WO2023149487A1 - Method for producing pyrrole-imidazole polyamide - Google Patents

Method for producing pyrrole-imidazole polyamide Download PDF

Info

Publication number
WO2023149487A1
WO2023149487A1 PCT/JP2023/003274 JP2023003274W WO2023149487A1 WO 2023149487 A1 WO2023149487 A1 WO 2023149487A1 JP 2023003274 W JP2023003274 W JP 2023003274W WO 2023149487 A1 WO2023149487 A1 WO 2023149487A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
reaction
formula
carbon atoms
group
Prior art date
Application number
PCT/JP2023/003274
Other languages
French (fr)
Japanese (ja)
Inventor
哲宏 根本
誠也 中島
篤志 金田
Original Assignee
国立大学法人千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人千葉大学 filed Critical 国立大学法人千葉大学
Publication of WO2023149487A1 publication Critical patent/WO2023149487A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/34Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/42Nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/91Nitro radicals
    • C07D233/92Nitro radicals attached in position 4 or 5
    • C07D233/95Nitro radicals attached in position 4 or 5 with hydrocarbon radicals, substituted by nitrogen atoms, attached to other ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/12Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids with both amino and carboxylic groups aromatically bound

Definitions

  • the present invention relates to a method for producing pyrrole-imidazole polyamide.
  • PIP Pyrrole-imidazole polyamide
  • Py N-methylpyrrole units
  • Im N-methylimidazole units
  • PIP enters the minor grooves of DNA, as expected from its molecular design, with Im-Py for GC base pairs, Py-Im for CG base pairs, and AT base pairs. Or Py-Py can bind to the TA base pair. Since PIP can specifically recognize and bind to the base sequence of DNA and strongly suppress the transcriptional activity of target genes, it is expected to be applied to epigenetic drug discovery to suppress the expression of target genes.
  • PIP synthesis methods include a solid phase synthesis method using a condensing agent developed by Dervan et al. have proposed a cross-coupling method using a metal catalyst (Patent Document 1).
  • Patent Document 1 a compound supported on a polymer is used to extend the peptide chain, so the atomic efficiency is very poor, and large-scale synthesis is difficult.
  • the purity of the crude purified product is low, and column chromatography is required for purification, which is time-consuming.
  • Liquid-phase synthesis methods using trichloroacetyl derivatives can only synthesize dimers, and trichloroacetyl derivatives having imidazole are unstable and difficult to handle. Furthermore, when the reaction is actually carried out, the solubility of the substrate is low, and large-scale synthesis is difficult.
  • the cross-coupling method does not require expensive condensing agents or polymers, but requires multistep processes for substrate synthesis.
  • Patent Literature 2 discloses sequence-selective pyrrole and imidazole polyamide metal complexes and methods for preparing the same.
  • Non-Patent Document 5 discloses monocyclic and multicyclic pyrrole containing N-formamides and imidazole-2-carboxylic acids for use in the preparation of polyamide molecules.
  • the present invention relates to the provision of a method for producing a pyrrole-imidazole polyamide that can produce a pyrrole-imidazole polyamide in a simple manner.
  • a method for producing a pyrrole-imidazole polyamide comprising the following steps A1 and A2.
  • Step A1 Reduction step of reducing compound 1 represented by the following formula (1) to obtain compound 2 represented by the following formula (2)
  • Step A2 compound 3 represented by the following formula (3)
  • X 0 each independently represents N or CH
  • R a is a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, a aryl group, an aralkyl group having 7 to 25 carbon atoms, a nitrile group, —COOR p
  • R p represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
  • R q and R r independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 20 carbon atoms
  • n is 0 or 1 Represents an integer greater than or equal to .
  • each X 1 independently represents N or CH, and Y represents a halogen atom.
  • m represents an integer of 0 or 1 or more.
  • Step B1 A reduction step to obtain a compound 5 represented by the following formula (5) by reducing the compound 4 obtained by the production method according to any one of [1] to [9] above
  • Step B2 The following formula Elongation step of reacting compound 6 represented by (6) with compound 5 to obtain compound 7 represented by the following formula (7)
  • X 2 each independently represents N or CH
  • Y represents a halogen atom
  • R b represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, a It represents an alkoxy group of 1 to 12 or an aryl of 6 to 10 carbon atoms.
  • p represents an integer of 0 or 1 or more;
  • a method for producing a pyrrole-imidazole polyamide is provided by which a pyrrole-imidazole polyamide can be produced in a simple manner.
  • the method for producing a pyrrole-imidazole polyamide of the present invention includes the following steps A1 and A2.
  • Step A1 Reduction step of reducing compound 1 represented by the following formula (1) to obtain compound 2 represented by the following formula (2)
  • Step A2 compound 3 represented by the following formula (3)
  • X 0 each independently represents N or CH
  • R a is a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, a aryl group, an aralkyl group having 7 to 25 carbon atoms, a nitrile group, —COOR p
  • R p represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
  • R q and R r independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 20 carbon atoms
  • n is 0 or 1 Represents an integer greater than or equal to .
  • each X 1 independently represents N or CH, and Y represents a halogen atom.
  • m represents an integer of 0 or 1 or more.
  • step A1 compound 1 represented by the above formula (1) is reduced to obtain compound 2 represented by the above formula (2).
  • Compound 1 which is the starting compound of Step A1, is a monomer of N-methylpyrrole or N-methylimidazole having a nitro group, or a pyrrole-imidazole polyamide having a nitro group, and is represented by the above formula (1).
  • Each X 0 in the above formula (1) independently represents N or CH. When X 0 represents N, the nitrogen-containing 5-membered ring containing X 0 is a pyrrole ring, and when X 0 represents CH, the nitrogen-containing 5-membered ring containing X 0 is an imidazole ring.
  • n represents an integer of 0 or 1 or more. n is preferably an integer of 0 to 3, more preferably 0 or 1, still more preferably 0, from the viewpoint of reactivity.
  • R a is a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 25 carbon atoms, a nitrile group, —COOR p (R p represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 20 carbon atoms.), or —CONR q R r (R q and R r are independently a hydrogen atom, a carbon represents an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 20 carbon atoms.).
  • the alkyl group is preferably a linear or branched alkyl group having 1 to 6 carbon atoms. Specifically, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, n-hexyl group and isohexyl group.
  • the alkyl group may have 1 or more and 3 or less substituents.
  • the alkoxy group is preferably a linear or branched alkoxy group having 1 to 6 carbon atoms, such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy. group, sec-butoxy group, tert-butoxy group, n-pentyloxy group, isopentyloxy group, n-hexyloxy group, isohexyloxy group and the like. Among them, an alkoxy group having 1 or more and 3 or less carbon atoms is preferable.
  • the aryl group is preferably an aryl group having 6 or more and 10 or less carbon atoms.
  • aryl group may have 1 or more and 3 or less substituents.
  • a halogen atom, an alkyl group, an alkoxy group, etc. are mentioned as said substituent.
  • the alkyl group is the above alkyl group
  • the aryl group is the above aryl group.
  • a benzyl group is mentioned as an aralkyl group.
  • Compound 1 can be obtained as a commercial product or from a commercial product by a known organic synthesis reaction.
  • R a is, among others, preferably a hydrogen atom or —COOR p , more preferably —COOR p .
  • the compound 2 obtained in step A1 is an N-methylpyrrole or N-methylimidazole monomer having an amino group, or a pyrrole-imidazole polyamide having an amino group, and is represented by the above formula (2).
  • X 0 , R a and n in formula (2) are the same as defined in formula (1).
  • step A1 the nitro group of compound 1 is reduced to lead to an amino group to obtain compound 2.
  • a reduction reaction of a nitro group can be performed by a known method. For example, catalytic reduction in which hydrogen gas is reacted in the presence of a palladium carbon catalyst, nickel catalyst, etc.; Bechamp reduction in which an acid such as ammonium chloride, hydrochloric acid, acetic acid, etc. hydride reduction, etc., in which metal oxides are reacted.
  • the reduction reaction is preferably carried out in the presence of a palladium carbon catalyst. From the viewpoint of reaction progress, the reduction reaction is preferably carried out in a solvent.
  • solvents examples include aqueous solvents such as water; alcohol solvents such as methanol and ethanol; ether solvents such as diethyl ether and tetrahydrofuran; Aprotic polar solvents such as dimethylsulfoxide (DMSO), hexamethylphosphoric triamide (HMPA), N-methylpyrrolidone (NMP), acetonitrile, acetone, and the like.
  • DMSO dimethylsulfoxide
  • HMPA hexamethylphosphoric triamide
  • NMP N-methylpyrrolidone
  • acetonitrile acetone, and the like.
  • a solvent can be used individually by 1 type or in mixture of 2 or more types.
  • the alcoholic solvent is preferably methanol.
  • the aprotic polar solvent is preferably N,N-dimethylformamide (DMF), tetrahydrofuran (THF), or a mixed solvent of DMF and THF.
  • the reduction reaction is carried out in an alcoholic solvent, for example, from the viewpoint of being widely used in reduction reactions carried out in the presence of a palladium carbon catalyst.
  • the pyrrole-imidazole polyamide is highly soluble, and the reduction reaction is performed in an aprotic polar solvent from the viewpoint of further improving the reaction rate, reaction progress, reproducibility of the reaction, and the like.
  • the solubility of pyrrole-imidazole polyamide (polymer) is lower than that of N-methylpyrrole or N-methylimidazole monomers, which may reduce the reactivity and reaction reproducibility of step A1.
  • the reduction reaction of the pyrrole-imidazole polyamide (polymer) having a nitro group is preferably carried out in an aprotic polar solvent.
  • n is an integer greater than or equal to 1 (eg, 1, 2 or 3)
  • the reduction reaction is performed in a polar aprotic solvent.
  • the solvent may be either a single solvent or a mixture of two or more solvents.
  • the amount of the catalyst to be used is preferably 0.1 equivalent to excess amount, more preferably 0.2 equivalent to 5 equivalents, still more preferably 0.5 to 2 equivalents, relative to compound 1.
  • the reaction temperature is preferably 0° C. to 100° C., and the reaction time is preferably 0.5 to 24 hours.
  • Step A1 may be either a batch method using a flask or the like or a flow reaction using a flow microreactor or the like. In one preferred embodiment, it is a flow reaction.
  • Step A2 is an elongation step of reacting compound 3 represented by the above formula (3) with compound 2 to obtain compound 4 represented by the above formula (4).
  • the compound 3 to be reacted with the compound 2 in step A2 is an acid halide compound represented by the above formula (3).
  • Each X 1 in the above formula (3) independently represents N or CH.
  • Y represents a halogen atom.
  • a halogen atom is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or the like, and preferably a chlorine atom from the viewpoint of availability.
  • m represents an integer of 0 or 1 or more. From the viewpoint of reactivity, m is preferably an integer of 0 to 3, more preferably 0 or 1, still more preferably 0.
  • compound 3 is represented by the following formula (3').
  • Compound 3 can be obtained as a commercial product or from a commercial product by a known organic synthesis reaction.
  • a specific example is a method of reacting a carboxylic acid compound with a halogenating agent such as thionyl chloride or oxalyl chloride.
  • the reaction with the halogenating agent is preferably carried out in a solvent.
  • the solvent is preferably an ether solvent such as diethyl ether or tetrahydrofuran.
  • the solvent may be either a single solvent or a mixture of two or more solvents.
  • the amount of the halogenating agent to be used is preferably 0.1 equivalent to excess, more preferably 0.2 to 5 equivalents, still more preferably 0.5 to 2 equivalents, relative to the carboxylic acid compound.
  • the reaction temperature is preferably 0° C. to 100° C., and the reaction time is preferably 0.5 to 24 hours.
  • Compound 4 obtained in step A2 is a pyrrole-imidazole polyamide and is represented by the above formula (4).
  • X 0 , X 1 , R a , n and m in formula (4) are the same as defined in formulas (1), (2) and (3) above.
  • step A2 compound 4 is obtained by reacting the acid halide group of compound 3 with the amino group of compound 2 to form an amide bond.
  • the elongation reaction can be carried out in the presence of preferably 0.1 to excess mol, more preferably 0.5 to 10 mol of base relative to 1 mol of compound 3, if necessary.
  • the base include organic bases such as pyridine, triethylamine and N,N-diisopropylethylamine (DIPEA). From the viewpoint of reaction progress, the reaction is preferably carried out in a solvent.
  • solvents examples include organic solvents such as ethyl acetate, N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), 1,4-dioxane, tetrahydrofuran (THF), acetonitrile and dichloromethane.
