定时的说明。可选的,可以将下述PUCCH替换为PUSCH,本申请对其不进行限制。
在一些实施例中,该DCI可以包括第四信息域,该第四信息域可以是HARQ确认(HARQ-ACK)反馈时机指示(i.e.PDSCH-to-HARQ_feedback timing indicator)字段,该第四信息域用于指示HARQ确认(HARQ-ACK)信息的反馈时机k,或者该DCI也可以不包括该第四信息域,该终端设备接收高层信令配置的第二配置信息(例如dl-DataToUL-ACK或dl-DataToUL-ACKForDCIFormat1_2for DCI format 1_2),该第二配置信息用于指示HARQ确认(HARQ-ACK)信息的反馈时机k,或者该终端设备接收高层信令配置的第二配置信息(例如dl-DataToUL-ACK或dl-DataToUL-ACKForDCIFormat1_2for DCI format 1_2),该第二配置信息用于配置多个HARQ确认(HARQ-ACK)信息的反馈时机,该DCI也可以包括该第四信息域,该第二信息域用于从该第二配置信息配置的多个反馈时机中指示一个HARQ确认(HARQ-ACK)信息的反馈时机k。
例如,可以在同一PUCCH中反馈该DCI调度的一个或多于一个PDSCHs对应的 HARQ-ACK信息。或者,可以在不同(时隙的)PUCCH中反馈该DCI调度的一个或多于一个PDSCH对应的HARQ-ACK信息。
例如,可以在一个PUCCH上反馈该多于一个PDSCH的HARQ-ACK信息,以为
Figure PCTCN2022075933-appb-000001
为例,终端设备在索引为n+k的时隙(时隙n+k)发送HARQ-ACK信息,其中,索引为n的时隙(时隙n)是多于一个PDSCHs中最后一个PDSCH的结束时隙,n和k是大于0的整数,即最后一个PDSCH的结束时隙为n,k为HARQ-ACK信息的反馈时隙与时隙n的偏移,PDSCH的下行结束时隙n与其对应的上行时隙的索引的关系可以根据上下行子载波间隔确定,具体可以参考现有技术,此处步骤赘述。
在一些实施例中,终端设备在确定了需要反馈HARQ-ACK信息的时域位置或时隙后,可以确定候选PDSCH接收时机,并生成对应的码本,以下说明如何确定候选PDSCH接收时机。
在一些实施例中,为了确定候选PDSCH接收时机集合,需要确定可能包括(或者说对应)候选PDSCH接收时机的下行时隙。
在一些实施例中,根据时隙定时值K 1确定上述下行时隙。
例如针对需要发送HARQ-ACK信息的时隙,例如时隙n u,根据与激活的上行部分带宽UL BWP关联的时隙定时值K 1集合,可以分别确定与K 1集合中各个K 1对应的一个或多个下行时隙n D,其中K 1表示PDSCH相对于HARQ-ACK信息反馈时隙n D的偏移值,在确定各个K 1对应的一个或多个下行时隙时,可选的,还需要考虑上下行部分带宽的子载波间隔,一个K 1可能对应多个下行时隙,具体可参考现有技术,本申请实施例并不以此作为限制。
在一些实施例中,激活的上行部分带宽UL BWP关联的K 1集合的确定可以参考现有技术。例如,针对一个下行时隙n d,确定该时隙(下行时隙)对应的PDSCH时域资源配置,并确定时隙是否有对应的候选PDSCH接收时机,从而确定候选PDSCH接收时机集合。需要说明的是,前述确定各个下行时隙,以及时隙对应的PDSCH时域资源配置可以是先后执行,或者同时执行,本申请并不以此作为限制。
例如,现有技术中,仅考虑PDSCH时域资源配置(例如SLIV配置)是否和半静态配置的上行符号冲突来确定是否有对应的候选PDSCH接收时机,以下结合图16A和图16B进行说明。
如图16A所示,在HARQ反馈码本被配置了时域绑定(time domain bundling)的情况下(例如通过RRC信令携带enableTimeDomainHARQ-Bundling,HARQ反馈码本使能了时域绑定),如果TDRA表中一行中包括不和半静态配置冲突的SLIV,则该行保留,也就是说,如果TDRA表中至少一行中包括不和半静态配置冲突的SLIV,则预留相应的候选PDSCH接收时机。对于HARQ反馈时隙n u,假设TDRA表只有两行row 0和row 1,其中row 0包括两个PDSCH时域资源配置SLIV 0_0,SLIV 0_1,row 1包括三个PDSCH时域资源配置SLIV 1_0,SLIV 1_1,SLIV 1_2,K1集合包括{1,2},其中,时隙Slot n-2,n内的符号都是上行符号(半静态配置),时隙Slot n-1部分符号是上行符号,部分符号是上行(UL)符号,其余时隙内的符号都是下行(DL)符号,因此,针对K1=1,SLIV0_1和SLIV1_0是有效PDSCH,针对K1=2,SLIV0_0和SLIV1_0,SLIV 1_1是有效PDSCH,则存在分别与K1=1对应的候选PDSCH接收时机1以及与K1=2对应的候选PDSCH接收时机0。
如图16B所示,在HARQ反馈码本没有配置时域绑定(time domain bundling)的情况下。对于HARQ反馈时隙n u,假设TDRA表只有两行row 0和row 1,其中row0包括两个PDSCH时域资源配置SLIV 0_0,SLIV 0_1,row 1包括三个PDSCH时域资源配置SLIV 1_0,SLIV 1_1,SLIV 1_2,K1集合包括{1,2},根据现有技术扩展后,还可以包括{3,4},其中,时隙Slot n-2,n内的符号都是上行符号(半静态配置),时隙Slot n-1部分符号是上行符号,部分符号是上行(UL)符号,其余时隙内的符号都是下行(DL)符号,因此,针对K1=1(时隙Slot n-1),SLIV0_1是有效PDSCH,针对K1=2(时隙Slot n-2),没有有效的PDSCH,针对K1'=3(时隙Slot n-3),SLIV0_0,SLIV 1_1是有效PDSCH,针对K1'=4(时隙Slot n-4),SLIV1_0是有效PDSCH,则存在分别与K1=1对应的候选PDSCH接收时机2以及与K1'=3对应的候选PDSCH接收时机1,与K1'=4对应的候选PDSCH接收时机0。
与现有技术不同之处在于,本申请中,还需要考虑第一PDSCH发送时机对应的符号和/或第二PDSCH发送时机对应的符号,和/或,根据与第一PDSCH发送时机和第二PDSCH发送时机之间的偏移值有关的第一分配表。
