WO2023149202A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2023149202A1
WO2023149202A1 PCT/JP2023/001256 JP2023001256W WO2023149202A1 WO 2023149202 A1 WO2023149202 A1 WO 2023149202A1 JP 2023001256 W JP2023001256 W JP 2023001256W WO 2023149202 A1 WO2023149202 A1 WO 2023149202A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
primary
voltage
power converter
input
Prior art date
Application number
PCT/JP2023/001256
Other languages
French (fr)
Japanese (ja)
Inventor
尊衛 嶋田
公久 古川
玲彦 叶田
雄一 馬淵
ナワズ フセイン
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2023149202A1 publication Critical patent/WO2023149202A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power converter.
  • Patent Document 1 describes "a first inverter unit that obtains a direct current input and provides a high frequency output, an LLC transformer that converts the high frequency output of the first inverter unit into a voltage, Through a rectifier unit that converts the output of the LLC transformer to DC, a second inverter unit that converts the DC output of the rectifier unit to AC, and a power transformer for a control circuit connected in parallel to the secondary circuit of the LLC transformer, It is characterized by comprising a control circuit for obtaining gate power of a semiconductor element that constitutes the second inverter section.”
  • the present invention has been made in view of the circumstances described above, and an object of the present invention is to provide a power converter that can be operated appropriately.
  • the power conversion apparatus of the present invention includes a plurality of primary circuits, each of which converts an input DC voltage into an AC voltage, and each of the primary windings is connected to each of the primary circuits. a plurality of primary transformers with secondary windings connected to the AC bus; a plurality of secondary transformers with each primary winding connected to the AC bus; and a voltage at the secondary winding of each of the secondary transformers. and a plurality of secondary circuits for bi-directionally converting the secondary winding voltage and the DC voltage input/output by the electrical equipment.
  • FIG. 1 is a block diagram of a power converter according to a first embodiment;
  • FIG. It is a circuit diagram of the main part of a power converter.
  • 3 is a waveform diagram of each part in FIG. 2.
  • FIG. It is a schematic diagram which shows the example of the parking lot which installed the power converter device.
  • FIG. 1 is a block diagram of a power converter 100 according to the first embodiment.
  • the power electronics device 100 is connected between the AC power supply 120 and the power equipment group 130 .
  • the AC power supply 120 is, for example, a high-voltage AC power system of several kilovolts.
  • the power device group 130 includes a plurality of devices that input and output DC power.
  • the power equipment group 130 includes an electric vehicle 131 (electrical equipment), a solar power generation device 132 (electrical equipment), and a storage battery system 133 (electrical equipment).
  • the power conversion device 100 bi-directionally converts AC/DC power between the AC power supply 120 and the power equipment group 130 .
  • the power converter 100 includes a reactor 10, M power converter cells 12-1 to 12-M, M capacitors 13-1 to 13-M, and M primary circuits 14-1 to 14- M, M primary transformers 16-1 to 16-M, a high-frequency bus 18 (AC bus), N secondary transformers 20-1 to 20-N, and N secondary circuits 22-1 22-N, a controller 30, and a clock generator 32.
  • the number M of primary side circuits and the number N of secondary side circuits described above are both plural, and may be the same number or different numbers.
  • a plurality of constituent elements, signals, etc. having the same or similar functions and meanings will be denoted by the same reference numerals as “-”, such as “power converter cells 12-1 to 12-M”. and numerical values are sometimes written. However, when there is no need to distinguish between these plurality of constituent elements, they may be indicated by abbreviating "-" and numerical values, such as "power converter cell 12".
  • the reactor 10 and the power converter cells 12-1 to 12-M are connected in series to the AC power supply 120.
  • Each power converter cell 12 rectifies the applied AC voltage and outputs a DC voltage via capacitor 13 .
  • Each primary circuit 14 converts the DC voltage applied to the corresponding capacitor 13 into a high frequency voltage and applies it to the corresponding primary transformer 16 .
  • each primary transformer 16 supplies a high frequency current to the high frequency bus 18 while being insulated from the primary circuit 14 .
  • the high frequency is a frequency of 100 Hz or higher, preferably a frequency of 1 kHz or higher or 10 kHz or higher.
  • the power conversion device 100 can be miniaturized.
  • Each secondary transformer 20 is connected to the high frequency bus 18 .
  • Each secondary circuit 22 bidirectionally converts a high-frequency voltage and a DC voltage, and inputs and outputs DC power to and from the power device group 130 .
  • the high frequency bus 18 comprises a pair of conductors (not numbered), one of which is grounded. By grounding one of the conductors in this way, it is possible to prevent mixed contact between the primary side (high voltage side) and the secondary side (low voltage side).
  • Clock generator 32 supplies clock signals CKP-1 to CKP-M to primary circuits 14-1 to 14-M, respectively, and clock signal CKS to secondary circuits 22-1 to 22-N. -1 to CKS-N, respectively.
  • the controller 30 generates the frequencies and phases of the clock signals CKP-1 to CKP-M and CKS-1 to CKS-N according to the power to be input/output to/from the power device group 130 by the power converter 100. command to the device 32;
  • FIG. 2 is a circuit diagram of a main part of the power conversion device 100. As shown in FIG. In FIG. 2, the number M of primary side circuits and the number N of secondary side circuits shown in FIG. 1 are both "3". Each primary circuit 14 comprises four switching elements (not labeled) and four diodes (not labeled) connected anti-parallel to them. Although not shown, each primary circuit 14 includes a drive circuit for driving each switching element based on the supplied clock signal CKP (see FIG. 1).
