WO2023149420A1 - Method and composition for preventing or treating myopia - Google Patents

Method and composition for preventing or treating myopia Download PDF

Info

Publication number
WO2023149420A1
WO2023149420A1 PCT/JP2023/003017 JP2023003017W WO2023149420A1 WO 2023149420 A1 WO2023149420 A1 WO 2023149420A1 JP 2023003017 W JP2023003017 W JP 2023003017W WO 2023149420 A1 WO2023149420 A1 WO 2023149420A1
Authority
WO
WIPO (PCT)
Prior art keywords
vegf
choroid
agonist
subject
myopia
Prior art date
Application number
PCT/JP2023/003017
Other languages
French (fr)
Japanese (ja)
Inventor
一男 坪田
俊英 栗原
ホヌク ジョン
エン チョウ
紀和子 森
Original Assignee
株式会社坪田ラボ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社坪田ラボ filed Critical 株式会社坪田ラボ
Publication of WO2023149420A1 publication Critical patent/WO2023149420A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/02Peptides of undefined number of amino acids; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/10Ophthalmic agents for accommodation disorders, e.g. myopia

Definitions

  • the present invention relates to methods and compositions for preventing or treating myopia, and more particularly to methods and compositions using VEGF for choroidal preservation.
  • Myopia refers to the state in which the focus is focused in front of the retina due to the elongation of the axial length of the eye, and it can be said that the longer the axial length of the eye, the stronger the myopia.
  • myopia As the prevalence of myopia increases, there is growing interest in the factors involved in the development of myopia and methods of slowing or preventing myopia progression.
  • Recent studies have suggested that the choroid is important in regulating eye growth and in the development of myopia, and have shown that choroidal thinning is a structural feature of myopia.
  • the negative correlation between choroidal thickness and axial length suggests that changes in choroidal thickness may be predictive biomarkers of axial length elongation.
  • the detailed mechanism by which the choroid is involved in the onset and progression of myopia is still unclear.
  • the choroid is a fine blood vessel-rich outer lining of the retina. In addition to its function of supplying oxygen and nutrients to retinal cells, the choroid is involved in tissue remodeling of the sclera outside the eyeball and regulation of eye growth. It has the function of supplying factors.
  • a decrease in choroidal thickness, or a decrease in blood flow contributes to scleral ischemia and hypoxia, and is thought to influence changes in scleral structure that increase axial length of the eye. Therefore, maintaining and increasing choroidal thickness and blood flow are attracting attention as new targets in the prevention and treatment of myopia.
  • the present disclosure aims to provide a method for preventing or treating myopia, and a composition used therefor.
  • the present inventors have clarified that VEGF deficiency induces the disappearance of the choriocapillaris plate and the thinning of the choroid, causing myopia of the eye. proved to be effective.
  • the present invention is based on such findings and includes the following aspects.
  • Embodiment 1 A method for inhibiting or treating myopia in a subject in need thereof, comprising delivering VEGF or a VEGF agonist to the choroid of the subject.
  • Aspect 2 The method of aspect 1, wherein the VEGF or VEGF agonist is administered to the subject in the form of DNA, RNA or protein.
  • Embodiment 3 The method of embodiment 1 or 2, wherein the VEGF or VEGF agonist is administered to the subject using a viral vector.
  • Aspect 5 The method according to aspect 1, comprising administering to the subject an agent that promotes VEGF expression.
  • Embodiment 10 The composition according to embodiment 9 or 10, wherein VEGF or a VEGF agonist is incorporated into a viral vector.
  • Embodiment 11 The composition according to any one of Embodiments 9 to 10 for maintaining choroid.
  • Embodiment 12 The composition according to any one of Embodiments 9 to 11 for maintaining VEGF expression, secretion or reception in the choroid.
  • Embodiment 13 Use of DNA or RNA encoding VEGF or a VEGF agonist, VEGF protein, VEGF agonist, VEGF-secreting cells, VEGF agonist-secreting cells, or a VEGF expression promoter for suppressing or treating myopia.
  • Embodiment 14 Use of DNA or RNA encoding VEGF or a VEGF agonist, VEGF protein, VEGF agonist, VEGF-secreting cells, VEGF agonist-secreting cells, or a VEGF expression promoter in the manufacture of a medicament used for suppressing or treating myopia.
  • Embodiment 15 Use according to embodiment 13 or 14 for delivering VEGF or a VEGF agonist to the choroid of a subject.
  • [Aspect 16] Use according to any one of aspects 13 to 15, wherein the VEGF or VEGF agonist is incorporated into a viral vector.
  • Aspect 17 Use according to any one of aspects 13 to 16 for maintaining the choroid.
  • Embodiments 13 to 17 Use according to any one of Embodiments 13 to 17 for maintaining VEGF expression, secretion or reception in the choroid.
  • a new method for myopia prevention and treatment can be provided by maintaining the choroid with VEGF.
  • FIG. 3 is a graph showing changes in axial length of mice due to RPE-specific VEGF deficiency.
  • Vertical axis axial length, horizontal axis: age, black circles: control, white circles: VEGF RPE knockout.
  • FIG. 10 is a graph showing changes in choroidal thickness in mice due to RPE-specific VEGF deficiency.
  • Vertical axis choroidal thickness, horizontal axis: age, black circles: control, white circles: VEGF RPE knockout.
  • Vertical axis refractivity, horizontal axis: age, black circles: control, white circles: VEGF RPE knockout.
  • FIG. 10 is a graph showing changes in axial length of mice due to RPE-specific VEGF overexpression.
  • FIG. Vertical axis axial length, horizontal axis: age, black circles: control, white circles: VEGF overexpression.
  • FIG. 10 is a graph showing changes in choroidal thickness in mice due to RPE-specific VEGF overexpression.
  • FIG. Vertical axis choroidal thickness, horizontal axis: age, black circles: control, white circles: VEGF overexpression.
  • FIG. 10 is a graph showing changes in refractive power of mice with RPE-specific VEGF overexpression.
  • FIG. Vertical axis refractivity, horizontal axis: age, black circles: control, white circles: VEGF overexpression.
  • VEGF vascular endothelial growth factor
  • RPE retinal pigment epithelium
  • the present inventors used transgenic mice as a model for RPE-specific VEGF deficiency or overexpression, observed morphological changes in the choroid, and measured axial length, choroid thickness, and refractive power. . Consequently, it has been found that myopia can be inhibited or treated in a subject in need of treatment by delivering VEGF or a VEGF agonist to the choroid of the subject. Accordingly, one aspect of the present disclosure relates to a method for inhibiting or treating myopia in a subject in need thereof comprising delivering VEGF or a VEGF agonist to the choroid of the subject. As disclosed herein, the importance of VEGF in choroidal maintenance was discovered using transgenic mice deficient or overexpressing RPE-specifically VEGF.
  • the subject can be a mammal, including humans, or a non-human mammal, including dogs, cats, cows, and horses, but is preferably a human.
  • VEGF human vascular endothelial growth factor
  • VEGF-A human vascular endothelial growth factor
  • VEGF-A human vascular endothelial growth factor
  • VEGF-A human vascular endothelial growth factor
  • VEGF-A human vascular endothelial growth factor
  • VEGF-A human vascular endothelial growth factor
  • VEGF-A human vascular endothelial growth factor
  • VEGF-A human vascular endothelial growth factor
  • VEGF is a protein with a dimer structure in which two subunits with a molecular weight of about 20,000 are bound
  • subtypes such as VEGF121, VEGF165, VEGF189, and VEGF206 are known due to differences in splicing.
  • the subtype of VEGF that can be used in the present invention is not particularly limited.
  • a VEGF agonist refers to any substance that activates a VEGF receptor like VEGF.
