WO2023150953A1 - Uplink transmission switching for multiple radio frequency bands - Google Patents

Uplink transmission switching for multiple radio frequency bands Download PDF

Info

Publication number
WO2023150953A1
WO2023150953A1 PCT/CN2022/075757 CN2022075757W WO2023150953A1 WO 2023150953 A1 WO2023150953 A1 WO 2023150953A1 CN 2022075757 W CN2022075757 W CN 2022075757W WO 2023150953 A1 WO2023150953 A1 WO 2023150953A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
carriers
frequency bands
frequency band
control signaling
Prior art date
Application number
PCT/CN2022/075757
Other languages
French (fr)
Inventor
Yiqing Cao
Peter Gaal
Timo Ville VINTOLA
Masato Kitazoe
Alberto Rico Alvarino
Bin Han
Yi Huang
Kazuki Takeda
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2022/075757 priority Critical patent/WO2023150953A1/en
Publication of WO2023150953A1 publication Critical patent/WO2023150953A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the following relates to for wireless communications, including uplink transmission switching for multiple radio frequency bands.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • DFT-S-OFDM discrete Fourier transform spread orthogonal frequency division multiplexing
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • Some communication devices may support wireless communication over one or multiple carriers.
  • a carrier may be associated with a radio frequency band of a radio frequency spectrum.
  • Some communication devices may support carrier aggregation for wireless communication. In some cases, these communication devices may support wireless communication over one or multiple radio frequency bands according to the carrier aggregation.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support uplink transmission switching for multiple radio frequency bands.
  • the described techniques provide for carrier switching over multiple radio frequency bands based on one or more user equipment (UE) capabilities.
  • UE user equipment
  • a UE may transmit first control signaling to a network entity.
  • the first control signaling may indicate a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands.
  • the UE may receive second control signaling from the network entity.
  • the second control signaling may include an indication for the UE to switch carriers for transmission of an uplink message.
  • the switch may involve a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination.
  • a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands may be three or more.
  • the UE may transmit the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers.
  • the change may be based on the UE capability.
  • the communication device may improve coordination between the communication device and the network.
  • a method for wireless communication at a UE may include transmitting, to a network entity, first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands, receiving, from the network entity and in response to the first control signaling, second control signaling that includes an indication for the UE to switch carriers for transmission of an uplink message, where the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more, and transmitting the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change is based on the UE capability.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to transmit, to a network entity, first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands, receive, from the network entity and in response to the first control signaling, second control signaling that includes an indication for the UE to switch carriers for transmission of an uplink message, where the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more, and transmit the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change is based
  • the apparatus may include means for transmitting, to a network entity, first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands, means for receiving, from the network entity and in response to the first control signaling, second control signaling that includes an indication for the UE to switch carriers for transmission of an uplink message, where the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more, and means for transmitting the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change is based on the UE capability.
  • a non-transitory computer-readable medium storing code for wireless communication at a UE is described.
  • the code may include instructions executable by a processor to transmit, to a network entity, first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands, receive, from the network entity and in response to the first control signaling, second control signaling that includes an indication for the UE to switch carriers for transmission of an uplink message, where the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more, and transmit the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change is based on the UE
  • transmitting the UE capability may include operations, features, means, or instructions for transmitting the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation may be supported by the UE.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes two carriers distributed across one or two first radio frequency bands, and where the second set of carriers includes two carriers distributed across one or two second radio frequency bands, where the one or two first radio frequency bands and the one or two second radio frequency bands may be different but may have one radio frequency band in common.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands or between both the first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and where the second set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, the second radio frequency band of the first set of radio frequency bands being a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands, a second radio frequency band of the first set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for a supplemental uplink carrier and the second radio frequency band of the first set of radio frequency bands being for the carrier aggregation, and where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for a supplemental uplink carrier, and where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of the supplemental uplink carrier, and the second radio frequency band of the second set of radio frequency bands being for the carrier aggregation.
  • transmitting the uplink message to the network entity on the at least one carrier of the second set of carriers may include operations, features, means, or instructions for transmitting the uplink message using one antenna port per radio frequency band of the second set of radio frequency bands.
  • transmitting the uplink message to the network entity on the at least one carrier of the second set of carriers may include operations, features, means, or instructions for transmitting the uplink message using two antenna port per radio frequency band of the second set of radio frequency bands, where the at least one carrier of the second set of carriers may be distributed across a first radio frequency band of the second set of radio frequency bands.
  • transmitting the UE capability may include operations, features, means, or instructions for transmitting the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation may be not supported by the UE.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, and where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, where the first radio frequency band of the first set of radio frequency bands may be different from the first radio frequency band of the second set of radio frequency bands.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes two carriers distributed between a first radio frequency band of the first set of radio frequency bands and a second radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for a supplemental uplink carrier and the second radio frequency band of the first set of radio frequency bands being for the carrier aggregation, and where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, where the second radio frequency band of the first set of radio frequency bands may be a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
  • the first set of radio frequency bands and the second set of radio frequency bands collectively include, at most, only one supplemental uplink carrier.
  • the second control signaling includes a radio resource control (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) .
  • RRC radio resource control
  • MAC medium access control
  • DCI downlink control information
  • the second control signaling includes at least one of an uplink carrier identification (ID) for each of the second set of carriers or an activation time and duration for the switch.
  • ID uplink carrier identification
  • the first combination of the multiple radio frequency bands includes four or more radio frequency bands.
  • a method for wireless communication at a network entity may include obtaining first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands and outputting, from the network entity and in response to the first control signaling, second control signaling that includes an indication for a UE to switch carriers for transmission of an uplink message, where the switch involves a change at the UE from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands indicated in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to obtain first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands and output, from the network entity and in response to the first control signaling, second control signaling that includes an indication for a UE to switch carriers for transmission of an uplink message, where the switch involves a change at the UE from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands indicated in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
  • the apparatus may include means for obtaining first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands and means for outputting, from the network entity and in response to the first control signaling, second control signaling that includes an indication for a UE to switch carriers for transmission of an uplink message, where the switch involves a change at the UE from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands indicated in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
  • a non-transitory computer-readable medium storing code for wireless communication at a network entity is described.
  • the code may include instructions executable by a processor to obtain first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands and output, from the network entity and in response to the first control signaling, second control signaling that includes an indication for a UE to switch carriers for transmission of an uplink message, where the switch involves a change at the UE from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands indicated in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for obtaining, from the UE, the uplink message transmitted on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change may be based on the indication for the UE to switch carriers.
  • the UE capability indicates that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation may be supported by the UE.
  • outputting the second control signaling may include operations, features, means, or instructions for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation may be supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed across one or two second radio frequency bands, and where the first set of carriers includes two carriers distributed across one or two first radio frequency bands, and where the one or two first radio frequency bands and the one or two second radio frequency bands may be different but may have one radio frequency band in common.
  • outputting the second control signaling may include operations, features, means, or instructions for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation may be supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the second set of radio frequency bands, where the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands or between both the first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and where the first radio frequency band of the first set of radio frequency bands may be a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
  • outputting the second control signaling may include operations, features, means, or instructions for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation may be supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, where the first set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and where the second radio frequency band of the first set of radio frequency bands may be a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
  • outputting the second control signaling may include operations, features, means, or instructions for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation may be supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of a supplemental uplink carrier, and the second radio frequency band of the second set of radio frequency bands being for the carrier aggregation, where the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio
  • outputting the second control signaling may include operations, features, means, or instructions for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation may be supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of a supplemental uplink carrier, and the second radio frequency band of the second set of radio frequency bands being for the carrier aggregation, where the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency
  • the UE capability indicates that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation may be not supported by the UE.
  • outputting the second control signaling may include operations, features, means, or instructions for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation may be not supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, where the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, and where the first radio frequency band of the first set of radio frequency bands may be different from the first radio frequency band of the second set of radio frequency bands.
  • outputting the second control signaling may include operations, features, means, or instructions for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation may be not supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, where the first set of carriers includes two carriers distributed between a first radio frequency band of the first set of radio frequency bands and a second radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for a supplemental uplink carrier and the second radio frequency band of the first set of radio frequency bands being for the carrier aggregation, and where the second radio frequency band of the first set of radio frequency bands may be a same radio frequency band as the first radio frequency band of the
  • the first set of radio frequency bands and the second set of radio frequency bands collectively include, at most, only one supplemental uplink carrier.
  • the second control signaling includes an RRC message, a MAC-CE, or a DCI.
  • the second control signaling includes at least one of an uplink carrier ID for each of the second set of carriers or an activation time and duration for the switch.
  • the first combination of the multiple radio frequency bands includes four or more radio frequency bands.
  • FIGs. 1 and 2A illustrate examples of a wireless communications system that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • FIG. 2B illustrates an example of a carrier aggregation diagram that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • FIGs. 3 and 4 illustrate examples of a process flow that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • FIGs. 5 and 6 show block diagrams of devices that support uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • FIG. 7 shows a block diagram of a communications manager that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • FIG. 8 shows a diagram of a system including a device that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • FIGs. 9 and 10 show block diagrams of devices that support uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • FIG. 11 shows a block diagram of a communications manager that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • FIG. 12 shows a diagram of a system including a device that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • FIGs. 13 through 17 show flowcharts illustrating methods that support uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • a wireless communications system may include communication devices, such as a UE or a network entity.
  • a network entity may be an example of a wired or wireless network node that may support multiple radio access technologies.
  • a network entity may be an example of a base station (e.g., an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB, any of which may be referred to as a gNB, or some other base station) .
  • Examples of radio access technologies may include 4G systems, such as LTE systems, and 5G systems, which may be referred to as 5G new radio (NR) systems, among other wireless communications systems (e.g., subsequent generations of wireless communications systems) .
  • a communication device may support wireless communication over one or multiple radio frequency bands and one or multiple carriers.
  • the communication device may be configured (e.g., by the network) with a single carrier or multiple carriers in the form of carrier aggregation or dual connectivity.
  • the network may schedule the communication device with the one or multiple carriers to support the wireless communication.
  • the network may configure the communication device to support carrier aggregation over a single radio frequency band or multiple radio frequency bands (e.g., inter-band carrier aggregation) . That is, the communication device may be configured to aggregate two or more carriers across a same radio frequency band or between multiple (e.g., separate) radio frequency bands.
  • one of the multiple carriers e.g., a component carrier
  • a component carrier may be a supplemental uplink (SUL) carrier.
  • a component carrier may be a normal uplink (NUL) carrier, for example associated with the serving cell of the SUL carrier.
  • one or more component carriers may be for carrier aggregation (e.g., may be regular carrier aggregation carriers) .
  • the component carriers for carrier aggregation may be configured such that the component carriers may not support simultaneous transmissions (e.g., uplink transmissions) on multiple (e.g., different) radio frequency bands. That is, the network may configure the component carriers for Option 1 carriers aggregation (e.g., may be configured as Option 1 carriers) .
  • the component carriers for carrier aggregation may be configured to support simultaneous uplink transmissions on multiple radio frequency carriers. That is, the component carriers may be configured for Option 2 carrier aggregation (e.g., may be configured as Option 2 carriers) .
  • the communication device may support communications over multiple radio frequency bands, there may be scheduling ambiguity for the wireless communications between the communication device and the network when the communication device is scheduled to switch between multiple sets of radio frequency bands. For example, the number of radio frequency bands over which the communication device may support simultaneous transmissions (e.g., at a given time) may be based on the number of radio frequency transmit chains (e.g., antenna ports) at the communication device.
  • the network may schedule the communication device to transmit communications over one or more radio frequency bands that may be different from the radio frequency bands over which the communication device may be (e.g., currently) operating.
  • the one or more radio frequency bands from which the communication device is to switch from may be ambiguous, for example if the network schedules the communication device to switch to multiple radio frequency bands from a single radio frequency band or from a different combination of radio frequency bands.
  • the number of radio frequency bands that may be supported by the communication device may exceed the number of radio frequency bands between which the communication device may switch.
  • the network may be unaware of combinations of radio frequency bands in which the communication device may be capable of switching between.
  • the present disclosure may provide for techniques for configuring a communication device to switch carriers for communications with the network based on a data structure (e.g., mapping table) that may indicate one or more rules for uplink transmission switching between three or more radio frequency bands (e.g., when four or more radio frequency bands may be supported by the communication device) .
  • the communication device may indicate (e.g., to the network and via control signaling) one or more capabilities of the communication device for switching between carriers (e.g., during uplink communications) .
  • the communication device may indicate a combination of multiple radio frequency bands over which the communication device may support communications.
  • the communication device may indicate a combination of four or more radio frequency bands and a capability of the communication device to switch between carriers during uplink communications across three or more radio frequency bands (e.g., of the indicated combination of four or more radio frequency bands) .
  • the communication device may receive (e.g., from the network) an indication to switch carriers for transmitting uplink messages.
  • the network may indicate for the communication device to switch from one or more carriers over a first set of radio frequency bands to a one or more other carriers over a second set of radio frequency bands.
  • the switch indicated by the network may be based on a data structure indicating one or more rules for uplink transmission switching between three or more radio frequency bands.
  • a radio frequency band of the second set of radio frequency bands may be common to the first set of radio frequency bands.
  • the techniques employed by the described communication devices may provide benefits and enhancements to wireless communication devices operating within the network, including enabling improved coordination between the wireless communication devices.
  • operations performed by the described communication devices may provide improvements to techniques for uplink transmission switching for multiple radio frequency bands thereby reducing scheduling ambiguities and increasing the reliability of communications between the network and the communication devices.
  • the operations performed by the described communication devices to improve uplink transmission switching for multiple radio frequency bands may include indicating capabilities of the communication device for switching between carriers during uplink communications across three or more radio frequency bands.
  • operations performed by the described wireless communication devices may also support improvements to user experience and higher data rates, among other benefits.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are also described in the context of a carrier aggregation diagram and process flows. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to uplink transmission switching for multiple radio frequency bands.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-APro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-APro LTE-APro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a geographic coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the geographic coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a geographic coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • a network node may refer to any UE 115, base station 105, entity of a core network 130, apparatus, device, or computing system configured to perform any techniques described herein.
  • a network node may be a UE 115.
  • a network node may be a base station 105.
  • a first network node may be configured to communicate with a second network node or a third network node.
  • the first network node may be a UE 115
  • the second network node may be a base station 105
  • the third network node may be a UE 115.
  • the first network node may be a UE 115
  • the second network node may be a base station 105
  • the third network node may be a base station 105.
  • the first, second, and third network nodes may be different.
  • reference to a UE 115, a base station 105, an apparatus, a device, or a computing system may include disclosure of the UE 115, base station 105, apparatus, device, or computing system being a network node.
  • disclosure that a UE 115 is configured to receive information from a base station 105 also discloses that a first network node is configured to receive information from a second network node.
  • the first network node may refer to a first UE 115, a first base station 105, a first apparatus, a first device, or a first computing system configured to receive the information; and the second network node may refer to a second UE 115, a second base station 105, a second apparatus, a second device, or a second computing system.
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a network entity, a network node, a node, a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a network entity a network node, a node, a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB,
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-APro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the base stations 105, the UEs 115, or both
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) .
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions.
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more services such as push-to-talk, video, or data.
  • Support for ultra-reliable, low-latency functions may include prioritization of services, and such services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to IP services 150 for one or more network operators.
  • the IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, for example in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a receiving device may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • receive configurations e.g., directional listening
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • receive beamforming weight sets e.g., different directional listening weight sets
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • the wireless communications system 100 may support techniques for uplink transmission switching for multiple radio frequency bands.
  • a UE 115 may transmit first control signaling to a network entity, such as a base station 105 or one or more other network entities.
  • the first control signaling may indicate a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands.
  • the UE 115 may receive second control signaling from the network entity.
  • the second control signaling may include an indication for the UE 115 to switch carriers for transmission of an uplink message.
  • the switch may involve a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination.
  • a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands may be three or more.
  • the UE 115 may transmit the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers.
  • the change may be based on the UE capability. As a result, the UE 115 may reduce scheduling ambiguities and improve the reliability of communications with the network.
  • FIG. 2A illustrates an example of a wireless communications system 200 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the wireless communications system 200 may implement or be implemented by one or more aspects of the wireless communications system 100.
  • the wireless communications system 200 may include a network entity 205 and a UE 215, which may be examples of devices as described with reference to FIG. 1.
  • the UE 215 may be an example of a UE 115 as described with reference to FIG. 1.
  • the network entity 205 may be an example of a base station 105 or one or more other network entities as described with reference to FIG. 1.
  • the UE 215 may communicate with the network entity 205 over a communication link 230-a and a communication link 230-b, which may be examples of communication links 125 as described with reference to FIG. 1.
  • the communication link 230-a may be a downlink and the communication link 230-b may be an uplink.
  • the UE 215 may support wireless communications over one or multiple radio frequency bands and one or multiple carriers.
  • the UE 215 include a number of radio frequency transmit chains (e.g., antenna ports) that may each support communications on a particular radio frequency band at a given time. That is, the UE 215 may support simultaneous wireless communications for a number of radio frequency bands that may be based on the number of antenna ports at the UE 215.
  • the radio frequency bands used for wireless communications (e.g., uplink communications, downlink communications) at the UE 215 may be configured by the network entity 205.
  • the network entity 205 may configure the UE 215 to support carrier aggregation over a single radio frequency band or multiple radio frequency bands (e.g., inter-band carrier aggregation) . That is, the UE 215 may be configured to aggregate two or more carriers across a same radio frequency band or between multiple (e.g., separate) radio frequency bands.
  • carrier aggregation over a single radio frequency band or multiple radio frequency bands (e.g., inter-band carrier aggregation) . That is, the UE 215 may be configured to aggregate two or more carriers across a same radio frequency band or between multiple (e.g., separate) radio frequency bands.
  • FIG. 2B illustrates an example of a carrier aggregation diagram 201 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the carrier aggregation diagram 201 may implement or be implemented by one or more aspects of the wireless communications system 100 and the wireless communications system 200.
  • aspects of the carrier aggregation diagram 201 may be implemented at the network entity 205 and the UE 215 as described with reference to FIG. 2A.
  • the UE 215 may aggregate at least two carriers 235. That is, the UE 215 may aggregate at least two of a carrier 235-a, a carrier 235-b, a carrier 235-c, and a carrier 235-d.
  • the UE 215 may be configured or allocated contiguous carriers within a single radio frequency band (e.g., a radio frequency band 240-a, a radio frequency band 240-b, a radio frequency band 240-c, or a radio frequency band 240-d) .
  • Such carrier aggregation may be referred to as intra-band contiguous carrier aggregation.
  • the UE 215 may aggregate the carrier 235-a and the carrier 235-b within the radio frequency band 240-a. Additionally or alternatively, the UE 215 may be configured for non-contiguous carrier aggregation, which may be either be intra-band or inter-band. For intra-band non-contiguous carrier aggregation, the aggregated carriers may be associated with (e.g., may be distributed across) a same radio frequency band. For inter-band non-contiguous carrier aggregation, the aggregated carriers may be distributed between multiple (e.g., different) radio frequency bands.
  • the UE 215 may aggregate the carrier 235-a(e.g., occurring within the radio frequency band 240-a) and the carrier 235-c (e.g., occurring within the radio frequency band 240-b) or the carrier 235-d (e.g., occurring within the radio frequency band 240-c) .
  • the carrier 235-a e.g., occurring within the radio frequency band 240-a
  • the carrier 235-c e.g., occurring within the radio frequency band 240-b
  • the carrier 235-d e.g., occurring within the radio frequency band 240-c
  • one of the multiple aggregated carriers may be an SUL carrier and another carrier may be an NUL carrier (e.g., associated with the serving cell of the SUL carrier) .
  • the multiple carriers may include carriers (e.g., component carriers) for carrier aggregation (e.g., one or more aggregated carriers that are neither an SUL nor an NUL) .
  • the aggregated carriers may be configured such that simultaneous transmissions (e.g., uplink transmissions) on multiple (e.g., different) radio frequency bands may not be supported.
  • the aggregated carriers may be configured for Option 1 carrier aggregation.
  • the aggregated carriers may be configured such that simultaneous transmissions on multiple radio frequency bands may be supported.
  • the aggregated carriers may be configured for Option 2 carrier aggregation.
  • the UE 215 may be capable of uplink transmission switching (e.g., switching carriers for uplink transmissions) between four or more bands.
  • the UE 215 may support a radio frequency band combination (e.g., for switching) that may include an SUL carrier, an NUL carrier, one or more component carriers for carrier aggregation, or any combination thereof. That is, the UE 215 may be configured for carrier aggregation (e.g., inter-band carrier aggregation) Option 1 or carrier aggregation Option 1 plus SUL, such that the UE 215 may not be capable of simultaneous uplink transmissions from more than one radio frequency band.
  • carrier aggregation e.g., inter-band carrier aggregation
  • Option 1 carrier aggregation
  • SUL carrier aggregation
  • the UE 215 may be configured to transmit from multiple carriers, in which one of the multiple carrier is an SUL and the other (e.g., remaining) carriers may be component carriers configured for Option 1 carrier aggregation. Additionally or alternatively, the UE 215 may be configured for carrier aggregation Option 2 or carrier aggregation Option 2 plus SUL, such that the UE 215 may be capable of simultaneous transmission from more than one radio frequency band. For example, the UE 215 may be configured to transmit from multiple carriers, in which one carrier is an SUL and the other carriers may be component carriers configured for Option 2 carrier aggregation.
  • supporting more than two radio frequency bands may result in scheduling ambiguity for wireless communications between the UE 215 and the network entity 205.
  • the network entity 205 may schedule the UE 215 to transmit communications over one or more radio frequency bands that may be different from (e.g., or the same as) the radio frequency bands over which the UE 215 may be (e.g., currently) operating.
  • the one or more radio frequency bands from which the UE 215 is to switch from may be ambiguous.
  • the UE 215 may support uplink transmission from four or more radio frequency bands, switching between four or more radio frequency bands may be complex and prohibitive.
  • a data structure e.g., a mapping
  • switching options e.g., between different combinations of radio frequency bands
  • UEs e.g., the UE 215
  • more than two radio frequency bands e.g., for carrier aggregation or carrier aggregation plus SUL
  • the techniques described herein may support (e.g., define) mapping rules for carrier switching across three or more radio frequency bands.
  • capabilities e.g., rules
  • capabilities e.g., rules
  • the rules may depend on capabilities of the UE 215.
  • different rules may be indicated (e.g., defined, configured) based on whether the UE 215 supports (e.g., is configured to support) simultaneous transmissions from multiple (e.g., different) radio frequency bands.
  • multiple (e.g., different) data structures may indicate rules based on whether the UE 215 may be configured to perform carrier aggregation Option 1, carrier aggregation Option 1 plus SUL, carrier aggregation Option 2, or carrier aggregation Option 2 plus SUL.
  • the UE 215 may transmit first control signaling 210 to the network entity 205.
  • the first control signaling 210 may indicate a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands.
  • the UE 215 may receive second control signaling 220 from the network entity 205.
  • the second control signaling 220 may include an indication for the UE 215 to switch carriers for transmission of an uplink message 225.
  • the switch may involve a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination.
  • a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands may be three or more.
  • the UE 215 may transmit the uplink message 225 to the network entity 205 on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers.
  • the change may be based on the UE capability.
  • the UE 215 may reduce scheduling ambiguities and improve the reliability of communications with the network.
  • FIG. 3 illustrates an example of a process flow 300 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the process flow 300 may include example operations associated with a UE, which may be examples of the corresponding device described with reference to FIGs. 1, 2A, and 2B.
  • the process flow 300 may also include example operations associated with a network entity, which may be an example a base station or one or more network entities described with reference to FIGs. 1, 2A, and 2B.
  • the process flow 300 may include a primary cell (PCell) configured for communications at the UE (e.g., a UE PCell 316) and a secondary cell (SCell) configured for communications at the UE (e.g., a UE SCell 317) .
  • the process flow 300 may also include a PCell configured for communications at the network entity (e.g., a network entity PCell 306) and an SCell configured for communications at the network entity (e.g., a network entity SCell 307) .
  • the PCell configured for communications at the UE e.g., the PCell 316
  • the SCell configured for communications at the UE may be a same SCell as the SCell configured for communications at the network entity (e.g., the SCell 307) .
  • the operations performed by the UE may support improvements to communications between the UE and the network, among other benefits.
  • the network entity e.g., via the network entity PCell 306 or the network entity SCell 307
  • operations between the UE and the network entity may occur in a different order or at different times than as shown. Some operations may also be omitted from the process flow 300, and other operations may be added to the process flow 300.
  • a UE may communicate with the network over one or multiple carriers.
  • the network may configure the UE to support carrier aggregation.
  • each carrier e.g., component carrier
  • a cell e.g., a serving cell
  • a cell may refer to a logical entity for wireless communications. That is, a network entity may support one or more cells for communications with a UE.
  • a UE may communicate with the network (e.g., via a network entity) over a primary carrier supported by a PCell.
  • the PCell may be selected by the UE during a cell selection (e.g., or cell reselection) process and may be used by the UE to establish a connection with the network. That is, the PCell may be used by the UE to perform a connection establishment procedure, such as a RRC connection establishment procedure.
  • the UE may communicate with the network (e.g., via a same network entity or another network entity, not shown) over one or more secondary carriers that may each be supported by a respective SCell.
  • the SCells may be selected by the network, for example based on capabilities of the UE, the position (e.g., location) of the UE, or one or more other factors.
  • the PCell and the one or more SCells may serve the UE simultaneously. That is, a primary carrier supported by the PCell and one or more secondary carriers supported by respective SCells may be used for simultaneous communications (e.g., uplink communications, downlink communications) with the UE.
  • the network may configure the UE to switch carriers for communications (e.g., uplink communications or downlink communications) with the network.
  • the network may indicate for the UE to switch carriers by activating or deactivating the corresponding cells (e.g., supporting the carriers to be switched) .