  • Capacitors 13-1 to 13-3 are connected in parallel to the primary circuits 14-1 to 14-3.
  • the DC powers input to the primary circuits 14-1 to 14-3 via these capacitors 13-1 to 13-3 are called Pp1 to Pp3.
  • the primary circuits 14-1 to 14-3 are connected to primary windings 16a of primary transformers 16-1 to 16-3. Voltages appearing in the primary windings 16a of the primary transformers 16-1 to 16-3 are called Vp1 to Vp3.
  • 2 may be the internal inductance of the primary transformer 16 or the secondary transformer 20, or may be an external reactor.
  • a secondary winding 16b of the primary transformer 16 and a primary winding 20a of the secondary transformer 20 are connected in parallel to the high frequency bus 18 .
  • the voltages appearing in the secondary windings 20b of the secondary transformers 20-1 to 20-3 are called secondary winding voltages Vs1 to Vs3.
  • the secondary windings 20b of these secondary transformers 20 are connected to secondary circuits 22-1 to 22-3.
  • Each secondary circuit 22 includes four switching elements (not labeled) and four diodes (not labeled) connected in anti-parallel to these.
  • the secondary circuit 22 includes a drive circuit that drives each switching element based on the supplied clock signal CKS (see FIG. 1).
  • Capacitors 24-1 to 24-3 are connected in parallel to the secondary circuits 22-1 to 22-3, respectively. They are called Ps1 to Ps3.
  • the terminal voltage of each capacitor 13 and the terminal voltage of each capacitor 24 are assumed to be equal, and the winding ratios of each primary transformer 16 and each secondary transformer 20 are also assumed to be equal.
  • FIG. 3 is a waveform diagram of each part in FIG.
  • the voltages Vp1 to Vp3 are all square-wave voltages of the same phase having a duty ratio of 50%, and as shown, the rising timings are t10 and t20.
  • the DC powers Pp1 to Pp3 become equal.
  • Secondary winding voltages Vs1 to Vs3 are also square-wave voltages having a duty ratio of 50%.
  • the phase of the secondary winding voltage Vs1 lags behind the phases of the voltages Vp1 to Vp3, the voltage Vs2 has the same phase, and the voltage Vs3 leads.
  • the DC power Ps1 shown in FIG. 2 has a positive value, and power is supplied from the secondary circuit 22-1 to the power device group 130.
  • the DC power Ps2 becomes a negative value, and power is supplied from the power device group 130 to the secondary circuit 22-2.
  • the absolute value of this DC power Ps2 is equivalent to DC powers Pp1-Pp3.
  • the DC power Ps3 also becomes a negative value, and power is supplied from the power device group 130 to the secondary circuit 22-3.
  • the absolute value of DC power Ps3 is larger than the absolute value of DC power Ps2.
  • the terminal voltage of each capacitor 13 and the terminal voltage of each capacitor 24 may be different voltages, and the winding ratios of each primary transformer 16 and each secondary transformer 20 may be different.
  • DC powers Pp1-Pp3 and Ps1-Ps3 have different values.
  • the phases of the secondary winding voltages Vs1 to Vs3 are advanced, the power changes in the direction of input from the power device group 130 to the power conversion device 100, and the secondary winding voltages Vs1 to Vs3 When the phase is delayed, the power changes in the direction of input from the power conversion device 100 to the power device group 130 . Thereby, desired power can be input/output from each secondary circuit 22 to/from the power device group 130 .
  • FIG. 4 is a schematic diagram showing an example of a parking lot in which the power converter 100 is installed.
  • the parking lot 200 has a ceiling 210 and a floor 220 .
  • the electric vehicle 131 described above has a power receiving connector 131 a and is parked on the floor 220 of the parking lot 200 .
  • the power conversion device 100 includes a substantially flat plate-shaped housing 106 along the shape of the ceiling 210 and is attached to the ceiling 210 of the parking lot 200 .
  • a cable 102 is attached to the power conversion device 100, and the cable 102 hangs downward.
  • a power supply connector 104 is attached to the lower end of the cable 102 .
  • the power converter 100 When the user fits the power supply connector 104 to the power receiving connector 131a and performs a predetermined operation, power is supplied from the power converter 100 to the electric vehicle 131, and the battery (not shown) of the electric vehicle 131 is charged.
  • the power converter 100 By mounting the power converter 100 on the ceiling 210 of the parking lot 200 in this way, the power converter 100 can be easily installed in the existing parking lot 200 .
  • the configuration of the comparative example it is possible to simultaneously output DC power from a plurality of secondary circuits 22 to a plurality of electric vehicles 131 and the like.
  • the power converter cell 12 is connected in series with the AC power supply 120, it is difficult to make a large difference between the DC powers input and output by the secondary circuits 22.
  • FIG. Therefore, it is also difficult for a certain secondary circuit 22 to output power to the power device group 130 while another secondary circuit 22 receives power from the power device group 130 .
