WO2023149581A1 - Surface treatment solution, and method for manufacturing surface-treated resin and resin film laminate - Google Patents

Surface treatment solution, and method for manufacturing surface-treated resin and resin film laminate Download PDF

Info

Publication number
WO2023149581A1
WO2023149581A1 PCT/JP2023/003885 JP2023003885W WO2023149581A1 WO 2023149581 A1 WO2023149581 A1 WO 2023149581A1 JP 2023003885 W JP2023003885 W JP 2023003885W WO 2023149581 A1 WO2023149581 A1 WO 2023149581A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
group
surface treatment
treatment liquid
acid
Prior art date
Application number
PCT/JP2023/003885
Other languages
French (fr)
Japanese (ja)
Inventor
宏 倉光
克彦 安
敏憲 井上
光信 平林
和弘 光田
Original Assignee
豊光社テクノロジーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022016783A external-priority patent/JP7120695B1/en
Application filed by 豊光社テクノロジーズ株式会社 filed Critical 豊光社テクノロジーズ株式会社
Publication of WO2023149581A1 publication Critical patent/WO2023149581A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/02Chemical treatment or coating of shaped articles made of macromolecular substances with solvents, e.g. swelling agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • C09J201/02Adhesives based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups

Definitions

  • the present invention relates to a surface treatment liquid used by applying it to a resin, and a method for producing a surface treated resin, a method for producing a resin film laminate, and a method for producing a metal-coated resin using the surface treatment liquid.
  • Polyimide is a thermosetting resin with high heat resistance, and its physical properties change very little over a wide temperature range from a low temperature of -269°C to a high temperature of +300°C, so its use in the electrical and electronic fields is expanding. In the electrical field, for example, it is used for the insulation of industrial motor coils and superconducting wires. ), etc.
  • polyimide Since polyimide is mainly produced as a polyimide film by solution film formation by casting, it is difficult to produce thick sheets and boards due to the production method, and even if it can be produced, it has the disadvantage of lacking homogeneity.
  • a method of manufacturing a thick sheet or block by subjecting polyimide-polyimide block copolymer powder to high-temperature compression molding but this method is expensive and not suitable for mass production. Therefore, various methods for producing a polyimide film laminate have been proposed in which a plurality of polyimide films are laminated and adhered to each other in order to ensure a sufficient thickness.
  • a method of crimping at high temperature a method of applying a special plasma treatment to the surface of the polyimide film before crimping, a method of bonding with an adhesive made of thermoplastic resin such as epoxy resin or acrylic resin, and a thermoplastic polyimide film interposed as an adhesive layer. and the like.
  • thermoplastic resin such as epoxy resin or acrylic resin
  • thermoplastic polyimide film interposed as an adhesive layer and the like.
  • all of these methods have drawbacks such as requiring expensive equipment for mass production, generating volatile gas, and impairing the properties of polyimide as a non-thermoplastic resin.
  • a compound having two or more functional groups can form a chemical bond by utilizing the properties of each functional group.
  • IMB interface molecular bonding
  • Patent Document 1 discloses a method for producing a polyimide film laminate by laminating a plurality of polyimide films via an interfacial molecular binder and pressing them at a temperature of about 200°C.
  • the interfacial molecular binder disclosed in this document is a silane compound having a functional group such as an amino group or a silanol group in one molecule, such as (3-aminopropyl)triethoxysilane (hereinafter referred to as "ATES").
  • ATES (3-aminopropyl)triethoxysilane
  • Patent Document 2 in order to avoid the above disadvantages, a polyvalent amine compound having a molecular weight of approximately 300 or less, such as ethylenediamine, is used as an interfacial molecular binder instead of a silane compound, and is heated at a temperature of 40 ° C. to 180 ° C.
  • a technique for producing a polyimide film laminate by pressing with is disclosed.
  • this technique has the disadvantage that if the polyimide film to which the polyvalent amine compound is added is not laminated and pressure-bonded immediately, and if it is left in an air atmosphere for several days and then laminated and pressure-bonded, the adhesion will be significantly reduced. Since it is necessary to press-bond immediately after applying the polyvalent amine compound, there is no flexibility in constructing the mass production process of the laminate, and the cost is high.
  • Patent Document 3 in a substrate having both a portion made of silica and a portion made of metal on the surface, two agents are sequentially applied or applied to selectively only the portion made of silica.
  • the first agent is a composition containing a polymer having a cationic functional group, such as polyethyleneimine
  • the second agent is a coating liquid containing a polycarboxylic acid having an aromatic ring or an anhydride thereof, the first agent may contain an aromatic monocarboxylic acid such as benzoic acid, and the second agent may contain organic acids such as maleic acid.
  • These two agents are agents (varnishes) used for the purpose of forming a resin layer as described above, and an interfacial molecular binder used for the purpose of interposing between two substances to form a bond between them. have different uses. Moreover, as described above, the combination of two agents described in Patent Document 3 is not suitable for joining metal and resin.
  • An object of one aspect of the present invention is to provide a surface treatment liquid that does not contain a silane compound and is used by applying it to a resin, and even if the resin treated with the surface treatment liquid is left in an air atmosphere for several days, other To provide a surface treatment liquid which scarcely deteriorates adhesion in bonding with a substance.
  • An object of another aspect of the present invention is to provide a method for producing a surface treatment substance, a method for producing a resin film laminate, or a method for producing a metal-coated resin using the surface treatment liquid.
  • a surface treatment liquid that is applied and used contains a polymer having a repeating unit having a primary amino group or an imino group and a compound ⁇ each at a concentration of 0.01% by mass or more, and a total concentration of 5% by mass or less.
  • the compound ⁇ is a compound having an azide group, a diazomethyl group or an azidosulfonyl group and an OH group or an alkoxy group in one molecule, and a surface treatment having a pH of 5.0 or less at 25°C. Liquid.
  • a second embodiment of the present invention is the surface treatment liquid according to the first embodiment, which has a pH of 4.5 or less at 25°C.
  • the surface treatment liquid further contains an acid or an anhydride of the acid, and the acid has an acid dissociation constant pKa at 25° C. of 4.0 or less. It is a surface treatment liquid.
  • a fourth aspect of the present invention is the surface treatment liquid according to the second or third aspect, wherein the OH group or alkoxy group is contained in the carboxy group or alkoxycarbonyl group of the compound ⁇ .
  • a fifth aspect of the present invention is the surface treatment liquid according to the fourth aspect, wherein the compound ⁇ contains an aromatic ring.
  • a sixth aspect of the present invention is the surface treatment according to the fifth aspect, wherein the aromatic ring is a benzene ring, and the azide group, diazomethyl group or azidosulfonyl group is directly bonded to the benzene ring. Liquid.
  • a seventh form of the present invention is the surface treatment liquid according to the first form, wherein the repeating unit is a repeating unit represented by any one of the following formulas (2) to (7).
  • a is an integer of 0 or more, for example an integer of 1 or more and 10 or less, preferably an integer of 1 or more and 4 or less, more preferably 1, and R, R 1 , R 2 and R 3 are each independently is an H atom, a substituted or unsubstituted alkyl group (e.g., 1 to 25 carbon atoms, or 1 to 5 carbon atoms) or an aryl group (e.g., phenyl group), and Z - represents an anion in solution. It is not included in the above polymer.
  • at least one of R, R 1 , R 2 and R 3 is an H atom.
  • An eighth aspect of the present invention comprises the steps of applying the surface treatment liquid according to the first aspect to the surface of a resin, and heating the surface of the resin coated with the surface treatment liquid.
  • a method for producing a surface-treated resin is a method for producing a surface-treated resin.
  • a ninth aspect of the present invention comprises a step of applying the surface treatment liquid according to the first aspect to the surface of a resin, and a step of irradiating the surface of the resin coated with the surface treatment liquid with ultraviolet rays. It is a manufacturing method of the surface treatment resin which comprises.
  • a tenth form of the present invention is the eighth or ninth form, wherein the resin is subjected to washing treatment, acid treatment, alkali treatment, A method for producing a surface-treated resin, further comprising a step of performing one or more pretreatments selected from the group consisting of corona discharge treatment, plasma treatment, ultraviolet irradiation treatment, silicifying flame treatment and defluorination treatment.
  • An eleventh form of the present invention includes a step of preparing and superimposing a plurality of resin films, wherein any two adjacent resin films A and B in the plurality of superimposed resin films are: At least one of the resin films A is treated by the method for producing a surface-treated resin according to the eighth or ninth embodiment on at least the surface of the resin film A facing the resin film B among the front and back surfaces of the resin film A.
  • a method for producing a resin film laminate comprising a step of integrally bonding the plurality of resin films that are superimposed by applying a force.
  • a twelfth form of the present invention is a resin film laminate obtained by laminating at least one set of a plurality of resin films with a condensate layer interposed between two adjacent resin films,
  • the condensate layer contains a dehydration condensate or hydrolytic dehydration condensate of a compound ⁇ and a polymer having a repeating unit having a primary amino group or an imino group, and the compound ⁇ contains, in one molecule
  • the resin film laminate is a compound having an azide group, a diazomethyl group or an azidosulfonyl group and an OH group or an alkoxy group.
  • a thirteenth form of the present invention is the resin film laminate according to the twelfth form, wherein all of the plurality of resin films are polyimide films.
  • the surface-treated surface of the surface-treated resin produced by the method for producing a surface-treated resin according to the eighth or ninth aspect is wet-plated or affixed with a metal foil.
  • a method for producing a metal-coated resin comprising the step of forming a metal coating by combining.
  • a surface treatment liquid containing no silane compound is applied to a resin, and even if the resin treated with the surface treatment liquid is left in an air atmosphere for several days, other It is possible to provide a surface treatment liquid that hardly reduces adhesion in bonding with a substance.
  • the surface treatment liquid contains a combination of a plurality of compounds such that chemical reactions related to surface treatment and interfacial molecular bonding proceed by irradiation with ultraviolet rays or by heat treatment alone without irradiation of ultraviolet rays.
  • FIG. 1A is an explanatory diagram showing how to superimpose a surface-treated resin film.
  • FIG. 1B is an explanatory diagram showing another method of superimposing surface-treated resin films.
  • FIG. 1C is an explanatory diagram showing still another method of superimposing the surface-treated resin films.
  • FIG. 2 is an explanatory diagram of the interfacial molecular bonding mechanism in the condensate layer.
  • FIG. 3 is a flowchart of a method for producing a surface-treated resin.
  • FIG. 4 is a chart showing experimental results.
  • the It is a surface treatment liquid used for the surface treatment, and contains a compound ⁇ and a polymer having a repeating unit having a primary amino group or an imino group at a concentration of 0.01% by mass or more and a total concentration of 5% by mass or less.
  • the compound ⁇ is a compound having an azide group, a diazomethyl group or an azidosulfonyl group and an OH group or an alkoxy group in one molecule, and a surface treatment liquid having a pH of 4.5 or less at 25°C. can provide.
  • the present surface treatment liquid is preferably used by being applied to a resin for the purpose of ensuring adhesion in order to form a resin-to-resin or resin-to-metal bond.
  • a surface treatment capable of interfacial molecular bonding can be performed by irradiation with ultraviolet rays or by heat treatment alone without irradiation with ultraviolet rays.
  • the effect of the surface treatment is hardly lost even after leaving it for 3 or 7 days under a light-shielded atmospheric atmosphere to form a composite.
  • the present surface treatment liquid does not contain Si atoms.
  • thermoplastic resins examples include general-purpose resins, engineering resins, super engineering resins, and the like.
  • General-purpose resins include, for example, polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), polystyrene (PS), acrylonitrile-butadiene-styrene (ABS), acrylonitrile-styrene (AS), polymethyl methacrylic ( PMMA), polyvinyl alcohol (PVA), polyvinylidene chloride (PVDC), polyethylene terephthalate (PET), cycloolefin polymer (COP) and the like.
  • PVC polyvinyl chloride
  • PE polyethylene
  • PP polypropylene
  • PS polystyrene
  • ABS acrylonitrile-butadiene-styrene
  • AS acrylonitrile-styrene
  • PMMA polymethyl methacrylic
  • PMMA polyvinyl alcohol
  • PVDC polyvinyliden
  • Examples of engineering resins include polyamide (PA), polyacetal (POM), polycarbonate (PC), polyphenylene ether (PPE (modified PPO)), polybutylene terephthalate (PBT), ultra-high molecular weight polyethylene (U-PE), polyfluoro Examples include vinylidene dichloride (PVDF) and the like.
  • Examples of super engineering resins include polysulfone (PSU), polyethersulfone (PES), polyphenylene sulfide (PPS), polyarylate (PAR), polyamideimide (PAI), polyetherimide (PEI), polyetheretherketone ( PEEK), thermoplastic polyimide (TPI), liquid crystal polymer (LCP), polytetrafluoroethylene (PTFE).
  • Thermosetting resins include phenol resin (PF), epoxy resin (EP), melamine resin (MF), urea resin (urea resin, UF), unsaturated polyester resin (UP), alkyd resin, polyurethane (PUR), Examples include polyimide (PI), modified polyimide (MPI), and thermosetting polyimide.
  • Thermosetting resin product forms include C-stage (cured) sheets such as polyimide, B-stage (uncured) sheets such as build-up sheets, prepregs, die-bond sheets, and ACF (anisotropic conductive sheets). Sheets, conductive or insulating compounds, pastes, inks, and other A-stage materials can be used.
  • the surface treatment liquid of the present invention is particularly a resin containing one or more compounds having a carboxy group, a primary amino group, a secondary amino group, or a tertiary amino group, or one or more such It is suitable for resins containing polymers of compounds, such as polyimides, polyamides, polyamideimides, and the like.
  • the present surface treatment liquid contains a solvent.
  • the solvent is not particularly limited as long as it can dissolve the compound ⁇ and the polymer. Examples include methanol, ethanol, isopropanol, ethylene glycol, propylene glycol, cellosolve, carbitol, 3-methoxy-3- alcohols such as methyl-1-butanol (hereinafter referred to as "SF"); ketones such as acetone, methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as benzene, toluene and xylene; Aliphatic hydrocarbons, esters such as ethyl acetate, methyl propionate and methyl phthalate, ethers such as tetrahydrofuran (THF), ethyl butyl ether, anisole, propylene glycol monomethyl ether acetate (PGMEA), water and the like can be used.
  • alcohol, ether and water are examples of alcohol, ether and water
  • the present surface treatment liquid contains a polymer having repeating units having primary amino groups (--NH 2 ) or imino groups (--NH--).
  • the polymer forms an ionic bond or an amide bond with the compound ⁇ having an OH group or an alkoxy group, and contributes to the formation of an interfacial molecular bond.
  • Examples of the above repeating units are repeating units represented by any of the above formulas (2) to (7).
  • the alkyl or aryl groups represented by R, R 1 , R 2 and R 3 may have one or more substituents.
  • Suitable substituents include cationic groups, eg quaternary ammonium groups, or amine groups, eg primary, secondary or tertiary alkyl or arylamines.
  • Examples of other suitable substituents include hydroxy groups, alkoxy groups, alkyl groups, aryl groups, poly(alkyleneimines) such as poly(ethyleneimine), and the like.
  • the repeating unit is preferably selected from the group consisting of poly-lower alkyleneimine ([ CmH2mNH ] n , m is an integer of 1 or more and 4 or less, n is an integer of 2 or more), polyvinylamine, and polyallylamine. More preferably, it is a repeating unit contained in one or more polymers selected from the group consisting of polyethyleneimine, polyvinylamine and polyallylamine.
  • the polymer having a repeating unit having a primary amino group or imino group may have any of a linear structure, a branched structure, and a dendrimer structure. It may also be crosslinked with a bifunctional crosslinker such as epichlorohydrin.
  • a bifunctional crosslinker such as epichlorohydrin.
  • the weight-average molecular weight of the polymer having a repeating unit having a primary amino group or imino group is preferably 10,000 or less, more preferably 5,000 or less, from the viewpoint of suppressing uneven coating of the surface treatment liquid. More preferably, it is 1500 or less.
  • the weight average molecular weight is preferably 200 or more, more preferably 450 or more, and even more preferably 900 or more, from the viewpoint of suppressing non-uniformity of the coating film thickness.
  • the weight average molecular weight of a polymer means the weight average molecular weight of polystyrene conversion measured by a gel permeation chromatography (GPC method).
  • the concentration of the polymer in the present surface treatment liquid is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, and more preferably 0.05% by mass or more, from the viewpoint of ensuring adhesion in interfacial molecular bonding. More preferred. Moreover, from the viewpoint of suppressing coating unevenness, the concentration is preferably 5% by mass or less, more preferably 2% by mass or less, and even more preferably 1% by mass or less.
  • the present surface treatment liquid contains compound ⁇ .
  • Compound ⁇ is a compound having an azide group, a diazomethyl group or an azidosulfonyl group (X) and an OH group or an alkoxy group (Y) in one molecule. Since the compound ⁇ has an azide group, a diazomethyl group, or an azidosulfonyl group (X) (hereinafter referred to as an azide group or the like (X)), the present surface treatment liquid exhibits interfacial molecular bonding by irradiation with ultraviolet rays or heat treatment. Possible surface treatments can be performed.
  • Compound ⁇ preferably has a structure represented by the following formula (8).
  • m and n are integers of 1 or more.
  • A represents an (m+n) valent organic group or an empty group (direct bond).
  • E's each independently represent a (l+1)-valent group.
  • Y's each independently represent an OH group or an alkoxy group.
  • m is preferably 3 or less, more preferably 2 or less, and even more preferably 1.
  • the alkoxy group is preferably a methoxy group, an ethoxy group or a benzyloxy group.
  • the group E is such that the atom of the group E to which the OH group or the alkoxy group (Y) is directly bonded is less than the other atoms of the group E to which it is directly bonded. is preferably a group with low electronegativity. In such a case, the OH group or alkoxy group (Y) and the primary amino group or imino group of the polymer are likely to form a bond even at low temperatures.
  • the group (E-(Y) l ) is a carboxy group or an alkoxycarbonyl group and the integer n is preferably one.
  • the (m+n)-valent organic group A is, in an alkane or in a compound in which 0 or more alkyl groups are bonded to an aromatic ring, 0 or more carbon-carbon single bonds (C-C) between carbon atoms , an ether bond (--O--), a thioether bond (--S--) or a compound in which an amide bond is inserted, from which (m+n) H atoms are removed.
  • the aromatic ring is preferably a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, biphenyl, or the like.
  • the organic group A preferably contains an aromatic ring from the viewpoint of ensuring adhesion in interfacial molecular bonding that accompanies pressure pressing after surface treatment of the resin. Moreover, from the viewpoint of ensuring higher adhesion, it is preferable that the azide group or the like in the compound ⁇ is directly bonded to the aromatic ring. This is because an azide group or the like directly bonded to an aromatic ring is highly reactive.
  • the compound ⁇ is a benzene ring. and more preferably the azide group or the like is directly bonded to the benzene ring.
  • the organic group A has an aromatic ring and is a benzene ring
  • preferred examples of the compound ⁇ are 2-azidobenzoic acid, 3-azidobenzoic acid, 4-azidobenzoic acid, 2-azidobenzene sulfonic acid, 3-azidobenzenesulfonic acid, 4-azidobenzenesulfonic acid and the like.
  • preferred examples of the compound ⁇ include ethyl azide acetate and diethyl phosphate azide.
  • the organic group A has an aromatic ring and the compound ⁇ has a carbonyl group
  • preferred examples of the compound ⁇ are compounds represented by the following formula (9) or (10).
  • X is the above-mentioned azide group or the like.
  • Y is an OH group or an alkoxy group.
  • the divalent organic group A 1 is a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring or biphenyl, preferably a benzene ring or a naphthalene ring, more preferably a benzene ring, from which two hydrogen atoms directly bonded to the aromatic ring are removed. It is the basis for One or more H atoms directly bonded to the aromatic ring in A 1 are each independently substituted with a monovalent organic group such as halogen, methyl group, ethyl group, methoxy group, ethoxy group, OH group or formyl group.
  • a monovalent organic group such as halogen, methyl group, ethyl group, methoxy group, ethoxy group, OH group or formyl group.
  • the method for synthesizing compound ⁇ as shown in formulas (9) and (10) is not particularly limited.
  • compound Q having both an alkoxycarbonyl group and a functional group c other than an alkoxycarbonyl group and can be obtained by reacting a reactive group d capable of bonding reaction with a compound L having both a benzene ring and the like and an azide group and the like by a known method.
  • a combination of the functional group c and the reactive group d a combination of an isocyanate group, an epoxy group, an amino group, etc., and a carboxy group can be considered.
  • concentration of compound ⁇ in the present surface treatment liquid is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, and further preferably 0.05% by mass or more, from the viewpoint of ensuring adhesion in interfacial molecular bonding. preferable.
  • the concentration is preferably 5% by mass or less, more preferably 2% by mass or less, and even more preferably 1% by mass or less.
  • the pH of this surface treatment liquid at 25 ° C. is 5.0. It is preferably 4.5 or less, more preferably 4.0 or less.
  • the pH of the present surface treatment liquid at 25° C. is preferably 1.0 or more, and is 2.0 or more. is more preferable, and 3.0 or more is even more preferable.
  • the resin treated with the present surface treatment liquid is placed in a room with a temperature of 23° C. and a humidity of 50% in a light-shielded atmospheric atmosphere for 7 days. Adhesion in bonding with other substances (resin or metal) hardly deteriorates even after being left for days. On the other hand, when the pH of the present surface treatment liquid is in the neutral to alkaline range, the adhesion is remarkably lowered when left for 7 days in a non-dry air atmosphere shielded from light.
  • the pH of the surface treatment liquid means a value measured with a pH test paper (UNIVERSAL test paper, manufactured by Advantec Toyo Co., Ltd.) at 25° C., and the measurement error is about ⁇ 0.5. be.
  • An acid can be further added to the present surface treatment liquid.
  • the compound ⁇ is Arrhenius acid, and its acid dissociation constant (when the compound dissociates in multiple steps, it is the dissociation constant of the first step dissociation. Value in water at 25° C. The same shall apply hereinafter.)
  • pKa is about 4.
  • the pH of the surface treatment solution can be lowered to 5.0 or less, more preferably 5.0 or less, even without the addition of an acid. 4.5 or less.
  • an acid to the present surface treatment liquid to adjust the pH of the present surface treatment liquid to 5.0 or less, more preferably 4.5 or less.
  • the acid dissociation constant pKa is less than or equal to about 4.0.
  • Various acids such as inorganic acids and organic acids can be used as the acid to be added to the present surface treatment liquid.
  • Inorganic acids include, but are not limited to, hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, boric acid, hydrofluoric acid, carbonic acid, and the like.
  • organic acids include, but are not limited to, short-chain monocarboxylic acids such as formic acid, acetic acid and propionic acid, and lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, behenic acid and erucic acid.
  • short-chain monocarboxylic acids such as formic acid, acetic acid and propionic acid, and lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, behenic acid and erucic acid.
  • Long-chain monocarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, fumaric acid, phthalic acid, glycolic acid, lactic acid, hydroxyacrylic acid, glyceric acid, malic acid , hydroxycarboxylic acids such as tartaric acid and citric acid, polycarboxylic acids such as polyglutamic acid, acidic amino acids such as glutamic acid and aspartic acid, alkyl sulfates, alkyl sulfonates, and alkyl phosphates.
  • dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, fumaric acid, phthalic acid, glycolic acid, lactic acid, hydroxyacrylic acid, glyceric acid, malic acid , hydroxycarboxylic acids such as tartaric acid and citric acid
  • inorganic acids short-chain monocarboxylic acids, dicarboxylic acids, hydroxycarboxylic acids, acidic amino acids are commonly used, as well as hydrochloric acid, sulfuric acid, acetic acid, chloroacetic acid, dichloroacetic acid, trichloroacetic acid, succinic acid, maleic acid.
  • Acids, glycolic acid, lactic acid, malic acid, citric acid, glutamic acid are especially used.
  • One or more acids selected from these acids may be used at the same time, and anhydrides of the one or more acids may be added. By adding one or more acid anhydrides to the present surface treatment liquid, adhesion in bonding is remarkably improved as compared with the case where one or more acids are added.
  • the concentration thereof is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, from the viewpoint of ensuring adhesion in interfacial molecular bonding. , more preferably 0.05% by mass or more. Moreover, from the viewpoint of suppressing coating unevenness, the concentration is preferably 5% by mass or less, more preferably 2% by mass or less, and even more preferably 1% by mass or less. As described above, when the compound ⁇ is Arrhenius acid having a certain degree of strength, it is not necessary to add the acid or its anhydride to the present surface treatment liquid.
  • a step of applying the surface treatment liquid of any one of the above aspects to the surface of a resin (application step (S2)); It is possible to provide a method for producing a surface-treated resin comprising a step of heating the surface of the applied resin (heat activation step (S4)).
  • a treatment liquid such as the present surface treatment liquid is applied to a resin such as a polyimide film.
  • coating means “adhering” or “existing in contact with” the treatment liquid on the surface of the resin.
  • the coating method include conventionally known coating methods such as brush coating, inkjet, gravure coating, lip coating, comma coating, blade coating, roll coating, knife coating, spray coating, and bar coating.
  • a coating method, a spin coating method, and a dip coating method can be used.
  • the lower limit of the thickness of the coating film when the treatment liquid is applied is preferably 0.5 ⁇ m, for example, from the viewpoint of ensuring the adhesion between the surface treatment resin and other substances (resins and metals). 1.5 ⁇ m is more preferred, and 5 ⁇ m is even more preferred.
  • the lower limit of the thickness (dry film thickness) of the coating film is preferably 1 nm, more preferably 3 nm, and still more preferably 10 nm.
  • the upper limit of the thickness of the coating film (wet film thickness) is preferably, for example, 500 ⁇ m, more preferably 150 ⁇ m, and even more preferably 50 ⁇ m, from the viewpoint of ease of coating and suppression of coating unevenness.
  • the upper limit of the thickness (dry film thickness) of the coating film is preferably 1 ⁇ m, more preferably 300 nm, and still more preferably 100 nm.
  • the immersion time when the dip coating method is used is preferably, for example, 3 seconds or more and 60 seconds or less.
  • "Application" may be performed on a part of the surface of the resin, or may be performed on the entire surface of the resin. Further, when the resin is in the form of a film or a sheet, the "coating" may be performed only on one side of the resin, or may be performed on both the front and back sides of the resin. .
  • drying process of drying the surface of the resin coated with the treatment liquid by natural drying, air drying, or hot air blowing at about 40°C to 70°C. done.
  • the compound ⁇ contained in the present surface treatment liquid and the polymer having a repeating unit having a primary amino group or imino group are arranged on the surface of the resin by the coating step and the drying step described above.
  • heat activation step In the heat activation step (S4), the surface of the resin coated with the present surface treatment liquid is heated. By heating, the surface is brought into a state suitable for thermocompression bonding with other resins, metal plating, or the like.
  • the temperature of the surface of the resin during heating is, for example, 80 to 160° C., preferably 90 to 120° C., and the time for which the surface of the resin is maintained at that temperature is, for example, 30 seconds to 60 minutes, preferably 5 to 120° C. 20 minutes.
  • the heat treatment will decompose the azide group of the compound ⁇ , liberate N 2 gas, generate radicals, and bring the compound ⁇ into a state suitable for bonding with resins, metals and the above polymers. Further, by heating, the OH group or alkoxy group possessed by the compound ⁇ forms an amide bond with the primary amino group or imino group possessed by the polymer through a dehydration condensation reaction or a hydrolytic dehydration condensation reaction to form an amide bond with the compound ⁇ . The polymer will condense to form a very thin layer of condensate.
  • the OH group or alkoxy group of the compound ⁇ will undergo dehydration condensation or hydrolytic dehydration condensation with the OH group or the like on the surface of the resin to form a bond between the compound ⁇ and the surface of the resin.
  • the heat activation step forms a very thin layer of condensate that adheres to the surface of the resin, leaving the surface of the condensate in a state suitable for bonding with another resin or metal.
  • the surface-treated resin produced by the method for producing a surface-treated resin according to the present embodiment of the present invention maintains its activated state even after being placed in a room with a temperature of 23° C. and a humidity of 50% in a light-shielded atmosphere for 7 days. It is sagging, and adhesion to other substances (resin or metal) is hardly reduced.
  • the rate of decrease in peel strength due to leaving for 7 days is within 10% or within 25%.
  • UV activation step the coating step and the step of irradiating the surface of the resin coated with the surface treatment liquid of any aspect of the present invention with ultraviolet rays (UV activation step (S6)). It is possible to provide a method for producing a surface-treated resin comprising In the above heat activation step, the azide group of the compound ⁇ was decomposed by heating, but in the UV activation step, the azide group of the compound ⁇ was decomposed by the ultraviolet irradiation treatment and N gas was released. Then, it is thought that radicals are generated and the compound .alpha. is brought into a state suitable for bonding with the resin, the metal and the polymer.
  • the wavelength of the ultraviolet rays to be irradiated is preferably 260 to 350 nm, more preferably 330 to 350 nm, from the viewpoint of ensuring adhesion and preventing deterioration of resins such as polyimide films due to ultraviolet rays.
  • Any of a mercury lamp, a metal halide lamp, and a UV-LED may be used as the ultraviolet light source.
  • the heat activation step may be performed in addition to the UV activation step. In that case, the order of the heat activation step and the UV activation step does not matter, and either of them may be performed first, or they may be performed simultaneously.
  • the coating step, the heat activation step, and the UV activation step may be combined with or not combined with other treatments such as the post-activation cleaning treatment step (S8) for removing by-products, or in any order. can be applied iteratively.
  • the surface-treated resin produced by the method for producing a surface-treated resin according to the present embodiment of the present invention also retains its activated state even after being left in a room with a temperature of 23° C. and a humidity of 50% in a shaded atmosphere for 7 days. It is sagging, and adhesion to other substances (resin or metal) is hardly reduced. The rate of decrease in peel strength due to leaving for 7 days is within 10% or within 25%.
  • Pretreatment step Before the step of applying the surface treatment liquid according to any aspect of the present invention to the surface of the resin, the resin is subjected to washing treatment, acid treatment, alkali treatment, A step of performing one or more pretreatments (pretreatment step (S1 )), a method for producing a surface-treated resin can be provided.
  • the pretreatment step is a step of pretreating the surface of a resin such as a polyimide film. It is carried out for the purpose of facilitating fixation of the polymer having repeating units on the surface, and also for the purpose of efficiently performing the subsequent heat activation step and/or UV activation step.
  • the resin By performing the pretreatment step, the resin is in an activated state in which functional groups such as OH groups, carboxyl groups, carbonyl groups, primary amino groups, imino groups, etc. are present on the surface of the resin, and bonding with the compound ⁇ is achieved. easier to form.
  • the pretreatment process includes cleaning treatment, acid treatment, alkali treatment, corona discharge treatment in which the surface of the resin is irradiated with corona discharge, and plasma treatment in which the surface of the resin is treated with plasma such as argon plasma, oxygen plasma, or atmospheric plasma. , ultraviolet irradiation treatment, and silicification flame treatment (itro treatment) in which the surface of the resin is exposed to combustion flames of combustion gas mixed with a coupling agent such as a silane compound.
  • the surface-treated resin produced by the method for producing a surface-treated resin according to the present embodiment of the present invention also retains its activated state even after being left in a room with a temperature of 23° C. and a humidity of 50% in a shaded atmosphere for 7 days. It is sagging, and adhesion to other substances (resin or metal) is hardly reduced. The rate of decrease in peel strength due to leaving for 7 days is within 10% or within 25%.
  • a step of preparing and stacking a plurality of resin films is included, and in the plurality of stacked resin films, any two adjacent resin films A are and B, at least one of the resin film A is treated by the method for producing a surface-treated resin according to any one of the embodiments of the present invention, at least on the surface of the side facing the resin film B among the front and back of the resin film A.
  • Manufacturing of a resin film laminate comprising a step (pressing step) in which the plurality of resin films are integrally bonded by applying force. can provide a method.
  • the pressurizing step for example, plate pressing, roll pressing, or the like is performed under an air atmosphere, a nitrogen atmosphere, or in a vacuum.
  • a nitrogen atmosphere or in a vacuum.
  • flat plate press or roll press under an air atmosphere is preferable.
  • pressing in a nitrogen atmosphere or in vacuum is preferred.
  • the pressing pressure is preferably 1-100 MPa, more preferably 30-70 MPa.
  • the time for which the pressure is applied is, for example, 5 to 60 minutes, more preferably 10 to 20 minutes. Heating is preferably performed at the same time as the pressing step.
  • the temperature of the resin film in the pressing step should be within a range not exceeding the heat resistant temperature.
  • the temperature is, for example, 40° C. or higher and 350° C. or lower, preferably 120° C. or higher and 250° C. or lower, more preferably 150° C. or higher and 230° C. or lower.
  • FIGS. 1A, 1B, and 1C show some of the surface treatments of the four surface-treated resin films (hereinafter simply referred to as films) 1, 2, 3, and 4 superimposed in the superimposing step. Show possible patterns.
  • film 1 is a film (U) that is surface-treated only on the upper surface
  • films 2 and 3 are both films that are surface-treated (B) on both sides
  • film 4 is a film on the lower surface. It is a film (D) in which only the surface treatment is applied.
  • This pattern can be represented as (UBBD).
  • the pattern can similarly be represented as (UUUN).
  • the film 4 is a film (N) in which no surface treatment is applied.
  • the pattern can be represented as (UUUD).
  • the number of resin films and the thickness of each film constituting the laminate are arbitrary.
  • the film can be used to produce a resin film laminate.
  • a resin film laminate obtained by laminating at least one set of a plurality of resin films with a condensate layer interposed between two adjacent resin films,
  • the condensate layer contains a dehydration condensate or hydrolytic dehydration condensate of a compound ⁇ and a polymer having a repeating unit having a primary amino group or an imino group, and the compound ⁇ contains, in one molecule,
  • a resin film laminate that is a compound having an azide group, a diazomethyl group or an azidosulfonyl group and an OH group or an alkoxy group can be provided.
  • FIG. 2 shows a resin film laminate 9 in which three resin films 5, 6 and 7 are laminated. The resin films 5 and 6 are joined via the condensate layer 8 according to the present invention.
  • the resin films 6 and 7 may be joined in the same manner as the resin films 5 and 6, or may be joined by other methods such as hot pressing.
  • An OH group, a carboxyl group, a carbonyl group, a primary amino group, an imino group, or the like is present on the surface of the resin films 5 and 6 originally or generated in the pretreatment step.
  • the azidobenzoic acid-derived portion A1 is radically bonded to the surface of the resin film 5 by radicals generated by decomposition of the azide group.
  • the carboxy group of A1 and the imino group of the polyethyleneimine structure P undergo dehydration condensation to form an amide bond.
  • A2 is radically bonded to the polyethyleneimine structure P by a radical generated by decomposition of the azide group.
  • the azidobenzoic acid-derived moiety A3 is radically bonded to the surface of the resin film 5 by radicals generated by decomposition of the azide group.
  • the carboxy group of A3 and the carboxy group of the azidobenzoic acid-derived moiety A4 form an acid anhydride through dehydration condensation.
  • the azide group of A4 is radically bonded to the polyethyleneimine structure P by a radical generated by decomposition of the azide group.
  • the carboxy group of the azidobenzoic acid-derived portion A5 forms an acid anhydride with the carboxy group on the surface of the resin film 6 through dehydration condensation.
  • the carboxyl group of A6 and the imino group of the polyethyleneimine structure P undergo dehydration condensation to form an amide bond.
  • ⁇ Polyimide film laminate> it is possible to provide a resin film laminate (polyimide film laminate) in which all of the plurality of resin films are polyimide films.
  • the polyimide film laminate of the present embodiment inherits the properties of polyimide as a highly heat-resistant non-thermoplastic resin without impairing the properties of the polyimide film. Even if the polyimide film laminate is constructed by leaving it in the atmosphere for 7 days and then pressurizing it, the adhesiveness is maintained, so there is an advantage that the degree of freedom in the manufacturing process increases. The rate of decrease in peel strength due to leaving for 7 days is within 10% or within 25%.
  • the polyimide used as the resin is a known substance, and can be obtained by a polycondensation reaction using a diamine component and a tetracarboxylic dianhydride component as main components.
  • a polyimide film is generally prepared by applying a polyamic acid solution obtained by reacting a diamine component and a tetracarboxylic dianhydride component in a solvent to a support, drying it to form a green film, and then performing dehydration ring closure by high-temperature heat treatment. It is obtained by allowing the reaction to take place.
  • the diamine component and the tetracarboxylic dianhydride component used as raw materials are suitably selected in consideration of various properties required according to the application of the resin film laminate and the metal-coated resin.
  • the tetracarboxylic dianhydride component constituting the polyamic acid includes aromatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, and aliphatic tetracarboxylic dianhydrides that are commonly used in polyimide synthesis. Objects can be used. Among them, aromatic tetracarboxylic dianhydrides and alicyclic tetracarboxylic dianhydrides are preferred. Aromatic tetracarboxylic dianhydrides are more preferable from the viewpoint of heat resistance, and alicyclic tetracarboxylic dianhydrides are more preferable from the viewpoint of light transmittance.
  • the aromatic tetracarboxylic dianhydride is not particularly limited, but when the compound ⁇ has a benzene ring, from the viewpoint of affinity with the compound ⁇ and ease of bonding, It is preferably an acid dianhydride having a benzene ring, and more preferably an acid dianhydride having no aromatic ring other than a benzene ring or a substituted benzene ring.
  • aromatic tetracarboxylic dianhydrides having no aromatic ring other than a benzene ring or a substituted benzene ring include pyromellitic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 4,4′-oxydiphthalic dianhydride, 3,4,3′,4′-benzophenonetetracarboxylic dianhydride, 3,4 ,3′,4′-diphenylsulfonetetracarboxylic dianhydride, bis(3,4-dicarboxyphenyl)sulfide dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride, p-terphenyl-3,4,3′,4′-tetracarboxylic dianhydride, m-terphenyl
  • aromatic tetracarboxylic dianhydride having a benzene ring or a substituted benzene ring other than a benzene ring examples include naphthalene-2,3,6,7-tetracarboxylic dianhydride, naphthalene-1, 2,5,6-tetracarboxylic dianhydride, naphthalene-1,2,6,7-tetracarboxylic dianhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride, 1,4 ,5,8-tetrachloronaphthalene-2,3,6,7-tetracarboxylic dianhydride, 2,3,6,7-tetrachloronaphthalene-1,4,5,8-tetracarboxylic dianhydride , 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,7-dichloronaphthalene-1,4,5,
  • Examples of alicyclic tetracarboxylic dianhydrides include cyclobutane-1,2,3,4-tetracarboxylic dianhydride, cyclopentane-1,2,3,4-tetracarboxylic dianhydride, Cyclohexane-1,2,4,5-tetracarboxylic dianhydride, bicyclohexyl-3,3′,4,4′-tetracarboxylic dianhydride, 1-carboxymethyl-cyclopentane-2,3,5 -carboxylic acid-2,6:3,5-dianhydride, pyrrolidine-2,3,4,5-tetracarboxylic dianhydride.
  • aliphatic tetracarboxylic dianhydrides include ethane-1,1,2,2-tetracarboxylic dianhydride, ethylenetetracarboxylic dianhydride, propane-1,1,3,3-tetracarboxylic dianhydride, Carboxylic dianhydride and butane-1,2,3,4-tetracarboxylic dianhydride can be mentioned.
  • the tetracarboxylic dianhydride component may be used alone or in combination of two or more.
  • aromatic diamines As the diamine component that constitutes polyamic acid, aromatic diamines, alicyclic diamines, and aliphatic diamines that are commonly used in polyimide synthesis can be used. Among them, aromatic diamines and alicyclic diamines are preferred. Aromatic diamines are more preferable from the viewpoint of heat resistance, and alicyclic diamines are more preferable from the viewpoint of light transmittance.
  • the aromatic diamines are not particularly limited, but when the compound ⁇ has a benzene ring, it has a benzene ring or a substituted benzene ring from the viewpoint of affinity with the compound ⁇ and ease of bonding. It is preferably an aromatic diamine, more preferably an aromatic diamine having no aromatic ring other than a benzene ring or a substituted benzene ring.
  • aromatic diamines having no aromatic ring other than a benzene ring or a substituted benzene ring include p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, 4,6-dihydroxy-1, 3-phenylenediamine, 3,5-diaminobenzoic acid, m-aminobenzylamine, p-aminobenzylamine, 3,3′-dimethyl-4,4′-diaminobiphenyl, 2,2′-dimethyl-4,4′-diaminobiphenyl, 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 3,3',4,4'-tetraaminobiphenyl, 4,4'-diaminodiphenylmethane, 3,3'-dicarboxy-4,4'- Diamin
  • aromatic diamines having a benzene ring or a substituted benzene ring other than a benzene ring examples include 2,6-diaminonaphthalene, 2,7-diaminonaphthalene, 1,5-diaminonaphthalene, 1,4-diamino Naphthalene is mentioned.
  • Alicyclic diamines include, for example, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, 1,4-diaminocyclohexane, and bis(4-amino-2,6-dimethylcyclohexyl)methane. mentioned.
  • aliphatic diamines examples include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,8-diaminooctane , 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane.
  • the diamine component may be used alone or in combination of two or more.
  • the polyimide film used in the present invention preferably contains an aromatic ring from the viewpoint of heat resistance, and regardless of whether it is non-thermoplastic or thermoplastic, the type is not particularly limited, but specific examples For example, Kapton series manufactured by Toray DuPont Co., Ltd., Upilex series manufactured by Ube Industries, Ltd., Apical series manufactured by Kanegafuchi Chemical Industry Co., Ltd., U-Film series manufactured by Nitto Denko Corporation, etc. A non-thermoplastic polyimide film can be preferably used.
  • a polyimide film containing a benzene ring is preferable from the viewpoint of ensuring affinity and adhesion with the compound ⁇ .
  • the glass transition temperature of the polyimide constituting the film for high heat resistance is preferably 300° C. or higher, more preferably 350° C. or higher.
  • the thickness of the polyimide film is not particularly limited, but examples thereof include 12.5 ⁇ m, 25 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 75 ⁇ m, 100 ⁇ m, 125 ⁇ m, and 250 ⁇ m.
  • a metal coating is formed by wet plating on the surface-treated surface of the surface-treated resin produced by the method for producing a surface-treated resin according to any one of the aspects of the present invention. It is possible to provide a method for producing a metal-coated resin having steps.
  • a metal coating is formed on the surface of the surface-treated resin by, for example, electroless plating, vapor deposition, or sputtering (seed layer forming step). After that, the metal coating may be thickened by electroplating (electroplating step).
  • the metal coating may be formed over the entire surface, or may be formed in a pattern by a known technique such as photolithography.
  • the metal-coated resin produced according to this embodiment is suitable for flexible metal-clad laminates and printed wiring boards.
  • the thickness of the metal coating formed by electroless plating, vapor deposition or sputtering is preferably 0.1 to 2 ⁇ m, more preferably 0.2 to 1 ⁇ m.
  • the thickness of the metal coating after thickening is preferably 0.2 to 50 ⁇ m, more preferably 0.5 to 20 ⁇ m.
  • Metals that are electrolessly plated are, for example, Cu and Ni.
  • the metal of the metal coating formed by vapor deposition or sputtering is, for example, Al, Cr, Sn, Ti, Cu, In, Au, Pt, Ag, and the like.
  • the metal to be electrolytically plated is, for example, Cu, Ni, Ag, Pd, Au, Pt, Zn, Cr, Sn, Bi, or the like.
  • the metal coating may be a single metal or an alloy.
  • annealing treatment is performed at a temperature of 100° C. to 250° C. for 5 to 60 minutes after the seed layer forming step and/or the electroplating step.
  • the adhesion between the resin and the plated metal of the metal-coated resin produced by the production method of the present embodiment is evaluated by applying the surface-treated resin to an atmosphere with a temperature of 23° C. and a humidity of 50% in a light-shielded atmosphere after the surface treatment.
  • Metallization after 7 days of rest in an atmospheric chamber provides little degradation compared to metallization without rest.
  • the rate of decrease in peel strength due to leaving for 7 days is within 10% or within 25%.
  • the surface-treated surface of the surface-treated resin produced by the method for producing a surface-treated resin according to any one of the aspects of the present invention is coated with a metal foil by attaching a metal foil. It is possible to provide a method for producing a metal-coated resin having a step of forming
  • the thickness of the metal foil to be laminated is preferably 0.2-50 ⁇ m, more preferably 0.5-20 ⁇ m.
  • Metals constituting the metal foil are, for example, Cu, Ni, Ag, Pd, Au, Pt, Zn, Cr, Sn, Bi, Al, Ti, In, particularly Cu, Ag, Au, Pt, Al, etc. is mentioned.
  • the metal foil may be a single metal or an alloy.
  • the surface of the metal foil to be bonded to the resin may or may not be roughened.
  • a process of superimposing a metal foil on the surface treated with a surface-treated resin (superposition process) and a process of integrally bonding the two by applying force (pressing process) are performed. equip.
  • the pressurizing step for example, plate pressing, roll pressing, or the like is performed under an air atmosphere, a nitrogen atmosphere, or in a vacuum. From the viewpoint of productivity improvement and processing cost reduction, flat plate press or roll press under an air atmosphere is preferable. From the viewpoint of quality stability of the metal coating resin to be produced, pressing under a nitrogen atmosphere or in a vacuum is preferred.
  • the pressing pressure is preferably 1-100 MPa, more preferably 30-70 MPa. In general, the higher the press pressure, the higher the adhesion strength of the metal-coated resin produced, which is preferable. However, if the press pressure is too high, the support may be damaged.
  • the time for which the pressure is applied is, for example, 5 to 60 minutes, more preferably 10 to 20 minutes. Heating is preferably performed at the same time as the pressing step.
  • the temperature of the resin in the pressurizing step should be within a range that does not exceed the heat resistance temperature. The temperature is, for example, 40° C. or higher and 350° C. or lower, preferably 120° C. or higher and 250° C. or lower, more preferably 150° C. or higher and 230° C. or lower.
  • the adhesion between the resin and the metal foil of the metal-coated resin manufactured by the manufacturing method of the present embodiment is evaluated by applying the surface-treated resin to an atmosphere with a temperature of 23° C. and a humidity of 50% in a light-shielded atmosphere after the surface treatment. Even if the metal foil is stuck together after leaving it in an atmospheric room for 7 days, it hardly deteriorates compared to the case where the metal foil is stuck together without leaving it. The rate of decrease in peel strength due to leaving for 7 days is within 10% or within 25%.
  • Example 1 (Preparation of surface treatment liquid) Powder of 4-azidobenzoic acid as the "compound ⁇ " and polyethyleneimine (trade name: Epomin (registered trademark), product number: SP-012, as the "polymer having a repeating unit having a primary amino group or imino group”) Nippon Shokubai Co., Ltd.) liquid and maleic acid powder as “acid” are each weighed by the required mass, and mixed with 3-methoxy-3-methyl-1-butanol (hereinafter referred to as "SF"). By dissolution, a pale yellow to orange surface treatment liquid was obtained.
  • SF 3-methoxy-3-methyl-1-butanol
  • the concentration of each component is 0.10% 4-azidobenzoic acid, 0.10% polyethyleneimine, and 0.15% maleic acid. and the pH of the solution measured with pH test paper was 4.0.
  • the average molecular weight of the polyethyleneimine used was about 1200, and the amine ratio was 35% primary amino groups, 35% secondary amino groups (imino groups), and 30% tertiary amino groups.
  • a force gauge ZTA-50N was attached to a vertical electric measuring stand MX2-500N (manufactured by Imada Co., Ltd.) to configure a peel strength tester for 90° peeling.
  • the peeling speed was 50 mm/min.
  • the peel strength was continuously measured for 4 cm of the total length of 6 cm, excluding 1 cm at both ends, and the average value was obtained.
  • Example 2 The concentration of each component of the surface treatment liquid to be prepared is 4-azidobenzoic acid 0.40%, polyethyleneimine 0.40%, maleic acid 0.15% (Example 2), or all three components 0.04% ( Example 3) or 0.02% (Example 4), and Examples 3 and 4 were the same as Example 1 except that the surface treatment liquid was filtered through a filter with a pore size of 0.22 ⁇ m immediately before coating. Then, the pH of the surface treatment liquid was measured, a polyimide film laminate was produced, and the peel strength was measured.
  • Example 1-B The pH of the surface treatment liquid was measured in the same manner as in Example 1-A, except that the surface treatment liquid in Example 1-A was applied at a wet film thickness of 1.5 ⁇ m instead of 25 ⁇ m, and the polyimide film was A laminate was produced and the peel strength was measured.
  • Comparative Examples 1 to 8 For each of Comparative Examples 1 to 8, the pH of the surface treatment liquid was adjusted in the same manner as in Example 1, except that the concentration of each component of the surface treatment liquid to be prepared was set to the value shown in the table of FIG. A polyimide film laminate was prepared and the peel strength was measured.
  • the pH of the surface treatment liquid is preferably 5.0 or less, more preferably 4.5 or less.
  • the coating step and the activation step (and the optional post-activation washing treatment step) can be repeated two or more times. It is possible to obtain a peel strength comparable to that of Example 4.
  • a surface treatment liquid having a concentration of less than 0.01% by mass for any one of the three components is not practical for mass production.
  • the peel strength was estimated to be 10 N/3 cm or more, although accurate values could not be measured due to breakage occurring inside the polyimide film.
  • Example 1 From the comparison between Example 1 and Example 1-A, it can be seen that the peel strength is remarkably improved by adding an acid anhydride instead of an acid to the present surface treatment liquid.
  • Example 1-A observation of peeling during the peel test revealed that the breakage occurred not in the bonding layer but inside the base material (inside the polyimide film), indicating that interfacial molecular bonds are extremely strong.
  • Example 1-B breakage occurred inside the substrate, and the peel strength was estimated to be 10 N/3 cm or more. It can be seen that by adding an acid anhydride to the surface treatment liquid, a high peel strength can be obtained even if the coating thickness is as thin as 1.5 ⁇ m.
  • Example 4-U> A polyimide film laminate was produced and the peel strength was measured in the same manner as in Example 4, except that air drying and UV activation steps were performed instead of the heat activation step in Example 4.
  • the coating surface was irradiated with ultraviolet rays from a UV-LED with an irradiation energy of 200 mJ/cm 2 .
  • a peel strength of 7.0 N/3 cm was obtained. This value slightly exceeds the peel strength (6.8 N/3 cm) in Example 4.
  • Example 1 a surface treatment liquid was prepared using benzoic acid instead of 4-azidobenzoic acid, and the concentration of each component in the surface treatment liquid was 0.10% benzoic acid, 0.10% polyethyleneimine, malein The pH of the surface treatment liquid was measured, a polyimide film laminate was produced, and the peel strength was measured in the same manner as in Example 1, except that the acid was 0.15%.
  • Example 1-L In the same manner as in Example 1, two sheets of surface-treated polyimide film were prepared, and then placed in a room with a temperature of 23 ° C. and a humidity of 50% in a light-shielded air atmosphere for 7 days, followed by a superposition process and pressurization. A polyimide film laminate was produced and the peel strength was measured in the same manner as in Example 1 except that the steps were performed. As a result, a value of 7.3 N/3 cm was obtained. This value is slightly lower than that of Example 1 (8.0 N/3 cm) in which the drawing was not performed, and the rate of decrease in the peel strength due to the drawing was 9%.
  • Example 1-BL> Two surface-treated polyimide films were prepared in the same manner as in Example 1-B, and then placed in a light-shielded atmospheric room at a temperature of 23 ° C. and a humidity of 50% for 7 days and 30 days, then stacked. A polyimide film laminate was produced and the peel strength was measured in the same manner as in Example 1-B, except that the laminating step and the pressing step were performed. As a result, the peel strength after being left for 7 days was 9.0 N/3 cm, and the peel strength after being left for 30 days was also 9.0 N/3 cm. . This value is not much different from that of Example 1-B (10 N/3 cm or more) in which no separation is performed. It can be seen that the rate of decrease in strength is as small as about 10%.
  • Example 3-L In the same manner as in Example 3, two surface-treated polyimide films were prepared, and then left in a room with a temperature of 23 ° C. and a humidity of 50% in a light-shielded atmosphere for 3 days, followed by a superposition process and pressurization. A polyimide film laminate was produced and the peel strength was measured in the same manner as in Example 3 except that the steps were performed. As a result, a value of 8.7 N/3 cm was obtained. This value is slightly lower than that of Example 3 (9.0 N/3 cm) in which no drawing was performed, and the rate of decrease in peel strength due to drawing was 3%.
  • Example 5 Four sheets of the same polyimide film as in Example 1 were prepared, and surface treatment similar to that in Example 1 was performed using the same surface treatment liquid as in Example 1 on one side of three sheets. After leaving these three surface-treated polyimide films in a room with a temperature of 23° C. and a humidity of 50% in a light-shielded atmosphere for 7 days, they were superimposed with the surface-treated surface facing up. , One sheet of untreated polyimide film is placed on top, and the cushion plates attached to the top and bottom are placed on top of each other. A laminate was produced (pressing step). This polyimide film laminate was placed in an oven at 300° C. and left for 30 minutes (annealing step). As a result, a polyimide film laminate having good adhesion was obtained.
  • Example 6 The same polyimide film as in Example 1 was prepared, and one surface thereof was subjected to the same surface treatment as in Example 1 using the same surface treatment liquid as in Example 1. Next, an electroless plating process was carried out using the surface-treated polyimide film as a sample. In the electroless plating process, a pre-dip treatment in which the sample is immersed in a pre-dip solution, followed by a catalyst application treatment in which the sample is immersed in Cataposit 44 (manufactured by Rohm & Haas Electronic Materials Co., Ltd.), and then the sample.
  • a pre-dip treatment in which the sample is immersed in a pre-dip solution
  • Cataposit 44 manufactured by Rohm & Haas Electronic Materials Co., Ltd.
  • a post-electroless plating annealing treatment was carried out at a temperature of .
  • the plating thickness of electroless plating was 0.2 ⁇ m.
  • an electrolytic plating process was performed in which electrolytic copper plating was applied to the sample.
  • the film thickness of the plating film was 20 ⁇ m.
  • a post-electroplating annealing treatment was performed in which the samples were kept at a temperature of 150° C. for 60 minutes to reduce the plating stress.
  • a metal-coated polyimide film was obtained. After that, the metal-coated polyimide film was cut to a width of 10 mm, and the peel strength was measured in the same manner as in Example 1. As a result, a peel strength of 7.0 N/cm was obtained.
  • Example 6-L> After producing a surface-treated polyimide film in the same manner as in Example 6, before carrying out the electroless plating process, except that it was left in a room with a light-shielded atmospheric atmosphere at a temperature of 23 ° C. and a humidity of 50% for 7 days. A metal-coated polyimide film was prepared in the same manner as in Example 6, and the peel strength was measured. As a result, a value of 6.6 N/cm was obtained. This value is slightly lower than that of Example 6 (7.0 N/cm) in which no drawing was performed, and the rate of decrease in peel strength due to drawing was 6%.
  • Example 7 The same polyimide film as in Example 1 was prepared and subjected to the same surface treatment as in Example 1 to obtain a surface-treated polyimide film. Next, a step of bonding the surface-treated polyimide film and the copper foil was performed. A rolled copper foil having a thickness of 18 ⁇ m was used as the copper foil. The above-mentioned rolled copper foil is superimposed on the surface-treated surface of the surface-treated polyimide film, and it is heated with a flat plate press at a press temperature of 180 ° C., a press time of 5 minutes, and a press pressure of 56 MPa through cushion plates attached above and below. A metal-coated polyimide film was produced by pressing (pressing step).
  • the metal-coated polyimide film was cut to a width of 10 mm without performing the annealing step, and the peel strength was measured in the same manner as in Example 1. As a result, a peel strength of 8.0 N/cm was obtained.
  • a metal-coated polyimide film was prepared in the same manner as in Example 7 except for and the peel strength was measured. As a result, a value of 7.8 N/cm was obtained. This value is almost the same as that of Example 7 (8.0 N/cm) in which the holding was not carried out, and the reduction rate of the peel strength due to the holding was 3%.
  • ⁇ Reference example 2> Instead of the surface treatment liquid in Example 7, a 0.2% ethanol solution of a silane coupling agent (trade name: X-12-972F, manufactured by Shin-Etsu Chemical Co., Ltd.) having multiple amino groups in one molecule. Using it as a surface treatment liquid, the pH of the surface treatment liquid was measured in the same manner as in Example 7, and a metal-coated polyimide film was produced to measure the peel strength. As a result, the pH was 8.0 and the peel strength was 7.6 N/cm.
  • a silane coupling agent trade name: X-12-972F, manufactured by Shin-Etsu Chemical Co., Ltd.
  • the polyimide film laminate produced using the surface treatment liquid of the present invention has high heat resistance and can be used as a substitute for inorganic materials such as glass and ceramics. can also be manufactured, and by machining, it can be used like an engineering plastic. It can be suitably used for applications such as reinforcement of FPC boards, lightweight spacers, and probe sockets (test jigs) for semiconductor testing equipment.
  • the surface-treated resin substrate of the present invention maintains close contact even when a laminate is produced with a resin or metal by lamination/compression bonding or wet plating after being left in a non-dry atmosphere for several days. It has the advantage that the process can be made flexible, and the degree of freedom in manufacturing process design and division of labor/collaboration management increases.