  • organic solvents such as ethyl acetate, N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), 1,4-dioxane, tetrahydrofuran (THF), acetonitrile and dichloromethane.
  • the solvent may be either a single solvent or a mixture of two or more solvents.
  • Step A2 may be either a batch method using a flask or the like or a flow reaction using a flow microreactor or the like.
  • step A2 is a flow reaction, more preferably the reaction is carried out in a microreactor.
  • both steps A1 and A2 are flow reactions from the viewpoint of easy mass synthesis.
  • a flow reaction which is a preferred embodiment of the present invention, is a reaction in which multiple components are mixed in a channel.
  • the inner diameter of the channel in the flow reaction is not particularly limited.
  • the inner diameter of the channel is preferably 0.05-2 mm, more preferably 0.1-1 mm.
  • the cross-sectional shape of the channel is, for example, circular or rectangular.
  • the channel length in the flow reaction is preferably 0.5 m or more and 10 m or less, more preferably 0.9 m or more and 8 m or less.
  • the mode of mixing in the flow reaction may be either laminar mixing or turbulent mixing. Flow reactions are preferably carried out in microreactors.
  • the microreactor is not particularly limited as long as it has a diameter on the order of micrometers, that is, 1000 ⁇ m or less, and examples of the microreactor include T-shaped or Y-shaped micromixers. It is preferable to use a pump such as a plunger pump, a gear pump, a rotary pump, a diaphragm pump, a syringe pump, or the like to transfer the liquid in the flow reaction. Preferably, the reaction temperature in the microreactor is controlled.
  • each component in the flow reaction is controlled so that the reaction time (residence time) is the above reaction time, and each component is independently preferably 0.01 mL/min to 100 mL/min, more preferably is 0.05 mL/min to 50 mL/min.
  • the concentration of each component in the flow reaction is preferably 0.005M to 0.5M, more preferably 0.01M to 0.1M for each component independently.
  • the compound 4 is used as the compound 1 in the next step A1 to continuously extend the pyrrole-imidazole polyamide to obtain a desired sequence and desired length of pyrrole • It is possible to produce imidazole polyamides.
  • Step B1 Reduction step of reducing compound 4 obtained by the above production method to obtain compound 5 represented by the following formula (5)
  • Step B2 Compound 6 represented by the following formula (6) and compound 5 above Elongation step of obtaining compound 7 represented by the following formula (7) by reacting
  • X 2 each independently represents N or CH
  • Y represents a halogen atom
  • R b represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, a It represents an alkoxy group of 1 to 12 or an aryl of 6 to 10 carbon atoms.
  • p represents an integer of 0 or 1 or more;
  • a pyrrole-imidazole polyamide having no terminal nitro group or amino group can be produced.
  • Step B1 can be carried out in the same manner as Step A1 above, except that Compound 4 obtained by the above production method is used in place of Compound 1.
  • compound 5 is represented by the following formula (5').
  • Step B2 can be performed in the same manner as Step A2 above, except that Compound 5 obtained in Step B1 above and Compound 6 above are used instead of Compound 3.
  • the compound 6 to be reacted with the compound 5 in step B2 is an acid halide compound represented by the above formula (6).
  • Compound 6, unlike compound 3, does not have a nitro group.
  • Each X 2 in the above formula (6) independently represents N or CH.
  • Y represents a halogen atom.
  • a halogen atom is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or the like, and preferably a chlorine atom from the viewpoint of availability.
  • R b represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
  • Halogen atoms include fluorine, chlorine, bromine and iodine atoms. Examples of the alkyl group, the alkoxy group, and the aryl group include the same modes as those for Ra described above.
  • p represents an integer of 0 or 1 or more; p is preferably an integer of 0 to 3, more preferably 0 or 1, still more preferably 0, from the viewpoint of reactivity.
  • compound 6 is represented by the following formula (6').
  • compound 6 can be obtained as a commercial product or from a commercial product by a known organic synthesis reaction.
  • the reaction can be stopped by means such as changing the temperature or pH, adding water, a solvent, a saturated aqueous solution of sodium hydrogen carbonate, or the like, if necessary.
  • the target compound can be obtained through isolation steps such as filtration, concentration, and extraction, if necessary.
  • the solvent used in the next step can be exchanged.
  • Obtainment of the desired compound in each step can be confirmed by known means such as 1 H-NMR measurement, 13 C-NMR measurement and mass spectrometry.
  • Compound 7 obtained in step B2 is a pyrrole-imidazole polyamide and is represented by the above formula (7).
  • X 0 , X 1 , X 2 , R a , n, m, and p in formula (7) are the same as defined in formulas (5) and (6) above.
  • compound 7 is represented by the following formula (7').
  • a pyrrole-imidazole polyamide is produced.
  • a pyrrole-imidazole polyamide in which pyrrole rings and imidazole rings are arranged in a desired order can be produced freely and simply.
  • the compounds used in the present invention can be easily synthesized from commercially available compounds, and are economical because they do not use condensing agents that tend to be expensive.
  • the production method of the present invention does not require a condensing agent or a support (polymer used for solid-phase synthesis), and can be carried out without purification such as column chromatography, so that waste is generated during production. very little quantity.
  • the reaction efficiency is high and the formation of by-products such as branched structures can be prevented.
  • the production method using a flow microreactor has a very short reaction time compared to the batch production method, and can easily produce a large amount of pyrrole-imidazole polyamide.
  • the pyrrole or imidazole derivative monomer (iii) was dissolved in tetrahydrofuran (THF) to make a 0.058 M solution, and under an argon atmosphere, 3.0 equivalents of N,N-diisopropylethylamine (DIPEA) was added to the monomer (iii). ) was added at room temperature.
  • DIPEA N,N-diisopropylethylamine
  • the target dimers (iv-a) to (iv-d) were obtained with a yield of 53-75% by performing the reaction for 24 hours. This reaction was very fast, and dimers 4a to 4d could be produced even in 30 seconds.
  • the content of the PyPy dimer (iv-a) in the insoluble matter was 99% by mass or more.
  • the dimer (iv) obtained in Synthesis Example 1 was reduced using 10% Pd/C in a hydrogen atmosphere in the same manner as in Synthesis Example 1 to obtain dimer (v). Yields are shown in Table 2. In the table, “quant” indicates that the reaction proceeded quantitatively. The reduction of dimers (iv-a)-(iv-c) to dimers (va)-(vc) proceeded in high yields.
  • Trimer (vii) was obtained in the same manner as in Synthesis Example 1 above, except that monomer (iii) was replaced with dimer (v). Yields are shown in Table 3. Compounds (vii-a) to (vii-d) were obtained in yields of 12 to 71% in a reaction time as short as 30 seconds.
  • FIG. 1 shows a schematic diagram of synthesis using a flow microreactor.
  • a T-shaped micromixer having an inner diameter of 0.25 mm in the mixing section was used, and a tube made of PTFE (polytetrafluoroethylene) having an inner diameter of 0.8 mm was used.
  • the concentration of solution A containing monomer (ii) obtained in the same manner as in Synthesis Example 1 was 0.035 M, the flow rate was 2.0 mL/min, and the monomer (iii) obtained in the same manner as in Synthesis Example 1.
  • the concentration of solution B containing was set to 0.058 M, and the flow rate was set to 1.2 mL/min.
  • ImPy dimer (iv-c) Synthesis of ImPy dimer (iv-c) Using imidazole derivative as monomer (ii) and pyrrole derivative as monomer (iii), ImPy dimer is prepared in the same manner as in 3-1 above. Synthesis of body (iv-c) was carried out. Table 6 shows the yield under each condition.
  • Synthesis Example 4 Trimer Synthesis Using Flow Microreactor 4-1: Synthesis 1 of PyPyPy Trimer (vii-a) Using the flow microreactor used in Synthesis Example 3 above, using a pyrrole derivative as the monomer (ii) and a PyPy dimer (va) as the monomer (iii), after liquid A and liquid B are merged Synthesis of PyPyPy trimers (vii-a) was carried out by setting various tube lengths and reaction temperatures. The content of the PyPyPy trimer (vii-a) in the insoluble matter obtained by synthesis under the conditions of a tube length of 410 cm and a reaction temperature of 0° C. was 99% by mass or more. Table 8 shows the yield under each condition.
  • ImPyPy trimer (vii-d) Synthesis of ImPyPy trimer (vii-d) Using an imidazole derivative as monomer (ii) and a PyPy dimer (va) as monomer (iii), ImPyPy trimer (vii-d ) was synthesized. Table 12 shows the yield under each condition.
  • Synthesis Example 5 Tetramer synthesis using a flow microreactor 5-1: Synthesis of PyPyPyPy tetramer (ix-a) The PyPyPy trimer (vii-a) obtained in 4-1 above was added to 10% Reduction with Pd/C gave the PyPyPy trimer. Reduction proceeded quantitatively.
  • Synthesis Example 6 Tetramer synthesis by flow method 6-1: Synthesis of PyPyPyPy tetramer (ix-a) The PyPy dimer (iv-a) obtained in 3-1 above was treated with 10% Pd /C to give the PyPy dimer (va). Reduction proceeded quantitatively. The PyPy dimer (iv-a) obtained in 3-1 above was suspended in a 1:1 mixed solution of H 2 O and EtOH, and then 5 equivalents of sodium hydroxide was added under ice-cooling. Stir in the bath for 1 hour. Thereafter, the mixture was ice-cooled again, and 10 equivalents of a 1 mol/l hydrochloric acid aqueous solution was added. The resulting yellow precipitate was filtered using a Kiriyama funnel to obtain PyPy-CO 2 H(xa) with a yield of 50%.
  • Test Examples 1 to 4 differences in hydrogenation reduction reaction efficiency due to differences in solvents (DMF or methanol) were evaluated.
  • palladium carbon catalyst Pd/C
  • palladium-activated carbon was used, and the amount was 10 parts by mass with respect to 100 parts by mass of NO 2 Py 4 OMe (ix-a).
  • concentration of NO2Py4OMe (ix-a) in DMF was 0.1M .
  • NO 2 Py 4 OMe was completely dissolved in DMF from the beginning of the reaction, and the reduction reaction proceeded well in the solution. After the reaction, disappearance of the raw material was confirmed by thin layer chromatography (TLC). Ethyl acetate was used as the developing solvent for TLC.
  • the inside of the flask was replaced with argon to remove hydrogen, 7 mL of tetrahydrofuran (THF) was added to the reaction solution, and the mixture was stirred for 15 minutes.
  • the reaction solution was passed through a column packed with 4.9 g of amino-modified silica gel to adsorb the product, and 49 mL of ethyl acetate was passed through to elute the product. After that, the eluate was concentrated under reduced pressure.
  • the amount of amino-modified silica gel used was 0.7 g per 1 mL of DMF used in the reaction.
  • the amount of ethyl acetate used was 7 times the amount of DMF used in the reaction.
  • Test Example 2 Hydrogenation reduction of PyPyPyPy tetramer in methanol
  • a hydrogenation reduction reaction was performed in the same manner as in Test Example 1 except that the solvent was changed from DMF to methanol, and the reaction was performed for 41 hours in the same manner as in Test Example 1. reacted. NO 2 Py 4 OMe did not completely dissolve in methanol and the reaction proceeded in a suspended state. The suspended state was not resolved even at the end of the reaction.
  • Column purification and concentration were performed in the same manner as in Test Example 1. 0.115 g (0.68 mmol) of 1,1,2,2-tetrachloroethane was added to the concentrated residue, diluted with heavy chloroform to obtain a homogeneous solution, and 1 H-NMR was measured.
  • the yield of NH 2 Py 4 OMe (xi-a) is calculated from the integral ratio of an arbitrary peak of NH 2 Py 4 OMe (xi-a) and the peak of 1,1,2,2-tetrachloroethane. The calculated yield was 11%.
  • a reduction reaction and quantification of the product were carried out in the same manner as in Test Example 1 except that the PyPyPyPy tetramer (ix-a) was replaced with the PyPyPy trimer (vii-a) obtained in Synthesis Example 4-1 above. gone. NO 2 Py 3 OMe was completely dissolved in DMF from the start of the reaction, and the reduction reaction proceeded well in the solution. The reaction was completed in 15 hours and the yield of NH2Py3OMe (vii-b) was 100%.
  • the reaction solvent is methanol
  • the PIP substrate containing the nitro group has low solubility in methanol. going to start.
  • the reaction solvent is methanol
  • the PIP substrate containing the nitro group has low solubility in methanol. going to start.
  • the reaction proceeded without problems after stirring for one day (Synthesis Example 1), but the longer the PIP length, the lower the solubility in the MeOH solvent. Decreased.
  • DMF is used as a solvent
  • the PIP substrate containing a nitro group is highly soluble, and the reduction reaction can be initiated with the entire amount of the substrate dissolved. Admitted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The present invention pertains to a method for producing a pyrrole-imidazole polyamide, the method comprising the following steps A1 and A2. Step A1: A reduction step for reducing compound 1 to obtain compound 2; Step A2: An extension step of reacting compound 3 with compound 2 to obtain compound 4 [Compounds 1-4 are as defined in the specification.]

