WO2023149692A1 - Method for preparing copper-mediated in situ crosslinkable hydrogel for sustained release of nitric oxide - Google Patents

Method for preparing copper-mediated in situ crosslinkable hydrogel for sustained release of nitric oxide Download PDF

Info

Publication number
WO2023149692A1
WO2023149692A1 PCT/KR2023/001166 KR2023001166W WO2023149692A1 WO 2023149692 A1 WO2023149692 A1 WO 2023149692A1 KR 2023001166 W KR2023001166 W KR 2023001166W WO 2023149692 A1 WO2023149692 A1 WO 2023149692A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
hydrogel
polymer
situ
phenol
Prior art date
Application number
PCT/KR2023/001166
Other languages
French (fr)
Korean (ko)
Inventor
박기동
린 트란디우
풍 레티
Original Assignee
아주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아주대학교산학협력단 filed Critical 아주대학교산학협력단
Publication of WO2023149692A1 publication Critical patent/WO2023149692A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/025Other specific inorganic materials not covered by A61L27/04 - A61L27/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration

Definitions

  • the present invention relates to a method for preparing a slow-release nitric oxide-releasing in situ crosslinked hydrogel using copper and a biomedical use thereof.
  • Hydrogel is a jelly-like material through physicochemical crosslinking of polymers dissolved in water. It has excellent hydrophilicity and can easily absorb water, as well as easily control its strength and shape, making it a scaffold or drug for tissue engineering. Used for transmission, etc.
  • hydrogels are being actively studied as alternatives to methods with low in vivo drug delivery efficiency due to their excellent biocompatibility, biodegradability, control of drug release, and minimally invasive properties capable of achieving phase transition after injection into the body.
  • the main purpose is to release a drug at a drug effective concentration or higher for a long period of time at the disease site so as not to require frequent injection that can cause side effects.
  • nitric oxide is an endogenous gaseous molecule involved in many physiological processes including immune response, cell death, inflammation, and the like.
  • the clinical application of NO is limited due to its explosive release from biomaterials.
  • the present invention relates to a method for preparing a copper-containing in situ hydrogel using a polymer introduced with a phenol group or a compound containing a phenol group, a copper compound, an enzyme, and hydrogen peroxide, and a use thereof.
  • the present invention consists of a polymer and a copper compound in which at least one of a phenol group and a catechol group is introduced, and any one or more of phenol and catechol introduced into the side chain of the polymer and copper are It provides a copper-containing in situ hydrogel, characterized in that it contains copper ions in the hydrogel matrix by coordination, and any one or more of phenol and catechol introduced into the side chain of the polymer is bonded to each other and crosslinked.
  • the present invention comprises the steps of preparing a solution in which a compound containing a phenol group is substituted and a polymer and an enzyme are dissolved; and cross-linking by adding a copper compound and hydrogen peroxide to the solution.
  • the present invention provides a copper-containing in situ hydrogel prepared by the above-described method for preparing a copper-containing in situ hydrogel.
  • the present invention provides an anti-inflammatory composition comprising the above-described copper-containing in situ hydrogel.
  • the present invention provides a composition for tissue regeneration comprising the above-described copper-containing in situ hydrogel.
  • the present invention provides a composition for angiogenesis comprising the above-described copper-containing in situ hydrogel.
  • the polymer under the catalytic action of an enzyme, the polymer is oxidized to form a cross-linked copper-containing hydrogel for formation of a cross-linked network and deposition of Cu nanoparticles, and the cross-linked copper-containing hydrogel continuously releases copper ions. Therefore, NO production can be promoted in the presence of an endogenous NO donor (RSNO) for nearly 3 weeks.
  • RSNO endogenous NO donor
  • nitric oxide is continuously released from copper-containing hydrogels to stimulate angiogenesis and anti-inflammatory processes.
  • Figure 2 is a schematic diagram showing the formation of nitric oxide releasing hydrogel through the catalysis of horseradish peroxidase and tyrosinase, showing that the GH polymer is crosslinked through various interactions between catechol and phenolic groups.
  • Figure 3 shows the results of testing the properties of the hydrogel of the present invention
  • (a) is a graph showing the gelation time defined by the vial tilting method
  • (b) is a graph showing the gelation time by the rheometer It is a graph showing the evaluated mechanical strength
  • (c) is a graph showing the decomposition rate of lysozyme
  • (d) is a scanning electron microscope (SEM) image of the cross section.
  • Figure 4 shows the cumulative concentration of copper ions released from the hydrogel and nitric oxide produced
  • (a) is a graph showing the cumulative concentration of copper ions released from the GH / Cu hydrogel after incubation in PBS
  • (b ) is a graph showing the cumulative concentration of nitric oxide (NO) release by incubating the GH/Cu hydrogel in the presence of 10 ⁇ M GSH as a nitric oxide (NO) donor.
  • Figure 5 shows in vitro anti-inflammatory properties, (a) is an image of immunofluorescence staining of macrophages attached with DAPI (blue) and CD163 (green), and (b) is M2 macrophage control and A graph showing the quantification of the relative average fluorescence intensity of compared CD163, and (c) is a graph showing the concentration of TGF- ⁇ released from macrophages by ELISA.
  • Figure 6 shows in vitro angiogenic activity
  • (a) is a scanning electron microscope (SEM) image of live (green) / dead (red) stained cells
  • (b) is WST -1
  • (c) is a graph showing the quantification of the migration rate
  • (d) is a graph showing the migration of HUVECs using the wound scratch migration assay This is an optical microscope image.
  • Figure 7 shows the angiogenic activity evaluated by in vitro endothelial tube formation assay, (a) is an optical microscope image showing the formation of a cell network, (b) the number of nodes, (c) the number of branches and (d) a graph showing quantitative evaluation of various parameters including total branch length.
  • Figure 8 shows the angiogenic activity assessed by an intra-oval chicken chorioallantoic angiogenesis (CAM) assay, where (a) is an optical image of new blood vessel formation in the CAM and (b) quantifies blood vessels by Image J it is a graph
  • Figure 9 is an image showing angiogenic activity evaluated by in vivo subcutaneous injection of hydrogel, (a) is hematoxylin-eosin (H&E) staining, (b) is VEGFA antibody (purple: nucleus) , Brown: VEGFA), (c) is an image showing histological analysis using ⁇ -SMA (purple: nucleus, brown: ⁇ -SMA) staining for smooth muscle cell staining.
  • H&E hematoxylin-eosin
  • VEGFA antibody purple: nucleus
  • Brown VEGFA
  • c is an image showing histological analysis using ⁇ -SMA (purple: nucleus, brown: ⁇ -SMA) staining for smooth muscle cell staining.
  • GH/Cu hydrogels are presented as promising materials for accelerating the wound healing process.
  • the “GH/Cu hydrogel” of the present invention is a hydrogel prepared by mixing a gelatin-hydroxyphenyl propionic acid (GH) polymer, a copper compound, horseradish peroxidase (HRP) and hydrogen peroxide (H 2 O 2 ). it means.
  • GH gelatin-hydroxyphenyl propionic acid
  • HRP horseradish peroxidase
  • H 2 O 2 hydrogen peroxide
  • Angiogenesis of the present invention means the process of newly forming blood vessels, that is, the development and differentiation of new blood vessels into cells, tissues or organs.
  • Angiogenesis of the present invention includes revascularization, angiogenesis, and vessel differentiation related to angiogenesis processes including endothelial cell activation, migration, proliferation, matrix remodeling, and cell stabilization.
  • the present invention consists of a polymer and a copper compound into which at least one of a phenol group and a catechol group is introduced, and copper is coordinated with any one or more of phenol and catechol introduced into the side chain of the polymer to form copper ions in the hydrogel matrix. It provides a copper-containing in situ hydrogel, characterized in that any one or more of phenol and catechol introduced into the side chain of the polymer are bonded to each other and crosslinked.
  • Figure 1 is a schematic diagram showing that nitric oxide (NO) is continuously released from copper-containing in situ hydrogels to stimulate angiogenesis and anti-inflammatory processes.
  • NO nitric oxide
  • Figure 2 is a schematic diagram showing the formation of nitric oxide releasing hydrogel through the catalysis of horseradish peroxidase and tyrosinase, showing that the GH polymer is crosslinked through various interactions between catechol and phenolic groups.
  • phenol is oxidized to a phenol radical by an enzyme (horseradish peroxidase, HRP), enabling crosslinking of the aromatic ring by CC or CO coupling, and aerobic
  • HRP horseradish peroxidase
  • tyrosinase an enzyme that provides an active site for cross-linking reactions between phenol-rich gelatin polymers and a binding site for coordinating and stabilizing copper ions. Therefore, here, two enzyme-catalyzed reactions by horseradish peroxidase (HRP) and tyrosinase occur to form a hydrogel matrix.
  • the copper is included and stabilized in the hydrogel matrix through a metal-catecholate coordination bond.
  • Catechol formed by enzyme (tyrosinase) catalysis can react with each other (hydrogen bond, ⁇ - ⁇ interaction, coupling reaction, etc.) to cross-link the polymer network and stabilize copper in the hydrogel matrix through metal coordination with copper ions can do.
  • the copper-containing in situ hydrogel according to the present invention can continuously release copper ions by including copper ions in the hydrogel matrix, and promotes nitric oxide production in the presence of an endogenous nitric oxide source for a long period of time (about 3 weeks). can do.
  • the synergistic effect of copper ions and nitric oxide can modulate the anti-inflammatory M2 phenotype polarization, thereby exhibiting anti-inflammatory properties.
  • the present invention provides an anti-inflammatory pharmaceutical composition, a pharmaceutical composition for tissue regeneration, and a pharmaceutical composition for angiogenesis, including the copper-containing in situ hydrogel.
  • the pharmaceutical composition may further include carriers, excipients or diluents commonly used in the preparation of pharmaceutical compositions.
  • composition of the present invention when it is a pharmaceutical composition, it may contain a pharmaceutically acceptable carrier, excipient or diluent in addition to the above-described active ingredients for administration.
  • the carriers, excipients and diluents include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, microcrystalline cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.
  • the pharmaceutical composition of the present invention may be formulated and used in the form of external preparations, suppositories or sterile injection solutions according to conventional methods, respectively. Specifically, when formulated, it may be prepared using diluents or excipients such as commonly used fillers, weighting agents, binders, wetting agents, disintegrants, and surfactants. Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized formulations and tablets. Propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable esters such as ethyl oleate may be used as non-aqueous solvents and suspending agents. As a base for suppositories, Witepsol, Macrosol, Tween 61, cacao butter, laurin paper, glycerogelatin, and the like may be used.
  • the pharmaceutical composition of the present invention may be administered parenterally (eg, intravenous, subcutaneous, intraperitoneal or topical application) according to the desired method.
  • parenterally eg, intravenous, subcutaneous, intraperitoneal or topical application
  • the dosage of the pharmaceutical composition of the present invention varies depending on the subject's body weight, age, sex, health condition, diet, administration time, administration method, excretion rate, and severity of disease, but is not limited thereto.
  • the present invention comprises the steps of preparing a solution in which a compound containing a phenol group is substituted and a polymer and an enzyme are dissolved; and cross-linking by adding a copper compound and hydrogen peroxide to the solution.
  • phenol in the crosslinking step, in the presence of hydrogen peroxide (H 2 O 2 ), phenol is oxidized to a phenol radical by an enzyme (horseradish peroxidase, HRP) to form an aromatic ring by CC or CO coupling.
  • HRP hydrogen peroxidase
  • HRP horseradish peroxidase
  • tyrosinase two enzyme-catalyzed reactions by horseradish peroxidase (HRP) and tyrosinase occur to form a hydrogel matrix.
  • the copper is included in the hydrogel matrix and stabilized through a metal-catecholate coordination bond.
  • Catechols formed by enzyme (tyrosinase) catalysis can react with each other to cross-link polymer networks through at least one of hydrogen bonds, ⁇ - ⁇ interactions, and coupling reactions, and form a hydrogel matrix through copper ions and metal coordination. can stabilize copper in
  • the polymer is gelatin, chitosan, heparin, cellulose, dextran, dextran sulfate, chondroitin sulfate, keratan sulfate, dermatan sulfate, alginate, collagen, albumin, fibronectin, laminin, elastin, vitronectin, hyaluronic acid, fibrinogen and - It includes at least one selected from the group consisting of polymers, and at least one of a phenol group and a catechol group may be introduced into the side chain of the polymer.
  • copper may be included in the hydrogel matrix by coordinating a phenol group or catechol group introduced into the side chain of the polymer and copper, and the phenol group or catechol group is bonded to each other and cross-linked to form a cross-linked hydrogel. can form a gel.
  • the enzymes are horseradish peroxidase, glutathione peroxidase, haloperoxidase, myeloperoxidase, catalase, hemoprotein ), peroxide, peroxiredoxin, animal heme-dependent peroxidases, thyroid peroxidase, vanadium bromoperoxidase, It may include one or two or more selected from the group consisting of lactoperoxidase, tyrosinase, and catechol oxidase.
  • the compound containing the phenol group is hydroxyphenyl propionic acid, 4-hydroxyphenyl acetic acid, tyrosine, tyramine, tetronic tyramine
  • PEG- may be one or more selected from the group consisting of tyramine (PEG-tyramine).
  • the compound containing the catechol group is at least one selected from the group consisting of dopamine, gallic acid, quercetin, tannic acid and epigallocatechin gallate (EGCG) Method for producing a copper-containing in situ hydrogel, characterized in that.
  • EGCG epigallocatechin gallate
  • the copper compound may include at least one selected from copper sulfate (CuSO 4 ) and copper chloride (CuCl 2 ).
  • the copper compound may be included in a concentration of 10 to 75 ⁇ M, 25 to 75 ⁇ M, 25 to 50 ⁇ M, or 50 to 75 ⁇ M.
  • the concentration of the enzyme may be 0.001 to 0.010 mg/ml or 0.001 to 0.005 mg/ml.
  • the concentration of the polymer may be 30 to 100 mg/ml or 30 to 70 mg/ml.
  • hydrogen peroxide may be added at a concentration of 0.01 to 0.1 wt% or 0.01 to 0.05 wt%.
  • the present invention provides a copper-containing in situ hydrogel prepared by the above manufacturing method.
  • the copper-containing in situ hydrogel may include copper ions in the hydrogel matrix by coordinating at least one of phenol and catechol introduced into the side chain of the polymer and copper.
  • any one or more of phenol and catechol introduced into the side chain of the polymer may be bonded to each other to form a crosslinked hydrogel matrix.
  • HRP horseradish peroxidase
  • Tyr tyrosinase
  • the gelation time of the hydrogel was measured at the time when no flow was observed after the phase transition of the hydrogel in the microtube after uniform mixing of the two solutions, and the results are shown in (a) of FIG.
  • the hydrogel In order to evaluate the degradation behavior of the hydrogel, it was cultured at 37 ° C. in PBS containing collagenase, and the remaining weight was measured while replacing the culture medium at regular intervals.
  • a copper analysis kit (Sigma-Aldrich, St. Louis, MO, USA USA) was used to measure Cu ions released from the hydrogel.
  • the formed hydrogel was placed in a PBS solution and incubated at 37° C. in the dark. According to the characteristic time, the supernatant was recovered and fresh PBS solution was added. Then, the recovered sample was reacted at room temperature for 5 minutes using a copper analysis kit. The absorbance of the Cu ion standard was measured at 359 nm. Since Tyr is a copper-containing enzyme, the release of Cu ions from Tyr during the hydrogel degradation process could affect the results of this experiment. Therefore, in this test, the GH hydrogel prepared without Tyr was used as a control sample.
  • the hydrogel was placed in a PBS solution containing NO donors (GSNO and GSH) and incubated at 37 ° C in the dark, and the NO donor solution was recovered and replaced at regular intervals. The recovered solution and the same amount of Griess solution were reacted in the dark for 15 minutes, and the absorbance was measured at 540 nm with a CytationTM 3 Cell Imaging Multi-Mode Reader (BioTekTM, USA) to determine the emission behavior of NO released from the hydrogel. was evaluated. Quantitative analysis was performed through a calibration curve obtained with 0 - 1 ⁇ M of NaNO2, and the results are shown in FIG. 4.
  • Figure 4 shows the cumulative concentration of copper ions released from the hydrogel and nitric oxide produced
  • (a) is a graph showing the cumulative concentration of copper ions released from the GH / Cu hydrogel after incubation in PBS
  • (b ) is a graph showing the cumulative concentration of nitric oxide (NO) release by incubating the GH/Cu hydrogel in the presence of 10 ⁇ M GSH as a nitric oxide (NO) donor.
  • FIG. 4 shows the cumulative concentration of copper ions released from the hydrogel and the generated nitric oxide.
  • FIG. 4 (a) it can be seen that the copper ions released from the hydrogel increase as the copper content increases, , (b) confirms that the amount of nitric oxide released increases as the copper content in the hydrogel increases in the presence of GSNO and GSH.
  • THP-1 human monocyte cells
  • PMA 12-myristate 13-acetate
  • the differentiation of THP-1 into M0 cells was induced.
  • the hydrogel was treated on the M0 cell layer and cultured according to the presence or absence of NO donor.
  • the differentiation capacity into pro-inflammatory M1 and anti-inflammatory M2 macrophages according to the released NO content was analyzed.
  • Cells were incubated with primary antibodies of the markers after treatment with paraformaldehyde and Triton X-100. (M2 markers: CD163, TGF-ß).
  • DAPI staining was performed, and fluorescence qualitative analysis of differentiated anti-inflammatory M2 markers was performed using a confocal laser scanning microscope (Zeiss LSM 780, Carl Zeiss, Jena, Germany). Differentiation-induced M2 cells were lysed and the degree of M2 polarization was evaluated through quantitative analysis of TGF- ⁇ and CD163 by ELISA, and the results are shown in FIG. 5 .
  • (a) is an image of immunofluorescence staining of attached macrophages with DAPI (blue) and CD163 (green)
  • (b) is a graph showing the quantification of the relative mean fluorescence intensity of CD163 compared to M2 macrophage control
  • ( c) is a graph showing the concentration of TGF- ⁇ released from macrophages by ELISA.
  • Figure 5 shows in vitro anti-inflammatory properties, (a) is an image of immunofluorescence staining of macrophages attached with DAPI (blue) and CD163 (green), and (b) is M2 macrophage control and A graph showing the quantification of the relative average fluorescence intensity of compared CD163, and (c) is a graph showing the concentration of TGF- ⁇ released from macrophages by ELISA.
  • HUVEC Human umbilical cord blood endothelial cells, HUVEC, were cultured with hydrogel in EGM-2 medium, and the angiogenic ability was evaluated according to the NO content released through cell layer scratch recovery and tube formation.
  • HUVECs The growth of HUVECs according to the released NO content was evaluated by WST-1 and live/dead fluorescence analysis. Additionally, HUVECs were cultured to form a cell layer and then scratches were formed using a pipette. The hydrogel is placed on top of the cell layer, fresh medium is added, and NO donor is fed every 4 hours. The change in the recovery area of the scratch at a certain time point was measured to evaluate the recovery ability of the vascular endothelial cell scratch according to the NO content.
  • a thin gel layer was formed on TCP with Corning Matrigel Matrix solution, and then HUVECs were cultured on it for 1 day. Thereafter, the hydrogel was placed on the cell layer and cultured every 4 hours depending on the presence or absence of a NO donor. After 12 hours, the formation of an angiogenic capillary-like structure of HUVECs was measured with an optical microscope, and the length of the tube was calculated and evaluated using the Image J program. The results are shown in FIGS. 6 and 7 .
  • Figure 6 shows in vitro angiogenic activity
  • (a) is a scanning electron microscope (SEM) image of live (green) / dead (red) stained cells
  • (b) is WST -1
  • (c) is a graph showing the quantification of the migration rate
  • (d) is a graph showing the migration of HUVECs using the wound scratch migration assay This is an optical microscope image.
  • Figure 7 shows the angiogenic activity evaluated by in vitro endothelial tube formation assay, (a) is an optical microscope image showing the formation of a cell network, (b) the number of nodes, (c) the number of branches and (d) a graph showing quantitative evaluation of various parameters including total branch length.
  • tube-shaped cell sorting was not achieved except for the VEGF-treated experimental group, whereas in the presence of an NO donor, as the copper content increased, tube-shaped cell sorting occurred and At the same time, it can be confirmed that significant increases in the number of nodes, the number of branches, and the total branch length have occurred.
  • CAM Chicken Chorioallantoic Membrane
  • Figure 8 shows the angiogenic activity assessed by an intra-oval chicken chorioallantoic angiogenesis (CAM) assay, where (a) is an optical image of new blood vessel formation in the CAM and (b) quantifies blood vessels by Image J it is a graph
  • FIG. 8 it can be seen from the CAM analysis that a large number of new blood vessels are formed in the experimental group treated with VEGF. In comparison, it can be seen that as the copper ion content in the hydrogel increases, the new blood vessels are effectively stimulated.
  • a mouse model was used to evaluate the angiogenic ability in vivo using an animal model. Following the ethically approved protocol, hydrogel was subcutaneously injected after mouse anesthesia, and after 3 weeks, the subcutaneous tissue including the hydrogel was recovered to analyze the characteristics of new blood vessels for tissue regeneration in the body. The recovered tissue was immediately fixed in 4% paraformaldehyde for one day and then sectioned in paraffin. The tissue sections were subjected to histological analysis using hematoxylin and eosin (H&E) and immunohistochemical analysis using anti- ⁇ SMA and VEGFA antibodies, which are angiogenesis-related factors, and the results are shown in FIG. 9 .
  • H&E hematoxylin and eosin
  • Figure 9 is an image showing angiogenic activity evaluated by in vivo subcutaneous injection of hydrogel, (a) is hematoxylin-eosin (H&E) staining, (b) is VEGFA antibody (purple: nucleus) , Brown: VEGFA), (c) is an image showing histological analysis using ⁇ -SMA (purple: nucleus, brown: ⁇ -SMA) staining for smooth muscle cell staining.
  • H&E hematoxylin-eosin
  • VEGFA antibody purple: nucleus
  • Brown VEGFA
  • c is an image showing histological analysis using ⁇ -SMA (purple: nucleus, brown: ⁇ -SMA) staining for smooth muscle cell staining.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Inorganic Chemistry (AREA)
  • Transplantation (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Rheumatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pain & Pain Management (AREA)
  • Medicinal Preparation (AREA)