  • the network may add, modify, and release SCells via signaling transmitted to the UE over the PCell.
  • the network may use a PCell (e.g., the network PCell 306) to transmit an RRC connection reconfiguration message to the UE.
  • the RRC connection reconfiguration message may include an indication for the UE to add, modify, or release one or more SCells.
  • the RRC connection reconfiguration message may include an identifier (e.g., an identification) of one or more SCells to be configured (e.g., or reconfigured) at the UE.
  • the network and the UE may perform reconfiguration procedures.
  • the network entity may perform a network reconfiguration and, at 326, the UE may perform a UE reconfiguration.
  • the UE may use the PCell (e.g., the UE PCell 316) to transmit an indication, to the network entity, that the RRC connection reconfiguration was successful.
  • the UE may use the UE PCell 316 to transmit an RRC connection reconfiguration complete message to the network entity.
  • the one or more SCells may not be activated (e.g., may be in a deactivated state) .
  • the network may transmit a message (e.g., an RRC message, a MAC control element (MAC-CE) message, a downlink control information (DCI) message) to the UE that may include an identifier of the one or more SCells (e.g., configured at the UE) and an indication that the one or more SCells are to be activated (e.g., or deactivated) .
  • a message e.g., an RRC message, a MAC control element (MAC-CE) message, a downlink control information (DCI) message
  • MAC-CE MAC control element
  • DCI downlink control information
  • the network may use the network PCell 306 to transmit an activation message to the UE to activate one or more SCells, such as the UE SCell 317.
  • the UE may activate (e.g., or deactivate) the corresponding carrier. That is, the network may activate or deactivate a carrier (e.g., an uplink carrier) by transmitting an indication, such as through a MAC-CE, to activate or deactivate the corresponding SCell.
  • the activation message may include an identifier of the carrier (e.g., uplink carrier) to be activated (e.g., a carrier ID, uplink carrier ID, downlink carrier ID) .
  • the activation message may include an activation time, an activation duration (e.g., a duration for the switch, such as may be indicated via an sCellDeactivationTimer information element (IE) ) , or both.
  • an activation duration e.g., a duration for the switch, such as may be indicated via an sCellDeactivationTimer information element (IE)
  • IE sCellDeactivationTimer information element
  • the corresponding downlink carrier may also be activated (e.g., or deactivated) .
  • the UE may transmit uplink message to the network (e.g., over an uplink channel, such as a physical uplink shared channel (PUSCH) ) or receive downlink messages from the network (e.g., over a downlink channel, such as a physical downlink shared channel (PDSCH) ) via the UE SCell 317.
  • the UE use the UE SCell 317 to transmit PUSCH messages to the network.
  • the UE may transmit uplink messages to the network via the UE PCell 316.
  • the UE may use the UE PCell 316 to transmit PUSCH messages to the network.
  • the PUSCH messages transmitted at 340 may be transmitted simultaneously (e.g., and from a same or multiple different radio frequency bands) .
  • the UE may deactivate the SCell 317.
  • the UE may deactivate the SCell 317 after the duration indicated in the activation message (e.g., via the sCellDeactivationTimer IE) expires.
  • the UE may deactivate the SCell 317 in response to a deactivation message transmitted from the network entity.
  • the network entity may use the network PCell 316 to transmit a deactivation message to the UE.
  • the deactivation message may include a cell identifier of the one or more SCells (e.g., or the one or more carriers supported by the respective one or more SCells) and an indication that one or more SCells are to be deactivated.
  • the deactivation message may include an identifier of the UE SCell 317 and an indication that the UE SCell 317 is to be deactivated.
  • the UE may transmit uplink messages to the network via the UE PCell 316.
  • the UE may use the PCell 316 to transmit PUSCH messages to the network.
  • the UE may communicate with the network over one or multiple carriers that may be associated with one or multiple (e.g., different) radio frequency bands.
  • the network may configure the UE to support carrier aggregation over one or multiple radio frequency bands (e.g., inter-band carrier aggregation) .
  • the UE may support carrier switching over the one or multiple radio frequency bands.
  • the network may indicate for the UE to switch carriers for transmitting uplink messages.
  • the network may indicate for the UE to switch from one or more carriers over a first set of radio frequency bands to one or more other carriers over a second set of radio frequency bands.
  • the network may indicate for the UE to deactivate one or more carriers (e.g., over a first radio frequency band) and activate one or more other carriers (e.g., over a second set of radio frequency bands) .
  • the network may configure the UE to switch carriers (e.g., deactivate one or more carriers over a first set of radio frequency bands and activate one or more other carriers over a second set of radio frequency bands) according to one or more mapping rules indicate via a data structure (e.g., mapping table) .
  • the network may configure the UE to switch carriers over three or more bands in accordance with a data structure that may indicate one or more mapping rules for transitioning between different combinations of radio frequency bands (e.g., cases) .
  • the indication may be via a transmission status (T) for the corresponding combination of multiple radio frequency bands (e.g., cases) .
  • the network may configure the UE to switch carriers (e.g., across three or more radio frequency bands) according to the mapping rules indicated by the data structure of the following Table 1:
  • the parameters (a, b, c, and d) may correspond to a respective radio frequency band (A, B, C, and D) .
  • a parameter may be set to “0” to indicate for the UE to not transmit on the corresponding radio frequency band
  • a parameter may be set to “1” to indicate for the UE to transmit with the corresponding radio frequency band via a single layer (e.g., via a single antenna port)
  • a parameter may be set to “2” to indicate for the UE to transmit with the corresponding radio frequency band via two layers (e.g., via two antenna ports) .
  • the UE may support a capability for switching between four or less than four radio frequency bands.
  • the network may configure (e.g., define) a data structure (e.g., mapping table) that may indicate one or more rules for switching among (e.g., between) three or more bands, while simultaneously transmitting from two of the three or more radio frequency bands.
  • the UE may report one or more combinations of multiple radio frequency bands that the UE may be capable of switching between.
  • the UE may report one or more switching band combinations (e.g., a combination of a + b + c + d) to the network.
  • the number of bands included in a reported switching band combination indicated by the UE may be four or more.
  • the UE may report a capability (e.g., a UE capability) for the UE to switch between three or more radio frequency bands (e.g., of multiple radio frequency bands included in a reported switching band combination) .
  • the network may configure the UE with three or more of the radio frequency bands included in the reported switching band combination for switching.
  • the network may configure the UE with the three or more radio frequency bands for switching via control signaling, such as RRC signaling, MAC-CE signaling, or DCI signaling.
  • the capability of the UE for switching between four or less than four radio frequency bands may depend on whether the UE may support (e.g., may be configured to support) simultaneous transmissions from multiple (e.g., different) radio frequency bands.
  • the UE may be configured to perform carrier aggregation (e.g., carrier aggregation Option 1 or carrier aggregation Option 2) or carrier aggregation plus SUL (e.g., carrier aggregation Option 1 plus SUL or carrier aggregation Option 2 plus SUL) .
  • one carrier e.g., one of the aggregated carriers
  • one carrier may be an SUL carrier
  • one carrier may be an NUL carrier
  • other carriers may be component carriers configured for carrier aggregation.
  • the SUL carrier and the NUL carrier e.g., associated with the serving cell of the SUL
  • the NUL carrier and the other component carriers may be configured for carrier aggregation Option 1 (e.g., may not be configured for carrier aggregation Option 2) .
  • multiple serving cells e.g., two
  • multiple SUL carriers may also be configured (e.g., one SUL carrier per serving cell)
  • the network may configure the UE with a single SUL carrier per switching band combination (e.g., per combination of a, b, c, and d) .
  • FIG. 4 illustrates an example of a process flow 400 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the process flow 400 may include example operations associated with a UE 415, which may be examples of the corresponding device described with reference to FIGs. 1, 2A, 2B, and 3.
  • the process flow 400 may also include example operations associated with a network entity 405, which may be an example a base station or one or more network entities described with reference to FIGs. 1, 2A, 2B, and 3.
  • the operations performed by the UE 415 and the network entity 405 may support improvements to communications between the UE 415 and the network, among other benefits.
  • operations between the UE 415 and the network entity 405 may occur in a different order or at different times than as shown. Some operations may also be omitted from the process flow 400, and other operations may be added to the process flow 400.
  • the UE 415 and the network entity 405 may support uplink transmission switching for multiple radio frequency bands. That is, the network entity 405 may configuring the UE 415 to switch carriers for communications with the network. In some examples, the switch indicated by the network entity 405 may be based on capabilities of the UE 415. For example, at 420, the UE 415 may transmit first control signaling to the network entity 405. The first control signaling may indicate a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands.
  • the UE 415 may indicate four or more radio frequency bands (e.g., A, B, C, and D) of which the UE 415 may support carrier switching across three or more radio frequency bands of the four or more radio frequency bands.
  • the network entity 405 may transmit second control signaling to the UE 415.
  • the second control signaling may include an indication for the UE 115 to switch carriers for transmission of an uplink message.
  • the switch may involve a change (e.g., a transition of the UE 415) from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination.
  • a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands may be three or more.
  • the switch from the first set of carriers over the first set of radio frequency bands to the second set of carriers over the second set of radio frequency bands may be based on (e.g., in accordance with) mapping rules indicated by one or more data structures (e.g., configured at the UE and the network) .
  • the network entity 405 and the UE 415 may be configured with one or more data structures (e.g., mapping table) that may indicate one or more rules for uplink transmission switching between three or more radio frequency bands (e.g., when four or more radio frequency bands may be supported by the communication device) .
  • the switch from the first set of carriers over the first set of radio frequency bands to the second set of carriers over the second set of radio frequency bands may be based on whether simultaneous transmission of uplink messages on two or more carriers (e.g., for carrier aggregation or carrier aggregation plus SUL) is supported by the UE 415.
  • the UE 415 may not support simultaneous transmission of uplink messages on two or more carriers.
  • the UE capability message transmitted by the UE 415 at 420 may be transmitted to indicate that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is not supported by the UE.
  • the UE 415 may be configured to perform carrier aggregation Option 1.
  • the switch indicated by the network e.g., via the second control signaling transmitted at 425) , may be in accordance with the mapping rules indicated in the data structure of the following Table 2:
  • the parameters (a, b, c, and d) may correspond to a respective radio frequency band (A, B, C, and D) .
  • a parameter may be set to “0” to indicate for the UE 415 to not transmit on the corresponding radio frequency band
  • a parameter may be set to “1” to indicate for the UE 415 to transmit with the corresponding radio frequency band via a single layer (e.g., via a single antenna port)
  • a parameter may be set to “2” to indicate for the UE 415 to transmit with the corresponding radio frequency band via two layers (e.g., via two antenna ports) .
  • the network may indicate for the UE 415 to switch (e.g., transition) from a first set of carriers that may include at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands to a second set of carriers that may include two carriers distributed across a first radio frequency band of the second set of radio frequency bands.
  • the first radio frequency band of the first set of radio frequency bands may be different from the first radio frequency band of the second set of radio frequency bands.
  • the network may indicate for the UE 415 to switch from performing communications with a carriers over a radio frequency band that may include A, B, C, or D to perform wireless communications with two carriers over a radio frequency band that may include two of A, two of B, two of C, or two of D.
  • the UE 415 may be configured to perform carrier aggregation plus SUL.
  • carrier aggregation plus SUL if the UE 415 supports switching for three or more radio frequency bands (e.g., uplink bands) , one radio frequency band may be for an SUL carrier and one of the remaining radio frequency bands may be for an NUL carrier.
  • the UE supports switching for four or more radio frequency bands one or two bands may be for an SUL carrier. That is, an SUL carrier may be configured for each of two radio frequency bands (e.g., each associated with a respective serving cell) .
  • the network may configure up to one SUL carrier per switching band combination. That is, the carriers configured (e.g., by the network entity 405) for wireless communications at the UE 415 may (e.g., collectively) include a single SUL carrier.
  • the UE 415 may be configured to perform carrier aggregation Option 1 plus SUL.
  • the switch indicated by the network e.g., via the second control signaling transmitted at 425) , may be in accordance with the mapping rules indicated by the data structure of the following Table 3:
  • the network may indicate for the UE 415 to transition from a first set of carriers that may include one or two carriers distributed across a first radio frequency band of the first set of radio frequency bands to a second set of carriers that may include one or two carriers distributed across a first radio frequency band of the second set of radio frequency bands.
  • the first radio frequency band of the first set of radio frequency bands may be for an SUL carrier.
  • the radio frequency band A (e.g., represent by the parameter a) may correspond to an SUL carrier
  • the radio frequency band B (e.g., represented by the parameter b) may correspond to an NUL carrier
  • the radio frequency bands C and D (e.g., represented by the parameters c and d, respectively) may correspond to other component carriers configured for carrier aggregation Option 1.
  • the UE 415 may not be capable of simultaneously transmitting from any combination of carriers (e.g., or radio frequency bands) , including an SUL carrier and one or more component carriers for carrier aggregation (e.g., component carriers of a non-serving cell) .
  • the switch indicated by the network may be in accordance with the mapping rules indicated by the data structure of the following Table 4:
  • the network may indicate for the UE 415 to switch (e.g., transition) from a first set of carriers that may include two carriers distributed between a first radio frequency band of the first set of radio frequency bands and a second radio frequency band of the first set of radio frequency bands to a second set of carriers that may include two carriers distributed across a first radio frequency band of the second set of radio frequency bands.
  • the first radio frequency band of the first set of radio frequency bands may be for an SUL carrier and the second radio frequency band of the first set of radio frequency bands may be for carrier aggregation.
  • the radio frequency band A (e.g., represent by the parameter a) may correspond to an SUL carrier
  • the radio frequency band B (e.g., represented by the parameter b) may correspond to an NUL
  • the radio frequency bands C and D (e.g., represented by the parameters c and d, respectively) may correspond to other component carriers for carrier aggregation.
  • the UE 415 may be capable of simultaneously transmitting from a combination of carriers (e.g., or bands) that may include an SUL and an one or more component carriers for carrier aggregation (e.g., of a non-serving cell) .
  • the UE 415 may support simultaneous transmission of uplink messages on two or more carriers (e.g., for carrier aggregation or carrier aggregation plus SUL) .
  • the UE capability message transmitted by the UE 415 (e.g., at 425) may be transmitted to indicate that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is supported by the UE.
  • the UE 415 may be configured to perform carrier aggregation Option 2.
  • the switch indicated by the network e.g., via the second control signaling transmitted at 425) , may be in accordance with the mapping rules indicated by the data structure of the following Table 5:
  • the network may indicate for the UE 415 to switch (e.g., transition) from a first set of carriers that may include two carriers distributed across a first radio frequency band of the first set of radio frequency bands or between both the first radio frequency band and a second radio frequency band of the first set of radio frequency bands to a second set of carriers that may include two carriers distributed between both a first radio frequency band and a second radio frequency band of the second set of radio frequency bands.
  • the first radio frequency band of the first set of radio frequency bands may be a same (e.g., common) radio frequency band as the first radio frequency band of the second set of radio frequency bands.
  • the network may indicate for the UE 415 to switch (e.g., transition) from a first set of carriers that may include two carriers distributed between both a first radio frequency band and a second radio frequency band of the first set of radio frequency bands to a second set of carriers that may include two carriers distributed across a first radio frequency band of the second set of radio frequency bands.
  • the second radio frequency band of the first set of radio frequency bands may be a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
  • switching between carriers that are non-overlapping e.g., switching more than one antenna port from a first radio frequency band to a second radio frequency band
  • the UE 415 may be configured to perform carrier aggregation Option 2 plus SUL.
  • the switch indicated by the network e.g., via the second control signaling transmitted at 425) , may be in accordance with the mapping rules indicated by the data structure of the following Table 6:
  • the network may indicate for the UE 415 to transition from a first set of carriers that may include two carriers distributed across a first radio frequency band of the first set of radio frequency bands, a second radio frequency band of the first set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the first set of radio frequency bands to a second set of carriers that may include two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands.
  • the first radio frequency band of the first set of radio frequency bands may be used for an SUL carrier and the second radio frequency band of the first set of radio frequency bands may be used for carrier aggregation.
  • the first radio frequency band of the second set of radio frequency bands may be used for a serving cell of the SUL carrier (e.g., an NUL) and the second radio frequency band of the second set of radio frequency bands may be used for carrier aggregation.
  • the radio frequency band A e.g., represent by the parameter a
  • the radio frequency band B e.g., represented by the parameter b
  • the radio frequency bands C and D e.g., represented by the parameters c and d, respectively
  • the radio frequency bands C and D e.g., represented by the parameters c and d, respectively
  • the UE 415 may be capable of simultaneously transmitting from a combination of carriers (e.g., or bands) that may include an SUL and an aggregated carrier (e.g., of a non-serving cell) or an NUL and an aggregated carrier. That is, the UE 415 may not be capable of simultaneously transmitting from the SUL carrier and the NUL carrier.
  • the switch indicated by the network may be in accordance with the mapping rules indicated by the data structure of the following Table 7:
  • the network may indicate for the UE 415 to switch (e.g., transition) from a first set of carriers that may include one carrier over a first radio frequency band of the first set of radio frequency bands to a second set of carriers that may include two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands.
  • the first radio frequency band of the first set of radio frequency bands may be for an SUL carrier.
  • the first radio frequency band of the second set of radio frequency bands being for a serving cell of the SUL carrier (e.g., an NUL carrier)
  • the second radio frequency band of the second set of radio frequency bands may be for carrier aggregation.
  • the radio frequency band A (e.g., represent by the parameter a) may correspond to an SUL carrier
  • the radio frequency band B (e.g., represented by the parameter b) may correspond to an NUL carrier
  • the radio frequency bands C and D (e.g., represented by the parameters c and d, respectively) may correspond to other component carriers for carrier aggregation.
  • the UE 415 may not be capable of simultaneously transmitting from any combination of carriers (e.g., or bands) that may include an SUL. That is, the UE 415 may be capable of transmitting from an SUL carrier or an NUL carrier and a component carrier for carrier aggregation.
  • rules associated with uplink transmission switching for more than 2 radio frequency bands may be configured (e.g., preconfigured) at the UE 415 and the network entity 405.
  • the data structures of the Tables 2–7 may be separately configured for carrier aggregation and carrier aggregation plus SUL. That is, each of the data structures of the Tables 2–7 may be separately configured at the UE 415 and the network entity 405. As such, the UE 415 and the network entity 405 may support uplink transmission switching for multiple radio frequency bands.
  • the UE 415 may switch from the first set of carriers over the first set of radio frequency bands to the second set of carriers over the second set of radio frequency bands. Accordingly, at 435, the UE 415 may transmit the uplink message to the network entity 405 on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers. The change may be based on the UE capability. As such, the UE 415 and the network entity 405 may reduce scheduling ambiguities and improve the reliability of communications between the UE 415 and the network (e.g., the network entity 405) .
  • FIG. 5 shows a block diagram 500 of a device 505 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a UE 115 as described herein.
  • the device 505 may include a receiver 510, a transmitter 515, and a communications manager 520.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to uplink transmission switching for multiple radio frequency bands) . Information may be passed on to other components of the device 505.
  • the receiver 510 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 515 may provide a means for transmitting signals generated by other components of the device 505.
  • the transmitter 515 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to uplink transmission switching for multiple radio frequency bands) .
  • the transmitter 515 may be co-located with a receiver 510 in a transceiver module.
  • the transmitter 515 may utilize a single antenna or a set of multiple antennas.
  • the communications manager 520, the receiver 510, the transmitter 515, or various combinations thereof or various components thereof may be examples of means for performing various aspects of uplink transmission switching for multiple radio frequency bands as described herein.
  • the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
  • the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) .
  • the hardware may include a processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
  • the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a central processing unit (CPU) , an ASIC, an FPGA, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
  • code e.g., as communications management software or firmware
  • the functions of the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a central processing unit (CPU) , an ASIC, an FPGA, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting
  • the communications manager 520 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 510, the transmitter 515, or both.
  • the communications manager 520 may receive information from the receiver 510, send information to the transmitter 515, or be integrated in combination with the receiver 510, the transmitter 515, or both to receive information, transmit information, or perform various other operations as described herein.
  • the communications manager 520 may support wireless communication at a UE (e.g., the device 505) in accordance with examples as disclosed herein.
  • the communications manager 520 may be configured as or otherwise support a means for transmitting, to a network entity, first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands.
  • the communications manager 520 may be configured as or otherwise support a means for receiving, from the network entity and in response to the first control signaling, second control signaling that includes an indication for the UE to switch carriers for transmission of an uplink message, where the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
  • the communications manager 520 may be configured as or otherwise support a means for transmitting the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change is based on the UE capability.
  • the device 505 e.g., a processor controlling or otherwise coupled with the receiver 510, the transmitter 515, the communications manager 520, or a combination thereof
  • the device 505 may support techniques for reduced processing and more efficient utilization of communication resources.
  • FIG. 6 shows a block diagram 600 of a device 605 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the device 605 may be an example of aspects of a device 505 or a UE 115 as described herein.
  • the device 605 may include a receiver 610, a transmitter 615, and a communications manager 620.
  • the device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 610 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to uplink transmission switching for multiple radio frequency bands) . Information may be passed on to other components of the device 605.
  • the receiver 610 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 615 may provide a means for transmitting signals generated by other components of the device 605.
  • the transmitter 615 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to uplink transmission switching for multiple radio frequency bands) .
  • the transmitter 615 may be co-located with a receiver 610 in a transceiver module.
  • the transmitter 615 may utilize a single antenna or a set of multiple antennas.
  • the device 605, or various components thereof may be an example of means for performing various aspects of uplink transmission switching for multiple radio frequency bands as described herein.
  • the communications manager 620 may include a UE capability component 625, a switch indication component 630, an uplink message component 635, or any combination thereof.
  • the communications manager 620 may be an example of aspects of a communications manager 520 as described herein.
  • the communications manager 620, or various components thereof may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 610, the transmitter 615, or both.
  • the communications manager 620 may receive information from the receiver 610, send information to the transmitter 615, or be integrated in combination with the receiver 610, the transmitter 615, or both to receive information, transmit information, or perform various other operations as described herein.
  • the communications manager 620 may support wireless communication at a UE (e.g., the device 605) in accordance with examples as disclosed herein.
  • the UE capability component 625 may be configured as or otherwise support a means for transmitting, to a network entity, first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands.
  • the switch indication component 630 may be configured as or otherwise support a means for receiving, from the network entity and in response to the first control signaling, second control signaling that includes an indication for the UE to switch carriers for transmission of an uplink message, where the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
  • the uplink message component 635 may be configured as or otherwise support a means for transmitting the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change is based on the UE capability.
  • FIG. 7 shows a block diagram 700 of a communications manager 720 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the communications manager 720 may be an example of aspects of a communications manager 520, a communications manager 620, or both, as described herein.
  • the communications manager 720, or various components thereof, may be an example of means for performing various aspects of uplink transmission switching for multiple radio frequency bands as described herein.
  • the communications manager 720 may include a UE capability component 725, a switch indication component 730, an uplink message component 735, a carrier transition component 740, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the communications manager 720 may support wireless communication at a UE in accordance with examples as disclosed herein.
  • the UE capability component 725 may be configured as or otherwise support a means for transmitting, to a network entity, first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands.
  • the switch indication component 730 may be configured as or otherwise support a means for receiving, from the network entity and in response to the first control signaling, second control signaling that includes an indication for the UE to switch carriers for transmission of an uplink message, where the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
  • the uplink message component 735 may be configured as or otherwise support a means for transmitting the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change is based on the UE capability.
  • the UE capability component 725 may be configured as or otherwise support a means for transmitting the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is supported by the UE.
  • the carrier transition component 740 may be configured as or otherwise support a means for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes two carriers distributed across one or two first radio frequency bands, and where the second set of carriers includes two carriers distributed across one or two second radio frequency bands.
  • the one or two first radio frequency bands and the one or two second radio frequency bands are different but have one radio frequency band in common.
  • the carrier transition component 740 may be configured as or otherwise support a means for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands or between both the first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and where the second set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
  • the carrier transition component 740 may be configured as or otherwise support a means for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, the second radio frequency band of the first set of radio frequency bands being a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
  • the carrier transition component 740 may be configured as or otherwise support a means for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands, a second radio frequency band of the first set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for an SUL carrier and the second radio frequency band of the first set of radio frequency bands being for the carrier aggregation, and where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of the SUL carrier, and the second radio frequency band of the second set of
  • the carrier transition component 740 may be configured as or otherwise support a means for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for an SUL carrier, and where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of the SUL carrier, and the second radio frequency band of the second set of radio frequency bands being for the carrier aggregation.
  • the uplink message component 735 may be configured as or otherwise support a means for transmitting the uplink message using one antenna port per radio frequency band of the second set of radio frequency bands.
  • the uplink message component 735 may be configured as or otherwise support a means for transmitting the uplink message using two antenna port per radio frequency band of the second set of radio frequency bands, where the at least one carrier of the second set of carriers is distributed across a first radio frequency band of the second set of radio frequency bands.
  • the UE capability component 725 may be configured as or otherwise support a means for transmitting the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is not supported by the UE.
  • the carrier transition component 740 may be configured as or otherwise support a means for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, and where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, where the first radio frequency band of the first set of radio frequency bands is different from the first radio frequency band of the second set of radio frequency bands.
  • the carrier transition component 740 may be configured as or otherwise support a means for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes two carriers distributed between a first radio frequency band of the first set of radio frequency bands and a second radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for an SUL carrier and the second radio frequency band of the first set of radio frequency bands being for the carrier aggregation, and where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, where the second radio frequency band of the first set of radio frequency bands is a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
  • the first set of radio frequency bands and the second set of radio frequency bands collectively include, at most, only one SUL carrier.
  • the second control signaling includes an RRC message, a MAC-CE, or a DCI.
  • the second control signaling includes at least one of an uplink carrier identification (ID) for each of the second set of carriers or an activation time and duration for the switch.
  • the first combination of the multiple radio frequency bands includes four or more radio frequency bands.
  • FIG. 8 shows a diagram of a system 800 including a device 805 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the device 805 may be an example of or include the components of a device 505, a device 605, or a UE 115 as described herein.
  • the device 805 may communicate wirelessly with one or more base stations 105, UEs 115, or any combination thereof.
  • the device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 820, an input/output (I/O) controller 810, a transceiver 815, an antenna 825, a memory 830, code 835, and a processor 840.
  • These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 845) .
  • the I/O controller 810 may manage input and output signals for the device 805.
  • the I/O controller 810 may also manage peripherals not integrated into the device 805.
  • the I/O controller 810 may represent a physical connection or port to an external peripheral.
  • the I/O controller 810 may utilize an operating system such as or another known operating system.
  • the I/O controller 810 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 810 may be implemented as part of a processor, such as the processor 840.
  • a user may interact with the device 805 via the I/O controller 810 or via hardware components controlled by the I/O controller 810.
  • the device 805 may include a single antenna 825. However, in some other cases, the device 805 may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the transceiver 815 may communicate bi-directionally, via the one or more antennas 825, wired, or wireless links as described herein.
  • the transceiver 815 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 815 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 825 for transmission, and to demodulate packets received from the one or more antennas 825.
  • the transceiver 815 may be an example of a transmitter 515, a transmitter 615, a receiver 510, a receiver 610, or any combination thereof or component thereof, as described herein.
  • the memory 830 may include random access memory (RAM) and read-only memory (ROM) .
  • the memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed by the processor 840, cause the device 805 to perform various functions described herein.
  • the code 835 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory.
  • the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the memory 830 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic I/O system
  • the processor 840 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 840 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 840.
  • the processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting uplink transmission switching for multiple radio frequency bands) .
  • the device 805 or a component of the device 805 may include a processor 840 and memory 830 coupled with or to the processor 840, the processor 840 and memory 830 configured to perform various functions described herein.
  • the communications manager 820 may support wireless communication at a UE (e.g., the device 805) in accordance with examples as disclosed herein.
  • the communications manager 820 may be configured as or otherwise support a means for transmitting, to a network entity, first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands.
  • the communications manager 820 may be configured as or otherwise support a means for receiving, from the network entity and in response to the first control signaling, second control signaling that includes an indication for the UE to switch carriers for transmission of an uplink message, where the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
  • the communications manager 820 may be configured as or otherwise support a means for transmitting the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change is based on the UE capability.