Description

ピロール・イミダゾールポリアミドの製造方法Method for producing pyrrole-imidazole polyamide
 本発明は、ピロール・イミダゾールポリアミドの製造方法に関する。 The present invention relates to a method for producing pyrrole-imidazole polyamide.
 ピロール・イミダゾールポリアミド(以下「PIP」ともいう)は、N-メチルピロール単位(以下「Py」ともいう)とN-メチルイミダゾール単位(以下「Im」ともいう)が、アミド結合で結合された直鎖状の低分子である。PIPの分子デザインは、ピロールアミドトリマー構造を有する抗がん活性天然物であるディスタマイシンA(Distamycin A)のDNA結合能に由来する。 Pyrrole-imidazole polyamide (hereinafter also referred to as “PIP”) is a direct structure in which N-methylpyrrole units (hereinafter also referred to as “Py”) and N-methylimidazole units (hereinafter also referred to as “Im”) are linked via amide bonds. It is a chain-like low molecule. The molecular design of PIP is derived from the DNA-binding ability of Distamycin A, an anticancer natural product having a pyrroleamide trimer structure.
 PIPは、その分子デザインから期待されるとおり、DNAのマイナーグルーブに入り込み、G-C塩基対に対してIm-Pyが、C-G塩基対に対してPy-Imが、A-T塩基対又はT-A塩基対に対してPy-Pyが、結合することができる。PIPは、DNAの塩基配列を特異的に認識して結合し、標的遺伝子の転写活性を強く抑制することができるため、標的遺伝子の発現を抑制するエピゲノム創薬への応用が期待されている。 PIP enters the minor grooves of DNA, as expected from its molecular design, with Im-Py for GC base pairs, Py-Im for CG base pairs, and AT base pairs. Or Py-Py can bind to the TA base pair. Since PIP can specifically recognize and bind to the base sequence of DNA and strongly suppress the transcriptional activity of target genes, it is expected to be applied to epigenetic drug discovery to suppress the expression of target genes.
 PIPの合成方法としては、90年代にDervanらが開発した縮合剤を用いる固相合成法(非特許文献1~3)、トリクロロアセチル誘導体を用いる液相合成法(非特許文献4)、本発明者らによる金属触媒を用いるクロスカップリング法(特許文献1)等が提案されている。
 固相合成法は、ポリマーに担持した化合物を用いペプチド鎖の伸長を行うため、原子効率が非常に悪く、大量合成は困難である。また、副反応による多くの不純物が合成されるため、粗精製物の純度は低く、精製にはカラムクロマトグラフィーが必要であり手間がかかる。
 トリクロロアセチル誘導体を用いる液相合成法は、二量体までしか合成することができず、また、イミダゾールを有するトリクロロアセチル誘導体は不安定であり扱いにくい。更に、実際に反応を行ってみると基質の溶解性が低く、大量合成は困難である。
 クロスカップリング法は、高価な縮合剤やポリマーは必要ないが、基質合成に多段階の工程が必要である。
PIP synthesis methods include a solid phase synthesis method using a condensing agent developed by Dervan et al. have proposed a cross-coupling method using a metal catalyst (Patent Document 1).
In the solid-phase synthesis method, a compound supported on a polymer is used to extend the peptide chain, so the atomic efficiency is very poor, and large-scale synthesis is difficult. In addition, since many impurities are synthesized by side reactions, the purity of the crude purified product is low, and column chromatography is required for purification, which is time-consuming.
Liquid-phase synthesis methods using trichloroacetyl derivatives can only synthesize dimers, and trichloroacetyl derivatives having imidazole are unstable and difficult to handle. Furthermore, when the reaction is actually carried out, the solubility of the substrate is low, and large-scale synthesis is difficult.
The cross-coupling method does not require expensive condensing agents or polymers, but requires multistep processes for substrate synthesis.
 特許文献2には、配列選択的なピロールおよびイミダゾールポリアミド金属錯体及びその製造方法が開示されている。
 非特許文献5には、ポリアミド分子の調製に用いるための、N-ホルムアミドを含む単環及び複環のピロール、並びに、イミダゾール-2-カルボン酸が開示されている。
Patent Literature 2 discloses sequence-selective pyrrole and imidazole polyamide metal complexes and methods for preparing the same.
Non-Patent Document 5 discloses monocyclic and multicyclic pyrrole containing N-formamides and imidazole-2-carboxylic acids for use in the preparation of polyamide molecules.
国際公開第2017/169503号WO2017/169503 米国特許出願公開第2007/0265240号明細書U.S. Patent Application Publication No. 2007/0265240
 本発明は、簡便な方法で、ピロール・イミダゾールポリアミドを製造することができるピロール・イミダゾールポリアミドの製造方法の提供に関する。 The present invention relates to the provision of a method for producing a pyrrole-imidazole polyamide that can produce a pyrrole-imidazole polyamide in a simple manner.
 本発明は、以下〔1〕~〔11〕の態様を包含する。
〔1〕 下記工程A1及び工程A2を含む、ピロール・イミダゾールポリアミドの製造方法。
工程A1:下記式(1)で表される化合物1を還元し、下記式(2)で表される化合物2を得る還元工程
工程A2:下記式(3)で表される化合物3と、前記化合物2とを反応させて下記式(4)で表される化合物4を得る伸長工程
The present invention includes aspects [1] to [11] below.
[1] A method for producing a pyrrole-imidazole polyamide, comprising the following steps A1 and A2.
Step A1: Reduction step of reducing compound 1 represented by the following formula (1) to obtain compound 2 represented by the following formula (2) Step A2: compound 3 represented by the following formula (3); Elongation step of reacting with compound 2 to obtain compound 4 represented by the following formula (4)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[式(1)中、Xは、それぞれ独立してN又はCHを表し、Rは水素原子、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数6~20のアリール基、炭素数7~25のアラルキル基、ニトリル基、-COOR(Rは水素原子、炭素数1~12のアルキル基、又は炭素数6~20のアリール基を表す。)、又は-CONR(R及びRは、独立して、水素原子、炭素数1~12のアルキル基、又は炭素数6~20のアリール基を表す。)を表し、nは0又は1以上の整数を表す。] [In formula (1), X 0 each independently represents N or CH, R a is a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, a aryl group, an aralkyl group having 7 to 25 carbon atoms, a nitrile group, —COOR p (R p represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 20 carbon atoms.), or —CONR q R r (R q and R r independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 20 carbon atoms), and n is 0 or 1 Represents an integer greater than or equal to . ]
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[式(2)中、X、R、nは前記に同じ。] [In formula (2), X 0 , R a and n are the same as above. ]
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[式(3)中、Xは、それぞれ独立してN又はCHを表し、Yは、ハロゲン原子を表す。mは0又は1以上の整数を表す。] [In the formula (3), each X 1 independently represents N or CH, and Y represents a halogen atom. m represents an integer of 0 or 1 or more. ]
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[式(4)中、X、X、R、n、mは前記に同じ。]
〔2〕 前記工程A2がフロー反応である、上記〔1〕に記載の製造方法。
〔3〕 前記工程A1がフロー反応である、上記〔1〕又は〔2〕に記載の製造方法。
〔4〕 前記工程A2をマイクロリアクター中で行う、上記〔1〕~〔3〕のいずれか1項に記載の製造方法。
〔5〕 前記工程A1を、パラジウム炭素触媒の存在下で行う、上記〔1〕~〔4〕のいずれか1項に記載の製造方法。
〔6〕 前記工程A1を、非プロトン性極性溶媒中で行う、上記〔1〕~〔5〕のいずれか1項に記載の製造方法。
〔7〕 前記非プロトン性極性溶媒がN,N-ジメチルホルムアミドである、上記〔6〕に記載の製造方法。
〔8〕 前記mが0である、上記〔1〕~〔7〕のいずれか1項に記載の製造方法。
〔9〕 前記化合物4を、次の工程A1の化合物1として用いることにより連続的に伸長する、上記〔1〕~〔8〕のいずれか1項に記載の製造方法。
〔10〕 下記工程B1及び工程B2を更に含む、上記〔1〕~〔9〕のいずれか1項に記載のピロール・イミダゾールポリアミドの製造方法。
工程B1:上記〔1〕~〔9〕のいずれか1項に記載の製造方法により得られる化合物4を還元し、下記式(5)で表される化合物5を得る還元工程
工程B2:下記式(6)で表される化合物6と、前記化合物5とを反応させて下記式(7)で表される化合物7を得る伸長工程
[In formula (4), X 0 , X 1 , R a , n and m are the same as above. ]
[2] The production method according to [1] above, wherein the step A2 is a flow reaction.
[3] The production method according to [1] or [2] above, wherein the step A1 is a flow reaction.
[4] The production method according to any one of [1] to [3] above, wherein the step A2 is performed in a microreactor.
[5] The production method according to any one of [1] to [4] above, wherein the step A1 is performed in the presence of a palladium carbon catalyst.
[6] The production method according to any one of [1] to [5] above, wherein the step A1 is performed in an aprotic polar solvent.
[7] The production method according to [6] above, wherein the aprotic polar solvent is N,N-dimethylformamide.
[8] The production method according to any one of [1] to [7] above, wherein m is 0.
[9] The production method according to any one of [1] to [8] above, wherein the compound 4 is continuously extended by using it as the compound 1 in the next step A1.
[10] A method for producing a pyrrole-imidazole polyamide according to any one of [1] to [9] above, further comprising the following steps B1 and B2.
Step B1: A reduction step to obtain a compound 5 represented by the following formula (5) by reducing the compound 4 obtained by the production method according to any one of [1] to [9] above Step B2: The following formula Elongation step of reacting compound 6 represented by (6) with compound 5 to obtain compound 7 represented by the following formula (7)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[式(5)中、X、X、R、n、mは前記に同じ。] [In Formula (5), X 0 , X 1 , R a , n and m are the same as above. ]
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[式(6)中、Xは、それぞれ独立してN又はCHを表し、Yは、ハロゲン原子を表し、Rは、水素原子、ハロゲン原子、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、又は炭素数6~10のアリールを表す。pは0又は1以上の整数を表す。] [In formula (6), X 2 each independently represents N or CH, Y represents a halogen atom, R b represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, a It represents an alkoxy group of 1 to 12 or an aryl of 6 to 10 carbon atoms. p represents an integer of 0 or 1 or more; ]
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[式(7)中、X、X、X、R、R、n、m、pは前記に同じ。]
〔11〕 前記m及びpがそれぞれ0である、上記〔10〕に記載の製造方法
[In formula (7), X 0 , X 1 , X 2 , R a , R b , n, m, and p are the same as above. ]
[11] The production method according to [10] above, wherein each of m and p is 0.
 本発明により、簡便な方法で、ピロール・イミダゾールポリアミドを製造することができるピロール・イミダゾールポリアミドの製造方法が提供される。 According to the present invention, a method for producing a pyrrole-imidazole polyamide is provided by which a pyrrole-imidazole polyamide can be produced in a simple manner.
PIPのフローマイクロリアクターを用いた合成の模式図。Schematic diagram of synthesis of PIP using a flow microreactor.
 本発明のピロール・イミダゾールポリアミドの製造方法は、下記工程A1及び工程A2を含む。
工程A1:下記式(1)で表される化合物1を還元し、下記式(2)で表される化合物2を得る還元工程
工程A2:下記式(3)で表される化合物3と、前記化合物2とを反応させて下記式(4)で表される化合物4を得る伸長工程
The method for producing a pyrrole-imidazole polyamide of the present invention includes the following steps A1 and A2.
Step A1: Reduction step of reducing compound 1 represented by the following formula (1) to obtain compound 2 represented by the following formula (2) Step A2: compound 3 represented by the following formula (3); Elongation step of reacting with compound 2 to obtain compound 4 represented by the following formula (4)
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[式(1)中、Xは、それぞれ独立してN又はCHを表し、Rは水素原子、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数6~20のアリール基、炭素数7~25のアラルキル基、ニトリル基、-COOR(Rは水素原子、炭素数1~12のアルキル基、又は炭素数6~20のアリール基を表す。)、又は-CONR(R及びRは、独立して、水素原子、炭素数1~12のアルキル基、又は炭素数6~20のアリール基を表す。)を表し、nは0又は1以上の整数を表す。] [In formula (1), X 0 each independently represents N or CH, R a is a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, a aryl group, an aralkyl group having 7 to 25 carbon atoms, a nitrile group, —COOR p (R p represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 20 carbon atoms.), or —CONR q R r (R q and R r independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 20 carbon atoms), and n is 0 or 1 Represents an integer greater than or equal to . ]
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
[式(2)中、X、R、nは前記に同じ。] [In formula (2), X 0 , R a and n are the same as above. ]
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
[式(3)中、Xは、それぞれ独立してN又はCHを表し、Yは、ハロゲン原子を表す。mは0又は1以上の整数を表す。] [In the formula (3), each X 1 independently represents N or CH, and Y represents a halogen atom. m represents an integer of 0 or 1 or more. ]
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
[式(4)中、X、X、R、n、mは前記に同じ。] [In formula (4), X 0 , X 1 , R a , n and m are the same as above. ]
<工程A1>
 工程A1において、上記式(1)で表される化合物1を還元し、上記式(2)で表される化合物2を得る。
〔化合物1〕
 工程A1の出発化合物である化合物1はニトロ基を有するN-メチルピロール若しくはN-メチルイミダゾールのモノマー、又は、ニトロ基を有するピロール・イミダゾールポリアミドであり、上記式(1)で表される。
 上記式(1)におけるXは、それぞれ独立してN又はCHを表す。XがNを表す場合はXを有する含窒素5員環はピロール環であり、XがCHを表す場合はXを有する含窒素5員環はイミダゾール環である。
 nは0又は1以上の整数を表す。nは、反応性の観点から、好ましくは0~3の整数、より好ましくは0又は1、更に好ましくは0である。
 Rは水素原子、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数6~20のアリール基、炭素数7~25のアラルキル基、ニトリル基、-COOR(Rは水素原子、炭素数1~12のアルキル基、又は炭素数6~20のアリール基を表す。)、又は-CONR(R及びRは、独立して、水素原子、炭素数1~12のアルキル基、又は炭素数6~20のアリール基を表す。)を表す。
 アルキル基としては、好ましくは、直鎖状又は分岐鎖状の炭素数1~6のアルキル基である。具体的には、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、n-ヘキシル基、イソヘキシル基が挙げられる。アルキル基は、1個以上3個以下の置換基を有していてもよい。
 アルコキシ基としては、好ましくは、直鎖状又は分岐鎖状の炭素数1以上6以下のアルコキシであり、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、n-ヘキシルオキシ基、イソヘキシルオキシ基等を挙げることができる。中でも、好ましくは炭素数1以上3以下のアルコキシ基である。
 アリール基としては、好ましくは、炭素数6以上10以下のアリール基である。具体的には、例えば、フェニル、α-ナフチル、β-ナフチルを挙げることができる。とりわけフェニルが好ましい。アリール基は1個以上3個以下の置換基を有していてもよい。
 上記置換基としては、ハロゲン原子、アルキル基、アルコキシ基等が挙げられる。
 アラルキル基(アリールアルキル基)におけるアルキル基は上記のアルキル基であり、アリール基は上記のアリール基である。アラルキル基としては、ベンジル基が挙げられる。
 化合物1は、市販品として、又は、市販品より公知の有機合成反応により取得することができる。
 Rとしては、中でも、好ましくは水素原子又は-COOR、より好ましくは-COORである。
<Step A1>
In step A1, compound 1 represented by the above formula (1) is reduced to obtain compound 2 represented by the above formula (2).
[Compound 1]
Compound 1, which is the starting compound of Step A1, is a monomer of N-methylpyrrole or N-methylimidazole having a nitro group, or a pyrrole-imidazole polyamide having a nitro group, and is represented by the above formula (1).
Each X 0 in the above formula (1) independently represents N or CH. When X 0 represents N, the nitrogen-containing 5-membered ring containing X 0 is a pyrrole ring, and when X 0 represents CH, the nitrogen-containing 5-membered ring containing X 0 is an imidazole ring.
n represents an integer of 0 or 1 or more. n is preferably an integer of 0 to 3, more preferably 0 or 1, still more preferably 0, from the viewpoint of reactivity.
R a is a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 25 carbon atoms, a nitrile group, —COOR p (R p represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 20 carbon atoms.), or —CONR q R r (R q and R r are independently a hydrogen atom, a carbon represents an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 20 carbon atoms.).
The alkyl group is preferably a linear or branched alkyl group having 1 to 6 carbon atoms. Specifically, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, n-hexyl group and isohexyl group. The alkyl group may have 1 or more and 3 or less substituents.
The alkoxy group is preferably a linear or branched alkoxy group having 1 to 6 carbon atoms, such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy. group, sec-butoxy group, tert-butoxy group, n-pentyloxy group, isopentyloxy group, n-hexyloxy group, isohexyloxy group and the like. Among them, an alkoxy group having 1 or more and 3 or less carbon atoms is preferable.