Abstract

The purpose of the present invention is to provide: a surface treatment solution that does not contain Si atoms and shows almost no deterioration in adhesion even when applied to the surface of a resin and left on the surface-treated resin in a non-dry atmosphere for several days before lamination and compression; and a method for manufacturing a surface-treated resin substrate and a resin film laminate. The surface treatment solution of the present invention contains a compound α and a polymer having a repeating unit having a primary amino group or an imino group, has a pH of 4.5 or less at 25°C, and is used by being applied to a resin for interfacial molecular bonding. The compound α has an azide group, a diazomethyl group or azidosulfonyl group, and an OH group or alkoxy group in one molecule. The surface treatment solution preferably further contains an acid or an anhydride thereof having an acid dissociation constant pKa of 4.0 or less. It is preferable that the compound α has a carbonyl group and the carbonyl group is directly bonded to the OH group or alkoxy group. It is also preferable that the compound α has a benzene ring and the azide group or the like is directly bonded to the benzene ring.

Description

表面処理液、表面処理樹脂及び樹脂フィルム積層体の製造方法Surface treatment liquid, surface treatment resin, and method for producing resin film laminate
 本発明は、樹脂に塗布して用いる表面処理液と、当該表面処理液を用いた、表面処理樹脂の製造方法、樹脂フィルム積層体の製造方法、及び金属被覆樹脂の製造方法に関する。 The present invention relates to a surface treatment liquid used by applying it to a resin, and a method for producing a surface treated resin, a method for producing a resin film laminate, and a method for producing a metal-coated resin using the surface treatment liquid.
 ポリイミドは高い耐熱性を有する熱硬化性樹脂であり、-269℃の低温から+300℃の高温まで広い温度領域にわたって物性変化が極めて少ないために、電気・電子分野での利用が拡大している。電気分野では、例えば、産業用モーターのコイルや超伝導電線の絶縁等に用いられ、電子分野では、例えば、フレキシブルプリント基板のベースフィルム、軽量なスペーサ、半導体試験装置のプローブソケット(試験用治具)等に利用されている。 Polyimide is a thermosetting resin with high heat resistance, and its physical properties change very little over a wide temperature range from a low temperature of -269°C to a high temperature of +300°C, so its use in the electrical and electronic fields is expanding. In the electrical field, for example, it is used for the insulation of industrial motor coils and superconducting wires. ), etc.
 ポリイミドは、主に流延による溶液成膜によりポリイミドフィルムとして製造されているため、厚いシートやボードを製造することはその製法上困難であり、仮に製造できても均質性に欠ける欠点がある。ポリイミド-ポリイミドブロック共重合体の粉末を高温圧縮成型で処理して厚いシートやブロックを製造する方法も存在するが、高価で量産性に劣る。そこで、厚みを確保するべく複数枚のポリイミドフィルムを積層して密着させてなるポリイミドフィルム積層体の種々の製法が提案されている。高温で圧着する方法や、圧着前にポリイミドフィルムの表面に特殊プラズマ処理を行う方法、エポキシ樹脂やアクリル樹脂等の熱可塑性樹脂からなる接着剤で接合する方法、接着層として熱可塑性ポリイミドフィルムを介在させる方法等である。しかし、いずれの方法にも、量産に高価な設備を要する、揮発ガスが生じる、非熱可塑性樹脂としてのポリイミドの特性を損なう、等の欠点がある。  Since polyimide is mainly produced as a polyimide film by solution film formation by casting, it is difficult to produce thick sheets and boards due to the production method, and even if it can be produced, it has the disadvantage of lacking homogeneity. There is also a method of manufacturing a thick sheet or block by subjecting polyimide-polyimide block copolymer powder to high-temperature compression molding, but this method is expensive and not suitable for mass production. Therefore, various methods for producing a polyimide film laminate have been proposed in which a plurality of polyimide films are laminated and adhered to each other in order to ensure a sufficient thickness. A method of crimping at high temperature, a method of applying a special plasma treatment to the surface of the polyimide film before crimping, a method of bonding with an adhesive made of thermoplastic resin such as epoxy resin or acrylic resin, and a thermoplastic polyimide film interposed as an adhesive layer. and the like. However, all of these methods have drawbacks such as requiring expensive equipment for mass production, generating volatile gas, and impairing the properties of polyimide as a non-thermoplastic resin.
 2種以上の官能基を有する化合物は、それぞれの官能基の特性を利用して化学結合を形成し得ることから、2つの物質の界面に介在させて化学結合により両物質を結合する界面分子結合(IMB;Interface molecular bonding)のための界面分子結合剤として有用である。界面分子結合剤は2つの物質を化学結合で結合するから、両物質の結合は強く、結合の形成に必ずしも高温を要しない。また、界面に少量の界面分子結合剤の分子が存在するだけであるから、揮発ガスの問題も生じにくい。 A compound having two or more functional groups can form a chemical bond by utilizing the properties of each functional group. (IMB; interface molecular bonding). Since the interfacial molecular binder chemically bonds two substances, the bond between the two substances is strong, and a high temperature is not necessarily required to form the bond. Moreover, since only a small amount of molecules of the interfacial molecular binder are present at the interface, the problem of volatile gas is less likely to occur.
 特許文献1には、界面分子結合剤を介して複数枚のポリイミドフィルムを積層し、200℃程度の温度で圧着してなるポリイミドフィルム積層体の製造方法が開示されている。この文献に開示された界面分子結合剤は、(3-アミノプロピル)トリエトキシシラン(以下、「ATES」と呼ぶ)等の、一分子内にアミノ基やシラノール基等の官能基を有するシラン化合物である。界面分子結合剤として上記のごとくシラン化合物を用いる場合には、自己縮合反応を生じやすいシラン化合物の性質が短所となり得る。すなわち、表面処理液中にて縮合物の粒子が形成され、それら粒子が塗布面での異物欠点や塗布ムラの原因となり、低い密着力に結びつきやすい。 Patent Document 1 discloses a method for producing a polyimide film laminate by laminating a plurality of polyimide films via an interfacial molecular binder and pressing them at a temperature of about 200°C. The interfacial molecular binder disclosed in this document is a silane compound having a functional group such as an amino group or a silanol group in one molecule, such as (3-aminopropyl)triethoxysilane (hereinafter referred to as "ATES"). is. When a silane compound is used as the interfacial molecular binder as described above, the property of the silane compound that tends to cause a self-condensation reaction can be a drawback. That is, condensate particles are formed in the surface treatment liquid, and these particles tend to cause foreign matter defects and coating unevenness on the coating surface, leading to low adhesion.
 特許文献2には、上記の短所を回避する目的で、シラン化合物ではなく、エチレンジアミン等の、分子量が概ね300以下の多価アミン化合物を界面分子結合剤として用いて、40℃から180℃の温度で圧着して、ポリイミドフィルム積層体を製造する技術が開示されている。しかし、この技術には、多価アミン化合物を付与したポリイミドフィルムをすぐに積層圧着せずに、大気雰囲気下で数日間引き置いてから積層圧着すると密着性が顕著に低下する欠点があるため、多価アミン化合物を付与した直後に圧着する必要があり、上記積層体の量産プロセスを構築する上で柔軟性がなく、コストがかかる。 In Patent Document 2, in order to avoid the above disadvantages, a polyvalent amine compound having a molecular weight of approximately 300 or less, such as ethylenediamine, is used as an interfacial molecular binder instead of a silane compound, and is heated at a temperature of 40 ° C. to 180 ° C. A technique for producing a polyimide film laminate by pressing with is disclosed. However, this technique has the disadvantage that if the polyimide film to which the polyvalent amine compound is added is not laminated and pressure-bonded immediately, and if it is left in an air atmosphere for several days and then laminated and pressure-bonded, the adhesion will be significantly reduced. Since it is necessary to press-bond immediately after applying the polyvalent amine compound, there is no flexibility in constructing the mass production process of the laminate, and the cost is high.
 特許文献3には、表面にシリカで構成された部分と金属で構成された部分の両方を有する基材において、2剤を順に付与又は塗布することにより、シリカで構成された部分だけに選択的に樹脂を積層することのできる2剤の組み合わせが開示されており、当該2剤のうち、第1の剤は、ポリエチレンイミン等の、カチオン性官能基を有するポリマーを含有する組成物であり、第2の剤は、芳香環を有する多価カルボン酸又はその無水物を含む塗布液であり、第1の剤が安息香酸等の芳香族モノカルボン酸を含んでもよいことと、第2の剤がマレイン酸等の有機酸を含んでもよいことが記載されている。この2剤は上記のごとく樹脂層を形成する目的で使用される剤(ワニス)であり、2つの物質の界面に介在させて両物質の結合体を形成する目的で使用する界面分子結合剤とは用途が異なっている。また、上記の通り、特許文献3に記載された2剤の組み合わせは、金属と樹脂の接合には適さない。 In Patent Document 3, in a substrate having both a portion made of silica and a portion made of metal on the surface, two agents are sequentially applied or applied to selectively only the portion made of silica. discloses a combination of two agents capable of laminating a resin to the two, wherein the first agent is a composition containing a polymer having a cationic functional group, such as polyethyleneimine, The second agent is a coating liquid containing a polycarboxylic acid having an aromatic ring or an anhydride thereof, the first agent may contain an aromatic monocarboxylic acid such as benzoic acid, and the second agent may contain organic acids such as maleic acid. These two agents are agents (varnishes) used for the purpose of forming a resin layer as described above, and an interfacial molecular binder used for the purpose of interposing between two substances to form a bond between them. have different uses. Moreover, as described above, the combination of two agents described in Patent Document 3 is not suitable for joining metal and resin.
特許第6721041号公報Japanese Patent No. 6721041 特開2020-163755号公報JP 2020-163755 A 特許第6438747号公報Japanese Patent No. 6438747
 本発明の一形態の目的は、樹脂に塗布して用いる、シラン化合物を含まない表面処理液であって、当該表面処理液で処理された樹脂を大気雰囲気で数日間引き置いても、他の物質との接合における密着性がほとんど低下しないような表面処理液を提供することである。本発明の他の形態の目的は、当該表面処理液を用いた、表面処理物質の製造方法、樹脂フィルム積層体の製造方法、又は金属被覆樹脂の製造方法を提供することである。 An object of one aspect of the present invention is to provide a surface treatment liquid that does not contain a silane compound and is used by applying it to a resin, and even if the resin treated with the surface treatment liquid is left in an air atmosphere for several days, other To provide a surface treatment liquid which scarcely deteriorates adhesion in bonding with a substance. An object of another aspect of the present invention is to provide a method for producing a surface treatment substance, a method for producing a resin film laminate, or a method for producing a metal-coated resin using the surface treatment liquid.
 本発明の第1の形態は、例えば、複数枚の樹脂フィルムが一体的に結合されてなる樹脂フィルム積層体を製造する目的で、又は、樹脂の表面に金属被覆を形成する目的で、樹脂に塗布して用いる表面処理液であり、1級アミノ基又はイミノ基を有する繰り返し単位をもった重合体と、化合物αと、を各々0.01質量%以上で、且つ合計5質量%以下の濃度で含み、前記化合物αは、一分子内に、アジド基、ジアゾメチル基又はアジドスルホニル基と、ОH基又はアルコキシ基と、を有する化合物であり、25℃におけるpHが5.0以下である表面処理液である。 In a first embodiment of the present invention, for example, for the purpose of producing a resin film laminate in which a plurality of resin films are integrally bonded, or for the purpose of forming a metal coating on the surface of the resin, A surface treatment liquid that is applied and used, and contains a polymer having a repeating unit having a primary amino group or an imino group and a compound α each at a concentration of 0.01% by mass or more, and a total concentration of 5% by mass or less. wherein the compound α is a compound having an azide group, a diazomethyl group or an azidosulfonyl group and an OH group or an alkoxy group in one molecule, and a surface treatment having a pH of 5.0 or less at 25°C. Liquid.
 本発明の第2の形態は、前記第1の形態において、25℃におけるpHが4.5以下である表面処理液である。 A second embodiment of the present invention is the surface treatment liquid according to the first embodiment, which has a pH of 4.5 or less at 25°C.
 本発明の第3の形態は、前記第1の形態において、前記表面処理液は、更に酸又は当該酸の無水物を含み、前記酸の25℃における酸解離定数pKaが4.0以下である表面処理液である。 According to a third aspect of the present invention, in the first aspect, the surface treatment liquid further contains an acid or an anhydride of the acid, and the acid has an acid dissociation constant pKa at 25° C. of 4.0 or less. It is a surface treatment liquid.
 本発明の第4の形態は、前記第2又は第3の形態において、前記ОH基又はアルコキシ基は、前記化合物αの有するカルボキシ基又はアルコキシカルボニル基に含まれる表面処理液である。 A fourth aspect of the present invention is the surface treatment liquid according to the second or third aspect, wherein the OH group or alkoxy group is contained in the carboxy group or alkoxycarbonyl group of the compound α.
 本発明の第5の形態は、前記第4の形態において、前記化合物αは、芳香環を含む表面処理液である。 A fifth aspect of the present invention is the surface treatment liquid according to the fourth aspect, wherein the compound α contains an aromatic ring.
 本発明の第6の形態は、前記第5の形態において、前記芳香環はベンゼン環であり、前記アジド基、ジアゾメチル基又はアジドスルホニル基は、前記ベンゼン環に直接的に結合している表面処理液である。 A sixth aspect of the present invention is the surface treatment according to the fifth aspect, wherein the aromatic ring is a benzene ring, and the azide group, diazomethyl group or azidosulfonyl group is directly bonded to the benzene ring. Liquid.
 本発明の第7の形態は、前記第1の形態において、前記繰り返し単位が、次の式(2)~式(7)のいずれかに示される繰り返し単位である表面処理液である。 A seventh form of the present invention is the surface treatment liquid according to the first form, wherein the repeating unit is a repeating unit represented by any one of the following formulas (2) to (7).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
ただし、式中、aは0以上の整数、例えば1以上10以下の整数、好ましくは1以上4以下の整数、より好ましくは1であり、R、R1、R2及びR3は、それぞれ独立して、H原子、置換若しくは非置換のアルキル基(例えば炭素数が1以上25以下、又は、1以上5以下)又はアリール基(例えばフェニル基)であり、Z-は溶液中の陰イオンを表したもので前記重合体には含まれない。好ましくは各式において、R、R1、R2及びR3のうち少なくとも1つはH原子である。 However, in the formula, a is an integer of 0 or more, for example an integer of 1 or more and 10 or less, preferably an integer of 1 or more and 4 or less, more preferably 1, and R, R 1 , R 2 and R 3 are each independently is an H atom, a substituted or unsubstituted alkyl group (e.g., 1 to 25 carbon atoms, or 1 to 5 carbon atoms) or an aryl group (e.g., phenyl group), and Z - represents an anion in solution. It is not included in the above polymer. Preferably in each formula at least one of R, R 1 , R 2 and R 3 is an H atom.
 本発明の第8の形態は、前記第1の形態に係る表面処理液を樹脂の表面に塗布する工程と、前記表面処理液が塗布された前記樹脂の表面を加熱する工程と、を具える表面処理樹脂の製造方法である。 An eighth aspect of the present invention comprises the steps of applying the surface treatment liquid according to the first aspect to the surface of a resin, and heating the surface of the resin coated with the surface treatment liquid. A method for producing a surface-treated resin.
 本発明の第9の形態は、前記第1の形態に係る表面処理液を樹脂の表面に塗布する工程と、前記表面処理液が塗布された前記樹脂の表面に紫外線を照射する工程と、を具える表面処理樹脂の製造方法である。 A ninth aspect of the present invention comprises a step of applying the surface treatment liquid according to the first aspect to the surface of a resin, and a step of irradiating the surface of the resin coated with the surface treatment liquid with ultraviolet rays. It is a manufacturing method of the surface treatment resin which comprises.
 本発明の第10の形態は、前記第8又は第9の形態において、前記表面処理液を樹脂の表面に塗布する工程の前に、前記樹脂に対して、洗浄処理、酸処理、アルカリ処理、コロナ放電処理、プラズマ処理、紫外線照射処理、ケイ酸化炎処理及び脱フッ素化処理からなる群より選ばれる1つ以上の前処理を行う工程を更に具える、表面処理樹脂の製造方法である。 A tenth form of the present invention is the eighth or ninth form, wherein the resin is subjected to washing treatment, acid treatment, alkali treatment, A method for producing a surface-treated resin, further comprising a step of performing one or more pretreatments selected from the group consisting of corona discharge treatment, plasma treatment, ultraviolet irradiation treatment, silicifying flame treatment and defluorination treatment.
 本発明の第11の形態は、複数枚の樹脂フィルムを用意して重ね合わせる工程を含み、重ね合わされた前記複数枚の樹脂フィルムにおいて、隣接する任意の2枚の樹脂フィルムAとBのうち、少なくとも一方の樹脂フィルムAは、樹脂フィルムAの表裏のうち、少なくとも樹脂フィルムBと対向する側の表面に、前記第8又は第9の形態に係る表面処理樹脂の製造方法により処理が行われてなる表面処理樹脂フィルムであり、力を加えることにより、重ね合わされた前記複数枚の樹脂フィルムが一体的に結合される工程を具える、樹脂フィルム積層体の製造方法である。 An eleventh form of the present invention includes a step of preparing and superimposing a plurality of resin films, wherein any two adjacent resin films A and B in the plurality of superimposed resin films are: At least one of the resin films A is treated by the method for producing a surface-treated resin according to the eighth or ninth embodiment on at least the surface of the resin film A facing the resin film B among the front and back surfaces of the resin film A. A method for producing a resin film laminate, comprising a step of integrally bonding the plurality of resin films that are superimposed by applying a force.
 本発明の第12の形態は、複数枚の樹脂フィルムが、少なくとも1組の、隣接する2枚の前記樹脂フィルムの間に縮合物層を介して、積層してなる樹脂フィルム積層体であり、前記縮合物層は、化合物αと、1級アミノ基又はイミノ基を有する繰り返し単位をもった重合体との脱水縮合物又は加水分解脱水縮合物を含み、前記化合物αは、一分子内に、アジド基、ジアゾメチル基又はアジドスルホニル基と、ОH基又はアルコキシ基と、を有する化合物である樹脂フィルム積層体である。 A twelfth form of the present invention is a resin film laminate obtained by laminating at least one set of a plurality of resin films with a condensate layer interposed between two adjacent resin films, The condensate layer contains a dehydration condensate or hydrolytic dehydration condensate of a compound α and a polymer having a repeating unit having a primary amino group or an imino group, and the compound α contains, in one molecule, The resin film laminate is a compound having an azide group, a diazomethyl group or an azidosulfonyl group and an OH group or an alkoxy group.
 本発明の第13の形態は、前記第12の形態において、前記複数枚の樹脂フィルムは、すべてポリイミドフィルムである樹脂フィルム積層体である。 A thirteenth form of the present invention is the resin film laminate according to the twelfth form, wherein all of the plurality of resin films are polyimide films.
 本発明の第14の形態は、前記第8又は第9の形態に係る表面処理樹脂の製造方法により製造された表面処理樹脂の、表面処理が行われた表面に、湿式めっき又は金属箔の貼り合わせにより金属被覆を形成する工程を有する金属被覆樹脂の製造方法である。 In a fourteenth aspect of the present invention, the surface-treated surface of the surface-treated resin produced by the method for producing a surface-treated resin according to the eighth or ninth aspect is wet-plated or affixed with a metal foil. A method for producing a metal-coated resin comprising the step of forming a metal coating by combining.
 本発明の一形態によれば、樹脂に塗布して用いる、シラン化合物を含まない表面処理液であって、当該表面処理液で処理された樹脂を大気雰囲気で数日間引き置いても、他の物質との接合における密着性がほとんど低下しないような表面処理液を提供することができる。上記表面処理液は、紫外線の照射により、又は紫外線照射なく加熱処理のみにより、表面処理及び界面分子結合に係る化学反応が進行するような、複数の化合物の組み合わせを含んでいる。
 本発明の別の一形態によれば、当該表面処理液を用いた、表面処理物質の製造方法、樹脂フィルム積層体の製造方法、又は金属被覆樹脂の製造方法を提供することができる。特に、本発明の更に別の一形態は、ポリイミドフィルム積層体の製造方法を提供することができる。
According to one aspect of the present invention, a surface treatment liquid containing no silane compound is applied to a resin, and even if the resin treated with the surface treatment liquid is left in an air atmosphere for several days, other It is possible to provide a surface treatment liquid that hardly reduces adhesion in bonding with a substance. The surface treatment liquid contains a combination of a plurality of compounds such that chemical reactions related to surface treatment and interfacial molecular bonding proceed by irradiation with ultraviolet rays or by heat treatment alone without irradiation of ultraviolet rays.
According to another aspect of the present invention, it is possible to provide a method for producing a surface-treated substance, a method for producing a resin film laminate, or a method for producing a metal-coated resin using the surface treatment liquid. In particular, still another aspect of the present invention can provide a method for producing a polyimide film laminate.
図1Aは、表面処理樹脂フィルムのある重ね合わせ方を示す説明図である。FIG. 1A is an explanatory diagram showing how to superimpose a surface-treated resin film. 図1Bは、表面処理樹脂フィルムの別の重ね合わせ方を示す説明図である。FIG. 1B is an explanatory diagram showing another method of superimposing surface-treated resin films. 図1Cは、表面処理樹脂フィルムの更に別の重ね合わせ方を示す説明図である。FIG. 1C is an explanatory diagram showing still another method of superimposing the surface-treated resin films. 図2は、縮合物層における界面分子結合メカニズムの説明図である。FIG. 2 is an explanatory diagram of the interfacial molecular bonding mechanism in the condensate layer. 図3は、表面処理樹脂の製造方法のフロー図である。FIG. 3 is a flowchart of a method for producing a surface-treated resin. 図4は、実験結果を示す表図である。FIG. 4 is a chart showing experimental results.
 次に、本発明の実施形態について詳細に説明する。なお、本発明は、以下に記載された実施形態や実施例のみに限定されるものではなく、本発明の技術的思想の及ぶ範囲において実施される各種の変形形態や変形例をも含むものとして理解されるべきである。 Next, an embodiment of the present invention will be described in detail. It should be noted that the present invention is not limited only to the embodiments and examples described below, and includes various modifications and variations implemented within the scope of the technical idea of the present invention. should be understood.
<表面処理液>
 本発明の一形態によれば、複数枚の樹脂フィルムが一体的に結合されてなる樹脂フィルム積層体を製造する目的で、又は、樹脂の表面に金属被覆を形成する目的で、樹脂に塗布して用いる表面処理液であり、化合物αと、1級アミノ基又はイミノ基を有する繰り返し単位をもった重合体と、を各々0.01質量%以上で、且つ合計5質量%以下の濃度で含み、前記化合物αは、一分子内に、アジド基、ジアゾメチル基又はアジドスルホニル基と、ОH基又はアルコキシ基と、を有する化合物であり、25℃におけるpHが4.5以下である表面処理液を提供できる。
 本表面処理液は、好ましくは、樹脂と樹脂、又は、樹脂と金属の結合体を形成するために、密着を確保する目的で樹脂に塗布して用いる。本表面処理液を用いると、紫外線の照射により、又は紫外線照射なく加熱処理のみにより、界面分子結合が可能な表面処理を行うことができる。その表面処理の効果は、遮光された大気雰囲気の下で3日間又は7日間引き置いてから結合体を形成しても、ほとんど失われない。また、本表面処理液は、Si原子を含まないことが好ましい。
<Surface treatment liquid>
According to one aspect of the present invention, for the purpose of producing a resin film laminate in which a plurality of resin films are integrally bonded, or for the purpose of forming a metal coating on the surface of the resin, the It is a surface treatment liquid used for the surface treatment, and contains a compound α and a polymer having a repeating unit having a primary amino group or an imino group at a concentration of 0.01% by mass or more and a total concentration of 5% by mass or less. The compound α is a compound having an azide group, a diazomethyl group or an azidosulfonyl group and an OH group or an alkoxy group in one molecule, and a surface treatment liquid having a pH of 4.5 or less at 25°C. can provide.
The present surface treatment liquid is preferably used by being applied to a resin for the purpose of ensuring adhesion in order to form a resin-to-resin or resin-to-metal bond. By using the present surface treatment liquid, a surface treatment capable of interfacial molecular bonding can be performed by irradiation with ultraviolet rays or by heat treatment alone without irradiation with ultraviolet rays. The effect of the surface treatment is hardly lost even after leaving it for 3 or 7 days under a light-shielded atmospheric atmosphere to form a composite. Moreover, it is preferable that the present surface treatment liquid does not contain Si atoms.
(樹脂)
 本明細書における「樹脂」としては、例えば、熱可塑性樹脂、熱硬化性樹脂等が挙げられる。
 熱可塑性樹脂としては、例えば、汎用樹脂、エンジニアリング樹脂、スーパーエンジニアリング樹脂等が挙げられる。汎用樹脂としては、例えば、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、アクリロニトリル・ブタジエン・スチレン(ABS)、アクリロニトリル・スチレン(AS)、ポリメチルメタアクリル(PMMA)、ポリビニールアルコール(PVA)、ポリ塩化ビニリデン(PVDC)、ポリエチレンテレフタレート(PET)、シクロオレフィンポリマー(COP)等が挙げられる。エンジニアリング樹脂としては、例えば、ポリアミド(PA)、ポリアセタール(POM)、ポリカーボネート(PC)、ポリフェニレンエーテル(PPE(変性PPO))、ポリブチレンテレフタレート(PBT)、超高分子量ポリエチレン(U-PE)、ポリフッ化ビニリデン(PVDF)等が挙げられる。スーパーエンジニアリング樹脂としては、例えば、ポリスルホン(PSU)、ポリエーテルスルホン(PES)、ポリフェニレンサルファイド(PPS)、ポリアリレート(PAR)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)、熱可塑性ポリイミド(TPI)、液晶ポリマー(LCP)、ポリテトラフルオロエチレン(PTFE)が挙げられる。
 熱硬化性樹脂としては、フェノール樹脂(PF)、エポキシ樹脂(EP)、メラミン樹脂(MF)、尿素樹脂(ユリア樹脂、UF)、不飽和ポリエステル樹脂(UP)、アルキド樹脂、ポリウレタン(PUR)、ポリイミド(PI)、変性ポリイミド(MPI)、熱硬化性ポリイミドが挙げられる。また、熱硬化性樹脂の商品形態としては、例えば、ポリイミド等のCステージ(硬化)シートや、ビルドアップシート、プリプレグ、ダイボンドシート、ACF(異方性導電シート)等のBステージ(未硬化)シートや、導電性又は絶縁性の、コンパウンド、ペースト又はインク等のAステージ材料等が挙げられる。
 本発明の表面処理液は、上記の樹脂の中でも特に、カルボキシ基、1級アミノ基、2級アミノ基若しくは3級アミノ基を有する1以上の化合物を含む樹脂、又は、そのような1以上の化合物の重合体を含む樹脂、例えばポリイミド、ポリアミド、ポリアミドイミド等の樹脂に適する。
(resin)
The “resin” used herein includes, for example, thermoplastic resins, thermosetting resins, and the like.
Examples of thermoplastic resins include general-purpose resins, engineering resins, super engineering resins, and the like. General-purpose resins include, for example, polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), polystyrene (PS), acrylonitrile-butadiene-styrene (ABS), acrylonitrile-styrene (AS), polymethyl methacrylic ( PMMA), polyvinyl alcohol (PVA), polyvinylidene chloride (PVDC), polyethylene terephthalate (PET), cycloolefin polymer (COP) and the like. Examples of engineering resins include polyamide (PA), polyacetal (POM), polycarbonate (PC), polyphenylene ether (PPE (modified PPO)), polybutylene terephthalate (PBT), ultra-high molecular weight polyethylene (U-PE), polyfluoro Examples include vinylidene dichloride (PVDF) and the like. Examples of super engineering resins include polysulfone (PSU), polyethersulfone (PES), polyphenylene sulfide (PPS), polyarylate (PAR), polyamideimide (PAI), polyetherimide (PEI), polyetheretherketone ( PEEK), thermoplastic polyimide (TPI), liquid crystal polymer (LCP), polytetrafluoroethylene (PTFE).