在一些实施例中,第一PDSCH发送时机和第二PDSCH发送时机对应该DCI调度的至少一个PDSCH中的同一个PDSCH,例如至少一个PDSCH中的各个PDSCH关联第一数量个PDSCH发送时机时,该第一数量个PDSCH中的第一个PDSCH发送 时机被称为第一PDSCH发送时机,该第一数量个PDSCH中的第二个PDSCH发送时机或者最后一个PDSCH发送时机被称为第二PDSCH发送时机。第一PDSCH发送时机和第二PDSCH发送时机对应不同的TCI state(TRP),但承载相同的TB。该第一PDSCH发送时机根据DCI指示的SLIV确定,该第二PDSCH发送时机根据该第一PDSCH发送时机以及该偏移值确定,例如,该偏移值为为该第一PDSCH发送时机的最后一个符号和该第二PDSCH发送时机的第一个符号之间的时域偏移值,关于该偏移值的确定方式可以参考第一方面的实施例,此处不再赘述。
在一些实施例中,为了支持通过一个DCI调度多于一个PDSCH和/或多TRP场景下相同TB的重复发送方案(例如'tdmSchemeA'),根据时隙(下行时隙)对应的PDSCH时域资源配置中第一PDSCH发送时机和/或第二PDSCH发送时机对应的符号是否和半静态配置的上行符号冲突确定该时隙是否有对应的候选PDSCH接收时机,例如,在第一PDSCH发送时机和/或第二PDSCH发送时机对应的符号与半静态配置的上行符号冲突时,确定该时隙没有对应的候选PDSCH接收时机,否则有对应的候选PDSCH接收时机。
在一些实施例中,第一分配表用于确定候选PDSCH接收时机和/或用于调度PDSCH。
在一些实施例中,PDSCH TDRA配置和/或配置对应的索引可以包含在第一分配表中,例如,可以根据该各DCI格式可以应用的PDSCH TDRA表(该表支持通过一个DCI调度多于一个PDSCH,具体请参考第一方面的实施例)确定该第一分配表,进而根据该第一分配表确定PDSCH时域资源配置。该第一分配表还与激活的DL BWP相关联。该第一分配表是终端设备在服务小区c上配置的需要监听的DCI formats的时域资源分配表的并集。例如该第一分配表可以包括要监听的DCI formats应用的PDSCH TDRA表的所有行的并集,每一行的配置与PDSCH TDRA表相同,例如,对于一个特定的激活的DL BWP,表1是该第一分配表示例表,如下表1所示,一个PDSCH TDRA配置(对应第一分配表的一行)包括至少一个PDSCH时域资源配置,PDSCH时域资源配置中至少包括时隙中的符号位置(起始符号+长度)配置;另外,一个PDSCH TDRA配置还可以(可选)包括至少一个时隙偏移K0配置,该K0表示PDSCH与PDCCH的时隙偏移;另外,一个PDSCH TDRA配置还可以包括其他信息(例如,映射方式),其他信息配置包括在PDSCH时域资源配置中或者不包括在 PDSCH时域资源配置中,另外,如果终端设备被配置了ReferenceofSLIV-ForDCIFormat1_2,那么需要在DCI_format 1_2的PDSCH TDRA表的基础上添加新的行,此处不再一一举例,具体可以参考现有技术。
表1
Figure PCTCN2022075933-appb-000002
在一些实施例中,可以根据上述偏移值对上述第一分配表(表1)进行扩展,例如,针对该第一分配表中的现有的每一个SLIV,将其作为第一PDSCH发送时机,根据上述偏移值确定与每一个SLIV对应的第二PDSCH发送时机,并将第二PDSCH发送时机增加至该第一分配表中(以增加行索引和/或增加每行对应的SLIV的方式)。
在一些实施例中,根据扩展后的第一分配表(根据该偏移值扩展的第一分配表,或者说该第一分配表与该偏移值有关)中的各行PDSCH时域资源配置(例如SLIV)是否和上行符号冲突确定候选PDSCH接收时机,例如,在配置了时域绑定的情况下,针对一个K 1,在该第一分配表中有至少一行的至少一个SLIV与半静态配置的上行符号不冲突时,确定有对应的候选PDSCH接收时机,否则没有对应的候选PDSCH接收时机。由于该至少一行的至少一个SLIV可能是第一PDSCH发送时机也可能是第二PDSCH发送时机,因此,也可以看作在有至少一个第一PDSCH发送时机和/或第二PDSCH发送时机的符号和半静态配置的上行符号不冲突时,确定有对应的候选PDSCH接收时机,否则没有对应的候选PDSCH接收时机。针对没有配置时域绑定的情况,在该第一分配表中与一个K 1对应的时隙对应的至少一个SLIV与半静态配置的上行符号不冲突时,确定有对应的候选PDSCH接收时机,否则没有对应的候选PDSCH接收时机。
需要说明是,也可以不根据该偏移值对第一分配表进行扩展,针对该第一分配表中的现有的每一个SLIV,将其作为第一PDSCH发送时机,根据未经该偏移值扩展的第一分配表中的各行PDSCH时域资源配置(例如SLIV)是否和上行符号冲突确定候选PDSCH接收时机,例如,配置了时域绑定的情况下,针对一个K 1,在未经偏移值扩展的第一分配表中有至少一行的至少一个SLIV与半静态配置的上行符号不冲突时,确定有对应的候选PDSCH接收时机,否则没有对应的候选PDSCH接收时机。 由于该各个SLIV相当于第一PDSCH发送时机,因此,也可以看作在有至少一个第一PDSCH发送时机的符号和半静态配置的上行符号不冲突时,确定有对应的候选PDSCH接收时机,否则没有对应的候选PDSCH接收时机。针对没有配置时域绑定的情况,在该未经该偏移值扩展的第一分配表中与一个K 1对应的时隙对应的至少一个SLIV与半静态配置的上行符号不冲突时,确定有对应的候选PDSCH接收时机,否则没有对应的候选PDSCH接收时机。
在一些实施例中,在1002中,在确定候选PDSCH接收时机集合后,进一步的生成包括所述候选PDSCH接收时机集合对应的HARQ-ACK信息的HARQ-ACK码本,以下进一步说明如何根据候选PDSCH接收时机集合生成该码本。
在一些实施例中,该码本的大小不随实际的数据调度情况动态变化,而是根据预配置(e.g.高层信令配置的)或预定义的参数确定。以下仅针对如何确定一个服务小区的HARQ-ACK信息比特进行说明。
在一些实施例中,在没有配置时域绑定的情况下,一个服务小区的候选PDSCH接收时机对应的HARQ-ACK信息比特数与该小区配置的HARQ空间绑定参数(harq-ACK-SpatialBundlingPUCCH),码块组(CBG)配置参数(PDSCH-CodeBlockGroupTransmission),支持的最大码字参数(maxNrofCodeWordsScheduledByDCI)有关,如下表2在PUCCH上反馈HARQ-ACK信息为例:
表2
Figure PCTCN2022075933-appb-000003