The aryl group is preferably an aryl group having 6 or more and 10 or less carbon atoms. Specific examples include phenyl, α-naphthyl, and β-naphthyl. Phenyl is particularly preferred. The aryl group may have 1 or more and 3 or less substituents.
A halogen atom, an alkyl group, an alkoxy group, etc. are mentioned as said substituent.
In the aralkyl group (arylalkyl group), the alkyl group is the above alkyl group, and the aryl group is the above aryl group. A benzyl group is mentioned as an aralkyl group.
Compound 1 can be obtained as a commercial product or from a commercial product by a known organic synthesis reaction.
R a is, among others, preferably a hydrogen atom or —COOR p , more preferably —COOR p .
〔化合物2〕
 工程A1で得られる化合物2はアミノ基を有するN-メチルピロール若しくはN-メチルイミダゾールのモノマー、又は、アミノ基を有するピロール・イミダゾールポリアミドであり、上記式(2)で表される。
 式(2)における、X、R、nは、式(1)における定義と同様である。
[Compound 2]
The compound 2 obtained in step A1 is an N-methylpyrrole or N-methylimidazole monomer having an amino group, or a pyrrole-imidazole polyamide having an amino group, and is represented by the above formula (2).
X 0 , R a and n in formula (2) are the same as defined in formula (1).
〔還元反応〕
 工程A1において、化合物1のニトロ基を還元しアミノ基へと導き、化合物2を得る。
 ニトロ基の還元反応は、公知の手法により行うことができる。
 例えば、パラジウム炭素触媒、ニッケル触媒等の存在下で水素ガスを反応させる接触還元;鉄、亜鉛、錫等の金属触媒の存在下、塩化アンモニウム、塩酸、酢酸等の酸を反応させるBechamp還元、水素化金属を反応させるヒドリド還元等が挙げられる。
 中でも、還元反応はパラジウム炭素触媒の存在下で行う還元反応が好ましい。
 還元反応は、反応進行性の観点から、溶媒中で行うことが好ましい。溶媒としては、水等の水性溶媒;メタノール、エタノール等のアルコール系溶媒;ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒;N,N-ジメチルホルムアミド(DMF)、テトラヒドロフラン(THF)、ジメチルアセトアミド(DMA)、ジメチルスルホキシド(DMSO)、ヘキサメチルリン酸トリアミド(HMPA)、N-メチルピロリドン(NMP)、アセトニトリル、アセトン等などの非プロトン性極性溶媒が挙げられる。溶媒は、1種を単独で、又は、2種以上を混合して用いることができる。
 アルコール系溶媒は、好ましくはメタノールである。非プロトン性極性溶媒は、好ましくはN,N-ジメチルホルムアミド(DMF)、テトラヒドロフラン(THF)、又はDMFとTHFの混合溶媒である。
 本発明の好ましい態様の1つにおいては、例えばパラジウム炭素触媒の存在下で行う還元反応において広く使用されている観点から、還元反応はアルコール系溶媒中で行う。
 別の好ましい態様の1つにおいては、ピロール・イミダゾールポリアミドの溶解性が高く、反応速度、反応進行性、反応の再現性等がより向上する観点から、還元反応は非プロトン性極性溶媒中で行う。N-メチルピロールやN-メチルイミダゾールのモノマーと比較して、ピロール・イミダゾールポリアミド(ポリマー)の溶解度が低く、これに起因して工程A1の反応性、反応の再現性が低下する場合があるため、ニトロ基を有するピロール・イミダゾールポリアミド(ポリマー)の還元反応は非プロトン性極性溶媒中で行うことが好ましい。すなわち、一態様において、nが1以上の整数(例えば、1、2又は3)である場合、還元反応を非プロトン性極性溶媒中で行う。
 溶媒は、単一溶媒又は2以上の溶媒の混合溶媒のいずれであってもよい。
[Reduction reaction]
In step A1, the nitro group of compound 1 is reduced to lead to an amino group to obtain compound 2.
A reduction reaction of a nitro group can be performed by a known method.
For example, catalytic reduction in which hydrogen gas is reacted in the presence of a palladium carbon catalyst, nickel catalyst, etc.; Bechamp reduction in which an acid such as ammonium chloride, hydrochloric acid, acetic acid, etc. hydride reduction, etc., in which metal oxides are reacted.
Among them, the reduction reaction is preferably carried out in the presence of a palladium carbon catalyst.
From the viewpoint of reaction progress, the reduction reaction is preferably carried out in a solvent. Examples of solvents include aqueous solvents such as water; alcohol solvents such as methanol and ethanol; ether solvents such as diethyl ether and tetrahydrofuran; Aprotic polar solvents such as dimethylsulfoxide (DMSO), hexamethylphosphoric triamide (HMPA), N-methylpyrrolidone (NMP), acetonitrile, acetone, and the like. A solvent can be used individually by 1 type or in mixture of 2 or more types.
The alcoholic solvent is preferably methanol. The aprotic polar solvent is preferably N,N-dimethylformamide (DMF), tetrahydrofuran (THF), or a mixed solvent of DMF and THF.
In one preferred embodiment of the present invention, the reduction reaction is carried out in an alcoholic solvent, for example, from the viewpoint of being widely used in reduction reactions carried out in the presence of a palladium carbon catalyst.
In another preferred embodiment, the pyrrole-imidazole polyamide is highly soluble, and the reduction reaction is performed in an aprotic polar solvent from the viewpoint of further improving the reaction rate, reaction progress, reproducibility of the reaction, and the like. . The solubility of pyrrole-imidazole polyamide (polymer) is lower than that of N-methylpyrrole or N-methylimidazole monomers, which may reduce the reactivity and reaction reproducibility of step A1. , the reduction reaction of the pyrrole-imidazole polyamide (polymer) having a nitro group is preferably carried out in an aprotic polar solvent. Thus, in one aspect, when n is an integer greater than or equal to 1 (eg, 1, 2 or 3), the reduction reaction is performed in a polar aprotic solvent.
The solvent may be either a single solvent or a mixture of two or more solvents.
 触媒の使用量は化合物1に対して、好ましくは0.1当量~過剰量、より好ましくは0.2当量~5当量、更に好ましくは0.5~2当量である。反応温度は好ましくは0℃~100℃であり、反応時間は好ましくは0.5~24時間である。
 工程A1は、フラスコ等を用いるバッチ方式、又はフローマイクロリアクター等を用いるフロー反応のいずれであってもよい。好ましい1つの態様においては、フロー反応である。
The amount of the catalyst to be used is preferably 0.1 equivalent to excess amount, more preferably 0.2 equivalent to 5 equivalents, still more preferably 0.5 to 2 equivalents, relative to compound 1. The reaction temperature is preferably 0° C. to 100° C., and the reaction time is preferably 0.5 to 24 hours.
Step A1 may be either a batch method using a flask or the like or a flow reaction using a flow microreactor or the like. In one preferred embodiment, it is a flow reaction.
<工程A2>
 工程A2は、上記式(3)で表される化合物3と、前記化合物2とを反応させて上記式(4)で表される化合物4を得る伸長工程である。
〔化合物3〕
 工程A2で前記化合物2と反応させる化合物3は酸ハライド化合物であり、上記式(3)で表される。
 上記式(3)におけるXは、それぞれ独立してN又はCHを表す。
 Yは、ハロゲン原子を表す。ハロゲン原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子等であり、入手性の観点から好ましくは塩素原子である。
 mは0又は1以上の整数を表す。mは、反応性の観点から、好ましくは0~3の整数、より好ましくは0又は1、更に好ましくは0である。
<Step A2>
Step A2 is an elongation step of reacting compound 3 represented by the above formula (3) with compound 2 to obtain compound 4 represented by the above formula (4).
[Compound 3]
The compound 3 to be reacted with the compound 2 in step A2 is an acid halide compound represented by the above formula (3).
Each X 1 in the above formula (3) independently represents N or CH.
Y represents a halogen atom. A halogen atom is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or the like, and preferably a chlorine atom from the viewpoint of availability.
m represents an integer of 0 or 1 or more. From the viewpoint of reactivity, m is preferably an integer of 0 to 3, more preferably 0 or 1, still more preferably 0.
 mが0である場合、化合物3は下記式(3’)で表される。 When m is 0, compound 3 is represented by the following formula (3').
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
[式(3’)中、X、Yは前記に同じ。] [In Formula (3′), X 1 and Y are the same as above. ]
 化合物3は、市販品として、又は、市販品より公知の有機合成反応により取得することができる。
 具体例としては、カルボン酸化合物に塩化チオニル、塩化オキサリル等のハロゲン化剤を反応させる方法が挙げられる。
 ハロゲン化剤との反応は、反応進行性の観点から、溶媒中で行うことが好ましい。溶媒は、好ましくは、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒である。溶媒は、単一溶媒又は2以上の溶媒の混合溶媒のいずれであってもよい。
 ハロゲン化剤の使用量は、カルボン酸化合物に対して、好ましくは0.1当量~過剰量、より好ましくは0.2当量~5当量、更に好ましくは0.5~2当量である。
 反応温度は好ましくは0℃~100℃であり、反応時間は好ましくは0.5~24時間である。
Compound 3 can be obtained as a commercial product or from a commercial product by a known organic synthesis reaction.
A specific example is a method of reacting a carboxylic acid compound with a halogenating agent such as thionyl chloride or oxalyl chloride.
From the viewpoint of reaction progress, the reaction with the halogenating agent is preferably carried out in a solvent. The solvent is preferably an ether solvent such as diethyl ether or tetrahydrofuran. The solvent may be either a single solvent or a mixture of two or more solvents.
The amount of the halogenating agent to be used is preferably 0.1 equivalent to excess, more preferably 0.2 to 5 equivalents, still more preferably 0.5 to 2 equivalents, relative to the carboxylic acid compound.
The reaction temperature is preferably 0° C. to 100° C., and the reaction time is preferably 0.5 to 24 hours.
〔化合物4〕
 工程A2で得られる化合物4はピロール・イミダゾールポリアミドであり、上記式(4)で表される。
 式(4)における、X、X、R、n、mは、前記式(1)、式(2)及び式(3)における定義と同様である。
[Compound 4]
Compound 4 obtained in step A2 is a pyrrole-imidazole polyamide and is represented by the above formula (4).
X 0 , X 1 , R a , n and m in formula (4) are the same as defined in formulas (1), (2) and (3) above.
 mが0である場合、化合物4は下記式(4’)で表される。 When m is 0, compound 4 is represented by the following formula (4').
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
[式(4’)中、X、X、R、nは前記に同じ。] [In Formula (4′), X 0 , X 1 , R a and n are the same as above. ]
〔伸長反応〕
 工程A2において、化合物3の酸ハライド基と、化合物2のアミノ基とを反応させてアミド結合を形成させ、化合物4を得る。
 化合物3に対して、好ましくは0.1~10当量、より好ましくは0.5~2当量の化合物2を反応させることができる。
 伸長反応は、必要に応じて1モルの化合物3に対して、好ましくは0.1~過剰量モル、より好ましくは0.5~10モルの塩基の存在下で行うことができる。塩基としては、ピリジン、トリエチルアミン、N,N-ジイソプロピルエチルアミン(DIPEA)等の有機塩基等が挙げられる。
 反応は、反応進行性の観点から、溶媒中で行うことが好ましい。溶媒としては、酢酸エチル、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、1,4-ジオキサン、テトラヒドロフラン(THF)、アセトニトリル、ジクロロメタン等の有機溶媒が挙げられる。溶媒は、単一溶媒又は2以上の溶媒の混合溶媒のいずれであってもよい。
[Elongation reaction]
In step A2, compound 4 is obtained by reacting the acid halide group of compound 3 with the amino group of compound 2 to form an amide bond.
Preferably 0.1 to 10 equivalents, more preferably 0.5 to 2 equivalents of compound 2 can be reacted with respect to compound 3.
The elongation reaction can be carried out in the presence of preferably 0.1 to excess mol, more preferably 0.5 to 10 mol of base relative to 1 mol of compound 3, if necessary. Examples of the base include organic bases such as pyridine, triethylamine and N,N-diisopropylethylamine (DIPEA).
From the viewpoint of reaction progress, the reaction is preferably carried out in a solvent. Examples of solvents include organic solvents such as ethyl acetate, N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), 1,4-dioxane, tetrahydrofuran (THF), acetonitrile and dichloromethane. The solvent may be either a single solvent or a mixture of two or more solvents.
 工程A2は、フラスコ等を用いるバッチ方式、又はフローマイクロリアクター等を用いるフロー反応のいずれであってもよい。好ましい1つの態様においては、工程A2はフロー反応であり、より好ましくはマイクロリアクター中で反応を行う。
 特に、工程A1及び工程A2のいずれもがフロー反応であると、大量合成が容易に行える等の観点からより好ましい。
Step A2 may be either a batch method using a flask or the like or a flow reaction using a flow microreactor or the like. In one preferred embodiment step A2 is a flow reaction, more preferably the reaction is carried out in a microreactor.
In particular, it is more preferable that both steps A1 and A2 are flow reactions from the viewpoint of easy mass synthesis.
<フロー反応>
 本発明の好ましい態様であるフロー反応は、流路中で複数成分の混合を行う反応である。
 フロー反応における流路の内径は特に限定されるものではない。流路の内径は、好ましくは0.05~2mm、より好ましくは0.1~1mmである。流路の断面の形状は、例えば円形又は矩形である。
 フロー反応における流路長は、好ましくは0.5m以上10m以下、より好ましくは0.9m以上8m以下である。
 フロー反応における混合の様式は、層流による混合及び乱流による混合のいずれであってもよい。
 フロー反応は、好ましくはマイクロリアクター中で行う。マイクロリアクターは径がマイクロメートルオーダー、すなわち1000μm以下の装置であれば特に限定されず、マイクロリアクターの例として、T字型又はY字型のマイクロミキサーが挙げられる。
 フロー反応における送液は、プランジャーポンプ、ギアポンプ、ロータリーポンプ、ダイヤフラムポンプ、シリンジポンプ等のポンプを用いて行うことが好ましい。
 マイクロリアクター中の反応温度は制御されていることが好ましい。
 フロー反応における各成分の流速は、反応時間(滞留時間)が上記の反応時間となるように制御され、各成分が独立して、好ましくは0.01mL/min~100mL/minであり、より好ましくは0.05mL/min~50mL/minである。
 フロー反応における各成分の濃度は、各成分が独立して、好ましくは0.005M~0.5M、より好ましくは0.01M~0.1Mである。
<Flow reaction>
A flow reaction, which is a preferred embodiment of the present invention, is a reaction in which multiple components are mixed in a channel.
The inner diameter of the channel in the flow reaction is not particularly limited. The inner diameter of the channel is preferably 0.05-2 mm, more preferably 0.1-1 mm. The cross-sectional shape of the channel is, for example, circular or rectangular.
The channel length in the flow reaction is preferably 0.5 m or more and 10 m or less, more preferably 0.9 m or more and 8 m or less.
The mode of mixing in the flow reaction may be either laminar mixing or turbulent mixing.
Flow reactions are preferably carried out in microreactors. The microreactor is not particularly limited as long as it has a diameter on the order of micrometers, that is, 1000 μm or less, and examples of the microreactor include T-shaped or Y-shaped micromixers.
It is preferable to use a pump such as a plunger pump, a gear pump, a rotary pump, a diaphragm pump, a syringe pump, or the like to transfer the liquid in the flow reaction.
Preferably, the reaction temperature in the microreactor is controlled.
The flow rate of each component in the flow reaction is controlled so that the reaction time (residence time) is the above reaction time, and each component is independently preferably 0.01 mL/min to 100 mL/min, more preferably is 0.05 mL/min to 50 mL/min.
The concentration of each component in the flow reaction is preferably 0.005M to 0.5M, more preferably 0.01M to 0.1M for each component independently.
<連続反応>
 本発明のピロール・イミダゾールポリアミドの製造方法において、前記化合物4を、次の工程A1の化合物1として用いることにより連続的にピロール・イミダゾールポリアミドを伸長して、所望の配列及び所望の長さのピロール・イミダゾールポリアミドを製造することができる。
<Continuous reaction>
In the method for producing a pyrrole-imidazole polyamide of the present invention, the compound 4 is used as the compound 1 in the next step A1 to continuously extend the pyrrole-imidazole polyamide to obtain a desired sequence and desired length of pyrrole • It is possible to produce imidazole polyamides.
<工程B1及び工程B2>
 本発明のピロール・イミダゾールポリアミドの製造方法は、下記工程B1及び工程B2を更に含むことができる。
工程B1:上記製造方法により得られる化合物4を還元し、下記式(5)で表される化合物5を得る還元工程
工程B2:下記式(6)で表される化合物6と、上記化合物5とを反応させて下記式(7)で表される化合物7を得る伸長工程
<Step B1 and Step B2>
The method for producing the pyrrole-imidazole polyamide of the present invention can further include the following steps B1 and B2.
Step B1: Reduction step of reducing compound 4 obtained by the above production method to obtain compound 5 represented by the following formula (5) Step B2: Compound 6 represented by the following formula (6) and compound 5 above Elongation step of obtaining compound 7 represented by the following formula (7) by reacting
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
[式(5)中、X、X、R、n、mは前記に同じ。] [In Formula (5), X 0 , X 1 , R a , n and m are the same as above. ]
Figure JPOXMLDOC01-appb-C000022