Abstract

The present invention relates to a method for preparing a copper-containing in situ hydrogel and use thereof, the method using a polymer into which a phenol group or a compound including a phenol group has been introduced, a copper compound, an enzyme, and hydrogen peroxide. According to the present invention, under the catalysis of enzymes, the polymer is oxidized for formation of a crosslinking network and deposition of Cu nanoparticles, so as to form a cross-linked copper-containing hydrogel, and the cross-linked copper-containing hydrogel allows sustained release of copper ions, and thus, for almost three weeks, NO production may be promoted in the presence of an endogenous NO donor (RSNO). Accordingly, due to the synergistic effect between Cu ions and NO, anti-inflammatory M2 phenotype polarization is controlled and the movement of endothelial cells is stimulated, and thus in vitro bioreactivity of the copper-containing in situ hydrogel can be confirmed, and the copper-containing hydrogel can promote a wound healing process.

Description

구리를 이용한 서방형 산화질소 방출형 in situ 가교 하이드로젤의 제조방법 및 이의 생의학적 용도Manufacturing method of slow-release nitric oxide release in situ cross-linked hydrogel using copper and biomedical use thereof
본 발명은 구리를 이용한 서방형 산화질소 방출형 in situ 가교 하이드로젤의 제조방법 및 이의 생의학적 용도에 관한 것이다.The present invention relates to a method for preparing a slow-release nitric oxide-releasing in situ crosslinked hydrogel using copper and a biomedical use thereof.
하이드로젤(hydrogel)은 수상에 용해된 고분자의 물리화학적 가교를 통한 젤리 형태의 물질로서, 친수성이 우수하여 물을 쉽게 흡수할 수 있을 뿐만 아니라 강도, 모양 등을 쉽게 조절할 수 있어 조직공학용 지지체 또는 약물전달 등에 사용되고 있다. 또한 하이드로젤은 우수한 생체적합성과 생분해성, 약물방출 조절 및 체내 주입 후 상전이를 이룰 수 있는 최소침습적 특성으로 인해, 체내 약물전달 효율이 낮은 방식의 대안으로 활발히 연구되고 있다. 약물전달체로서 주된 목적은 질환 부위에서 장기간 약효 농도 이상 약물을 서방출하여 부작용을 초래할 수 있는 잦은 주입을 필요로 하지 않는 것이다.Hydrogel is a jelly-like material through physicochemical crosslinking of polymers dissolved in water. It has excellent hydrophilicity and can easily absorb water, as well as easily control its strength and shape, making it a scaffold or drug for tissue engineering. Used for transmission, etc. In addition, hydrogels are being actively studied as alternatives to methods with low in vivo drug delivery efficiency due to their excellent biocompatibility, biodegradability, control of drug release, and minimally invasive properties capable of achieving phase transition after injection into the body. As a drug delivery system, the main purpose is to release a drug at a drug effective concentration or higher for a long period of time at the disease site so as not to require frequent injection that can cause side effects.
또한, 광범위한 염증 단계와 감소된 혈관화로 인한 만성 또는 치유되지 않는 상처는 인간의 건강에 심각한 문제를 야기하고 있다. 따라서 염증 단계를 단축하고 혈관 신생 과정을 촉진하는 생체 재료의 개발은 만성 창상 치료에 유망한 치료법이다. 현재, 산화질소(NO)는 면역 반응, 세포 사멸, 염증 등을 포함한 많은 생리학적 과정에 관여하는 내인성 가스 분자이다. 그러나 NO의 임상 적용은 생체 물질로부터의 폭발적인 방출로 인해 제한된다.In addition, chronic or non-healing wounds due to extensive inflammatory stages and reduced vascularization pose serious problems to human health. Therefore, the development of biomaterials that shorten the inflammatory phase and promote the angiogenic process is a promising treatment for chronic wounds. Currently, nitric oxide (NO) is an endogenous gaseous molecule involved in many physiological processes including immune response, cell death, inflammation, and the like. However, the clinical application of NO is limited due to its explosive release from biomaterials.
이에, 가교 하이드로젤을 이용하여 초기 단계에서의 방출을 제어하여 지속적으로 산화질소를 형성할 수 있는 기술에 대한 연구가 필요한 실정이다.Accordingly, there is a need for research into a technology capable of continuously forming nitric oxide by controlling release in an initial stage using a crosslinked hydrogel.
본 발명은 페놀기 또는 페놀기를 포함하는 화합물이 도입된 고분자, 구리 화합물, 효소 및 과산화수소를 이용하는 구리 함유 in situ 하이드로젤의 제조방법 및 이의 용도에 관한 것이다.The present invention relates to a method for preparing a copper-containing in situ hydrogel using a polymer introduced with a phenol group or a compound containing a phenol group, a copper compound, an enzyme, and hydrogen peroxide, and a use thereof.
상기와 같은 목적을 달성하기 위하여, 본 발명은 페놀기 및 카테콜기 중 적어도 하나 이상이 도입된 고분자 및 구리 화합물로 이루어지며, 상기 고분자의 측쇄에 도입된 페놀 및 카테콜 중 어느 하나 이상과 구리가 배위결합되어 하이드로젤 매트릭스 내에 구리 이온을 포함하며, 상기 고분자의 측쇄에 도입된 페놀 및 카테콜 중 어느 하나 이상이 서로 결합되어 가교된 것을 특징으로 하는 구리 함유 in situ 하이드로젤을 제공한다.In order to achieve the above object, the present invention consists of a polymer and a copper compound in which at least one of a phenol group and a catechol group is introduced, and any one or more of phenol and catechol introduced into the side chain of the polymer and copper are It provides a copper-containing in situ hydrogel, characterized in that it contains copper ions in the hydrogel matrix by coordination, and any one or more of phenol and catechol introduced into the side chain of the polymer is bonded to each other and crosslinked.
또한, 본 발명은 페놀기를 포함하는 화합물이 치환된 고분자 및 효소를 용해시킨 용해액을 제조하는 단계; 및 상기 용해액에 구리 화합물 및 과산화수소를 첨가하여 가교시키는 단계;를 포함하는 구리 함유 in situ 하이드로젤의 제조방법을 제공한다.In addition, the present invention comprises the steps of preparing a solution in which a compound containing a phenol group is substituted and a polymer and an enzyme are dissolved; and cross-linking by adding a copper compound and hydrogen peroxide to the solution.
또한, 본 발명은 상기 서술한 구리 함유 in situ 하이드로젤의 제조방법으로 제조된 구리 함유 in situ 하이드로젤을 제공한다.In addition, the present invention provides a copper-containing in situ hydrogel prepared by the above-described method for preparing a copper-containing in situ hydrogel.
또한, 본 발명은 상기 서술한 구리 함유 in situ 하이드로젤을 포함하는 항염증 조성물을 제공한다.In addition, the present invention provides an anti-inflammatory composition comprising the above-described copper-containing in situ hydrogel.
또한, 본 발명은 상기 서술한 구리 함유 in situ 하이드로젤을 포함하는 조직 재생용 조성물을 제공한다.In addition, the present invention provides a composition for tissue regeneration comprising the above-described copper-containing in situ hydrogel.
또한, 본 발명은 상기 서술한 구리 함유 in situ 하이드로젤을 포함하는 혈관신생용 조성물을 제공한다.In addition, the present invention provides a composition for angiogenesis comprising the above-described copper-containing in situ hydrogel.
본 발명에 따르면, 효소의 촉매 작용 하에서, 고분자는 가교 네트워크의 형성과 Cu 나노입자의 침착을 위해 산화되어 가교된 구리 함유 하이드로젤을 형성하고, 상기 가교된 구리 함유 하이드로젤은 구리 이온을 지속 방출하므로, 거의 3주 동안 내인성 NO 공여체(RSNO)의 존재 하에 NO 생성을 촉진할 수 있다.According to the present invention, under the catalytic action of an enzyme, the polymer is oxidized to form a cross-linked copper-containing hydrogel for formation of a cross-linked network and deposition of Cu nanoparticles, and the cross-linked copper-containing hydrogel continuously releases copper ions. Therefore, NO production can be promoted in the presence of an endogenous NO donor (RSNO) for nearly 3 weeks.
이에 따라, Cu 이온과 NO의 시너지 효과로 인해 항염증성 M2 표현형 분극을 조절하고 내피 세포의 이동을 자극하여 구리 함유 in situ 하이드로젤의 시험관 내 생체 활성을 확인할 수 있으며, 구리 함유 하이드로젤은 상처 치유 과정을 촉진할 수 있다.Accordingly, the synergistic effect of Cu ions and NO regulates the polarization of the anti-inflammatory M2 phenotype and stimulates the migration of endothelial cells, confirming the in vitro bioactivity of copper-containing in situ hydrogels. process can be facilitated.
도 1은 구리를 포함하는 하이드로젤에서 산화질소(NO)가 지속적으로 방출되어 혈관 신생 및 항염 과정을 자극하는 것을 나타내는 개략도이다.1 is a schematic diagram showing that nitric oxide (NO) is continuously released from copper-containing hydrogels to stimulate angiogenesis and anti-inflammatory processes.
도 2는 호스래디쉬 과산화효소와 티로시나제의 촉매작용을 통해 하이드로젤을 방출하는 산화질소의 형성을 나타내는 개략도이고, GH 폴리머는 카테콜과 페놀 그룹 사이의 다양한 상호작용을 통해 가교된 것을 나타낸다.Figure 2 is a schematic diagram showing the formation of nitric oxide releasing hydrogel through the catalysis of horseradish peroxidase and tyrosinase, showing that the GH polymer is crosslinked through various interactions between catechol and phenolic groups.
도 3은 본 발명의 하이드로젤의 특성을 실험한 결과를 나타낸 것으로, (a)는 바이알 타이틀링 방법(vial tiltling method)에 의해 정의된 겔화 시간을 나타낸 그래프이고, (b)는 레오미터에 의해 평가된 기계적 강도를 나타낸 그래프이고, (c)는 리소자임의 분해율을 나타낸 그래프이고, (d)는 단면을 주사전자현미경(SEM) 촬영 이미지이다.Figure 3 shows the results of testing the properties of the hydrogel of the present invention, (a) is a graph showing the gelation time defined by the vial tilting method, (b) is a graph showing the gelation time by the rheometer It is a graph showing the evaluated mechanical strength, (c) is a graph showing the decomposition rate of lysozyme, (d) is a scanning electron microscope (SEM) image of the cross section.
도 4는 하이드로젤에서 방출된 구리 이온 및 생성된 산화질소의 누적 농도를를 나타낸 것으로, (a)는 PBS에서 배양 후 GH/Cu 하이드로젤에서 방출된 구리 이온의 누적 농도를 나타낸 그래프이고, (b)는 산화질소(NO) 공여자로서 10μM GSH의 존재 하에 GH/Cu 하이드로젤을 배양함으로써 산화질소(NO) 방출의 누적 농도를 나타낸 그래프이다.Figure 4 shows the cumulative concentration of copper ions released from the hydrogel and nitric oxide produced, (a) is a graph showing the cumulative concentration of copper ions released from the GH / Cu hydrogel after incubation in PBS, (b ) is a graph showing the cumulative concentration of nitric oxide (NO) release by incubating the GH/Cu hydrogel in the presence of 10 μM GSH as a nitric oxide (NO) donor.
도 5는 시험관 내(in vitro) 항염증 특성을 나타낸 것으로, (a)는 DAPI(파란색) 및 CD163(녹색)으로 부착된 대식세포의 면역형광 염색 이미지이고, (b)는 M2 대식세포 대조군과 비교한 CD163의 상대 평균 형광 강도의 정량화를 나타낸 그래프이고, (c)는 ELISA에 의해 대식세포로부터 방출된 TGF-β의 농도를 나타낸 그래프이다.Figure 5 shows in vitro anti-inflammatory properties, (a) is an image of immunofluorescence staining of macrophages attached with DAPI (blue) and CD163 (green), and (b) is M2 macrophage control and A graph showing the quantification of the relative average fluorescence intensity of compared CD163, and (c) is a graph showing the concentration of TGF-β released from macrophages by ELISA.