  • the VEGF agonist comprises a fragment or variant of VEGF.
  • the VEGF agonist is a VEGF protein other than VEGF-A belonging to the VEGF family, such as VEGF-B, VEGF-C, VEGF-D, VEGF-E, PlG-1, or PlGF- 2, or fragments or variants thereof.
  • the VEGF agonist comprises an anti-VEGF receptor antibody capable of activating the VEGF receptor.
  • VEGF or a VEGF agonist can be administered to a subject in the form of DNA, RNA or protein.
  • a nucleic acid encoding VEGF or a VEGF agonist may be administered to a subject using a plasmid or expression vector.
  • the expression vector can be, for example, but not limited to, a viral vector, especially an adenoviral vector.
  • Other viral vectors that can be used include, for example, retrovirus, adeno-associated virus, pox, baculovirus, vaccinia, herpes simplex, Epstein-Barr, geminivirus, and calymovirus vectors.
  • Nucleic acids encoding VEGF or VEGF agonists may include regulatory elements for choroid- or RPE-specific expression of the protein.
  • DNA or RNA (messenger RNA) encoding VEGF or a VEGF agonist may be administered to a subject using DDS such as liposomes.
  • DDS such as liposomes.
  • Other available DDS include charged lipids, nucleic acid-protein complexes, and biopolymers.
  • VEGF or a VEGF agonist may also be administered to a subject in the form of a protein. Administration can be performed, for example, by topical administration to the choroid.
  • VEGF-secreting cells can be any VEGF-secreting cell, such as, for example, a retinal pigment epithelial cell (RPE).
  • RPE retinal pigment epithelial cell
  • cells that have been genetically engineered to secrete VEGF or a VEGF agonist may be used.
  • the delivery of VEGF to the choroid of the subject may be achieved by administering to the subject an agent that promotes the expression of VEGF.
  • the von Hippel-Gendau (VHL) protein is a tumor suppressor that functions to negatively regulate the expression of hypoxia-inducible genes that are regulated by hypoxia-inducible transcription factors (HIFs). Loss of VHL activity results in increased HIF-1 ⁇ and upregulation of angiogenic factors including VEGF and PDGF. Therefore, VHL inhibitors can be used as VEGF expression promoters.
  • one aspect of the present disclosure also relates to methods for maintaining the choroid in a subject in need of treatment comprising delivering VEGF or a VEGF agonist to the choroid of the subject.
  • One aspect of the present disclosure also relates to a method for inhibiting or treating myopia in a subject in need of treatment comprising maintaining VEGF expression, secretion or reception in the choroid of the subject.
  • compositions for inhibiting or treating myopia relate to compositions for inhibiting or treating myopia using VEGF or VEGF agonists. More specifically, one embodiment of the present disclosure contains an effective amount of DNA or RNA encoding VEGF or a VEGF agonist, VEGF protein, VEGF agonist, VEGF-secreting cells, VEGF agonist-secreting cells, or a VEGF expression promoter and compositions for preventing or treating myopia. Such compositions can be used to deliver VEGF or VEGF agonists to the choroid of a subject.
  • composition according to the present disclosure is, for example, topically administered to the eye.
  • administration forms of the present composition include ophthalmic administration (including instillation of ocular ointment and eye wash), subconjunctival administration, intraconjunctival administration, and subtenon administration.
  • the dosage form of the present composition is not particularly limited, but includes, for example, eye drops, eye ointments, injections, patches, gels, inserts, etc. Eye drops are preferred, for example. In addition, these can be prepared using the usual technique widely used in the said field.
  • Eye drops include tonicity agents such as sodium chloride, potassium chloride and concentrated glycerin; buffering agents such as sodium phosphate, sodium acetate and epsilon-aminocaproic acid; Surfactants such as ethylene hydrogenated castor oil; stabilizers such as sodium citrate and sodium edetate; However, the range of 4 to 8 is generally preferred. Eye ointments can be prepared using commonly used bases such as white petrolatum and liquid paraffin.
  • composition according to the present disclosure may contain an appropriate amount of other components within a range that does not impair the effects of the present invention.
  • Other ingredients include water, oily ingredients, surfactants, preservatives, sugars, buffers, pH adjusters, tonicity agents, stabilizers, cooling agents, polyhydric alcohols, excipients, lipids, Proteins, ingredients for DDS, thickening agents, and the like. These components can be blended singly or in an appropriate combination of two or more. The amount of water to be blended can be the balance of the composition.
  • VEGF or VEGF agonists to suppress or treat myopia.
  • VEGF or a VEGF agonist in the manufacture of a medicament for use in preventing or treating myopia.
  • VEGF or VEGF agonists may be used in DNA or RNA, or protein form.
  • VEGF or VEGF agonists may also be used in the form of cells that secrete VEGF or VEGF agonists. Additionally, agents that promote the expression of VEGF can be used for these purposes as well.
  • mice expressing Cre recombinase under the RPE-specific Best1 promoter were crossed with Vegf-floxed mice and used as an RPE-specific VEGF-deficient model. Also, littermate floxed mice that do not express the Cre transgene were used as a control group.
  • FIG. 1 shows the results of measuring the axial length of RPE-specific VEGF-deficient mice. During the entire period up to 10 weeks of age, the axial length of the VEGF-deficient mice was elongated compared to the control group.
  • FIG. 2 shows the measurement results of the choroidal thickness. The choroid of VEGF-deficient mice was thinner than that of the control group.
  • Figure 3 shows the measurement results of the refractive index. VEGF-deficient mice exhibited myopic refraction compared to emmetropic refraction in controls.
  • Fig. 4 is an image of the morphology of the choroid observed with an electron microscope. It was confirmed that the choriocapillary lamina of the VEGF-deficient mice was thinner and disappeared compared to the control group.
  • mice obtained by mating mice expressing Cre recombinase under the RPE-specific Best1 promoter with Vhl-floxed mice were used as an RPE-specific VEGF overexpression model. Also, littermate floxed mice that do not express the Cre transgene were used as a control group. Axial length, thickness of choroid, measurement of refraction and observation of choroid are the same as Experiment 1.
  • FIG. 5 shows the measurement results of the axial length of RPE-specific VEGF overexpressing mice. During the entire period up to 10 weeks of age, elongation of the axial length of the VEGF-overexpressing mice was suppressed compared to the control group.
  • FIG. 6 shows the measurement results of the choroidal thickness. We confirmed that the choroid of VEGF-overexpressing mice was thickened during periods other than 3 and 6 weeks of age.
  • Fig. 7 shows the measurement results of the refractive index. Both control and VEGF-overexpressing mice exhibited emmetropia.
  • Fig. 8 is an image of the morphology of the choroid observed with an electron microscope. It was confirmed that the choriocapillary lamina of the VEGF-overexpressing mice was thicker than that of the control group.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Developmental Biology & Embryology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present disclosure relates to a method for preventing or treating myopia and a composition to be used in this method. The present inventors found that VEGF deficiency induces loss of the choroidal capillary plate and choroidal thinning to thereby cause myopia of the eye. To prevent or treat myopia, therefore, provided are a method and a composition for delivering VEGF or a VEGF agonist to the choroid to retain the choroid. Retaining of the choroid by maintaining the expression, secretion and reception of VEGF is effective in preventing or treating myopia.