以上仅为示例说明,一个服务小区的候选PDSCH接收时机对应的HARQ-ACK信息比特数,比特值的确定方式也不限于此,例如在配置了时域绑定(time domain bundling)的情况下,还可以将该候选PDSCH接收时机关联的(有效的valid)PDSCH 对应的HARQ反馈信息的比特值进行逻辑求和,将逻辑和的值作为该候选PDSCH接收时机对应的HARQ-ACK信息的比特值,其中,如果一个候选PDSCH接收时机没有对应的PDSCH,其对应的HARQ-ACK信息比特设为NACK。此处不再赘述。如图16A所示,候选PDSCH接收时机0对应的HARQ-ACK信息的比特值为SLIV 1_0和SLIV 1_1对应的HARQ-ACK信息的比特值的逻辑和,候选PDSCH接收时机0对应的HARQ-ACK信息的比特值为NACK。如图16B所示,候选PDSCH接收时机0对应的HARQ-ACK信息的比特值为SLIV 1_0对应的PDSCH的HARQ-ACK信息的比特值,候选PDSCH接收时机1对应的HARQ-ACK信息的比特值为SLIV 1_1对应的PDSCH的HARQ-ACK信息的比特值,候选PDSCH接收时机2对应的HARQ-ACK信息的比特值为NACK。
在一些实施例中,由于一个候选PDSCH接收时机对应一个PDSCH,因此,按候选PDSCH接收时机集合中第二数量个候选PDSCH接收时机的顺序排列各候选PDSCH接收时机对应的HARQ-ACK信息比特,以得到一个服务小区的HARQ-ACK信息比特。如前所述,在码本包括一个服务小区的HARQ-ACK信息比特的情况下,将该一个服务小区的HARQ-ACK信息比特作为码本进行反馈,在码本包括多个服务小区的HARQ-ACK信息比特的情况下,各个服务小区的HARQ-ACK信息比特的确定方式与一个服务小区的HARQ-ACK信息比特的确定方式相同,但在具体确定时,各服务小区对应的PDSCH TDRA配置等其他参数可能是相同的或者不同的,例如上述参数可能是针对各服务小区单独配置的,但本实施例并不以此作为限制。各个服务小区对应的HARQ-ACK信息比特可以按照服务小区的索引升序依次排列,以生成码本进行反馈。
需要说明的是,该方法还可以包括:该终端设备接收网络设备发送的高层信令,该高层信令(例如RRC信令中的repetitionScheme参数)用于配置多TRP场景下相同TB的重复发送方案(例如配置为'tdmSchemeA')。也就是说,只有终端设备在被配置了'tdmSchemeA'的情况下和/或multi-PDSCH scheduling的情况下,在确定候选PDSCH接收时机集合时,才使用1001中的实施方式,但本申请实施例并不以此作为限制。
由上述实施例可知,可以支持在多TRP的重复方案和/或多PDSCH调度情况下的HARQ反馈,从而减轻UE的PDCCH监听负担,降低电量损耗和UE复杂度。
值得注意的是,以上附图4,9,10仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其它的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图4,9,10的记载。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
第四方面的实施例
本申请实施例提供一种信息接收装置。该装置例如可以是终端设备,也可以是配置于终端设备的某个或某些部件或者组件,与第一方面的实施例相同的内容不再赘述。
图11是本申请实施例的信息接收装置的一示意图,如图11所示,信息接收装置1100包括:
第一接收单元1101,其接收网络设备发送的用于调度PDSCH的下行控制信息,该下行控制信息指示第一数量个TCI states;其中,该第一数量为大于1的整数;该下行控制信息对应的TDRA表中的一行或多于一行包括多于一个SLIV;
第二接收单元1102,其接收该下行控制信息调度的PDSCH中的一个或多于一个。
在一些实施例中,该终端设备还可以包括(未图示):第三确定单元,其针对该下行控制信息调度的PDSCH中的各PDSCH确定该第一数量个PDSCH发送时机。该下行控制信息调度的PDSCH中的各个PDSCH对应该第一数量个PDSCH发送时机。该第二接收单元在各个PDSCH发送时机上接收或不接收PDSCH。以下示例说明第一数量个PDSCH发送时机以及如何确定是否在各个PDSCH发送时机上接收或不接收PDSCH。
在一些实施例中,该DCI调度多于一个PDSCHs。
在一些实施例中,在一个PDSCH存在和半静态配置的上行符号冲突的PDSCH发送时机时,该第二接收单元不接收该一个PDSCH;在一个PDSCH不存在和半静态配置的上行符号冲突的PDSCH发送时机时,该第二接收单元接收该一个PDSCH。
在一些实施例中,在一个PDSCH存在和半静态配置的上行符号不冲突的PDSCH发送时机时,该第二接收单元接收该一个PDSCH;在一个PDSCH不存在和半静态 配置的上行符号不冲突的PDSCH发送时机时,该第二接收单元不接收该一个PDSCH。
在一些实施例中,该第二接收单元在不和半静态配置的上行符号冲突的PDSCH发送时机上接收该一个PDSCH。
在一些实施例中,在一个PDSCH的第一个PDSCH发送时机不和半静态配置的上行符号冲突时,该第二接收单元接收该一个PDSCH;在一个PDSCH的第一个PDSCH发送时机和半静态配置的上行符号冲突时,所该第二接收单元不接收该一个PDSCH。
在一些实施例中,该装置还可以包括:(未图示)第五确定单元,其用于确定DCI调度的PDSCH的HARQ进程标识。该装置可以不包括第二接收单元,包括第一接收单元和第五确定单元。
在一些实施例中,在一个PDSCH存在和半静态配置的上行符号冲突的PDSCH发送时机时,该一个PDSCH没有对应的HARQ process ID;在一个PDSCH不存在和半静态配置的上行符号冲突的PDSCH发送时机时,该一个PDSCH有对应的HARQ process ID。
在一些实施例中,在一个PDSCH存在和半静态配置的上行符号不冲突的PDSCH发送时机时,该一个PDSCH有对应的HARQ process ID;在一个PDSCH不存在和半静态配置的上行符号不冲突的PDSCH发送时机时,该一个PDSCH没有对应的HARQ process ID。
在一些实施例中,在一个PDSCH的第一个PDSCH发送时机不和半静态配置的上行符号冲突时,该一个PDSCH有对应的HARQ process ID;在一个PDSCH的第一个PDSCH发送时机和半静态配置的上行符号冲突时,该一个PDSCH没有对应的HARQ process ID。
在一些实施例中,该DCI调度一个PDSCH。