도 6은 시험관 내(in vitro) 혈관 신생 활성을 나타낸 것으로, (a)는 살아있는(녹색)/죽은(빨간색) 염색된 세포를 주사전자현미경(SEM)으로 촬영한 이미지이고, (b)는 WST-1 분석에 의해 24시간 동안 하이드로젤 샘플과 함께 배양한 후 HUVEC의 생존력을 나타낸 그래프이고, (c)는 이동률을 정량화하여 나타낸 그래프이고, (d)는 상처 스크래치 이동 분석을 사용한 HUVEC의 이동을 보여주는 광학현미경 이미지이다.Figure 6 shows in vitro angiogenic activity, (a) is a scanning electron microscope (SEM) image of live (green) / dead (red) stained cells, (b) is WST -1 A graph showing the viability of HUVECs after incubation with a hydrogel sample for 24 hours by assay, (c) is a graph showing the quantification of the migration rate, (d) is a graph showing the migration of HUVECs using the wound scratch migration assay This is an optical microscope image.
도 7은 시험관 내(in vitro) 내피관 형성 분석에 의해 평가된 혈관 신생 활성을 나타낸 것으로, (a)는 세포 네트워크의 형성을 보여주는 광학 현미경 이미지이고, (b) 노드 수, (c) 가지 수 및 (d) 총 가지 길이를 포함한 다양한 매개변수의 정량적 평가를 나타낸 그래프이다.Figure 7 shows the angiogenic activity evaluated by in vitro endothelial tube formation assay, (a) is an optical microscope image showing the formation of a cell network, (b) the number of nodes, (c) the number of branches and (d) a graph showing quantitative evaluation of various parameters including total branch length.
도 8은 난자내 닭 융모요막 혈관신생(CAM) 분석에 의해 평가된 혈관신생 활성을 나타낸 것으로, (a)는 CAM에서 새로운 혈관 형성의 광학 이미지이고, (b)는 이미지 J에 의한 혈관을 정량화한 그래프이다.Figure 8 shows the angiogenic activity assessed by an intra-oval chicken chorioallantoic angiogenesis (CAM) assay, where (a) is an optical image of new blood vessel formation in the CAM and (b) quantifies blood vessels by Image J it is a graph
도 9는 하이드로젤의 생체내(in vivo) 피하 주사에 의해 평가된 혈관신생 활성을 나타낸 이미지로, (a)는 헤마톡실린-에오신(H&E) 염색, (b)는 VEGFA 항체(보라색: 핵, 갈색: VEGFA), (c)는 평활근 세포 염색을 위한 α-SMA (보라색: 핵, 갈색: α-SMA) 염색을 사용한 조직학적 분석을 나타낸 이미지이다.Figure 9 is an image showing angiogenic activity evaluated by in vivo subcutaneous injection of hydrogel, (a) is hematoxylin-eosin (H&E) staining, (b) is VEGFA antibody (purple: nucleus) , Brown: VEGFA), (c) is an image showing histological analysis using α-SMA (purple: nucleus, brown: α-SMA) staining for smooth muscle cell staining.
이하, 본 발명을 보다 구체적으로 설명하기 위하여 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 보다 상세하게 설명한다. 그러나, 본 발명은 여기서 설명되어지는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다.Hereinafter, in order to explain the present invention in more detail, preferred embodiments according to the present invention will be described in more detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms.
본 발명에서는 구리(Cu) 이온(NO 생성 촉매)은 내인성 S-니트로소티올의 존재 하에 NO의 제자리 생성을 위해 페놀이 풍부한 젤라틴 기반 하이드로젤(GH/Cu)에포함되었다. 이 때, 티로시나아제와 호스래디쉬(horsradish) 퍼옥시다아제의 촉매 작용 하에서, GH는 가교 네트워크의 형성과 Cu 나노입자의 침착을 위해 산화되고, GH/Cu는 Cu 이온의 지속 방출을 나타내므로 거의 3주 동안 내인성 NO 공여체의 존재 하에 NO 생성을 촉진했다. Cu 이온과 NO의 시너지 효과는 항염증성 M2 표현형 분극을 조절하고 내피 세포의 이동을 자극하여 GH/Cu의 시험관 내 생체 활성을 설명할 수 있다. GH/Cu 하이드로젤은 상처 치유 과정을 촉진하기 위한 유망한 물질로 제시되고 있다.In this study, copper (Cu) ions (NO generating catalyst) were incorporated into phenol-rich gelatin-based hydrogels (GH/Cu) for in situ generation of NO in the presence of endogenous S-nitrosothiol. At this time, under the catalytic action of tyrosinase and horseradish peroxidase, GH is oxidized for the formation of a cross-linked network and deposition of Cu nanoparticles, and GH/Cu exhibits sustained release of Cu ions. NO production was stimulated in the presence of endogenous NO donors for 3 weeks. The synergistic effect of Cu ions and NO may explain the in vitro bioactivity of GH/Cu by regulating anti-inflammatory M2 phenotype polarization and stimulating endothelial cell migration. GH/Cu hydrogels are presented as promising materials for accelerating the wound healing process.
본 발명의 “GH/Cu 하이드로젤”은 젤라틴-하이드록시페닐 프로피온산(GH) 중합체, 구리 화합물, 호스래디쉬 과산화효소(HRP) 및 과산수소(H2O2)를 혼합하여 제조한 하이드로젤을 의미한다.The “GH/Cu hydrogel” of the present invention is a hydrogel prepared by mixing a gelatin-hydroxyphenyl propionic acid (GH) polymer, a copper compound, horseradish peroxidase (HRP) and hydrogen peroxide (H 2 O 2 ). it means.
본 발명의 “혈관신생”은 혈관이 새로 형성되는 과정, 즉 새로운 혈관이 세포, 조직 또는 기관 내로 발생 및 분화하는 것을 의미한다. 본 발명의 혈관신생은 내피세포 활성화, 이동, 증식, 매트릭스 재형성 및 세포 안정화를 비롯한 혈관 형성 과정에 관련된 혈관재생, 혈관회복 및 혈관 분화를 포함한다."Angiogenesis" of the present invention means the process of newly forming blood vessels, that is, the development and differentiation of new blood vessels into cells, tissues or organs. Angiogenesis of the present invention includes revascularization, angiogenesis, and vessel differentiation related to angiogenesis processes including endothelial cell activation, migration, proliferation, matrix remodeling, and cell stabilization.
본 발명은 페놀기 및 카테콜기 중 적어도 하나 이상이 도입된 고분자 및 구리 화합물로 이루어지며, 상기 고분자의 측쇄에 도입된 페놀 및 카테콜 중 어느 하나 이상과 구리가 배위결합되어 하이드로젤 매트릭스 내에 구리 이온을 포함하며, 상기 고분자의 측쇄에 도입된 페놀 및 카테콜 중 어느 하나 이상이 서로 결합되어 가교된 것을 특징으로 하는 구리 함유 in situ 하이드로젤을 제공한다.The present invention consists of a polymer and a copper compound into which at least one of a phenol group and a catechol group is introduced, and copper is coordinated with any one or more of phenol and catechol introduced into the side chain of the polymer to form copper ions in the hydrogel matrix. It provides a copper-containing in situ hydrogel, characterized in that any one or more of phenol and catechol introduced into the side chain of the polymer are bonded to each other and crosslinked.
도 1은 구리 함유 in situ 하이드로젤에서 산화질소(NO)가 지속적으로 방출되어 혈관 신생 및 항염 과정을 자극하는 것을 나타내는 개략도이다.Figure 1 is a schematic diagram showing that nitric oxide (NO) is continuously released from copper-containing in situ hydrogels to stimulate angiogenesis and anti-inflammatory processes.
도 2는 호스래디쉬 과산화효소와 티로시나제의 촉매작용을 통해 하이드로젤을 방출하는 산화질소의 형성을 나타내는 개략도이고, GH 폴리머는 카테콜과 페놀 그룹 사이의 다양한 상호작용을 통해 가교된 것을 나타낸다.Figure 2 is a schematic diagram showing the formation of nitric oxide releasing hydrogel through the catalysis of horseradish peroxidase and tyrosinase, showing that the GH polymer is crosslinked through various interactions between catechol and phenolic groups.
구체적으로, H2O2 존재 하에, 페놀은 효소(호스래디쉬 과산화효소, HRP)에 의해 페놀 라디칼로 산화되어 C-C 또는 C-O 커플링에 의한 방향족 고리(aromatic ring)의 가교를 가능하게 하고, 호기성 환경에서 페놀은 효소(티로시나제)에 의해 카테콜로 산화되어 페놀이 풍부한 젤라틴 중합체 사이의 가교 반응을 위한 활성화된 부분과 구리 이온의 배위결합 및 안정화를 위한 결합 부위를 제공한다. 따라서 여기서는 호스래디쉬 과산화효소(HRP)와 티로시나제에 의한 2가지 효소 촉매 반응이 발생하여 하이드로젤 매트릭스를 형성한다.Specifically, in the presence of H 2 O 2 , phenol is oxidized to a phenol radical by an enzyme (horseradish peroxidase, HRP), enabling crosslinking of the aromatic ring by CC or CO coupling, and aerobic In the environment, phenol is oxidized to catechol by an enzyme (tyrosinase), providing an active site for cross-linking reactions between phenol-rich gelatin polymers and a binding site for coordinating and stabilizing copper ions. Therefore, here, two enzyme-catalyzed reactions by horseradish peroxidase (HRP) and tyrosinase occur to form a hydrogel matrix.
상기 구리는 금속-카테콜레이트 배위결합을 통해 하이드로겔 매트릭스에 포함되고 안정화된다. 효소(티로시나제) 촉매 작용으로 형성된 카테콜은 서로 반응하여(수소 결합, π-π 상호작용, 커플링 반응 등) 폴리머 네트워크를 가교할 수 있으며 구리 이온과 금속 배위를 통해 하이드로겔 매트릭스에서 구리를 안정화할 수 있다.The copper is included and stabilized in the hydrogel matrix through a metal-catecholate coordination bond. Catechol formed by enzyme (tyrosinase) catalysis can react with each other (hydrogen bond, π-π interaction, coupling reaction, etc.) to cross-link the polymer network and stabilize copper in the hydrogel matrix through metal coordination with copper ions can do.
본 발명에 따른 구리 함유 in situ 하이드로젤은 하이드로젤 매트릭스 내에 구리 이온을 포함하여 구리 이온을 지속적으로 방출할 수 있고, 오랜기간(약 3주) 동안 내인성 산화질소 공급원의 존재 하에서 산화질소 생성을 촉진할 수 있다. 구리 이온과 산화질소의 시너지 효과로 인해 항염증성 M2 표현형 분극을 조절할 수 있고, 이에 따라 항염증 특성을 나타낼 수 있다.The copper-containing in situ hydrogel according to the present invention can continuously release copper ions by including copper ions in the hydrogel matrix, and promotes nitric oxide production in the presence of an endogenous nitric oxide source for a long period of time (about 3 weeks). can do. The synergistic effect of copper ions and nitric oxide can modulate the anti-inflammatory M2 phenotype polarization, thereby exhibiting anti-inflammatory properties.
또한, 본 발명은 상기 구리 함유 in situ 하이드로젤을 포함하는 항염증 약학조성물, 조직 재생용 약학조성물 및 혈관신생용 약학조성물을 제공한다.In addition, the present invention provides an anti-inflammatory pharmaceutical composition, a pharmaceutical composition for tissue regeneration, and a pharmaceutical composition for angiogenesis, including the copper-containing in situ hydrogel.
상기 약학조성물은 약학 조성물의 제조에 통상적으로 사용되는 담체, 부형제 또는 희석제를 추가로 포함할 수 있다.The pharmaceutical composition may further include carriers, excipients or diluents commonly used in the preparation of pharmaceutical compositions.
본 발명의 조성물이 약학 조성물인 경우, 투여를 위하여, 상기 기재한 유효성분 이외에 약학적으로 허용 가능한 담체, 부형제 또는 희석제를 포함할 수 있다. 상기 담체, 부형제 및 희석제로는 락토오스, 덱스트로오스, 수크로오스, 소르비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로오스, 메틸 셀룰로오스, 미정질 셀룰로오스, 폴리비닐피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다.When the composition of the present invention is a pharmaceutical composition, it may contain a pharmaceutically acceptable carrier, excipient or diluent in addition to the above-described active ingredients for administration. The carriers, excipients and diluents include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, microcrystalline cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.