Thermosetting resins include phenol resin (PF), epoxy resin (EP), melamine resin (MF), urea resin (urea resin, UF), unsaturated polyester resin (UP), alkyd resin, polyurethane (PUR), Examples include polyimide (PI), modified polyimide (MPI), and thermosetting polyimide. Thermosetting resin product forms include C-stage (cured) sheets such as polyimide, B-stage (uncured) sheets such as build-up sheets, prepregs, die-bond sheets, and ACF (anisotropic conductive sheets). Sheets, conductive or insulating compounds, pastes, inks, and other A-stage materials can be used.
Among the above resins, the surface treatment liquid of the present invention is particularly a resin containing one or more compounds having a carboxy group, a primary amino group, a secondary amino group, or a tertiary amino group, or one or more such It is suitable for resins containing polymers of compounds, such as polyimides, polyamides, polyamideimides, and the like.
(表面処理液の溶媒)
 本表面処理液は溶媒を含む。当該溶媒としては、上記化合物α及び上記重合体を溶解することができればよく、特に限定されないが、例えば、メタノール、エタノール、イソプロパノール、エチレングリコール、プロピレングリコール、セルソルブ、カルビトール、3-メトキシ-3-メチル-1-ブタノール(以下、「SF」と呼ぶ)等のアルコール、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン、ベンゼン、トルエン、キシレン等の芳香族炭化水素、ヘキサン、オクタン、デカン、ドデカン、オクタデカン等の脂肪族炭化水素、酢酸エチル、プロピオン酸メチル、フタル酸メチル等のエステル、テトラヒドロフラン(THF)、エチルブチルエーテル、アニソール、プロピレングリコールモノメチルエーテルアセテート(PGMEA)等のエーテル、水等を用いることができる。これらの中でも、アルコール、エーテル及び水が好ましい。溶媒は、1種又は2種以上を混合して用いることができる。
(Solvent for surface treatment liquid)
The present surface treatment liquid contains a solvent. The solvent is not particularly limited as long as it can dissolve the compound α and the polymer. Examples include methanol, ethanol, isopropanol, ethylene glycol, propylene glycol, cellosolve, carbitol, 3-methoxy-3- alcohols such as methyl-1-butanol (hereinafter referred to as "SF"); ketones such as acetone, methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as benzene, toluene and xylene; Aliphatic hydrocarbons, esters such as ethyl acetate, methyl propionate and methyl phthalate, ethers such as tetrahydrofuran (THF), ethyl butyl ether, anisole, propylene glycol monomethyl ether acetate (PGMEA), water and the like can be used. Among these, alcohol, ether and water are preferred. Solvents can be used singly or in combination of two or more.
(1級アミノ基又はイミノ基を有する繰り返し単位をもった重合体)
 本表面処理液は、1級アミノ基(-NH2)又はイミノ基(-NH-)を有する繰り返し単位をもった重合体を含む。当該重合体は、OH基又はアルコキシ基を有する上記化合物αとイオン結合又はアミド結合を形成し、界面分子結合の形成に寄与する。上記繰り返し単位の例は、前記の式(2)~式(7)のいずれかに示される繰り返し単位である。
(Polymer having a repeating unit having a primary amino group or imino group)
The present surface treatment liquid contains a polymer having repeating units having primary amino groups (--NH 2 ) or imino groups (--NH--). The polymer forms an ionic bond or an amide bond with the compound α having an OH group or an alkoxy group, and contributes to the formation of an interfacial molecular bond. Examples of the above repeating units are repeating units represented by any of the above formulas (2) to (7).
 式(2)~式(7)において、R、R1、R2及びR3で表されるアルキル基またはアリール基は1つ以上の置換基を有し得る。適切な置換基としては、例えば4級アンモニウム基であるカチオン基、又は、例えば1級、2級若しくは3級アルキルもしくはアリールアミンであるアミン基等が挙げられる。他の適切な置換基の例としては、ヒドロキシ基、アルコキシ基、アルキル基、アリール基、ポリ(エチレンイミン)などのポリ(アルキレンイミン)等が挙げられる。
 上記繰り返し単位は、好ましくは、ポリ低級アルキレンイミン([Cm2mNH]n,mは1以上4以下の整数、nは2以上の整数)、ポリビニルアミン、ポリアリルアミンからなる群から選択される1以上の重合体に含まれる繰り返し単位であり、更に好ましくは、ポリエチレンイミン、ポリビニルアミン、ポリアリルアミンからなる群から選択される1以上の重合体に含まれる繰り返し単位である。
 上記1級アミノ基又はイミノ基を有する繰り返し単位をもった重合体は、直鎖構造、分岐構造、デンドリマー構造のいずれであってもよい。また、エピクロロヒドリン等の二官能性架橋剤で架橋されていてもよい。このような、上記重合体の製法は公知であり、例えば、特開2016-047849号公報及び同文献が引用する特許文献等に開示されている。
In formulas (2) to (7), the alkyl or aryl groups represented by R, R 1 , R 2 and R 3 may have one or more substituents. Suitable substituents include cationic groups, eg quaternary ammonium groups, or amine groups, eg primary, secondary or tertiary alkyl or arylamines. Examples of other suitable substituents include hydroxy groups, alkoxy groups, alkyl groups, aryl groups, poly(alkyleneimines) such as poly(ethyleneimine), and the like.
The repeating unit is preferably selected from the group consisting of poly-lower alkyleneimine ([ CmH2mNH ] n , m is an integer of 1 or more and 4 or less, n is an integer of 2 or more), polyvinylamine, and polyallylamine. More preferably, it is a repeating unit contained in one or more polymers selected from the group consisting of polyethyleneimine, polyvinylamine and polyallylamine.
The polymer having a repeating unit having a primary amino group or imino group may have any of a linear structure, a branched structure, and a dendrimer structure. It may also be crosslinked with a bifunctional crosslinker such as epichlorohydrin. Such a method for producing the polymer is known, and is disclosed, for example, in JP-A-2016-047849 and patent documents cited therein.
(重合体の重量平均分子量)
 上記1級アミノ基又はイミノ基を有する繰り返し単位をもった重合体の重量平均分子量は、本表面処理液の塗布ムラを抑制する観点から、10000以下であることが好ましく、5000以下であることがより好ましく、1500以下であることが更に好ましい。また、前記重量平均分子量は、塗布膜厚の不均一性を抑制する観点から、好ましくは200以上であり、より好ましくは450以上であり、更に好ましくは900以上である。なお、本明細書において、重合体の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC法)により計測されるポリスチレン換算の重量平均分子量を意味する。
(Weight average molecular weight of polymer)
The weight-average molecular weight of the polymer having a repeating unit having a primary amino group or imino group is preferably 10,000 or less, more preferably 5,000 or less, from the viewpoint of suppressing uneven coating of the surface treatment liquid. More preferably, it is 1500 or less. In addition, the weight average molecular weight is preferably 200 or more, more preferably 450 or more, and even more preferably 900 or more, from the viewpoint of suppressing non-uniformity of the coating film thickness. In addition, in this specification, the weight average molecular weight of a polymer means the weight average molecular weight of polystyrene conversion measured by a gel permeation chromatography (GPC method).
(重合体の濃度)
 本表面処理液における上記重合体の濃度は、界面分子結合における密着性を確保する観点から、0.01質量%以上が好ましく、0.02質量%以上がより好ましく、0.05質量%以上が更に好ましい。また、前記濃度は、塗布ムラを抑制する観点から、5質量%以下が好ましく、2質量%以下がより好ましく、1質量%以下が更に好ましい。
(Polymer concentration)
The concentration of the polymer in the present surface treatment liquid is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, and more preferably 0.05% by mass or more, from the viewpoint of ensuring adhesion in interfacial molecular bonding. More preferred. Moreover, from the viewpoint of suppressing coating unevenness, the concentration is preferably 5% by mass or less, more preferably 2% by mass or less, and even more preferably 1% by mass or less.
(化合物α)
 本表面処理液は化合物αを含む。化合物αは、一分子内に、アジド基、ジアゾメチル基又はアジドスルホニル基(X)と、ОH基又はアルコキシ基(Y)と、を有する化合物である。化合物αがアジド基、ジアゾメチル基又はアジドスルホニル基(X)(以下、アジド基等(X)と呼ぶ。)を有するから、本表面処理液は、紫外線の照射又は加熱処理により、界面分子結合が可能な表面処理を行うことができる。化合物αは、次の式(8)に示す構造をもつことが好ましい。
 (8) (X)m-A-(E-(Y)ln
ここで、m,nはそれぞれ1以上の整数である。Aは(m+n)価の有機基又は空基(直接結合)を表す。1又は複数のEは、それぞれ独立に(l+1)価の基を表す。1又は複数のYは、それぞれ独立にOH基又はアルコキシ基を表す。防爆性の観点からmは3以下であることが好ましく、2以下であることがより好ましく、1であることが更に好ましい。上記アルコキシ基は、メトキシ基、エトキシ基又はベンジルオキシ基であることが好ましい。
 基Eが空基でない場合には、基Eは、ОH基又はアルコキシ基(Y)が直接結合している基Eの原子が、当該原子と直接結合している基Eの他の原子に比べて電気陰性度が小さい基であることが好ましい。そのような場合には、ОH基又はアルコキシ基(Y)と、前記重合物の1級アミノ基又はイミノ基とが、低温でも結合を形成しやすい。そのような基Eは、例えば、カルボニル基(C=O)、スルホニル基(О=S=O)、リン酸基(P=O)等である。このうち、カルボニル基が更に好ましい。基Eがカルボニル基である場合には、基(E-(Y)l)は、カルボキシ基又はアルコキシカルボニル基であり、整数nは1であることが好ましい。
 (m+n)価の有機基Aは、アルカンにおいて、又は、芳香環に0以上のアルキル基が結合してなる化合物において、0以上の炭素-炭素1重結合(C-C)の炭素原子間に、エーテル結合(-O-)、チオエーテル結合(-S-)若しくはアミド結合を挿入してなる化合物、から(m+n)個のH原子を除いてなる有機基であることが好ましい。上記芳香環は、入手容易性の観点から好ましくは、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環又はビフェニル等である。
(Compound α)
The present surface treatment liquid contains compound α. Compound α is a compound having an azide group, a diazomethyl group or an azidosulfonyl group (X) and an OH group or an alkoxy group (Y) in one molecule. Since the compound α has an azide group, a diazomethyl group, or an azidosulfonyl group (X) (hereinafter referred to as an azide group or the like (X)), the present surface treatment liquid exhibits interfacial molecular bonding by irradiation with ultraviolet rays or heat treatment. Possible surface treatments can be performed. Compound α preferably has a structure represented by the following formula (8).
(8) (X) m -A-(E-(Y) l ) n
Here, m and n are integers of 1 or more. A represents an (m+n) valent organic group or an empty group (direct bond). One or more E's each independently represent a (l+1)-valent group. One or more Y's each independently represent an OH group or an alkoxy group. From the viewpoint of explosion resistance, m is preferably 3 or less, more preferably 2 or less, and even more preferably 1. The alkoxy group is preferably a methoxy group, an ethoxy group or a benzyloxy group.
If the group E is not an empty group, the group E is such that the atom of the group E to which the OH group or the alkoxy group (Y) is directly bonded is less than the other atoms of the group E to which it is directly bonded. is preferably a group with low electronegativity. In such a case, the OH group or alkoxy group (Y) and the primary amino group or imino group of the polymer are likely to form a bond even at low temperatures. Such groups E are, for example, carbonyl groups (C=O), sulfonyl groups (O=S=O), phosphate groups (P=O), and the like. Among these, a carbonyl group is more preferable. When the group E is a carbonyl group, the group (E-(Y) l ) is a carboxy group or an alkoxycarbonyl group and the integer n is preferably one.
The (m+n)-valent organic group A is, in an alkane or in a compound in which 0 or more alkyl groups are bonded to an aromatic ring, 0 or more carbon-carbon single bonds (C-C) between carbon atoms , an ether bond (--O--), a thioether bond (--S--) or a compound in which an amide bond is inserted, from which (m+n) H atoms are removed. From the standpoint of availability, the aromatic ring is preferably a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, biphenyl, or the like.
(化合物αにおける芳香環とアジド基等)
 樹脂の表面処理後の加圧プレスに伴う界面分子結合における密着性を確保する観点から、前記有機基Aは芳香環を含むことが好ましい。又、より高い密着性を確保する観点から、化合物αにおける前記アジド基等は、前記芳香環に直接的に結合していることが好ましい。芳香環に直接的に結合したアジド基等は、反応性に富むからである。更に、ポリイミド等の樹脂を劣化させにくい長波長の紫外線の照射により、又は紫外線照射なく低温の加熱処理のみにより、界面分子結合が可能な表面処理液を提供するという観点から、化合物αはベンゼン環を有することが好ましく、前記アジド基等は前記ベンゼン環に直接的に結合していることがより好ましい。
 有機基Aが芳香環を有し、かつ、それがベンゼン環である場合に、化合物αの好ましい例は、2-アジド安息香酸、3-アジド安息香酸、4-アジド安息香酸、2-アジドベンゼンスルホン酸、3-アジドベンゼンスルホン酸、4-アジドベンゼンスルホン酸等である。
 有機基Aが芳香環を有しない場合、化合物αの好ましい例は、アジド酢酸エチルエステル、ジエチルリン酸アジド等である。
(Aromatic ring and azide group in compound α, etc.)
The organic group A preferably contains an aromatic ring from the viewpoint of ensuring adhesion in interfacial molecular bonding that accompanies pressure pressing after surface treatment of the resin. Moreover, from the viewpoint of ensuring higher adhesion, it is preferable that the azide group or the like in the compound α is directly bonded to the aromatic ring. This is because an azide group or the like directly bonded to an aromatic ring is highly reactive. Furthermore, from the viewpoint of providing a surface treatment liquid capable of interfacial molecular bonding by irradiation with long-wavelength ultraviolet rays that do not easily deteriorate resins such as polyimide, or by only low-temperature heat treatment without ultraviolet irradiation, the compound α is a benzene ring. and more preferably the azide group or the like is directly bonded to the benzene ring.
When the organic group A has an aromatic ring and is a benzene ring, preferred examples of the compound α are 2-azidobenzoic acid, 3-azidobenzoic acid, 4-azidobenzoic acid, 2-azidobenzene sulfonic acid, 3-azidobenzenesulfonic acid, 4-azidobenzenesulfonic acid and the like.
When the organic group A does not have an aromatic ring, preferred examples of the compound α include ethyl azide acetate and diethyl phosphate azide.
 有機基Aが芳香環を有し、かつ、化合物αがカルボニル基を有する場合に、化合物αの好ましい例は、次の式(9)又は式(10)で表される化合物である。
 (9) X-A1-(CH2b-(C=O)-Y
 (10) X-A1-J-(CH2b-(C=O)-Y
ここで、Xは上記アジド基等である。YはOH基又はアルコキシ基である。2価の有機基A1は、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環又はビフェニル、好ましくはベンゼン環又はナフタレン環、更に好ましくはベンゼン環、から芳香環に直接結合した水素原子を2つ除いてなる基である。A1において芳香環に直接結合した1又は複数のH原子は、それぞれ独立に、ハロゲン、メチル基、エチル基、メトキシ基、エトキシ基、OH基又はホルミル基等の1価の有機基で置換されていてもよい。bは0以上12以下の整数、好ましくは0以上3以下の整数、更に好ましくは0である。Jはアミド結合であり、(C=O)NR又はNR(C=O)のいずれでもよく、ここでRは、H原子、炭素数が3以下のアルキル基、フェニル基、又はベンジル基である。
When the organic group A has an aromatic ring and the compound α has a carbonyl group, preferred examples of the compound α are compounds represented by the following formula (9) or (10).
(9) XA 1 -(CH 2 ) b -(C=O)-Y
(10) XA 1 -J-(CH 2 ) b -(C=O)-Y
Here, X is the above-mentioned azide group or the like. Y is an OH group or an alkoxy group. The divalent organic group A 1 is a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring or biphenyl, preferably a benzene ring or a naphthalene ring, more preferably a benzene ring, from which two hydrogen atoms directly bonded to the aromatic ring are removed. It is the basis for One or more H atoms directly bonded to the aromatic ring in A 1 are each independently substituted with a monovalent organic group such as halogen, methyl group, ethyl group, methoxy group, ethoxy group, OH group or formyl group. may be b is an integer of 0 or more and 12 or less, preferably 0 or more and 3 or less, more preferably 0; J is an amide bond and may be either (C=O)NR or NR(C=O), where R is an H atom, an alkyl group having up to 3 carbon atoms, a phenyl group, or a benzyl group .
(化合物αの製法)
 式(9)及び式(10)に示すような、化合物αの合成方法は特に限定されないが、例えば、アルコキシカルボニル基とアルコキシカルボニル基以外の官能基cをともに有する化合物Qと、上記官能基cと結合反応可能な反応性基dとベンゼン環等とアジド基等をともに有する化合物Lとを、公知の方法で反応させることにより得ることができる。官能基cと反応性基dの組合せとしては、イソシアネート基、エポキシ基、アミノ基等と、カルボキシ基との組合せなどが考えられる。
(Method for producing compound α)
The method for synthesizing compound α as shown in formulas (9) and (10) is not particularly limited. For example, compound Q having both an alkoxycarbonyl group and a functional group c other than an alkoxycarbonyl group, and can be obtained by reacting a reactive group d capable of bonding reaction with a compound L having both a benzene ring and the like and an azide group and the like by a known method. As a combination of the functional group c and the reactive group d, a combination of an isocyanate group, an epoxy group, an amino group, etc., and a carboxy group can be considered.
(化合物αの濃度)
 本表面処理液における化合物αの濃度は、界面分子結合における密着性を確保する観点から、0.01質量%以上が好ましく、0.02質量%以上がより好ましく、0.05質量%以上が更に好ましい。また、前記濃度は、塗布ムラを抑制する観点から、5質量%以下が好ましく、2質量%以下がより好ましく、1質量%以下が更に好ましい。
(concentration of compound α)
The concentration of compound α in the present surface treatment liquid is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, and further preferably 0.05% by mass or more, from the viewpoint of ensuring adhesion in interfacial molecular bonding. preferable. Moreover, from the viewpoint of suppressing coating unevenness, the concentration is preferably 5% by mass or less, more preferably 2% by mass or less, and even more preferably 1% by mass or less.
(表面処理液のpH)
 界面分子結合の形成を促進する観点、及び、本表面処理液で処理した樹脂への大気中のCО2やSО2の影響を防ぐ観点から、本表面処理液の25℃におけるpHは5.0以下であることが好ましく、4.5以下であることがより好ましく、4.0以下であることが更に好ましい。また、併存するアミド結合の形成反応と分解反応のうち、形成反応をより促進する観点から、本表面処理液の25℃におけるpHは1.0以上であることが好ましく、2.0以上であることがより好ましく、3.0以上であることが更に好ましい。本表面処理液のpHが上記条件を満たす弱酸性から酸性の領域にある場合には、本表面処理液で処理された樹脂を温度23℃,湿度50%の遮光された大気雰囲気の室内で7日間引き置いても、他の物質(樹脂や金属)との接合における密着性がほとんど低下しない。それに対して、本表面処理液のpHが中性からアルカリ性の領域にある場合には、遮光された非乾燥大気雰囲気で7日間引き置くと、密着性が顕著に低下する。その理由は定かではないが、おそらく、本表面処理液のpHが中性からアルカリ性の領域にある場合には、大気中のCО2やSО2が本表面処理液で処理された樹脂表面の吸着水中に溶解し、生じた炭酸イオン等が前記重合体の1級アミノ基又はイミノ基とイオン結合するために、密着に寄与する1級アミノ基又はイミノ基の数が減少するからであろう。一方、本表面処理液のpHが弱酸性から酸性の領域にある場合には、大気中のCО2やSО2が本表面処理液で処理された樹脂表面の吸着水中に溶解しにくいので、密着に寄与する1級アミノ基又はイミノ基の数があまり減少せず、密着性が保たれるのであろう。
 なお、本明細書において、表面処理液のpHは、25℃においてpH試験紙(UNIVERSAL試験紙,アドバンテック東洋株式会社製)で測定される値を意味し、その測定誤差は±0.5程度である。
(pH of surface treatment liquid)
From the viewpoint of promoting the formation of interfacial molecular bonds and from the viewpoint of preventing the influence of CO 2 and SO 2 in the atmosphere on the resin treated with this surface treatment liquid, the pH of this surface treatment liquid at 25 ° C. is 5.0. It is preferably 4.5 or less, more preferably 4.0 or less. In addition, from the viewpoint of further promoting the formation reaction of the coexisting amide bond formation reaction and decomposition reaction, the pH of the present surface treatment liquid at 25° C. is preferably 1.0 or more, and is 2.0 or more. is more preferable, and 3.0 or more is even more preferable. When the pH of the present surface treatment liquid is in the weakly acidic to acidic region that satisfies the above conditions, the resin treated with the present surface treatment liquid is placed in a room with a temperature of 23° C. and a humidity of 50% in a light-shielded atmospheric atmosphere for 7 days. Adhesion in bonding with other substances (resin or metal) hardly deteriorates even after being left for days. On the other hand, when the pH of the present surface treatment liquid is in the neutral to alkaline range, the adhesion is remarkably lowered when left for 7 days in a non-dry air atmosphere shielded from light. The reason for this is not clear, but it is probable that when the pH of the present surface treatment liquid is in the neutral to alkaline range, CO 2 and SO 2 in the atmosphere adsorb to the surface of the resin treated with the present surface treatment liquid. This is probably because carbonate ions and the like dissolved in water form ionic bonds with the primary amino groups or imino groups of the polymer, thereby reducing the number of primary amino groups or imino groups that contribute to adhesion. On the other hand, when the pH of the present surface treatment liquid is in the weakly acidic to acidic range, CO 2 and SO 2 in the atmosphere are difficult to dissolve in the adsorbed water on the surface of the resin treated with the present surface treatment liquid. Therefore, the number of primary amino groups or imino groups contributing to
In this specification, the pH of the surface treatment liquid means a value measured with a pH test paper (UNIVERSAL test paper, manufactured by Advantec Toyo Co., Ltd.) at 25° C., and the measurement error is about ±0.5. be.
(酸とその酸解離定数pKa)
 本表面処理液には更に酸を添加することができる。化合物αがアレニウス酸であり、その酸解離定数(化合物が多段階で解離する場合にはその第1段解離の解離定数のこと。25℃の水中における値。以下も同じ。)pKaが約4.0以下である場合には、多くのケースで本表面処理液における化合物αの濃度を適切に選ぶと、酸を添加しなくても本表面処理液のpHを5.0以下、より好ましくは4.5以下にすることができる。そうでない場合には、本表面処理液に酸を添加して、本表面処理液のpHを5.0以下、より望ましくは4.5以下にすることが好ましく、その場合には添加する酸の酸解離定数pKaは、約4.0以下であることが好ましい。
 本表面処理液に添加する酸としては、無機酸、有機酸等、無機酸、有機酸等の種々の酸が利用可能である。無機酸としては、限定されるものではないが、塩酸、硝酸、リン酸、硫酸、ホウ酸、フッ化水素酸、炭酸等が挙げられる。有機酸としては、限定されるものではないが、ギ酸、酢酸、プロピオン酸等の短鎖モノカルボン酸や、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、ベヘン酸、エルカ酸等の長鎖モノカルボン酸や、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、マレイン酸、フマル酸、フタル酸等のジカルボン酸や、グリコール酸、乳酸、ヒドロキシアクリル酸、グリセリン酸、リンゴ酸、酒石酸、クエン酸等のヒドロキシカルボン酸や、ポリグルタミン酸等のポリカルボン酸や、グルタミン酸、アスパラギン酸等の酸性アミノ酸や、アルキルサルフェート、アルキルスルホネート、アルキルリン酸エステル等が挙げられる。これらの中で、無機酸、短鎖モノカルボン酸、ジカルボン酸、ヒドロキシカルボン酸、酸性アミノ酸が一般的に用いられ、更に塩酸、硫酸、酢酸、クロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、コハク酸、マレイン酸、グリコール酸、乳酸、リンゴ酸、クエン酸、グルタミン酸が特に用いられる。これらの酸から選ばれた1以上の酸を同時に用いてもよく、前記1以上の酸の無水物を添加してもよい。本表面処理液に前記1以上の酸の無水物を添加することにより、前記1以上の酸を添加する場合と比べて、接合における密着性が顕著に向上する。これは、酸に替えて酸の無水物を添加することにより、熱プレスの際に前記酸と前記重合体が脱水縮合する際に生成する、水蒸気を含むガスの発生量が抑制されるからであると考えられる。また、本表面処理液に前記1以上の酸の無水物を添加することにより、前記1以上の酸を添加する場合と比べて、塗布後の引き置きによる上記密着性の低下が更に抑制される。
(Acid and its acid dissociation constant pKa)
An acid can be further added to the present surface treatment liquid. The compound α is Arrhenius acid, and its acid dissociation constant (when the compound dissociates in multiple steps, it is the dissociation constant of the first step dissociation. Value in water at 25° C. The same shall apply hereinafter.) pKa is about 4. When the concentration of the compound α in the surface treatment solution is appropriately selected in many cases, the pH of the surface treatment solution can be lowered to 5.0 or less, more preferably 5.0 or less, even without the addition of an acid. 4.5 or less. Otherwise, it is preferable to add an acid to the present surface treatment liquid to adjust the pH of the present surface treatment liquid to 5.0 or less, more preferably 4.5 or less. Preferably, the acid dissociation constant pKa is less than or equal to about 4.0.
Various acids such as inorganic acids and organic acids can be used as the acid to be added to the present surface treatment liquid. Inorganic acids include, but are not limited to, hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, boric acid, hydrofluoric acid, carbonic acid, and the like. Examples of organic acids include, but are not limited to, short-chain monocarboxylic acids such as formic acid, acetic acid and propionic acid, and lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, behenic acid and erucic acid. Long-chain monocarboxylic acids, dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, fumaric acid, phthalic acid, glycolic acid, lactic acid, hydroxyacrylic acid, glyceric acid, malic acid , hydroxycarboxylic acids such as tartaric acid and citric acid, polycarboxylic acids such as polyglutamic acid, acidic amino acids such as glutamic acid and aspartic acid, alkyl sulfates, alkyl sulfonates, and alkyl phosphates. Among these, inorganic acids, short-chain monocarboxylic acids, dicarboxylic acids, hydroxycarboxylic acids, acidic amino acids are commonly used, as well as hydrochloric acid, sulfuric acid, acetic acid, chloroacetic acid, dichloroacetic acid, trichloroacetic acid, succinic acid, maleic acid. Acids, glycolic acid, lactic acid, malic acid, citric acid, glutamic acid are especially used. One or more acids selected from these acids may be used at the same time, and anhydrides of the one or more acids may be added. By adding one or more acid anhydrides to the present surface treatment liquid, adhesion in bonding is remarkably improved as compared with the case where one or more acids are added. This is because the addition of an acid anhydride in place of the acid suppresses the amount of gas containing water vapor that is generated when the acid and the polymer undergo dehydration condensation during hot pressing. It is believed that there is. In addition, by adding one or more acid anhydrides to the present surface treatment liquid, the decrease in adhesion due to leaving after coating is further suppressed as compared with the case where the one or more acids are added. .
(酸の濃度)
 本表面処理液に前記酸又はその無水物を添加する場合、その濃度は、界面分子結合における密着性を確保する観点から、0.01質量%以上が好ましく、0.02質量%以上がより好ましく、0.05質量%以上が更に好ましい。また、前記濃度は、塗布ムラを抑制する観点から、5質量%以下が好ましく、2質量%以下がより好ましく、1質量%以下が更に好ましい。なお、上記の通り、化合物αがある程度強いアレニウス酸である場合には、本表面処理液に前記酸又はその無水物を添加しなくてもよい。
(concentration of acid)