[式(6)中、Xは、それぞれ独立してN又はCHを表し、Yは、ハロゲン原子を表し、Rは、水素原子、ハロゲン原子、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、又は炭素数6~10のアリールを表す。pは0又は1以上の整数を表す。]
Figure JPOXMLDOC01-appb-C000022

[In formula (6), X 2 each independently represents N or CH, Y represents a halogen atom, R b represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, a It represents an alkoxy group of 1 to 12 or an aryl of 6 to 10 carbon atoms. p represents an integer of 0 or 1 or more; ]
Figure JPOXMLDOC01-appb-C000023

[式(7)中、X、X、X、R、R、n、m、pは前記に同じ。]
Figure JPOXMLDOC01-appb-C000023

[In formula (7), X 0 , X 1 , X 2 , R a , R b , n, m, and p are the same as above. ]
 本発明のピロール・イミダゾールポリアミドの製造方法が上記工程B1及び上記工程B2を含むことで、末端にニトロ基又はアミノ基を有さないピロール・イミダゾールポリアミドを製造することができる。 By including the step B1 and the step B2 in the method for producing a pyrrole-imidazole polyamide of the present invention, a pyrrole-imidazole polyamide having no terminal nitro group or amino group can be produced.
〔工程B1〕
 工程B1は、化合物1に替えて上記製造方法で得られる化合物4を使用する以外は、上記工程A1と同様にして行うことができる。
[Step B1]
Step B1 can be carried out in the same manner as Step A1 above, except that Compound 4 obtained by the above production method is used in place of Compound 1.
 mが0である場合、化合物5は下記式(5’)で表される。 When m is 0, compound 5 is represented by the following formula (5').
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
[式(5’)中、X、X、R、nは前記に同じ。] [In Formula (5′), X 0 , X 1 , R a and n are the same as above. ]
〔工程B2〕
 工程B2は、化合物3に替えて上記工程B1で得られる化合物5及び上記化合物6を使用する以外は、上記工程A2と同様にして行うことができる。
[Step B2]
Step B2 can be performed in the same manner as Step A2 above, except that Compound 5 obtained in Step B1 above and Compound 6 above are used instead of Compound 3.
〔化合物6〕
 工程B2で前記化合物5と反応させる化合物6は酸ハライド化合物であり、上記式(6)で表される。化合物6は、化合物3とは異なりニトロ基を有さない。
 上記式(6)におけるXは、それぞれ独立してN又はCHを表す。
 Yは、ハロゲン原子を表す。ハロゲン原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子等であり、入手性の観点から好ましくは塩素原子である。
 Rは、水素原子、ハロゲン原子、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、又は炭素数6~20のアリールを表す。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 アルキル基、アルコキシ基、アリール基としては、上記Rと同様の態様が挙げられる。
 pは0又は1以上の整数を表す。pは、反応性の観点から、好ましくは0~3の整数、より好ましくは0又は1、更に好ましくは0である。
[Compound 6]
The compound 6 to be reacted with the compound 5 in step B2 is an acid halide compound represented by the above formula (6). Compound 6, unlike compound 3, does not have a nitro group.
Each X 2 in the above formula (6) independently represents N or CH.
Y represents a halogen atom. A halogen atom is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or the like, and preferably a chlorine atom from the viewpoint of availability.
R b represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
Halogen atoms include fluorine, chlorine, bromine and iodine atoms.
Examples of the alkyl group, the alkoxy group, and the aryl group include the same modes as those for Ra described above.
p represents an integer of 0 or 1 or more; p is preferably an integer of 0 to 3, more preferably 0 or 1, still more preferably 0, from the viewpoint of reactivity.
 pが0である場合、化合物6は下記式(6’)で表される。 When p is 0, compound 6 is represented by the following formula (6').
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
[式(6’)中、X、Yは前記に同じ。] [In Formula (6'), X 1 and Y are the same as above. ]
 化合物6は、化合物3と同様に、市販品として、又は、市販品より公知の有機合成反応により取得することができる。 Similar to compound 3, compound 6 can be obtained as a commercial product or from a commercial product by a known organic synthesis reaction.
 本発明の製造方法の各工程において、必要に応じて温度又はpHの変更;水、溶媒、飽和炭酸水素ナトリウム水溶液等の添加等の手段で反応を停止することができる。また、必要に応じてろ過、濃縮、抽出等の単離工程を経て目的化合物を得ることができる。目的化合物を得ることで、次工程で使用する溶媒を交換することもできる。各工程の目的化合物が得られたことは、例えばH-NMR測定、13C-NMR測定、質量分析等の公知の手段により確認することができる。 In each step of the production method of the present invention, the reaction can be stopped by means such as changing the temperature or pH, adding water, a solvent, a saturated aqueous solution of sodium hydrogen carbonate, or the like, if necessary. In addition, the target compound can be obtained through isolation steps such as filtration, concentration, and extraction, if necessary. By obtaining the target compound, the solvent used in the next step can be exchanged. Obtainment of the desired compound in each step can be confirmed by known means such as 1 H-NMR measurement, 13 C-NMR measurement and mass spectrometry.
〔化合物7〕
 工程B2で得られる化合物7はピロール・イミダゾールポリアミドであり、上記式(7)で表される。
 式(7)における、X、X、X、R、n、m、pは、前記式(5)及び式(6)における定義と同様である。
[Compound 7]
Compound 7 obtained in step B2 is a pyrrole-imidazole polyamide and is represented by the above formula (7).
X 0 , X 1 , X 2 , R a , n, m, and p in formula (7) are the same as defined in formulas (5) and (6) above.
 mが0であり、かつ、pが0である場合、化合物7は下記式(7’)で表される。 When m is 0 and p is 0, compound 7 is represented by the following formula (7').
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
[式(7’)中、X、X、X、R、R、nは前記に同じ。] [In Formula (7′), X 0 , X 1 , X 2 , R a , R b and n are the same as above. ]
 かくして、ピロール・イミダゾールポリアミドが製造される。
 本発明の製造方法により、ピロール環、イミダゾール環が所望の順で配列したピロール・イミダゾールポリアミドを自在にかつ簡便に製造することができる。
 本発明で使用する化合物は、いずれも市販品である化合物から容易に合成することができ、また、高価である傾向がある縮合剤を使用しないため、経済性に優れる。
 また、本発明の製造方法は、縮合剤、担持体(固相合成に用いるポリマー)が不要であり、更にカラムクロマトグラフィー等の精製を行うことなく実施ができるため、製造に伴う廃棄物の発生量が非常に少ない。
 更に、フローマイクロリアクターを用いる場合は、反応効率が高く、分岐構造等の副生成物の生成を防ぐことができる。フローマイクロリアクターを用いる製造方法は、バッチ方式での製造方法と比較して反応時間が非常に短く、また、簡便にピロール・イミダゾールポリアミドを大量に製造することができる。
Thus, a pyrrole-imidazole polyamide is produced.
According to the production method of the present invention, a pyrrole-imidazole polyamide in which pyrrole rings and imidazole rings are arranged in a desired order can be produced freely and simply.
The compounds used in the present invention can be easily synthesized from commercially available compounds, and are economical because they do not use condensing agents that tend to be expensive.
In addition, the production method of the present invention does not require a condensing agent or a support (polymer used for solid-phase synthesis), and can be carried out without purification such as column chromatography, so that waste is generated during production. very little quantity.
Furthermore, when a flow microreactor is used, the reaction efficiency is high and the formation of by-products such as branched structures can be prevented. The production method using a flow microreactor has a very short reaction time compared to the batch production method, and can easily produce a large amount of pyrrole-imidazole polyamide.
 本実施例において、各種測定は以下のとおりの方法で行った。
・赤外吸収スペクトル(IR)
 ATR(全反射測定法)が装備されたフーリエ変換赤外分光計により測定した。
・核磁気共鳴(NMR)
 400MHzの測定装置を用いた。DMSO-d中のケミカルシフトは、H-NMRでは、溶媒のシグナル(DMSO)(=2.50ppm)を内部標準とした。13C-NMRにおいては、ケミカルシフトは、溶媒のシグナル(DMSO(=39.52ppm))を内部標準とした。
・質量分析
 エレクトロスプレイイオン化法(ESI-TOF)により測定した。
In the present examples, various measurements were performed by the following methods.
・Infrared absorption spectrum (IR)
Measurements were made with a Fourier transform infrared spectrometer equipped with ATR (total reflection measurement).
・Nuclear Magnetic Resonance (NMR)
A 400 MHz measuring device was used. For chemical shifts in DMSO-d 6 , the solvent signal (DMSO) (=2.50 ppm) was used as an internal standard in 1 H-NMR. In 13 C-NMR, the solvent signal (DMSO (=39.52 ppm)) was used as an internal standard for chemical shifts.
- Mass spectrometry Measurement was performed by an electrospray ionization method (ESI-TOF).
合成例1:バッチ法での二量体合成 Synthesis Example 1: Dimer Synthesis by Batch Method
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 市販品の4-ニトロ-1-メチルピロール-2-カルボン酸メチル(Py)及び4-ニトロ-1-メチルイミダゾール-2-カルボン酸メチル(Im)のモノマーのそれぞれにメタノール(MeOH)を加えて0.1Mの懸濁溶液とし、アルゴン雰囲気下、10%パラジウム炭素触媒(Pd/C)を加えた。アスピレーターを用いフラスコ内を減圧した後、ゴム風船に充填した水素ガスでフラスコ内を置換した。室温(RT)にて1日反応を行った後、アスピレーターを用い水素ガスを留去し、フラスコ内をアルゴンで置換した。反応溶液に対して、メタノールを用いてセライトろ過し、Pd/Cを除去した。得られた溶液をロータリーエバポレーターにて減圧濃縮し、単量体(iii)を得た。収率は100%(quant)であった。 Methanol (MeOH) was added to each of commercially available methyl 4-nitro-1-methylpyrrole-2-carboxylate (Py) and methyl 4-nitro-1-methylimidazole-2-carboxylate (Im) monomers. A suspension solution of 0.1 M was prepared and 10% palladium on carbon catalyst (Pd/C) was added under an argon atmosphere. After decompressing the inside of the flask using an aspirator, the inside of the flask was replaced with hydrogen gas filled in a rubber balloon. After reacting at room temperature (RT) for one day, hydrogen gas was distilled off using an aspirator, and the inside of the flask was replaced with argon. The reaction solution was filtered through celite using methanol to remove Pd/C. The resulting solution was concentrated under reduced pressure using a rotary evaporator to obtain monomer (iii). Yield was 100% (quant).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 ピロール又はイミダゾールカルボン酸誘導体1をテトラヒドロフラン(THF)に溶かし0.035M溶液とし、アルゴン雰囲気下、カルボン酸誘導体(i)に対して1.1当量のN,N-ジメチルホルムアミド(DMF)の存在下、1.1当量の塩化オキサリルを作用させ単量体(ii)へと導いた。
 ピロール又はイミダゾール誘導体の単量体(iii)をテトラヒドロフラン(THF)に溶かし0.058M溶液とし、アルゴン雰囲気下、単量体(iii)に対して3.0当量のN,N-ジイソプロピルエチルアミン(DIPEA)を室温で加えた。
 上記単量体(ii)の溶液(溶液A)に上記単量体(iii)の溶液(溶液B)を滴下する縮合反応を、単量体(ii)についてピロール誘導体及びイミダゾール誘導体、単量体(iii)についてピロール誘導体及びイミダゾール誘導体を用いた4種の組み合わせについて行い、二量体(iv)を合成した。飽和炭酸水素ナトリウム水溶液を添加して反応を停止させた後の溶液を、酢酸エチルで分液抽出処理し、有機層から有機溶媒をロータリーエバポレーターにて減圧留去した。残渣をメタノールに懸濁させ、ろ過により二量体(iv)を含む不溶分を黄色固体として得た。収率を表1に示す。
Pyrrole or imidazole carboxylic acid derivative 1 was dissolved in tetrahydrofuran (THF) to make a 0.035 M solution, and under an argon atmosphere, in the presence of 1.1 equivalents of N,N-dimethylformamide (DMF) with respect to the carboxylic acid derivative (i). , and 1.1 equivalents of oxalyl chloride were acted to lead to the monomer (ii).
The pyrrole or imidazole derivative monomer (iii) was dissolved in tetrahydrofuran (THF) to make a 0.058 M solution, and under an argon atmosphere, 3.0 equivalents of N,N-diisopropylethylamine (DIPEA) was added to the monomer (iii). ) was added at room temperature.
A condensation reaction in which the solution (solution B) of the monomer (iii) is added dropwise to the solution (solution A) of the monomer (ii) is carried out by: For (iii), the pyrrole derivative and the imidazole derivative were used in four combinations to synthesize the dimer (iv). A saturated aqueous sodium hydrogencarbonate solution was added to stop the reaction, and the solution was subjected to liquid separation and extraction treatment with ethyl acetate, and the organic solvent was distilled off from the organic layer under reduced pressure using a rotary evaporator. The residue was suspended in methanol and filtered to obtain an insoluble matter containing dimer (iv) as a yellow solid. Yields are shown in Table 1.
 4種の組み合わせ全てにおいて、24時間反応を行うことで53~75%の収率で目的の二量体(iv-a)~(iv-d)を得た。本反応は非常に早く、30秒でも二量体4a~4dが生成することができた。不溶分中のPyPy二量体(iv-a)の含有率は、99質量%以上であった。 In all four combinations, the target dimers (iv-a) to (iv-d) were obtained with a yield of 53-75% by performing the reaction for 24 hours. This reaction was very fast, and dimers 4a to 4d could be produced even in 30 seconds. The content of the PyPy dimer (iv-a) in the insoluble matter was 99% by mass or more.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
(iv-a):PyPy二量体 (iv-a): PyPy dimer
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Yellow solid;
H-NMR(400MHz,DMSO-d) δ 3.74(s,3H),3.85(s,3H),3.95(s,3H),6.8(s,1H),7.46(s,1H),7.55(s,1H),8.19(s,1H),10.28(s,1H);
13C-NMR(100MHz,DMSO-d) δ 36.2,37.4,51.0,107.6,108.3,118.8,120.8,122.1,126.1,128.3,133.8,156.9,160.7;
HRMS(ESI-TOF) m/z:[M+Na] Calcd for C1314NaO  329.0862;Found 329.0856.
yellow solid;
1 H-NMR (400 MHz, DMSO-d 6 ) δ 3.74 (s, 3H), 3.85 (s, 3H), 3.95 (s, 3H), 6.8 (s, 1H), 7 .46 (s, 1H), 7.55 (s, 1H), 8.19 (s, 1H), 10.28 (s, 1H);
13 C-NMR (100 MHz, DMSO-d 6 ) δ 36.2, 37.4, 51.0, 107.6, 108.3, 118.8, 120.8, 122.1, 126.1, 128 .3, 133.8, 156.9, 160.7;
HRMS (ESI-TOF) m/z: [M+Na] + Calcd for C 13 H 14 N 4 NaO 5 + 329.0862; Found 329.0856.
(iv-b):PyIm二量体 (iv-b): PyIm dimer
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Yellow solid;
H-NMR(400MHz,DMSO-d) δ 3.83(s,3H),3.95(s,3H),3.97(s,3H),7.66(s,1H),7.79(s,1H),7.79(s,1H),8.15(s,1H);
13C-NMR(100MHz,DMSO-d) δ 35.2,37.4,48.4,51.6,108.6,115.5,125.2,128.4,133.9,137.0,157.2,158.7;
HRMS(ESI-TOF) m/z:[M+Na] Calcd for C1213NaO  330.0814;Found 330.0804.
yellow solid;
1 H-NMR (400 MHz, DMSO-d 6 ) δ 3.83 (s, 3H), 3.95 (s, 3H), 3.97 (s, 3H), 7.66 (s, 1H), 7 .79 (s, 1H), 7.79 (s, 1H), 8.15 (s, 1H);
13 C-NMR (100 MHz, DMSO-d 6 ) δ 35.2, 37.4, 48.4, 51.6, 108.6, 115.5, 125.2, 128.4, 133.9, 137 .0, 157.2, 158.7;
HRMS (ESI-TOF) m/z: [M+Na] + Calcd for C 12 H 13 N 5 NaO 5 + 330.0814; Found 330.0804.
(iv-c):ImPy二量体 (iv-c): ImPy dimer
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Yellow solid;
H-NMR(600MHz,DMSO-d) δ 3.74(s,3H),3.85(s,3H),4.05(s,3H),7.08(d,J=2.4Hz,1H),7.50(d,J=2.4Hz,1H),8.54(s,1H),10.7(s,1H);
13C-NMR(150MHz,DMSO-d) δ 36.0,36.2,50.7,109.1,118.9,121.2,121.5,126.3,137.5,144.2,154.6,160.5;
IR(ATR) ν 2360,2338,1695,1542,1452,1384,1309,1255,1203,1125cm-1
HRMS(ESI-TOF) m/z:[M+Na] Calcd for C1213NaO  330.0814;Found 330.0812.
yellow solid;