본 발명의 약학조성물은 각각 통상의 방법에 따라 외용제, 좌제 또는 멸균 주사용액의 형태로 제형화하여 사용할 수 있다. 상세하게는 제형화할 경우 통상 사용하는 충진제, 중량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제될 수 있다. 비경구 투여를 위한 제제는 멸균된 수용액, 비수성 용제, 현탁제, 유제, 동결건조 제제 및 과제를 포함한다. 비수성 용제 및 현탁제로는 프로필렌글리콜, 폴리에틸렌글리콜, 올리브 오일과 같은 식물성 오일, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔, 마크로솔, 트윈 61, 카카오지, 라우린지, 글리세로젤라틴 등이 사용될 수 있다.The pharmaceutical composition of the present invention may be formulated and used in the form of external preparations, suppositories or sterile injection solutions according to conventional methods, respectively. Specifically, when formulated, it may be prepared using diluents or excipients such as commonly used fillers, weighting agents, binders, wetting agents, disintegrants, and surfactants. Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized formulations and tablets. Propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable esters such as ethyl oleate may be used as non-aqueous solvents and suspending agents. As a base for suppositories, Witepsol, Macrosol, Tween 61, cacao butter, laurin paper, glycerogelatin, and the like may be used.
본 발명의 약학조성물은 목적하는 방법에 따라 비경구 투여(예를 들어, 정맥 내, 피하, 복강 내 또는 국소에 적용)할 수 있다. 또한 본 발명의 약학적 조성물의 투여량은 대상체의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설율 및 질환의 중증도 등에 따라 그 범위가 다양하나, 이에 제한되는 것은 아니다.The pharmaceutical composition of the present invention may be administered parenterally (eg, intravenous, subcutaneous, intraperitoneal or topical application) according to the desired method. In addition, the dosage of the pharmaceutical composition of the present invention varies depending on the subject's body weight, age, sex, health condition, diet, administration time, administration method, excretion rate, and severity of disease, but is not limited thereto.
본 발명은 페놀기를 포함하는 화합물이 치환된 고분자 및 효소를 용해시킨 용해액을 제조하는 단계; 및 상기 용해액에 구리 화합물 및 과산화수소를 첨가하여 가교시키는 단계;를 포함하는 구리 함유 in situ 하이드로젤의 제조방법을 제공한다.The present invention comprises the steps of preparing a solution in which a compound containing a phenol group is substituted and a polymer and an enzyme are dissolved; and cross-linking by adding a copper compound and hydrogen peroxide to the solution.
구체적으로, 상기 가교시키는 단계는 과산화수소(H2O2) 존재 하에, 페놀은 효소(호스래디쉬 과산화효소, HRP)에 의해 페놀 라디칼로 산화되어 C-C 또는 C-O 커플링에 의한 방향족 고리(aromatic ring)의 가교를 가능하게 하고, 호기성 환경에서 페놀은 효소(티로시나제)에 의해 카테콜로 산화되어 페놀이 풍부한 젤라틴 중합체 사이의 가교 반응을 위한 활성화된 부분과 구리 이온의 배위결합 및 안정화를 위한 결합 부위를 제공한다. 따라서 여기서는 호스래디쉬 과산화효소(HRP)와 티로시나제에 의한 2가지 효소 촉매 반응이 발생하여 하이드로젤 매트릭스를 형성한다.Specifically, in the crosslinking step, in the presence of hydrogen peroxide (H 2 O 2 ), phenol is oxidized to a phenol radical by an enzyme (horseradish peroxidase, HRP) to form an aromatic ring by CC or CO coupling. In an aerobic environment, phenol is oxidized to catechol by an enzyme (tyrosinase), providing an active moiety for a crosslinking reaction between phenol-rich gelatin polymers and a binding site for coordinating and stabilizing copper ions. do. Therefore, here, two enzyme-catalyzed reactions by horseradish peroxidase (HRP) and tyrosinase occur to form a hydrogel matrix.
또한, 상기 가교시키는 단계에서 상기 구리는 금속-카테콜레이트 배위결합을 통해 하이드로겔 매트릭스에 포함되고 안정화된다. 효소(티로시나제) 촉매 작용으로 형성된 카테콜은 서로 반응하여 수소 결합, π-π 상호작용 및 커플링 반응 중 적어도 하나 이상을 통해 폴리머 네트워크를 가교할 수 있으며, 구리 이온과 금속 배위를 통해 하이드로겔 매트릭스에서 구리를 안정화할 수 있다.In addition, in the crosslinking step, the copper is included in the hydrogel matrix and stabilized through a metal-catecholate coordination bond. Catechols formed by enzyme (tyrosinase) catalysis can react with each other to cross-link polymer networks through at least one of hydrogen bonds, π-π interactions, and coupling reactions, and form a hydrogel matrix through copper ions and metal coordination. can stabilize copper in
상기 고분자는 젤라틴, 키토산, 헤파린, 셀룰로스, 덱스트란, 덱스트란 설페이트, 콘드로이틴 설페이트, 케라탄 설페이트, 더마탄 설페이트, 알지네이트, 콜라겐, 알부민, 피브로넥틴, 라미닌, 엘라스틴, 비트로넥틴, 히알루론산, 피브리노겐 및 다지-고분자 로 이루어진 군에서 선택되는 어느 하나 이상을 포함하고, 상기 고분자의 측쇄에 페놀기 및 카테콜기 중 어느 하나 이상이 도입될 수 있다.The polymer is gelatin, chitosan, heparin, cellulose, dextran, dextran sulfate, chondroitin sulfate, keratan sulfate, dermatan sulfate, alginate, collagen, albumin, fibronectin, laminin, elastin, vitronectin, hyaluronic acid, fibrinogen and - It includes at least one selected from the group consisting of polymers, and at least one of a phenol group and a catechol group may be introduced into the side chain of the polymer.
상기와 같은 고분자를 포함함으로서, 상기 고분자의 측쇄에 도입된 페놀기 또는 카테콜기와 구리가 배위결합하여 하이드로젤 매트릭스 내에 구리가 포함될 수 있으며, 상기 페놀기 또는 카테콜기가 서로 결합하여 가교됨으로서 가교 하이드로젤을 형성할 수 있다.By including the polymer as described above, copper may be included in the hydrogel matrix by coordinating a phenol group or catechol group introduced into the side chain of the polymer and copper, and the phenol group or catechol group is bonded to each other and cross-linked to form a cross-linked hydrogel. can form a gel.
구체적으로, 상기 효소는 호스래디시 퍼록시데이즈(horseradish peroxidase), 글루타치온 퍼록시데이즈(glutathione peroxidase), 할로퍼록시데이즈(haloperoxidase), 미엘로퍼옥시데이즈(myeloperoxidase), 카탈라아제(catalase), 헤모프로틴(hemoprotein), 퍼록사이드(peroxide), 퍼록시레독신(peroxiredoxin), 동물 헴-의존적 퍼록시데이즈(animal heme-dependent peroxidases), 티로이드 퍼록시데이즈(thyroid peroxidase), 바나듐 브로모퍼록시데이즈(vanadiumbromoperoxidase), 락토퍼록시데이즈(lactoperoxidase), 티로시네이즈(tyrosinase), 및 카테콜 옥시데이즈(catechol oxidase)로 이루어진 군에서 선택된 하나 또는 둘 이상을 포함할 수 있다.Specifically, the enzymes are horseradish peroxidase, glutathione peroxidase, haloperoxidase, myeloperoxidase, catalase, hemoprotein ), peroxide, peroxiredoxin, animal heme-dependent peroxidases, thyroid peroxidase, vanadium bromoperoxidase, It may include one or two or more selected from the group consisting of lactoperoxidase, tyrosinase, and catechol oxidase.
상기 페놀기를 포함하는 화합물은 하이드록시페닐프로피오닉산(hydroxyphenyl propionic acid), 4-하이드록시페닐아세트산(4-hydroxyphenyl acetic acid), 티로신(tyrosine), 티라민(tyramine), 테트로닉 티라민(tetronic tyramine) 및 PEG-티라민(PEG-tyramine) 으로 이루어진 군에서 선택되는 하나 이상일 수 있다.The compound containing the phenol group is hydroxyphenyl propionic acid, 4-hydroxyphenyl acetic acid, tyrosine, tyramine, tetronic tyramine And PEG- may be one or more selected from the group consisting of tyramine (PEG-tyramine).
상기 카테콜기를 포함하는 화합물은 도파민(Dopamine), 갈산(Gallic acid), 케르세틴(quercetin), 탄닌산(Tannic acid) 및 에피갈로카테킨 갈레이트(Epigallocatechin Gallate, EGCG)으로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 구리 함유 in situ 하이드로젤의 제조방법. The compound containing the catechol group is at least one selected from the group consisting of dopamine, gallic acid, quercetin, tannic acid and epigallocatechin gallate (EGCG) Method for producing a copper-containing in situ hydrogel, characterized in that.
상기 구리 화합물은 황산구리(CuSO4) 및 염화구리(CuCl2)로 이루어진 선택된 하나 이상을 포함할 수 있다.The copper compound may include at least one selected from copper sulfate (CuSO 4 ) and copper chloride (CuCl 2 ).
상기 구리 화합물은 10 내지 75 μM, 25 내지 75 μM, 25 내지 50 μM 또는 50 내지 75 μM의 농도로 포함할 수 있다.The copper compound may be included in a concentration of 10 to 75 μM, 25 to 75 μM, 25 to 50 μM, or 50 to 75 μM.
상기 효소의 농도는 0.001 내지 0.010 mg/ml 또는 0.001 내지 0.005 mg/ml일 수 있다.The concentration of the enzyme may be 0.001 to 0.010 mg/ml or 0.001 to 0.005 mg/ml.
상기 고분자의 농도는 30 내지 100 mg/ml 또는 30 내지 70 mg/ml일 수 있다.The concentration of the polymer may be 30 to 100 mg/ml or 30 to 70 mg/ml.
상기 가교시키는 단계는 과산화수소를 0.01 내지 0.1 wt% 또는 0.01 내지 0.05 wt%의 농도로 첨가할 수 있다.In the crosslinking step, hydrogen peroxide may be added at a concentration of 0.01 to 0.1 wt% or 0.01 to 0.05 wt%.
또한, 본 발명은 상기 제조방법으로 제조된 구리 함유 in situ 하이드로젤을 제공한다.In addition, the present invention provides a copper-containing in situ hydrogel prepared by the above manufacturing method.
구체적으로, 상기 구리 함유 in situ 하이드로젤은 고분자의 측쇄에 도입된 페놀 및 카테콜 중 어느 하나 이상과 구리가 배위결합되어 하이드로젤 매트릭스 내에 구리 이온을 포함할 수 있다.Specifically, the copper-containing in situ hydrogel may include copper ions in the hydrogel matrix by coordinating at least one of phenol and catechol introduced into the side chain of the polymer and copper.
또한, 상기 구리 함유 in situ 하이드로젤은 고분자의 측쇄에 도입된 페놀 및 카테콜 중 어느 하나 이상이 서로 결합되어 가교된 하이드로젤 매트릭스를 형성할 수 있다.In addition, in the copper-containing in situ hydrogel, any one or more of phenol and catechol introduced into the side chain of the polymer may be bonded to each other to form a crosslinked hydrogel matrix.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples will be described in detail to aid understanding of the present invention. However, the following examples are merely illustrative of the contents of the present invention, but the scope of the present invention is not limited to the following examples. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
실시예 1Example 1
구리 함유 in situ 형성 하이드로겔을 제조하기 위해 GH 고분자(50 mg/ml)를 37 ℃에서 DIW에 완전히 용해시킨다. 그 후, 고분자 용액을 마이크로튜브에서 호스래디쉬 과산화효소(HRP) (0.01 - 0.05 mg/ml) 및 티로시나제(Tyr) (0.25 kU/ml)을 포함하는 두 종류의 효소와 혼합하였다. 다른 마이크로튜브에서 고분자 용액을 H2O2 (0.02 wt%)및 CuSO4(0, 25, 50, 75 μM)와 혼합하였다. 그 후, 두 개의 마이크로튜브에 있는 용액을 혼합하여(부피비 = 1:1) 구리 함유 in situ 하이드로겔을 제조하였다.To prepare a copper-containing in situ forming hydrogel, GH polymer (50 mg/ml) was completely dissolved in DIW at 37 °C. Then, the polymer solution was mixed with two kinds of enzymes including horseradish peroxidase (HRP) (0.01 - 0.05 mg/ml) and tyrosinase (Tyr) (0.25 kU/ml) in a microtube. In another microtube, the polymer solution was mixed with H 2 O 2 (0.02 wt%) and CuSO 4 (0, 25, 50, 75 μM). Then, the solutions in the two microtubes were mixed (volume ratio = 1:1) to prepare a copper-containing in situ hydrogel.
실험예 1-겔화 시간 측정Experimental Example 1 - Measurement of gelation time
하이드로겔의 겔화 시간은 상기 두 용액의 균일한 혼합 후 마이크로튜브에서 하이르도젤의 상전이 후 흐름이 관찰되지 않는 시점으로 측정하였고, 그 결과를 도 3의 (a)에 나타냈다.The gelation time of the hydrogel was measured at the time when no flow was observed after the phase transition of the hydrogel in the microtube after uniform mixing of the two solutions, and the results are shown in (a) of FIG.