  • the power converter 100 includes a plurality of primary circuits 14 each converting an input DC voltage into an AC voltage, and each primary winding 16a connected to each primary circuit 14. a plurality of primary transformers 16 each having a secondary winding 16b connected to the AC bus (18), a plurality of secondary transformers 20 each having a primary winding 20a connected to the AC bus (18); A plurality of secondary winding voltages Vs1 to Vs3, which are voltages in the secondary winding 20b of the secondary transformer 20, and DC voltages input and output by the electrical equipment (131, 132, 133) in both directions. and a secondary circuit 22 .
  • the electric devices (131, 132, 133) can independently input and output power to and from the power conversion device 100, so that the power conversion device 100 can be operated appropriately.
  • the power conversion device 100 further includes a plurality of power converter cells 12 connected in series with the AC power supply 120, each of which converts an input AC voltage into a DC voltage and applies the DC voltage to the corresponding primary circuit 14. More preferred. Thereby, the power electronics device 100 can receive power from the AC power supply 120 or supply power to the AC power supply 120 .
  • the plurality of secondary circuits 22 set the phases of the respective secondary winding voltages Vs1 to Vs3 in synchronization with the clock signal CKS supplied thereto. As a result, in synchronization with the clock signal CKS, power input/output control corresponding to the corresponding electric devices (131, 132, 133) can be executed.
  • the power conversion device 100 further includes a clock generator 32 that sets the phase of the corresponding clock signal CKS according to the power to be input/output by the electrical equipment (131, 132, 133).
  • a clock generator 32 that sets the phase of the corresponding clock signal CKS according to the power to be input/output by the electrical equipment (131, 132, 133).
  • the AC bus (18) comprises a pair of conductors, one of the pair of conductors being grounded. This can prevent mixed contact between the primary side (high pressure side) and the secondary side (low pressure side).
  • the power conversion device 100 further includes a housing 106 attached to the ceiling 210 of the parking lot 200 . Thereby, the power conversion device 100 can be easily installed in the existing parking lot 200 .
  • the present invention is not limited to the embodiments described above, and various modifications are possible.
  • the above-described embodiments are exemplified for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations.
  • other configurations may be added to the configurations of the above embodiments, and part of the configurations may be replaced with other configurations.
  • the control lines and information lines shown in the drawings are those considered to be necessary for explanation, and do not necessarily show all the control lines and information lines necessary on the product. In practice, it may be considered that almost all configurations are interconnected. Possible modifications to the above embodiment are, for example, the following.
  • the power converter 100 inputs and outputs power between the AC power supply 120 such as an AC power system and the power equipment group 130 .
  • the power converter 100 may be connected to a DC power supply such as a DC power system.
  • the reactor 10, the power converter cells 12 and the capacitor 13 are not required, so it is preferable to connect the power converter cells 12-1 to 12-M in series with the DC power supply.
  • Power converter cell 14 Primary circuit 16 Primary transformer 16a Primary winding 16b Secondary winding 18 High frequency bus (AC bus) 20 secondary transformer 20a primary winding 20b secondary winding 22 secondary circuit 32 clock generator 100 power converter 106 housing 120 AC power supply 131 electric vehicle (electrical equipment) 132 Photovoltaic equipment (electrical equipment) 133 Storage Battery Systems (Electrical Equipment) 200 Parking lot 210 Ceiling CKS Clock signals Vs1 to Vs3 Secondary winding voltage

Abstract

The present invention provides a power conversion device that can be operated appropriately. To enable appropriate operation, a power conversion device (100) comprises a plurality of primary circuits (14) that each convert an input DC voltage to an AC voltage, a plurality of primary transformers (16) that each have a primary winding (16a) connected to one of the plurality of primary circuits (14) and a secondary winding (16b) connected to an AC bus (18), a plurality of secondary transformers (20) that each have a primary winding (20a) connected to the AC bus (18), and a plurality of secondary circuits (22) that convert bidirectionally between secondary winding voltages (Vs1~Vs3) that are voltages in the second windings (20b) of the respective secondary transformers (20) and DC voltages input/output by electrical appliances (131, 132, 133).

Description

電力変換装置power converter
 本発明は、電力変換装置に関する。 The present invention relates to a power converter.
 本技術分野の背景技術として、下記特許文献1の要約には、「直流入力を得て高周波出力を与える第1のインバータ部と、第1のインバータ部の高周波出力を電圧変換するLLCトランスと、LLCトランスの出力を直流変換する整流器部と、整流器部の直流出力を交流に変換する第2のインバータ部と、LLCトランスの二次回路に並列に接続された制御回路用電源トランスを介して、第2のインバータ部を構成する半導体素子のゲート電力を得る制御回路から成ることを特徴とする。」と記載されている。 As a background art of this technical field, the summary of Patent Document 1 below describes "a first inverter unit that obtains a direct current input and provides a high frequency output, an LLC transformer that converts the high frequency output of the first inverter unit into a voltage, Through a rectifier unit that converts the output of the LLC transformer to DC, a second inverter unit that converts the DC output of the rectifier unit to AC, and a power transformer for a control circuit connected in parallel to the secondary circuit of the LLC transformer, It is characterized by comprising a control circuit for obtaining gate power of a semiconductor element that constitutes the second inverter section."