1 H-NMR (600 MHz, DMSO-d 6 ) δ 3.74 (s, 3H), 3.85 (s, 3H), 4.05 (s, 3H), 7.08 (d, J=2. 4 Hz, 1 H), 7.50 (d, J = 2.4 Hz, 1 H), 8.54 (s, 1 H), 10.7 (s, 1 H);
13 C-NMR (150 MHz, DMSO-d 6 ) δ 36.0, 36.2, 50.7, 109.1, 118.9, 121.2, 121.5, 126.3, 137.5, 144 .2, 154.6, 160.5;
IR(ATR) v 2360, 2338, 1695, 1542, 1452, 1384, 1309, 1255, 1203, 1125 cm -1 ;
HRMS (ESI-TOF) m/z: [M+Na] + Calcd for C 12 H 13 N 5 NaO 5 + 330.0814; Found 330.0812.
(iv-d):ImIm二量体 (iv-d): ImIm dimer
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Yellow solid;
H-NMR(400MHz,DMSO-d) δ 3.83(s,3H),3.96(s,3H),4.04(s,3H),7.68(s,1H),8.57(s,1H),10.62(s,1H);
13C-NMR(100MHz,DMSO-d) δ 35.4,36.1,51.6,116.1,116.2,126.4,131.5,135.7,137.0,155.1,158.6;
HRMS(ESI-TOF) m/z:[M+Na] Calcd for C1112NaO  331.0767;Found 331.0760.
yellow solid;
1 H-NMR (400 MHz, DMSO-d 6 ) δ 3.83 (s, 3H), 3.96 (s, 3H), 4.04 (s, 3H), 7.68 (s, 1H), 8 .57 (s, 1H), 10.62 (s, 1H);
13 C-NMR (100 MHz, DMSO-d 6 ) δ 35.4, 36.1, 51.6, 116.1, 116.2, 126.4, 131.5, 135.7, 137.0, 155 .1,158.6;
HRMS (ESI-TOF) m/z: [M+Na] + Calcd for C 11 H 12 N 6 NaO 5 + 331.0767; Found 331.0760.
合成例2:バッチ法での三量体合成 Synthesis Example 2: Trimer Synthesis by Batch Method
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 上記合成例1で得た二量体(iv)を、上記合成例1と同様にして、水素雰囲気下で10%Pd/Cを用いて還元し、二量体(v)を得た。収率を表2に示す。表中、「quant」は、反応が定量的(quantitative)に進行したことを示す。
 二量体(iv-a)~(iv-c)を還元して、二量体(v-a)~(v-c)とする反応は、高い収率で進行した。
The dimer (iv) obtained in Synthesis Example 1 was reduced using 10% Pd/C in a hydrogen atmosphere in the same manner as in Synthesis Example 1 to obtain dimer (v). Yields are shown in Table 2. In the table, "quant" indicates that the reaction proceeded quantitatively.
The reduction of dimers (iv-a)-(iv-c) to dimers (va)-(vc) proceeded in high yields.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 単量体(iii)に代えて二量体(v)を用いた以外は、上記合成例1と同様にして、三量体(vii)を得た。収率を表3に示す。
 30秒と短い反応時間で、化合物(vii-a)~(vii-d)を12~71%の収率で得られた。
Trimer (vii) was obtained in the same manner as in Synthesis Example 1 above, except that monomer (iii) was replaced with dimer (v). Yields are shown in Table 3.
Compounds (vii-a) to (vii-d) were obtained in yields of 12 to 71% in a reaction time as short as 30 seconds.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
(vii-a):PyPyPy三量体
Figure JPOXMLDOC01-appb-C000038
(vii-a): PyPyPy trimer
Figure JPOXMLDOC01-appb-C000038
Yellow solid;
H-NMR(600MHz,DMSO-d) δ 3.73(s,3H),3.83(s,3H),3.85(s,3H),3.90(s,3H),6.93(s,1H),7.11(s,1H),7.29(s,1H),7.48(s,1H),7.68(s,1H),8.20(s,1H),10.08(s,1H),10.48(s,1H);
13C-NMR(150MHz,DMSO-d) δ 35.94,35.98,37.28,50.74,104.82,107.64,108.51,118.49,118.72,120.71,121.43,122.76,122.85,126.24,127.97,133.76,156.89,158.35,160.70; 
HRMS(ESI-TOF) m/z:[M+Na] Calcd for C1920NaO  451.1342;Found 451.1337.
yellow solid;
1 H-NMR (600 MHz, DMSO-d 6 ) δ 3.73 (s, 3H), 3.83 (s, 3H), 3.85 (s, 3H), 3.90 (s, 3H), 6 .93 (s, 1H), 7.11 (s, 1H), 7.29 (s, 1H), 7.48 (s, 1H), 7.68 (s, 1H), 8.20 (s, 1H), 10.08(s, 1H), 10.48(s, 1H);
13C -NMR (150MHz, DMSO- d6 ) .71, 121.43, 122.76, 122.85, 126.24, 127.97, 133.76, 156.89, 158.35, 160.70;
HRMS (ESI-TOF) m/z: [M+Na] + Calcd for C 19 H 20 N 6 NaO 6 + 451.1342; Found 451.1337.
(vii-a):PyPyIm三量体 (vii-a): PyPyIm trimer
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Yellow solid;
H-NMR(600MHz,DMSO-d) δ 3.83(s,3H),3.88(s,3H),3.94(s,3H),3.97(s,3H),7.12(s,1H),7.35(s,1H),7.60(s,1H),7.65(s,1H),8.13(s,1H),10.20(s,1H),10.61(s,1H);
13C-NMR(150MHz,DMSO-d) δ 35.13,36.06,37.14,51.42,105.53,107.47,115.33,119.62,121.28,121.98,126.17,127.82,130.67,133.71,137.63,156.88,158.49,158.72;
HRMS(ESI-TOF) m/z:[M+Na] Calcd for C1819NaO  452.1295;Found 452.1305.
yellow solid;
1 H-NMR (600 MHz, DMSO-d 6 ) δ 3.83 (s, 3H), 3.88 (s, 3H), 3.94 (s, 3H), 3.97 (s, 3H), 7 .12(s, 1H), 7.35(s, 1H), 7.60(s, 1H), 7.65(s, 1H), 8.13(s, 1H), 10.20(s, 1H), 10.61 (s, 1H);
13 C-NMR (150 MHz, DMSO-d 6 ) δ 35.13, 36.06, 37.14, 51.42, 105.53, 107.47, 115.33, 119.62, 121.28, 121 .98, 126.17, 127.82, 130.67, 133.71, 137.63, 156.88, 158.49, 158.72;
HRMS (ESI-TOF) m/z: [M+Na] + Calcd for C 18 H 19 N 7 NaO 6 + 452.1295; Found 452.1305.
(vii-a):PyImPy三量体 (vii-a): PyImPy trimer
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Yellow solid;
H-NMR(600MHz,DMSO-d) δ 3.76(s,3H),3.86(s,3H),3.98(s,3H),3.99(s,3H),7.01(s,1H),7.49(s,1H),7.55(s,1H),7.75(s,1H),8.15(s,1H),9.93(s,1H),10.65(s,1H);
13C-NMR(150MHz,DMSO-d) δ 34.7,36.0,37.3,50.7,108.4,108.6,115.2,118.8,120.7,121.7,125.3,128.3,133.9,134.2,135.3,155.7,157.4,160.4;
IR(ATR) ν 2361,1665,1542,1441,1409,1312,1216,1118,899,784cm-1
HRMS(ESI-TOF) m/z:[M+Na] Calcd for C1819NaO  452.1295;Found 452.1288.
yellow solid;
1 H-NMR (600 MHz, DMSO-d 6 ) δ 3.76 (s, 3H), 3.86 (s, 3H), 3.98 (s, 3H), 3.99 (s, 3H), 7 .01 (s, 1H), 7.49 (s, 1H), 7.55 (s, 1H), 7.75 (s, 1H), 8.15 (s, 1H), 9.93 (s, 1H), 10.65 (s, 1H);
13 C-NMR (150 MHz, DMSO-d 6 ) δ 34.7, 36.0, 37.3, 50.7, 108.4, 108.6, 115.2, 118.8, 120.7, 121 .7, 125.3, 128.3, 133.9, 134.2, 135.3, 155.7, 157.4, 160.4;
IR(ATR) v 2361, 1665, 1542, 1441, 1409, 1312, 1216, 1118, 899, 784 cm -1 ;
HRMS (ESI-TOF) m/z: [M+Na] + Calcd for C 18 H 19 N 7 NaO 6 + 452.1295; Found 452.1288.
(vii-a):ImPyPy三量体 (vii-a): ImPyPy trimer
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Yellow solid;
H-NMR(600MHz,DMSO-d) δ 3.75(s,3H),3.85(s,3H),3.86(s,3H),4.07(s,3H),6.93(d,J=2.4Hz,1H),7.24(s,1H),7.30(s,1H),7.44(s,1H),8.57(s,1H),9.89(s,1H),10.8(s,1H);
13C-NMR(150MHz,DMSO-d) δ 35.9,35.9,36.3,50.7,105.1,108.5,118.5,119.1,120.7,120.9,122.7,122.9,126.3,137.7,144.2,154.6,158.3,160.6;
IR(ATR) ν 1688,1548,1441,1365,1308,1205,1112,1060,1005,828cm-1
HRMS(ESI-TOF) m/z:[M+Na] Calcdfor C1819NaO  452.1295;Found 452.1307.
yellow solid;
1 H-NMR (600 MHz, DMSO-d 6 ) δ 3.75 (s, 3H), 3.85 (s, 3H), 3.86 (s, 3H), 4.07 (s, 3H), 6 .93 (d, J = 2.4Hz, 1H), 7.24 (s, 1H), 7.30 (s, 1H), 7.44 (s, 1H), 8.57 (s, 1H), 9.89 (s, 1H), 10.8 (s, 1H);
13 C-NMR (150 MHz, DMSO-d 6 ) δ 35.9, 35.9, 36.3, 50.7, 105.1, 108.5, 118.5, 119.1, 120.7, 120 .9, 122.7, 122.9, 126.3, 137.7, 144.2, 154.6, 158.3, 160.6;
IR(ATR) v 1688, 1548, 1441, 1365, 1308, 1205, 1112, 1060, 1005, 828 cm -1 ;
HRMS (ESI-TOF) m/z: [M+Na] + Calcdfor C 18 H 19 N 7 NaO 6 + 452.1295; Found 452.1307.
合成例3:フローマイクロリアクターによる二量体合成
 図1に、フローマイクロリアクターを用いた合成の模式図を示す。
 マイクロミキサーは、混合部の内径0.25mmのT字型のものを用い、チューブは内径0.8mmのPTFE(ポリテトラフルオロエチレン)製ものを用いた。
 合成例1と同様にして得た単量体(ii)を含有する溶液Aの濃度を0.035M、流速を2.0mL/min、合成例1と同様にして得た単量体(iii)を含有する溶液Bの濃度を0.058M、流速を1.2mL/minとした。所定の長さのチューブを通った反応液は、飽和炭酸水素ナトリウム水溶液を添加して反応を停止させた後に、酢酸エチルで分液抽出処理し、有機層から有機溶媒をロータリーエバポレーターにて減圧留去した。残渣をメタノールに懸濁させ、ろ過により二量体4を含む不溶分を黄色固体として得た。
Synthesis Example 3: Dimer Synthesis Using a Flow Microreactor FIG. 1 shows a schematic diagram of synthesis using a flow microreactor.
A T-shaped micromixer having an inner diameter of 0.25 mm in the mixing section was used, and a tube made of PTFE (polytetrafluoroethylene) having an inner diameter of 0.8 mm was used.
The concentration of solution A containing monomer (ii) obtained in the same manner as in Synthesis Example 1 was 0.035 M, the flow rate was 2.0 mL/min, and the monomer (iii) obtained in the same manner as in Synthesis Example 1. The concentration of solution B containing was set to 0.058 M, and the flow rate was set to 1.2 mL/min. After passing through a tube of a predetermined length, saturated aqueous sodium hydrogen carbonate solution was added to the reaction mixture to stop the reaction, followed by separation and extraction with ethyl acetate, and the organic solvent was distilled off from the organic layer under reduced pressure using a rotary evaporator. left. The residue was suspended in methanol and filtered to obtain an insoluble matter containing dimer 4 as a yellow solid.
3-1:PyPy二量体(iv-a)の合成
 単量体(ii)及び単量体(iii)として、それぞれピロール誘導体である化合物を用い、A液とB液が合流した後のチューブの長さと反応温度を様々な値に設定し、PyPy二量体(iv-a)の合成を行った。また、チューブの長さ410cm、反応温度0℃の条件の合成で得られた不溶分中のPyPy二量体(iv-a)の含有率は、99質量%以上であった。各条件での収率を表4に示す。
3-1: Synthesis of PyPy dimer (iv-a) As monomer (ii) and monomer (iii), compounds that are pyrrole derivatives are used, respectively, and tubes after solution A and solution B are merged PyPy dimer (iv-a) was synthesized by setting the length of and the reaction temperature at various values. Moreover, the content of the PyPy dimer (iv-a) in the insoluble matter obtained by synthesis under the conditions of a tube length of 410 cm and a reaction temperature of 0° C. was 99% by mass or more. Table 4 shows the yield under each condition.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
3-2:PyIm二量体(iv-b)の合成
 単量体(ii)としてピロール誘導体、単量体(iii)としてイミダゾール誘導体を用い、上記3-1と同様にして、PyIm二量体(iv-b)の合成を行った。各条件での収率を表5に示す。
3-2: Synthesis of PyIm dimer (iv-b) Using a pyrrole derivative as monomer (ii) and an imidazole derivative as monomer (iii), PyIm dimer is prepared in the same manner as in 3-1 above. (iv-b) was synthesized. Table 5 shows the yield under each condition.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
3-3:ImPy二量体(iv-c)の合成
 単量体(ii)としてイミダゾール誘導体、単量体(iii)としてピロール誘導体を用いて、上記3-1と同様にして、ImPy二量体(iv-c)の合成を行った。各条件での収率を表6に示す。
3-3: Synthesis of ImPy dimer (iv-c) Using imidazole derivative as monomer (ii) and pyrrole derivative as monomer (iii), ImPy dimer is prepared in the same manner as in 3-1 above. Synthesis of body (iv-c) was carried out. Table 6 shows the yield under each condition.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
 3-4:ImIm二量体(iv-d)の合成
 単量体(ii)及び単量体(iii)としてそれぞれイミダゾール誘導体である化合物を用い、上記3-1と同様にして、ImIm二量体(iv-d)の合成を行った。各条件での収率を表7に示す。
3-4: Synthesis of ImIm dimer (iv-d) Using imidazole derivative compounds as monomer (ii) and monomer (iii), respectively, in the same manner as in 3-1 above, ImIm dimer Synthesis of body (iv-d) was carried out. Table 7 shows the yield under each condition.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
合成例4:フローマイクロリアクターによる三量体合成
4-1:PyPyPy三量体(vii-a)の合成1
 上記合成例3で使用したフローマイクロリアクターを用い、単量体(ii)としてピロール誘導体及び単量体(iii)としてPyPy二量体(v-a)を用い、A液とB液が合流した後のチューブの長さと反応温度を様々な値に設定し、PyPyPy三量体(vii-a)の合成を行った。チューブの長さ410cm、反応温度0℃の条件の合成で得られた不溶分中のPyPyPy三量体(vii-a)の含有率は、99質量%以上であった。各条件での収率を表8に示す。
Figure JPOXMLDOC01-appb-T000046
Synthesis Example 4: Trimer Synthesis Using Flow Microreactor 4-1: Synthesis 1 of PyPyPy Trimer (vii-a)
Using the flow microreactor used in Synthesis Example 3 above, using a pyrrole derivative as the monomer (ii) and a PyPy dimer (va) as the monomer (iii), after liquid A and liquid B are merged Synthesis of PyPyPy trimers (vii-a) was carried out by setting various tube lengths and reaction temperatures. The content of the PyPyPy trimer (vii-a) in the insoluble matter obtained by synthesis under the conditions of a tube length of 410 cm and a reaction temperature of 0° C. was 99% by mass or more. Table 8 shows the yield under each condition.
Figure JPOXMLDOC01-appb-T000046
4-2:PyPyPy三量体(vii-a)の合成2
 PyPy二量体(iv-a)に対し、DMF存在下、塩化オキサリルを作用させ、PyPy二量体(v-a)へと導いた。
 単量体(ii)としてピロール誘導体(単量体)及び単量体(iii)として上記で得たPyPy二量体(v-a)を用い、上記4-1と同様にして、PyPyPy三量体(vii-a)の合成を行った。各条件での収率を表9に示す。
4-2: Synthesis 2 of PyPyPy trimer (vii-a)
The PyPy dimer (iv-a) was treated with oxalyl chloride in the presence of DMF, leading to a PyPy dimer (va).
PyPyPy trimer ( vii-a) was synthesized. Table 9 shows the yield under each condition.
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
4-3:PyPyIm(vii-b)三量体の合成
 単量体(ii)としてピロール誘導体及び単量体(iii)としてPyIm二量体(v-b)を用い、上記4-1と同様にして、PyPyIm三量体(vii-b)の合成を行った。各条件での収率を表10に示す。
4-3: Synthesis of PyPyIm(vii-b) trimer Using pyrrole derivative as monomer (ii) and PyIm dimer (vb) as monomer (iii), in the same manner as in 4-1 above. , the synthesis of the PyPyIm trimer (vii-b). Table 10 shows the yield under each condition.
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
4-4:PyImPy三量体(vii-c)の合成
 単量体(ii)としてピロール誘導体及びImPy二量体(v-c)を用い、上記4-1と同様にして、PyImPy三量体(vii-c)の合成を行った。各条件での収率を表11に示す。
4-4: Synthesis of PyImPy trimer (vii-c) Using pyrrole derivative and ImPy dimer (vc) as monomer (ii), PyImPy trimer (vii -c) was synthesized. Table 11 shows the yield under each condition.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
4-5:ImPyPy三量体(vii-d)の合成
 単量体(ii)としてイミダゾール誘導体及び単量体(iii)としてPyPy二量体(v-a)を用い、ImPyPy三量体(vii-d)の合成を行った。各条件での収率を表12に示す。
4-5: Synthesis of ImPyPy trimer (vii-d) Using an imidazole derivative as monomer (ii) and a PyPy dimer (va) as monomer (iii), ImPyPy trimer (vii-d ) was synthesized. Table 12 shows the yield under each condition.
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
合成例5:フローマイクロリアクターによる四量体合成
5-1:PyPyPyPy四量体(ix-a)の合成
 上記4-1で得たPyPyPy三量体(vii-a)を、水素雰囲気下10%Pd/Cを用いて還元し、PyPyPy三量体を得た。還元は、定量的に進行した。
 上記合成例3で使用したフローマイクロリアクターを用い、単量体(ii)としてピロール誘導体及び単量体(iii)として上記で得たPyPyPy三量体を用い、PyPyPyPy四量体(ix-a)の合成を行った。各条件での収率を表13に示す。
Synthesis Example 5: Tetramer synthesis using a flow microreactor 5-1: Synthesis of PyPyPyPy tetramer (ix-a) The PyPyPy trimer (vii-a) obtained in 4-1 above was added to 10% Reduction with Pd/C gave the PyPyPy trimer. Reduction proceeded quantitatively.
Using the flow microreactor used in Synthesis Example 3, using the pyrrole derivative as the monomer (ii) and the PyPyPy trimer obtained above as the monomer (iii), PyPyPyPy tetramer (ix-a) was synthesized. Table 13 shows the yield under each condition.