Description

近視を予防または治療するための方法および組成物Methods and compositions for preventing or treating myopia
 本発明は、近視を予防または治療するための方法および組成物に関し、より詳細には脈絡膜の保持のためにVEGFを用いる方法および組成物に関する。 The present invention relates to methods and compositions for preventing or treating myopia, and more particularly to methods and compositions using VEGF for choroidal preservation.
 近視は、眼軸長の伸長のために網膜の前に焦点が結ばれる状態を指し、眼軸長が長いほど強い近視と言える。近視の有病率の増加につれ、近視の発症に関与する要因と近視進行抑制や予防法に対する関心が高まっている。近年の研究により、脈絡膜が眼の成長の調節と近視の発症に重要であることが示唆されており、脈絡膜の菲薄化は近視の構造的特徴であることが示されている。脈絡膜の厚さと軸方向の長さの間に負の相関があることから、脈絡膜の厚さの変化が眼軸長の伸長の予測バイオマーカーである可能性が示唆されている。しかし、脈絡膜が近視の発症や進行に関与する詳細なメカニズムは未だに不明である。 Myopia refers to the state in which the focus is focused in front of the retina due to the elongation of the axial length of the eye, and it can be said that the longer the axial length of the eye, the stronger the myopia. As the prevalence of myopia increases, there is growing interest in the factors involved in the development of myopia and methods of slowing or preventing myopia progression. Recent studies have suggested that the choroid is important in regulating eye growth and in the development of myopia, and have shown that choroidal thinning is a structural feature of myopia. The negative correlation between choroidal thickness and axial length suggests that changes in choroidal thickness may be predictive biomarkers of axial length elongation. However, the detailed mechanism by which the choroid is involved in the onset and progression of myopia is still unclear.
 脈絡膜は細かい血管が豊富な網膜の外側を覆う組織であり、網膜の細胞へ酸素や栄養を供給する機能に加えて、眼球外側の強膜の組織リモデリングおよび眼の成長の調節に関与する成長因子を供給する機能を持つ。脈絡膜の厚さの減少、もしくは血流の減少が強膜の虚血と低酸素症に寄与し、眼軸長が伸びる強膜構造の変化へ影響していると考えられる。そこで、脈絡膜の厚さや血流を維持、増加することは近視の予防や治療における新しいターゲットとして注目されている。 The choroid is a fine blood vessel-rich outer lining of the retina. In addition to its function of supplying oxygen and nutrients to retinal cells, the choroid is involved in tissue remodeling of the sclera outside the eyeball and regulation of eye growth. It has the function of supplying factors. A decrease in choroidal thickness, or a decrease in blood flow, contributes to scleral ischemia and hypoxia, and is thought to influence changes in scleral structure that increase axial length of the eye. Therefore, maintaining and increasing choroidal thickness and blood flow are attracting attention as new targets in the prevention and treatment of myopia.
 脈絡膜の厚さを維持、増加さえることにより近視進行を抑制するための方法が提案されており、例えば、クロセチン摂取(非特許文献1参照)、バイオレットライトの照射(非特許文献2)等が提案されている。 Methods for suppressing the progression of myopia by maintaining or increasing the thickness of the choroid have been proposed. It is
 本開示は、近視を予防もしくは治療するための方法、およびそれに用いる組成物を提供することを目的とする。 The present disclosure aims to provide a method for preventing or treating myopia, and a composition used therefor.
 本発明者らは、VEGFの欠損が脈絡毛細血管板の消失、脈絡膜の菲薄化を誘導し、眼の近視化を引き起こすことを明らかにし、VEGFの供給による脈絡膜の保持が近視の予防、治療に効果的であることを実証した。本発明は、このような知見に基づくものであり、以下の態様を包含する。 The present inventors have clarified that VEGF deficiency induces the disappearance of the choriocapillaris plate and the thinning of the choroid, causing myopia of the eye. proved to be effective. The present invention is based on such findings and includes the following aspects.
[態様1]処置を必要とする対象において、対象の脈絡膜にVEGFまたはVEGFアゴニストを送達することを含む、近視を抑制もしくは治療するための方法。
[態様2]VEGFまたはVEGFアゴニストがDNA、RNAまたはタンパク質の形態で対象に投与される、態様1に記載の方法。
[態様3]VEGFまたはVEGFアゴニストがウイルスベクターを用いて対象に投与される、態様1または2に記載の方法。
[態様4]VEGF分泌細胞またはVEGFアゴニスト分泌細胞を対象に移植することを含む、態様1に記載の方法。
[態様5]VEGFの発現を促進する薬剤を対象に投与することを含む、態様1に記載の方法。
[態様6]脈絡膜が維持される、態様1~5のいずれか一項に記載の方法。
[態様7]脈絡膜におけるVEGFの発現、分泌または受容が維持される、態様1~6のいずれか一項に記載の方法。
[態様8]治療有効量のVEGFもしくはVEGFアゴニストをコードするDNAもしくはRNA、VEGFタンパク質、VEGFアゴニスト、VEGF分泌細胞、VEGFアゴニスト分泌細胞、またはVEGF発現促進剤を含有する、近視を抑制もしくは治療するための組成物。
[態様9]対象の脈絡膜にVEGFまたはVEGFアゴニストを送達するための、態様8に記載の組成物。
[態様10]VEGFまたはVEGFアゴニストがウイルスベクター中に組み込まれている、態様9または10に記載の組成物。
[態様11]脈絡膜を維持するための、態様9~10のいずれか一項に記載の組成物。
[態様12]脈絡膜におけるVEGFの発現、分泌または受容を維持するための、態様9~11のいずれか一項に記載の組成物。
[態様13]近視を抑制もしくは治療するための、VEGFもしくはVEGFアゴニストをコードするDNAもしくはRNA、VEGFタンパク質、VEGFアゴニスト、VEGF分泌細胞、VEGFアゴニスト分泌細胞、またはVEGF発現促進剤の使用。
[態様14]近視の抑制もしくは治療に用いる医薬の製造における、VEGFもしくはVEGFアゴニストをコードするDNAもしくはRNA、VEGFタンパク質、VEGFアゴニスト、VEGF分泌細胞、VEGFアゴニスト分泌細胞、またはVEGF発現促進剤の使用。
[態様15]対象の脈絡膜にVEGFまたはVEGFアゴニストを送達するための、態様13または14に記載の使用。
[態様16]VEGFまたはVEGFアゴニストがウイルスベクター中に組み込まれている、態様13~15のいずれか一項に記載の使用。
[態様17]脈絡膜を維持するための、態様13~16のいずれか一項に記載の使用。
[態様18]脈絡膜におけるVEGFの発現、分泌または受容を維持するための、態様13~17のいずれか一項に記載の使用。
[Embodiment 1] A method for inhibiting or treating myopia in a subject in need thereof, comprising delivering VEGF or a VEGF agonist to the choroid of the subject.
[Aspect 2] The method of aspect 1, wherein the VEGF or VEGF agonist is administered to the subject in the form of DNA, RNA or protein.
[Embodiment 3] The method of embodiment 1 or 2, wherein the VEGF or VEGF agonist is administered to the subject using a viral vector.
[Aspect 4] The method according to aspect 1, which comprises transplanting VEGF-secreting cells or VEGF agonist-secreting cells into a subject.
[Aspect 5] The method according to aspect 1, comprising administering to the subject an agent that promotes VEGF expression.
[Aspect 6] The method according to any one of aspects 1 to 5, wherein the choroid is maintained.
[Aspect 7] The method according to any one of aspects 1 to 6, wherein VEGF expression, secretion or reception in the choroid is maintained.