特開2017-70047号公報JP 2017-70047 A
 ところで、上述した技術において、電力変換器を一層適切に運用したいという要望がある。
 この発明は上述した事情に鑑みてなされたものであり、適切に運用できる電力変換装置を提供することを目的とする。
By the way, in the technology described above, there is a demand for more appropriate operation of the power converter.
The present invention has been made in view of the circumstances described above, and an object of the present invention is to provide a power converter that can be operated appropriately.
 上記課題を解決するため本発明の電力変換装置は、各々が、入力された直流電圧を交流電圧に変換する複数の一次回路と、各々の一次巻線が各々の前記一次回路に接続され各々の二次巻線が交流バスに接続された複数の一次トランスと、各々の一次巻線が前記交流バスに接続された複数の二次トランスと、各々の前記二次トランスの二次巻線における電圧である二次巻線電圧と、電気機器が入出力する直流電圧と、を双方向に変換する複数の二次回路と、を備えることを特徴とする。 In order to solve the above problems, the power conversion apparatus of the present invention includes a plurality of primary circuits, each of which converts an input DC voltage into an AC voltage, and each of the primary windings is connected to each of the primary circuits. a plurality of primary transformers with secondary windings connected to the AC bus; a plurality of secondary transformers with each primary winding connected to the AC bus; and a voltage at the secondary winding of each of the secondary transformers. and a plurality of secondary circuits for bi-directionally converting the secondary winding voltage and the DC voltage input/output by the electrical equipment.
 本発明によれば、適切に運用できる電力変換装置を提供できる。 According to the present invention, it is possible to provide a power converter that can be operated appropriately.
第1実施形態による電力変換装置のブロック図である。1 is a block diagram of a power converter according to a first embodiment; FIG. 電力変換装置の要部の回路図である。It is a circuit diagram of the main part of a power converter. 図2における各部の波形図である。3 is a waveform diagram of each part in FIG. 2. FIG. 電力変換装置を設置した駐車場の例を示す模式図である。It is a schematic diagram which shows the example of the parking lot which installed the power converter device.
[第1実施形態]
 図1は、第1実施形態による電力変換装置100のブロック図である。
 電力変換装置100は、交流電源120と、電力機器群130と、の間に接続されている。ここで、交流電源120は、例えば数キロボルト程度の高圧の交流電力系統である。電力機器群130は、直流電力を入出力する複数の機器を備えている。図示の例において、電力機器群130は、電気自動車131(電気機器)と、太陽光発電装置132(電気機器)と、蓄電池システム133(電気機器)と、を含んでいる。電力変換装置100は、交流電源120と電力機器群130との間で、交流/直流電力の双方向変換を行う。
[First embodiment]
FIG. 1 is a block diagram of a power converter 100 according to the first embodiment.
The power electronics device 100 is connected between the AC power supply 120 and the power equipment group 130 . Here, the AC power supply 120 is, for example, a high-voltage AC power system of several kilovolts. The power device group 130 includes a plurality of devices that input and output DC power. In the illustrated example, the power equipment group 130 includes an electric vehicle 131 (electrical equipment), a solar power generation device 132 (electrical equipment), and a storage battery system 133 (electrical equipment). The power conversion device 100 bi-directionally converts AC/DC power between the AC power supply 120 and the power equipment group 130 .
 電力変換装置100は、リアクトル10と、M台の電力変換器セル12-1~12-Mと、M台のコンデンサ13-1~13-Mと、M台の一次回路14-1~14-Mと、M台の一次トランス16-1~16-Mと、高周波バス18(交流バス)と、N台の二次トランス20-1~20-Nと、N台の二次回路22-1~22-Nと、コントローラ30と、クロック発生器32と、を備えている。なお、上述した一次側回路数Mおよび二次側回路数Nは何れも複数であり、同数であってもよく、異なる数であってもよい。また、以下の説明において、同一または同様の機能、意義を有する複数の構成要素や信号等を、例えば「電力変換器セル12-1~12-M」のように、同一の符号に「-」と数値を付して、表記する場合がある。但し、これら複数の構成要素等を区別する必要がない場合には、例えば「電力変換器セル12」のように、「-」と数値を省略して表記する場合がある。 The power converter 100 includes a reactor 10, M power converter cells 12-1 to 12-M, M capacitors 13-1 to 13-M, and M primary circuits 14-1 to 14- M, M primary transformers 16-1 to 16-M, a high-frequency bus 18 (AC bus), N secondary transformers 20-1 to 20-N, and N secondary circuits 22-1 22-N, a controller 30, and a clock generator 32. The number M of primary side circuits and the number N of secondary side circuits described above are both plural, and may be the same number or different numbers. Also, in the following description, a plurality of constituent elements, signals, etc. having the same or similar functions and meanings will be denoted by the same reference numerals as “-”, such as “power converter cells 12-1 to 12-M”. and numerical values are sometimes written. However, when there is no need to distinguish between these plurality of constituent elements, they may be indicated by abbreviating "-" and numerical values, such as "power converter cell 12".