在一些实施例中,该第二接收单元在该第一数量个PDSCH发送时机上接收该PDSCH,或者,该第二接收单元根据是否和半静态配置的上行符号冲突在该第一数量个PDSCH发送时机中的一个或多个上接收该PDSCH。
在一些实施例中,该终端设备还可以包括(未图示):第四确定单元,其针对该下行控制信息调度的PDSCH中的有效的PDSCH确定该第一数量个PDSCH发送时机。该下行控制信息调度的PDSCH中的各有效的PDSCH对应该第一数量个PDSCH发送 时机。该第二确定单元不针对该下行控制信息调度的PDSCH中的无效的PDSCH确定该第一数量个PDSCH发送时机。该第二接收单元在各个PDSCH发送时机上接收或不接收PDSCH。
在一些实施例中,该DCI调度一个或多于一个PDSCH,该一个或多于一个PDSCH仅包括一个有效的PDSCH,该有效的PDSCH对应该第一数量个PDSCH发送时机。
在一些实施例中,该有效的PDSCH是PDSCH对应的时域资源配置和半静态配置的上行符号不冲突的PDSCH。
在一些实施例中,该第二接收单元在该第一数量个PDSCH发送时机上接收该有效的PDSCH,或者,该第二接收单元根据是否和半静态配置的上行符号冲突在该第一数量个PDSCH发送时机中的一个或多个上接收该有效的PDSCH。
在一些实施例中,该第一数量个PDSCH发送时机包括第一PDSCH发送时机和第二PDSCH发送时机,该装置还包括:(未图示)
第一确定单元,其根据该第一PDSCH发送时机对应的符号和/或该第二PDSCH发送时机对应的符号,和/或,根据第一分配表确定候选PDSCH接收时机集合,该第一分配表与该第一PDSCH发送时机和该第二PDSCH发送时机之间的偏移值有关;
第一处理单元,其生成并发送HARQ-ACK码本,该码本包括该候选PDSCH接收时机集合对应的HARQ-ACK信息。
在一些实施例中,第一接收单元1101和第二接收单元1102的实施方式可以参考第一方面实施例的401-402,重复之处不再赘述。
第五方面的实施例
本申请实施例提供一种信息发送装置。该装置例如可以是网络设备,也可以是配置于网络设备的某个或某些部件或者组件,与第二方面的实施例相同的内容不再赘述。
图12是本申请实施例的信息发送装置的另一示意图,如图12所示,信息发送装置1200包括:
第一发送单元1201,其向终端设备发送用于调度PDSCH的下行控制信息,该下行控制信息指示第一数量个TCI states;其中,该第一数量为大于1的整数;该下行控制信息对应的TDRA表中的一行或多于一行包括多于一个SLIV;
第二发送单元1202,其发送该下行控制信息调度的PDSCH中的一个或多于一个。
在一些实施例中,第一发送单元1201和第二发送单元1202的实施方式可以参考第二方面实施例的901-902,重复之处不再赘述。
由上述实施例可知,在支持一个DCI调度多于一个PDSCH的情况,也能够支持多TRP的重复方案,因此,不仅可以减少终端设备的PDCCH的监听次数以降低终端设备监听PDCCH的复杂度和功耗,同时也可以减小用于发送下行控制信令(DCI)的资源开销以提升数据吞吐量。
第六方面的实施例
本申请实施例提供一种信息反馈装置。该装置例如可以是终端设备,也可以是配置于终端设备的某个或某些部件或者组件,与第三方面的实施例相同的内容不再赘述。
图13是本申请实施例的信息反馈装置的一示意图,如图13所示,信息反馈装置1300包括:
第二确定单元1301,其根据第一PDSCH发送时机对应的符号和/或第二PDSCH发送时机对应的符号,和/或,根据第一分配表确定候选PDSCH接收时机集合,该第一分配表与第一PDSCH发送时机和第二PDSCH发送时机之间的偏移值有关;
第二处理单元1302,其生成并发送HARQ-ACK码本,该码本包括该候选PDSCH接收时机集合对应的HARQ-ACK信息。
在一些实施例中,该装置还可以包括:(未图示)
第三接收单元,其接收网络设备发送的下行控制信息,该下行控制信息指示第一数量个TCI states,该第一PDSCH发送时机和该第二PDSCH发送时机对应一个PDSCH,且该第一PDSCH发送时机和该第二PDSCH发送时机分别和不同的TCI state对应。
在一些实施例中,该偏移值为该第一PDSCH发送时机的最后一个符号和该第二PDSCH发送时机的第一个符号之间的时域偏移值。
在一些实施例中,第二确定单元1301和第二处理单元1302的实施方式可以参考第三方面实施例的1001-1002,重复之处不再赘述。
由上述实施例可知,支持针对一个DCI调度多个PDSCH的HARQ-ACK信息反馈,进而支持一个DCI调度多个PDSCH的调度方法,从而减轻UE的PDCCH监听负担,降低电量损耗和UE复杂度。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。图11-13的各个装置还可以包括其它部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图11-13中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
上述第四和第六方面的实施例可以单独实施或结合实施,本申请实施例并不以此作为限制。
第七方面的实施例
本申请实施例还提供一种通信系统,可以参考图3,与第一方面至第六方面的实施例相同的内容不再赘述。
在一些实施例中,通信系统100至少可以包括:终端设备102和网络设备101。
在一些实施例中,该终端设备102的实施方式可以参考终端设备1100,该网络设备的实施方式可以参考网络设备100,此处不再赘述。
本申请实施例还提供一种网络设备,例如可以是基站,但本申请不限于此,还可以是其它的网络设备。
图14是本申请实施例的网络设备的构成示意图。如图14所示,网络设备1400可以包括:处理器1410(例如中央处理器CPU)和存储器1420;存储器1420耦合到处理器1410。其中该存储器1420可存储各种数据;此外还存储信息处理的程序1430,并且在处理器1410的控制下执行该程序1430。
例如,处理器1410可以被配置为执行程序而实现如第二方面的实施例所述的信息发送方法。
此外,如图14所示,网络设备1400还可以包括:收发机1440和天线1450等; 其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1400也并不是必须要包括图14中所示的所有部件;此外,网络设备1400还可以包括图14中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种终端设备,但本申请不限于此,还可以是其它的设备。