[Embodiment 8] A therapeutically effective amount of DNA or RNA encoding VEGF or a VEGF agonist, VEGF protein, VEGF agonist, VEGF secreting cells, VEGF agonist secreting cells, or a VEGF expression promoter for suppressing or treating myopia composition.
[Embodiment 9] The composition of Embodiment 8 for delivering VEGF or a VEGF agonist to the choroid of a subject.
[Embodiment 10] The composition according to embodiment 9 or 10, wherein VEGF or a VEGF agonist is incorporated into a viral vector.
[Embodiment 11] The composition according to any one of Embodiments 9 to 10 for maintaining choroid.
[Embodiment 12] The composition according to any one of Embodiments 9 to 11 for maintaining VEGF expression, secretion or reception in the choroid.
[Embodiment 13] Use of DNA or RNA encoding VEGF or a VEGF agonist, VEGF protein, VEGF agonist, VEGF-secreting cells, VEGF agonist-secreting cells, or a VEGF expression promoter for suppressing or treating myopia.
[Embodiment 14] Use of DNA or RNA encoding VEGF or a VEGF agonist, VEGF protein, VEGF agonist, VEGF-secreting cells, VEGF agonist-secreting cells, or a VEGF expression promoter in the manufacture of a medicament used for suppressing or treating myopia.
[Embodiment 15] Use according to embodiment 13 or 14 for delivering VEGF or a VEGF agonist to the choroid of a subject.
[Aspect 16] Use according to any one of aspects 13 to 15, wherein the VEGF or VEGF agonist is incorporated into a viral vector.
[Aspect 17] Use according to any one of aspects 13 to 16 for maintaining the choroid.
[Embodiment 18] Use according to any one of Embodiments 13 to 17 for maintaining VEGF expression, secretion or reception in the choroid.
 本開示によれば、VEGFにより脈絡膜を保持することで、近視予防、治療の新たな方法を提供することができる。 According to the present disclosure, a new method for myopia prevention and treatment can be provided by maintaining the choroid with VEGF.
RPE特異的VEGF欠損によるマウスの眼軸長の変化を示すグラフである。縦軸:眼軸長、横軸:週齡、黒丸:対照、白丸:VEGFRPEノックアウト。Fig. 3 is a graph showing changes in axial length of mice due to RPE-specific VEGF deficiency. Vertical axis: axial length, horizontal axis: age, black circles: control, white circles: VEGF RPE knockout. RPE特異的VEGF欠損によるマウスの脈絡膜の厚さの変化を示すグラフである。縦軸:脈絡膜の厚さ、横軸:週齡、黒丸:対照、白丸:VEGFRPEノックアウト。FIG. 10 is a graph showing changes in choroidal thickness in mice due to RPE-specific VEGF deficiency. Vertical axis: choroidal thickness, horizontal axis: age, black circles: control, white circles: VEGF RPE knockout. RPE特異的VEGF欠損によるマウスの屈折度の変化を示すグラフである。縦軸:屈折度、横軸:週齡、黒丸:対照、白丸:VEGFRPEノックアウト。Graph showing changes in refraction in mice with RPE-specific VEGF deficiency. Vertical axis: refractivity, horizontal axis: age, black circles: control, white circles: VEGF RPE knockout. RPE特異的VEGF欠損マウスの脈絡膜の電子顕微鏡画像である。Electron microscope images of the choroid of RPE-specific VEGF-deficient mice. RPE特異的VEGF過剰発現によるマウスの眼軸長の変化を示すグラフである。縦軸:眼軸長、横軸:週齡、黒丸:対照、白丸:VEGF過剰発現。FIG. 10 is a graph showing changes in axial length of mice due to RPE-specific VEGF overexpression. FIG. Vertical axis: axial length, horizontal axis: age, black circles: control, white circles: VEGF overexpression. RPE特異的VEGF過剰発現によるマウスの脈絡膜の厚さの変化を示すグラフである。縦軸:脈絡膜の厚さ、横軸:週齡、黒丸:対照、白丸:VEGF過剰発現。FIG. 10 is a graph showing changes in choroidal thickness in mice due to RPE-specific VEGF overexpression. FIG. Vertical axis: choroidal thickness, horizontal axis: age, black circles: control, white circles: VEGF overexpression. RPE特異的VEGF過剰発現によるマウスの屈折度の変化を示すグラフである。縦軸:屈折度、横軸:週齡、黒丸:対照、白丸:VEGF過剰発現。FIG. 10 is a graph showing changes in refractive power of mice with RPE-specific VEGF overexpression. FIG. Vertical axis: refractivity, horizontal axis: age, black circles: control, white circles: VEGF overexpression. RPE特異的VEGF過剰発現マウスの脈絡膜の電子顕微鏡画像である。Electron microscopy images of the choroid of RPE-specific VEGF overexpressing mice.
 本発明に係る詳細について説明する。本発明は、以下の実施形態及び実施例の内容に限定されず、本発明の要旨を包含する範囲で種々の変形例や応用例を含む。 The details of the present invention will be explained. The present invention is not limited to the contents of the following embodiments and examples, and includes various modifications and applications within the scope of the gist of the present invention.
[近視を抑制もしくは治療するための方法]
 本開示の一つの側面は、血管内皮細胞増殖因子(VEGF)を用いて近視を抑制もしくは治療するための方法に関する。血管内皮細胞増殖因子(VEGF)は生体内において血管新生を誘導、血管形成を促進することができる増殖因子である。VEGFは網膜色素上皮(RPE)からの分泌により脈絡膜へ供給される。本発明者らは、VEGFが脈絡膜の保持に有効であることに着目し、VEGFの欠損や過剰発現による脈絡膜の保持、眼軸長および屈折度への影響を確認した。本発明者らは、RPE特異的VEGFの欠損や過剰発現のモデルとして遺伝子組換えマウスを用いて、脈絡膜の形態変化を観察し、眼軸長、脈絡膜の厚さ、屈折度の測定を行った。その結果、処置を必要とする対象において、対象の脈絡膜にVEGFまたはVEGFアゴニストを送達することにより、近視が抑制もしくは治療されうることが見出された。よって、本開示の態様の一つは、処置を必要とする対象において、対象の脈絡膜にVEGFまたはVEGFアゴニストを送達することを含む、近視を抑制もしくは治療するための方法に関する。本明細書に開示のように、RPE特異的にVEGFが欠損した遺伝子組換えマウスや過剰発現した遺伝子組換えマウスを用いて、脈絡膜の保持におけるVEGFの重要性が見出された。
[Method for suppressing or treating myopia]
One aspect of the present disclosure relates to methods for inhibiting or treating myopia using vascular endothelial growth factor (VEGF). Vascular endothelial growth factor (VEGF) is a growth factor that can induce angiogenesis and promote angiogenesis in vivo. VEGF is supplied to the choroid by secretion from the retinal pigment epithelium (RPE). The present inventors focused on the fact that VEGF is effective in maintaining the choroid, and confirmed the effect of VEGF deficiency or overexpression on the maintenance of the choroid, axial length, and refractive power. The present inventors used transgenic mice as a model for RPE-specific VEGF deficiency or overexpression, observed morphological changes in the choroid, and measured axial length, choroid thickness, and refractive power. . Consequently, it has been found that myopia can be inhibited or treated in a subject in need of treatment by delivering VEGF or a VEGF agonist to the choroid of the subject. Accordingly, one aspect of the present disclosure relates to a method for inhibiting or treating myopia in a subject in need thereof comprising delivering VEGF or a VEGF agonist to the choroid of the subject. As disclosed herein, the importance of VEGF in choroidal maintenance was discovered using transgenic mice deficient or overexpressing RPE-specifically VEGF.