  • the device 805 may support techniques for improved communication reliability, more efficient utilization of communication resources, and improved coordination between devices.
  • the communications manager 820 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 815, the one or more antennas 825, or any combination thereof.
  • the communications manager 820 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 820 may be supported by or performed by the processor 840, the memory 830, the code 835, or any combination thereof.
  • the code 835 may include instructions executable by the processor 840 to cause the device 805 to perform various aspects of uplink transmission switching for multiple radio frequency bands as described herein, or the processor 840 and the memory 830 may be otherwise configured to perform or support such operations.
  • FIG. 9 shows a block diagram 900 of a device 905 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the device 905 may be an example of aspects of a Network Entity –ALPHA (e.g., a network entity) as described herein.
  • the device 905 may include a receiver 910, a transmitter 915, and a communications manager 920.
  • the device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 910 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to uplink transmission switching for multiple radio frequency bands) . Information may be passed on to other components of the device 905.
  • the receiver 910 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 915 may provide a means for transmitting signals generated by other components of the device 905.
  • the transmitter 915 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to uplink transmission switching for multiple radio frequency bands) .
  • the transmitter 915 may be co-located with a receiver 910 in a transceiver module.
  • the transmitter 915 may utilize a single antenna or a set of multiple antennas.
  • the communications manager 920, the receiver 910, the transmitter 915, or various combinations thereof or various components thereof may be examples of means for performing various aspects of uplink transmission switching for multiple radio frequency bands as described herein.
  • the communications manager 920, the receiver 910, the transmitter 915, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
  • the communications manager 920, the receiver 910, the transmitter 915, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) .
  • the hardware may include a processor, a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure.
  • a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
  • the communications manager 920, the receiver 910, the transmitter 915, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 920, the receiver 910, the transmitter 915, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
  • code e.g., as communications management software or firmware
  • the functions of the communications manager 920, the receiver 910, the transmitter 915, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure)
  • the communications manager 920 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 910, the transmitter 915, or both.
  • the communications manager 920 may receive information from the receiver 910, send information to the transmitter 915, or be integrated in combination with the receiver 910, the transmitter 915, or both to receive information, transmit information, or perform various other operations as described herein.
  • the communications manager 920 may support wireless communication at a network entity (e.g., the device 905) in accordance with examples as disclosed herein.
  • the communications manager 920 may be configured as or otherwise support a means for obtaining first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands.
  • the communications manager 920 may be configured as or otherwise support a means for outputting, from the network entity and in response to the first control signaling, second control signaling that includes an indication for a UE to switch carriers for transmission of an uplink message, where the switch involves a change at the UE from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands indicated in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
  • the device 905 e.g., a processor controlling or otherwise coupled with the receiver 910, the transmitter 915, the communications manager 920, or a combination thereof
  • the device 905 may support techniques for reduced processing and more efficient utilization of communication resources.
  • FIG. 10 shows a block diagram 1000 of a device 1005 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of aspects of a device 905 or a Network Entity -ALPHA (e.g., a network entity) as described herein.
  • the device 1005 may include a receiver 1010, a transmitter 1015, and a communications manager 1020.
  • the device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1010 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to uplink transmission switching for multiple radio frequency bands) . Information may be passed on to other components of the device 1005.
  • the receiver 1010 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 1015 may provide a means for transmitting signals generated by other components of the device 1005.
  • the transmitter 1015 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to uplink transmission switching for multiple radio frequency bands) .
  • the transmitter 1015 may be co-located with a receiver 1010 in a transceiver module.
  • the transmitter 1015 may utilize a single antenna or a set of multiple antennas.
  • the device 1005, or various components thereof, may be an example of means for performing various aspects of uplink transmission switching for multiple radio frequency bands as described herein.
  • the communications manager 1020 may include a first control signaling component 1025 a second control signaling component 1030, or any combination thereof.
  • the communications manager 1020 may be an example of aspects of a communications manager 920 as described herein.
  • the communications manager 1020, or various components thereof, may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 1010, the transmitter 1015, or both.
  • the communications manager 1020 may receive information from the receiver 1010, send information to the transmitter 1015, or be integrated in combination with the receiver 1010, the transmitter 1015, or both to receive information, transmit information, or perform various other operations as described herein.
  • the communications manager 1020 may support wireless communication at a network entity (e.g., the device 1005) in accordance with examples as disclosed herein.
  • the first control signaling component 1025 may be configured as or otherwise support a means for obtaining first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands.
  • the second control signaling component 1030 may be configured as or otherwise support a means for outputting, from the network entity and in response to the first control signaling, second control signaling that includes an indication for a UE to switch carriers for transmission of an uplink message, where the switch involves a change at the UE from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands indicated in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
  • FIG. 11 shows a block diagram 1100 of a communications manager 1120 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the communications manager 1120 may be an example of aspects of a communications manager 920, a communications manager 1020, or both, as described herein.
  • the communications manager 1120, or various components thereof, may be an example of means for performing various aspects of uplink transmission switching for multiple radio frequency bands as described herein.
  • the communications manager 1120 may include a first control signaling component 1125, a second control signaling component 1130, a message obtaining component 1135, a transition indication component 1140, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the communications manager 1120 may support wireless communication at a network entity in accordance with examples as disclosed herein.
  • the first control signaling component 1125 may be configured as or otherwise support a means for obtaining first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands.
  • the second control signaling component 1130 may be configured as or otherwise support a means for outputting, from the network entity and in response to the first control signaling, second control signaling that includes an indication for a UE to switch carriers for transmission of an uplink message, where the switch involves a change at the UE from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands indicated in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
  • the message obtaining component 1135 may be configured as or otherwise support a means for obtaining, from the UE, the uplink message transmitted on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change is based on the indication for the UE to switch carriers.
  • the UE capability indicates that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is supported by the UE.
  • the transition indication component 1140 may be configured as or otherwise support a means for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation is supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed across one or two second radio frequency bands, and where the first set of carriers includes two carriers distributed across one or two first radio frequency bands, and where the one or two first radio frequency bands and the one or two second radio frequency bands are different but have one radio frequency band in common.
  • the transition indication component 1140 may be configured as or otherwise support a means for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation is supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the second set of radio frequency bands, where the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands or between both the first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and where the first radio frequency band of the first set of radio frequency bands is a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
  • the transition indication component 1140 may be configured as or otherwise support a means for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation is supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, where the first set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and where the second radio frequency band of the first set of radio frequency bands is a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
  • the transition indication component 1140 may be configured as or otherwise support a means for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for carrier aggregation is supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of an SUL carrier, and the second radio frequency band of the second set of radio frequency bands being for the carrier aggregation, where the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands, a second radio frequency band of the first set of radio frequency bands, or between both the first
  • the transition indication component 1140 may be configured as or otherwise support a means for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation is supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of an SUL carrier, and the second radio frequency band of the second set of radio frequency bands being for the carrier aggregation, where the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being used for the
  • the transition indication component 1140 may be configured as or otherwise support a means for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation is not supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, where the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, and where the first radio frequency band of the first set of radio frequency bands is different from the first radio frequency band of the second set of radio frequency bands.
  • the transition indication component 1140 may be configured as or otherwise support a means for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation is not supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, where the first set of carriers includes two carriers distributed between a first radio frequency band of the first set of radio frequency bands and a second radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for an SUL carrier and the second radio frequency band of the first set of radio frequency bands being for the carrier aggregation, and where the second radio frequency band of the first set of radio frequency bands is a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
  • the first set of radio frequency bands and the second set of radio frequency bands collectively include, at most, only one SUL carrier.
  • the second control signaling includes an RRC message, a MAC-CE, or a DCI.
  • the second control signaling includes at least one of an uplink carrier ID for each of the second set of carriers or an activation time and duration for the switch.
  • the first combination of the multiple radio frequency bands includes four or more radio frequency bands.
  • FIG. 12 shows a diagram of a system 1200 including a device 1205 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the device 1205 may be an example of or include the components of a device 905, a device 1005, or a Network Entity –ALPHA (e.g., a network entity) as described herein.
  • the device 1205 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 1220, a network communications manager 1210, a transceiver 1215, an antenna 1225, a memory 1230, code 1235, a processor 1240, and an inter-station communications manager 1245.
  • These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 1250) .
  • the network communications manager 1210 may manage communications with a core network 130 (e.g., via one or more wired backhaul links) .
  • the network communications manager 1210 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the device 1205 may include a single antenna 1225. However, in some other cases the device 1205 may have more than one antenna 1225, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the transceiver 1215 may communicate bi-directionally, via the one or more antennas 1225, wired, or wireless links as described herein.
  • the transceiver 1215 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1215 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 1225 for transmission, and to demodulate packets received from the one or more antennas 1225.
  • the transceiver 1215 may be an example of a transmitter 915, a transmitter 1015, a receiver 910, a receiver 1010, or any combination thereof or component thereof, as described herein.
  • the memory 1230 may include RAM and ROM.
  • the memory 1230 may store computer-readable, computer-executable code 1235 including instructions that, when executed by the processor 1240, cause the device 1205 to perform various functions described herein.
  • the code 1235 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory.
  • the code 1235 may not be directly executable by the processor 1240 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the memory 1230 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1240 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1240 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1240.
  • the processor 1240 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1230) to cause the device 1205 to perform various functions (e.g., functions or tasks supporting uplink transmission switching for multiple radio frequency bands) .
  • the device 1205 or a component of the device 1205 may include a processor 1240 and memory 1230 coupled with the processor 1240, the processor 1240 and memory 1230 configured to perform various functions described herein.
  • the inter-station communications manager 1245 may manage communications with other base stations 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1245 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1245 may provide an X2 interface within an LTE/LTE-Awireless communications network technology to provide communication between base stations 105.
  • the communications manager 1220 may support wireless communication at a network entity (e.g., the device 1205) in accordance with examples as disclosed herein.
  • the communications manager 1220 may be configured as or otherwise support a means for obtaining first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands.
  • the communications manager 1220 may be configured as or otherwise support a means for outputting, from the network entity and in response to the first control signaling, second control signaling that includes an indication for a UE to switch carriers for transmission of an uplink message, where the switch involves a change at the UE from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands indicated in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
  • the device 1205 may support techniques for communication reliability, more efficient utilization of communication resources, and improved coordination between devices.
  • the communications manager 1220 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 1215, the one or more antennas 1225, or any combination thereof.
  • the communications manager 1220 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 1220 may be supported by or performed by the processor 1240, the memory 1230, the code 1235, or any combination thereof.
  • the code 1235 may include instructions executable by the processor 1240 to cause the device 1205 to perform various aspects of uplink transmission switching for multiple radio frequency bands as described herein, or the processor 1240 and the memory 1230 may be otherwise configured to perform or support such operations.
  • FIG. 13 shows a flowchart illustrating a method 1300 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the operations of the method 1300 may be implemented by a UE or its components as described herein.
  • the operations of the method 1300 may be performed by a UE 115 as described with reference to FIGs. 1 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
  • the method may include transmitting, to a network entity, first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands.
  • first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands.
  • the operations of 1305 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1305 may be performed by a UE capability component 725 as described with reference to FIG. 7.
  • the method may include receiving, from the network entity and in response to the first control signaling, second control signaling that includes an indication for the UE to switch carriers for transmission of an uplink message, where the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
  • the operations of 1310 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1310 may be performed by a switch indication component 730 as described with reference to FIG. 7.
  • the method may include transmitting the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change is based on the UE capability.
  • the operations of 1315 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1315 may be performed by an uplink message component 735 as described with reference to FIG. 7.
  • FIG. 14 shows a flowchart illustrating a method 1400 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the operations of the method 1400 may be implemented by a UE or its components as described herein.
  • the operations of the method 1400 may be performed by a UE 115 as described with reference to FIGs. 1 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
  • the method may include transmitting, to a network entity and to indicate that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is supported by the UE, first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands.
  • first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands.
  • the method may include receiving, from the network entity and in response to the first control signaling, second control signaling that includes an indication for the UE to switch carriers for transmission of an uplink message, where the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
  • the operations of 1410 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1410 may be performed by a switch indication component 730 as described with reference to FIG. 7.
  • the method may include transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes two carriers distributed across one or two first radio frequency bands, and where the second set of carriers includes two carriers distributed across one or two second radio frequency bands, where the one or two first radio frequency bands and the one or two second radio frequency bands are different but have one radio frequency band in common.
  • the operations of 1415 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1415 may be performed by a carrier transition component 740 as described with reference to FIG. 7.
  • the method may include transmitting the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change is based on the UE capability.
  • the operations of 1420 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1420 may be performed by an uplink message component 735 as described with reference to FIG. 7.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the operations of the method 1500 may be implemented by a UE or its components as described herein.
  • the operations of the method 1500 may be performed by a UE 115 as described with reference to FIGs. 1 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
  • the method may include transmitting, to a network entity and to indicate that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is not supported by the UE, first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands.
  • first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands.
  • the method may include receiving, from the network entity and in response to the first control signaling, second control signaling that includes an indication for the UE to switch carriers for transmission of an uplink message, where the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
  • the operations of 1510 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1510 may be performed by a switch indication component 730 as described with reference to FIG. 7.
  • the method may include transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, and where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, where the first radio frequency band of the first set of radio frequency bands is different from the first radio frequency band of the second set of radio frequency bands.
  • the operations of 1515 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1515 may be performed by a carrier transition component 740 as described with reference to FIG. 7.
  • the method may include transmitting the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change is based on the UE capability.
  • the operations of 1520 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1520 may be performed by an uplink message component 735 as described with reference to FIG. 7.
  • FIG. 16 shows a flowchart illustrating a method 1600 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the operations of the method 1600 may be implemented by a Network Entity -ALPHA or its components as described herein.
  • the operations of the method 1600 may be performed by a Network Entity -ALPHA as described with reference to FIGs. 1 through 4 and 9 through 12.
  • a Network Entity -ALPHA may execute a set of instructions to control the functional elements of the Network Entity -ALPHA to perform the described functions.
  • the Network Entity -ALPHA may perform aspects of the described functions using special-purpose hardware.
  • the method may include obtaining first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands.
  • the operations of 1605 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1605 may be performed by a first control signaling component 1125 as described with reference to FIG. 11.
  • the method may include outputting, from the network entity and in response to the first control signaling, second control signaling that includes an indication for a UE to switch carriers for transmission of an uplink message, where the switch involves a change at the UE from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands indicated in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
  • the operations of 1610 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1610 may be performed by a second control signaling component 1130 as described with reference to FIG. 11.
  • FIG. 17 shows a flowchart illustrating a method 1700 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
  • the operations of the method 1700 may be implemented by a Network Entity -ALPHA or its components as described herein.
  • the operations of the method 1700 may be performed by a Network Entity -ALPHA as described with reference to FIGs. 1 through 4 and 9 through 12.
  • a Network Entity -ALPHA may execute a set of instructions to control the functional elements of the Network Entity -ALPHA to perform the described functions. Additionally or alternatively, the Network Entity -ALPHA may perform aspects of the described functions using special-purpose hardware.
  • the method may include obtaining first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands.
  • the operations of 1705 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1705 may be performed by a first control signaling component 1125 as described with reference to FIG. 11.
  • the method may include outputting, from the network entity and in response to the first control signaling, second control signaling that includes an indication for a UE to switch carriers for transmission of an uplink message, where the switch involves a change at the UE from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands indicated in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
  • the operations of 1710 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1710 may be performed by a second control signaling component 1130 as described with reference to FIG. 11.
  • the method may include obtaining, from the UE, the uplink message transmitted on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change is based on the indication for the UE to switch carriers.
  • the operations of 1715 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1715 may be performed by a message obtaining component 1135 as described with reference to FIG. 11.
  • a method for wireless communication at a UE comprising: transmitting, to a network entity, first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands; receiving, from the network entity and in response to the first control signaling, second control signaling that includes an indication for the UE to switch carriers for transmission of an uplink message, wherein the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, wherein a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more; and transmitting the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, wherein the change is based at least in part on the UE capability.
  • Aspect 2 The method of aspect 1, wherein transmitting the UE capability further comprises: transmitting the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is supported by the UE.
  • Aspect 3 The method of aspect 2, further comprising: transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, wherein the first set of carriers includes two carriers distributed across one or two first radio frequency bands, and wherein the second set of carriers includes two carriers distributed across one or two second radio frequency bands, wherein the one or two first radio frequency bands and the one or two second radio frequency bands are different but have one radio frequency band in common.
  • Aspect 4 The method of aspect 2, further comprising: transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, wherein the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands or between both the first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and wherein the second set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
  • Aspect 5 The method of aspect 2, further comprising: transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, wherein the first set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, the second radio frequency band of the first set of radio frequency bands being a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
  • Aspect 6 The method of aspect 2, further comprising: transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, wherein the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands, a second radio frequency band of the first set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for a supplemental uplink carrier and the second radio frequency band of the first set of radio frequency bands being for carrier aggregation, and wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of the supplemental uplink carrier, and the second radio frequency band of the second set of radio frequency
  • Aspect 7 The method of aspect 2, further comprising: transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, wherein the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for a supplemental uplink carrier, and wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of the supplemental uplink carrier, and the second radio frequency band of the second set of radio frequency bands being for carrier aggregation.
  • Aspect 8 The method of any of aspects 1 through 7, wherein transmitting the uplink message to the network entity on the at least one carrier of the second set of carriers further comprises: transmitting the uplink message using one antenna port per radio frequency band of the second set of radio frequency bands.
  • Aspect 9 The method of any of aspects 1 through 7, wherein transmitting the uplink message to the network entity on the at least one carrier of the second set of carriers further comprises: transmitting the uplink message using two antenna port per radio frequency band of the second set of radio frequency bands, wherein the at least one carrier of the second set of carriers is distributed across a first radio frequency band of the second set of radio frequency bands.
  • Aspect 10 The method of aspect 1, wherein transmitting the UE capability further comprises: transmitting the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is not supported by the UE.
  • Aspect 11 The method of aspect 10, further comprising: transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, wherein the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, and wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, wherein the first radio frequency band of the first set of radio frequency bands is different from the first radio frequency band of the second set of radio frequency bands.
  • Aspect 12 The method of aspect 10, further comprising: transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, wherein the first set of carriers includes two carriers distributed between a first radio frequency band of the first set of radio frequency bands and a second radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for a supplemental uplink carrier and the second radio frequency band of the first set of radio frequency bands being for carrier aggregation, and wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, wherein the second radio frequency band of the first set of radio frequency bands is a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
  • Aspect 13 The method of any of aspects 1 through 12, wherein the first set of radio frequency bands and the second set of radio frequency bands collectively include, at most, only one supplemental uplink carrier.
  • Aspect 14 The method of any of aspects 1 through 13, wherein the second control signaling comprises an RRC message, a MAC-CE, or a DCI.
  • Aspect 15 The method of any of aspects 1 through 14, wherein the second control signaling comprises at least one of an uplink carrier identification (ID) for each of the second set of carriers or an activation time and duration for the switch.
  • ID uplink carrier identification
  • Aspect 16 The method of any of aspects 1 through 15, wherein the first combination of the multiple radio frequency bands comprises four or more radio frequency bands.
  • a method for wireless communication at a network entity comprising: obtaining first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands; and outputting, from the network entity and in response to the first control signaling, second control signaling that includes an indication for a UE to switch carriers for transmission of an uplink message, wherein the switch involves a change at the UE from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, wherein a total number of radio frequency bands indicated in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
  • Aspect 18 The method of aspect 17, further comprising: obtaining, from the UE, the uplink message transmitted on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, wherein the change is based at least in part on the indication for the UE to switch carriers.
  • Aspect 19 The method of any of aspects 17 through 18, wherein the UE capability indicates that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is supported by the UE.
  • Aspect 20 The method of aspect 19, wherein outputting the second control signaling comprises: outputting, based at least in part on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for carrier aggregation is supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, wherein the second set of carriers includes two carriers distributed across one or two second radio frequency bands, and wherein the first set of carriers includes two carriers distributed across one or two first radio frequency bands, and wherein the one or two first radio frequency bands and the one or two second radio frequency bands are different but have one radio frequency band in common.
  • Aspect 21 The method of aspect 19, wherein outputting the second control signaling comprises: outputting, based at least in part on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for carrier aggregation is supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, wherein the second set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the second set of radio frequency bands, wherein the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands or between both the first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and wherein the first radio frequency band of the first set of radio frequency bands is a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
  • Aspect 22 The method of aspect 19, wherein outputting the second control signaling comprises: outputting, based at least in part on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for carrier aggregation is supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, wherein the first set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and wherein the second radio frequency band of the first set of radio frequency bands is a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
  • outputting the second control signaling comprises: outputting, based at least in part on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for carrier aggregation is supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of a supplemental uplink carrier, and the second radio frequency band of the second set of radio frequency bands being for carrier aggregation, wherein the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands, a second radio frequency band of the first set of radio frequency bands, or between both the first radio frequency band
  • outputting the second control signaling comprises: outputting, based at least in part on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for carrier aggregation is supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of a supplemental uplink carrier, and the second radio frequency band of the second set of radio frequency bands being for carrier aggregation, wherein the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being used for the supplemental uplink
  • Aspect 25 The method of any of aspects 17 through 18, wherein the UE capability indicates that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is not supported by the UE.
  • outputting the second control signaling comprises: outputting, based at least in part on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for carrier aggregation is not supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, wherein the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, and wherein the first radio frequency band of the first set of radio frequency bands is different from the first radio frequency band of the second set of radio frequency bands.
  • outputting the second control signaling comprises: outputting, based at least in part on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for carrier aggregation is not supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, wherein the first set of carriers includes two carriers distributed between a first radio frequency band of the first set of radio frequency bands and a second radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for a supplemental uplink carrier and the second radio frequency band of the first set of radio frequency bands being for carrier aggregation, and wherein the second radio frequency band of the first set of radio frequency bands is a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
  • Aspect 28 The method of any of aspects 17 through 27, wherein the first set of radio frequency bands and the second set of radio frequency bands collectively include, at most, only one supplemental uplink carrier.
  • Aspect 29 The method of any of aspects 17 through 28, wherein the second control signaling comprises an RRC message, a MAC-CE, or a DCI.
  • Aspect 30 The method of any of aspects 17 through 29, wherein the second control signaling comprises at least one of an uplink carrier ID for each of the second set of carriers or an activation time and duration for the switch.
  • Aspect 31 The method of any of aspects 17 through 30, wherein the first combination of the multiple radio frequency bands comprises four or more radio frequency bands.
  • Aspect 32 An apparatus for wireless communication, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of aspects 1 through 16.
  • Aspect 33 An apparatus for wireless communication, comprising at least one means for performing a method of any of aspects 1 through 16.
  • Aspect 34 A non-transitory computer-readable medium storing code for wireless communication at a UE, the code comprising instructions executable by a processor to perform a method of any of aspects 1 through 16.
  • Aspect 35 An apparatus for wireless communication, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of aspects 17 through 31.
  • Aspect 36 An apparatus for wireless communication, comprising at least one means for performing a method of any of aspects 17 through 31.
  • Aspect 37 A non-transitory computer-readable medium storing code for wireless communication at a network entity, the code comprising instructions executable by a processor to perform a method of any of aspects 17 through 31.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
  • determining encompasses a wide variety of actions and, therefore, “determining” can include calculating, computing, processing, deriving, investigating, looking up (such as via looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” can include receiving (such as receiving information) , accessing (such as accessing data in a memory) and the like. Also, “determining” can include resolving, selecting, choosing, establishing and other such similar actions.