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
(ix-a):PyPyPyPy四量体 (ix-a): PyPyPyPy tetramer
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Yellow solid;
1H-NMR(600MHz,DMSO-d) δ 3.75(s,3H),3.85(s,3H),3.86(s,3H),3.88(s,3H),3.98(s,3H),6.93(d,J=1.8Hz,1H),7.05(d,J=2.4Hz,1H),7.07(d,J=1.8Hz,1H),7.22(d,J=1.8Hz,1H),7.25(d,J=1.2Hz,1H),7.44(d,J=1.2Hz,1H),7.58(d,J=2.4Hz,1H),8.14(d,J=1.2Hz,1H),9.83(s,1H),9.88(s,1H),10.19(s,1H);
IR(ATR) ν 3468,1649,1438,1310,1110,889,815,780,751,734cm-1
HRMS(ESI-TOF) m/z:[M+Na] Calcd for C2526NaO  573.1822;Found 573.1823.
yellow solid;
1H-NMR (600 MHz, DMSO-d 6 ) δ 3.75 (s, 3H), 3.85 (s, 3H), 3.86 (s, 3H), 3.88 (s, 3H), 3. 98 (s, 3H), 6.93 (d, J = 1.8Hz, 1H), 7.05 (d, J = 2.4Hz, 1H), 7.07 (d, J = 1.8Hz, 1H) ), 7.22 (d, J = 1.8 Hz, 1 H), 7.25 (d, J = 1.2 Hz, 1 H), 7.44 (d, J = 1.2 Hz, 1 H), 7.58 (d, J = 2.4 Hz, 1H), 8.14 (d, J = 1.2 Hz, 1H), 9.83 (s, 1H), 9.88 (s, 1H), 10.19 (s , 1H);
IR(ATR) v 3468, 1649, 1438, 1310, 1110, 889, 815, 780, 751, 734 cm -1 ;
HRMS (ESI-TOF) m/z: [M+Na] + Calcd for C 25 H 26 N 8 NaO 7 + 573.1822; Found 573.1823.
5-2:PyPyImPy四量体(ix-b)の合成
 上記4-4で得たPyImPy三量体(vii-c)を、水素雰囲気下10%Pd/Cを用いて還元し、PyImPy三量体を得た。還元は、定量的に進行した。
 単量体(ii)としてピロール誘導体及び上記で得たPyImPy三量体を用い、PyPyImPy四量体(ix-b)の合成を行った。合成は、B液の溶媒をTHFからDMFに変更した以外は、上記5-1と同様にして行った。
 室温下57.5秒の反応により、収率39%で目的の四量体を得ることに成功した。
5-2: Synthesis of PyPyImPy tetramer (ix-b) The PyImPy trimer (vii-c) obtained in 4-4 above was reduced using 10% Pd/C in a hydrogen atmosphere to obtain a PyImPy trimer. got a body Reduction proceeded quantitatively.
PyPyImPy tetramer (ix-b) was synthesized using a pyrrole derivative and the PyImPy trimer obtained above as monomer (ii). Synthesis was carried out in the same manner as in 5-1 above, except that the solvent of liquid B was changed from THF to DMF.
The target tetramer was successfully obtained with a yield of 39% by reaction at room temperature for 57.5 seconds.
(ix-b):PyPyImPy四量体 (ix-b): PyPyImPy tetramer
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Yellow solid;
H-NMR(400MHz,DMSO-d6) δ 3.75(s,3H),3.86(s,3H),3.88(s,3H),3.97(s,3H),3.99(s,3H),7.01(d,J=2.0Hz,1H),7.10(d,J=2.0Hz,1H),7.34(d,J=1.6Hz,1H),7.50(d,J=2.0Hz,1H),7.53(s,1H),7.60(d,J=2.0Hz,1H),8.14(s,1H),10.03(s,1H),10.15(s,1H),10.23(s,1H);
13C-NMR(150MHz,DMSO-d6) δ 34.7,36.0,36.0,37.2,50.7,105.3,107.5,108.6,114.9,118.8,119.4,120.8,121.4,121.9,122.1,126.2,127.9,133.7,133.9,135.9;
IR(ATR) ν 3461,2945,2350,2338,1440,1365,900,743,664,641cm-1
HRMS(ESI-TOF)m/z:[M+Na] Calcd for C2425NaO  574.1775;Found 574.1797.
yellow solid;
1 H-NMR (400 MHz, DMSO-d6) δ 3.75 (s, 3H), 3.86 (s, 3H), 3.88 (s, 3H), 3.97 (s, 3H), 3. 99 (s, 3H), 7.01 (d, J = 2.0Hz, 1H), 7.10 (d, J = 2.0Hz, 1H), 7.34 (d, J = 1.6Hz, 1H ), 7.50 (d, J = 2.0 Hz, 1 H), 7.53 (s, 1 H), 7.60 (d, J = 2.0 Hz, 1 H), 8.14 (s, 1 H), 10.03 (s, 1H), 10.15 (s, 1H), 10.23 (s, 1H);
13 C-NMR (150 MHz, DMSO-d6) δ 34.7, 36.0, 36.0, 37.2, 50.7, 105.3, 107.5, 108.6, 114.9, 118. 8, 119.4, 120.8, 121.4, 121.9, 122.1, 126.2, 127.9, 133.7, 133.9, 135.9;
IR(ATR) v 3461, 2945, 2350, 2338, 1440, 1365, 900, 743, 664, 641 cm -1 ;
HRMS (ESI-TOF) m/z: [M+Na] + Calcd for C 24 H 25 N 9 NaO 7 + 574.1775; Found 574.1797.
合成例6:フロー法による四量体合成
6-1:PyPyPyPy四量体(ix-a)の合成
 上記3-1で得たPyPy二量体(iv-a)を、水素雰囲気下10%Pd/Cを用いて還元し、PyPy二量体(v-a)を得た。還元は、定量的に進行した。
 上記3-1で得たPyPy二量体(iv-a)を、HOとEtOHの1:1混合溶液に懸濁し、次いで水酸化ナトリウムを氷冷下5等量加え、95℃で油浴にて1時間撹拌した。その後、再び氷冷し、1mol/l塩酸水溶液を10当量加えた。桐山ロートを用いて生じた黄色沈殿を濾過し、PyPy-COH(x-a)を収率50%にて得た。
Synthesis Example 6: Tetramer synthesis by flow method 6-1: Synthesis of PyPyPyPy tetramer (ix-a) The PyPy dimer (iv-a) obtained in 3-1 above was treated with 10% Pd /C to give the PyPy dimer (va). Reduction proceeded quantitatively.
The PyPy dimer (iv-a) obtained in 3-1 above was suspended in a 1:1 mixed solution of H 2 O and EtOH, and then 5 equivalents of sodium hydroxide was added under ice-cooling. Stir in the bath for 1 hour. Thereafter, the mixture was ice-cooled again, and 10 equivalents of a 1 mol/l hydrochloric acid aqueous solution was added. The resulting yellow precipitate was filtered using a Kiriyama funnel to obtain PyPy-CO 2 H(xa) with a yield of 50%.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 上記合成例3で使用したフローマイクロリアクターを用い、単量体(ii)としてPyPy-COH(x-a)及び単量体(iii)として上記で得たPyPy二量体を用い、PyPyPyPy四量体(ix-a)の合成を行った。合成は、A液の濃度を0.018M、B液の濃度を0.03Mに変更した以外は上記5-1と同様にして行った。室温下57.5秒間の反応により、収率64%でPyPyPyPy四量体(ix-a)を得ることに成功した。 Using the flow microreactor used in Synthesis Example 3 above, using PyPy—CO 2 H (xa) as monomer (ii) and the PyPy dimer obtained above as monomer (iii), PyPyPyPy tetramer (ix-a) was synthesized. Synthesis was carried out in the same manner as in 5-1 above except that the concentration of solution A was changed to 0.018M and the concentration of solution B was changed to 0.03M. By reaction at room temperature for 57.5 seconds, PyPyPyPy tetramer (ix-a) was successfully obtained with a yield of 64%.
試験例:水素化還元反応を行う溶媒の検討 Test example: Investigation of solvent for hydrogenation reduction reaction
 下記試験例1~4において、溶媒の違い(DMF又はメタノール)による水素化還元反応効率の違いを評価した。 In Test Examples 1 to 4 below, differences in hydrogenation reduction reaction efficiency due to differences in solvents (DMF or methanol) were evaluated.
(試験例1)DMF中でのPyPyPyPy四量体の水素化還元 (Test Example 1) Hydrogenation reduction of PyPyPyPy tetramer in DMF
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 上記合成例5-1で得たPyPyPyPy四量体(ix-a)(以下、NOPyOMeとも言う。)0.385g(0.7mmoL)とパラジウム炭素触媒0.039gを7mLのN,N-ジメチルホルムアミド(DMF)中、ゴム風船による若干の加圧状態である水素雰囲気下で、室温で41時間撹拌して水素化還元反応を行い、NHPyOMe(xi-a)を得た。
 パラジウム炭素触媒(Pd/C)としては、パラジウム-活性炭を使用し、NOPyOMe(ix-a)100質量部に対して10質量部であった。DMF中のNOPyOMe(ix-a)の濃度は、0.1Mであった。反応開始時から、NOPyOMeはDMF中に完全に溶解し、溶液中で還元反応が良好に進行した。
 反応後、薄層クロマトグラフィー(TLC)により原料の消失を確認した。TLCにおいて、展開溶媒として酢酸エチルを使用した。
0.385 g (0.7 mmol) of the PyPyPyPy tetramer (ix-a) (hereinafter also referred to as NO 2 Py 4 OMe) obtained in Synthesis Example 5-1 above and 0.039 g of a palladium carbon catalyst were added to 7 mL of N, In N-dimethylformamide (DMF), under a slightly pressurized hydrogen atmosphere with a rubber balloon, a hydrogenation reduction reaction is carried out by stirring at room temperature for 41 hours to obtain NH 2 Py 4 OMe (xi-a). rice field.
As the palladium carbon catalyst (Pd/C), palladium-activated carbon was used, and the amount was 10 parts by mass with respect to 100 parts by mass of NO 2 Py 4 OMe (ix-a). The concentration of NO2Py4OMe (ix-a) in DMF was 0.1M . NO 2 Py 4 OMe was completely dissolved in DMF from the beginning of the reaction, and the reduction reaction proceeded well in the solution.
After the reaction, disappearance of the raw material was confirmed by thin layer chromatography (TLC). Ethyl acetate was used as the developing solvent for TLC.
 フラスコ内をアルゴン置換して水素を除去し、反応液にテトラヒドロフラン(THF)7mLを加えて15分間撹拌した。反応液を、アミノ修飾シリカゲル4.9gを詰めたカラムに通し生成物を吸着させ、さらに49mLの酢酸エチルを流して生成物を溶出した。その後、溶出液を減圧濃縮した。アミノ修飾シリカゲルの使用量は、反応に用いたDMF1mLに対して0.7gであった。使用した酢酸エチルの使用量は、反応に用いたDMFの7倍量であった。
 濃縮残渣に1,1,2,2-テトラクロロエタン0.115g(0.68mmoL)を加え、重クロロホルムで希釈して均一溶液とした後に、H-NMRを測定した。NMRチャートにおいて、NHPyOMe(xi-a)の任意のピークと1,1,2,2-テトラクロロエタンのピークとの積分比からNHPyOMe(xi-a)の収率を算出したところ、収率は96%であった。
The inside of the flask was replaced with argon to remove hydrogen, 7 mL of tetrahydrofuran (THF) was added to the reaction solution, and the mixture was stirred for 15 minutes. The reaction solution was passed through a column packed with 4.9 g of amino-modified silica gel to adsorb the product, and 49 mL of ethyl acetate was passed through to elute the product. After that, the eluate was concentrated under reduced pressure. The amount of amino-modified silica gel used was 0.7 g per 1 mL of DMF used in the reaction. The amount of ethyl acetate used was 7 times the amount of DMF used in the reaction.
0.115 g (0.68 mmol) of 1,1,2,2-tetrachloroethane was added to the concentrated residue, diluted with heavy chloroform to obtain a homogeneous solution, and 1 H-NMR was measured. In the NMR chart, the yield of NH 2 Py 4 OMe (xi-a) is calculated from the integral ratio of an arbitrary peak of NH 2 Py 4 OMe (xi-a) and the peak of 1,1,2,2-tetrachloroethane. The calculated yield was 96%.
(試験例2)メタノール中でのPyPyPyPy四量体の水素化還元
 溶媒をDMFからメタノールに変更した以外は試験例1と同様にして、水素化還元反応を行い、試験例1と同様に41時間反応させた。NOPyOMeはメタノール中に完全に溶解せず、懸濁状態で反応が進行した。反応終了時でも懸濁状態は解消されなかった。
 試験例1と同様にしてカラム精製及び濃縮を行った。
 濃縮残渣に1,1,2,2-テトラクロロエタン0.115g(0.68mmoL)を加え、重クロロホルムで希釈して均一溶液とした後に、H-NMRを測定した。NMRチャートにおいて、NHPyOMe(xi-a)の任意のピークと1,1,2,2-テトラクロロエタンのピークとの積分比からNHPyOMe(xi-a)の収率を算出したところ、収率は11%であった。
(Test Example 2) Hydrogenation reduction of PyPyPyPy tetramer in methanol A hydrogenation reduction reaction was performed in the same manner as in Test Example 1 except that the solvent was changed from DMF to methanol, and the reaction was performed for 41 hours in the same manner as in Test Example 1. reacted. NO 2 Py 4 OMe did not completely dissolve in methanol and the reaction proceeded in a suspended state. The suspended state was not resolved even at the end of the reaction.
Column purification and concentration were performed in the same manner as in Test Example 1.
0.115 g (0.68 mmol) of 1,1,2,2-tetrachloroethane was added to the concentrated residue, diluted with heavy chloroform to obtain a homogeneous solution, and 1 H-NMR was measured. In the NMR chart, the yield of NH 2 Py 4 OMe (xi-a) is calculated from the integral ratio of an arbitrary peak of NH 2 Py 4 OMe (xi-a) and the peak of 1,1,2,2-tetrachloroethane. The calculated yield was 11%.
(試験例3)DMF中でのPyPyPy三量体の水素化還元 (Test Example 3) Hydrogenation reduction of PyPyPy trimer in DMF
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 PyPyPyPy四量体(ix-a)に替えて、上記合成例4-1で得たPyPyPy三量体(vii-a)を使用した以外は試験例1と同様に還元反応および生成物の定量を行った。反応開始時から、NOPyOMeはDMF中に完全に溶解し、溶液中で還元反応が良好に進行した。
 反応は15時間で完結し、NHPyOMe(vii-b)の収率は100%であった。
A reduction reaction and quantification of the product were carried out in the same manner as in Test Example 1 except that the PyPyPyPy tetramer (ix-a) was replaced with the PyPyPy trimer (vii-a) obtained in Synthesis Example 4-1 above. gone. NO 2 Py 3 OMe was completely dissolved in DMF from the start of the reaction, and the reduction reaction proceeded well in the solution.
The reaction was completed in 15 hours and the yield of NH2Py3OMe (vii-b) was 100%.
(試験例4)メタノール中でのPyPyPy三量体の水素化還元
 溶媒をDMFからメタノールに変更した以外は試験例3と同様にして、水素化還元反応を行い、試験例3と同様に15時間反応させた。NOPyOMeはメタノール中に完全に溶解せず、懸濁状態で反応が進行した。反応終了時でも懸濁状態は解消されなかった。
 NHPyOMe(vii-b)の収率は13%であった。
(Test Example 4) Hydrogenation reduction of PyPyPy trimer in methanol A hydrogenation reduction reaction was performed in the same manner as in Test Example 3 except that the solvent was changed from DMF to methanol, and the reaction was performed for 15 hours in the same manner as in Test Example 3. reacted. NO 2 Py 3 OMe did not completely dissolve in methanol and the reaction proceeded in suspension. The suspended state was not resolved even at the end of the reaction.
The yield of NH2Py3OMe (vii-b) was 13% .
 試験例1~4の結果を下記表14に示す。 The results of Test Examples 1 to 4 are shown in Table 14 below.
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
 反応溶媒がメタノールである場合、ニトロ基を含むPIP基質がメタノールに対して低溶解性であるため、限られた溶媒量で還元反応を行うと、基質が溶け残った懸濁液中で反応を開始することになる。この場合、反応開始当初は、溶媒中に溶解した基質のみが還元され、反応の進行とともに、溶け残っていた基質が徐々に溶解していくことで、還元反応が進行する。単量体であれば、1日の攪拌で問題なく反応は進行したが(合成例1)、PIPの長さが長くなるほどMeOH溶媒への溶解性が低下し、これに伴って反応の進行が低下した。
 一方、溶媒としてDMFを用いると、ニトロ基を含むPIP基質の溶解性が高く、基質の全量が溶解した状態で還元反応を開始することができ、メタノールと比較して、還元反応効率の改善が認められた。特に多量体、とりわけ三量体以上の長さのニトロ基を含むPIPを基質とした場合に、その効果は顕著だった。また、溶媒としてTHFとDMFの混合溶媒(1:1)を用いた場合であっても、ニトロ基を含むPIP基質(三量体)の溶解性が向上し、還元反応効率が改善されることを確認している。
 これらの結果から、ニトロ基を含むPIPの水素化還元反応において、DMF、THF等の非プロトン性極性溶媒を用いると、還元反応の反応性が改善されることが示唆された。
When the reaction solvent is methanol, the PIP substrate containing the nitro group has low solubility in methanol. going to start. In this case, at the beginning of the reaction, only the substrate dissolved in the solvent is reduced, and as the reaction progresses, the undissolved substrate gradually dissolves, so that the reduction reaction proceeds. In the case of a monomer, the reaction proceeded without problems after stirring for one day (Synthesis Example 1), but the longer the PIP length, the lower the solubility in the MeOH solvent. Decreased.
On the other hand, when DMF is used as a solvent, the PIP substrate containing a nitro group is highly soluble, and the reduction reaction can be initiated with the entire amount of the substrate dissolved. Admitted. The effect was particularly remarkable when multimers, especially PIP containing a nitro group longer than a trimer, were used as substrates. Moreover, even when a mixed solvent of THF and DMF (1:1) is used as a solvent, the solubility of the PIP substrate (trimer) containing a nitro group is improved, and the reduction reaction efficiency is improved. is confirmed.
These results suggest that the use of an aprotic polar solvent such as DMF or THF in the hydrogenation-reduction reaction of PIP containing a nitro group improves the reactivity of the reduction reaction.