 対象は、ヒトを含む哺乳動物、イヌ、ネコ、ウシ、ウマを含む非ヒト哺乳動物でありうるが、好ましくはヒトである。 The subject can be a mammal, including humans, or a non-human mammal, including dogs, cats, cows, and horses, but is preferably a human.
 ヒトのVEGF(VEGF-Aとも呼ばれる)の遺伝子配列は公知であり、当業者であれば、例えば、NCBIのデータベースから容易に配列情報を入手できる。VEGFは、分子量約20,000のサブユニット2個が結合した二量体構造を有するタンパク質であり、ヒトではスプライシングの違いによりVEGF121、VEGF165、VEGF189、VEGF206などのサブタイプが知られている。本発明において使用されうるVEGFのサブタイプは特に限定されない。 The gene sequence of human VEGF (also called VEGF-A) is known, and a person skilled in the art can easily obtain sequence information from, for example, the NCBI database. VEGF is a protein with a dimer structure in which two subunits with a molecular weight of about 20,000 are bound, and in humans, subtypes such as VEGF121, VEGF165, VEGF189, and VEGF206 are known due to differences in splicing. The subtype of VEGF that can be used in the present invention is not particularly limited.
 本明細書において、VEGFアゴニストは、VEGFと同様にVEGF受容体を活性化する任意の物質を指す。一部の態様において、VEGFアゴニストはVEGFのフラグメントまたはバリアントを含む。また、一部の態様において、VEGFアゴニストはVEGFファミリーに属するVEGF-A以外の他のVEGFタンパク質、例えば、VEGF-B、VEGF-C、VEGF-D、VEGF-E、PlG-1、もしくはPlGF-2、またはそのフラグメントもしくはバリアントを含む。さらに、一部の態様において、VEGFアゴニストはVEGF受容体を活性化する能力を有する抗VEGF受容体抗体を含む。 As used herein, a VEGF agonist refers to any substance that activates a VEGF receptor like VEGF. In some embodiments, the VEGF agonist comprises a fragment or variant of VEGF. Also, in some embodiments, the VEGF agonist is a VEGF protein other than VEGF-A belonging to the VEGF family, such as VEGF-B, VEGF-C, VEGF-D, VEGF-E, PlG-1, or PlGF- 2, or fragments or variants thereof. Additionally, in some embodiments, the VEGF agonist comprises an anti-VEGF receptor antibody capable of activating the VEGF receptor.
 VEGFまたはVEGFアゴニストはDNA、RNAまたはタンパク質の形態で対象に投与されうる。VEGFまたはVEGFアゴニストをコードする核酸はプラスミドあるいは発現ベクターを用いて対象に投与してもよい。発現ベクターは、例えば、ウイルスベクター、特にアデノウイルスベクターでありうるが、これに限定はされない。他の使用可能なウイルスベクターとしては、例えば、レトロウイルス、アデノ随伴ウイルス、ポックス、バキュロウイルス、ワクシニア、単純ヘルペス、エプスタインバール、ジェミニウイルス、およびカリモウイルスベクターなどが挙げられる。VEGFまたはVEGFアゴニストをコードする核酸は、タンパク質を脈絡膜またはRPE特異的に発現させるための調節エレメントを含んでいてもよい。  VEGF or a VEGF agonist can be administered to a subject in the form of DNA, RNA or protein. A nucleic acid encoding VEGF or a VEGF agonist may be administered to a subject using a plasmid or expression vector. The expression vector can be, for example, but not limited to, a viral vector, especially an adenoviral vector. Other viral vectors that can be used include, for example, retrovirus, adeno-associated virus, pox, baculovirus, vaccinia, herpes simplex, Epstein-Barr, geminivirus, and calymovirus vectors. Nucleic acids encoding VEGF or VEGF agonists may include regulatory elements for choroid- or RPE-specific expression of the protein.
 VEGFまたはVEGFアゴニストをコードするDNAまたはRNA(メッセンジャーRNA)は、リポソームなどのDDSを用いて対象に投与してもよい。他の利用可能なDDSとしては、荷電脂質、核酸-タンパク質複合体、および生体ポリマーなどが挙げられる。また、VEGFまたはVEGFアゴニストはタンパク質の形態で対象に投与してもよい。投与は例えば、脈絡膜への局所投与により行われうる。 DNA or RNA (messenger RNA) encoding VEGF or a VEGF agonist may be administered to a subject using DDS such as liposomes. Other available DDS include charged lipids, nucleic acid-protein complexes, and biopolymers. VEGF or a VEGF agonist may also be administered to a subject in the form of a protein. Administration can be performed, for example, by topical administration to the choroid.
 対象の脈絡膜へのVEGFまたはVEGFアゴニストの送達は、VEGF分泌細胞またはVEGFアゴニスト分泌細胞を対象に移植することにより行ってもよい。VEGF分泌細胞は例えば、網膜色素上皮細胞(RPE)などの任意のVEGF分泌細胞でありうる。あるいは、遺伝子工学的にVEGFまたはVEGFアゴニストを分泌するように改変された細胞であってもよい。  The delivery of VEGF or a VEGF agonist to the choroid of a subject may be performed by transplanting VEGF-secreting cells or VEGF agonist-secreting cells into the subject. A VEGF-secreting cell can be any VEGF-secreting cell, such as, for example, a retinal pigment epithelial cell (RPE). Alternatively, cells that have been genetically engineered to secrete VEGF or a VEGF agonist may be used.
 対象の脈絡膜へのVEGFの送達は、VEGFの発現を促進する薬剤を対象に投与することにより達成してもよい。例えば、フォン・ヒッペル―リンドウ(VHL)タンパク質は腫瘍抑制因子であり、低酸素誘導性転写因子(HIF)によって制御される低酸素誘導性遺伝子の発現を負の制御する機能を持つ。VHL活性の喪失はHIF-1αの増大をもたらし、VEGFやPDGFを含む血管新生因子を上昇させる。そのため、VHLの阻害剤をVEGF発現促進剤として用いることが可能である。  The delivery of VEGF to the choroid of the subject may be achieved by administering to the subject an agent that promotes the expression of VEGF. For example, the von Hippel-Gendau (VHL) protein is a tumor suppressor that functions to negatively regulate the expression of hypoxia-inducible genes that are regulated by hypoxia-inducible transcription factors (HIFs). Loss of VHL activity results in increased HIF-1α and upregulation of angiogenic factors including VEGF and PDGF. Therefore, VHL inhibitors can be used as VEGF expression promoters.