도 3의 (a)를 살펴보면, 겔화 시간을 나타낸 것으로 HRP의 농도가 0.01에서 0.05 mg/mL로 증가함에 따라 겔화 시간은 110초에서 20초로 감소하는 것을 확인할 수 있다.Looking at (a) of Figure 3, it can be seen that the gelation time is shown, and the gelation time decreases from 110 seconds to 20 seconds as the concentration of HRP increases from 0.01 to 0.05 mg / mL.
실험예 2-하이드로젤의 유변학적 분석Experimental Example 2 - Rheological Analysis of Hydrogel
하이드로젤의 기계적 강도를 평가하기 위하여 총 300μL의 기계적 강도를 레오미터 (Advanced Rheometer GEM-150-050, Bohlin Instruments, Cranbury, NJ, USA)를 사용하여 측정하였다.To evaluate the mechanical strength of the hydrogel, the mechanical strength of a total of 300 μL was measured using a rheometer (Advanced Rheometer GEM-150-050, Bohlin Instruments, Cranbury, NJ, USA).
하이드로젤의 분해거동을 평가하기 위하여 콜라겐 분해효소을 함유하는 PBS, 37℃에서 배양하며, 일정 시간마다 배양액을 교체하며 잔여 무게를 측정하였다.In order to evaluate the degradation behavior of the hydrogel, it was cultured at 37 ° C. in PBS containing collagenase, and the remaining weight was measured while replacing the culture medium at regular intervals.
하이드로젤의 형태학적 구조분석을 위하여 형성된 하이드로젤의 동결 건조 후, 단면을 cutting하여 FE-SEM (Field Emission Scanning Electron Microscopy)으로 내부 구조를 관찰하였고, 그 결과를 도 3의 (b) 내지 (d)에 나타냈다.After freeze-drying of the hydrogel formed for the morphological structure analysis of the hydrogel, the cross section was cut and the internal structure was observed with FE-SEM (Field Emission Scanning Electron Microscopy), and the results are shown in FIGS. 3 (b) to (d) ) was shown in
도 3의 (b) 및 (c)을 살펴보면, 시간에 따른 하이드로젤의 탄성률과 리소자임 존재 하 하이드로젤의 분해율을 나타낸 것으로 구리이온의 함량이 증가함에 따라 탄성률은 감소하고 반면, 분해속도는 빨라지는 것을 확인할 수 있다.Looking at (b) and (c) of FIG. 3, the elastic modulus of the hydrogel over time and the decomposition rate of the hydrogel in the presence of lysozyme are shown. As the copper ion content increases, the elastic modulus decreases, while the decomposition rate increases. can confirm that
도 3의 (d)를 살펴보면, 하이드로젤의 단면을 촬영한 이미지로 구리이온의 함량이 증가할수록 가교도가 낮아져 기공의 크기가 증가하는 것을 확인할 수 있다.Looking at (d) of FIG. 3, it can be seen from the image of the cross section of the hydrogel that the degree of crosslinking decreases as the copper ion content increases, and the size of the pores increases.
실험예 3-산화질소의 누적 농도Experimental Example 3-Cumulative Concentration of Nitric Oxide
하이드로겔에서 방출되는 Cu 이온을 측정하기 위해 구리 분석 키트(Sigma-Aldrich, St. Louis, MO, USA USA)를 이용하였다. 형성된 하이드로겔을 PBS 용액에 넣어 암실에서 37℃으로 배양하였다. 특성 시간에 따라 상층액을 회수하고 새로운 PBS 용액을 추가하였다. 이후 회수한 샘플을 구리 분석 키트를 이용하여 실온에서 5분 동안 반응하였다. Cu 이온의 표준물질의 흡광도는 359 nm에서 측정되었습니다. Tyr은 구리를 함유하는 효소이기 때문에 하이드로겔 분해 과정 중 Tyr에서 Cu 이온이 방출되면 이 실험의 결과에 영향을 미칠 수 있다. 따라서 본 시험에서는 Tyr 없이 제조된 GH 하이드로겔을 대조 시료로 사용하였다.A copper analysis kit (Sigma-Aldrich, St. Louis, MO, USA USA) was used to measure Cu ions released from the hydrogel. The formed hydrogel was placed in a PBS solution and incubated at 37° C. in the dark. According to the characteristic time, the supernatant was recovered and fresh PBS solution was added. Then, the recovered sample was reacted at room temperature for 5 minutes using a copper analysis kit. The absorbance of the Cu ion standard was measured at 359 nm. Since Tyr is a copper-containing enzyme, the release of Cu ions from Tyr during the hydrogel degradation process could affect the results of this experiment. Therefore, in this test, the GH hydrogel prepared without Tyr was used as a control sample.
하이드로젤의 NO 방출거동을 평가하기 위해 하이드로젤을 NO 공여체 (GSNO 및 GSH)가 포함된 PBS 용액에 넣어 암실에서 37℃으로 배양하고, 일정한 간격으로 NO 공여체 용액을 회수하며 교체하였다. 회수한 용액과 동량의 Griess 용액과 암실에서 15분 동안 반응시켜, 흡광도를 Cytation™ 3 Cell Imaging Multi-Mode Reader (BioTek™, USA)로 540 nm에서 측정하여, 하이드로젤에서 방출되는 NO의 방출거동을 평가하였다. 0 - 1 μM의 NaNO₂로 얻은 검량선을 통해 정량분석을 하였으며, 그 결과는 도 4에 나타냈다.To evaluate the NO release behavior of the hydrogel, the hydrogel was placed in a PBS solution containing NO donors (GSNO and GSH) and incubated at 37 ° C in the dark, and the NO donor solution was recovered and replaced at regular intervals. The recovered solution and the same amount of Griess solution were reacted in the dark for 15 minutes, and the absorbance was measured at 540 nm with a Cytation™ 3 Cell Imaging Multi-Mode Reader (BioTek™, USA) to determine the emission behavior of NO released from the hydrogel. was evaluated. Quantitative analysis was performed through a calibration curve obtained with 0 - 1 μM of NaNO₂, and the results are shown in FIG. 4.
도 4는 하이드로젤에서 방출된 구리 이온 및 생성된 산화질소의 누적 농도를를 나타낸 것으로, (a)는 PBS에서 배양 후 GH/Cu 하이드로젤에서 방출된 구리 이온의 누적 농도를 나타낸 그래프이고, (b)는 산화질소(NO) 공여자로서 10μM GSH의 존재 하에 GH/Cu 하이드로젤을 배양함으로써 산화질소(NO) 방출의 누적 농도를 나타낸 그래프이다.Figure 4 shows the cumulative concentration of copper ions released from the hydrogel and nitric oxide produced, (a) is a graph showing the cumulative concentration of copper ions released from the GH / Cu hydrogel after incubation in PBS, (b ) is a graph showing the cumulative concentration of nitric oxide (NO) release by incubating the GH/Cu hydrogel in the presence of 10 μM GSH as a nitric oxide (NO) donor.
도 4를 살펴보면, 하이드로젤에서 방출된 구리 이온 및 생성된 산화질소의 누적농도를 나타낸 것으로, 도 4의 (a)는 구리 함량이 증가할수록 하이드로젤에서 방출되는 구리 이온이 증가하는 것을 확인할 수 있고, (b)는 GSNO와 GSH 존재 하에서 하이드로젤 내의 구리 함량이 증가할수록 산화질소 방출량도 증가하는 것 확인할 수 있다.Referring to FIG. 4, it shows the cumulative concentration of copper ions released from the hydrogel and the generated nitric oxide. In FIG. 4 (a), it can be seen that the copper ions released from the hydrogel increase as the copper content increases, , (b) confirms that the amount of nitric oxide released increases as the copper content in the hydrogel increases in the presence of GSNO and GSH.
실험예 4-항염증 테스트Experimental Example 4 - Anti-inflammatory test
인간 단핵구 세포 (THP-1)를 RPMI-1640 배지를 이용하여 배양 후, 세포를 모아 12-myristate 13-acetate (PMA)를 포함하는 배지에서 2일 동안 배양한 후, 1일간 PMA 미포함 배지에 배양하여 THP-1을 M0 세포로 분화를 유도하였다. 하이드로젤을 M0 세포층 위에 처리하여 NO 공여체 유무에 따라 배양하였다. 48시간 후, 방출된 NO 함량에 따른 pro-inflammatory M1 및 anti-inflammatory M2 대식세포로의 분화능에 대한 분석을 진행하였다. 세포는 파라포름알데하이드와 Triton X-100 처리 후 marker들의 1차 항체와 배양하였다. (M2 marker: CD163, TGF-ß). IgG-형광 2차 항체와 반응 후 DAPI 염색하여 confocal laser scanning microscope (Zeiss LSM 780, Carl Zeiss, Jena, Germany)을 통해 분화된 anti-inflammatory M2 marker들의 형광 정성 분석을 진행하였다. 분화 유도된 M2 세포를 lysis하여 ELISA로 TGF-ß 및 CD163의 정량 분석을 통해 M2 분극화 정도를 평가하였으며, 그 결과를 도 5에 나타냈다.After culturing human monocyte cells (THP-1) in RPMI-1640 medium, the cells were collected and cultured in a medium containing 12-myristate 13-acetate (PMA) for 2 days and then cultured in a medium without PMA for 1 day. The differentiation of THP-1 into M0 cells was induced. The hydrogel was treated on the M0 cell layer and cultured according to the presence or absence of NO donor. After 48 hours, the differentiation capacity into pro-inflammatory M1 and anti-inflammatory M2 macrophages according to the released NO content was analyzed. Cells were incubated with primary antibodies of the markers after treatment with paraformaldehyde and Triton X-100. (M2 markers: CD163, TGF-ß). After reaction with an IgG-fluorescent secondary antibody, DAPI staining was performed, and fluorescence qualitative analysis of differentiated anti-inflammatory M2 markers was performed using a confocal laser scanning microscope (Zeiss LSM 780, Carl Zeiss, Jena, Germany). Differentiation-induced M2 cells were lysed and the degree of M2 polarization was evaluated through quantitative analysis of TGF-β and CD163 by ELISA, and the results are shown in FIG. 5 .
(a)는 DAPI(파란색) 및 CD163(녹색)으로 부착된 대식세포의 면역형광 염색 이미지이고, (b)는 M2 대식세포 대조군과 비교한 CD163의 상대 평균 형광 강도의 정량화를 나타낸 그래프이고, (c)는 ELISA에 의해 대식세포로부터 방출된 TGF-β의 농도를 나타낸 그래프이다.(a) is an image of immunofluorescence staining of attached macrophages with DAPI (blue) and CD163 (green), (b) is a graph showing the quantification of the relative mean fluorescence intensity of CD163 compared to M2 macrophage control, ( c) is a graph showing the concentration of TGF-β released from macrophages by ELISA.
도 5는 시험관 내(in vitro) 항염증 특성을 나타낸 것으로, (a)는 DAPI(파란색) 및 CD163(녹색)으로 부착된 대식세포의 면역형광 염색 이미지이고, (b)는 M2 대식세포 대조군과 비교한 CD163의 상대 평균 형광 강도의 정량화를 나타낸 그래프이고, (c)는 ELISA에 의해 대식세포로부터 방출된 TGF-β의 농도를 나타낸 그래프이다.Figure 5 shows in vitro anti-inflammatory properties, (a) is an image of immunofluorescence staining of macrophages attached with DAPI (blue) and CD163 (green), and (b) is M2 macrophage control and A graph showing the quantification of the relative average fluorescence intensity of compared CD163, and (c) is a graph showing the concentration of TGF-β released from macrophages by ELISA.
도 5의 (a) 및 (b)를 살펴보면, 면역형광 염색 이미지와 CD163의 상대 평균 형광 강도를 정량한 것으로 먼저 대조군에서 볼 때, CD163의 발현이 많은 M2 대식세포에서 M0 대식세포 대비 녹색의 형광이 높음을 알 수 있으며 이를 바탕으로 NO 공여체 존재 하 GH/Cu 하이드로젤을 처리한 실험군에서 처리하지 않은 실험군 대비 확연히 녹색의 발현이 큰 것을 확인할 수 있다. 이는 항염증성의 M2로의 분극화가 이루어졌음을 말해준다.Looking at (a) and (b) of FIG. 5, the immunofluorescence staining image and the relative average fluorescence intensity of CD163 were quantified. First, when viewed in the control group, M2 macrophages with high CD163 expression compared to M0 macrophages, green fluorescence It can be seen that this is high, and based on this, it can be confirmed that the green color expression is significantly greater in the experimental group treated with GH / Cu hydrogel in the presence of NO donor than in the untreated experimental group. This suggests that anti-inflammatory M2 polarization was achieved.
또한 도 5의 (c)를 살펴보면, 대식세포로부터 방출된 TGF-β의 농도를 나타낸 것으로 GH/Cu를 처리한 실험군에서 M0 대조군 혹은 GH만 처리한 실험군 대비 유의미한 TGF-β의 농도 증가를 보인 것을 확인할 수 있다.In addition, looking at (c) of FIG. 5, the concentration of TGF-β released from macrophages is shown, and the experimental group treated with GH / Cu showed a significant increase in the concentration of TGF-β compared to the M0 control group or the experimental group treated with only GH. You can check.