图15是本申请实施例的终端设备的示意图。如图15所示,该终端设备1500可以包括处理器1510和存储器1520;存储器1520存储有数据和程序,并耦合到处理器1510。值得注意的是,该图是示例性的;还可以使用其它类型的结构,来补充或代替该结构,以实现电信功能或其它功能。
例如,处理器1510可以被配置为执行程序而实现如第一方面的实施例所述的信息接收方法或第三方面的实施例所述的信息反馈方法。
如图15所示,该终端设备1500还可以包括:通信模块1530、输入单元1540、显式器1550、电源1560。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备1500也并不是必须要包括图15中所示的所有部件,上述部件并不是必需的;此外,终端设备1500还可以包括图15中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机程序,其中当在终端设备中执行所述程序时,所述程序使得所述终端设备执行第一方面的实施例所述的信息接收方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得终端设备执行第一方面的实施例所述的信息接收方法。
本申请实施例还提供一种计算机程序,其中当在网络设备中执行所述程序时,所述程序使得所述网络设备执行第二方面的实施例所述的信息发送方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得网络设备执行第二方面的实施例所述的信息发送方法。
本申请实施例还提供一种计算机程序,其中当在终端设备中执行所述程序时,所述程序使得所述终端设备执行第三方面的实施例所述的信息反馈方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得终端设备执行第三方面的实施例所述的信息反馈方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现 上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于包括以上实施例的实施方式,还公开下述的附记:
1.一种信息接收方法,其特征在于,所述方法包括:
终端设备接收网络设备发送的用于调度PDSCH的下行控制信息DCI,所述下行控制信息指示第一数量个TCI states;其中,所述第一数量为大于1的整数;所述下行控制信息对应的TDRA表中的一行或多于一行包括多于一个SLIV;
所述终端设备接收所述下行控制信息调度的PDSCH中的一个或多于一个PDSCH。
2.根据附记1所述的方法,其中,
所述终端设备针对所述下行控制信息调度的PDSCH中的各PDSCH确定所述第一数量个PDSCH发送时机。
3.根据附记1或2所述的方法,其中,所述下行控制信息调度的PDSCH中的各个PDSCH对应所述第一数量个PDSCH发送时机。
4.根据附记2或3所述的方法,其中,所述终端设备在各个PDSCH发送时机上接收或不接收PDSCH。
5.根据附记1至4任一项所述的方法,其中,
所述DCI调度多于一个PDSCHs。
6.根据附记5所述的方法,其中,
在一个PDSCH存在和半静态配置的上行符号冲突的PDSCH发送时机时,所述终端设备不接收所述一个PDSCH;
在一个PDSCH不存在和半静态配置的上行符号冲突的PDSCH发送时机时,所述终端设备接收所述一个PDSCH。
7.根据附记5所述的方法,其中,
在一个PDSCH存在和半静态配置的上行符号不冲突的PDSCH发送时机时,所述终端设备接收所述一个PDSCH;
在一个PDSCH不存在和半静态配置的上行符号不冲突的PDSCH发送时机时,所述终端设备不接收所述一个PDSCH。
8.根据附记5所述的方法,其中,
所述终端设备在不和半静态配置的上行符号冲突的PDSCH发送时机上接收所述一个PDSCH。
9.根据附记5所述的方法,其中,
在一个PDSCH的第一个PDSCH发送时机不和半静态配置的上行符号冲突时, 所述终端设备接收所述一个PDSCH;
在一个PDSCH的第一个PDSCH发送时机和半静态配置的上行符号冲突时,所述终端设备不接收所述一个PDSCH。
10.根据附记6所述的方法,其中,在一个PDSCH存在和半静态配置的上行符号冲突的PDSCH发送时机时,所述一个PDSCH没有对应的HARQ process ID;
在一个PDSCH不存在和半静态配置的上行符号冲突的PDSCH发送时机时,所述一个PDSCH有对应的HARQ process ID。
11.根据附记6至9任一项所述的方法,其中,
在一个PDSCH存在和半静态配置的上行符号不冲突的PDSCH发送时机时,所述一个PDSCH有对应的HARQ process ID;
在一个PDSCH不存在和半静态配置的上行符号不冲突的PDSCH发送时机时,所述一个PDSCH没有对应的HARQ process ID。
12.根据附记6或9所述的方法,其中,
在一个PDSCH的第一个PDSCH发送时机不和半静态配置的上行符号冲突时,所述一个PDSCH有对应的HARQ process ID;
在一个PDSCH的第一个PDSCH发送时机和半静态配置的上行符号冲突时,所述一个PDSCH没有对应的HARQ process ID。
13.根据附记2至4任一项所述的方法,其中,
所述DCI调度一个PDSCH。
14.根据附记13所述的方法,其中,
所述终端设备在所述第一数量个PDSCH发送时机上接收所述PDSCH,或者,
所述终端设备根据是否和半静态配置的上行符号冲突在所述第一数量个PDSCH发送时机中的一个或多个上接收所述PDSCH。
15.根据附记1所述的方法,其中,
所述终端设备针对所述下行控制信息调度的PDSCH中的有效的PDSCH确定所述第一数量个PDSCH发送时机。
16.根据附记1或15所述的方法,其中,所述下行控制信息调度的PDSCH中的各有效的PDSCH对应所述第一数量个PDSCH发送时机。
17.根据附记15或16所述的方法,其中,所述终端设备在各个PDSCH发送时 机上接收或不接收PDSCH。
18.根据附记17所述的方法,其中,所述方法还包括,所述终端设备不针对所述下行控制信息调度的PDSCH中的无效的PDSCH确定所述第一数量个PDSCH发送时机。
19.根据附记1,15至18任一项所述的方法,其中,
所述DCI调度一个或多于一个PDSCH,所述一个或多于一个PDSCH仅包括一个有效的PDSCH,所述有效的PDSCH对应所述第一数量个PDSCH发送时机。