 リアクトル10および電力変換器セル12-1~12-Mは、交流電源120に対して直列に接続されている。各々の電力変換器セル12は印加された交流電圧を整流し、コンデンサ13を介して直流電圧を出力する。各一次回路14は、対応するコンデンサ13に印加された直流電圧を高周波電圧に変換し、対応する一次トランス16に印加する。これにより、各一次トランス16は、一次回路14に対して絶縁した状態で、高周波バス18に対して高周波電流を供給する。ここで、高周波とは、100Hz以上の周波数であるが、好ましくは、1kHz以上、または10kHz以上の周波数が採用される。これにより、電力変換装置100を小型化することができる。 The reactor 10 and the power converter cells 12-1 to 12-M are connected in series to the AC power supply 120. Each power converter cell 12 rectifies the applied AC voltage and outputs a DC voltage via capacitor 13 . Each primary circuit 14 converts the DC voltage applied to the corresponding capacitor 13 into a high frequency voltage and applies it to the corresponding primary transformer 16 . Thereby, each primary transformer 16 supplies a high frequency current to the high frequency bus 18 while being insulated from the primary circuit 14 . Here, the high frequency is a frequency of 100 Hz or higher, preferably a frequency of 1 kHz or higher or 10 kHz or higher. Thereby, the power conversion device 100 can be miniaturized.
 各二次トランス20は、高周波バス18に接続されている。そして、各二次回路22は、高周波電圧と直流電圧とを双方向に変換し、電力機器群130との間で直流電力を入出力する。高周波バス18は、一対の導体(符号なし)を備えるが、そのうち一方は接地されている。このように、一方の導体を接地することにより、一次側(高圧側)と二次側(低圧側)との混触を防止することができる。クロック発生器32は、一次回路14-1~14-Mに対して、クロック信号CKP-1~CKP-Mを各々供給し、二次回路22-1~22-Nに対して、クロック信号CKS-1~CKS-Nを各々供給する。コントローラ30は、電力変換装置100が電力機器群130に対して入出力すべき電力等に応じて、クロック信号CKP-1~CKP-M,CKS-1~CKS-Nの周波数および位相をクロック発生器32に対して指令する。 Each secondary transformer 20 is connected to the high frequency bus 18 . Each secondary circuit 22 bidirectionally converts a high-frequency voltage and a DC voltage, and inputs and outputs DC power to and from the power device group 130 . The high frequency bus 18 comprises a pair of conductors (not numbered), one of which is grounded. By grounding one of the conductors in this way, it is possible to prevent mixed contact between the primary side (high voltage side) and the secondary side (low voltage side). Clock generator 32 supplies clock signals CKP-1 to CKP-M to primary circuits 14-1 to 14-M, respectively, and clock signal CKS to secondary circuits 22-1 to 22-N. -1 to CKS-N, respectively. The controller 30 generates the frequencies and phases of the clock signals CKP-1 to CKP-M and CKS-1 to CKS-N according to the power to be input/output to/from the power device group 130 by the power converter 100. command to the device 32;
 図2は、電力変換装置100の要部の回路図である。
 図2においては、図1に示した一次側回路数Mおよび二次側回路数Nは共に「3」であることとする。各一次回路14は、4個のスイッチング素子(符号なし)と、これらに逆並列接続された4個のダイオード(符号なし)と、を備えている。また、図示は省略するが、各一次回路14は、供給されたクロック信号CKP(図1参照)に基づいて各スイッチング素子をドライブするドライブ回路を備えている。
FIG. 2 is a circuit diagram of a main part of the power conversion device 100. As shown in FIG.
In FIG. 2, the number M of primary side circuits and the number N of secondary side circuits shown in FIG. 1 are both "3". Each primary circuit 14 comprises four switching elements (not labeled) and four diodes (not labeled) connected anti-parallel to them. Although not shown, each primary circuit 14 includes a drive circuit for driving each switching element based on the supplied clock signal CKP (see FIG. 1).
 一次回路14-1~14-3には、コンデンサ13-1~13-3が並列接続されている。これらコンデンサ13-1~13-3を介して一次回路14-1~14-3に入力される直流電力をPp1~Pp3と呼ぶ。また、一次回路14-1~14-3は一次トランス16-1~16-3の一次巻線16aに接続されている。一次トランス16-1~16-3の一次巻線16aに現れる電圧をVp1~Vp3と呼ぶ。なお、図2において各一次トランス16および各二次トランス20に接続されているリアクトル(符号なし)は、一次トランス16または二次トランス20の内部インダクタンスであってもよく、外付けのリアクトルであってもよい。一次トランス16の二次巻線16bおよび二次トランス20の一次巻線20aは、高周波バス18に並列に接続されている。 Capacitors 13-1 to 13-3 are connected in parallel to the primary circuits 14-1 to 14-3. The DC powers input to the primary circuits 14-1 to 14-3 via these capacitors 13-1 to 13-3 are called Pp1 to Pp3. The primary circuits 14-1 to 14-3 are connected to primary windings 16a of primary transformers 16-1 to 16-3. Voltages appearing in the primary windings 16a of the primary transformers 16-1 to 16-3 are called Vp1 to Vp3. 2 may be the internal inductance of the primary transformer 16 or the secondary transformer 20, or may be an external reactor. may A secondary winding 16b of the primary transformer 16 and a primary winding 20a of the secondary transformer 20 are connected in parallel to the high frequency bus 18 .