Abstract

Methods, systems, and devices for wireless communications are described. A user equipment (UE) may transmit first control signaling to a network entity. The first control signaling may indicate a first combination of multiple radio frequency bands and a UE capability for switching between carriers across three or more radio frequency bands. The UE may receive second control signaling from the network entity that may include an indication for the UE to switch carriers for transmission of an uplink message. The switch may involve a change from a first set of carriers over a first set of radio frequency bands to a second set of carriers over a second set of radio frequency bands. The UE may transmit the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change. The change may be based on the UE capability.

Description

UPLINK TRANSMISSION SWITCHING FOR MULTIPLE RADIO FREQUENCY BANDS
FIELD OF TECHNOLOGY
The following relates to for wireless communications, including uplink transmission switching for multiple radio frequency bands.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal FDMA (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) .
A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) . Some communication devices may support wireless communication over one or multiple carriers. A carrier may be associated with a radio frequency band of a radio frequency spectrum. Some communication devices may support carrier aggregation for wireless communication. In some cases, these communication devices may support wireless communication over one or multiple radio frequency bands according to the carrier aggregation.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support uplink transmission switching for multiple radio frequency  bands. Generally, the described techniques provide for carrier switching over multiple radio frequency bands based on one or more user equipment (UE) capabilities. For example, a UE may transmit first control signaling to a network entity. The first control signaling may indicate a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands. In response, the UE may receive second control signaling from the network entity. The second control signaling may include an indication for the UE to switch carriers for transmission of an uplink message. The switch may involve a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination. A total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands may be three or more. The UE may transmit the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers. The change may be based on the UE capability. As a result, the communication device may improve coordination between the communication device and the network.
A method for wireless communication at a UE is described. The method may include transmitting, to a network entity, first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands, receiving, from the network entity and in response to the first control signaling, second control signaling that includes an indication for the UE to switch carriers for transmission of an uplink message, where the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more, and transmitting the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change is based on the UE capability.
An apparatus for wireless communication is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to transmit, to a network entity, first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands, receive, from the network entity and in response to the first control signaling, second control signaling that includes an indication for the UE to switch carriers for transmission of an uplink message, where the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more, and transmit the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change is based on the UE capability.
Another apparatus for wireless communication is described. The apparatus may include means for transmitting, to a network entity, first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands, means for receiving, from the network entity and in response to the first control signaling, second control signaling that includes an indication for the UE to switch carriers for transmission of an uplink message, where the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more, and means for transmitting the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change is based on the UE capability.
A non-transitory computer-readable medium storing code for wireless communication at a UE is described. The code may include instructions executable by a processor to transmit, to a network entity, first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands, receive, from the network entity and in response to the first control signaling, second control signaling that includes an indication for the UE to switch carriers for transmission of an uplink message, where the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more, and transmit the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change is based on the UE capability.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the UE capability may include operations, features, means, or instructions for transmitting the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation may be supported by the UE.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes two carriers distributed across one or two first radio frequency bands, and where the second set of carriers includes two carriers distributed across one or two second radio frequency bands, where the one or two first radio frequency bands and the one or two second radio frequency bands may be different but may have one radio frequency band in common.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transitioning from the first set of carriers to the second set of carriers in  accordance with the indication of the second control signaling, where the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands or between both the first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and where the second set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, the second radio frequency band of the first set of radio frequency bands being a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands, a second radio frequency band of the first set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for a supplemental uplink carrier and the second radio frequency band of the first set of radio frequency bands being for the carrier aggregation, and where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or  between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of the supplemental uplink carrier, and the second radio frequency band of the second set of radio frequency bands being for the carrier aggregation.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for a supplemental uplink carrier, and where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of the supplemental uplink carrier, and the second radio frequency band of the second set of radio frequency bands being for the carrier aggregation.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the uplink message to the network entity on the at least one carrier of the second set of carriers may include operations, features, means, or instructions for transmitting the uplink message using one antenna port per radio frequency band of the second set of radio frequency bands.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the uplink message to the network entity on the at least one carrier of the second set of carriers may include operations, features, means, or instructions for transmitting the uplink message using two antenna port per radio frequency band of the second set of radio frequency bands, where the at least one carrier of the second set of carriers may be distributed across a first radio frequency band of the second set of radio frequency bands.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the UE capability may include operations, features, means, or instructions for transmitting the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation may be not supported by the UE.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, and where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, where the first radio frequency band of the first set of radio frequency bands may be different from the first radio frequency band of the second set of radio frequency bands.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes two carriers distributed between a first radio frequency band of the first set of radio frequency bands and a second radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for a supplemental uplink carrier and the second radio frequency band of the first set of radio frequency bands being for the carrier aggregation, and where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, where the second radio frequency band of the first set of radio frequency bands may be a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first set of radio frequency bands and the second set of radio frequency bands collectively include, at most, only one supplemental uplink carrier.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the second control signaling includes a radio resource control (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) .
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the second control signaling includes at least one of an uplink carrier identification (ID) for each of the second set of carriers or an activation time and duration for the switch.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first combination of the multiple radio frequency bands includes four or more radio frequency bands.
A method for wireless communication at a network entity is described. The method may include obtaining first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands and outputting, from the network entity and in response to the first control signaling, second control signaling that includes an indication for a UE to switch carriers for transmission of an uplink message, where the switch involves a change at the UE from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands indicated in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
An apparatus for wireless communication is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to obtain first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands and output, from the network entity and in response to the first control signaling, second control signaling that includes an indication for a UE to switch carriers for transmission of an  uplink message, where the switch involves a change at the UE from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands indicated in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
Another apparatus for wireless communication is described. The apparatus may include means for obtaining first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands and means for outputting, from the network entity and in response to the first control signaling, second control signaling that includes an indication for a UE to switch carriers for transmission of an uplink message, where the switch involves a change at the UE from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands indicated in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
A non-transitory computer-readable medium storing code for wireless communication at a network entity is described. The code may include instructions executable by a processor to obtain first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands and output, from the network entity and in response to the first control signaling, second control signaling that includes an indication for a UE to switch carriers for transmission of an uplink message, where the switch involves a change at the UE from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands indicated in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or  instructions for obtaining, from the UE, the uplink message transmitted on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change may be based on the indication for the UE to switch carriers.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the UE capability indicates that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation may be supported by the UE.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, outputting the second control signaling may include operations, features, means, or instructions for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation may be supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed across one or two second radio frequency bands, and where the first set of carriers includes two carriers distributed across one or two first radio frequency bands, and where the one or two first radio frequency bands and the one or two second radio frequency bands may be different but may have one radio frequency band in common.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, outputting the second control signaling may include operations, features, means, or instructions for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation may be supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the second set of radio frequency bands, where the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands or between both the first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and where the first radio frequency band of the first set of radio  frequency bands may be a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, outputting the second control signaling may include operations, features, means, or instructions for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation may be supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, where the first set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and where the second radio frequency band of the first set of radio frequency bands may be a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, outputting the second control signaling may include operations, features, means, or instructions for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation may be supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of a supplemental uplink carrier, and the second radio frequency band of the second set of radio frequency bands being for the carrier aggregation, where the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands, a second radio frequency band of the first set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the first set of radio frequency bands, the  first radio frequency band of the first set of radio frequency bands being for the supplemental uplink carrier and the second radio frequency band of the first set of radio frequency bands being for the carrier aggregation.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, outputting the second control signaling may include operations, features, means, or instructions for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation may be supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of a supplemental uplink carrier, and the second radio frequency band of the second set of radio frequency bands being for the carrier aggregation, where the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being used for the supplemental uplink carrier.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the UE capability indicates that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation may be not supported by the UE.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, outputting the second control signaling may include operations, features, means, or instructions for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation may be not supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, where the first set  of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, and where the first radio frequency band of the first set of radio frequency bands may be different from the first radio frequency band of the second set of radio frequency bands.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, outputting the second control signaling may include operations, features, means, or instructions for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation may be not supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, where the first set of carriers includes two carriers distributed between a first radio frequency band of the first set of radio frequency bands and a second radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for a supplemental uplink carrier and the second radio frequency band of the first set of radio frequency bands being for the carrier aggregation, and where the second radio frequency band of the first set of radio frequency bands may be a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first set of radio frequency bands and the second set of radio frequency bands collectively include, at most, only one supplemental uplink carrier.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the second control signaling includes an RRC message, a MAC-CE, or a DCI.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the second control signaling includes at least one of an uplink carrier ID for each of the second set of carriers or an activation time and duration for the switch.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first combination of the multiple radio frequency bands includes four or more radio frequency bands.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGs. 1 and 2A illustrate examples of a wireless communications system that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
FIG. 2B illustrates an example of a carrier aggregation diagram that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
FIGs. 3 and 4 illustrate examples of a process flow that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
FIGs. 5 and 6 show block diagrams of devices that support uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
FIG. 7 shows a block diagram of a communications manager that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
FIG. 8 shows a diagram of a system including a device that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
FIGs. 9 and 10 show block diagrams of devices that support uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
FIG. 11 shows a block diagram of a communications manager that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
FIG. 12 shows a diagram of a system including a device that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
FIGs. 13 through 17 show flowcharts illustrating methods that support uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
A wireless communications system may include communication devices, such as a UE or a network entity. A network entity may be an example of a wired or wireless network node that may support multiple radio access technologies. For example, a network entity may be an example of a base station (e.g., an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB, any of which may be referred to as a gNB, or some other base station) . Examples of radio access technologies may include 4G systems, such as LTE systems, and 5G systems, which may be referred to as 5G new radio (NR) systems, among other wireless communications systems (e.g., subsequent generations of wireless communications systems) . A communication device may support wireless communication over one or multiple radio frequency bands and one or multiple carriers. For example, the communication device may be configured (e.g., by the network) with a single carrier or multiple carriers in the form of carrier aggregation or dual connectivity.
In some examples, the network (e.g., the network entity) may schedule the communication device with the one or multiple carriers to support the wireless communication. For example, the network may configure the communication device to support carrier aggregation over a single radio frequency band or multiple radio frequency bands (e.g., inter-band carrier aggregation) . That is, the communication device may be configured to aggregate two or more carriers across a same radio frequency band or between multiple (e.g., separate) radio frequency bands. In some examples, one of the multiple carriers (e.g., a component carrier) may be a supplemental uplink (SUL) carrier. Additionally or alternatively, a component carrier may be a normal uplink (NUL) carrier, for example associated with the serving cell of the SUL carrier. Additionally or alternatively, one or more component carriers may be for carrier  aggregation (e.g., may be regular carrier aggregation carriers) . In some examples, the component carriers for carrier aggregation may be configured such that the component carriers may not support simultaneous transmissions (e.g., uplink transmissions) on multiple (e.g., different) radio frequency bands. That is, the network may configure the component carriers for Option 1 carriers aggregation (e.g., may be configured as Option 1 carriers) . In other examples, the component carriers for carrier aggregation may be configured to support simultaneous uplink transmissions on multiple radio frequency carriers. That is, the component carriers may be configured for Option 2 carrier aggregation (e.g., may be configured as Option 2 carriers) .
In some examples, if the communication device supports communications over multiple radio frequency bands, there may be scheduling ambiguity for the wireless communications between the communication device and the network when the communication device is scheduled to switch between multiple sets of radio frequency bands. For example, the number of radio frequency bands over which the communication device may support simultaneous transmissions (e.g., at a given time) may be based on the number of radio frequency transmit chains (e.g., antenna ports) at the communication device. In some examples, the network may schedule the communication device to transmit communications over one or more radio frequency bands that may be different from the radio frequency bands over which the communication device may be (e.g., currently) operating. As such, the one or more radio frequency bands from which the communication device is to switch from may be ambiguous, for example if the network schedules the communication device to switch to multiple radio frequency bands from a single radio frequency band or from a different combination of radio frequency bands. Moreover, the number of radio frequency bands that may be supported by the communication device may exceed the number of radio frequency bands between which the communication device may switch. As such, the network may be unaware of combinations of radio frequency bands in which the communication device may be capable of switching between.
Various aspects of the present disclosure relate to uplink transmission switching for multiple radio frequency bands and more specifically, to carrier switching over multiple radio frequency bands based on capabilities of the communication device. For example, the present disclosure may provide for techniques for configuring a  communication device to switch carriers for communications with the network based on a data structure (e.g., mapping table) that may indicate one or more rules for uplink transmission switching between three or more radio frequency bands (e.g., when four or more radio frequency bands may be supported by the communication device) . In some examples, the communication device may indicate (e.g., to the network and via control signaling) one or more capabilities of the communication device for switching between carriers (e.g., during uplink communications) . Additionally or alternatively, the communication device may indicate a combination of multiple radio frequency bands over which the communication device may support communications.
For example, the communication device may indicate a combination of four or more radio frequency bands and a capability of the communication device to switch between carriers during uplink communications across three or more radio frequency bands (e.g., of the indicated combination of four or more radio frequency bands) . In response, the communication device may receive (e.g., from the network) an indication to switch carriers for transmitting uplink messages. For example, based on the capabilities of the communication device, the network may indicate for the communication device to switch from one or more carriers over a first set of radio frequency bands to a one or more other carriers over a second set of radio frequency bands. The switch indicated by the network may be based on a data structure indicating one or more rules for uplink transmission switching between three or more radio frequency bands. In some examples, a radio frequency band of the second set of radio frequency bands may be common to the first set of radio frequency bands.
Particular aspects of the subject matter described herein may be implemented to realize one or more of the following potential advantages. For example, the techniques employed by the described communication devices may provide benefits and enhancements to wireless communication devices operating within the network, including enabling improved coordination between the wireless communication devices. In some examples, operations performed by the described communication devices may provide improvements to techniques for uplink transmission switching for multiple radio frequency bands thereby reducing scheduling ambiguities and increasing the reliability of communications between the network and the communication devices. The operations performed by the described communication devices to improve uplink  transmission switching for multiple radio frequency bands may include indicating capabilities of the communication device for switching between carriers during uplink communications across three or more radio frequency bands. In some other implementations, operations performed by the described wireless communication devices may also support improvements to user experience and higher data rates, among other benefits.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are also described in the context of a carrier aggregation diagram and process flows. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to uplink transmission switching for multiple radio frequency bands.
FIG. 1 illustrates an example of a wireless communications system 100 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-APro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a geographic coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The geographic coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a geographic coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
In some examples, one or more components of the wireless communications system 100 may operate as or be referred to as a network node. As used herein, a network node may refer to any UE 115, base station 105, entity of a core network 130, apparatus, device, or computing system configured to perform any techniques described herein. For example, a network node may be a UE 115. As another example, a network node may be a base station 105. As another example, a first network node may be configured to communicate with a second network node or a third network node. In one aspect of this example, the first network node may be a UE 115, the second network node may be a base station 105, and the third network node may be a UE 115. In another aspect of this example, the first network node may be a UE 115, the second network node may be a base station 105, and the third network node may be a base station 105. In yet other aspects of this example, the first, second, and third network nodes may be different. Similarly, reference to a UE 115, a base station 105, an apparatus, a device, or a computing system may include disclosure of the UE 115, base station 105, apparatus, device, or computing system being a network node. For example, disclosure that a UE 115 is configured to receive information from a base station 105 also discloses that a first network node is configured to receive information from a second network node. In this example, consistent with this disclosure, the first network node may refer to a first UE 115, a first base station 105, a first apparatus, a first device, or a first computing system configured to receive the information; and the second network node may refer to a second UE 115, a second base station 105, a second apparatus, a second device, or a second computing system.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core  network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a network entity, a network node, a node, a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency  spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-APro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
The communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (e.g., the base stations 105, the UEs 115, or both) may have hardware configurations that support  communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing (Δf) and a cyclic prefix. A carrier may be divided into one or more BWPs having the same or different numerologies. In some examples, a UE 115 may be configured with multiple BWPs. In some examples, a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized  according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more  aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring,  wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) . The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions. Ultra-reliable communications may include private communication or group communication and may be supported by one or more services such as push-to-talk, video, or data. Support for ultra-reliable, low-latency functions may include prioritization of services, and such services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or  interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to IP services 150 for one or more network operators. The IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, for example in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U)  radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase  offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
A receiving device (e.g., a UE 115) may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) . The single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide  establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data. At the physical layer, transport channels may be mapped to physical channels.
In some examples, the wireless communications system 100 may support techniques for uplink transmission switching for multiple radio frequency bands. For example, a UE 115 may transmit first control signaling to a network entity, such as a base station 105 or one or more other network entities. The first control signaling may indicate a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands. In response, the UE 115 may receive second control signaling from the network entity. The second control signaling may include an indication for the UE 115 to switch carriers for transmission of an uplink message. The switch may involve a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination. A total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands may be three or more. The UE 115 may transmit the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers. The change may be based on the UE capability. As a result, the UE 115 may reduce scheduling ambiguities and improve the reliability of communications with the network.
FIG. 2A illustrates an example of a wireless communications system 200 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure. The wireless communications system 200 may implement or be implemented by one or more aspects of the wireless communications system 100. For example, the wireless communications system 200 may include a network entity 205 and a UE 215, which may be examples of devices as described with reference to FIG. 1. For example, the UE 215 may be an example of a UE 115 as described with reference to FIG. 1. In the example of FIG. 2A, the network entity 205 may be an example of a base station 105 or one or more other network entities as described with reference to FIG. 1. The UE 215 may communicate with the network entity 205 over a communication link 230-a and a communication link 230-b,  which may be examples of communication links 125 as described with reference to FIG. 1. In the example of FIG. 2A, the communication link 230-a may be a downlink and the communication link 230-b may be an uplink.
In the example of FIG. 2A, the UE 215 may support wireless communications over one or multiple radio frequency bands and one or multiple carriers. For example, the UE 215 include a number of radio frequency transmit chains (e.g., antenna ports) that may each support communications on a particular radio frequency band at a given time. That is, the UE 215 may support simultaneous wireless communications for a number of radio frequency bands that may be based on the number of antenna ports at the UE 215. In some examples, the radio frequency bands used for wireless communications (e.g., uplink communications, downlink communications) at the UE 215 may be configured by the network entity 205. For example, the network entity 205 may configure the UE 215 to support carrier aggregation over a single radio frequency band or multiple radio frequency bands (e.g., inter-band carrier aggregation) . That is, the UE 215 may be configured to aggregate two or more carriers across a same radio frequency band or between multiple (e.g., separate) radio frequency bands.
FIG. 2B illustrates an example of a carrier aggregation diagram 201 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure. The carrier aggregation diagram 201 may implement or be implemented by one or more aspects of the wireless communications system 100 and the wireless communications system 200. For example, aspects of the carrier aggregation diagram 201 may be implemented at the network entity 205 and the UE 215 as described with reference to FIG. 2A.
For example, as illustrated in the example of FIG. 2B, the UE 215 may aggregate at least two carriers 235. That is, the UE 215 may aggregate at least two of a carrier 235-a, a carrier 235-b, a carrier 235-c, and a carrier 235-d. In some examples, the UE 215 may be configured or allocated contiguous carriers within a single radio frequency band (e.g., a radio frequency band 240-a, a radio frequency band 240-b, a radio frequency band 240-c, or a radio frequency band 240-d) . Such carrier aggregation may be referred to as intra-band contiguous carrier aggregation. For example, the UE 215 may aggregate the carrier 235-a and the carrier 235-b within the radio frequency  band 240-a. Additionally or alternatively, the UE 215 may be configured for non-contiguous carrier aggregation, which may be either be intra-band or inter-band. For intra-band non-contiguous carrier aggregation, the aggregated carriers may be associated with (e.g., may be distributed across) a same radio frequency band. For inter-band non-contiguous carrier aggregation, the aggregated carriers may be distributed between multiple (e.g., different) radio frequency bands. For example, (e.g., for inter-band non-contiguous carrier aggregation) , the UE 215 may aggregate the carrier 235-a(e.g., occurring within the radio frequency band 240-a) and the carrier 235-c (e.g., occurring within the radio frequency band 240-b) or the carrier 235-d (e.g., occurring within the radio frequency band 240-c) .
In some examples, one of the multiple aggregated carriers may be an SUL carrier and another carrier may be an NUL carrier (e.g., associated with the serving cell of the SUL carrier) . Additionally or alternatively, the multiple carriers may include carriers (e.g., component carriers) for carrier aggregation (e.g., one or more aggregated carriers that are neither an SUL nor an NUL) . In some examples, the aggregated carriers may be configured such that simultaneous transmissions (e.g., uplink transmissions) on multiple (e.g., different) radio frequency bands may not be supported. For example, the aggregated carriers may be configured for Option 1 carrier aggregation. In other examples, the aggregated carriers may be configured such that simultaneous transmissions on multiple radio frequency bands may be supported. For example, the aggregated carriers may be configured for Option 2 carrier aggregation.
The UE 215 may be capable of uplink transmission switching (e.g., switching carriers for uplink transmissions) between four or more bands. For example, the UE 215 may support a radio frequency band combination (e.g., for switching) that may include an SUL carrier, an NUL carrier, one or more component carriers for carrier aggregation, or any combination thereof. That is, the UE 215 may be configured for carrier aggregation (e.g., inter-band carrier aggregation) Option 1 or carrier aggregation Option 1 plus SUL, such that the UE 215 may not be capable of simultaneous uplink transmissions from more than one radio frequency band. For example, the UE 215 may be configured to transmit from multiple carriers, in which one of the multiple carrier is an SUL and the other (e.g., remaining) carriers may be component carriers configured for Option 1 carrier aggregation. Additionally or alternatively, the UE 215 may be  configured for carrier aggregation Option 2 or carrier aggregation Option 2 plus SUL, such that the UE 215 may be capable of simultaneous transmission from more than one radio frequency band. For example, the UE 215 may be configured to transmit from multiple carriers, in which one carrier is an SUL and the other carriers may be component carriers configured for Option 2 carrier aggregation.
In some examples, however, supporting more than two radio frequency bands (e.g., for SUL and carrier aggregation) may result in scheduling ambiguity for wireless communications between the UE 215 and the network entity 205. For example, the network entity 205 may schedule the UE 215 to transmit communications over one or more radio frequency bands that may be different from (e.g., or the same as) the radio frequency bands over which the UE 215 may be (e.g., currently) operating. As such, the one or more radio frequency bands from which the UE 215 is to switch from may be ambiguous. Moreover, while the UE 215 may support uplink transmission from four or more radio frequency bands, switching between four or more radio frequency bands may be complex and prohibitive. As such, a data structure (e.g., a mapping) of switching options (e.g., between different combinations of radio frequency bands) for UEs (e.g., the UE 215) that support more than two radio frequency bands (e.g., for carrier aggregation or carrier aggregation plus SUL) may be desirable.
Therefore, the techniques described herein may support (e.g., define) mapping rules for carrier switching across three or more radio frequency bands. For example, to reduce switching complexity, capabilities (e.g., rules) for switching among (e.g., between) three or more bands, while simultaneously transmitting from two of the three or more radio frequency bands, may be indicated (e.g., defined) in mapping tables. In some examples, the rules may depend on capabilities of the UE 215. For example, different rules may be indicated (e.g., defined, configured) based on whether the UE 215 supports (e.g., is configured to support) simultaneous transmissions from multiple (e.g., different) radio frequency bands. That is, multiple (e.g., different) data structures may indicate rules based on whether the UE 215 may be configured to perform carrier aggregation Option 1, carrier aggregation Option 1 plus SUL, carrier aggregation Option 2, or carrier aggregation Option 2 plus SUL.
For example, as illustrated in the example of FIG. 2A, the UE 215 may transmit first control signaling 210 to the network entity 205. The first control signaling  210 may indicate a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands. In response, the UE 215 may receive second control signaling 220 from the network entity 205. The second control signaling 220 may include an indication for the UE 215 to switch carriers for transmission of an uplink message 225. The switch may involve a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination. A total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands may be three or more. The UE 215 may transmit the uplink message 225 to the network entity 205 on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers. The change may be based on the UE capability. As a result, the UE 215 may reduce scheduling ambiguities and improve the reliability of communications with the network.
FIG. 3 illustrates an example of a process flow 300 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure. For example, the process flow 300 may include example operations associated with a UE, which may be examples of the corresponding device described with reference to FIGs. 1, 2A, and 2B. The process flow 300 may also include example operations associated with a network entity, which may be an example a base station or one or more network entities described with reference to FIGs. 1, 2A, and 2B. For example, the process flow 300 may include a primary cell (PCell) configured for communications at the UE (e.g., a UE PCell 316) and a secondary cell (SCell) configured for communications at the UE (e.g., a UE SCell 317) . The process flow 300 may also include a PCell configured for communications at the network entity (e.g., a network entity PCell 306) and an SCell configured for communications at the network entity (e.g., a network entity SCell 307) . In some examples, the PCell configured for communications at the UE (e.g., the PCell 316) may be a same PCell as the PCell configured for communications at the network entity (e.g., the PCell 306) . Additionally or alternatively, the SCell configured for communications at the UE (e.g., the SCell  317) may be a same SCell as the SCell configured for communications at the network entity (e.g., the SCell 307) .
The operations performed by the UE (e.g., via the UE PCell 316 or the UE SCell 317) and the network entity (e.g., via the network entity PCell 306 or the network entity SCell 307) may support improvements to communications between the UE and the network, among other benefits. In the following description of the process flow 300, operations between the UE and the network entity may occur in a different order or at different times than as shown. Some operations may also be omitted from the process flow 300, and other operations may be added to the process flow 300.
In some examples, a UE may communicate with the network over one or multiple carriers. For example, the network may configure the UE to support carrier aggregation. In some examples of carrier aggregation, each carrier (e.g., component carrier) may be associated with a cell (e.g., a serving cell) . In some examples, a cell may refer to a logical entity for wireless communications. That is, a network entity may support one or more cells for communications with a UE.
In some examples, a UE may communicate with the network (e.g., via a network entity) over a primary carrier supported by a PCell. The PCell may be selected by the UE during a cell selection (e.g., or cell reselection) process and may be used by the UE to establish a connection with the network. That is, the PCell may be used by the UE to perform a connection establishment procedure, such as a RRC connection establishment procedure. Additionally or alternatively, the UE may communicate with the network (e.g., via a same network entity or another network entity, not shown) over one or more secondary carriers that may each be supported by a respective SCell. The SCells may be selected by the network, for example based on capabilities of the UE, the position (e.g., location) of the UE, or one or more other factors. In some examples, the PCell and the one or more SCells may serve the UE simultaneously. That is, a primary carrier supported by the PCell and one or more secondary carriers supported by respective SCells may be used for simultaneous communications (e.g., uplink communications, downlink communications) with the UE.