20.根据附记15至19任一项所述的方法,其中,所述有效的PDSCH是PDSCH对应的时域资源配置和半静态配置的上行符号不冲突的PDSCH。
21.根据附记15至20任一项所述的方法,其中,
所述终端设备在所述第一数量个PDSCH发送时机上接收所述有效的PDSCH,或者,
所述终端设备根据是否和半静态配置的上行符号冲突在所述第一数量个PDSCH发送时机中的一个或多个上接收所述有效的PDSCH。
22.根据附记1至21任一项所述的方法,其中,所述第一数量个PDSCH发送时机包括第一PDSCH发送时机和第二PDSCH发送时机,所述方法包括:
所述终端设备根据所述第一PDSCH发送时机对应的符号和/或所述第二PDSCH发送时机对应的符号,和/或,根据第一分配表确定候选PDSCH接收时机集合,所述第一分配表与所述第一PDSCH发送时机和所述第二PDSCH发送时机之间的偏移值有关;
所述终端设备生成并发送HARQ-ACK码本,所述码本包括所述候选PDSCH接收时机集合对应的HARQ-ACK信息。
23.一种信息发送方法,其特征在于,所述方法包括:
网络设备向终端设备发送用于调度PDSCH的下行控制信息,所述下行控制信息指示第一数量个TCI states,其中,所述第一数量为大于1的整数;所述下行控制信息对应的TDRA表中的一行或多于一行包括多于一个SLIV;
所述网络设备发送所述下行控制信息调度的PDSCH中的一个或多于一个PDSCH。
24.一种信息反馈方法,其特征在于,所述方法包括:
终端设备根据第一PDSCH发送时机对应的符号和/或第二PDSCH发送时机对应的符号,和/或,根据第一分配表确定候选PDSCH接收时机集合,所述第一分配表与第一PDSCH发送时机和第二PDSCH发送时机之间的偏移值有关;
所述终端设备生成并发送HARQ-ACK码本,所述码本包括所述候选PDSCH接收时机集合对应的HARQ-ACK信息。
25.根据附记24所述的方法,其中,所述方法还包括:
所述终端设备接收网络设备发送的下行控制信息,所述下行控制信息指示第一数量个TCI states,所述第一PDSCH发送时机和所述第二PDSCH发送时机对应一个PDSCH,且所述第一PDSCH发送时机和所述第二PDSCH发送时机分别和不同的TCI state对应。
26.根据附记24或25所述的方法,其中,所述偏移值为所述第一PDSCH发送时机的最后一个符号和所述第二PDSCH发送时机的第一个符号之间的时域偏移值。
27.一种信息接收方法,其特征在于,所述方法包括:
终端设备接收网络设备发送的用于调度PDSCH的下行控制信息,所述下行控制信息指示第一数量个TCI states;其中,所述第一数量为大于1的整数;所述下行控制信息对应的TDRA表中的一行或多于一行包括多于一个SLIV;
所述终端设备确定所述调度的PDSCH对应的HARQ进程标识。
28.根据附记27所述的方法,其中,
所述终端设备针对所述下行控制信息调度的PDSCH中的各PDSCH确定所述第一数量个PDSCH发送时机。
29.根据附记27或28所述的方法,其中,所述下行控制信息调度的PDSCH中的各个PDSCH对应所述第一数量个PDSCH发送时机。
30.根据附记27至29任一项所述的方法,其中,
所述DCI调度多于一个PDSCHs。
31.根据附记27至30任一项所述的方法,其中,在一个PDSCH存在和半静态配置的上行符号冲突的PDSCH发送时机时,所述一个PDSCH没有对应的HARQ process ID;
在一个PDSCH不存在和半静态配置的上行符号冲突的PDSCH发送时机时,所述一个PDSCH有对应的HARQ process ID。
32.根据附记27至30任一项所述的方法,其中,
在一个PDSCH存在和半静态配置的上行符号不冲突的PDSCH发送时机时,所述一个PDSCH有对应的HARQ process ID;
在一个PDSCH不存在和半静态配置的上行符号不冲突的PDSCH发送时机时,所述一个PDSCH没有对应的HARQ process ID。
33.根据附记27至30任一项所述的方法,其中,
在一个PDSCH的第一个PDSCH发送时机不和半静态配置的上行符号冲突时,所述一个PDSCH有对应的HARQ process ID;
在一个PDSCH的第一个PDSCH发送时机和半静态配置的上行符号冲突时,所述一个PDSCH没有对应的HARQ process ID。
34.一种网络设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记23所述的信息发送方法。
35.一种终端设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至22,24至33任一项所述的方法。
36.一种通信系统,包括:
附记35所述的终端设备;和/或附记34所述的网络设备。
37.一种信息接收装置,其特征在于,应用于终端设备,所述装置包括:
第一接收单元,其接收网络设备发送的用于调度PDSCH的下行控制信息,所述下行控制信息指示第一数量个TCI states;其中,所述第一数量为大于1的整数;所述下行控制信息对应的TDRA表中的一行或多于一行包括多于一个SLIV;
第五确定单元,其确定所述调度的PDSCH对应的HARQ进程标识。
38.根据附记37所述的装置,其中,
所述终端设备针对所述下行控制信息调度的PDSCH中的各PDSCH确定所述第一数量个PDSCH发送时机。
39.根据附记37或38所述的装置,其中,所述下行控制信息调度的PDSCH中的各个PDSCH对应所述第一数量个PDSCH发送时机。
40.根据附记37至39任一项所述的装置,其中,
所述DCI调度多于一个PDSCHs。
41.根据附记37至40任一项所述的装置,其中,在一个PDSCH存在和半静态配置的上行符号冲突的PDSCH发送时机时,所述一个PDSCH没有对应的HARQ process ID;
在一个PDSCH不存在和半静态配置的上行符号冲突的PDSCH发送时机时,所述一个PDSCH有对应的HARQ process ID。
42.根据附记37至40任一项所述的装置,其中,
在一个PDSCH存在和半静态配置的上行符号不冲突的PDSCH发送时机时,所述一个PDSCH有对应的HARQ process ID;
在一个PDSCH不存在和半静态配置的上行符号不冲突的PDSCH发送时机时,所述一个PDSCH没有对应的HARQ process ID。
43.根据附记37至40任一项所述的装置,其中,
在一个PDSCH的第一个PDSCH发送时机不和半静态配置的上行符号冲突时,所述一个PDSCH有对应的HARQ process ID;