When the acid or its anhydride is added to the present surface treatment liquid, the concentration thereof is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, from the viewpoint of ensuring adhesion in interfacial molecular bonding. , more preferably 0.05% by mass or more. Moreover, from the viewpoint of suppressing coating unevenness, the concentration is preferably 5% by mass or less, more preferably 2% by mass or less, and even more preferably 1% by mass or less. As described above, when the compound α is Arrhenius acid having a certain degree of strength, it is not necessary to add the acid or its anhydride to the present surface treatment liquid.
<表面処理樹脂の製造方法>
 図3のフロー図を参照して、本発明の一形態によれば、上記いずれかの形態の表面処理液を樹脂の表面に塗布する工程(塗布工程(S2))と、前記表面処理液が塗布された前記樹脂の表面を加熱する工程(加熱活性化工程(S4))と、を具える表面処理樹脂の製造方法を提供することができる。
<Method for producing surface-treated resin>
With reference to the flowchart of FIG. 3, according to one aspect of the present invention, a step of applying the surface treatment liquid of any one of the above aspects to the surface of a resin (application step (S2)); It is possible to provide a method for producing a surface-treated resin comprising a step of heating the surface of the applied resin (heat activation step (S4)).
(塗布工程)
 塗布工程(S2)では、ポリイミドフィルム等の樹脂に本表面処理液等の処理液を塗布する。ここで「塗布する」とは、当該樹脂の表面に処理液を「付着させる」又は「接触状態で存在させる」ことを言う。塗布する方法としては、従来公知のコーティング方法、例えば、刷毛塗り方式、インクジェット方式、グラビアコート方式、リップコート方式、コンマコート方式、ブレードコート方式、ロールコート方式、ナイフコート方式、スプレーコート方式、バーコート方式、スピンコート方式、ディップコート方式が挙げられる。処理液を塗布したときの塗膜の厚さ(ウェット膜厚)の下限は、表面処理樹脂と他の物質(樹脂や金属)との密着性を確保する観点から、例えば0.5μmが好ましく、1.5μmがより好ましく、5μmが更に好ましい。同じく塗膜の厚さ(乾燥膜厚)の下限は、例えば1nmが好ましく、3nmがより好ましく、10nmが更に好ましい。一方、この塗膜の厚さ(ウェット膜厚)の上限は、塗布容易性及び塗布ムラ抑制の観点から、例えば500μmが好ましく、150μmがより好ましく、50μmが更に好ましい。同じく塗膜の厚さ(乾燥膜厚)の上限は、例えば1μmが好ましく、300nmがより好ましく、100nmが更に好ましい。ディップコート方式を用いた場合の浸漬時間としては、例えば3秒以上60秒以下が好ましい。「塗布」は、樹脂の表面の一部に対して行われてもよいし、樹脂の表面の全面に対して行われてもよい。また、樹脂がフィルム状若しくはシート状の場合、「塗布」は、樹脂の表又は裏の片面に対してのみ行われてもよいし、樹脂の表及び裏の両面に対して行われてもよい。
 なお、「塗布」の後には通常、処理液を塗布した樹脂の表面を、大気雰囲気での自然乾燥、風乾、又は40℃~70℃程度の温風吹付等により乾燥させる工程(乾燥工程)が行われる。上記の塗布工程及び乾燥工程により、本表面処理液が含有する化合物α、及び、1級アミノ基又はイミノ基を有する繰り返し単位をもった重合体が、上記樹脂の表面に配置される。
(Coating process)
In the coating step (S2), a treatment liquid such as the present surface treatment liquid is applied to a resin such as a polyimide film. Here, "coating" means "adhering" or "existing in contact with" the treatment liquid on the surface of the resin. Examples of the coating method include conventionally known coating methods such as brush coating, inkjet, gravure coating, lip coating, comma coating, blade coating, roll coating, knife coating, spray coating, and bar coating. A coating method, a spin coating method, and a dip coating method can be used. The lower limit of the thickness of the coating film when the treatment liquid is applied (wet film thickness) is preferably 0.5 μm, for example, from the viewpoint of ensuring the adhesion between the surface treatment resin and other substances (resins and metals). 1.5 μm is more preferred, and 5 μm is even more preferred. Similarly, the lower limit of the thickness (dry film thickness) of the coating film is preferably 1 nm, more preferably 3 nm, and still more preferably 10 nm. On the other hand, the upper limit of the thickness of the coating film (wet film thickness) is preferably, for example, 500 μm, more preferably 150 μm, and even more preferably 50 μm, from the viewpoint of ease of coating and suppression of coating unevenness. Similarly, the upper limit of the thickness (dry film thickness) of the coating film is preferably 1 μm, more preferably 300 nm, and still more preferably 100 nm. The immersion time when the dip coating method is used is preferably, for example, 3 seconds or more and 60 seconds or less. "Application" may be performed on a part of the surface of the resin, or may be performed on the entire surface of the resin. Further, when the resin is in the form of a film or a sheet, the "coating" may be performed only on one side of the resin, or may be performed on both the front and back sides of the resin. .
After the “coating”, there is usually a process (drying process) of drying the surface of the resin coated with the treatment liquid by natural drying, air drying, or hot air blowing at about 40°C to 70°C. done. The compound α contained in the present surface treatment liquid and the polymer having a repeating unit having a primary amino group or imino group are arranged on the surface of the resin by the coating step and the drying step described above.
(加熱活性化工程)
 加熱活性化工程(S4)では、本表面処理液を塗布した樹脂の表面を加熱する。加熱により、当該表面は、他の樹脂との加熱圧着や金属めっき等の接合に適した状態となる。加熱時の樹脂の表面の温度は、例えば80~160℃、好ましくは90℃~120℃であり、樹脂の表面がその温度に保たれる時間は、例えば30秒~60分、好ましくは5~20分である。加熱活性化工程において生じている現象の解析は困難であるが、およそ次のような現象が生じているものと推測される。加熱処理により化合物αが有するアジド基が分解されてN2ガスが離脱し、ラジカルが生成して、化合物αが樹脂、金属及び前記重合物との結合に適した状態になるであろう。また、加熱により、化合物αが有するОH基又はアルコキシ基が、前記重合体の有する1級アミノ基又はイミノ基と、脱水縮合反応又は加水分解脱水縮合反応によりアミド結合を形成して、化合物αと前記重合物が縮合してなる縮合物の極めて薄い層を形成するであろう。更に、化合物αが有するОH基又はアルコキシ基が、樹脂表面のOH基等と脱水縮合又は加水分解脱水縮合して、化合物αと樹脂表面との間に結合を形成するであろう。このようにして、加熱活性化工程では、樹脂の表面に密着した縮合物の極めて薄い層が形成され、当該縮合物の表面は、別の樹脂や金属との結合に適した状態になると考えられる。
 本発明の本形態に係る表面処理樹脂の製造方法により作製された表面処理樹脂は、温度23℃,湿度50%の遮光された大気雰囲気の室内で7日間引き置いても、活性化状態が保たれており、他の物質(樹脂や金属)との接合における密着性がほとんど低下しない。7日間の引き置きによるピール強度の低下割合は10%以内若しくは25%以内である。
(heat activation step)
In the heat activation step (S4), the surface of the resin coated with the present surface treatment liquid is heated. By heating, the surface is brought into a state suitable for thermocompression bonding with other resins, metal plating, or the like. The temperature of the surface of the resin during heating is, for example, 80 to 160° C., preferably 90 to 120° C., and the time for which the surface of the resin is maintained at that temperature is, for example, 30 seconds to 60 minutes, preferably 5 to 120° C. 20 minutes. Although it is difficult to analyze the phenomenon occurring in the heat activation process, it is presumed that the following phenomenon occurs. The heat treatment will decompose the azide group of the compound α, liberate N 2 gas, generate radicals, and bring the compound α into a state suitable for bonding with resins, metals and the above polymers. Further, by heating, the OH group or alkoxy group possessed by the compound α forms an amide bond with the primary amino group or imino group possessed by the polymer through a dehydration condensation reaction or a hydrolytic dehydration condensation reaction to form an amide bond with the compound α. The polymer will condense to form a very thin layer of condensate. Furthermore, the OH group or alkoxy group of the compound α will undergo dehydration condensation or hydrolytic dehydration condensation with the OH group or the like on the surface of the resin to form a bond between the compound α and the surface of the resin. Thus, it is believed that the heat activation step forms a very thin layer of condensate that adheres to the surface of the resin, leaving the surface of the condensate in a state suitable for bonding with another resin or metal. .
The surface-treated resin produced by the method for producing a surface-treated resin according to the present embodiment of the present invention maintains its activated state even after being placed in a room with a temperature of 23° C. and a humidity of 50% in a light-shielded atmosphere for 7 days. It is sagging, and adhesion to other substances (resin or metal) is hardly reduced. The rate of decrease in peel strength due to leaving for 7 days is within 10% or within 25%.
(UV活性化工程)
 本発明の別の一形態によれば、上記の塗布工程と、本発明のいずれかの形態の表面処理液が塗布された樹脂の表面に紫外線を照射する工程(UV活性化工程(S6))を具える表面処理樹脂の製造方法を提供することができる。上記の加熱活性化工程では、加熱により化合物αが有するアジド基が分解したのであるが、UV活性化工程においては、紫外線の照射処理により化合物αが有するアジド基が分解されてN2ガスが離脱し、ラジカルが生成して、化合物αが樹脂、金属及び前記重合物との結合に適した状態になると考えられる。照射する紫外線の波長は、密着性の確保及び紫外線によるポリイミドフィルム等の樹脂の劣化防止の観点から、好ましくは260~350nm、更に好ましくは330~350nmである。紫外線光源としては、水銀ランプ、メタルハライドランプ及びUV-LEDのいずれを用いてもよい。
 本発明の本形態においては、UV活性化工程に加えて、上記の加熱活性化工程を行ってもよい。その場合、加熱活性化工程とUV活性化工程の順序は問わず、いずれが先でもよいし、同時に行ってもよい。又、塗布工程と加熱活性化工程とUV活性化工程を、副生成物除去のための活性化後洗浄処理工程(S8)等の他の処理と組み合わせて、或いは、組み合わせることなく、任意の順序で反復適用してもよい。
 本発明の本形態に係る表面処理樹脂の製造方法により作製された表面処理樹脂も、温度23℃,湿度50%の遮光された大気雰囲気の室内で7日間引き置いても、活性化状態が保たれており、他の物質(樹脂や金属)との接合における密着性がほとんど低下しない。7日間の引き置きによるピール強度の低下割合は10%以内若しくは25%以内である。
(UV activation step)
According to another aspect of the present invention, the coating step and the step of irradiating the surface of the resin coated with the surface treatment liquid of any aspect of the present invention with ultraviolet rays (UV activation step (S6)). It is possible to provide a method for producing a surface-treated resin comprising In the above heat activation step, the azide group of the compound α was decomposed by heating, but in the UV activation step, the azide group of the compound α was decomposed by the ultraviolet irradiation treatment and N gas was released. Then, it is thought that radicals are generated and the compound .alpha. is brought into a state suitable for bonding with the resin, the metal and the polymer. The wavelength of the ultraviolet rays to be irradiated is preferably 260 to 350 nm, more preferably 330 to 350 nm, from the viewpoint of ensuring adhesion and preventing deterioration of resins such as polyimide films due to ultraviolet rays. Any of a mercury lamp, a metal halide lamp, and a UV-LED may be used as the ultraviolet light source.
In this embodiment of the present invention, the heat activation step may be performed in addition to the UV activation step. In that case, the order of the heat activation step and the UV activation step does not matter, and either of them may be performed first, or they may be performed simultaneously. In addition, the coating step, the heat activation step, and the UV activation step may be combined with or not combined with other treatments such as the post-activation cleaning treatment step (S8) for removing by-products, or in any order. can be applied iteratively.
The surface-treated resin produced by the method for producing a surface-treated resin according to the present embodiment of the present invention also retains its activated state even after being left in a room with a temperature of 23° C. and a humidity of 50% in a shaded atmosphere for 7 days. It is sagging, and adhesion to other substances (resin or metal) is hardly reduced. The rate of decrease in peel strength due to leaving for 7 days is within 10% or within 25%.
(前処理工程)
 本発明の別の一形態によれば、本発明のいずれかの形態に係る表面処理液を樹脂の表面に塗布する工程の前に、前記樹脂に対して、洗浄処理、酸処理、アルカリ処理、コロナ放電処理、プラズマ処理、紫外線照射処理、ケイ酸化炎処理(「イトロ処理」とも呼ばれる。)及び脱フッ素化処理からなる群より選ばれる1つ以上の前処理を行う工程(前処理工程(S1))を更に具える、表面処理樹脂の製造方法を提供することができる。
 前処理工程は、ポリイミドフィルム等の樹脂の表面に前処理を行う工程であり、後の塗布工程及び乾燥工程において樹脂の表面に配置される、化合物α、及び、1級アミノ基又はイミノ基を有する繰り返し単位をもった重合体が、当該表面に固定され易くする目的で、並びに、さらに後の加熱活性化工程及び/又はUV活性化工程を効率的に行う目的で実施する。前処理工程を実施することにより、樹脂は、その表面にOH基、カルボキシ基、カルボニル基、1級アミノ基又はイミノ基等の官能基が存在する活性化された状態となり、化合物αと結合を形成し易くなる。前処理工程としては、洗浄処理、酸処理、アルカリ処理、当該樹脂の表面にコロナ放電照射を行うコロナ放電処理、当該樹脂の表面をアルゴンプラズマ、酸素プラズマ又は大気プラズマ等のプラズマで処理するプラズマ処理、紫外線照射処理、及び、当該樹脂の表面をシラン化合物等のカップリング剤を混入した燃焼ガスの燃焼炎にさらすケイ酸化炎処理(イトロ処理)からなる群から選ばれた1以上の処理を行うことができる。1つの処理のみを実施してもよく、これらの処理の複数を組み合わせて実施してもよい。
 本発明の本形態に係る表面処理樹脂の製造方法により作製された表面処理樹脂も、温度23℃,湿度50%の遮光された大気雰囲気の室内で7日間引き置いても、活性化状態が保たれており、他の物質(樹脂や金属)との接合における密着性がほとんど低下しない。7日間の引き置きによるピール強度の低下割合は10%以内若しくは25%以内である。
(Pretreatment step)
According to another aspect of the present invention, before the step of applying the surface treatment liquid according to any aspect of the present invention to the surface of the resin, the resin is subjected to washing treatment, acid treatment, alkali treatment, A step of performing one or more pretreatments (pretreatment step (S1 )), a method for producing a surface-treated resin can be provided.
The pretreatment step is a step of pretreating the surface of a resin such as a polyimide film. It is carried out for the purpose of facilitating fixation of the polymer having repeating units on the surface, and also for the purpose of efficiently performing the subsequent heat activation step and/or UV activation step. By performing the pretreatment step, the resin is in an activated state in which functional groups such as OH groups, carboxyl groups, carbonyl groups, primary amino groups, imino groups, etc. are present on the surface of the resin, and bonding with the compound α is achieved. easier to form. The pretreatment process includes cleaning treatment, acid treatment, alkali treatment, corona discharge treatment in which the surface of the resin is irradiated with corona discharge, and plasma treatment in which the surface of the resin is treated with plasma such as argon plasma, oxygen plasma, or atmospheric plasma. , ultraviolet irradiation treatment, and silicification flame treatment (itro treatment) in which the surface of the resin is exposed to combustion flames of combustion gas mixed with a coupling agent such as a silane compound. be able to. Only one process may be performed, or a plurality of these processes may be combined and performed.
The surface-treated resin produced by the method for producing a surface-treated resin according to the present embodiment of the present invention also retains its activated state even after being left in a room with a temperature of 23° C. and a humidity of 50% in a shaded atmosphere for 7 days. It is sagging, and adhesion to other substances (resin or metal) is hardly reduced. The rate of decrease in peel strength due to leaving for 7 days is within 10% or within 25%.
<樹脂フィルム積層体の製造方法>
 本発明の一形態によれば、複数枚の樹脂フィルムを用意して重ね合わせる工程(重ね合わせ工程)を含み、重ね合わされた前記複数枚の樹脂フィルムにおいて、隣接する任意の2枚の樹脂フィルムAとBのうち、少なくとも一方の樹脂フィルムAは、樹脂フィルムAの表裏のうち、少なくとも樹脂フィルムBと対向する側の表面に、本発明のいずれかの形態に係る表面処理樹脂の製造方法により処理が行われてなる表面処理樹脂フィルムであり、力を加えることにより、重ね合わされた前記複数枚の樹脂フィルムが一体的に結合される工程(加圧工程)を具える、樹脂フィルム積層体の製造方法を提供することができる。前記加圧工程では、例えば、大気雰囲気下、窒素雰囲気下あるいは真空中で、平板プレス、ロールプレス等を行う。生産性向上及び加工コスト低減の観点からは、大気雰囲気下での平板プレス又はロールプレスが好ましい。製造される樹脂フィルム積層体の品質安定性の観点からは、窒素雰囲気下又は真空中でのプレスが好ましい。プレス圧力は1~100MPaが好ましく、30~70MPaであることが更に好ましい。一般にプレス圧力が大きいほど製造される積層体の密着強度が大きくなり好ましいが、プレス圧力が大きすぎると支持体を破損するおそれがある。上記の圧力を加える時間は、例えば5~60分、より好ましくは10~20分である。前記加圧工程においては、同時に加熱を行うことが好ましい。加圧工程における前記樹脂フィルムの温度は、その耐熱温度を越えない範囲内とする。前記温度は、例えば40℃以上350℃以下、好ましくは120℃以上250℃以下、より好ましくは150℃以上230℃以下である。
<Method for producing resin film laminate>
According to one aspect of the present invention, a step of preparing and stacking a plurality of resin films (stacking step) is included, and in the plurality of stacked resin films, any two adjacent resin films A are and B, at least one of the resin film A is treated by the method for producing a surface-treated resin according to any one of the embodiments of the present invention, at least on the surface of the side facing the resin film B among the front and back of the resin film A. Manufacture of a resin film laminate comprising a step (pressing step) in which the plurality of resin films are integrally bonded by applying force. can provide a method. In the pressurizing step, for example, plate pressing, roll pressing, or the like is performed under an air atmosphere, a nitrogen atmosphere, or in a vacuum. From the viewpoint of productivity improvement and processing cost reduction, flat plate press or roll press under an air atmosphere is preferable. From the viewpoint of quality stability of the resin film laminate to be produced, pressing in a nitrogen atmosphere or in vacuum is preferred. The pressing pressure is preferably 1-100 MPa, more preferably 30-70 MPa. In general, the higher the pressing pressure, the higher the adhesion strength of the laminate produced, which is preferable. However, if the pressing pressure is too high, the support may be damaged. The time for which the pressure is applied is, for example, 5 to 60 minutes, more preferably 10 to 20 minutes. Heating is preferably performed at the same time as the pressing step. The temperature of the resin film in the pressing step should be within a range not exceeding the heat resistant temperature. The temperature is, for example, 40° C. or higher and 350° C. or lower, preferably 120° C. or higher and 250° C. or lower, more preferably 150° C. or higher and 230° C. or lower.
 図1A、図1B及び図1Cは、上記重ね合わせ工程において重ねあわされた4枚の表面処理樹脂フィルム(以下、単にフィルムと呼ぶ。)1、2、3及び4の、表面処理のいくつかの可能なパターンを示す。図1Aでは、フィルム1は上面のみに表面処理が施されたフィルム(U)であり、フィルム2及び3は、いずれも両面に表面処理が施されたフィルム(B)であり、フィルム4は下面のみに表面処理が施されたフィルム(D)である。このパターンは(UBBD)と表すことができる。図1Bでは、同様に、そのパターンを(UUUN)と表すことができる。ここで、フィルム4はいずれの面にも表面処理を施していないフィルム(N)である。図1Cでは、そのパターンを(UUUD)と表すことができる。
 なお、積層体を構成する樹脂フィルムの枚数と各フィルムの厚みは任意であり、2枚、3枚、4枚、5枚、又は6枚以上など、用途に応じて適切な枚数と厚みの樹脂フィルムを用いて、樹脂フィルム積層体を製造することができる。
FIGS. 1A, 1B, and 1C show some of the surface treatments of the four surface-treated resin films (hereinafter simply referred to as films) 1, 2, 3, and 4 superimposed in the superimposing step. Show possible patterns. In FIG. 1A, film 1 is a film (U) that is surface-treated only on the upper surface, films 2 and 3 are both films that are surface-treated (B) on both sides, and film 4 is a film on the lower surface. It is a film (D) in which only the surface treatment is applied. This pattern can be represented as (UBBD). In FIG. 1B, the pattern can similarly be represented as (UUUN). Here, the film 4 is a film (N) in which no surface treatment is applied. In FIG. 1C, the pattern can be represented as (UUUD).
The number of resin films and the thickness of each film constituting the laminate are arbitrary. The film can be used to produce a resin film laminate.
<樹脂フィルム積層体>
 本発明の一形態によれば、複数枚の樹脂フィルムが、少なくとも1組の、隣接する2枚の前記樹脂フィルムの間に縮合物層を介して、積層してなる樹脂フィルム積層体であり、前記縮合物層は、化合物αと、1級アミノ基又はイミノ基を有する繰り返し単位をもった重合体との脱水縮合物又は加水分解脱水縮合物を含み、前記化合物αは、一分子内に、アジド基、ジアゾメチル基又はアジドスルホニル基と、ОH基又はアルコキシ基と、を有する化合物である樹脂フィルム積層体を提供することができる。
<Resin film laminate>
According to one aspect of the present invention, a resin film laminate obtained by laminating at least one set of a plurality of resin films with a condensate layer interposed between two adjacent resin films, The condensate layer contains a dehydration condensate or hydrolytic dehydration condensate of a compound α and a polymer having a repeating unit having a primary amino group or an imino group, and the compound α contains, in one molecule, A resin film laminate that is a compound having an azide group, a diazomethyl group or an azidosulfonyl group and an OH group or an alkoxy group can be provided.
(界面分子結合メカニズムの推定)
 本発明における界面分子結合のメカニズムを検証することは容易ではないが、縮合物層で、およそ図2に示すような化学結合が生じているものと推測される。化合物αとして4-アジド安息香酸(以下、単にアジド安息香酸と呼ぶ。)を、前記重合体としてポリエチレンイミンを例に説明するが、一般の場合も同様である。
 図2は、3枚の樹脂フィルム5,6及び7が積層してなる樹脂フィルム積層体9を示す。樹脂フィルム5と6は、本発明に係る縮合物層8を介して接合している。樹脂フィルム6と7は、樹脂フィルム5と6と同様にして接合していてもよく、或いは、例えば高温プレスなどの他の方法で接合していてもよい。樹脂フィルム5及び6の表面には元々、又は前記前処理工程で生じた、OH基、カルボキシ基、カルボニル基、1級アミノ基又はイミノ基等が存在する。
 アジド安息香酸由来部分A1は、アジド基が分解して生じたラジカルにより、樹脂フィルム5の表面とラジカル結合する。A1のカルボキシ基とポリエチレンイミン構造Pのイミノ基とは、脱水縮合して、アミド結合を形成している。
 アジド安息香酸由来部分A2のカルボキシ碁と、樹脂フィルム6の表面のOH基とは、脱水縮合している。A2は、アジド基が分解して生じたラジカルにより、ポリエチレンイミン構造Pとラジカル結合する。
 アジド安息香酸由来部分A3は、アジド基が分解して生じたラジカルにより、樹脂フィルム5の表面とラジカル結合する。A3のカルボキシ碁と、アジド安息香酸由来部分A4のカルボキシ基とは、脱水縮合により酸無水物を形成している。A4のアジド基は、アジド基が分解して生じたラジカルにより、ポリエチレンイミン構造Pとラジカル結合する。
 アジド安息香酸由来部分A5のカルボキシ基は、樹脂フィルム6の表面のカルボキシ基と、脱水縮合により酸無水物を形成している。A5のアジド基と、アジド安息香酸由来部分A6のアジド基とは、いずれも分解した後、ラジカル結合して、ジアゾ結合(-N=N-)を形成する。A6のカルボキシ碁と、ポリエチレンイミン構造Pのイミノ基とは、脱水縮合して、アミド結合を形成する。また、図示は省略するが、樹脂フィルム6の表面にアミノ基が存在する場合、当該アミノ基と、アジド安息香酸由来部分A5のカルボキシ基とが、脱水縮合によりアミド結合を形成する結合形態もあり得る。
 なお、ポリエチレンイミン構造Pを介さずに、アジド安息香酸2分子以上の結合により、樹脂フィルム5と6を結びつける結合形態も想定できるが、後述する実験結果を見る限り、そのような結合形態の寄与は小さいと考えられる。
(Prediction of interfacial molecular binding mechanism)
Although it is not easy to verify the mechanism of interfacial molecular bonding in the present invention, it is presumed that chemical bonding as shown in FIG. 2 occurs in the condensate layer. An example of 4-azidobenzoic acid (hereinafter simply referred to as azidobenzoic acid) as the compound α and polyethyleneimine as the polymer will be described, but the same applies to general cases.
FIG. 2 shows a resin film laminate 9 in which three resin films 5, 6 and 7 are laminated. The resin films 5 and 6 are joined via the condensate layer 8 according to the present invention. The resin films 6 and 7 may be joined in the same manner as the resin films 5 and 6, or may be joined by other methods such as hot pressing. An OH group, a carboxyl group, a carbonyl group, a primary amino group, an imino group, or the like is present on the surface of the resin films 5 and 6 originally or generated in the pretreatment step.
The azidobenzoic acid-derived portion A1 is radically bonded to the surface of the resin film 5 by radicals generated by decomposition of the azide group. The carboxy group of A1 and the imino group of the polyethyleneimine structure P undergo dehydration condensation to form an amide bond.
The carboxyl group of the azidobenzoic acid-derived portion A2 and the OH group on the surface of the resin film 6 undergo dehydration condensation. A2 is radically bonded to the polyethyleneimine structure P by a radical generated by decomposition of the azide group.
The azidobenzoic acid-derived moiety A3 is radically bonded to the surface of the resin film 5 by radicals generated by decomposition of the azide group. The carboxy group of A3 and the carboxy group of the azidobenzoic acid-derived moiety A4 form an acid anhydride through dehydration condensation. The azide group of A4 is radically bonded to the polyethyleneimine structure P by a radical generated by decomposition of the azide group.
The carboxy group of the azidobenzoic acid-derived portion A5 forms an acid anhydride with the carboxy group on the surface of the resin film 6 through dehydration condensation. The azide group of A5 and the azide group of the azidobenzoic acid-derived moiety A6 are both decomposed and then radically bonded to form a diazo bond (--N=N--). The carboxyl group of A6 and the imino group of the polyethyleneimine structure P undergo dehydration condensation to form an amide bond. Further, although illustration is omitted, when an amino group exists on the surface of the resin film 6, there is also a bonding form in which the amino group and the carboxy group of the azidobenzoic acid-derived portion A5 form an amide bond through dehydration condensation. obtain.
It should be noted that it is possible to assume a bonding form in which the resin films 5 and 6 are bound together by bonding two or more molecules of azidobenzoic acid without via the polyethyleneimine structure P, but as far as the experimental results described later are concerned, such a bonding form contributes to is considered to be small.
<ポリイミドフィルム積層体>
 本発明の一形態によれば、前記複数枚の樹脂フィルムが、すべてポリイミドフィルムである樹脂フィルム積層体(ポリイミドフィルム積層体)を提供できる。本形態のポリイミドフィルム積層体は、高耐熱性の非熱可塑性樹脂としてのポリイミドの特性を損なうことなく引き継ぎ、また、ポリイミドフィルムを本発明の表面処理液を用いて表面処理した後に、非乾燥大気雰囲気で7日間引き置いてから加圧してポリイミドフィルム積層体を構成しても密着性が保たれているから、製造工程の自由度が増す利点を有する。7日間の引き置きによるピール強度の低下割合は10%以内若しくは25%以内である。
<Polyimide film laminate>
According to one aspect of the present invention, it is possible to provide a resin film laminate (polyimide film laminate) in which all of the plurality of resin films are polyimide films. The polyimide film laminate of the present embodiment inherits the properties of polyimide as a highly heat-resistant non-thermoplastic resin without impairing the properties of the polyimide film. Even if the polyimide film laminate is constructed by leaving it in the atmosphere for 7 days and then pressurizing it, the adhesiveness is maintained, so there is an advantage that the degree of freedom in the manufacturing process increases. The rate of decrease in peel strength due to leaving for 7 days is within 10% or within 25%.