 上述のように、脈絡膜の厚さはVEGFによって維持される。よって、本開示の一つの側面は、処置を必要とする対象において、対象の脈絡膜にVEGFまたはVEGFアゴニストを送達することを含む、脈絡膜を維持するための方法にも関する。また、本開示の一つの側面は、処置を必要とする対象において、対象の脈絡膜におけるVEGFの発現、分泌または受容を維持することを含む、近視を抑制もしくは治療するための方法にも関する。 As mentioned above, the thickness of the choroid is maintained by VEGF. Accordingly, one aspect of the present disclosure also relates to methods for maintaining the choroid in a subject in need of treatment comprising delivering VEGF or a VEGF agonist to the choroid of the subject. One aspect of the present disclosure also relates to a method for inhibiting or treating myopia in a subject in need of treatment comprising maintaining VEGF expression, secretion or reception in the choroid of the subject.
[近視を抑制もしくは治療するための組成物]
 本開示の一つの側面は、VEGFまたはVEGFアゴニストを用いて近視を抑制もしくは治療するための組成物に関する。より詳細には、本開示の態様の一つは、有効量のVEGFまたはVEGFアゴニストをコードするDNAもしくはRNA、VEGFタンパク質、VEGFアゴニスト、VEGF分泌細胞、VEGFアゴニスト分泌細胞、またはVEGF発現促進剤を含有する、近視を抑制もしくは治療するための組成物に関する。このような組成物は、対象の脈絡膜にVEGFまたはVEGFアゴニストを送達するために使用されうる。
[Composition for suppressing or treating myopia]
One aspect of the present disclosure relates to compositions for inhibiting or treating myopia using VEGF or VEGF agonists. More specifically, one embodiment of the present disclosure contains an effective amount of DNA or RNA encoding VEGF or a VEGF agonist, VEGF protein, VEGF agonist, VEGF-secreting cells, VEGF agonist-secreting cells, or a VEGF expression promoter and compositions for preventing or treating myopia. Such compositions can be used to deliver VEGF or VEGF agonists to the choroid of a subject.
 本開示に係る組成物は、例えば、眼局所に投与される。本組成物の投与形態としては、例えば、点眼投与(眼軟膏の点入、洗眼も含むものとする)、結膜下投与、結膜嚢内投与、テノン嚢下投与などが挙げられる。 The composition according to the present disclosure is, for example, topically administered to the eye. Examples of administration forms of the present composition include ophthalmic administration (including instillation of ocular ointment and eye wash), subconjunctival administration, intraconjunctival administration, and subtenon administration.
 本組成物の剤形は、特に限定はされないが、例えば、点眼剤、眼軟膏、注射剤、貼付剤、ゲル、挿入剤などが挙げられ、例えば、点眼剤が好ましい。なお、これらは当該分野で汎用されている通常の技術を用いて調製することができる。 The dosage form of the present composition is not particularly limited, but includes, for example, eye drops, eye ointments, injections, patches, gels, inserts, etc. Eye drops are preferred, for example. In addition, these can be prepared using the usual technique widely used in the said field.
 点眼剤は、塩化ナトリウム、塩化カリウム、濃グリセリンなどの等張化剤;リン酸ナト リウム、酢酸ナトリウム、イプシロン-アミノカプロン酸などの緩衝化剤;ポリオキシエ チレンソルビタンモノオレート、ステアリン酸ポリオキシル40、ポリオキシエチレン硬 化ヒマシ油などの界面活性剤;クエン酸ナトリウム、エデト酸ナトリウムなどの安定化剤;パラベンなどの防腐剤などから必要に応じて選択して用い、調製することができ、pHは眼科製剤に許容される範囲内にあればよいが、通常4~8の範囲内が好ましい。眼軟膏は、白色ワセリン、流動パラフィンなどの汎用される基剤を用い、調製することができる。 Eye drops include tonicity agents such as sodium chloride, potassium chloride and concentrated glycerin; buffering agents such as sodium phosphate, sodium acetate and epsilon-aminocaproic acid; Surfactants such as ethylene hydrogenated castor oil; stabilizers such as sodium citrate and sodium edetate; However, the range of 4 to 8 is generally preferred. Eye ointments can be prepared using commonly used bases such as white petrolatum and liquid paraffin.
 本開示に係る組成物には、本発明の効果を損なわない範囲で、その他の成分を適量配合することができる。その他の成分としては、水、油性成分、界面活性剤、防腐剤、糖類、緩衝剤、pH調整剤、等張化剤、安定化剤、清涼化剤、多価アルコール、賦形剤、脂質、タンパク質、DDSのための成分、粘稠剤等が挙げられる。これらの成分は、1種単独で又は2種以上を適宜組み合わせて配合することができる。なお、水の配合量は組成物の残部とすることができる。 The composition according to the present disclosure may contain an appropriate amount of other components within a range that does not impair the effects of the present invention. Other ingredients include water, oily ingredients, surfactants, preservatives, sugars, buffers, pH adjusters, tonicity agents, stabilizers, cooling agents, polyhydric alcohols, excipients, lipids, Proteins, ingredients for DDS, thickening agents, and the like. These components can be blended singly or in an appropriate combination of two or more. The amount of water to be blended can be the balance of the composition.
 本開示の一つの側面は、近視を抑制もしくは治療するためのVEGFまたはVEGFアゴニストの使用に関する。さらに、本開示の別の側面は、近視の抑制もしくは治療に用いる医薬の製造におけるVEGFまたはVEGFアゴニストの使用に関する。VEGFまたはVEGFアゴニストは、DNAもしくはRNA、またはタンパク質の形で使用されてもよい。また、VEGFまたはVEGFアゴニストは、VEGFまたはVEGFアゴニストを分泌する細胞の形で使用されてもよい。さらに、VEGFの発現を促進する薬剤も同様にこれらの目的のために使用されうる。 One aspect of the present disclosure relates to the use of VEGF or VEGF agonists to suppress or treat myopia. Yet another aspect of the disclosure relates to the use of VEGF or a VEGF agonist in the manufacture of a medicament for use in preventing or treating myopia. VEGF or VEGF agonists may be used in DNA or RNA, or protein form. VEGF or VEGF agonists may also be used in the form of cells that secrete VEGF or VEGF agonists. Additionally, agents that promote the expression of VEGF can be used for these purposes as well.
 本明細書には、本発明の好ましい実施態様を示してあるが、そのような実施態様が単に例示の目的で提供されていることは、当業者には明らかであり、当業者であれば、本発明から逸脱することなく、様々な変形、変更、置換を加えることが可能であろう。本明細書に記載されている発明の様々な代替的実施形態が、本発明を実施する際に使用されうることが理解されるべきである。また、本明細書中において参照している特許および特許出願書類を含む、全ての刊行物に記載の内容は、その引用によって、本明細書中に明記された内容と同様に取り込まれていると解釈すべきである。 While preferred embodiments of the invention have been described herein, it will be apparent to those skilled in the art that such embodiments are provided for purposes of illustration only, and those skilled in the art will Various modifications, changes and substitutions could be made without departing from the invention. It should be understood that various alternative embodiments of the invention described herein may be used in practicing the invention. Also, the contents of all publications, including patents and patent applications, referenced herein are deemed to be incorporated by reference as if expressly set forth herein. should be interpreted.