在一个PDSCH的第一个PDSCH发送时机和半静态配置的上行符号冲突时,所述一个PDSCH没有对应的HARQ process ID。

Claims (20)

  1. 一种信息接收装置,应用于终端设备,其特征在于,所述装置包括:
    第一接收单元,其接收网络设备发送用于调度PDSCH的下行控制信息DCI,所述下行控制信息指示第一数量个TCI states;其中,所述第一数量为大于1的整数;所述下行控制信息对应的TDRA表中的一行或多于一行包括多于一个SLIV;
    第二接收单元,其接收所述下行控制信息调度的PDSCH中的一个或多于一个PDSCH。
  2. 根据权利要求1所述的装置,其中,所述下行控制信息调度的PDSCH中的各个PDSCH对应所述第一数量个PDSCH发送时机。
  3. 根据权利要求2所述的装置,其中,
    所述DCI调度多于一个PDSCHs。
  4. 根据权利要求3所述的装置,其中,
    在一个PDSCH存在和半静态配置的上行符号冲突的PDSCH发送时机时,所述第二接收单元不接收所述一个PDSCH;
    在一个PDSCH不存在和半静态配置的上行符号冲突的PDSCH发送时机时,所述第二接收单元接收所述一个PDSCH。
  5. 根据权利要求3所述的装置,其中,
    在一个PDSCH存在和半静态配置的上行符号不冲突的PDSCH发送时机时,所述第二接收单元接收所述一个PDSCH;
    在一个PDSCH不存在和半静态配置的上行符号不冲突的PDSCH发送时机时,所述第二接收单元不接收所述一个PDSCH。
  6. 根据权利要求3所述的装置,其中,
    所述第二接收单元在不和半静态配置的上行符号冲突的PDSCH发送时机上接收所述一个PDSCH。
  7. 根据权利要求3所述的装置,其中,
    在一个PDSCH的第一个PDSCH发送时机不和半静态配置的上行符号冲突时,所述第二接收单元接收所述一个PDSCH;
    在一个PDSCH的第一个PDSCH发送时机和半静态配置的上行符号冲突时,所 述第二接收单元不接收所述一个PDSCH。
  8. 根据权利要求4所述的装置,其中,在一个PDSCH存在和半静态配置的上行符号冲突的PDSCH发送时机时,所述一个PDSCH没有对应的HARQ process ID;
    在一个PDSCH不存在和半静态配置的上行符号冲突的PDSCH发送时机时,所述一个PDSCH有对应的HARQ process ID。
  9. 根据权利要求4所述的装置,其中,
    在一个PDSCH存在和半静态配置的上行符号不冲突的PDSCH发送时机时,所述一个PDSCH有对应的HARQ process ID;
    在一个PDSCH不存在和半静态配置的上行符号不冲突的PDSCH发送时机时,所述一个PDSCH没有对应的HARQ process ID。
  10. 根据权利要求4所述的装置,其中,
    在一个PDSCH的第一个PDSCH发送时机不和半静态配置的上行符号冲突时,所述一个PDSCH有对应的HARQ process ID;
    在一个PDSCH的第一个PDSCH发送时机和半静态配置的上行符号冲突时,所述一个PDSCH没有对应的HARQ process ID。
  11. 根据权利要求2所述的装置,其中,
    所述DCI调度一个PDSCH。
  12. 根据权利要求11所述的装置,其中,
    所述第二接收单元在所述第一数量个PDSCH发送时机上接收所述PDSCH,或者,
    所述第二接收单元根据是否和半静态配置的上行符号冲突在所述第一数量个PDSCH发送时机中的一个或多个上接收所述PDSCH。
  13. 根据权利要求1所述的装置,其中,所述装置还包括:
    第四确定单元,其针对所述下行控制信息调度的PDSCH中的有效的PDSCH确定所述第一数量个PDSCH发送时机。
  14. 根据权利要求13所述的装置,其中,所述下行控制信息调度的PDSCH中的各有效的PDSCH对应所述第一数量个PDSCH发送时机。
  15. 根据权利要求13所述的装置,其中,
    所述DCI调度一个或多于一个PDSCH,所述一个或多于一个PDSCH仅包括一 个有效的PDSCH,所述有效的PDSCH对应所述第一数量个PDSCH发送时机。
  16. 根据权利要求13所述的装置,其中,所述有效的PDSCH是PDSCH对应的时域资源配置和半静态配置的上行符号不冲突的PDSCH。
  17. 一种信息发送装置,应用于网络设备,其特征在于,所述装置包括:
    第一发送单元,其向终端设备发送用于调度PDSCH的下行控制信息,所述下行控制信息指示第一数量个TCI states;其中,所述第一数量为大于1的整数;所述下行控制信息对应的TDRA表中的一行或多于一行包括多于一个SLIV;
    第二发送单元,其发送所述下行控制信息调度的PDSCH中的一个或多于一个PDSCH。
  18. 一种信息反馈装置,应用于终端设备,其特征在于,所述装置包括:
    第二确定单元,其根据第一PDSCH发送时机对应的符号和/或第二PDSCH发送时机对应的符号,和/或,根据第一分配表确定候选PDSCH接收时机集合,所述第一分配表与第一PDSCH发送时机和第二PDSCH发送时机之间的偏移值有关;
    第二处理单元,其生成并发送HARQ-ACK码本,所述码本包括所述候选PDSCH接收时机集合对应的HARQ-ACK信息。
  19. 根据权利要求18所述的装置,其中,所述装置还包括:
    第三接收单元,其接收网络设备发送的下行控制信息,所述下行控制信息指示第一数量个TCI states,所述第一PDSCH发送时机和所述第二PDSCH发送时机对应一个PDSCH,且所述第一PDSCH发送时机和所述第二PDSCH发送时机分别和不同的TCI state对应。
  20. 根据权利要求18所述的装置,其中,所述偏移值为所述第一PDSCH发送时机的最后一个符号和所述第二PDSCH发送时机的第一个符号之间的时域偏移值。
PCT/CN2022/075933 2022-02-10 2022-02-10 信息反馈方法、信息接收方法以及装置 WO2023150985A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/075933 WO2023150985A1 (zh) 2022-02-10 2022-02-10 信息反馈方法、信息接收方法以及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/075933 WO2023150985A1 (zh) 2022-02-10 2022-02-10 信息反馈方法、信息接收方法以及装置