(ポリイミド)
 本発明の一形態において、樹脂として使用されるポリイミドは公知の物質であり、ジアミン成分とテトラカルボン酸二無水物成分を主成分として用いて重縮合反応により得ることができる。ポリイミドフィルムは一般に、溶媒中でジアミン成分とテトラカルボン酸二無水物成分とを反応させて得られるポリアミド酸溶液を、支持体に塗布、乾燥してグリーンフィルムとなし、さらに高温熱処理して脱水閉環反応を行わせることによって得られる。原料として用いるジアミン成分及びテトラカルボン酸二無水物成分は、樹脂フィルム積層体や金属被覆樹脂の用途に応じて求められる諸特性を考慮の上、適宜最適なものが選択される。
(polyimide)
In one embodiment of the present invention, the polyimide used as the resin is a known substance, and can be obtained by a polycondensation reaction using a diamine component and a tetracarboxylic dianhydride component as main components. A polyimide film is generally prepared by applying a polyamic acid solution obtained by reacting a diamine component and a tetracarboxylic dianhydride component in a solvent to a support, drying it to form a green film, and then performing dehydration ring closure by high-temperature heat treatment. It is obtained by allowing the reaction to take place. The diamine component and the tetracarboxylic dianhydride component used as raw materials are suitably selected in consideration of various properties required according to the application of the resin film laminate and the metal-coated resin.
 ポリアミド酸を構成するテトラカルボン酸二無水物成分としては、ポリイミド合成に通常用いられる芳香族テトラカルボン酸二無水物類や、脂環式テトラカルボン酸二無水物類、脂肪族テトラカルボン酸二無水物類を用いることができる。中でも、芳香族テトラカルボン酸二無水物類、脂環式テトラカルボン酸二無水物類が好ましい。耐熱性の観点からは芳香族テトラカルボン酸二無水物類がより好ましく、光透過性の観点からは脂環式テトラカルボン酸二無水物類がより好ましい。 The tetracarboxylic dianhydride component constituting the polyamic acid includes aromatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, and aliphatic tetracarboxylic dianhydrides that are commonly used in polyimide synthesis. Objects can be used. Among them, aromatic tetracarboxylic dianhydrides and alicyclic tetracarboxylic dianhydrides are preferred. Aromatic tetracarboxylic dianhydrides are more preferable from the viewpoint of heat resistance, and alicyclic tetracarboxylic dianhydrides are more preferable from the viewpoint of light transmittance.
 芳香族テトラカルボン酸二無水物類としては、特に限定されないが、前記化合物αがベンゼン環を有する場合には、化合物αとの親和性及び結合容易性の観点から、ベンゼン環又は置換基を具えたベンゼン環を有する酸二無水物であることが好ましく、ベンゼン環又は置換基を具えたベンゼン環以外の芳香環を有しない酸二無水物であることがより好ましい。 The aromatic tetracarboxylic dianhydride is not particularly limited, but when the compound α has a benzene ring, from the viewpoint of affinity with the compound α and ease of bonding, It is preferably an acid dianhydride having a benzene ring, and more preferably an acid dianhydride having no aromatic ring other than a benzene ring or a substituted benzene ring.
 ベンゼン環又は置換基を具えたベンゼン環以外の芳香環を有しない芳香族テトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、
 3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、3,4,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、3,4,3’,4’-ジフェニルスルホンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)スルフィド二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、
 p-テルフェニル-3,4,3’,4’-テトラカルボン酸二無水物、m-テルフェニル-3,4,3’,4’-テトラカルボン酸二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、
 p-クアテルフェニル-3,4,3''',4'''-テトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ビフェニル二無水物、2,2-ビス[4-(3,4-ジカルボキシフェニル)フェニル]プロパン二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物が挙げられる。
Examples of aromatic tetracarboxylic dianhydrides having no aromatic ring other than a benzene ring or a substituted benzene ring include pyromellitic dianhydride,
3,3′,4,4′-biphenyltetracarboxylic dianhydride, 4,4′-oxydiphthalic dianhydride, 3,4,3′,4′-benzophenonetetracarboxylic dianhydride, 3,4 ,3′,4′-diphenylsulfonetetracarboxylic dianhydride, bis(3,4-dicarboxyphenyl)sulfide dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride,
p-terphenyl-3,4,3′,4′-tetracarboxylic dianhydride, m-terphenyl-3,4,3′,4′-tetracarboxylic dianhydride, 1,4-bis( 3,4-dicarboxyphenoxy)benzene dianhydride,
p-quaterphenyl-3,4,3''',4'''-tetracarboxylic dianhydride, 4,4'-bis(3,4-dicarboxyphenoxy)biphenyl dianhydride, 2,2 -bis[4-(3,4-dicarboxyphenyl)phenyl]propane dianhydride, 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride.
 ベンゼン環又は置換基を具えたベンゼン環以外の芳香環を有する芳香族テトラカルボン酸二無水物としては、例えば、ナフタレン-2,3,6,7-テトラカルボン酸二無水物、ナフタレン-1,2,5,6-テトラカルボン酸二無水物、ナフタレン-1,2,6,7-テトラカルボン酸二無水物、ナフタレン-1,4,5,8-テトラカルボン酸二無水物、1,4,5,8-テトラクロロナフタレン-2,3,6,7-テトラカルボン酸二無水物、2,3,6,7-テトラクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,6-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,7-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、4,8-ジメチル-3,7-ジヒドロナフタレン-1,2,5,6-テトラカルボン酸二無水物、4,8-ジメチル-1,5-ジヒドロナフタレン-2,3,6,7-テトラカルボン酸二無水物、フェナントレン-1,2,6,7-テトラカルボン酸二無水物、フェナントレン-1,2,7,8-テトラカルボン酸二無水物、ペリレン-2,3,8,9-テトラカルボン酸二無水物、ペリレン-3,4,9,10-テトラカルボン酸二無水物、ピラジン-2,3,5,6-テトラカルボン酸二無水物、チオフェン-2,3,4,5-テトラカルボン酸二無水物が挙げられる。 Examples of the aromatic tetracarboxylic dianhydride having a benzene ring or a substituted benzene ring other than a benzene ring include naphthalene-2,3,6,7-tetracarboxylic dianhydride, naphthalene-1, 2,5,6-tetracarboxylic dianhydride, naphthalene-1,2,6,7-tetracarboxylic dianhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride, 1,4 ,5,8-tetrachloronaphthalene-2,3,6,7-tetracarboxylic dianhydride, 2,3,6,7-tetrachloronaphthalene-1,4,5,8-tetracarboxylic dianhydride , 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,7-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 4,8-dimethyl -3,7-dihydronaphthalene-1,2,5,6-tetracarboxylic dianhydride, 4,8-dimethyl-1,5-dihydronaphthalene-2,3,6,7-tetracarboxylic dianhydride , phenanthrene-1,2,6,7-tetracarboxylic dianhydride, phenanthrene-1,2,7,8-tetracarboxylic dianhydride, perylene-2,3,8,9-tetracarboxylic dianhydride perylene-3,4,9,10-tetracarboxylic dianhydride, pyrazine-2,3,5,6-tetracarboxylic dianhydride, thiophene-2,3,4,5-tetracarboxylic dianhydride Anhydrides are mentioned.
 脂環式テトラカルボン酸二無水物類としては、例えば、シクロブタン-1,2,3,4-テトラカルボン酸二無水物、シクロペンタン-1,2,3,4-テトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物、ビシクロヘキシル-3,3’,4,4’-テトラカルボン酸二無水物、1-カルボキシメチル-シクロペンタン-2,3,5-カルボン酸-2,6:3,5-二無水物、ピロリジン-2,3,4,5-テトラカルボン酸二無水物が挙げられる。 Examples of alicyclic tetracarboxylic dianhydrides include cyclobutane-1,2,3,4-tetracarboxylic dianhydride, cyclopentane-1,2,3,4-tetracarboxylic dianhydride, Cyclohexane-1,2,4,5-tetracarboxylic dianhydride, bicyclohexyl-3,3′,4,4′-tetracarboxylic dianhydride, 1-carboxymethyl-cyclopentane-2,3,5 -carboxylic acid-2,6:3,5-dianhydride, pyrrolidine-2,3,4,5-tetracarboxylic dianhydride.
 脂肪族テトラカルボン酸二無水物類としては、例えば、エタン-1,1,2,2-テトラカルボン酸二無水物、エチレンテトラカルボン酸二無水物、プロパン-1,1,3,3-テトラカルボン酸二無水物、ブタン-1,2,3,4-テトラカルボン酸二無水物が挙げられる。 Examples of aliphatic tetracarboxylic dianhydrides include ethane-1,1,2,2-tetracarboxylic dianhydride, ethylenetetracarboxylic dianhydride, propane-1,1,3,3-tetracarboxylic dianhydride, Carboxylic dianhydride and butane-1,2,3,4-tetracarboxylic dianhydride can be mentioned.
 テトラカルボン酸二無水物成分は、単独で用いても2種以上を併用してもよい。 The tetracarboxylic dianhydride component may be used alone or in combination of two or more.
 ポリアミド酸を構成するジアミン成分としては、ポリイミド合成に通常用いられる芳香族ジアミン類や、脂環式ジアミン類、脂肪族ジアミン類を用いることができる。中でも、芳香族ジアミン類、脂環式ジアミン類が好ましい。耐熱性の観点からは芳香族ジアミン類がより好ましく、光透過性の観点からは脂環式ジアミン類がより好ましい。 As the diamine component that constitutes polyamic acid, aromatic diamines, alicyclic diamines, and aliphatic diamines that are commonly used in polyimide synthesis can be used. Among them, aromatic diamines and alicyclic diamines are preferred. Aromatic diamines are more preferable from the viewpoint of heat resistance, and alicyclic diamines are more preferable from the viewpoint of light transmittance.
 芳香族ジアミン類としては、特に限定されないが、前記化合物αがベンゼン環を有する場合には、化合物αとの親和性及び結合容易性の観点から、ベンゼン環又は置換基を具えたベンゼン環を有する芳香族ジアミンであることが好ましく、ベンゼン環又は置換基を具えたベンゼン環以外の芳香環を有しない芳香族ジアミンであることがより好ましい。 The aromatic diamines are not particularly limited, but when the compound α has a benzene ring, it has a benzene ring or a substituted benzene ring from the viewpoint of affinity with the compound α and ease of bonding. It is preferably an aromatic diamine, more preferably an aromatic diamine having no aromatic ring other than a benzene ring or a substituted benzene ring.
 ベンゼン環又は置換基を具えたベンゼン環以外の芳香環を有しない芳香族ジアミンとしては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジアミノトルエン、4,6-ジヒドロキシ-1,3-フェニレンジアミン、3,5-ジアミノ安息香酸、m-アミノベンジルアミン、p-アミノベンジルアミン、
 3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’,4,4’-テトラアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジカルボキシ-4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノ-5,5’-ジエチルジフェニルメタン、4,4’-ジアミノジフェニル-ジフルオロメタン、ビス(2-メチル-4-アミノフェニル)メタン、ビス(3-メチル-4-アミノフェニル)メタン、ビス(2-エチル-4-アミノフェニル)メタン、ビス(3-エチル-4-アミノフェニル)メタン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、4,4’-ジアミノジフェニルスルホキシド、3,3’-ジアミノジフェニルスルホキシド、3,4’-ジアミノジフェニルスルホキシド、4,4’-ジアミノベンズアニリド、4,4’-ジアミノ-1’-メトキシベンズアニリド、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)n-ブタン、1,5-ビス(4-アミノフェノキシ)n-ペンタン、1,3-ビス(4-アミノフェノキシ)-2,2-ジメチルプロパン、1,2-ビス[2-(4-アミノフェノキシ)エトキシ]エタン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)-2,2-ジメチルプロパン、5-アミノ-1-(4-アミノフェニル)-1,3,3-トリメチルインダン、3,7-ジアミノ-ジメチルジベンゾチオフェン-5,5-ジオキシド、2,6-ジアミノアントラキノン、2,7-ジアミノアントラキノン、1,4-ジアミノアントラキノン、1,5-ジアミノアントラキノン、
 1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、
 9,9-ビス(4-アミノフェニル)フルオレン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、9,10-ビス(4-アミノフェニル)アントラセンが挙げられる。
Examples of aromatic diamines having no aromatic ring other than a benzene ring or a substituted benzene ring include p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, 4,6-dihydroxy-1, 3-phenylenediamine, 3,5-diaminobenzoic acid, m-aminobenzylamine, p-aminobenzylamine,
3,3′-dimethyl-4,4′-diaminobiphenyl, 2,2′-dimethyl-4,4′-diaminobiphenyl, 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 3,3',4,4'-tetraaminobiphenyl, 4,4'-diaminodiphenylmethane, 3,3'-dicarboxy-4,4'- Diaminodiphenylmethane, 3,3′-dimethyl-4,4′-diamino-5,5′-diethyldiphenylmethane, 4,4′-diaminodiphenyl-difluoromethane, bis(2-methyl-4-aminophenyl)methane, bis (3-methyl-4-aminophenyl)methane, bis(2-ethyl-4-aminophenyl)methane, bis(3-ethyl-4-aminophenyl)methane, 4,4'-diaminodiphenyl ether, 3,4' -diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 4,4'-thiodianiline, 3,3'-thiodianiline, 4,4'-sulfonyldianiline , 3,3′-sulfonyldianiline, 4,4′-diaminodiphenyl sulfoxide, 3,3′-diaminodiphenyl sulfoxide, 3,4′-diaminodiphenyl sulfoxide, 4,4′-diaminobenzanilide, 4,4′ -diamino-1′-methoxybenzanilide, 1,3-bis(4-aminophenoxy)propane, 1,4-bis(4-aminophenoxy)n-butane, 1,5-bis(4-aminophenoxy)n -pentane, 1,3-bis(4-aminophenoxy)-2,2-dimethylpropane, 1,2-bis[2-(4-aminophenoxy)ethoxy]ethane, 2,2-bis(3-amino- 4-hydroxyphenyl)hexafluoropropane, 2,2-bis(4-aminophenyl)hexafluoropropane, 2,2-bis(3-aminophenyl)hexafluoropropane, 2,2-bis(4-aminophenyl) Propane, 2,2-bis(3-aminophenyl)propane, 1,3-bis(4-aminophenoxy)-2,2-dimethylpropane, 5-amino-1-(4-aminophenyl)-1,3 ,3-trimethylindane, 3,7-diamino-dimethyldibenzothiophene-5,5-dioxide, 2,6-diaminoanthraquinone, 2,7-diaminoanthraquinone, 1,4-diaminoanthraquinone, 1,5-diaminoanthraquinone,
1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene, 1,4-bis(3-aminophenoxy) benzene,
9,9-bis(4-aminophenyl)fluorene, 4,4′-bis(4-aminophenoxy)biphenyl, 4,4′-bis(3-aminophenoxy)biphenyl, 2,2-bis[4-( 4-aminophenoxy)phenyl]propane, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(4-aminophenoxy) )phenyl]hexafluoropropane, 2,2-bis[4-(3-aminophenoxy)phenyl]hexafluoropropane, 9,10-bis(4-aminophenyl)anthracene.
 ベンゼン環又は置換基を具えたベンゼン環以外の芳香環を有する芳香族ジアミンとしては、例えば、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、1,5-ジアミノナフタレン、1,4-ジアミノナフタレンが挙げられる。 Examples of aromatic diamines having a benzene ring or a substituted benzene ring other than a benzene ring include 2,6-diaminonaphthalene, 2,7-diaminonaphthalene, 1,5-diaminonaphthalene, 1,4-diamino Naphthalene is mentioned.
 脂環式ジアミン類としては、例えば、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、1,4-ジアミノシクロヘキサン、ビス(4-アミノ-2,6-ジメチルシクロヘキシル)メタンが挙げられる。 Alicyclic diamines include, for example, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, 1,4-diaminocyclohexane, and bis(4-amino-2,6-dimethylcyclohexyl)methane. mentioned.
 脂肪族ジアミン類としては、例えば、1,2-ジアミノエタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,8-ジアミノオクタン、1,3-ビス(3-アミノプロピル)-1,1,3,3-テトラメチルジシロキサンが挙げられる。 Examples of aliphatic diamines include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,8-diaminooctane , 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane.
 ジアミン成分は、単独で用いても2種以上を併用してもよい。 The diamine component may be used alone or in combination of two or more.
 本発明に使用するポリイミドフィルムとしては、耐熱性の観点から芳香環を含むものが好ましく、非熱可塑性であるか熱可塑性であるかを問わず、特にその種類は限定されないが、具体的に例を挙げると、例えば、東レ・デュポン株式会社製のカプトンシリーズ、宇部興産株式会社製のユーピレックスシリーズ、鐘淵化学工業株式会社製のアピカルシリーズ、日東電工株式会社製のU-フィルムシリーズ等の非熱可塑性のポリイミドフィルムを好適に用いることができる。前記化合物αがベンゼン環を有する場合には、化合物αとの親和性及び密着性確保の観点から、ベンゼン環を含むポリイミドからなるフィルム、特に芳香環としてベンゼン環のみを含むポリイミドからなるフィルムを好適に用いることができる。高耐熱性用途のフィルムを構成するポリイミドのガラス転移点温度は、好ましくは300℃以上、より好ましくは350℃以上である。また、ポリイミドフィルムの厚みは、特に限定されるものではないが、例えば、12.5μm、25μm、30μm、40μm、50μm、75μm、100μm、125μm、250μm等が挙げられる。 The polyimide film used in the present invention preferably contains an aromatic ring from the viewpoint of heat resistance, and regardless of whether it is non-thermoplastic or thermoplastic, the type is not particularly limited, but specific examples For example, Kapton series manufactured by Toray DuPont Co., Ltd., Upilex series manufactured by Ube Industries, Ltd., Apical series manufactured by Kanegafuchi Chemical Industry Co., Ltd., U-Film series manufactured by Nitto Denko Corporation, etc. A non-thermoplastic polyimide film can be preferably used. When the compound α has a benzene ring, a polyimide film containing a benzene ring, particularly a polyimide film containing only a benzene ring as an aromatic ring, is preferable from the viewpoint of ensuring affinity and adhesion with the compound α. can be used for The glass transition temperature of the polyimide constituting the film for high heat resistance is preferably 300° C. or higher, more preferably 350° C. or higher. The thickness of the polyimide film is not particularly limited, but examples thereof include 12.5 μm, 25 μm, 30 μm, 40 μm, 50 μm, 75 μm, 100 μm, 125 μm, and 250 μm.
 <金属被覆樹脂の製造方法(湿式めっき)>
 本発明の一形態によれば、本発明のいずれかの形態に係る表面処理樹脂の製造方法により製造された表面処理樹脂の、表面処理が行われた表面に、湿式めっきにより金属被覆を形成する工程を有する金属被覆樹脂の製造方法を提供できる。
 本形態では、表面処理樹脂の表面に、例えば、無電解めっき、蒸着又はスパッタリングにより金属被覆を形成する(シード層形成工程)。その後、当該金属被覆を電解めっきにより厚膜化してもよい(電解めっき工程)。金属被覆は表面全体に形成してもよく、フォトリソグラフィー等の公知の手法によりパターン状に形成してもよい。本形態により製造される金属被覆樹脂は、フレキシブル金属張積層板やプリント配線板として好適である。処理時間や処理コストの観点から、無電解めっき、蒸着又はスパッタリングにより形成される金属被覆の厚みは、好ましくは0.1~2μm、より好ましくは0.2~1μmである。金属被覆を電解めっきにより厚膜化する場合には、厚膜化後の金属被覆の厚みは、好ましくは0.2~50μm、より好ましくは0.5~20μmである。無電解めっきされる金属は、例えば、Cu、Niなどである。蒸着又はスパッタにより形成される金属被覆の金属は、例えば、Al、Cr、Sn、Ti、Cu、In、Au、Pt、Agなどである。また、金属被覆が電解めっきにより形成された層を含む場合、電解めっきされる金属は、例えば、Cu,Ni,Ag,Pd,Au,Pt,Zn,Cr,Sn,Biなどである。金属被覆は、金属単体でもよく、合金であってもよい。好ましくは、シード層形成工程及び/又は電解めっき工程の後で、100℃~250℃の温度で5~60分間のアニール処理を行う。
 本形態の製造方法により製造される金属被覆樹脂の、樹脂とめっき金属との間の密着性は、表面処理樹脂を、表面処理が行われた後に温度23℃,湿度50%の遮光された大気雰囲気の室内で7日間引き置いてから金属被覆を形成しても、引き置かずに金属被覆を形成した場合と比べて、ほとんど低下しない。7日間の引き置きによるピール強度の低下割合は10%以内若しくは25%以内である。
<Method for producing metal-coated resin (wet plating)>
According to one aspect of the present invention, a metal coating is formed by wet plating on the surface-treated surface of the surface-treated resin produced by the method for producing a surface-treated resin according to any one of the aspects of the present invention. It is possible to provide a method for producing a metal-coated resin having steps.
In this embodiment, a metal coating is formed on the surface of the surface-treated resin by, for example, electroless plating, vapor deposition, or sputtering (seed layer forming step). After that, the metal coating may be thickened by electroplating (electroplating step). The metal coating may be formed over the entire surface, or may be formed in a pattern by a known technique such as photolithography. The metal-coated resin produced according to this embodiment is suitable for flexible metal-clad laminates and printed wiring boards. From the viewpoint of treatment time and treatment cost, the thickness of the metal coating formed by electroless plating, vapor deposition or sputtering is preferably 0.1 to 2 μm, more preferably 0.2 to 1 μm. When the metal coating is thickened by electrolytic plating, the thickness of the metal coating after thickening is preferably 0.2 to 50 μm, more preferably 0.5 to 20 μm. Metals that are electrolessly plated are, for example, Cu and Ni. The metal of the metal coating formed by vapor deposition or sputtering is, for example, Al, Cr, Sn, Ti, Cu, In, Au, Pt, Ag, and the like. Moreover, when the metal coating includes a layer formed by electrolytic plating, the metal to be electrolytically plated is, for example, Cu, Ni, Ag, Pd, Au, Pt, Zn, Cr, Sn, Bi, or the like. The metal coating may be a single metal or an alloy. Preferably, annealing treatment is performed at a temperature of 100° C. to 250° C. for 5 to 60 minutes after the seed layer forming step and/or the electroplating step.
The adhesion between the resin and the plated metal of the metal-coated resin produced by the production method of the present embodiment is evaluated by applying the surface-treated resin to an atmosphere with a temperature of 23° C. and a humidity of 50% in a light-shielded atmosphere after the surface treatment. Metallization after 7 days of rest in an atmospheric chamber provides little degradation compared to metallization without rest. The rate of decrease in peel strength due to leaving for 7 days is within 10% or within 25%.
<金属被覆樹脂の製造方法(金属箔の貼り合わせ)>
 本発明の一形態によれば、本発明のいずれかの形態に係る表面処理樹脂の製造方法により製造された表面処理樹脂の、表面処理が行われた表面に、金属箔の貼り合わせにより金属被覆を形成する工程を有する金属被覆樹脂の製造方法を提供できる。貼り合わせる金属箔の厚みは、好ましくは0.2~50μm、より好ましくは0.5~20μmである。金属箔を構成する金属は、例えば、Cu,Ni,Ag,Pd,Au,Pt,Zn,Cr,Sn,Bi,Al、Ti、Inであり、特に、Cu,Ag,Au,Pt,Al等が挙げられる。金属箔は、金属単体でもよく、合金であってもよい。金属箔の、樹脂と貼り合わせる表面は、粗化されていても、無粗化であってもよい。
 本形態は、表面処理樹脂の表面処理が行われた表面に金属箔を重ね合わせる工程(重ね合わせ工程)と、力を加えることにより、両者が一体的に結合される工程(加圧工程)を具える。前記加圧工程では、例えば、大気雰囲気下、窒素雰囲気下あるいは真空中で、平板プレス、ロールプレス等を行う。生産性向上及び加工コスト低減の観点からは、大気雰囲気下での平板プレス又はロールプレスが好ましい。製造される金属被覆樹脂の品質安定性の観点からは、窒素雰囲気下又は真空中でのプレスが好ましい。プレス圧力は1~100MPaが好ましく、30~70MPaであることが更に好ましい。一般にプレス圧力が大きいほど製造される金属被覆樹脂の密着強度が大きくなり好ましいが、プレス圧力が大きすぎると支持体を破損するおそれがある。上記の圧力を加える時間は、例えば5~60分、より好ましくは10~20分である。前記加圧工程においては、同時に加熱を行うことが好ましい。加圧工程における前記樹脂の温度は、その耐熱温度を越えない範囲内とする。前記温度は、例えば40℃以上350℃以下、好ましくは120℃以上250℃以下、より好ましくは150℃以上230℃以下である。
 本形態の製造方法により製造される金属被覆樹脂の、樹脂と金属箔との間の密着性は、表面処理樹脂を、表面処理が行われた後に温度23℃,湿度50%の遮光された大気雰囲気の室内で7日間引き置いてから金属箔を貼り合わせても、引き置かずに金属箔を貼り合わせた場合と比べて、ほとんど低下しない。7日間の引き置きによるピール強度の低下割合は10%以内若しくは25%以内である。
<Method for producing metal-coated resin (bonding of metal foil)>
According to one aspect of the present invention, the surface-treated surface of the surface-treated resin produced by the method for producing a surface-treated resin according to any one of the aspects of the present invention is coated with a metal foil by attaching a metal foil. It is possible to provide a method for producing a metal-coated resin having a step of forming The thickness of the metal foil to be laminated is preferably 0.2-50 μm, more preferably 0.5-20 μm. Metals constituting the metal foil are, for example, Cu, Ni, Ag, Pd, Au, Pt, Zn, Cr, Sn, Bi, Al, Ti, In, particularly Cu, Ag, Au, Pt, Al, etc. is mentioned. The metal foil may be a single metal or an alloy. The surface of the metal foil to be bonded to the resin may or may not be roughened.
In this embodiment, a process of superimposing a metal foil on the surface treated with a surface-treated resin (superposition process) and a process of integrally bonding the two by applying force (pressing process) are performed. equip. In the pressurizing step, for example, plate pressing, roll pressing, or the like is performed under an air atmosphere, a nitrogen atmosphere, or in a vacuum. From the viewpoint of productivity improvement and processing cost reduction, flat plate press or roll press under an air atmosphere is preferable. From the viewpoint of quality stability of the metal coating resin to be produced, pressing under a nitrogen atmosphere or in a vacuum is preferred. The pressing pressure is preferably 1-100 MPa, more preferably 30-70 MPa. In general, the higher the press pressure, the higher the adhesion strength of the metal-coated resin produced, which is preferable. However, if the press pressure is too high, the support may be damaged. The time for which the pressure is applied is, for example, 5 to 60 minutes, more preferably 10 to 20 minutes. Heating is preferably performed at the same time as the pressing step. The temperature of the resin in the pressurizing step should be within a range that does not exceed the heat resistance temperature. The temperature is, for example, 40° C. or higher and 350° C. or lower, preferably 120° C. or higher and 250° C. or lower, more preferably 150° C. or higher and 230° C. or lower.
The adhesion between the resin and the metal foil of the metal-coated resin manufactured by the manufacturing method of the present embodiment is evaluated by applying the surface-treated resin to an atmosphere with a temperature of 23° C. and a humidity of 50% in a light-shielded atmosphere after the surface treatment. Even if the metal foil is stuck together after leaving it in an atmospheric room for 7 days, it hardly deteriorates compared to the case where the metal foil is stuck together without leaving it. The rate of decrease in peel strength due to leaving for 7 days is within 10% or within 25%.
<実施例1>
(表面処理液の作製)
 「化合物α」として4-アジド安息香酸の粉末、「1級アミノ基又はイミノ基を有する繰り返し単位をもった重合体」としてポリエチレンイミン(商品名:エポミン(登録商標),品番:SP-012,株式会社日本触媒製)の液体、及び「酸」としてマレイン酸の粉末を、各々所要質量だけ秤量し、3-メトキシ-3-メチル-1-ブタノール(以下、「SF」と呼ぶ)に混合・溶解して、淡黄色~橙色の表面処理液を得た。各成分の濃度(表面処理液全体に占める質量%。以下では単に「%」と記載する。)は、4-アジド安息香酸0.10%、ポリエチレンイミ0.10%、マレイン酸0.15%であり、pH試験紙で測定した溶液のpHは4.0であった。なお、使用したポリエチレンイミンの平均分子量は約1200で、アミン比は、1級アミノ基35%、2級アミノ基(イミノ基)が35%、3級アミノ基が30%である。
<Example 1>
(Preparation of surface treatment liquid)
Powder of 4-azidobenzoic acid as the "compound α" and polyethyleneimine (trade name: Epomin (registered trademark), product number: SP-012, as the "polymer having a repeating unit having a primary amino group or imino group") Nippon Shokubai Co., Ltd.) liquid and maleic acid powder as "acid" are each weighed by the required mass, and mixed with 3-methoxy-3-methyl-1-butanol (hereinafter referred to as "SF"). By dissolution, a pale yellow to orange surface treatment liquid was obtained. The concentration of each component (% by mass in the entire surface treatment solution, hereinafter simply referred to as "%") is 0.10% 4-azidobenzoic acid, 0.10% polyethyleneimine, and 0.15% maleic acid. and the pH of the solution measured with pH test paper was 4.0. The average molecular weight of the polyethyleneimine used was about 1200, and the amine ratio was 35% primary amino groups, 35% secondary amino groups (imino groups), and 30% tertiary amino groups.
(表面処理樹脂の製造)
 樹脂として、3cm×6cmサイズのポリイミドフィルム(東レ・デュポン株式会社製、商品名「カプトン500H」、厚み125μm)2枚を用意し、それぞれアセトンで洗浄後、片面にアルゴンプラズマ処理(アルゴン流量100mL/分,5分,200W)を施した(前処理工程)。次いで、バーコーターを用いて、先に調製した表面処理液をウェット膜厚25μmで、アルゴンプラズマ処理を施した面に塗布した(塗布工程)。その後、2枚のポリイミドフィルムを100℃の恒温槽で10分間保持した(加熱活性化工程)。重量変化と乾燥膜厚の測定値(TEM-EDSによる)の間の関係性に基づいて推定される乾燥膜厚は約88nmである。
(樹脂フィルム積層体の製造)
 これら表面処理済みの2枚のポリイミドフィルムを、表面処理がなされた面どうしが対向するようにして重ね合せ、上下に添えたクッション板を介して、平板プレス機でプレス温度200℃、プレス時間5分、プレス圧56MPaで加熱圧着してポリイミドフィルム積層体を作製した(加圧工程)。このポリイミドフィルム積層体を300℃のオーブンに投入して30分間放置した(アニール工程)。
(ピール強度の測定)