 以下、実験例により本発明をさらに詳しく説明する。 The present invention will be described in more detail below with experimental examples.
 [実験1]
 この実験では、RPE特異的Best1プロモーター下でCreリコンビナーゼを発現するマウスをVegf-floxedマウスと交配させて得られたマウスをRPE特異的VEGF欠損モデルとして用いた。また、同腹仔のCre導入遺伝子を発現しないfloxedマウスを対照群として用いた。
[Experiment 1]
In this experiment, mice expressing Cre recombinase under the RPE-specific Best1 promoter were crossed with Vegf-floxed mice and used as an RPE-specific VEGF-deficient model. Also, littermate floxed mice that do not express the Cre transgene were used as a control group.
(眼軸長、脈絡膜の厚さ、屈折度の測定)
 生後3週齢から10週齢まで各群のマウスの眼軸長、脈絡膜の厚さ、屈折度を測定した。スペクトラルドメイン光コヒーレンストモグラフィー(Envisu R4310、Leica社製)を用いて眼軸長の測定と脈絡膜の厚さの測定を行った。マウス用赤外線フォトリフレクター(Infrared photorefractor for mice、Tubingen大学Schaeffel教授作製)を用いて屈折度の測定を行った。
(Measurement of axial length, choroid thickness, and refractive index)
Axial length, choroid thickness, and refractive power of each group of mice were measured from 3 weeks old to 10 weeks old. Spectral domain optical coherence tomography (Envisu R4310, manufactured by Leica) was used to measure axial length and choroidal thickness. Refractive power was measured using an infrared photorefractor for mice (Professor Schaeffel, Tubingen University).
(電子顕微鏡による脈絡膜の観察)
 生後10週齢のマウスの眼を採取し、PBS(Phosphate Buffered Saline)中の2.5%グルタルアルデヒドにより4℃で一晩固定し、0.1Mカコジル酸ナトリウム緩衝液で1時間すすいだ。 次に、0.1Mカコジル酸緩衝液中の1%OsO4で2時間固定した後、段階的エタノール溶液で脱水を行った。さらに、眼をプロピレンオキシドとエポン-アラルダイトの1:2混合物中に一晩浸透させ、100%樹脂に包埋した。ブロックを切断し、透過型電子顕微鏡(JEM1400 plus;JEOL)を用いて加速電圧100kVで観察した。
(Observation of choroid by electron microscope)
Eyes of 10-week-old mice were harvested, fixed with 2.5% glutaraldehyde in PBS (Phosphate Buffered Saline) overnight at 4° C., and rinsed with 0.1 M sodium cacodylate buffer for 1 hour. They were then fixed with 1% OsO4 in 0.1 M cacodylate buffer for 2 hours followed by dehydration with graded ethanol solutions. In addition, the eyes were infiltrated overnight in a 1:2 mixture of propylene oxide and epon-araldite and embedded in 100% resin. The blocks were cut and observed at an acceleration voltage of 100 kV using a transmission electron microscope (JEM1400 plus; JEOL).
 (結果)
 図1にRPE特異的VEGF欠損マウスの眼軸長の測定結果を示す。10週齢まで全期間中、VEGF欠損マウスの眼軸長が対照群と比較して伸長していた。図2に脈絡膜の厚さの測定結果を示す。VEGF欠損マウスの脈絡膜は対照群より菲薄化していた。図3に屈折度の測定結果を示す。対照群では正視屈折度を示していたことと比べ、VEGF欠損マウスは近視化した屈折度を示した。
(result)
Figure 1 shows the results of measuring the axial length of RPE-specific VEGF-deficient mice. During the entire period up to 10 weeks of age, the axial length of the VEGF-deficient mice was elongated compared to the control group. FIG. 2 shows the measurement results of the choroidal thickness. The choroid of VEGF-deficient mice was thinner than that of the control group. Figure 3 shows the measurement results of the refractive index. VEGF-deficient mice exhibited myopic refraction compared to emmetropic refraction in controls.
 図4は電子顕微鏡による脈絡膜の形態を観察した画像である。対照群の脈絡毛細血管板に比べ、VEGF欠損マウスのものは薄く、消失していることを確認した。 Fig. 4 is an image of the morphology of the choroid observed with an electron microscope. It was confirmed that the choriocapillary lamina of the VEGF-deficient mice was thinner and disappeared compared to the control group.
 以上の結果より、RPEにおけるVEGFの欠損により眼軸長の伸長と近視化が生じることがわかった。 From the above results, it was found that VEGF deficiency in RPE causes axial lengthening and myopia.
[実験2]
 この実験では、RPE特異的Best1プロモーター下でCreリコンビナーゼを発現するマウスをVhl-floxedマウスと交配させて得られたマウスをRPE特異的VEGF過剰発現モデルとして用いた。また、同腹仔のCre導入遺伝子を発現しないfloxedマウスを対照群として用いた。眼軸長、脈絡膜の厚さ、屈折度の測定と脈絡膜の観察は実験1と同じである。
[Experiment 2]
In this experiment, mice obtained by mating mice expressing Cre recombinase under the RPE-specific Best1 promoter with Vhl-floxed mice were used as an RPE-specific VEGF overexpression model. Also, littermate floxed mice that do not express the Cre transgene were used as a control group. Axial length, thickness of choroid, measurement of refraction and observation of choroid are the same as Experiment 1.
 (結果)
 図5にRPE特異的VEGF過剰発現マウスの眼軸長の測定結果を示す。10週齢まで全期間中、VEGF過剰発現マウスの眼軸長の伸長が対照群と比較して抑制されていた。図6に脈絡膜の厚さの測定結果を示す。VEGF過剰発現マウスの脈絡膜は3、6週齢以外の期間中、厚くなっていることを確認した。図7に屈折度の測定結果を示す。対照群とVEGF過剰発現マウスともに正視屈折度を示した。
(result)
FIG. 5 shows the measurement results of the axial length of RPE-specific VEGF overexpressing mice. During the entire period up to 10 weeks of age, elongation of the axial length of the VEGF-overexpressing mice was suppressed compared to the control group. FIG. 6 shows the measurement results of the choroidal thickness. We confirmed that the choroid of VEGF-overexpressing mice was thickened during periods other than 3 and 6 weeks of age. Fig. 7 shows the measurement results of the refractive index. Both control and VEGF-overexpressing mice exhibited emmetropia.
 図8は電子顕微鏡による脈絡膜の形態を観察した画像である。対照群の脈絡毛細血管板に比べ、VEGF過剰発現マウスのものは厚くなっていることを確認した。 Fig. 8 is an image of the morphology of the choroid observed with an electron microscope. It was confirmed that the choriocapillary lamina of the VEGF-overexpressing mice was thicker than that of the control group.
 以上の結果より、RPEからVEGF過剰発現により眼軸長の伸長が抑制されることがわかった。 From the above results, it was found that VEGF overexpression from RPE suppresses axial length elongation.
 まとめると、RPE由来のVEGF欠損による脈絡毛細血管板の消失が脈絡膜の菲薄化、眼軸長伸長と屈折度の近視化を生ずる結果と、VEGF過剰発現により眼軸長の伸長が抑制される結果が見出され、VEGFが脈絡膜の維持、さらに近視進行抑制に重要であることが示唆された。
 