 二次トランス20-1~20-3の二次巻線20bに現れる電圧を二次巻線電圧Vs1~Vs3と呼ぶ。これら二次トランス20の二次巻線20bは、二次回路22-1~22-3に接続されている。各二次回路22は、4個のスイッチング素子(符号なし)と、これらに逆並列接続された4個のダイオード(符号なし)と、を備えている。また、図示は省略するが、二次回路22は、供給されたクロック信号CKS(図1参照)に基づいて各スイッチング素子をドライブするドライブ回路を備えている。 The voltages appearing in the secondary windings 20b of the secondary transformers 20-1 to 20-3 are called secondary winding voltages Vs1 to Vs3. The secondary windings 20b of these secondary transformers 20 are connected to secondary circuits 22-1 to 22-3. Each secondary circuit 22 includes four switching elements (not labeled) and four diodes (not labeled) connected in anti-parallel to these. Although not shown, the secondary circuit 22 includes a drive circuit that drives each switching element based on the supplied clock signal CKS (see FIG. 1).
 各二次回路22-1~22-3には、コンデンサ24-1~24-3が並列接続されており、これらコンデンサ24-1~24-3から電力機器群130に出力される直流電力をPs1~Ps3と呼ぶ。ここでは、説明を簡略化するため、各コンデンサ13の端子電圧および各コンデンサ24の端子電圧は等しいこととし、各一次トランス16および各二次トランス20の巻線比も等しいこととする。 Capacitors 24-1 to 24-3 are connected in parallel to the secondary circuits 22-1 to 22-3, respectively. They are called Ps1 to Ps3. Here, in order to simplify the explanation, the terminal voltage of each capacitor 13 and the terminal voltage of each capacitor 24 are assumed to be equal, and the winding ratios of each primary transformer 16 and each secondary transformer 20 are also assumed to be equal.
 図3は、図2における各部の波形図である。
 図3において、電圧Vp1~Vp3は、何れもデューティ比50%を有する同一位相の方形波状の電圧であり、図示のように、時刻t10,t20が立上りタイミングになる。これにより、直流電力Pp1~Pp3(図2参照)は等しくなる。また、二次巻線電圧Vs1~Vs3もデューティ比50%を有する方形波状の電圧である。但し、電圧Vp1~Vp3の位相に対して、二次巻線電圧Vs1の位相は遅れ、電圧Vs2は同相であり、電圧Vs3は進んでいる。この場合、図2に示す直流電力Ps1は正値になり、二次回路22-1から電力機器群130に電力が供給される。
FIG. 3 is a waveform diagram of each part in FIG.
In FIG. 3, the voltages Vp1 to Vp3 are all square-wave voltages of the same phase having a duty ratio of 50%, and as shown, the rising timings are t10 and t20. As a result, the DC powers Pp1 to Pp3 (see FIG. 2) become equal. Secondary winding voltages Vs1 to Vs3 are also square-wave voltages having a duty ratio of 50%. However, the phase of the secondary winding voltage Vs1 lags behind the phases of the voltages Vp1 to Vp3, the voltage Vs2 has the same phase, and the voltage Vs3 leads. In this case, the DC power Ps1 shown in FIG. 2 has a positive value, and power is supplied from the secondary circuit 22-1 to the power device group 130. FIG.
 また、直流電力Ps2は負値になり、電力機器群130から二次回路22-2に電力が供給される。この直流電力Ps2の絶対値は、直流電力Pp1~Pp3と同等になる。また、直流電力Ps3も負値になり、電力機器群130から二次回路22-3に電力が供給される。但し、直流電力Ps3の絶対値は、直流電力Ps2の絶対値よりも大きな値になる。このように、図3に示す各電圧の位相関係においては、電力変換装置100は二次回路22-1を介して電力機器群130に電力を供給し、二次回路22-2,22-3を介して電力機器群130から電力供給を受けることになる。また、より位相が進んだポートから、より位相が遅れたポートに電力が供給される。 Also, the DC power Ps2 becomes a negative value, and power is supplied from the power device group 130 to the secondary circuit 22-2. The absolute value of this DC power Ps2 is equivalent to DC powers Pp1-Pp3. Further, the DC power Ps3 also becomes a negative value, and power is supplied from the power device group 130 to the secondary circuit 22-3. However, the absolute value of DC power Ps3 is larger than the absolute value of DC power Ps2. Thus, in the phase relationship of each voltage shown in FIG. 3, the power converter 100 supplies power to the power device group 130 via the secondary circuit 22-1, The power is supplied from the power device group 130 via the . Also, power is supplied from the port with the more advanced phase to the port with the more delayed phase.