In some examples, the network may configure the UE to switch carriers for communications (e.g., uplink communications or downlink communications) with the  network. For example, the network may indicate for the UE to switch carriers by activating or deactivating the corresponding cells (e.g., supporting the carriers to be switched) . In some examples, the network may add, modify, and release SCells via signaling transmitted to the UE over the PCell. For example, at 320, the network may use a PCell (e.g., the network PCell 306) to transmit an RRC connection reconfiguration message to the UE. The RRC connection reconfiguration message may include an indication for the UE to add, modify, or release one or more SCells. For example, the RRC connection reconfiguration message may include an identifier (e.g., an identification) of one or more SCells to be configured (e.g., or reconfigured) at the UE. In response, the network and the UE may perform reconfiguration procedures. For example, at 325, the network entity may perform a network reconfiguration and, at 326, the UE may perform a UE reconfiguration. The UE may use the PCell (e.g., the UE PCell 316) to transmit an indication, to the network entity, that the RRC connection reconfiguration was successful. For example, at 330, the UE may use the UE PCell 316 to transmit an RRC connection reconfiguration complete message to the network entity.
In some examples, while the UE may have configured (e.g., or reconfigured) the one or more SCells, the one or more SCells (e.g., the UE SCell 317 and one or more other SCells, not shown) may not be activated (e.g., may be in a deactivated state) . To activate (e.g., or deactivate) the one or more SCells configured at the UE, the network may transmit a message (e.g., an RRC message, a MAC control element (MAC-CE) message, a downlink control information (DCI) message) to the UE that may include an identifier of the one or more SCells (e.g., configured at the UE) and an indication that the one or more SCells are to be activated (e.g., or deactivated) . For example, at 335, the network may use the network PCell 306 to transmit an activation message to the UE to activate one or more SCells, such as the UE SCell 317.
In some examples, by activating (e.g., or deactivating) SCells at the UE, the UE may activate (e.g., or deactivate) the corresponding carrier. That is, the network may activate or deactivate a carrier (e.g., an uplink carrier) by transmitting an indication, such as through a MAC-CE, to activate or deactivate the corresponding SCell. As such, in some examples, the activation message may include an identifier of the carrier (e.g., uplink carrier) to be activated (e.g., a carrier ID, uplink carrier ID, downlink carrier ID) . Additionally or alternatively, the activation message may include an activation time, an  activation duration (e.g., a duration for the switch, such as may be indicated via an sCellDeactivationTimer information element (IE) ) , or both. In some examples, by activating (e.g., or deactivating) an uplink carrier (e.g., the SCell of an uplink carrier) , the corresponding downlink carrier may also be activated (e.g., or deactivated) .
In some examples, while the UE SCell 317 is activated, the UE may transmit uplink message to the network (e.g., over an uplink channel, such as a physical uplink shared channel (PUSCH) ) or receive downlink messages from the network (e.g., over a downlink channel, such as a physical downlink shared channel (PDSCH) ) via the UE SCell 317. For example, at 340, the UE use the UE SCell 317 to transmit PUSCH messages to the network. Additionally or alternatively, the UE may transmit uplink messages to the network via the UE PCell 316. For example, at 341, the UE may use the UE PCell 316 to transmit PUSCH messages to the network. In some examples, the PUSCH messages transmitted at 340 (e.g., via the UE SCell 317) and the PUSCH messages transmitted at 341 (e.g., via the UE PCell 316) may be transmitted simultaneously (e.g., and from a same or multiple different radio frequency bands) .
In some examples, the UE may deactivate the SCell 317. For example, the UE may deactivate the SCell 317 after the duration indicated in the activation message (e.g., via the sCellDeactivationTimer IE) expires. Additionally or alternatively, the UE may deactivate the SCell 317 in response to a deactivation message transmitted from the network entity. For example, at 345, the network entity may use the network PCell 316 to transmit a deactivation message to the UE. In some examples, the deactivation message may include a cell identifier of the one or more SCells (e.g., or the one or more carriers supported by the respective one or more SCells) and an indication that one or more SCells are to be deactivated. For example, the deactivation message may include an identifier of the UE SCell 317 and an indication that the UE SCell 317 is to be deactivated. In some examples, while the UE SCell 317 is deactivated (e.g., is in a deactivated state) , the UE may transmit uplink messages to the network via the UE PCell 316. For example, at 350, the UE may use the PCell 316 to transmit PUSCH messages to the network.
In some examples, the UE may communicate with the network over one or multiple carriers that may be associated with one or multiple (e.g., different) radio frequency bands. For example, the network may configure the UE to support carrier  aggregation over one or multiple radio frequency bands (e.g., inter-band carrier aggregation) . In some examples, the UE may support carrier switching over the one or multiple radio frequency bands. For example, the network may indicate for the UE to switch carriers for transmitting uplink messages. In some examples, the network may indicate for the UE to switch from one or more carriers over a first set of radio frequency bands to one or more other carriers over a second set of radio frequency bands. For example, the network may indicate for the UE to deactivate one or more carriers (e.g., over a first radio frequency band) and activate one or more other carriers (e.g., over a second set of radio frequency bands) .
In some examples, the network may configure the UE to switch carriers (e.g., deactivate one or more carriers over a first set of radio frequency bands and activate one or more other carriers over a second set of radio frequency bands) according to one or more mapping rules indicate via a data structure (e.g., mapping table) . For example, the network may configure the UE to switch carriers over three or more bands in accordance with a data structure that may indicate one or more mapping rules for transitioning between different combinations of radio frequency bands (e.g., cases) . In some examples, the indication may be via a transmission status (T) for the corresponding combination of multiple radio frequency bands (e.g., cases) . For example, the network may configure the UE to switch carriers (e.g., across three or more radio frequency bands) according to the mapping rules indicated by the data structure of the following Table 1:
Figure PCTCN2022075757-appb-000001
The parameters (a, b, c, and d) may correspond to a respective radio frequency band (A, B, C, and D) . In some examples, a parameter may be set to “0” to indicate for the UE to not transmit on the corresponding radio frequency band, a parameter may be set to “1” to indicate for the UE to transmit with the corresponding radio frequency band via a single layer (e.g., via a single antenna port) , and a parameter may be set to “2” to indicate for the UE to transmit with the corresponding radio frequency band via two layers (e.g., via two antenna ports) .
In some examples, the UE may support a capability for switching between four or less than four radio frequency bands. For example, the network may configure (e.g., define) a data structure (e.g., mapping table) that may indicate one or more rules for switching among (e.g., between) three or more bands, while simultaneously transmitting from two of the three or more radio frequency bands. In some examples, the UE may report one or more combinations of multiple radio frequency bands that the UE may be capable of switching between. For example, the UE may report one or more switching band combinations (e.g., a combination of a + b + c + d) to the network. In some examples, the number of bands included in a reported switching band combination indicated by the UE may be four or more. Additionally or alternatively, the UE may report a capability (e.g., a UE capability) for the UE to switch between three or more radio frequency bands (e.g., of multiple radio frequency bands included in a reported switching band combination) . In response, the network may configure the UE with three or more of the radio frequency bands included in the reported switching band combination for switching. In some examples, the network may configure the UE with the three or more radio frequency bands for switching via control signaling, such as RRC signaling, MAC-CE signaling, or DCI signaling.
In some examples, the capability of the UE for switching between four or less than four radio frequency bands may depend on whether the UE may support (e.g., may be configured to support) simultaneous transmissions from multiple (e.g., different) radio frequency bands. For example, the UE may be configured to perform carrier aggregation (e.g., carrier aggregation Option 1 or carrier aggregation Option 2) or carrier aggregation plus SUL (e.g., carrier aggregation Option 1 plus SUL or carrier aggregation Option 2 plus SUL) . In some examples, if the UE is configured to perform carrier aggregation plus SUL, one carrier (e.g., one of the aggregated carriers) may be  an SUL carrier, one carrier may be an NUL carrier, and other carriers may be component carriers configured for carrier aggregation. In some examples, the SUL carrier and the NUL carrier (e.g., associated with the serving cell of the SUL) may not support simultaneous transmission. As such, the NUL carrier and the other component carriers (e.g., associated with other radio frequency bands) may be configured for carrier aggregation Option 1 (e.g., may not be configured for carrier aggregation Option 2) . However, in other examples (e.g., if the UE is configured for switching between four or more bands) , multiple serving cells (e.g., two) may be configured for the UE and, as such, multiple SUL carriers may also be configured (e.g., one SUL carrier per serving cell) . In such an example, the network may configure the UE with a single SUL carrier per switching band combination (e.g., per combination of a, b, c, and d) .
FIG. 4 illustrates an example of a process flow 400 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure. For example, the process flow 400 may include example operations associated with a UE 415, which may be examples of the corresponding device described with reference to FIGs. 1, 2A, 2B, and 3. The process flow 400 may also include example operations associated with a network entity 405, which may be an example a base station or one or more network entities described with reference to FIGs. 1, 2A, 2B, and 3. The operations performed by the UE 415 and the network entity 405 may support improvements to communications between the UE 415 and the network, among other benefits. In the following description of the process flow 400, operations between the UE 415 and the network entity 405 may occur in a different order or at different times than as shown. Some operations may also be omitted from the process flow 400, and other operations may be added to the process flow 400.
As illustrated in the example of FIG. 4, the UE 415 and the network entity 405 may support uplink transmission switching for multiple radio frequency bands. That is, the network entity 405 may configuring the UE 415 to switch carriers for communications with the network. In some examples, the switch indicated by the network entity 405 may be based on capabilities of the UE 415. For example, at 420, the UE 415 may transmit first control signaling to the network entity 405. The first control signaling may indicate a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or  more of the multiple radio frequency bands. That is, the UE 415 may indicate four or more radio frequency bands (e.g., A, B, C, and D) of which the UE 415 may support carrier switching across three or more radio frequency bands of the four or more radio frequency bands. In response, at 425, the network entity 405 may transmit second control signaling to the UE 415. The second control signaling may include an indication for the UE 115 to switch carriers for transmission of an uplink message. The switch may involve a change (e.g., a transition of the UE 415) from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination. A total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands may be three or more.
In some examples, the switch from the first set of carriers over the first set of radio frequency bands to the second set of carriers over the second set of radio frequency bands may be based on (e.g., in accordance with) mapping rules indicated by one or more data structures (e.g., configured at the UE and the network) . For example, the network entity 405 and the UE 415 may be configured with one or more data structures (e.g., mapping table) that may indicate one or more rules for uplink transmission switching between three or more radio frequency bands (e.g., when four or more radio frequency bands may be supported by the communication device) . Additionally or alternatively, the switch from the first set of carriers over the first set of radio frequency bands to the second set of carriers over the second set of radio frequency bands may be based on whether simultaneous transmission of uplink messages on two or more carriers (e.g., for carrier aggregation or carrier aggregation plus SUL) is supported by the UE 415.
For example, the UE 415 may not support simultaneous transmission of uplink messages on two or more carriers. As such, the UE capability message transmitted by the UE 415 at 420 may be transmitted to indicate that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is not supported by the UE. For example, the UE 415 may be configured to perform carrier aggregation Option 1. In such an example, the switch indicated by the network (e.g., via the second control signaling transmitted at 425) , may be in accordance with the mapping rules indicated in the data structure of the following Table 2:
Figure PCTCN2022075757-appb-000002
The parameters (a, b, c, and d) may correspond to a respective radio frequency band (A, B, C, and D) . In some examples, a parameter may be set to “0” to indicate for the UE 415 to not transmit on the corresponding radio frequency band, a parameter may be set to “1” to indicate for the UE 415 to transmit with the corresponding radio frequency band via a single layer (e.g., via a single antenna port) , and a parameter may be set to “2” to indicate for the UE 415 to transmit with the corresponding radio frequency band via two layers (e.g., via two antenna ports) .
In accordance with Table 2, the network may indicate for the UE 415 to switch (e.g., transition) from a first set of carriers that may include at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands to a second set of carriers that may include two carriers distributed across a first radio frequency band of the second set of radio frequency bands. In some examples, the first radio frequency band of the first set of radio frequency bands may be different from the first radio frequency band of the second set of radio frequency bands. For example, the network may indicate for the UE 415 to switch to case 2 (e.g., where a = 2, b = 2, c = 2, or d = 2) from case 1 (e.g., where a = 1, b=1, c=1, or d=1) . That is, the network may indicate for the UE 415 to switch from performing communications with a carriers over a radio frequency band that may include A, B, C, or D to perform wireless communications with two carriers over a radio frequency band that may include two of A, two of B, two of C, or two of D.
In some examples, the UE 415 may be configured to perform carrier aggregation plus SUL. In some examples of carrier aggregation plus SUL, if the UE 415  supports switching for three or more radio frequency bands (e.g., uplink bands) , one radio frequency band may be for an SUL carrier and one of the remaining radio frequency bands may be for an NUL carrier. In other examples, if the UE supports switching for four or more radio frequency bands, one or two bands may be for an SUL carrier. That is, an SUL carrier may be configured for each of two radio frequency bands (e.g., each associated with a respective serving cell) . In such an example, the network may configure up to one SUL carrier per switching band combination. That is, the carriers configured (e.g., by the network entity 405) for wireless communications at the UE 415 may (e.g., collectively) include a single SUL carrier.
For example, the UE 415 may be configured to perform carrier aggregation Option 1 plus SUL. In such an example, the switch indicated by the network (e.g., via the second control signaling transmitted at 425) , may be in accordance with the mapping rules indicated by the data structure of the following Table 3:
Figure PCTCN2022075757-appb-000003
For example, in accordance with Table 3, the network may indicate for the UE 415 to transition from a first set of carriers that may include one or two carriers distributed across a first radio frequency band of the first set of radio frequency bands to a second set of carriers that may include one or two carriers distributed across a first radio frequency band of the second set of radio frequency bands. In some examples, the first radio frequency band of the first set of radio frequency bands may be for an SUL  carrier. For example, the radio frequency band A (e.g., represent by the parameter a) may correspond to an SUL carrier, the radio frequency band B (e.g., represented by the parameter b) may correspond to an NUL carrier and the radio frequency bands C and D (e.g., represented by the parameters c and d, respectively) may correspond to other component carriers configured for carrier aggregation Option 1. As such, in accordance with Table 3, the UE 415 may not be capable of simultaneously transmitting from any combination of carriers (e.g., or radio frequency bands) , including an SUL carrier and one or more component carriers for carrier aggregation (e.g., component carriers of a non-serving cell) .
Additionally or alternatively, if the UE 415 is configured to perform carrier aggregation Option 1 plus SUL, the switch indicated by the network (e.g., via the second control signaling transmitted at 425) , may be in accordance with the mapping rules indicated by the data structure of the following Table 4:
Figure PCTCN2022075757-appb-000004
For example, in accordance with Table 4, the network may indicate for the UE 415 to switch (e.g., transition) from a first set of carriers that may include two carriers distributed between a first radio frequency band of the first set of radio frequency bands and a second radio frequency band of the first set of radio frequency bands to a second set of carriers that may include two carriers distributed across a first radio frequency band of the second set of radio frequency bands. In some examples, the  first radio frequency band of the first set of radio frequency bands may be for an SUL carrier and the second radio frequency band of the first set of radio frequency bands may be for carrier aggregation.
For example, the radio frequency band A (e.g., represent by the parameter a) may correspond to an SUL carrier, the radio frequency band B (e.g., represented by the parameter b) may correspond to an NUL, and the radio frequency bands C and D (e.g., represented by the parameters c and d, respectively) may correspond to other component carriers for carrier aggregation. As such, and in accordance with Table 4, the UE 415 may be capable of simultaneously transmitting from a combination of carriers (e.g., or bands) that may include an SUL and an one or more component carriers for carrier aggregation (e.g., of a non-serving cell) . For example, the network may indicate for the UE 415 to switch to case 3 (e.g., where c = 2) or case 4 (e.g., where d = 2) from case 1 (e.g., where a = 1 and c = 1 or d = 1) .
In other examples, the UE 415 may support simultaneous transmission of uplink messages on two or more carriers (e.g., for carrier aggregation or carrier aggregation plus SUL) . As such, the UE capability message transmitted by the UE 415 (e.g., at 425) may be transmitted to indicate that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is supported by the UE. For example, the UE 415 may be configured to perform carrier aggregation Option 2. In such an example, the switch indicated by the network (e.g., via the second control signaling transmitted at 425) , may be in accordance with the mapping rules indicated by the data structure of the following Table 5:
Figure PCTCN2022075757-appb-000005
Figure PCTCN2022075757-appb-000006
For example, in accordance with Table 5, the network may indicate for the UE 415 to switch (e.g., transition) from a first set of carriers that may include two carriers distributed across a first radio frequency band of the first set of radio frequency bands or between both the first radio frequency band and a second radio frequency band of the first set of radio frequency bands to a second set of carriers that may include two carriers distributed between both a first radio frequency band and a second radio frequency band of the second set of radio frequency bands. In some examples, the first radio frequency band of the first set of radio frequency bands may be a same (e.g., common) radio frequency band as the first radio frequency band of the second set of radio frequency bands. For example, the network may indicate for the UE 415 to switch to case 4 (e.g., where b=1 and c=1 or d=1) from case 1 (e.g., where a=1 and b=1) , from case 2 (e.g., where b=1) , or from case 5 (e.g., where c=1 and d=1) or to case 5 (e.g., where c=1 and d=1) from case 4 (e.g., where b=1 and c=1 or d=1) or from case 6 (e.g., where c=2 or d=2) .
Additionally or alternatively, in accordance with Table 5, the network may indicate for the UE 415 to switch (e.g., transition) from a first set of carriers that may include two carriers distributed between both a first radio frequency band and a second radio frequency band of the first set of radio frequency bands to a second set of carriers that may include two carriers distributed across a first radio frequency band of the second set of radio frequency bands. In some examples, the second radio frequency band of the first set of radio frequency bands may be a same radio frequency band as the first radio frequency band of the second set of radio frequency bands. For example, the network may indicate for the UE 415 to switch to case 6 (e.g., where c=2 or d = 2) from case 4 (e.g., where b=1 and c=1 or d=1) or case 5 (e.g., where c=1 and d=1) . In some examples, switching between carriers that are non-overlapping (e.g., switching more than one antenna port from a first radio frequency band to a second radio frequency band) may be complex.
In some examples, the UE 415 may be configured to perform carrier aggregation Option 2 plus SUL. For example, the switch indicated by the network (e.g., via the second control signaling transmitted at 425) , may be in accordance with the mapping rules indicated by the data structure of the following Table 6:
Figure PCTCN2022075757-appb-000007
For example, in accordance with Table 6, the network may indicate for the UE 415 to transition from a first set of carriers that may include two carriers distributed across a first radio frequency band of the first set of radio frequency bands, a second radio frequency band of the first set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the first set of radio frequency bands to a second set of carriers that may include two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands. In some examples, the first radio frequency band of the first set of radio frequency bands may be used for an SUL carrier and the second radio frequency band of the first set of radio frequency bands may be used for carrier aggregation.
Additionally or alternatively, the first radio frequency band of the second set of radio frequency bands may be used for a serving cell of the SUL carrier (e.g., an NUL) and the second radio frequency band of the second set of radio frequency bands may be used for carrier aggregation. For example, the radio frequency band A (e.g., represent by the parameter a) may correspond to an SUL carrier, the radio frequency  band B (e.g., represented by the parameter b) may correspond to an NUL carrier and the radio frequency bands C and D (e.g., represented by the parameters c and d, respectively) may correspond to other component carriers for carrier aggregation. As such, in accordance with Table 6, the UE 415 may be capable of simultaneously transmitting from a combination of carriers (e.g., or bands) that may include an SUL and an aggregated carrier (e.g., of a non-serving cell) or an NUL and an aggregated carrier. That is, the UE 415 may not be capable of simultaneously transmitting from the SUL carrier and the NUL carrier. For example, in accordance with Table 6, the network may indicate for the UE 415 to switch to case 2 (e.g., where b = 1 and c = 1 or d = 1) from case 1 (e.g., where a = 1 and c=1 or d=1) .
Additionally or alternatively, if the UE 415 is configured to perform carrier aggregation Option 2 plus SUL, the switch indicated by the network (e.g., via the second control signaling transmitted at 425) , may be in accordance with the mapping rules indicated by the data structure of the following Table 7:
Figure PCTCN2022075757-appb-000008
For example, in accordance with Table 7, the network may indicate for the UE 415 to switch (e.g., transition) from a first set of carriers that may include one carrier over a first radio frequency band of the first set of radio frequency bands to a second set of carriers that may include two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands. In some examples, the first radio frequency band of the first set of  radio frequency bands may be for an SUL carrier. Additionally or alternatively, the first radio frequency band of the second set of radio frequency bands being for a serving cell of the SUL carrier (e.g., an NUL carrier) , and the second radio frequency band of the second set of radio frequency bands may be for carrier aggregation.
For example, the radio frequency band A (e.g., represent by the parameter a) may correspond to an SUL carrier, the radio frequency band B (e.g., represented by the parameter b) may correspond to an NUL carrier, and the radio frequency bands C and D (e.g., represented by the parameters c and d, respectively) may correspond to other component carriers for carrier aggregation. As such, and in accordance with Table 7, the UE 415 may not be capable of simultaneously transmitting from any combination of carriers (e.g., or bands) that may include an SUL. That is, the UE 415 may be capable of transmitting from an SUL carrier or an NUL carrier and a component carrier for carrier aggregation. For example, in accordance with Table 7, the network may indicate for the UE 415 to switch to case 2 (e.g., where b = [1, 2] and c = [1, 2] or d = [1, 2] ) from case 1 (e.g., where a = 1) .
In some examples, as illustrated by the data structures of Tables 2–7, rules associated with uplink transmission switching for more than 2 radio frequency bands may be configured (e.g., preconfigured) at the UE 415 and the network entity 405. In some examples, the data structures of the Tables 2–7 may be separately configured for carrier aggregation and carrier aggregation plus SUL. That is, each of the data structures of the Tables 2–7 may be separately configured at the UE 415 and the network entity 405. As such, the UE 415 and the network entity 405 may support uplink transmission switching for multiple radio frequency bands. For example, at 430 and in response to receiving the second control signaling transmitted by the network entity 405, the UE 415 may switch from the first set of carriers over the first set of radio frequency bands to the second set of carriers over the second set of radio frequency bands. Accordingly, at 435, the UE 415 may transmit the uplink message to the network entity 405 on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers. The change may be based on the UE capability. As such, the UE 415 and the network entity 405 may reduce scheduling ambiguities and improve the reliability of communications between the UE 415 and the network (e.g., the network entity 405) .
FIG. 5 shows a block diagram 500 of a device 505 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure. The device 505 may be an example of aspects of a UE 115 as described herein. The device 505 may include a receiver 510, a transmitter 515, and a communications manager 520. The device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to uplink transmission switching for multiple radio frequency bands) . Information may be passed on to other components of the device 505. The receiver 510 may utilize a single antenna or a set of multiple antennas.
The transmitter 515 may provide a means for transmitting signals generated by other components of the device 505. For example, the transmitter 515 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to uplink transmission switching for multiple radio frequency bands) . In some examples, the transmitter 515 may be co-located with a receiver 510 in a transceiver module. The transmitter 515 may utilize a single antenna or a set of multiple antennas.
The communications manager 520, the receiver 510, the transmitter 515, or various combinations thereof or various components thereof may be examples of means for performing various aspects of uplink transmission switching for multiple radio frequency bands as described herein. For example, the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
In some examples, the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) . The hardware may include a processor, a digital signal processor (DSP) , an application-specific integrated circuit  (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure. In some examples, a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
Additionally or alternatively, in some examples, the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a central processing unit (CPU) , an ASIC, an FPGA, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
In some examples, the communications manager 520 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 510, the transmitter 515, or both. For example, the communications manager 520 may receive information from the receiver 510, send information to the transmitter 515, or be integrated in combination with the receiver 510, the transmitter 515, or both to receive information, transmit information, or perform various other operations as described herein.
The communications manager 520 may support wireless communication at a UE (e.g., the device 505) in accordance with examples as disclosed herein. For example, the communications manager 520 may be configured as or otherwise support a means for transmitting, to a network entity, first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands. The communications manager 520 may be configured as or otherwise support a means for receiving, from the network entity and in response to the first control signaling, second control signaling that includes an indication for the UE to  switch carriers for transmission of an uplink message, where the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more. The communications manager 520 may be configured as or otherwise support a means for transmitting the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change is based on the UE capability.
By including or configuring the communications manager 520 in accordance with examples as described herein, the device 505 (e.g., a processor controlling or otherwise coupled with the receiver 510, the transmitter 515, the communications manager 520, or a combination thereof) may support techniques for reduced processing and more efficient utilization of communication resources.
FIG. 6 shows a block diagram 600 of a device 605 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure. The device 605 may be an example of aspects of a device 505 or a UE 115 as described herein. The device 605 may include a receiver 610, a transmitter 615, and a communications manager 620. The device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 610 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to uplink transmission switching for multiple radio frequency bands) . Information may be passed on to other components of the device 605. The receiver 610 may utilize a single antenna or a set of multiple antennas.
The transmitter 615 may provide a means for transmitting signals generated by other components of the device 605. For example, the transmitter 615 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels,  information channels related to uplink transmission switching for multiple radio frequency bands) . In some examples, the transmitter 615 may be co-located with a receiver 610 in a transceiver module. The transmitter 615 may utilize a single antenna or a set of multiple antennas.
The device 605, or various components thereof, may be an example of means for performing various aspects of uplink transmission switching for multiple radio frequency bands as described herein. For example, the communications manager 620 may include a UE capability component 625, a switch indication component 630, an uplink message component 635, or any combination thereof. The communications manager 620 may be an example of aspects of a communications manager 520 as described herein. In some examples, the communications manager 620, or various components thereof, may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 610, the transmitter 615, or both. For example, the communications manager 620 may receive information from the receiver 610, send information to the transmitter 615, or be integrated in combination with the receiver 610, the transmitter 615, or both to receive information, transmit information, or perform various other operations as described herein.
The communications manager 620 may support wireless communication at a UE (e.g., the device 605) in accordance with examples as disclosed herein. The UE capability component 625 may be configured as or otherwise support a means for transmitting, to a network entity, first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands. The switch indication component 630 may be configured as or otherwise support a means for receiving, from the network entity and in response to the first control signaling, second control signaling that includes an indication for the UE to switch carriers for transmission of an uplink message, where the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more. The  uplink message component 635 may be configured as or otherwise support a means for transmitting the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change is based on the UE capability.
FIG. 7 shows a block diagram 700 of a communications manager 720 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure. The communications manager 720 may be an example of aspects of a communications manager 520, a communications manager 620, or both, as described herein. The communications manager 720, or various components thereof, may be an example of means for performing various aspects of uplink transmission switching for multiple radio frequency bands as described herein. For example, the communications manager 720 may include a UE capability component 725, a switch indication component 730, an uplink message component 735, a carrier transition component 740, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The communications manager 720 may support wireless communication at a UE in accordance with examples as disclosed herein. The UE capability component 725 may be configured as or otherwise support a means for transmitting, to a network entity, first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands. The switch indication component 730 may be configured as or otherwise support a means for receiving, from the network entity and in response to the first control signaling, second control signaling that includes an indication for the UE to switch carriers for transmission of an uplink message, where the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more. The uplink message component 735 may be configured as or otherwise support a means for transmitting the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the  change between the first set of carriers and the second set of carriers, where the change is based on the UE capability.
In some examples, to support transmitting the UE capability, the UE capability component 725 may be configured as or otherwise support a means for transmitting the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is supported by the UE.
In some examples, the carrier transition component 740 may be configured as or otherwise support a means for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes two carriers distributed across one or two first radio frequency bands, and where the second set of carriers includes two carriers distributed across one or two second radio frequency bands. The one or two first radio frequency bands and the one or two second radio frequency bands are different but have one radio frequency band in common.
In some examples, the carrier transition component 740 may be configured as or otherwise support a means for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands or between both the first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and where the second set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
In some examples, the carrier transition component 740 may be configured as or otherwise support a means for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and where the second set of carriers includes two carriers distributed across a  first radio frequency band of the second set of radio frequency bands, the second radio frequency band of the first set of radio frequency bands being a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
In some examples, the carrier transition component 740 may be configured as or otherwise support a means for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands, a second radio frequency band of the first set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for an SUL carrier and the second radio frequency band of the first set of radio frequency bands being for the carrier aggregation, and where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of the SUL carrier, and the second radio frequency band of the second set of radio frequency bands being for the carrier aggregation.
In some examples, the carrier transition component 740 may be configured as or otherwise support a means for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for an SUL carrier, and where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of the  SUL carrier, and the second radio frequency band of the second set of radio frequency bands being for the carrier aggregation.
In some examples, to support transmitting the uplink message to the network entity on the at least one carrier of the second set of carriers, the uplink message component 735 may be configured as or otherwise support a means for transmitting the uplink message using one antenna port per radio frequency band of the second set of radio frequency bands.
In some examples, to support transmitting the uplink message to the network entity on the at least one carrier of the second set of carriers, the uplink message component 735 may be configured as or otherwise support a means for transmitting the uplink message using two antenna port per radio frequency band of the second set of radio frequency bands, where the at least one carrier of the second set of carriers is distributed across a first radio frequency band of the second set of radio frequency bands.
In some examples, to support transmitting the UE capability, the UE capability component 725 may be configured as or otherwise support a means for transmitting the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is not supported by the UE.
In some examples, the carrier transition component 740 may be configured as or otherwise support a means for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, and where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, where the first radio frequency band of the first set of radio frequency bands is different from the first radio frequency band of the second set of radio frequency bands.
In some examples, the carrier transition component 740 may be configured as or otherwise support a means for transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes two carriers distributed between a first radio  frequency band of the first set of radio frequency bands and a second radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for an SUL carrier and the second radio frequency band of the first set of radio frequency bands being for the carrier aggregation, and where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, where the second radio frequency band of the first set of radio frequency bands is a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
In some examples, the first set of radio frequency bands and the second set of radio frequency bands collectively include, at most, only one SUL carrier. In some examples, the second control signaling includes an RRC message, a MAC-CE, or a DCI.
In some examples, the second control signaling includes at least one of an uplink carrier identification (ID) for each of the second set of carriers or an activation time and duration for the switch. In some examples, the first combination of the multiple radio frequency bands includes four or more radio frequency bands.
FIG. 8 shows a diagram of a system 800 including a device 805 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure. The device 805 may be an example of or include the components of a device 505, a device 605, or a UE 115 as described herein. The device 805 may communicate wirelessly with one or more base stations 105, UEs 115, or any combination thereof. The device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 820, an input/output (I/O) controller 810, a transceiver 815, an antenna 825, a memory 830, code 835, and a processor 840. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 845) .
The I/O controller 810 may manage input and output signals for the device 805. The I/O controller 810 may also manage peripherals not integrated into the device 805. In some cases, the I/O controller 810 may represent a physical connection or port  to an external peripheral. In some cases, the I/O controller 810 may utilize an operating system such as
Figure PCTCN2022075757-appb-000009
Figure PCTCN2022075757-appb-000010
or another known operating system. Additionally or alternatively, the I/O controller 810 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 810 may be implemented as part of a processor, such as the processor 840. In some cases, a user may interact with the device 805 via the I/O controller 810 or via hardware components controlled by the I/O controller 810.
In some cases, the device 805 may include a single antenna 825. However, in some other cases, the device 805 may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions. The transceiver 815 may communicate bi-directionally, via the one or more antennas 825, wired, or wireless links as described herein. For example, the transceiver 815 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 815 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 825 for transmission, and to demodulate packets received from the one or more antennas 825. The transceiver 815, or the transceiver 815 and one or more antennas 825, may be an example of a transmitter 515, a transmitter 615, a receiver 510, a receiver 610, or any combination thereof or component thereof, as described herein.
The memory 830 may include random access memory (RAM) and read-only memory (ROM) . The memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed by the processor 840, cause the device 805 to perform various functions described herein. The code 835 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory. In some cases, the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein. In some cases, the memory 830 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 840 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a  programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 840 may be configured to operate a memory array using a memory controller. In some other cases, a memory controller may be integrated into the processor 840. The processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting uplink transmission switching for multiple radio frequency bands) . For example, the device 805 or a component of the device 805 may include a processor 840 and memory 830 coupled with or to the processor 840, the processor 840 and memory 830 configured to perform various functions described herein.