 自然冷却後、30mm幅のポリイミドフィルム積層体に対し、90°の剥離強度試験を行った。縦型電動計測スタンドMX2-500N(株式会社イマダ製)にフォースゲージZTA-50Nを取り付け、90°剥離のピール強度試験機を構成した。剥離速度は50mm/分とした。全長6cmのうち、両端の1cmを除く4cm分についてピール強度を連続的に計測し、その平均値を求めた。
(Manufacture of surface-treated resin)
As a resin, prepare two polyimide films (manufactured by Toray DuPont Co., Ltd., trade name "Kapton 500H", thickness 125 μm) with a size of 3 cm × 6 cm. minutes, 5 minutes, 200 W) was applied (pretreatment step). Next, using a bar coater, the previously prepared surface treatment liquid was applied to a wet film thickness of 25 μm on the argon plasma-treated surface (coating step). After that, the two polyimide films were held in a constant temperature bath at 100° C. for 10 minutes (heat activation step). The estimated dry film thickness based on the relationship between weight change and dry film thickness measurements (by TEM-EDS) is about 88 nm.
(Manufacture of resin film laminate)
These two surface-treated polyimide films are superimposed so that the surface-treated surfaces face each other, and are pressed with a flat plate press at a temperature of 200° C. for a time of 5 with cushion plates placed on the top and bottom. A polyimide film laminate was produced by heat-pressing at a press pressure of 56 MPa (pressing step). This polyimide film laminate was placed in an oven at 300° C. and left for 30 minutes (annealing step).
(Measurement of peel strength)
After natural cooling, a 90° peel strength test was performed on the polyimide film laminate having a width of 30 mm. A force gauge ZTA-50N was attached to a vertical electric measuring stand MX2-500N (manufactured by Imada Co., Ltd.) to configure a peel strength tester for 90° peeling. The peeling speed was 50 mm/min. The peel strength was continuously measured for 4 cm of the total length of 6 cm, excluding 1 cm at both ends, and the average value was obtained.
<実施例2、3及び4>
 作製する表面処理液の各成分の濃度を4-アジド安息香酸0.40%、ポリエチレンイミ0.40%、マレイン酸0.15%(実施例2)、又は、3成分すべて0.04%(実施例3)若しくは0.02%(実施例4)とし、実施例3及び実施例4については塗布直前に孔径0.22μmのフィルタで表面処理液を濾過した以外は、実施例1と同様にして、表面処理液のpHを測定し、ポリイミドフィルム積層体を作製してピール強度を測定した。
<Examples 2, 3 and 4>
The concentration of each component of the surface treatment liquid to be prepared is 4-azidobenzoic acid 0.40%, polyethyleneimine 0.40%, maleic acid 0.15% (Example 2), or all three components 0.04% ( Example 3) or 0.02% (Example 4), and Examples 3 and 4 were the same as Example 1 except that the surface treatment liquid was filtered through a filter with a pore size of 0.22 μm immediately before coating. Then, the pH of the surface treatment liquid was measured, a polyimide film laminate was produced, and the peel strength was measured.
<実施例1’>
 実施例1におけるアニール工程を実施しないことを除いては、実施例1と同様にして、表面処理液のpHを測定し、ポリイミドフィルム積層体を作製してピール強度を測定した。
<実施例1-A>
 実施例1における表面処理液を、マレイン酸(0.15%)の代わりに無水マレイン酸(0.15%)を用いて調製することを除いては、実施例1と同様にして、表面処理液のpHを測定し、ポリイミドフィルム積層体を作製してピール強度を測定した。
<実施例1-B>
 実施例1-Aにおける表面処理液を、ウェット膜厚25μmではなく1.5μmで塗布することを除いては、実施例1-Aと同様にして、表面処理液のpHを測定し、ポリイミドフィルム積層体を作製してピール強度を測定した。
<Example 1'>
The pH of the surface treatment liquid was measured, a polyimide film laminate was produced, and the peel strength was measured in the same manner as in Example 1, except that the annealing step in Example 1 was not performed.
<Example 1-A>
Surface treatment was carried out in the same manner as in Example 1, except that the surface treatment solution in Example 1 was prepared using maleic anhydride (0.15%) instead of maleic acid (0.15%). The pH of the liquid was measured, a polyimide film laminate was produced, and the peel strength was measured.
<Example 1-B>
The pH of the surface treatment liquid was measured in the same manner as in Example 1-A, except that the surface treatment liquid in Example 1-A was applied at a wet film thickness of 1.5 μm instead of 25 μm, and the polyimide film was A laminate was produced and the peel strength was measured.
<比較例1~8>
 比較例1~8のそれぞれについて、作製する表面処理液の各成分の濃度を図4の表図に示す値にしたことを除いては、実施例1と同様にして、表面処理液のpHを測定し、ポリイミドフィルム積層体を作製してピール強度を測定した。
<Comparative Examples 1 to 8>
For each of Comparative Examples 1 to 8, the pH of the surface treatment liquid was adjusted in the same manner as in Example 1, except that the concentration of each component of the surface treatment liquid to be prepared was set to the value shown in the table of FIG. A polyimide film laminate was prepared and the peel strength was measured.
(実験結果と考察)
 上記の測定結果等を図4の表図に記載した。
 4-アジド安息香酸、ポリエチレンイミン、マレイン酸の3成分を含む表面処理液を用いて製造したポリイミドフィルム積層体において4.0N/3cm以上の高いピール強度を得るためには、表面処理液が上記3成分のすべてを、各々少なくとも0.01%以上の濃度で含むことが好ましい。比較例1~8はいずれもこの条件を満たしておらず、ピール強度は2.4N/3cm未満と小さい。また、実施例1と実施例1’の比較から、アニール工程を追加することで、ピール強度が約2倍に増加することがわかる。又、高いピール強度を得るためには、表面処理液のpHは5.0以下であることが好ましく、4.5以下であることがより好ましい。なお、実施例4の表面処理液をSFで更に2~10倍に薄めても、塗布工程及び活性化工程(及びオプションでの活性化後洗浄処理工程)を2回以上反復することで、実施例4と同程度のピール強度を得ることは可能である。しかし、3成分のうちいずれかの濃度が0.01質量%未満の濃度の表面処理液は量産面で実用的ではない。
 実施例1-Aでは、ポリイミドフィルム内部で破壊が生じたため正確な値が測定できなかったものの、ピール強度は10N/3cm以上であると推定された。実施例1と実施例1-Aの比較から、本表面処理液に酸の代わりに酸無水物を添加することで、ピール強度が顕著に向上することがわかる。実施例1-Aでは、ピール試験時の剥離の様子を観察すると、破壊が接合層ではなく基材内部(ポリイミドフィルム内部)で生じており、界面分子結合が極めて強いことがわかる。
 実施例1-Bでも基材内部で破壊が生じ、ピール強度は10N/3cm以上であると推定された。表面処理液に酸無水物を添加することで、塗布膜厚が1.5μmと薄くても、高いピール強度が得られることがわかる。
(Experimental results and discussion)
The above measurement results and the like are shown in the chart of FIG.
In order to obtain a high peel strength of 4.0 N/3 cm or more in a polyimide film laminate produced using a surface treatment liquid containing three components of 4-azidobenzoic acid, polyethyleneimine, and maleic acid, the surface treatment liquid must contain the above It is preferred to include all three components at a concentration of at least 0.01% each. None of Comparative Examples 1 to 8 satisfy this condition, and the peel strength is as low as less than 2.4 N/3 cm. Moreover, from the comparison between Example 1 and Example 1', it can be seen that the addition of the annealing step increases the peel strength by about two times. In order to obtain high peel strength, the pH of the surface treatment liquid is preferably 5.0 or less, more preferably 4.5 or less. In addition, even if the surface treatment solution of Example 4 is further diluted 2 to 10 times with SF, the coating step and the activation step (and the optional post-activation washing treatment step) can be repeated two or more times. It is possible to obtain a peel strength comparable to that of Example 4. However, a surface treatment liquid having a concentration of less than 0.01% by mass for any one of the three components is not practical for mass production.
In Example 1-A, the peel strength was estimated to be 10 N/3 cm or more, although accurate values could not be measured due to breakage occurring inside the polyimide film. From the comparison between Example 1 and Example 1-A, it can be seen that the peel strength is remarkably improved by adding an acid anhydride instead of an acid to the present surface treatment liquid. In Example 1-A, observation of peeling during the peel test revealed that the breakage occurred not in the bonding layer but inside the base material (inside the polyimide film), indicating that interfacial molecular bonds are extremely strong.
Also in Example 1-B, breakage occurred inside the substrate, and the peel strength was estimated to be 10 N/3 cm or more. It can be seen that by adding an acid anhydride to the surface treatment liquid, a high peel strength can be obtained even if the coating thickness is as thin as 1.5 μm.
<実施例4-U>
 実施例4における加熱活性化工程の代わりに、風乾及びUV活性化工程を実施することを除いては、実施例4と同様にして、ポリイミドフィルム積層体を作製してピール強度を測定した。UV活性化工程においては、UV-LEDから被照射エネルギー200mJ/cm2で塗布面に紫外線を照射した。
 その結果、7.0N/3cmのピール強度を得た。
 これは、実施例4におけるピール強度(6.8N/3cm)をわずかに上回る値である。
<Example 4-U>
A polyimide film laminate was produced and the peel strength was measured in the same manner as in Example 4, except that air drying and UV activation steps were performed instead of the heat activation step in Example 4. In the UV activation step, the coating surface was irradiated with ultraviolet rays from a UV-LED with an irradiation energy of 200 mJ/cm 2 .
As a result, a peel strength of 7.0 N/3 cm was obtained.
This value slightly exceeds the peel strength (6.8 N/3 cm) in Example 4.
<参考例1>
 実施例1において、4-アジド安息香酸の代わりに安息香酸を用いて表面処理液を作製し、表面処理液における各成分の濃度が、安息香酸0.10%、ポリエチレンイミン0.10%、マレイン酸0.15%であることを除いては、実施例1と同様にして、表面処理液のpHを測定し、ポリイミドフィルム積層体を作製してピール強度を測定した。
<Reference example 1>
In Example 1, a surface treatment liquid was prepared using benzoic acid instead of 4-azidobenzoic acid, and the concentration of each component in the surface treatment liquid was 0.10% benzoic acid, 0.10% polyethyleneimine, malein The pH of the surface treatment liquid was measured, a polyimide film laminate was produced, and the peel strength was measured in the same manner as in Example 1, except that the acid was 0.15%.
<参考例1’>
 参考例1におけるアニール工程を実施しないことを除いては、参考例1と同様にして、表面処理液のpHを測定し、ポリイミドフィルム積層体を作製してピール強度を測定した。
<Reference example 1'>
In the same manner as in Reference Example 1, except that the annealing step in Reference Example 1 was not performed, the pH of the surface treatment liquid was measured, a polyimide film laminate was produced, and the peel strength was measured.
(参考例1及び1’の実験結果と考察)
 表面処理液のpHは、参考例1,1’ともに4.0であった。ピール強度は、参考例1が3.9N/3cm、参考例1’が3.8N/3cmであった。アニール工程を実施することによるピール強度の増加はほとんど見られなかった。このことから、実施例1におけるアニール工程の実施によるピール強度の増加には、4-アジド安息香酸におけるアジド基が関与していると考えられる。
(Experimental results and discussion of Reference Examples 1 and 1')
The pH of the surface treatment liquid was 4.0 in both Reference Examples 1 and 1'. The peel strength was 3.9 N/3 cm for Reference Example 1 and 3.8 N/3 cm for Reference Example 1'. Almost no increase in peel strength due to the annealing process was observed. From this, it is considered that the azide group in 4-azidobenzoic acid is involved in the increase in peel strength due to the annealing step in Example 1.
<実施例1-L>
 実施例1と同様にして、2枚の表面処理済みのポリイミドフィルムを作製したのち、温度23℃,湿度50%の遮光された大気雰囲気の室内で7日間引き置いてから重ね合わせ工程及び加圧工程を実施することを除いては、実施例1と同様にして、ポリイミドフィルム積層体を作製してピール強度を測定した。
 その結果、7.3N/3cmの値を得た。
 これは引き置きをしていない実施例1(8.0N/3cm)をわずかに下回る値であり、引き置きによるピール強度の低下割合は9%である。
<実施例1-BL>
 実施例1-Bと同様にして、2枚の表面処理済みのポリイミドフィルムを作製したのち、温度23℃,湿度50%の遮光された大気雰囲気の室内で7日間及び30日間引き置いてから重ね合わせ工程及び加圧工程を実施することを除いては、実施例1-Bと同様にして、ポリイミドフィルム積層体を作製してピール強度を測定した。その結果、7日間引き置き後のピール強度は9.0N/3cm、30日間引き置き後のピール強度も9.0N/3cmであり、いずれの場合にも端部では基材破壊も見られた。これは、引き置きをしていない実施例1-B(10N/3cm以上)とそれほど変わらない値であり、本表面処理液に酸に替えて酸無水物を添加した場合の、引き置きによるピール強度の低下割合は約10%と小さいことがわかる。
<Example 1-L>
In the same manner as in Example 1, two sheets of surface-treated polyimide film were prepared, and then placed in a room with a temperature of 23 ° C. and a humidity of 50% in a light-shielded air atmosphere for 7 days, followed by a superposition process and pressurization. A polyimide film laminate was produced and the peel strength was measured in the same manner as in Example 1 except that the steps were performed.
As a result, a value of 7.3 N/3 cm was obtained.
This value is slightly lower than that of Example 1 (8.0 N/3 cm) in which the drawing was not performed, and the rate of decrease in the peel strength due to the drawing was 9%.
<Example 1-BL>
Two surface-treated polyimide films were prepared in the same manner as in Example 1-B, and then placed in a light-shielded atmospheric room at a temperature of 23 ° C. and a humidity of 50% for 7 days and 30 days, then stacked. A polyimide film laminate was produced and the peel strength was measured in the same manner as in Example 1-B, except that the laminating step and the pressing step were performed. As a result, the peel strength after being left for 7 days was 9.0 N/3 cm, and the peel strength after being left for 30 days was also 9.0 N/3 cm. . This value is not much different from that of Example 1-B (10 N/3 cm or more) in which no separation is performed. It can be seen that the rate of decrease in strength is as small as about 10%.
<実施例3-L>
 実施例3と同様にして、2枚の表面処理済みのポリイミドフィルムを作製したのち、温度23℃,湿度50%の遮光された大気雰囲気の室内で3日間引き置いてから重ね合わせ工程及び加圧工程を実施することを除いては、実施例3と同様にして、ポリイミドフィルム積層体を作製してピール強度を測定した。
 その結果、8.7N/3cmの値を得た。
 これは引き置きをしていない実施例3(9.0N/3cm)をわずかに下回る値であり、引き置きによるピール強度の低下割合は3%である。
<Example 3-L>
In the same manner as in Example 3, two surface-treated polyimide films were prepared, and then left in a room with a temperature of 23 ° C. and a humidity of 50% in a light-shielded atmosphere for 3 days, followed by a superposition process and pressurization. A polyimide film laminate was produced and the peel strength was measured in the same manner as in Example 3 except that the steps were performed.
As a result, a value of 8.7 N/3 cm was obtained.
This value is slightly lower than that of Example 3 (9.0 N/3 cm) in which no drawing was performed, and the rate of decrease in peel strength due to drawing was 3%.
<実施例5>
 実施例1と同じポリイミドフィルムを4枚用意し、うち3枚の片面に実施例1と同じ表面処理液を用いて、実施例1と同様の表面処理を施した。これら表面処理済みの3枚のポリイミドフィルムを、温度23℃,湿度50%の遮光された大気雰囲気の室内で7日間引き置いて後、表面処理がなされた面を上にして重ね合わせ、最後に、未処理のポリイミドフィルム1枚を一番上に重ねて、上下に添えたクッション板を介して、平板プレス機でプレス温度200℃、プレス時間10分、プレス圧56MPaで加熱圧着してポリイミドフィルム積層体を作製した(加圧工程)。このポリイミドフィルム積層体を300℃のオーブンに投入して30分間放置した(アニール工程)。
 その結果、密着性の良好なポリイミドフィルム積層体を得た。
<Example 5>
Four sheets of the same polyimide film as in Example 1 were prepared, and surface treatment similar to that in Example 1 was performed using the same surface treatment liquid as in Example 1 on one side of three sheets. After leaving these three surface-treated polyimide films in a room with a temperature of 23° C. and a humidity of 50% in a light-shielded atmosphere for 7 days, they were superimposed with the surface-treated surface facing up. , One sheet of untreated polyimide film is placed on top, and the cushion plates attached to the top and bottom are placed on top of each other. A laminate was produced (pressing step). This polyimide film laminate was placed in an oven at 300° C. and left for 30 minutes (annealing step).
As a result, a polyimide film laminate having good adhesion was obtained.
<実施例6>
 実施例1と同じポリイミドフィルムを用意し、その片面に実施例1と同じ表面処理液を用いて、実施例1と同様の表面処理を施した。
 次いで、表面処理済みの表面処理ポリイミドフィルムを試料として、無電解めっき工程を実施した。無電解めっき工程においては、試料をプレディップ液に浸漬するプレディップ処理と、続いて、試料をキャタポジット44(ローム&ハース電子材料株式会社製)に浸漬する触媒付与処理と、続いて、試料を1v/v%濃度の塩酸に浸漬するアクセラレータ処理と、続いて、試料に銅の無電解めっきを施す無電解めっき処理と、続いて、めっき応力を低減するために、試料を60分間100℃の温度に保つ無電解めっき後アニール処理と、が実施された。無電解めっきのめっき厚は0.2μmであった。
 次いで、厚付けめっきのために、試料に電解銅めっきを施す電解めっき処理工程が実施された。めっき皮膜の膜厚は20μmであった。続いて、めっき応力を低減するために、試料を60分間150℃の温度に保つ電解めっき後アニール処理を実施した。こうして、金属被覆ポリイミドフィルムを得た。その後、金属被覆ポリイミドフィルムを10mm幅に裁断し、実施例1と同様にしてピール強度を測定した。
 その結果、7.0N/cmのピール強度が得られた。
<Example 6>
The same polyimide film as in Example 1 was prepared, and one surface thereof was subjected to the same surface treatment as in Example 1 using the same surface treatment liquid as in Example 1.
Next, an electroless plating process was carried out using the surface-treated polyimide film as a sample. In the electroless plating process, a pre-dip treatment in which the sample is immersed in a pre-dip solution, followed by a catalyst application treatment in which the sample is immersed in Cataposit 44 (manufactured by Rohm & Haas Electronic Materials Co., Ltd.), and then the sample. is immersed in hydrochloric acid with a concentration of 1 v/v%, followed by an electroless plating treatment in which the sample is electrolessly plated with copper, and then the sample is placed at 100 ° C for 60 minutes to reduce plating stress. A post-electroless plating annealing treatment was carried out at a temperature of . The plating thickness of electroless plating was 0.2 μm.
Then, for thick plating, an electrolytic plating process was performed in which electrolytic copper plating was applied to the sample. The film thickness of the plating film was 20 μm. Subsequently, a post-electroplating annealing treatment was performed in which the samples were kept at a temperature of 150° C. for 60 minutes to reduce the plating stress. Thus, a metal-coated polyimide film was obtained. After that, the metal-coated polyimide film was cut to a width of 10 mm, and the peel strength was measured in the same manner as in Example 1.
As a result, a peel strength of 7.0 N/cm was obtained.
<実施例6-L>
 実施例6と同様にして、表面処理ポリイミドフィルムを作製したのち、無電解めっき工程を実施する前に、温度23℃,湿度50%の遮光された大気雰囲気の室内で7日間引き置くことを除いては、実施例6と同様にして、金属被覆ポリイミドフィルムを作製して、ピール強度を測定した。
 その結果、6.6N/cmの値を得た。
 これは引き置きをしていない実施例6(7.0N/cm)よりわずかに低い値であり、引き置きによるピール強度の低下割合は6%である。
<Example 6-L>
After producing a surface-treated polyimide film in the same manner as in Example 6, before carrying out the electroless plating process, except that it was left in a room with a light-shielded atmospheric atmosphere at a temperature of 23 ° C. and a humidity of 50% for 7 days. A metal-coated polyimide film was prepared in the same manner as in Example 6, and the peel strength was measured.
As a result, a value of 6.6 N/cm was obtained.
This value is slightly lower than that of Example 6 (7.0 N/cm) in which no drawing was performed, and the rate of decrease in peel strength due to drawing was 6%.
<実施例7>
 実施例1と同じポリイミドフィルムを用意し、実施例1と同様の表面処理を施して表面処理ポリイミドフィルムを得た。
 次いで、上記表面処理ポリイミドフィルムと銅箔の貼り合わせ工程を実施した。銅箔として18μm厚の圧延銅箔を用いた。表面処理ポリイミドフィルムの表面処理が施された面に上記圧延銅箔を重ねて、上下に添えたクッション板を介して、平板プレス機でプレス温度180℃、プレス時間5分、プレス圧56MPaで加熱圧着して金属被覆ポリイミドフィルムを作製した(加圧工程)。自然冷却後、アニール工程を実施しないで、金属被覆ポリイミドフィルムを10mm幅に裁断した後、実施例1と同様にしてピール強度を測定した。
 その結果、8.0N/cmのピール強度が得られた。
<Example 7>
The same polyimide film as in Example 1 was prepared and subjected to the same surface treatment as in Example 1 to obtain a surface-treated polyimide film.
Next, a step of bonding the surface-treated polyimide film and the copper foil was performed. A rolled copper foil having a thickness of 18 μm was used as the copper foil. The above-mentioned rolled copper foil is superimposed on the surface-treated surface of the surface-treated polyimide film, and it is heated with a flat plate press at a press temperature of 180 ° C., a press time of 5 minutes, and a press pressure of 56 MPa through cushion plates attached above and below. A metal-coated polyimide film was produced by pressing (pressing step). After natural cooling, the metal-coated polyimide film was cut to a width of 10 mm without performing the annealing step, and the peel strength was measured in the same manner as in Example 1.
As a result, a peel strength of 8.0 N/cm was obtained.
<実施例7-L>
 ポリイミドフィルムに表面処理を施して表面処理ポリイミドフィルムを作製した後、銅箔の貼り合わせ工程を実施する前に、温度23℃,湿度50%の遮光された大気雰囲気の室内で7日間引き置くことを除いては、実施例7と同様にして、金属被覆ポリイミドフィルムを作製して、ピール強度を測定した。
 その結果、7.8N/cmの値を得た。
 これは引き置きをしていない実施例7(8.0N/cm)とほぼ同じ値であり、引き置きによるピール強度の低下割合は3%である。
<Example 7-L>
After the surface treatment is applied to the polyimide film to produce the surface-treated polyimide film, before performing the step of laminating the copper foil, the film should be placed in a light-shielded atmospheric room at a temperature of 23° C. and a humidity of 50% for 7 days. A metal-coated polyimide film was prepared in the same manner as in Example 7 except for and the peel strength was measured.
As a result, a value of 7.8 N/cm was obtained.
This value is almost the same as that of Example 7 (8.0 N/cm) in which the holding was not carried out, and the reduction rate of the peel strength due to the holding was 3%.
<参考例2>
 実施例7における表面処理液の代わりに、1分子内に複数のアミノ基を有するシランカップリング剤(商品名:X-12-972F,信越化学工業株式会社製)の0.2%エタノール溶液を表面処理液として用いて、それ以外は実施例7と同様にして、表面処理液のpHを測定し、金属被覆ポリイミドフィルムを作製してピール強度を測定した。
 その結果、pHは8.0、ピール強度は7.6N/cmであった。
<Reference example 2>
Instead of the surface treatment liquid in Example 7, a 0.2% ethanol solution of a silane coupling agent (trade name: X-12-972F, manufactured by Shin-Etsu Chemical Co., Ltd.) having multiple amino groups in one molecule. Using it as a surface treatment liquid, the pH of the surface treatment liquid was measured in the same manner as in Example 7, and a metal-coated polyimide film was produced to measure the peel strength.
As a result, the pH was 8.0 and the peel strength was 7.6 N/cm.
<参考例2-L>
 参考例2と同様にして2枚の表面処理済みのポリイミドフィルムをそれぞれ作製したのち、温度23℃,湿度50%の遮光された大気雰囲気の室内で3日間又は7日間引き置いてから重ね合わせ工程及び加圧工程を実施することを除いては、参考例2と同様にして、金属被覆ポリイミドフィルムを作製し、ピール強度を測定した。
 その結果、ピール強度は4.0N/cm(3日間引き置きの場合)及び2.7N/cm(7日間引き置きの場合)であった。これを引き置きをしていない参考例2(7.6N/cm)と比べると、引き置きによるピール強度の低下割合は47%(3日間引き置きの場合)又は65%(7日間引き置きの場合)と大きい。
<Reference Example 2-L>
After preparing two surface-treated polyimide films in the same manner as in Reference Example 2, they were placed in a room with a temperature of 23 ° C. and a humidity of 50% in a light-shielded atmosphere for 3 or 7 days, and then the superposition process. A metal-coated polyimide film was produced in the same manner as in Reference Example 2, except that the pressing step was performed, and the peel strength was measured.
As a result, the peel strength was 4.0 N/cm (when left for 3 days) and 2.7 N/cm (when left for 7 days). When compared with Reference Example 2 (7.6 N / cm) in which no holding was performed, the rate of decrease in peel strength due to holding was 47% (in the case of holding for 3 days) or 65% (in the case of holding for 7 days). case) and large.
(考察)
 参考例2及び2-Lからわかるように、表面処理液がアミノ基を含む化合物を含有している場合、表面処理液のpHが中性からアルカリ性であれば、当該表面処理液で表面処理を行った表面処理樹脂を、非乾燥大気雰囲気で数日間引き置きすると、他の物質と接合した際に、顕著な密着性の低下が見られる。
(Discussion)
As can be seen from Reference Examples 2 and 2-L, when the surface treatment liquid contains a compound containing an amino group and the pH of the surface treatment liquid is neutral to alkaline, surface treatment can be performed with the surface treatment liquid. When the surface-treated resin is left in a non-dry air atmosphere for several days, a remarkable decrease in adhesion is observed when it is joined to other substances.
 本発明の表面処理液を用いて作製されるポリイミドフィルム積層体は高い耐熱性を有し、ガラス、セラミックなどの無機物の代替として使用可能であり、積層を繰り返すことにより厚いシートや板状の物も製造可能であって、機械加工することによりエンジニアリングプラスチック的な使い方が可能となる。FPC基板の補強用途や軽量なスペーサ、半導体試験装置のプローブソケット(試験用治具)などの用途に好適に用いることができる。本発明の表面処理樹脂基材は、非乾燥大気雰囲気の下で数日間放置してから積層・圧着又は湿式めっきにより、樹脂又は金属と積層体を製造しても密着が保たれるから、製造工程に柔軟性を持たせることができ、製造プロセス設計や分業・協業管理の自由度が増す利点を有する。 The polyimide film laminate produced using the surface treatment liquid of the present invention has high heat resistance and can be used as a substitute for inorganic materials such as glass and ceramics. can also be manufactured, and by machining, it can be used like an engineering plastic. It can be suitably used for applications such as reinforcement of FPC boards, lightweight spacers, and probe sockets (test jigs) for semiconductor testing equipment. The surface-treated resin substrate of the present invention maintains close contact even when a laminate is produced with a resin or metal by lamination/compression bonding or wet plating after being left in a non-dry atmosphere for several days. It has the advantage that the process can be made flexible, and the degree of freedom in manufacturing process design and division of labor/collaboration management increases.
1,2,3,4  表面処理樹脂フィルム(又は樹脂フィルム)
5,6,7    樹脂フィルム
8        縮合物層
A1~A6    4-アジド安息香酸由来構造
P        ポリエチレンイミン構造
S1       前処理工程
S2       塗布工程
S4       加熱活性化工程
S6       UV活性化工程
S8       活性化後洗浄処理工程
S3,S5,S7,S9 分岐判断ステップ
1, 2, 3, 4 Surface-treated resin film (or resin film)
5,6,7 Resin film 8 Condensate layers A1 to A6 4-azidobenzoic acid-derived structure P Polyethyleneimine structure S1 Pretreatment step S2 Coating step S4 Heat activation step S6 UV activation step S8 Post-activation washing treatment step S3 , S5, S7, S9 branch determination step