실험예 5-시험관 내 혈관 신생 활성Experimental Example 5 - Angiogenic activity in vitro
인간제대혈내피세포인 HUVEC을 EGM-2 배지에서 하이드로젤과 배양 후 세포층의 스크래치 회복, 세포의 tube formation을 통한 방출된 NO 함량에 따른 혈관신생능력을 평가하였다. Human umbilical cord blood endothelial cells, HUVEC, were cultured with hydrogel in EGM-2 medium, and the angiogenic ability was evaluated according to the NO content released through cell layer scratch recovery and tube formation.
방출된 NO 함량에 따른 HUVEC의 성장평가를 WST-1와 live/dead 형광분석을 통해 평가하였다. 추가로, HUVEC을 배양하여 세포층을 형성 후 피펫을 이용해 스크래치를 형성하였다. 하이드로젤을 세포층 위에 두고 새 배지를 첨가하며 NO 공여체를 4시간마다 공급함. 일정 시점에서의 스크래치의 회복 면적의 변화를 측정하여 NO 함량에 따른 혈관내피세포 스크래치의 회복능을 평가하였다.The growth of HUVECs according to the released NO content was evaluated by WST-1 and live/dead fluorescence analysis. Additionally, HUVECs were cultured to form a cell layer and then scratches were formed using a pipette. The hydrogel is placed on top of the cell layer, fresh medium is added, and NO donor is fed every 4 hours. The change in the recovery area of the scratch at a certain time point was measured to evaluate the recovery ability of the vascular endothelial cell scratch according to the NO content.
HUVEC의 혈관신생 모세관 구조 형성 평가를 위해 Corning Matrigel Matrix 용액으로 TCP에 얇은 젤 층을 형성 후 그 위에 HUVEC을 1일간 배양하였다. 이후 하이드로젤을 세포층 위에 두고 매 4시간마다 NO 공여체의 유무에 따라 배양하였다. 12시간 후 HUVEC의 혈관신생 모세관 유사 구조의 형성을 광학 현미경으로 측정하고, 튜브의 길이는 Image J 프로그램으로 계산하여 평가하였으며, 그 결과는 도 6 및 도 7에 나타냈다.To evaluate the formation of angiogenic capillary structures of HUVECs, a thin gel layer was formed on TCP with Corning Matrigel Matrix solution, and then HUVECs were cultured on it for 1 day. Thereafter, the hydrogel was placed on the cell layer and cultured every 4 hours depending on the presence or absence of a NO donor. After 12 hours, the formation of an angiogenic capillary-like structure of HUVECs was measured with an optical microscope, and the length of the tube was calculated and evaluated using the Image J program. The results are shown in FIGS. 6 and 7 .
도 6은 시험관 내(in vitro) 혈관 신생 활성을 나타낸 것으로, (a)는 살아있는(녹색)/죽은(빨간색) 염색된 세포를 주사전자현미경(SEM)으로 촬영한 이미지이고, (b)는 WST-1 분석에 의해 24시간 동안 하이드로젤 샘플과 함께 배양한 후 HUVEC의 생존력을 나타낸 그래프이고, (c)는 이동률을 정량화하여 나타낸 그래프이고, (d)는 상처 스크래치 이동 분석을 사용한 HUVEC의 이동을 보여주는 광학현미경 이미지이다.Figure 6 shows in vitro angiogenic activity, (a) is a scanning electron microscope (SEM) image of live (green) / dead (red) stained cells, (b) is WST -1 A graph showing the viability of HUVECs after incubation with a hydrogel sample for 24 hours by assay, (c) is a graph showing the quantification of the migration rate, (d) is a graph showing the migration of HUVECs using the wound scratch migration assay This is an optical microscope image.
도 7은 시험관 내(in vitro) 내피관 형성 분석에 의해 평가된 혈관 신생 활성을 나타낸 것으로, (a)는 세포 네트워크의 형성을 보여주는 광학 현미경 이미지이고, (b) 노드 수, (c) 가지 수 및 (d) 총 가지 길이를 포함한 다양한 매개변수의 정량적 평가를 나타낸 그래프이다.Figure 7 shows the angiogenic activity evaluated by in vitro endothelial tube formation assay, (a) is an optical microscope image showing the formation of a cell network, (b) the number of nodes, (c) the number of branches and (d) a graph showing quantitative evaluation of various parameters including total branch length.
도 6을 살펴보면, GH/Cu를 처리한 실험군에서 NO 공여체 존재 하 HUVEC세포의 증식이 확연히 증가된 것을 확인할 수 있으며 구리 이온의 함량이 증가함에 따라 NO의 생성이 증가하여 결과적으로 HUVEC의 이동이 빨라진 것을 확인할 수 있다.Referring to FIG. 6, in the experimental group treated with GH/Cu, it was confirmed that the proliferation of HUVEC cells was significantly increased in the presence of the NO donor, and as the copper ion content increased, NO production increased, resulting in faster migration of HUVECs. can confirm that
도 7을 살펴보면, NO 공여체가 없을 때는 VEGF를 처리한 실험군을 제외하고 튜브형태의 세포 정렬이 이루어지지 않은 반면, NO 공여체 존재 하에서는 구리의 함량이 증가함에 따라 확연히 튜브 형태의 세포 정렬이 발생함과 동시에 노드 수, 가지 수 및 총 가지 길이의 유의미한 증가가 발생한 것을 확인할 수 있다.Referring to FIG. 7, in the absence of an NO donor, tube-shaped cell sorting was not achieved except for the VEGF-treated experimental group, whereas in the presence of an NO donor, as the copper content increased, tube-shaped cell sorting occurred and At the same time, it can be confirmed that significant increases in the number of nodes, the number of branches, and the total branch length have occurred.
실험예 6-닭 융모요막에서의 혈관 신생 활성Experimental Example 6 - Angiogenic activity in chicken chorioallantoic membrane
하이드로젤의 혈관신생 특성은 in ovo 닭 융모요막(Chicken Chorioallantoic Membrane, CAM) assay를 통해 조사되었다. 먼저, 수정란(국내산, 한국)을 37-38°C, 40-60% 습도 및 O2 존재하에 7일(0-7일) 동안 부화시켰다. 그 후, 부화 7일째에 알을 꺼내어 70% 알코올로 소독했다. 그런 다음 달걀 껍질에 약 1 cm x 1 cm의 창을 만들어, 미리 형성된 100 μL의 하이드로겔 샘플을 배아의 CAM에 조심스럽게 배치했다. 창은 추가 배양 동안의 감염을 방지하기 위해 멸균된 파라필름으로 밀봉되었다. 10일째에 초기 조직 반응을 평가하기 위해 CAM-하이드로겔 복합체의 이미지를 디지털 카메라로 촬영했습니다. 하이드로겔 주변의 혈관의 정량분석은 Image J 프로그램을 이용하여 계산되었다. 이 실험에서는 10 ng/mL의 VEGF를 포함하는 GH 하이드로겔을 양성 대조군으로 사용하였으며, 그 결과는 도 8에 나타냈다.The angiogenic properties of the hydrogels were investigated by in ovo Chicken Chorioallantoic Membrane (CAM) assay. First, fertilized eggs (domestic, Korea) were incubated for 7 days (0-7 days) in the presence of 37-38 °C, 40-60% humidity and O2. Then, on the 7th day of hatching, the eggs were taken out and disinfected with 70% alcohol. Then, a window of approximately 1 cm x 1 cm was made in the eggshell, and a preformed 100 μL hydrogel sample was carefully placed into the CAM of the embryo. The window was sealed with sterile parafilm to prevent infection during further incubation. At day 10, images of the CAM-hydrogel composites were taken with a digital camera to assess the initial tissue response. Quantitative analysis of blood vessels around the hydrogel was calculated using the Image J program. In this experiment, GH hydrogel containing 10 ng/mL of VEGF was used as a positive control, and the results are shown in FIG. 8 .
도 8은 난자내 닭 융모요막 혈관신생(CAM) 분석에 의해 평가된 혈관신생 활성을 나타낸 것으로, (a)는 CAM에서 새로운 혈관 형성의 광학 이미지이고, (b)는 이미지 J에 의한 혈관을 정량화한 그래프이다.Figure 8 shows the angiogenic activity assessed by an intra-oval chicken chorioallantoic angiogenesis (CAM) assay, where (a) is an optical image of new blood vessel formation in the CAM and (b) quantifies blood vessels by Image J it is a graph
도 8을 살펴보면, CAM분석을 통해 VEGF를 처리한 실험군에서 다수의 혈관이신생된 것을 확인할 수 있으며 이와 비교하여 하이드로젤 내의 구리 이온의 함량이 증가할수록 혈관의 신생을 효과적으로 자극하는 것을 확인할 수 있다.Referring to FIG. 8 , it can be seen from the CAM analysis that a large number of new blood vessels are formed in the experimental group treated with VEGF. In comparison, it can be seen that as the copper ion content in the hydrogel increases, the new blood vessels are effectively stimulated.
실험예 7-생체 내 혈관 신생 활성Experimental Example 7 - Angiogenic activity in vivo
동물모델을 이용한 생체 내 혈관 신생 능력에 대해 평가하기 위해 mouse 모델을 이용하였다. 윤리적으로 승인된 protocol을 따라 mouse 마취 후 하이드로젤의 피하 주입 및 3주 후 하이드로젤을 포함한 피하조직을 회수하여 체내 조직재생에 대한 신생혈관 특성 분석을 하였다. 회수한 조직을 즉시 4% 파라포름알데히드에 하루 동안 고정 후, 파라핀에 넣어 단면화 하였다. 조직 절편은 hematoxylin and eosin (H&E)을 이용한 조직학적 분석과 혈관신생 관련 인자인 anti-αSMA와 VEGFA antibody를 이용한 면역 조직 화학 분석을 시행하였으며, 그 결과는 도 9에 나타냈다.A mouse model was used to evaluate the angiogenic ability in vivo using an animal model. Following the ethically approved protocol, hydrogel was subcutaneously injected after mouse anesthesia, and after 3 weeks, the subcutaneous tissue including the hydrogel was recovered to analyze the characteristics of new blood vessels for tissue regeneration in the body. The recovered tissue was immediately fixed in 4% paraformaldehyde for one day and then sectioned in paraffin. The tissue sections were subjected to histological analysis using hematoxylin and eosin (H&E) and immunohistochemical analysis using anti-αSMA and VEGFA antibodies, which are angiogenesis-related factors, and the results are shown in FIG. 9 .
도 9는 하이드로젤의 생체내(in vivo) 피하 주사에 의해 평가된 혈관신생 활성을 나타낸 이미지로, (a)는 헤마톡실린-에오신(H&E) 염색, (b)는 VEGFA 항체(보라색: 핵, 갈색: VEGFA), (c)는 평활근 세포 염색을 위한 α-SMA (보라색: 핵, 갈색: α-SMA) 염색을 사용한 조직학적 분석을 나타낸 이미지이다.Figure 9 is an image showing angiogenic activity evaluated by in vivo subcutaneous injection of hydrogel, (a) is hematoxylin-eosin (H&E) staining, (b) is VEGFA antibody (purple: nucleus) , Brown: VEGFA), (c) is an image showing histological analysis using α-SMA (purple: nucleus, brown: α-SMA) staining for smooth muscle cell staining.
도 9를 살펴보면, GH하이드로젤을 처리한 실험군에서는 하이드로젤 내부로 세포의 침습이 발생하지 않은 반면, GH/Cu25 하이드로젤을 처리한 실험군에서는 다수의 세포가 하이드로젤 내부로 침습하여 혈관을 형성하는 초기 단계에 있는 것을 확인할 수 있다. 또한 GH/Cu50 및 GH/Cu75 하이드로젤을 처리한 실험군에서는 VEGF를 처리한 심험군과 마찬가지로 다수의 혈관이 세포 가장자리 및 내부에 형성된 것을 것을 확인할 수 있다.Referring to FIG. 9, in the experimental group treated with the GH hydrogel, cell invasion did not occur into the hydrogel, whereas in the experimental group treated with the GH / Cu25 hydrogel, a number of cells invaded the hydrogel to form blood vessels. It can be seen that it is in an early stage. In addition, in the experimental group treated with GH/Cu50 and GH/Cu75 hydrogels, it was confirmed that a number of blood vessels were formed at the edge and inside of the cells, similar to the test group treated with VEGF.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 즉, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다.Having described specific parts of the present invention in detail above, it is clear to those skilled in the art that these specific descriptions are only preferred embodiments, and the scope of the present invention is not limited thereby. do. That is, the substantial scope of the present invention is defined by the appended claims and their equivalents.