In summary, loss of the choriocapillaris due to RPE-derived VEGF deficiency results in choroidal thinning, axial length elongation, and myopic refractive power, and VEGF overexpression suppresses axial length elongation. was found, suggesting that VEGF is important for the maintenance of the choroid and the suppression of myopia progression.

Claims (9)

  1.  処置を必要とする対象において、対象の脈絡膜にVEGFまたはVEGFアゴニストを送達することを含む、近視を抑制もしくは治療するための方法。 A method for inhibiting or treating myopia in a subject in need of treatment comprising delivering VEGF or a VEGF agonist to the choroid of the subject.
  2.  VEGFまたはVEGFアゴニストがDNA、RNAまたはタンパク質の形態で対象に投与される、請求項1に記載の方法。 The method of claim 1, wherein the VEGF or VEGF agonist is administered to the subject in the form of DNA, RNA or protein.
  3.  VEGFまたはVEGFアゴニストがウイルスベクターを用いて対象に投与される、請求項1または2に記載の方法。 The method of claim 1 or 2, wherein the VEGF or VEGF agonist is administered to the subject using a viral vector.
  4.  VEGF分泌細胞またはVEGFアゴニスト分泌細胞を対象に移植することを含む、請求項1に記載の方法。 The method according to claim 1, comprising transplanting VEGF-secreting cells or VEGF agonist-secreting cells to the subject.
  5.  VEGFの発現を促進する薬剤を対象に投与することを含む、請求項1に記載の方法。 The method according to claim 1, comprising administering to the subject an agent that promotes expression of VEGF.
  6.  脈絡膜が維持される、請求項1~5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, wherein the choroid is maintained.
  7.  脈絡膜におけるVEGFの発現、分泌または受容が維持される、請求項1~6のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6, wherein VEGF expression, secretion or reception in the choroid is maintained.
  8.  治療有効量のVEGFまたはVEGFアゴニストをコードするDNAもしくはRNA、VEGFタンパク質、VEGFアゴニスト、VEGF分泌細胞、VEGFアゴニスト分泌細胞、またはVEGF発現促進剤を含有する、近視を抑制もしくは治療するための組成物。 A composition for suppressing or treating myopia, containing a therapeutically effective amount of DNA or RNA encoding VEGF or a VEGF agonist, a VEGF protein, a VEGF agonist, a VEGF-secreting cell, a VEGF agonist-secreting cell, or a VEGF expression promoter.
  9.  対象の脈絡膜にVEGFまたはVEGFアゴニストを送達するための、請求項8に記載の組成物。
     
    9. The composition of claim 8, for delivering VEGF or a VEGF agonist to the choroid of a subject.
PCT/JP2023/003017 2022-02-01 2023-01-31 Method and composition for preventing or treating myopia WO2023149420A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-014160 2022-02-01
JP2022014160 2022-02-01

Publications (1)

Publication Number Publication Date
WO2023149420A1 true WO2023149420A1 (en) 2023-08-10

Family

ID=87552437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003017 WO2023149420A1 (en) 2022-02-01 2023-01-31 Method and composition for preventing or treating myopia

Country Status (1)

Country Link
WO (1) WO2023149420A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016522249A (en) * 2013-06-20 2016-07-28 ノバルティス アーゲー Use of VEGF antagonists in the treatment of choroidal neovascularization
JP2019189614A (en) * 2011-11-14 2019-10-31 アステラス インスティテュート フォー リジェネレイティブ メディシン Pharmaceutical preparations of human rpe cells and uses thereof
WO2020130038A1 (en) * 2018-12-20 2020-06-25 株式会社ジェネシス Composition for regenerative therapy and method of producing composition for regenerative therapy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019189614A (en) * 2011-11-14 2019-10-31 アステラス インスティテュート フォー リジェネレイティブ メディシン Pharmaceutical preparations of human rpe cells and uses thereof
JP2016522249A (en) * 2013-06-20 2016-07-28 ノバルティス アーゲー Use of VEGF antagonists in the treatment of choroidal neovascularization
WO2020130038A1 (en) * 2018-12-20 2020-06-25 株式会社ジェネシス Composition for regenerative therapy and method of producing composition for regenerative therapy

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARITA FELDKAEMPER; FRANK SCHAEFFEL; LENA FUCHS: "Vascular endothelial growth Factor A, C, D and Vascular Endothelial Growth Factor Receptor 1, 2, 3 mRNA Expression in the Chicken Retina, RPE and Choroid.", INVESTIGATIVE OPHTHALMOLOGY AND VISUAL SCIENCE., vol. 54, no. 15, 1 January 2013 (2013-01-01), pages 5171, XP009547978 *
WEI CHEN, HUI SONG, SHIYONG XIE, QUANHONG HAN, XIN TANG, YANHUA CHU: "Correlation of Macular Choroidal Thickness with Concentrations of Aqueous Vascular Endothelial Growth Factor in High Myopia", CURRENT EYE RESEARCH, INFORMA HEALTHCARE USA, US, vol. 40, no. 3, 1 March 2015 (2015-03-01), US , pages 307 - 313, XP009548428, ISSN: 0271-3683, DOI: 10.3109/02713683.2014.973043 *

Similar Documents

Publication Publication Date Title
Wu et al. Galectin‐1 promotes choroidal neovascularization and subretinal fibrosis mediated via epithelialmesenchymal transition
Zhang et al. Ocular neovascularization: Implication of endogenous angiogenic inhibitors and potential therapy
Bainbridge et al. Inhibition of retinal neovascularisation by gene transfer of soluble VEGF receptor sFlt-1
Gao et al. Dendritic cell–epithelium interplay is a determinant factor for corneal epithelial wound repair
Liu et al. Gene-based antiangiogenic applications for corneal neovascularization
US20090011040A1 (en) Use of compacted nucleic acid nanoparticles in non-viral treatments of ocular diseases
Das et al. Vimentin knockdown decreases corneal opacity
Yu-Wai-Man et al. The role of the MRTF-A/SRF pathway in ocular fibrosis
JP2021019611A (en) Rp2 and rpgr vectors for treating x-linked retinitis pigmentosa
Kreppel et al. Long-term transgene expression in the RPE after gene transfer with a high-capacity adenoviral vector
Campochiaro Molecular targets for retinal vascular diseases
Zhang et al. AAV2 delivery of Flt23k intraceptors inhibits murine choroidal neovascularization
Tuo et al. AAV5-mediated sFLT01 gene therapy arrests retinal lesions in Ccl2−/−/Cx3cr1−/− mice
Robertson et al. Adenoviral gene transfer of bioactive TGFβ1 to the rodent eye as a novel model for anterior subcapsular cataract
Qin et al. ANGPTL4 influences the therapeutic response of patients with neovascular age-related macular degeneration by promoting choroidal neovascularization
Zhao et al. Inhibition of proliferation, migration and tube formation of choroidal microvascular endothelial cells by targeting HIF-1α with short hairpin RNA-expressing plasmid DNA in human RPE cells in a coculture system
Semkova et al. Overexpression of FasL in retinal pigment epithelial cells reduces choroidal neovascularization
Li et al. Overexpression of 15-lipoxygenase-1 in oxygen-induced ischemic retinopathy inhibits retinal neovascularization via downregulation of vascular endothelial growth factor-A expression
Irani et al. An Anti–VEGF-B Antibody Fragment Induces Regression of Pre-Existing Blood Vessels in the Rat Cornea
WO2023149420A1 (en) Method and composition for preventing or treating myopia
KR20190046628A (en) Pharmaceutical Composition for Treating Macular Degeneration Containing AAV Including cDNA of Soluble VEGFR Variant
US20160144055A1 (en) Gene therapy vector for treatment of steroid glaucoma
Akiyama et al. Inhibition of ocular angiogenesis by an adenovirus carrying the human von Hippel-Lindau tumor-suppressor gene in vivo
JP2021514991A (en) Use of IL-34 to treat retinal inflammation and neurodegeneration
US20130158103A1 (en) Method of Tissue-Selective Targeted Gene Transfer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749736

Country of ref document: EP

Kind code of ref document: A1