Claims (14)

  1.  樹脂に塗布して用いる表面処理液であり、
     1級アミノ基又はイミノ基を有する繰り返し単位をもった重合体と、
     化合物αと、
    を、各々0.01質量%以上で、且つ合計5質量%以下の濃度で含み、
     前記化合物αは、一分子内に、
     アジド基、ジアゾメチル基又はアジドスルホニル基と、
     ОH基又はアルコキシ基と、
    を有する化合物であり、
     25℃におけるpHが5.0以下である表面処理液。
    It is a surface treatment liquid used by applying it to resin,
    a polymer having a repeating unit having a primary amino group or an imino group;
    a compound α;
    each at a concentration of 0.01% by mass or more and a total concentration of 5% by mass or less,
    In one molecule of the compound α,
    an azide group, a diazomethyl group or an azidosulfonyl group;
    an OH group or an alkoxy group;
    is a compound having
    A surface treatment liquid having a pH of 5.0 or less at 25°C.
  2.  25℃におけるpHが4.5以下である請求項1に記載の表面処理液。 The surface treatment liquid according to claim 1, which has a pH of 4.5 or less at 25°C.
  3.  前記表面処理液は、更に酸又は当該酸の無水物を含み、前記酸の25℃における酸解離定数pKaが4.0以下である請求項1に記載の表面処理液。 The surface treatment liquid according to claim 1, wherein the surface treatment liquid further contains an acid or an acid anhydride, and the acid dissociation constant pKa at 25°C of the acid is 4.0 or less.
  4.  前記ОH基又はアルコキシ基は、前記化合物αの有するカルボキシ基又はアルコキシカルボニル基に含まれる請求項2又は3に記載の表面処理液。 The surface treatment liquid according to claim 2 or 3, wherein the OH group or alkoxy group is included in the carboxy group or alkoxycarbonyl group of the compound α.
  5.  前記化合物αは、芳香環を含む請求項4に記載の表面処理液。 The surface treatment liquid according to claim 4, wherein the compound α contains an aromatic ring.
  6.  前記芳香環はベンゼン環であり、前記アジド基、ジアゾメチル基又はアジドスルホニル基は、前記ベンゼン環に直接的に結合している請求項5に記載の表面処理液。 The surface treatment liquid according to claim 5, wherein the aromatic ring is a benzene ring, and the azide group, diazomethyl group or azidosulfonyl group is directly bonded to the benzene ring.
  7.  前記繰り返し単位は、次の式(2)~式(7)のいずれかに示される繰り返し単位である請求項1に記載の表面処理液。
    Figure JPOXMLDOC01-appb-C000001
    (式中、aは0以上の整数であり、R、R1、R2及びR3は、それぞれ独立して、H原子、置換若しくは非置換のアルキル基(炭素数が1以上25以下)又はアリール基であり、Z-は陰イオンである。各式において、R、R1、R2及びR3のうち少なくとも1つはH原子である。)
    2. The surface treatment liquid according to claim 1, wherein the repeating unit is a repeating unit represented by any one of the following formulas (2) to (7).
    Figure JPOXMLDOC01-appb-C000001
    (Wherein, a is an integer of 0 or more, R, R 1 , R 2 and R 3 are each independently an H atom, a substituted or unsubstituted alkyl group (having 1 to 25 carbon atoms), or is an aryl group and Z - is an anion, in each formula at least one of R, R 1 , R 2 and R 3 is an H atom.)
  8.  請求項1に記載の表面処理液を樹脂の表面に塗布する工程と、前記表面処理液が塗布された前記樹脂の表面を加熱する工程と、を具える表面処理樹脂の製造方法。 A method for producing a surface-treated resin, comprising: applying the surface treatment liquid according to claim 1 to the surface of a resin; and heating the surface of the resin coated with the surface treatment liquid.
  9.  請求項1に記載の表面処理液を樹脂の表面に塗布する工程と、前記表面処理液が塗布された前記樹脂の表面に紫外線を照射する工程と、を具える表面処理樹脂の製造方法。 A method for producing a surface-treated resin, comprising the steps of: applying the surface treatment liquid according to claim 1 to the surface of a resin; and irradiating the surface of the resin coated with the surface treatment liquid with ultraviolet rays.
  10.  前記表面処理液を樹脂の表面に塗布する工程の前に、前記樹脂に対して、洗浄処理、酸処理、アルカリ処理、コロナ放電処理、プラズマ処理、紫外線照射処理、ケイ酸化炎処理及び脱フッ素化処理からなる群より選ばれる1つ以上の前処理を行う工程を更に具える、請求項8又は9に記載の表面処理樹脂の製造方法。 Before the step of applying the surface treatment liquid to the surface of the resin, the resin is subjected to washing treatment, acid treatment, alkali treatment, corona discharge treatment, plasma treatment, ultraviolet irradiation treatment, silica oxidation flame treatment and defluorination. 10. The method for producing a surface-treated resin according to claim 8 or 9, further comprising the step of performing one or more pretreatments selected from the group consisting of treatments.
  11.  複数枚の樹脂フィルムを用意して重ね合わせる工程を含み、
     重ね合わされた前記複数枚の樹脂フィルムにおいて、隣接する任意の2枚の樹脂フィルムAとBのうち、少なくとも一方の樹脂フィルムAは、樹脂フィルムAの表裏のうち、少なくとも樹脂フィルムBと対向する側の表面に、請求項8又は9に記載の表面処理樹脂の製造方法により処理が行われてなる表面処理樹脂フィルムであり、
     力を加えることにより、重ね合わされた前記複数枚の樹脂フィルムが一体的に結合される工程を具える、樹脂フィルム積層体の製造方法。
    Including the process of preparing and superimposing a plurality of resin films,
    In the plurality of superimposed resin films, at least one resin film A of any two adjacent resin films A and B faces at least the resin film B on the front and back sides of the resin film A. A surface-treated resin film in which the surface of is treated by the method for producing a surface-treated resin according to claim 8 or 9,
    A method for producing a resin film laminate, comprising a step of integrally bonding the plurality of resin films that have been superimposed by applying force.
  12.  複数枚の樹脂フィルムが、少なくとも1組の、隣接する2枚の前記樹脂フィルムの間に縮合物層を介して、積層してなる樹脂フィルム積層体であり、
     前記縮合物層は、化合物αと、1級アミノ基又はイミノ基を有する繰り返し単位をもった重合体との脱水縮合物又は加水分解脱水縮合物を含み、
     前記化合物αは、一分子内に、アジド基、ジアゾメチル基又はアジドスルホニル基と、ОH基又はアルコキシ基と、を有する化合物である樹脂フィルム積層体。
    A resin film laminate obtained by laminating at least one set of a plurality of resin films with a condensate layer interposed between two adjacent resin films,
    The condensate layer contains a dehydration condensate or a hydrolytic dehydration condensate of a compound α and a polymer having a repeating unit having a primary amino group or an imino group,
    The resin film laminate, wherein the compound α is a compound having an azide group, a diazomethyl group or an azidosulfonyl group and an OH group or an alkoxy group in one molecule.
  13.  前記複数枚の樹脂フィルムは、すべてポリイミドフィルムである請求項12に記載の樹脂フィルム積層体。 The resin film laminate according to claim 12, wherein all of the plurality of resin films are polyimide films.
  14.  請求項8又は9に記載の表面処理樹脂の製造方法により製造された表面処理樹脂の、表面処理が行われた表面に、湿式めっき又は金属箔の貼り合わせにより金属被覆を形成する工程を有する金属被覆樹脂の製造方法。 A metal having a step of forming a metal coating on the surface-treated surface of the surface-treated resin produced by the method for producing a surface-treated resin according to claim 8 or 9 by wet plating or laminating a metal foil. A method for producing a coating resin.
PCT/JP2023/003885 2022-02-06 2023-02-06 Surface treatment solution, and method for manufacturing surface-treated resin and resin film laminate WO2023149581A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022016783A JP7120695B1 (en) 2022-02-06 2022-02-06 Resin film laminate, method for producing same, and method for producing metal-coated resin
JP2022-016783 2022-02-06
JP2022-100599 2022-06-22
JP2022100599A JP2023114962A (en) 2022-02-06 2022-06-22 Surface treatment liquid, and method for producing surface-treated resin and resin film laminate