The communications manager 820 may support wireless communication at a UE (e.g., the device 805) in accordance with examples as disclosed herein. For example, the communications manager 820 may be configured as or otherwise support a means for transmitting, to a network entity, first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands. The communications manager 820 may be configured as or otherwise support a means for receiving, from the network entity and in response to the first control signaling, second control signaling that includes an indication for the UE to switch carriers for transmission of an uplink message, where the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more. The communications manager 820 may be configured as or otherwise support a means for transmitting the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change is based on the UE capability.
By including or configuring the communications manager 820 in accordance with examples as described herein, the device 805 may support techniques for improved communication reliability, more efficient utilization of communication resources, and improved coordination between devices.
In some examples, the communications manager 820 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 815, the one or more antennas 825, or any combination thereof. Although the communications manager 820 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 820 may be supported by or performed by the processor 840, the memory 830, the code 835, or any combination thereof. For example, the code 835 may include instructions executable by the processor 840 to cause the device 805 to perform various aspects of uplink transmission switching for multiple radio frequency bands as described herein, or the processor 840 and the memory 830 may be otherwise configured to perform or support such operations.
FIG. 9 shows a block diagram 900 of a device 905 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure. The device 905 may be an example of aspects of a Network Entity –ALPHA (e.g., a network entity) as described herein. The device 905 may include a receiver 910, a transmitter 915, and a communications manager 920. The device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 910 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to uplink transmission switching for multiple radio frequency bands) . Information may be passed on to other components of the device 905. The receiver 910 may utilize a single antenna or a set of multiple antennas.
The transmitter 915 may provide a means for transmitting signals generated by other components of the device 905. For example, the transmitter 915 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to uplink transmission switching for multiple radio frequency bands) . In some examples, the transmitter 915 may be co-located with a receiver 910 in a transceiver module. The transmitter 915 may utilize a single antenna or a set of multiple antennas.
The communications manager 920, the receiver 910, the transmitter 915, or various combinations thereof or various components thereof may be examples of means for performing various aspects of uplink transmission switching for multiple radio frequency bands as described herein. For example, the communications manager 920, the receiver 910, the transmitter 915, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
In some examples, the communications manager 920, the receiver 910, the transmitter 915, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) . The hardware may include a processor, a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure. In some examples, a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
Additionally or alternatively, in some examples, the communications manager 920, the receiver 910, the transmitter 915, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 920, the receiver 910, the transmitter 915, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
In some examples, the communications manager 920 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 910, the transmitter 915, or both. For example, the communications manager 920 may receive information from the receiver 910, send information to the transmitter 915, or be integrated in combination with the receiver 910, the transmitter 915, or both to receive information, transmit information, or perform various other operations as described herein.
The communications manager 920 may support wireless communication at a network entity (e.g., the device 905) in accordance with examples as disclosed herein. For example, the communications manager 920 may be configured as or otherwise support a means for obtaining first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands. The communications manager 920 may be configured as or otherwise support a means for outputting, from the network entity and in response to the first control signaling, second control signaling that includes an indication for a UE to switch carriers for transmission of an uplink message, where the switch involves a change at the UE from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands indicated in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
By including or configuring the communications manager 920 in accordance with examples as described herein, the device 905 (e.g., a processor controlling or otherwise coupled with the receiver 910, the transmitter 915, the communications manager 920, or a combination thereof) may support techniques for reduced processing and more efficient utilization of communication resources.
FIG. 10 shows a block diagram 1000 of a device 1005 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure. The device 1005 may be an example of aspects of a device 905 or a Network Entity -ALPHA (e.g., a network entity) as described herein. The device 1005 may include a receiver 1010, a transmitter 1015, and a communications manager 1020. The device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1010 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to uplink transmission switching for multiple radio frequency bands) .  Information may be passed on to other components of the device 1005. The receiver 1010 may utilize a single antenna or a set of multiple antennas.
The transmitter 1015 may provide a means for transmitting signals generated by other components of the device 1005. For example, the transmitter 1015 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to uplink transmission switching for multiple radio frequency bands) . In some examples, the transmitter 1015 may be co-located with a receiver 1010 in a transceiver module. The transmitter 1015 may utilize a single antenna or a set of multiple antennas.
The device 1005, or various components thereof, may be an example of means for performing various aspects of uplink transmission switching for multiple radio frequency bands as described herein. For example, the communications manager 1020 may include a first control signaling component 1025 a second control signaling component 1030, or any combination thereof. The communications manager 1020 may be an example of aspects of a communications manager 920 as described herein. In some examples, the communications manager 1020, or various components thereof, may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 1010, the transmitter 1015, or both. For example, the communications manager 1020 may receive information from the receiver 1010, send information to the transmitter 1015, or be integrated in combination with the receiver 1010, the transmitter 1015, or both to receive information, transmit information, or perform various other operations as described herein.
The communications manager 1020 may support wireless communication at a network entity (e.g., the device 1005) in accordance with examples as disclosed herein. The first control signaling component 1025 may be configured as or otherwise support a means for obtaining first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands. The second control signaling component 1030 may be configured as or otherwise support a means for outputting, from the network entity and in response to the first  control signaling, second control signaling that includes an indication for a UE to switch carriers for transmission of an uplink message, where the switch involves a change at the UE from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands indicated in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
FIG. 11 shows a block diagram 1100 of a communications manager 1120 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure. The communications manager 1120 may be an example of aspects of a communications manager 920, a communications manager 1020, or both, as described herein. The communications manager 1120, or various components thereof, may be an example of means for performing various aspects of uplink transmission switching for multiple radio frequency bands as described herein. For example, the communications manager 1120 may include a first control signaling component 1125, a second control signaling component 1130, a message obtaining component 1135, a transition indication component 1140, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The communications manager 1120 may support wireless communication at a network entity in accordance with examples as disclosed herein. The first control signaling component 1125 may be configured as or otherwise support a means for obtaining first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands. The second control signaling component 1130 may be configured as or otherwise support a means for outputting, from the network entity and in response to the first control signaling, second control signaling that includes an indication for a UE to switch carriers for transmission of an uplink message, where the switch involves a change at the UE from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands indicated in both the first  set of radio frequency bands and the second set of radio frequency bands is three or more.
In some examples, the message obtaining component 1135 may be configured as or otherwise support a means for obtaining, from the UE, the uplink message transmitted on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change is based on the indication for the UE to switch carriers. In some examples, the UE capability indicates that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is supported by the UE.
In some examples, to support outputting the second control signaling, the transition indication component 1140 may be configured as or otherwise support a means for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation is supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed across one or two second radio frequency bands, and where the first set of carriers includes two carriers distributed across one or two first radio frequency bands, and where the one or two first radio frequency bands and the one or two second radio frequency bands are different but have one radio frequency band in common.
In some examples, to support outputting the second control signaling, the transition indication component 1140 may be configured as or otherwise support a means for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation is supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the second set of radio frequency bands, where the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands or between both the first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and where the first radio frequency band of the first set of radio frequency bands  is a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
In some examples, to support outputting the second control signaling, the transition indication component 1140 may be configured as or otherwise support a means for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation is supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, where the first set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and where the second radio frequency band of the first set of radio frequency bands is a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
In some examples, to support outputting the second control signaling, the transition indication component 1140 may be configured as or otherwise support a means for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for carrier aggregation is supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of an SUL carrier, and the second radio frequency band of the second set of radio frequency bands being for the carrier aggregation, where the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands, a second radio frequency band of the first set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency  bands being for the SUL carrier and the second radio frequency band of the first set of radio frequency bands being for the carrier aggregation.
In some examples, to support outputting the second control signaling, the transition indication component 1140 may be configured as or otherwise support a means for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation is supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of an SUL carrier, and the second radio frequency band of the second set of radio frequency bands being for the carrier aggregation, where the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being used for the SUL carrier. In some examples, the UE capability indicates that simultaneous transmission of uplink messages on two or more carriers for the carrier aggregation is not supported by the UE.
In some examples, to support outputting the second control signaling, the transition indication component 1140 may be configured as or otherwise support a means for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation is not supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, where the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, and where the first radio frequency band of the first set of radio frequency bands is different from the first radio frequency band of the second set of radio frequency bands.
In some examples, to support outputting the second control signaling, the transition indication component 1140 may be configured as or otherwise support a means for outputting, based on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation is not supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, where the first set of carriers includes two carriers distributed between a first radio frequency band of the first set of radio frequency bands and a second radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for an SUL carrier and the second radio frequency band of the first set of radio frequency bands being for the carrier aggregation, and where the second radio frequency band of the first set of radio frequency bands is a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
In some examples, the first set of radio frequency bands and the second set of radio frequency bands collectively include, at most, only one SUL carrier. In some examples, the second control signaling includes an RRC message, a MAC-CE, or a DCI.
In some examples, the second control signaling includes at least one of an uplink carrier ID for each of the second set of carriers or an activation time and duration for the switch. In some examples, the first combination of the multiple radio frequency bands includes four or more radio frequency bands.
FIG. 12 shows a diagram of a system 1200 including a device 1205 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure. The device 1205 may be an example of or include the components of a device 905, a device 1005, or a Network Entity –ALPHA (e.g., a network entity) as described herein. The device 1205 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 1220, a network communications manager 1210, a transceiver 1215, an antenna 1225, a memory 1230, code 1235, a processor 1240, and an inter-station communications  manager 1245. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 1250) .
The network communications manager 1210 may manage communications with a core network 130 (e.g., via one or more wired backhaul links) . For example, the network communications manager 1210 may manage the transfer of data communications for client devices, such as one or more UEs 115.
In some cases, the device 1205 may include a single antenna 1225. However, in some other cases the device 1205 may have more than one antenna 1225, which may be capable of concurrently transmitting or receiving multiple wireless transmissions. The transceiver 1215 may communicate bi-directionally, via the one or more antennas 1225, wired, or wireless links as described herein. For example, the transceiver 1215 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1215 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 1225 for transmission, and to demodulate packets received from the one or more antennas 1225. The transceiver 1215, or the transceiver 1215 and one or more antennas 1225, may be an example of a transmitter 915, a transmitter 1015, a receiver 910, a receiver 1010, or any combination thereof or component thereof, as described herein.
The memory 1230 may include RAM and ROM. The memory 1230 may store computer-readable, computer-executable code 1235 including instructions that, when executed by the processor 1240, cause the device 1205 to perform various functions described herein. The code 1235 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory. In some cases, the code 1235 may not be directly executable by the processor 1240 but may cause a computer (e.g., when compiled and executed) to perform functions described herein. In some cases, the memory 1230 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1240 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a  programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1240 may be configured to operate a memory array using a memory controller. In some other cases, a memory controller may be integrated into the processor 1240. The processor 1240 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1230) to cause the device 1205 to perform various functions (e.g., functions or tasks supporting uplink transmission switching for multiple radio frequency bands) . For example, the device 1205 or a component of the device 1205 may include a processor 1240 and memory 1230 coupled with the processor 1240, the processor 1240 and memory 1230 configured to perform various functions described herein.
The inter-station communications manager 1245 may manage communications with other base stations 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1245 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1245 may provide an X2 interface within an LTE/LTE-Awireless communications network technology to provide communication between base stations 105.
The communications manager 1220 may support wireless communication at a network entity (e.g., the device 1205) in accordance with examples as disclosed herein. For example, the communications manager 1220 may be configured as or otherwise support a means for obtaining first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands. The communications manager 1220 may be configured as or otherwise support a means for outputting, from the network entity and in response to the first control signaling, second control signaling that includes an indication for a UE to switch carriers for transmission of an uplink message, where the switch involves a change at the UE from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands indicated  in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
By including or configuring the communications manager 1220 in accordance with examples as described herein, the device 1205 may support techniques for communication reliability, more efficient utilization of communication resources, and improved coordination between devices.
In some examples, the communications manager 1220 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 1215, the one or more antennas 1225, or any combination thereof. Although the communications manager 1220 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 1220 may be supported by or performed by the processor 1240, the memory 1230, the code 1235, or any combination thereof. For example, the code 1235 may include instructions executable by the processor 1240 to cause the device 1205 to perform various aspects of uplink transmission switching for multiple radio frequency bands as described herein, or the processor 1240 and the memory 1230 may be otherwise configured to perform or support such operations.
FIG. 13 shows a flowchart illustrating a method 1300 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure. The operations of the method 1300 may be implemented by a UE or its components as described herein. For example, the operations of the method 1300 may be performed by a UE 115 as described with reference to FIGs. 1 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
At 1305, the method may include transmitting, to a network entity, first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands. The operations of 1305 may be performed in accordance with examples as disclosed herein. In some examples,  aspects of the operations of 1305 may be performed by a UE capability component 725 as described with reference to FIG. 7.
At 1310, the method may include receiving, from the network entity and in response to the first control signaling, second control signaling that includes an indication for the UE to switch carriers for transmission of an uplink message, where the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more. The operations of 1310 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1310 may be performed by a switch indication component 730 as described with reference to FIG. 7.
At 1315, the method may include transmitting the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change is based on the UE capability. The operations of 1315 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1315 may be performed by an uplink message component 735 as described with reference to FIG. 7.
FIG. 14 shows a flowchart illustrating a method 1400 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure. The operations of the method 1400 may be implemented by a UE or its components as described herein. For example, the operations of the method 1400 may be performed by a UE 115 as described with reference to FIGs. 1 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
At 1405, the method may include transmitting, to a network entity and to indicate that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is supported by the UE, first control signaling that indicates a first  combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands. The operations of 1405 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1405 may be performed by a UE capability component 725 as described with reference to FIG. 7.
At 1410, the method may include receiving, from the network entity and in response to the first control signaling, second control signaling that includes an indication for the UE to switch carriers for transmission of an uplink message, where the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more. The operations of 1410 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1410 may be performed by a switch indication component 730 as described with reference to FIG. 7.
At 1415, the method may include transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, where the first set of carriers includes two carriers distributed across one or two first radio frequency bands, and where the second set of carriers includes two carriers distributed across one or two second radio frequency bands, where the one or two first radio frequency bands and the one or two second radio frequency bands are different but have one radio frequency band in common. The operations of 1415 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1415 may be performed by a carrier transition component 740 as described with reference to FIG. 7.
At 1420, the method may include transmitting the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change is based on the UE capability. The operations of 1420 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1420  may be performed by an uplink message component 735 as described with reference to FIG. 7.
FIG. 15 shows a flowchart illustrating a method 1500 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure. The operations of the method 1500 may be implemented by a UE or its components as described herein. For example, the operations of the method 1500 may be performed by a UE 115 as described with reference to FIGs. 1 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
At 1505, the method may include transmitting, to a network entity and to indicate that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is not supported by the UE, first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands. The operations of 1505 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1505 may be performed by a UE capability component 725 as described with reference to FIG. 7.
At 1510, the method may include receiving, from the network entity and in response to the first control signaling, second control signaling that includes an indication for the UE to switch carriers for transmission of an uplink message, where the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more. The operations of 1510 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1510 may be performed by a switch indication component 730 as described with reference to FIG. 7.
At 1515, the method may include transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control  signaling, where the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, and where the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, where the first radio frequency band of the first set of radio frequency bands is different from the first radio frequency band of the second set of radio frequency bands. The operations of 1515 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1515 may be performed by a carrier transition component 740 as described with reference to FIG. 7.
At 1520, the method may include transmitting the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change is based on the UE capability. The operations of 1520 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1520 may be performed by an uplink message component 735 as described with reference to FIG. 7.
FIG. 16 shows a flowchart illustrating a method 1600 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure. The operations of the method 1600 may be implemented by a Network Entity -ALPHA or its components as described herein. For example, the operations of the method 1600 may be performed by a Network Entity -ALPHA as described with reference to FIGs. 1 through 4 and 9 through 12. In some examples, a Network Entity -ALPHA may execute a set of instructions to control the functional elements of the Network Entity -ALPHA to perform the described functions. Additionally or alternatively, the Network Entity -ALPHA may perform aspects of the described functions using special-purpose hardware.
At 1605, the method may include obtaining first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands. The operations of 1605 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the  operations of 1605 may be performed by a first control signaling component 1125 as described with reference to FIG. 11.
At 1610, the method may include outputting, from the network entity and in response to the first control signaling, second control signaling that includes an indication for a UE to switch carriers for transmission of an uplink message, where the switch involves a change at the UE from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands indicated in both the first set of radio frequency bands and the second set of radio frequency bands is three or more. The operations of 1610 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1610 may be performed by a second control signaling component 1130 as described with reference to FIG. 11.
FIG. 17 shows a flowchart illustrating a method 1700 that supports uplink transmission switching for multiple radio frequency bands in accordance with aspects of the present disclosure. The operations of the method 1700 may be implemented by a Network Entity -ALPHA or its components as described herein. For example, the operations of the method 1700 may be performed by a Network Entity -ALPHA as described with reference to FIGs. 1 through 4 and 9 through 12. In some examples, a Network Entity -ALPHA may execute a set of instructions to control the functional elements of the Network Entity -ALPHA to perform the described functions. Additionally or alternatively, the Network Entity -ALPHA may perform aspects of the described functions using special-purpose hardware.
At 1705, the method may include obtaining first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands. The operations of 1705 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1705 may be performed by a first control signaling component 1125 as described with reference to FIG. 11.
At 1710, the method may include outputting, from the network entity and in response to the first control signaling, second control signaling that includes an indication for a UE to switch carriers for transmission of an uplink message, where the switch involves a change at the UE from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, where a total number of radio frequency bands indicated in both the first set of radio frequency bands and the second set of radio frequency bands is three or more. The operations of 1710 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1710 may be performed by a second control signaling component 1130 as described with reference to FIG. 11.
At 1715, the method may include obtaining, from the UE, the uplink message transmitted on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, where the change is based on the indication for the UE to switch carriers. The operations of 1715 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1715 may be performed by a message obtaining component 1135 as described with reference to FIG. 11.
The following provides an overview of aspects of the present disclosure:
Aspect 1: A method for wireless communication at a UE, comprising: transmitting, to a network entity, first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands; receiving, from the network entity and in response to the first control signaling, second control signaling that includes an indication for the UE to switch carriers for transmission of an uplink message, wherein the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, wherein a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more; and transmitting the uplink message to the network entity on at least one carrier of the second set of carriers  in accordance with the change between the first set of carriers and the second set of carriers, wherein the change is based at least in part on the UE capability.
Aspect 2: The method of aspect 1, wherein transmitting the UE capability further comprises: transmitting the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is supported by the UE.
Aspect 3: The method of aspect 2, further comprising: transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, wherein the first set of carriers includes two carriers distributed across one or two first radio frequency bands, and wherein the second set of carriers includes two carriers distributed across one or two second radio frequency bands, wherein the one or two first radio frequency bands and the one or two second radio frequency bands are different but have one radio frequency band in common.
Aspect 4: The method of aspect 2, further comprising: transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, wherein the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands or between both the first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and wherein the second set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
Aspect 5: The method of aspect 2, further comprising: transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, wherein the first set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, the second radio frequency band of the first set of radio frequency  bands being a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
Aspect 6: The method of aspect 2, further comprising: transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, wherein the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands, a second radio frequency band of the first set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for a supplemental uplink carrier and the second radio frequency band of the first set of radio frequency bands being for carrier aggregation, and wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of the supplemental uplink carrier, and the second radio frequency band of the second set of radio frequency bands being for carrier aggregation.
Aspect 7: The method of aspect 2, further comprising: transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, wherein the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for a supplemental uplink carrier, and wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of the supplemental uplink carrier, and the second radio frequency band of the second set of radio frequency bands being for carrier aggregation.
Aspect 8: The method of any of aspects 1 through 7, wherein transmitting the uplink message to the network entity on the at least one carrier of the second set of carriers further comprises: transmitting the uplink message using one antenna port per radio frequency band of the second set of radio frequency bands.
Aspect 9: The method of any of aspects 1 through 7, wherein transmitting the uplink message to the network entity on the at least one carrier of the second set of carriers further comprises: transmitting the uplink message using two antenna port per radio frequency band of the second set of radio frequency bands, wherein the at least one carrier of the second set of carriers is distributed across a first radio frequency band of the second set of radio frequency bands.
Aspect 10: The method of aspect 1, wherein transmitting the UE capability further comprises: transmitting the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is not supported by the UE.
Aspect 11: The method of aspect 10, further comprising: transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, wherein the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, and wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, wherein the first radio frequency band of the first set of radio frequency bands is different from the first radio frequency band of the second set of radio frequency bands.
Aspect 12: The method of aspect 10, further comprising: transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, wherein the first set of carriers includes two carriers distributed between a first radio frequency band of the first set of radio frequency bands and a second radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for a supplemental uplink carrier and the second radio frequency band of the first set of radio frequency bands being for carrier aggregation, and wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio  frequency bands, wherein the second radio frequency band of the first set of radio frequency bands is a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
Aspect 13: The method of any of aspects 1 through 12, wherein the first set of radio frequency bands and the second set of radio frequency bands collectively include, at most, only one supplemental uplink carrier.
Aspect 14: The method of any of aspects 1 through 13, wherein the second control signaling comprises an RRC message, a MAC-CE, or a DCI.
Aspect 15: The method of any of aspects 1 through 14, wherein the second control signaling comprises at least one of an uplink carrier identification (ID) for each of the second set of carriers or an activation time and duration for the switch.
Aspect 16: The method of any of aspects 1 through 15, wherein the first combination of the multiple radio frequency bands comprises four or more radio frequency bands.
Aspect 17: A method for wireless communication at a network entity, comprising: obtaining first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands; and outputting, from the network entity and in response to the first control signaling, second control signaling that includes an indication for a UE to switch carriers for transmission of an uplink message, wherein the switch involves a change at the UE from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, wherein a total number of radio frequency bands indicated in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
Aspect 18: The method of aspect 17, further comprising: obtaining, from the UE, the uplink message transmitted on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of  carriers, wherein the change is based at least in part on the indication for the UE to switch carriers.
Aspect 19: The method of any of aspects 17 through 18, wherein the UE capability indicates that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is supported by the UE.
Aspect 20: The method of aspect 19, wherein outputting the second control signaling comprises: outputting, based at least in part on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for carrier aggregation is supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, wherein the second set of carriers includes two carriers distributed across one or two second radio frequency bands, and wherein the first set of carriers includes two carriers distributed across one or two first radio frequency bands, and wherein the one or two first radio frequency bands and the one or two second radio frequency bands are different but have one radio frequency band in common.
Aspect 21: The method of aspect 19, wherein outputting the second control signaling comprises: outputting, based at least in part on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for carrier aggregation is supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, wherein the second set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the second set of radio frequency bands, wherein the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands or between both the first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and wherein the first radio frequency band of the first set of radio frequency bands is a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
Aspect 22: The method of aspect 19, wherein outputting the second control signaling comprises: outputting, based at least in part on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers  for carrier aggregation is supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, wherein the first set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and wherein the second radio frequency band of the first set of radio frequency bands is a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
Aspect 23: The method of aspect 19, wherein outputting the second control signaling comprises: outputting, based at least in part on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for carrier aggregation is supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of a supplemental uplink carrier, and the second radio frequency band of the second set of radio frequency bands being for carrier aggregation, wherein the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands, a second radio frequency band of the first set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for the supplemental uplink carrier and the second radio frequency band of the first set of radio frequency bands being for carrier aggregation.
Aspect 24: The method of aspect 19, wherein outputting the second control signaling comprises: outputting, based at least in part on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for carrier aggregation is supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, wherein  the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of a supplemental uplink carrier, and the second radio frequency band of the second set of radio frequency bands being for carrier aggregation, wherein the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being used for the supplemental uplink carrier.
Aspect 25: The method of any of aspects 17 through 18, wherein the UE capability indicates that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is not supported by the UE.
Aspect 26: The method of aspect 25, wherein outputting the second control signaling comprises: outputting, based at least in part on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for carrier aggregation is not supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, wherein the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, and wherein the first radio frequency band of the first set of radio frequency bands is different from the first radio frequency band of the second set of radio frequency bands.
Aspect 27: The method of aspect 25, wherein outputting the second control signaling comprises: outputting, based at least in part on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for carrier aggregation is not supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, wherein the first set of carriers includes two carriers distributed between a first radio frequency band of the first  set of radio frequency bands and a second radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for a supplemental uplink carrier and the second radio frequency band of the first set of radio frequency bands being for carrier aggregation, and wherein the second radio frequency band of the first set of radio frequency bands is a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
Aspect 28: The method of any of aspects 17 through 27, wherein the first set of radio frequency bands and the second set of radio frequency bands collectively include, at most, only one supplemental uplink carrier.
Aspect 29: The method of any of aspects 17 through 28, wherein the second control signaling comprises an RRC message, a MAC-CE, or a DCI.
Aspect 30: The method of any of aspects 17 through 29, wherein the second control signaling comprises at least one of an uplink carrier ID for each of the second set of carriers or an activation time and duration for the switch.
Aspect 31: The method of any of aspects 17 through 30, wherein the first combination of the multiple radio frequency bands comprises four or more radio frequency bands.
Aspect 32: An apparatus for wireless communication, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of aspects 1 through 16.
Aspect 33: An apparatus for wireless communication, comprising at least one means for performing a method of any of aspects 1 through 16.
Aspect 34: A non-transitory computer-readable medium storing code for wireless communication at a UE, the code comprising instructions executable by a processor to perform a method of any of aspects 1 through 16.
Aspect 35: An apparatus for wireless communication, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of aspects 17 through 31.
Aspect 36: An apparatus for wireless communication, comprising at least one means for performing a method of any of aspects 17 through 31.
Aspect 37: A non-transitory computer-readable medium storing code for wireless communication at a network entity, the code comprising instructions executable by a processor to perform a method of any of aspects 17 through 31.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor,  multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.  Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
The term “determine” or “determining” encompasses a wide variety of actions and, therefore, “determining” can include calculating, computing, processing, deriving, investigating, looking up (such as via looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” can include receiving (such as receiving information) , accessing (such as accessing data in a memory) and the like. Also, “determining” can include resolving, selecting, choosing, establishing and other such similar actions.
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or
“advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These  techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (30)