Claims (11)

  1.  下記工程A1及び工程A2を含む、ピロール・イミダゾールポリアミドの製造方法。
    工程A1:下記式(1)で表される化合物1を還元し、下記式(2)で表される化合物2を得る還元工程
    工程A2:下記式(3)で表される化合物3と、前記化合物2とを反応させて下記式(4)で表される化合物4を得る伸長工程
    Figure JPOXMLDOC01-appb-C000001

    [式(1)中、Xは、それぞれ独立してN又はCHを表し、Rは水素原子、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数6~20のアリール基、炭素数7~25のアラルキル基、ニトリル基、-COOR(Rは水素原子、炭素数1~12のアルキル基、又は炭素数6~20のアリール基を表す。)、又は-CONR(R及びRは、独立して、水素原子、炭素数1~12のアルキル基、又は炭素数6~20のアリール基を表す。)を表し、nは0又は1以上の整数を表す。]
    Figure JPOXMLDOC01-appb-C000002

    [式(2)中、X、R、nは前記に同じ。]
    Figure JPOXMLDOC01-appb-C000003

    [式(3)中、Xは、それぞれ独立してN又はCHを表し、Yは、ハロゲン原子を表す。mは0又は1以上の整数を表す。]
    Figure JPOXMLDOC01-appb-C000004

    [式(4)中、X、X、R、n、mは前記に同じ。]
    A method for producing a pyrrole-imidazole polyamide, comprising the following steps A1 and A2.
    Step A1: Reduction step of reducing compound 1 represented by the following formula (1) to obtain compound 2 represented by the following formula (2) Step A2: compound 3 represented by the following formula (3); Elongation step of reacting with compound 2 to obtain compound 4 represented by the following formula (4)
    Figure JPOXMLDOC01-appb-C000001

    [In formula (1), X 0 each independently represents N or CH, R a is a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, a aryl group, an aralkyl group having 7 to 25 carbon atoms, a nitrile group, —COOR p (R p represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 20 carbon atoms.), or —CONR q R r (R q and R r independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 20 carbon atoms), and n is 0 or 1 Represents an integer greater than or equal to . ]
    Figure JPOXMLDOC01-appb-C000002

    [In formula (2), X 0 , R a and n are the same as above. ]
    Figure JPOXMLDOC01-appb-C000003

    [In the formula (3), each X 1 independently represents N or CH, and Y represents a halogen atom. m represents an integer of 0 or 1 or more. ]
    Figure JPOXMLDOC01-appb-C000004

    [In formula (4), X 0 , X 1 , R a , n and m are the same as above. ]
  2.  前記工程A2がフロー反応である、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the step A2 is a flow reaction.
  3.  前記工程A1がフロー反応である、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the step A1 is a flow reaction.
  4.  前記工程A2をマイクロリアクター中で行う、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the step A2 is performed in a microreactor.
  5.  前記工程A1を、パラジウム炭素触媒の存在下で行う、請求項1に記載の製造方法。 The production method according to claim 1, wherein the step A1 is performed in the presence of a palladium carbon catalyst.
  6.  前記工程A1を、非プロトン性極性溶媒中で行う、請求項1に記載の製造方法。 The production method according to claim 1, wherein the step A1 is performed in an aprotic polar solvent.
  7.  前記非プロトン性極性溶媒がN,N-ジメチルホルムアミドである、請求項6に記載の製造方法。 The production method according to claim 6, wherein the aprotic polar solvent is N,N-dimethylformamide.
  8.  前記mが0である、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein said m is 0.
  9.  前記化合物4を、次の工程A1の化合物1として用いることにより連続的に伸長する、請求項1に記載の製造方法。 The production method according to claim 1, wherein the compound 4 is continuously extended by using it as the compound 1 in the next step A1.
  10.  下記工程B1及び工程B2を更に含む、請求項1に記載のピロール・イミダゾールポリアミドの製造方法。
    工程B1:請求項1に記載の製造方法により得られる化合物4を還元し、下記式(5)で表される化合物5を得る還元工程
    工程B2:下記式(6)で表される化合物6と、前記化合物5とを反応させて下記式(7)で表される化合物7を得る伸長工程
    Figure JPOXMLDOC01-appb-C000005
    [式(5)中、X、X、R、n、mは前記に同じ。]
    Figure JPOXMLDOC01-appb-C000006

    [式(6)中、Xは、それぞれ独立してN又はCHを表し、Yは、ハロゲン原子を表し、Rは、水素原子、ハロゲン原子、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、又は炭素数6~10のアリールを表す。pは0又は1以上の整数を表す。]
    Figure JPOXMLDOC01-appb-C000007

    [式(7)中、X、X、X、R、R、n、m、pは前記に同じ。]
    2. The method for producing a pyrrole-imidazole polyamide according to claim 1, further comprising the following steps B1 and B2.
    Step B1: Reduction step of reducing compound 4 obtained by the production method according to claim 1 to obtain compound 5 represented by the following formula (5) Step B2: Compound 6 represented by the following formula (6) , an elongation step of obtaining a compound 7 represented by the following formula (7) by reacting with the compound 5
    Figure JPOXMLDOC01-appb-C000005
    [In Formula (5), X 0 , X 1 , R a , n and m are the same as above. ]
    Figure JPOXMLDOC01-appb-C000006

    [In formula (6), X 2 each independently represents N or CH, Y represents a halogen atom, R b represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, a It represents an alkoxy group of 1 to 12 or an aryl of 6 to 10 carbon atoms. p represents an integer of 0 or 1 or more; ]
    Figure JPOXMLDOC01-appb-C000007

    [In formula (7), X 0 , X 1 , X 2 , R a , R b , n, m, and p are the same as above. ]
  11.  前記m及びpがそれぞれ0である、請求項10に記載の製造方法。 The manufacturing method according to claim 10, wherein said m and p are each 0.
PCT/JP2023/003274 2022-02-02 2023-02-01 Method for producing pyrrole-imidazole polyamide WO2023149487A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022015148 2022-02-02
JP2022-015148 2022-02-02

Publications (1)

Publication Number Publication Date
WO2023149487A1 true WO2023149487A1 (en) 2023-08-10

Family

ID=87552563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003274 WO2023149487A1 (en) 2022-02-02 2023-02-01 Method for producing pyrrole-imidazole polyamide

Country Status (1)

Country Link
WO (1) WO2023149487A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692933A (en) * 1992-09-17 1994-04-05 Taiho Yakuhin Kogyo Kk Oligo-n-methylpyrrolecarboxamide derivative or salt thereof
JPH0827146A (en) * 1994-07-15 1996-01-30 Mitsui Toatsu Chem Inc 2,6-di-substituted indole derivative
WO2003000683A1 (en) * 2001-06-25 2003-01-03 Japan Science And Technology Agency Method of the solid phase synhesis of pyrrole-imidazole polyamide
JP2004517830A (en) * 2000-11-28 2004-06-17 フアルマシア・イタリア・エツセ・ピー・アー Process for the preparation of distamycin derivatives
JP2006509027A (en) * 2002-12-10 2006-03-16 オーシェント ファーマシューティカルズ コーポレーション Antibacterial compound having (pyrrolecarboxamide)-(benzamide)-(imidazolecarboxamide) motif
US20070265240A1 (en) * 2003-10-07 2007-11-15 University Of Western Sydney Sequence Selective Pyrrole and Imidazole Polyamide Metallocomplexes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692933A (en) * 1992-09-17 1994-04-05 Taiho Yakuhin Kogyo Kk Oligo-n-methylpyrrolecarboxamide derivative or salt thereof
JPH0827146A (en) * 1994-07-15 1996-01-30 Mitsui Toatsu Chem Inc 2,6-di-substituted indole derivative
JP2004517830A (en) * 2000-11-28 2004-06-17 フアルマシア・イタリア・エツセ・ピー・アー Process for the preparation of distamycin derivatives
WO2003000683A1 (en) * 2001-06-25 2003-01-03 Japan Science And Technology Agency Method of the solid phase synhesis of pyrrole-imidazole polyamide
JP2006509027A (en) * 2002-12-10 2006-03-16 オーシェント ファーマシューティカルズ コーポレーション Antibacterial compound having (pyrrolecarboxamide)-(benzamide)-(imidazolecarboxamide) motif
US20070265240A1 (en) * 2003-10-07 2007-11-15 University Of Western Sydney Sequence Selective Pyrrole and Imidazole Polyamide Metallocomplexes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BHATTACHARYA, S. THOMAS, M.: "Facile synthesis of oligopeptide distamycin analogs devoid of hydrogen bond donors or acceptors at the N-terminus: sequence-specific duplex DNA binding as a function of peptide chain length", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM , NL, vol. 41, no. 29, 15 July 2000 (2000-07-15), Amsterdam , NL , pages 5571 - 5575, XP004209515, ISSN: 0040-4039, DOI: 10.1016/S0040-4039(00)00802-9 *
NAGAKI, AIICHIRO; ASHIKARI YOSUKE: "Special Issue on Microfluidic Engineering and Process Intensification", THE CHEMICAL TIMES, KANTO KAGAKU KABUSHIKI GAISHA, JAPAN, vol. 263, 31 December 2021 (2021-12-31), Japan , pages 3 - 6, XP009548406, ISSN: 0285-2446 *
YOSHIDA JUN-ICHI, SEIJI SUGA, AIICHIRO NAGAKI: "Selective Organic Reactions Using Microreactors", JOURNAL OF SYNTHETIC ORGANIC CHEMISTRY, vol. 63, no. 5, 1 January 2005 (2005-01-01), pages 511 (93) - 522 (104), XP093082928 *

Similar Documents

Publication Publication Date Title
CN111675662B (en) Preparation method of 2-trifluoromethyl substituted quinazolinone compound
CN113105402B (en) Preparation method of 3,4, 5-trisubstituted 1,2, 4-triazole compound
KR100283066B1 (en) How to prepare biphenyl derivative
CN113121462B (en) Preparation method of 5-trifluoromethyl substituted 1,2,3-triazole compound
JP7377330B2 (en) Method for producing a kinase inhibitor with a sulfonamide structure
JP2020518661A (en) Benzimidazole compound and method for producing the same
WO2023149487A1 (en) Method for producing pyrrole-imidazole polyamide
WO2022156025A1 (en) SYNTHESIS METHOD FOR 4-(2,2,2-TRICHLOROETHYL)-β-LACTAM DERIVATIVE
CN113735778A (en) Preparation method of 5-trifluoromethyl substituted imidazole compound
CN115260080B (en) Preparation method of indole-3-formamide compound
CN113880781A (en) Method for synthesizing 3-trifluoromethyl substituted 1,2, 4-triazole compound by taking glucose as carbon source
JP6891131B2 (en) A novel method for preparing enzalutamide
CN109574866B (en) Preparation method of 2, 6-dimethylaniline long-chain compound
CN113372281A (en) Synthetic method of metronidazole
Buscemi et al. Fluorinated heterocyclic compounds. A photochemical approach to a synthesis of polyfluoroaryl-1, 2, 4-triazoles
CN115353482B (en) Preparation method of trifluoromethyl and selenium substituted azaspiro [4,5] -tetraenone compound
CN115611777B (en) Preparation method of para-cyanation product of arylamine compound
CN114890957B (en) Triazole derivative and preparation method thereof
JP4123770B2 (en) Preparation of quinazolin-4-one derivatives
CN114702429B (en) Method for constructing 3-alkyl indole compounds by olefin difunctional
KR101529963B1 (en) Method for preparing everolimus and its intermediates
RU2402535C2 (en) 1-dichloromethylisoquinoline synthesis method
CN116375603A (en) Method for synthesizing benzocyclobutene derivative
JPS62267251A (en) Diacetylene compound having amino group
KR20220074091A (en) Process for preparing acrylamides compounds and its derivatives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749803

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023578604

Country of ref document: JP

Kind code of ref document: A