Publications (1)

Publication Number Publication Date
WO2023149581A1 true WO2023149581A1 (en) 2023-08-10

Family

ID=87552374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003885 WO2023149581A1 (en) 2022-02-06 2023-02-06 Surface treatment solution, and method for manufacturing surface-treated resin and resin film laminate

Country Status (1)

Country Link
WO (1) WO2023149581A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03141300A (en) * 1989-07-26 1991-06-17 Millipore Corp Immobilization of protein and peptide against insoluble support
JP2016047849A (en) * 2005-09-15 2016-04-07 ジェンザイム コーポレーション Sachet formulation for amine polymers
JP6438747B2 (en) * 2014-11-27 2018-12-19 三井化学株式会社 Method for producing composite
JP2020521574A (en) * 2017-05-30 2020-07-27 ズーゾズ アクチェンゲゼルシャフト Device with switchable wet-dry lubricious coating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03141300A (en) * 1989-07-26 1991-06-17 Millipore Corp Immobilization of protein and peptide against insoluble support
JP2016047849A (en) * 2005-09-15 2016-04-07 ジェンザイム コーポレーション Sachet formulation for amine polymers
JP6438747B2 (en) * 2014-11-27 2018-12-19 三井化学株式会社 Method for producing composite
JP2020521574A (en) * 2017-05-30 2020-07-27 ズーゾズ アクチェンゲゼルシャフト Device with switchable wet-dry lubricious coating

Similar Documents

Publication Publication Date Title
JP5777944B2 (en) Crosslinked polyimide resin, adhesive resin composition and cured product thereof, coverlay film, and circuit board
TW562735B (en) Flexible aromatic polyimide film/metal film composite sheet
US6217996B1 (en) Aromatic polyimide film and its composite sheet
JP5100894B2 (en) Polyimide resin, production method thereof, adhesive resin composition, coverlay film, and circuit board
TWI450918B (en) Surface treatment method of polyimide resin and method for producing metal foil laminated body
TW201215257A (en) Method for manufacturing multilayer printed wiring board
TWI417418B (en) Material for plating and use thereof
JP4925619B2 (en) Polyimide resin and film with conductor using the same
JP5650084B2 (en) Thermally conductive substrate and thermally conductive polyimide film
JP4260530B2 (en) Method for producing polyimide film
JP5902139B2 (en) Polyimide resin composition
CN101400720B (en) Resin composition and metal laminate plate
JP2008182092A (en) Thermoelectric conversion module
JP6262691B2 (en) Solvent-soluble polyimide resin
WO2023149581A1 (en) Surface treatment solution, and method for manufacturing surface-treated resin and resin film laminate
JP7120695B1 (en) Resin film laminate, method for producing same, and method for producing metal-coated resin
JP2017145344A (en) Polyimide, polyimide solution, resin film, polyimide composition, crosslinked polyimide, coverlay film, and circuit board
US7452610B2 (en) Multi-layer polyimide films and flexible circuit substrates therefrom
JP2016124982A (en) Crosslinked polyimide resin, method for production thereof, adhesive resin composition, cured material thereof, coverlay film, and circuit board
JP6031563B2 (en) Polyimide resin for adhesive
KR20080087036A (en) Polyimide resin composition and metal polyimide laminate
CN1753782B (en) Flexible metal foil-polyimide laminate
JP7079227B2 (en) Method for manufacturing solvent-soluble polyimide resin
TW202146232A (en) Metal-clad polymer films and electronic devices
JP2010157537A (en) Method of manufacturing laminated body and method of manufacturing circuit wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749897

Country of ref document: EP

Kind code of ref document: A1