  1. A method for wireless communication at a user equipment (UE) , comprising:
    transmitting, to a network entity, first control signaling that indicates a first combination of multiple radio frequency bands and a UE capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands;
    receiving, from the network entity and in response to the first control signaling, second control signaling that includes an indication for the UE to switch carriers for transmission of an uplink message, wherein the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, wherein a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more; and
    transmitting the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, wherein the change is based at least in part on the UE capability.
  2. The method of claim 1, wherein transmitting the UE capability further comprises:
    transmitting the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is supported by the UE.
  3. The method of claim 2, further comprising:
    transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, wherein the first set of carriers includes two carriers distributed across one or two first radio frequency bands, and wherein the second set of carriers includes two carriers distributed across one or two second radio frequency bands, wherein the one or two first radio frequency bands  and the one or two second radio frequency bands are different but have one radio frequency band in common.
  4. The method of claim 2, further comprising:
    transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, wherein the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands or between both the first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and wherein the second set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
  5. The method of claim 2, further comprising:
    transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, wherein the first set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, the second radio frequency band of the first set of radio frequency bands being a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
  6. The method of claim 2, further comprising:
    transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, wherein the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands, a second radio frequency band of the first set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for a supplemental uplink carrier and the second radio frequency band of the first set of radio frequency bands being for the  carrier aggregation, and wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of the supplemental uplink carrier, and the second radio frequency band of the second set of radio frequency bands being for the carrier aggregation.
  7. The method of claim 2, further comprising:
    transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, wherein the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for a supplemental uplink carrier, and wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of the supplemental uplink carrier, and the second radio frequency band of the second set of radio frequency bands being for the carrier aggregation.
  8. The method of claim 1, wherein transmitting the UE capability further comprises:
    transmitting the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is not supported by the UE.
  9. The method of claim 8, further comprising:
    transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, wherein the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, and wherein the second set of carriers includes two  carriers distributed across a first radio frequency band of the second set of radio frequency bands, wherein the first radio frequency band of the first set of radio frequency bands is different from the first radio frequency band of the second set of radio frequency bands.
  10. The method of claim 8, further comprising:
    transitioning from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, wherein the first set of carriers includes two carriers distributed between a first radio frequency band of the first set of radio frequency bands and a second radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for a supplemental uplink carrier and the second radio frequency band of the first set of radio frequency bands being for the carrier aggregation, and wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, wherein the second radio frequency band of the first set of radio frequency bands is a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
  11. The method of claim 1, wherein the first set of radio frequency bands and the second set of radio frequency bands collectively include, at most, only one supplemental uplink carrier.
  12. The method of claim 1, wherein the first combination of the multiple radio frequency bands comprises four or more radio frequency bands.
  13. A method for wireless communication at a network entity, comprising:
    obtaining first control signaling that indicates a first combination of multiple radio frequency bands and a user equipment (UE) capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands; and
    outputting, from the network entity and in response to the first control signaling, second control signaling that includes an indication for a UE to switch carriers for transmission of an uplink message, wherein the switch involves a change at  the UE from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, wherein a total number of radio frequency bands indicated in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
  14. The method of claim 13, wherein the UE capability indicates that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is supported by the UE.
  15. The method of claim 14, wherein outputting the second control signaling comprises:
    outputting, based at least in part on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation is supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, wherein the second set of carriers includes two carriers distributed across one or two second radio frequency bands, and wherein the first set of carriers includes two carriers distributed across one or two first radio frequency bands, and wherein the one or two first radio frequency bands and the one or two second radio frequency bands are different but have one radio frequency band in common.
  16. The method of claim 14, wherein outputting the second control signaling comprises:
    outputting, based at least in part on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation is supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, wherein the second set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the second set of radio frequency bands, wherein the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands or between both the first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and wherein the first radio frequency band of the first set of radio  frequency bands is a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
  17. The method of claim 14, wherein outputting the second control signaling comprises:
    outputting, based at least in part on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation is supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, wherein the first set of carriers includes two carriers distributed between both a first radio frequency band and a second radio frequency band of the first set of radio frequency bands, and wherein the second radio frequency band of the first set of radio frequency bands is a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
  18. The method of claim 14, wherein outputting the second control signaling comprises:
    outputting, based at least in part on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation is supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of a supplemental uplink carrier, and the second radio frequency band of the second set of radio frequency bands being for the carrier aggregation, wherein the first set of carriers includes two carriers distributed across a first radio frequency band of the first set of radio frequency bands, a second radio frequency band of the first set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for the supplemental uplink carrier and  the second radio frequency band of the first set of radio frequency bands being for the carrier aggregation.
  19. The method of claim 14, wherein outputting the second control signaling comprises:
    outputting, based at least in part on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation is supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, a second radio frequency band of the second set of radio frequency bands, or between both the first radio frequency band and the second radio frequency band of the second set of radio frequency bands, the first radio frequency band of the second set of radio frequency bands being for a serving cell of a supplemental uplink carrier, and the second radio frequency band of the second set of radio frequency bands being for the carrier aggregation, wherein the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being used for the supplemental uplink carrier.
  20. The method of claim 13, wherein the UE capability indicates that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is not supported by the UE.
  21. The method of claim 20, wherein outputting the second control signaling comprises:
    outputting, based at least in part on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation is not supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, wherein the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, and wherein the first radio frequency band of the first set of radio  frequency bands is different from the first radio frequency band of the second set of radio frequency bands.
  22. The method of claim 20, wherein outputting the second control signaling comprises:
    outputting, based at least in part on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation is not supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, wherein the first set of carriers includes two carriers distributed between a first radio frequency band of the first set of radio frequency bands and a second radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for a supplemental uplink carrier and the second radio frequency band of the first set of radio frequency bands being for the carrier aggregation, and wherein the second radio frequency band of the first set of radio frequency bands is a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
  23. The method of claim 13, wherein the second control signaling comprises at least one of an uplink carrier identification (ID) for each of the second set of carriers or an activation time and duration for the switch.
  24. An apparatus for wireless communication, comprising:
    a processor;
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    transmit, to a network entity, first control signaling that indicates a first combination of multiple radio frequency bands and a user equipment (UE) capability for switching between carriers during uplink communications across three or more of the multiple radio frequency bands;
    receive, from the network entity and in response to the first control signaling, second control signaling that includes an indication for a UE  to switch carriers for transmission of an uplink message, wherein the switch involves a change from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, wherein a total number of radio frequency bands in both the first set of radio frequency bands and the second set of radio frequency bands is three or more; and
    transmit the uplink message to the network entity on at least one carrier of the second set of carriers in accordance with the change between the first set of carriers and the second set of carriers, wherein the change is based at least in part on the UE capability.
  25. The apparatus of claim 24, wherein the instructions to transmit the UE capability are further executable by the processor to cause the apparatus to:
    transmit the UE capability to indicate that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is supported by the UE.
  26. The apparatus of claim 25, wherein the instructions are further executable by the processor to cause the apparatus to:
    transition from the first set of carriers to the second set of carriers in accordance with the indication of the second control signaling, wherein the first set of carriers includes two carriers distributed across one or two first radio frequency bands, and wherein the second set of carriers includes two carriers distributed across one or two second radio frequency bands, wherein the one or two first radio frequency bands and the one or two second radio frequency bands are different but have one radio frequency band in common.
  27. An apparatus for wireless communication, comprising:
    a processor;
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    obtain first control signaling that indicates a first combination of multiple radio frequency bands and a user equipment (UE) capability for  switching between carriers during uplink communications across three or more of the multiple radio frequency bands; and
    output, from a network entity and in response to the first control signaling, second control signaling that includes an indication for a UE to switch carriers for transmission of an uplink message, wherein the switch involves a change at the UE from a first set of carriers over a first set of radio frequency bands of the first combination to a second set of carriers over a second set of radio frequency bands of the first combination, wherein a total number of radio frequency bands indicated in both the first set of radio frequency bands and the second set of radio frequency bands is three or more.
  28. The apparatus of claim 27, wherein the UE capability indicates that simultaneous transmission of uplink messages on two or more carriers for carrier aggregation is not supported by the UE.
  29. The apparatus of claim 28, wherein the instructions to output the second control signaling are executable by the processor to cause the apparatus to:
    output, based at least in part on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation is not supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, wherein the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, wherein the first set of carriers includes at least one carrier distributed across a first radio frequency band of the first set of radio frequency bands, and wherein the first radio frequency band of the first set of radio frequency bands is different from the first radio frequency band of the second set of radio frequency bands.
  30. The apparatus of claim 28, wherein the instructions to output the second control signaling are executable by the processor to cause the apparatus to:
    output, based at least in part on the UE capability indicating that the simultaneous transmission of the uplink messages on the two or more carriers for the carrier aggregation is not supported by the UE, the second control signaling indicating for the UE to transition from the first set of carriers to the second set of carriers, wherein  the second set of carriers includes two carriers distributed across a first radio frequency band of the second set of radio frequency bands, wherein the first set of carriers includes two carriers distributed between a first radio frequency band of the first set of radio frequency bands and a second radio frequency band of the first set of radio frequency bands, the first radio frequency band of the first set of radio frequency bands being for a supplemental uplink carrier and the second radio frequency band of the first set of radio frequency bands being for the carrier aggregation, and wherein the second radio frequency band of the first set of radio frequency bands is a same radio frequency band as the first radio frequency band of the second set of radio frequency bands.
PCT/CN2022/075757 2022-02-10 2022-02-10 Uplink transmission switching for multiple radio frequency bands WO2023150953A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/075757 WO2023150953A1 (en) 2022-02-10 2022-02-10 Uplink transmission switching for multiple radio frequency bands