 電圧Vs2の位相を図3に示す位相から徐々に遅らせてゆくと、直流電力Ps2の絶対値は徐々に小さくなり、やがて零値になる。そして、電圧Vs2の位相をさらに遅らせてゆくと、直流電力Ps2の極性が正値になる。すなわち、二次回路22-2から電力機器群130に電力が供給されるようになる。また、電圧Vs2の位相を更に遅らせてゆくと、直流電力Ps2は大きくなってゆく。このように、クロック信号CKS(図1参照)によって二次巻線電圧Vs1~Vs3の位相を調整することにより、各二次回路22に入出力する電力を調整することが可能である。また、電力機器群130から二次回路22から供給された電力を交流電源120に出力することも可能である。 As the phase of the voltage Vs2 is gradually delayed from the phase shown in FIG. 3, the absolute value of the DC power Ps2 gradually decreases and eventually becomes zero. As the phase of voltage Vs2 is further delayed, the polarity of DC power Ps2 becomes positive. That is, power is supplied to the power device group 130 from the secondary circuit 22-2. Further, when the phase of voltage Vs2 is further delayed, DC power Ps2 increases. Thus, by adjusting the phases of the secondary winding voltages Vs1 to Vs3 with the clock signal CKS (see FIG. 1), it is possible to adjust the power input to and output from each secondary circuit 22. FIG. It is also possible to output the power supplied from the secondary circuit 22 from the power equipment group 130 to the AC power supply 120 .
 なお、各コンデンサ13の端子電圧および各コンデンサ24の端子電圧は異なる電圧であってもよく、各一次トランス16および各二次トランス20の巻線比を異ならせてもよい。この場合、電圧Vs1~Vs3,Vp1~Vp3の位相が同一であったとしても、直流電力Pp1~Pp3,Ps1~Ps3は異なる値になる。しかし、この場合においても、二次巻線電圧Vs1~Vs3の位相を早めた場合は電力機器群130から電力変換装置100に入力する方向に電力が変化し、二次巻線電圧Vs1~Vs3の位相を遅らせた場合は電力変換装置100から電力機器群130に入力する方向に電力が変化する。これにより、電力機器群130に対して、各二次回路22から所望の電力を入出力することができる。 The terminal voltage of each capacitor 13 and the terminal voltage of each capacitor 24 may be different voltages, and the winding ratios of each primary transformer 16 and each secondary transformer 20 may be different. In this case, even if voltages Vs1-Vs3 and Vp1-Vp3 have the same phase, DC powers Pp1-Pp3 and Ps1-Ps3 have different values. However, even in this case, if the phases of the secondary winding voltages Vs1 to Vs3 are advanced, the power changes in the direction of input from the power device group 130 to the power conversion device 100, and the secondary winding voltages Vs1 to Vs3 When the phase is delayed, the power changes in the direction of input from the power conversion device 100 to the power device group 130 . Thereby, desired power can be input/output from each secondary circuit 22 to/from the power device group 130 .
 図4は、電力変換装置100を設置した駐車場の例を示す模式図である。
 図4において、駐車場200は、天井210と、床220と、を備えている。上述した電気自動車131は、受電コネクタ131aを備えており、駐車場200の床220に駐車している。電力変換装置100は、天井210の形状に沿った略平板状の筐体106を備え、駐車場200の天井210に装着されている。
FIG. 4 is a schematic diagram showing an example of a parking lot in which the power converter 100 is installed.
In FIG. 4, the parking lot 200 has a ceiling 210 and a floor 220 . The electric vehicle 131 described above has a power receiving connector 131 a and is parked on the floor 220 of the parking lot 200 . The power conversion device 100 includes a substantially flat plate-shaped housing 106 along the shape of the ceiling 210 and is attached to the ceiling 210 of the parking lot 200 .
 電力変換装置100にはケーブル102が装着され、ケーブル102は下方に垂下している。そして、ケーブル102の下端には給電コネクタ104が装着されている。ユーザが給電コネクタ104を受電コネクタ131aに嵌合させ、所定の操作を行うと、電力変換装置100から電気自動車131に電力が供給され、電気自動車131のバッテリー(図示略)が充電される。このように、駐車場200の天井210に電力変換装置100を装着することにより、既存の駐車場200に電力変換装置100を容易に設置することができる。 A cable 102 is attached to the power conversion device 100, and the cable 102 hangs downward. A power supply connector 104 is attached to the lower end of the cable 102 . When the user fits the power supply connector 104 to the power receiving connector 131a and performs a predetermined operation, power is supplied from the power converter 100 to the electric vehicle 131, and the battery (not shown) of the electric vehicle 131 is charged. By mounting the power converter 100 on the ceiling 210 of the parking lot 200 in this way, the power converter 100 can be easily installed in the existing parking lot 200 .
[比較例]
 次に、上述の実施形態の効果を明確にするため、比較例について説明する。
 比較例の構成について図示は省略するが、高周波バス18が設けられておらず、一次側回路数Mと二次側回路数Nが同一である点を除いて、図1に示した上記実施形態のものと同様である。すなわち、比較例においては、一次回路14-k(1≦k≦M)に入出力される直流電力Ppkと、二次回路22-kから入出力される直流電力Pskとが等しくなる。
[Comparative example]
Next, a comparative example will be described in order to clarify the effects of the above-described embodiment.
Although illustration of the configuration of the comparative example is omitted, the configuration of the above embodiment shown in FIG. is similar to that of That is, in the comparative example, the DC power Ppk input/output to/from the primary circuit 14-k (1≤k≤M) is equal to the DC power Psk input/output from the secondary circuit 22-k.