Claims (17)

  1. 페놀기 및 카테콜기 중 적어도 하나 이상이 도입된 고분자 및 구리 화합물로 이루어지며, 상기 고분자의 측쇄에 도입된 페놀 및 카테콜 중 어느 하나 이상과 구리가 배위결합되어 하이드로젤 매트릭스 내에 구리 이온을 포함하며, 상기 고분자의 측쇄에 도입된 페놀 및 카테콜 중 어느 하나 이상이 서로 결합되어 가교된 것을 특징으로 하는 구리 함유 in situ 하이드로젤. It consists of a polymer and a copper compound into which at least one of a phenol group and a catechol group is introduced, and copper is coordinated with any one or more of the phenol and catechol introduced into the side chain of the polymer to contain copper ions in the hydrogel matrix, , Copper-containing in situ hydrogel, characterized in that any one or more of phenol and catechol introduced into the side chain of the polymer are bonded to each other and crosslinked.
  2. 제 1 항에 있어서,According to claim 1,
    상기 고분자의 측쇄에 도입된 페놀을 효소에 의해 페놀 라디칼로 산화되어 C-C 및 C-O 결합 중 어느 하나 이상에 의한 방향족 고리를 연결하여 고분자 네트워크를 가교시킨 것을 특징으로 하는 구리 함유 in situ 하이드로젤.Copper-containing in situ hydrogel, characterized in that the phenol introduced into the side chain of the polymer is oxidized to a phenol radical by an enzyme to link the aromatic ring by any one or more of C-C and C-O bonds to crosslink the polymer network.
  3. 제 1 항에 있어서,According to claim 1,
    상기 고분자의 측쇄에 도입된 카테콜은 호기성 환경에서 효소에 의해 고분자에 도입된 페놀이 산화된 것이고,The catechol introduced into the side chain of the polymer is oxidized phenol introduced into the polymer by an enzyme in an aerobic environment,
    상기 카테콜은 구리 이온과 배위결합을 통해 하이드로젤 매트릭스에서 구리를 안정화하는 것을 특징으로 하는 구리 함유 in situ 하이드로젤.The catechol is a copper-containing in situ hydrogel, characterized in that for stabilizing copper in the hydrogel matrix through a coordination bond with copper ions.
  4. 제 1 항에 따른 구리 함유 in situ 하이드로젤을 포함하는 항염증 약학조성물.An anti-inflammatory pharmaceutical composition comprising the copper-containing in situ hydrogel according to claim 1.
  5. 제 1 항에 따른 구리 함유 in situ 하이드로젤을 포함하는 조직 재생용 약학조성물.A pharmaceutical composition for tissue regeneration comprising the copper-containing in situ hydrogel according to claim 1.
  6. 제 1 항에 따른 구리 함유 in situ 하이드로젤을 포함하는 혈관 신생용 약학조성물.A pharmaceutical composition for angiogenesis comprising the copper-containing in situ hydrogel according to claim 1.
  7. 페놀기를 포함하는 화합물이 치환된 고분자 및 효소를 용해시킨 용해액을 제조하는 단계; 및preparing a solution in which a compound containing a phenolic group is substituted and a polymer and an enzyme are dissolved; and
    상기 용해액에 구리 화합물 및 과산화수소를 첨가하여 가교시키는 단계;를 포함하는 구리 함유 in situ 하이드로젤의 제조방법.Method for producing a copper-containing in situ hydrogel comprising the step of crosslinking by adding a copper compound and hydrogen peroxide to the solution.
  8. 제 7 항에 있어서,According to claim 7,
    상기 가교시키는 단계는 구리가 금속-카테콜레이트 배위결합을 통해 하이드로겔 매트릭스에 포함되고 안정화되는 것을 특징으로 하는 구리 함유 in situ 하이드로젤의 제조방법.The crosslinking step is a method for producing a copper-containing in situ hydrogel, characterized in that copper is included in the hydrogel matrix and stabilized through a metal-catecholate coordination bond.
  9. 제 7 항에 있어서,According to claim 7,
    상기 가교시키는 단계는 효소의 촉매 작용으로 형성된 카테콜은 서로 반응하여 고분자 네트워크를 가교시키는 것을 특징으로 하는 구리 함유 in situ 하이드로젤의 제조방법.The crosslinking step is a method for producing a copper-containing in situ hydrogel, characterized in that the catechol formed by the catalytic action of the enzyme reacts with each other to crosslink the polymer network.
  10. 제 7 항에 있어서,According to claim 7,
    상기 가교시키는 단계는 효소의 촉매 작용으로 페놀이 페놀 라디칼로 산화되어 C-C 및 C-O 결합 중 어느 하나 이상에 의한 방향족 고리를 가교시켜 고분자 네트워크를 가교시키는 것을 특징으로 하는 구리 함유 in situ 하이드로젤의 제조방법.In the crosslinking step, phenol is oxidized to a phenol radical by the catalytic action of an enzyme to crosslink an aromatic ring by at least one of C-C and C-O bonds to crosslink the polymer network. Method for producing a copper-containing in situ hydrogel .
  11. 제 7 항에 있어서,According to claim 7,
    상기 고분자는 젤라틴, 키토산, 헤파린, 셀룰로스, 덱스트란, 덱스트란 설페이트, 콘드로이틴 설페이트, 케라탄 설페이트, 더마탄 설페이트, 알지네이트, 콜라겐, 알부민, 피브로넥틴, 라미닌, 엘라스틴, 비트로넥틴, 히알루론산, 피브리노겐 및 다지-고분자 로 이루어진 군에서 선택되는 어느 하나 이상을 포함하는 구리 함유 in situ 하이드로젤의 제조방법.The polymer is gelatin, chitosan, heparin, cellulose, dextran, dextran sulfate, chondroitin sulfate, keratan sulfate, dermatan sulfate, alginate, collagen, albumin, fibronectin, laminin, elastin, vitronectin, hyaluronic acid, fibrinogen and -A method for producing a copper-containing in situ hydrogel containing at least one selected from the group consisting of polymers.
  12. 제 7 항에 있어서,According to claim 7,
    상기 효소는 호스래디시 퍼록시데이즈(horseradish peroxidase), 글루타치온 퍼록시데이즈(glutathione peroxidase), 할로퍼록시데이즈(haloperoxidase), 미엘로퍼옥시데이즈(myeloperoxidase), 카탈라아제(catalase), 헤모프로틴(hemoprotein), 퍼록사이드(peroxide), 퍼록시레독신(peroxiredoxin), 동물 헴-의존적 퍼록시데이즈(animal heme-dependent peroxidases), 티로이드 퍼록시데이즈(thyroid peroxidase), 바나듐 브로모퍼록시데이즈(vanadiumbromoperoxidase), 락토퍼록시데이즈(lactoperoxidase), 티로시네이즈(tyrosinase), 및 카테콜 옥시데이즈(catechol oxidase)로 이루어진 군에서 선택된 하나 또는 둘 이상을 포함하는 구리 함유 in situ 하이드로젤의 제조방법.The enzymes are horseradish peroxidase, glutathione peroxidase, haloperoxidase, myeloperoxidase, catalase, hemoprotein, peroc Peroxide, peroxiredoxin, animal heme-dependent peroxidases, thyroid peroxidase, vanadium bromoperoxidase, lactoperoxy A method for preparing a copper-containing in situ hydrogel containing one or two or more selected from the group consisting of lactoperoxidase, tyrosinase, and catechol oxidase.
  13. 제 7 항에 있어서,According to claim 7,
    상기 구리 화합물은 황산구리(CuSO4) 및 염화구리(CuCl2)로 이루어진 선택된 하나 이상을 포함하는 구리 함유 in situ 하이드로젤의 제조방법.The copper compound is a method for producing a copper-containing in situ hydrogel containing at least one selected from copper sulfate (CuSO 4 ) and copper chloride (CuCl 2 ).
  14. 제 7 항에 있어서,According to claim 7,
    상기 구리 화합물은 10 내지 75 μM의 농도로 포함하는 것을 특징으로 하는 구리 함유 in situ 하이드로젤의 제조방법.The copper compound is a method for producing a copper-containing in situ hydrogel, characterized in that it comprises a concentration of 10 to 75 μM.
  15. 제 7 항에 있어서,According to claim 7,
    상기 고분자의 농도는 30 내지 100 mg/ml인 것을 특징으로 하는 구리 함유 in situ 하이드로젤의 제조방법.Method for producing a copper-containing in situ hydrogel, characterized in that the concentration of the polymer is 30 to 100 mg / ml.
  16. 제 7 항에 있어서,According to claim 7,
    상기 페놀기를 포함하는 화합물은 하이드록시페닐프로피오닉산(hydroxyphenyl propionic acid), 4-하이드록시페닐아세트산(4-hydroxyphenyl acetic acid), 티로신(tyrosine), 티라민(tyramine), 테트로닉 티라민(tetronic tyramine) 및 PEG-티라민(PEG-tyramine) 으로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 구리 함유 in situ 하이드로젤의 제조방법.The compound containing the phenol group is hydroxyphenyl propionic acid, 4-hydroxyphenyl acetic acid, tyrosine, tyramine, tetronic tyramine And a method for producing a copper-containing in situ hydrogel, characterized in that at least one selected from the group consisting of PEG-tyramine.
  17. 제 7 항에 있어서,According to claim 7,
    상기 가교시키는 단계는 과산화수소를 0.01 내지 0.05 wt%의 농도로 첨가하는 것을 특징으로 하는 구리 함유 in situ 하이드로젤의 제조방법.The crosslinking step is a method for producing a copper-containing in situ hydrogel, characterized in that by adding hydrogen peroxide at a concentration of 0.01 to 0.05 wt%.
PCT/KR2023/001166 2022-02-07 2023-01-26 Method for preparing copper-mediated in situ crosslinkable hydrogel for sustained release of nitric oxide WO2023149692A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0015637 2022-02-07
KR1020220015637A KR20230119462A (en) 2022-02-07 2022-02-07 Preparation method of in situ crosslinkable copper-containing hydrogel as a controlled nitric oxide-releasing scaffold, and biomedical use thereof