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/075757 WO2023150953A1 (en) 2022-02-10 2022-02-10 Uplink transmission switching for multiple radio frequency bands

Publications (1)

Publication Number Publication Date
WO2023150953A1 true WO2023150953A1 (en) 2023-08-17

Family

ID=87563440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075757 WO2023150953A1 (en) 2022-02-10 2022-02-10 Uplink transmission switching for multiple radio frequency bands

Country Status (1)

Country Link
WO (1) WO2023150953A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190082352A1 (en) * 2016-05-13 2019-03-14 Huawei Technologies Co., Ltd. Communication method and apparatus
US20190313298A1 (en) * 2018-04-10 2019-10-10 Qualcomm Incorporated Carrier aggregation for low-latency handover
US20200280337A1 (en) * 2017-12-12 2020-09-03 Lg Electronics Inc. Method and apparatus for supporting flexible carrier aggregation in wireless communication system
WO2021249487A1 (en) * 2020-06-10 2021-12-16 华为技术有限公司 Communication method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190082352A1 (en) * 2016-05-13 2019-03-14 Huawei Technologies Co., Ltd. Communication method and apparatus
US20200280337A1 (en) * 2017-12-12 2020-09-03 Lg Electronics Inc. Method and apparatus for supporting flexible carrier aggregation in wireless communication system
US20190313298A1 (en) * 2018-04-10 2019-10-10 Qualcomm Incorporated Carrier aggregation for low-latency handover
WO2021249487A1 (en) * 2020-06-10 2021-12-16 华为技术有限公司 Communication method and apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON, CHINA TELECOM, APPLE: "RRC configuration to support R17 UL Tx switching enhancements", 3GPP DRAFT; R2-2111060, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20211101 - 20211112, 22 October 2021 (2021-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052067498 *
ZTE CORPORATION: "CR to TS 38.101-1 on operating bands for intra-band CA (Rel-16)", 3GPP DRAFT; R4-2014956, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Electronic meeting; 20201102 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051944007 *

Similar Documents

Publication Publication Date Title
US11647499B2 (en) Frame structure for subband full duplex slot formats
US11463869B2 (en) Dual-mode half duplex time division duplex and full duplex frequency division duplex capable user equipment
US20230254885A1 (en) Pre-emption indication for full duplex communications
US20210377914A1 (en) Transmit beam selection schemes for multiple transmission reception points
WO2021151378A1 (en) Cross-carrier scheduling techniques for wireless communications systems
US20230199782A1 (en) Secondary cell dormancy indication for scheduling multiple component carriers
US20220368486A1 (en) Quasi co-location determination for overlapping downlink channels and synchronization blocks
US11653402B2 (en) User equipment (UE) assisted termination selection for non-standalone or dual connectivity
WO2023150953A1 (en) Uplink transmission switching for multiple radio frequency bands
US11728945B2 (en) Uplink reference signal bundling techniques in wireless communications
US11595986B2 (en) Techniques for cross-component carrier scheduling of a joint downlink and uplink transmission configuration indicator state
US11758566B2 (en) Waveform-specific transmission parts
US11949504B2 (en) Techniques for indicating duplex mode capability
US11576201B2 (en) Candidate uplink grants for channel access
US20230107842A1 (en) Performing carrier switching with fallback control information
WO2022267520A1 (en) Random-access occasion selection for reduced-capability user equipment
WO2023082167A1 (en) Carrier aggregation switching for switching multiple radio frequency bands
WO2023082174A1 (en) Supplementary uplink switching for switching multiple radio frequency bands
US20240089936A1 (en) Channel state information reporting on a physical uplink shared channel with multiple uplink bandwidth parts
WO2023142018A1 (en) Unified transmission configuration indicator type switching
WO2023082998A1 (en) Carrier aggregation switching for switching multiple radio frequency bands
US20220110116A1 (en) Adaptive processing modes
US20220417997A1 (en) Random-access occasion selection for reduced-capability user equipment
US20220191850A1 (en) Control signaling for beam update and reference signals
US20230224969A1 (en) Initial access random access occasion-caused interference

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925315

Country of ref document: EP

Kind code of ref document: A1