Publications (1)

Publication Number Publication Date
WO2023150985A1 true WO2023150985A1 (zh) 2023-08-17

Family

ID=87563482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075933 WO2023150985A1 (zh) 2022-02-10 2022-02-10 信息反馈方法、信息接收方法以及装置

Country Status (1)

Country Link
WO (1) WO2023150985A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111800868A (zh) * 2019-04-02 2020-10-20 华为技术有限公司 通信方法及装置
WO2021012662A1 (zh) * 2019-07-19 2021-01-28 中国信息通信研究院 一种多点发送混合自动重传请求方法和设备
WO2021062818A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 一种发送混合自动反馈重传确认/否认信息的方法及装置
CN113853763A (zh) * 2019-03-29 2021-12-28 瑞典爱立信有限公司 用于区分多个物理下行链路共享信道(pdsch)传输方案的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113853763A (zh) * 2019-03-29 2021-12-28 瑞典爱立信有限公司 用于区分多个物理下行链路共享信道(pdsch)传输方案的方法
CN111800868A (zh) * 2019-04-02 2020-10-20 华为技术有限公司 通信方法及装置
WO2021012662A1 (zh) * 2019-07-19 2021-01-28 中国信息通信研究院 一种多点发送混合自动重传请求方法和设备
WO2021062818A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 一种发送混合自动反馈重传确认/否认信息的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "PDSCH/PUSCH enhancements", 3GPP DRAFT; R1-2102792, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 7 April 2021 (2021-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052177766 *

Similar Documents

Publication Publication Date Title
US10812243B2 (en) Feedback information transmission and reception method and apparatus and communication system
US9648599B2 (en) System and method for avoiding collisions between open discovery and cellular resources
JP7371761B2 (ja) 信号送信方法、装置及びシステム
CN116685000A (zh) 一种无线通信方法和设备
WO2020220290A1 (zh) 边链路数据的发送和接收方法以及装置
TWI829760B (zh) 用於側行鏈路的通信方法和設備
JP7227390B2 (ja) アップリンク伝送方法および通信装置
US20200170023A1 (en) Method and apparatus for transmitting sidelink feedback information
WO2022077410A1 (zh) 信息反馈方法以及装置
WO2020143060A1 (zh) 数据传输方法及装置
WO2017186038A1 (zh) 一种子帧配置方法和装置
WO2021062609A1 (zh) 通信方法和通信装置
US20230189244A1 (en) Semi-persistent schedule feedback method and apparatus, and device and storage medium
WO2017024467A1 (zh) 无线通信的方法、网络设备和终端设备
US10524264B2 (en) Wireless communication device including memory de-allocator for efficient memory usage and method of operating the same
WO2020142987A1 (zh) 边链路信息的发送和接收方法以及装置
US20200274648A1 (en) Methods and devices for hybrid automatic repeat request acknowledgement/non-acknowledgement bundling
WO2023150985A1 (zh) 信息反馈方法、信息接收方法以及装置
WO2022077407A1 (zh) 数据接收方法以及装置
WO2023151048A1 (zh) 信息反馈方法以及装置
JP2023520705A (ja) データ送信方法、装置及び通信システム
WO2023010494A1 (zh) 数据调度方法、数据发送方法以及装置
WO2023010581A1 (zh) 信息反馈方法、信息接收方法以及装置
WO2023077387A1 (zh) 信号发送方法、信号接收方法和装置
WO2022150976A1 (zh) 半永久性调度的反馈方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925347

Country of ref document: EP

Kind code of ref document: A1