Publications (1)

Publication Number Publication Date
WO2023149692A1 true WO2023149692A1 (en) 2023-08-10

Family

ID=87552531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/001166 WO2023149692A1 (en) 2022-02-07 2023-01-26 Method for preparing copper-mediated in situ crosslinkable hydrogel for sustained release of nitric oxide

Country Status (2)

Country Link
KR (1) KR20230119462A (en)
WO (1) WO2023149692A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116999386A (en) * 2023-08-14 2023-11-07 陕西科技大学 Copper-containing hydrogel and application thereof in inhibiting bacterial infection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100076173A (en) * 2008-12-26 2010-07-06 아주대학교산학협력단 Enzyme-triggered injectable hydrogels and their biomedical applications
KR20170036989A (en) * 2015-09-25 2017-04-04 성균관대학교산학협력단 Novel polymer, hydrogel including the polymer and manufacturing method of the hydrogel
US20170312306A1 (en) * 2016-01-29 2017-11-02 Ourotech, Inc. Shear-thinning hydrogel, kit and method of preparation
KR20180104386A (en) * 2017-03-13 2018-09-21 동국대학교 산학협력단 Mutifunctional bionanocomposite hydrogel, method of manufacturing thereof and use thereof
KR20210146691A (en) * 2020-05-27 2021-12-06 아주대학교산학협력단 Method of preparing Calcium Peroxide-Mediated Enzymatic Crosslinking Reaction of Horseradish Peroxidase for In Situ Forming Hydrogels and Biomedical Applications thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101522462B1 (en) 2012-09-19 2015-05-21 아주대학교산학협력단 Preparation Method of In situ forming Hydrogel Using Enzyme-Immobilized Supports and Biomedical Use Thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100076173A (en) * 2008-12-26 2010-07-06 아주대학교산학협력단 Enzyme-triggered injectable hydrogels and their biomedical applications
KR20170036989A (en) * 2015-09-25 2017-04-04 성균관대학교산학협력단 Novel polymer, hydrogel including the polymer and manufacturing method of the hydrogel
US20170312306A1 (en) * 2016-01-29 2017-11-02 Ourotech, Inc. Shear-thinning hydrogel, kit and method of preparation
KR20180104386A (en) * 2017-03-13 2018-09-21 동국대학교 산학협력단 Mutifunctional bionanocomposite hydrogel, method of manufacturing thereof and use thereof
KR20210146691A (en) * 2020-05-27 2021-12-06 아주대학교산학협력단 Method of preparing Calcium Peroxide-Mediated Enzymatic Crosslinking Reaction of Horseradish Peroxidase for In Situ Forming Hydrogels and Biomedical Applications thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN SHUAI, TANG FU, TANG LIANGZHEN, LI LIDONG: "Synthesis of Cu-Nanoparticle Hydrogel with Self-Healing and Photothermal Properties", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 9, no. 24, 21 June 2017 (2017-06-21), US , pages 20895 - 20903, XP093082600, ISSN: 1944-8244, DOI: 10.1021/acsami.7b04956 *
TRAN DIEU LINH, SOI KIM, THI PHUONG LE: "Improved anti-inflammatory and angiogenic properties by nitric oxide released from gelatin hydrogel in chronic wound therapy", ABSTRACTS OF THE POLYMER SOCIETY OF KOREA 2021 ANNUAL FALL MEETING RESEARCH THESIS, vol. 46, 1 January 2021 (2021-01-01), XP093082604 *
TRAN, D. L. ET AL.: "PO-43: In situ forming nitric oxide-releasing hydrogel enhancing anti-inflammation and angiogenesis for wound healing application", BIOMATERIALS RESEARCH, BIOMED CENTRAL LTD, LONDON, UK, vol. 25, no. 1, Suppl.?, 1 January 2021 (2021-01-01) - 26 March 2021 (2021-03-26), London, UK , pages PO - 43, XP009548380, ISSN: 2055-7124 *
TRAN, D. L. ET AL.: "PO-64 Promoting the endothelialization and anti-inflammation by nitric oxide releasing hydrogel for chronic wound treatment", BIOMATERIALS RESEARCH, BIOMED CENTRAL LTD, LONDON, UK, vol. 25, no. 3, Suppl., 1 January 2021 (2021-01-01) - 1 October 2021 (2021-10-01), London, UK , pages PO - 64 (pg 142), XP009548378, ISSN: 2055-7124 *
ZHU XINWEI, CHEN YINGXI, XIE RENJIAN, ZHONG HAIJIAN, ZHAO WEIDONG, LIU YANG, YANG HUI: "Rapid Gelling of Guar Gum Hydrogel Stabilized by Copper Hydroxide Nanoclusters for Efficient Removal of Heavy Metal and Supercapacitors", FRONTIERS IN CHEMISTRY, vol. 9, XP093082577, DOI: 10.3389/fchem.2021.794755 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116999386A (en) * 2023-08-14 2023-11-07 陕西科技大学 Copper-containing hydrogel and application thereof in inhibiting bacterial infection
CN116999386B (en) * 2023-08-14 2024-04-09 陕西科技大学 Copper-containing hydrogel and application thereof in inhibiting bacterial infection

Also Published As

Publication number Publication date
KR20230119462A (en) 2023-08-16

Similar Documents

Publication Publication Date Title
Dziki et al. Solubilized extracellular matrix bioscaffolds derived from diverse source tissues differentially influence macrophage phenotype
Zhu et al. Injectable conductive gelatin methacrylate/oxidized dextran hydrogel encapsulating umbilical cord mesenchymal stem cells for myocardial infarction treatment
Latifi et al. A tissue-mimetic nano-fibrillar hybrid injectable hydrogel for potential soft tissue engineering applications
Moradi et al. BD PuraMatrix peptide hydrogel as a culture system for human fetal Schwann cells in spinal cord regeneration
Wang et al. Acceleration of diabetic wound healing with chitosan-crosslinked collagen sponge containing recombinant human acidic fibroblast growth factor in healing-impaired STZ diabetic rats
Laschke et al. Vascularisation of porous scaffolds is improved by incorporation of adipose tissue-derived microvascular fragments
WO2023149692A1 (en) Method for preparing copper-mediated in situ crosslinkable hydrogel for sustained release of nitric oxide
Huang et al. Self‐assembly of naturally small molecules into supramolecular fibrillar networks for wound healing
Jain et al. Nanostructured polymer scaffold decorated with cerium oxide nanoparticles toward engineering an antioxidant and anti-hypertrophic cardiac patch
Emerich et al. Extensive neuroprotection by choroid plexus transplants in excitotoxin lesioned monkeys
Roam et al. A modular, plasmin-sensitive, clickable poly (ethylene glycol)-heparin-laminin microsphere system for establishing growth factor gradients in nerve guidance conduits
Liao et al. Construction of ureteral grafts by seeding bone marrow mesenchymal stem cells and smooth muscle cells into bladder acellular matrix
Lee et al. Mechanically-reinforced and highly adhesive decellularized tissue-derived hydrogel for efficient tissue repair
Conconi et al. In vitro and in vivo evaluation of acellular diaphragmatic matrices seeded with muscle precursors cells and coated with VEGF silica gels to repair muscle defect of the diaphragm
Yuan et al. Regulating inflammation using acid‐responsive electrospun fibrous scaffolds for skin scarless healing
Santhini et al. Bio inspired growth factor loaded self assembling peptide nano hydrogel for chronic wound healing
Pathak et al. Mesenchymal Stem Cell Capping on ECM‐Anchored Caspase Inhibitor–Loaded PLGA Microspheres for Intraperitoneal Injection in DSS‐Induced Murine Colitis
Shinchi et al. Insulin‐like growth factor 1 sustained‐release collagen on urethral catheter prevents stricture after urethral injury in a rabbit model
Ahmed et al. Decellularized extracellular matrix‐rich hydrogel–silver nanoparticle mixture as a potential treatment for acute liver failure model
He et al. Coaxial TP/APR electrospun nanofibers for programmed controlling inflammation and promoting bone regeneration in periodontitis-related alveolar bone defect models
CN115671298A (en) ROS (reactive oxygen species) -responsive antibacterial drug nano-carrier and preparation method thereof
Nie et al. 3D bio-printed endometrial construct restores the full-thickness morphology and fertility of injured uterine endometrium
Iman et al. Effects of chitosan-zinc oxide nanocomposite conduit on transected sciatic nerve: an animal model study
Liu et al. Mechanisms of magnesium oxide‐incorporated electrospun membrane modulating inflammation and accelerating wound healing
Wei et al. A novel tetra-PEG based hydrogel for prevention of esophageal stricture after ESD in a porcine model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749925

Country of ref document: EP

Kind code of ref document: A1