 比較例の構成によれば、複数の二次回路22から複数の電気自動車131等に同時に直流電力を出力することができる。しかし、電力変換器セル12が交流電源120に対して直列接続されているため、各二次回路22が入出力する直流電力に大きな差をつけることが困難である。従って、ある二次回路22が電力機器群130に対して電力を出力しながら他の二次回路22が電力機器群130供給を受けることも困難である。このように、比較例においては、電力変換装置100と電力機器群130との間における電力の需給状態に対する制約が大きくなるという問題がある。 According to the configuration of the comparative example, it is possible to simultaneously output DC power from a plurality of secondary circuits 22 to a plurality of electric vehicles 131 and the like. However, since the power converter cell 12 is connected in series with the AC power supply 120, it is difficult to make a large difference between the DC powers input and output by the secondary circuits 22. FIG. Therefore, it is also difficult for a certain secondary circuit 22 to output power to the power device group 130 while another secondary circuit 22 receives power from the power device group 130 . Thus, in the comparative example, there is a problem that the constraint on the power supply and demand state between the power conversion device 100 and the power device group 130 is increased.
[実施形態の効果]
 以上のように上述の実施形態による電力変換装置100は、各々が、入力された直流電圧を交流電圧に変換する複数の一次回路14と、各々の一次巻線16aが各々の一次回路14に接続され各々の二次巻線16bが交流バス(18)に接続された複数の一次トランス16と、各々の一次巻線20aが交流バス(18)に接続された複数の二次トランス20と、各々の二次トランス20の二次巻線20bにおける電圧である二次巻線電圧Vs1~Vs3と、電気機器(131,132,133)が入出力する直流電圧と、を双方向に変換する複数の二次回路22と、を備える。これにより、電気機器(131,132,133)が電力変換装置100に対して独立して電力を入出力できるため、電力変換装置100を適切に運用できる。
[Effects of Embodiment]
As described above, the power converter 100 according to the above-described embodiment includes a plurality of primary circuits 14 each converting an input DC voltage into an AC voltage, and each primary winding 16a connected to each primary circuit 14. a plurality of primary transformers 16 each having a secondary winding 16b connected to the AC bus (18), a plurality of secondary transformers 20 each having a primary winding 20a connected to the AC bus (18); A plurality of secondary winding voltages Vs1 to Vs3, which are voltages in the secondary winding 20b of the secondary transformer 20, and DC voltages input and output by the electrical equipment (131, 132, 133) in both directions. and a secondary circuit 22 . As a result, the electric devices (131, 132, 133) can independently input and output power to and from the power conversion device 100, so that the power conversion device 100 can be operated appropriately.
 また、電力変換装置100は、交流電源120に対して直列接続され、各々が入力された交流電圧を直流電圧に変換し対応する一次回路14に印加する複数の電力変換器セル12をさらに備えると一層好ましい。これにより、電力変換装置100は、交流電源120から電力を受電し、または交流電源120に対して電力を供給できる。 The power conversion device 100 further includes a plurality of power converter cells 12 connected in series with the AC power supply 120, each of which converts an input AC voltage into a DC voltage and applies the DC voltage to the corresponding primary circuit 14. More preferred. Thereby, the power electronics device 100 can receive power from the AC power supply 120 or supply power to the AC power supply 120 .
 また、複数の二次回路22は、各々に供給されたクロック信号CKSに同期して、各々の二次巻線電圧Vs1~Vs3の位相を設定すると一層好ましい。これにより、クロック信号CKSに同期して、対応する電気機器(131,132,133)に応じた電力の入出力制御を実行できる。 Further, it is more preferable that the plurality of secondary circuits 22 set the phases of the respective secondary winding voltages Vs1 to Vs3 in synchronization with the clock signal CKS supplied thereto. As a result, in synchronization with the clock signal CKS, power input/output control corresponding to the corresponding electric devices (131, 132, 133) can be executed.
 また、電力変換装置100は、電気機器(131,132,133)が入出力すべき電力に応じて、対応するクロック信号CKSの位相を設定するクロック発生器32をさらに備えると一層好ましい。これにより、対応する電気機器(131,132,133)に応じた、より柔軟な電力の入出力制御を実行できる。 Further, it is more preferable that the power conversion device 100 further includes a clock generator 32 that sets the phase of the corresponding clock signal CKS according to the power to be input/output by the electrical equipment (131, 132, 133). As a result, more flexible power input/output control can be executed according to the corresponding electrical equipment (131, 132, 133).
 また、交流バス(18)は一対の導体を備え、一対の導体のうち一方は接地されていると一層好ましい。これにより、一次側(高圧側)と二次側(低圧側)との混触を防止することができる。 Further, it is more preferable that the AC bus (18) comprises a pair of conductors, one of the pair of conductors being grounded. This can prevent mixed contact between the primary side (high pressure side) and the secondary side (low pressure side).
 また、電力変換装置100は、駐車場200の天井210に装着される筐体106をさらに備えると一層好ましい。これにより、既存の駐車場200に電力変換装置100を容易に設置することができる。 Further, it is more preferable that the power conversion device 100 further includes a housing 106 attached to the ceiling 210 of the parking lot 200 . Thereby, the power conversion device 100 can be easily installed in the existing parking lot 200 .
[変形例]
 本発明は上述した実施形態に限定されるものではなく、種々の変形が可能である。上述した実施形態は本発明を理解しやすく説明するために例示したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、上記実施形態の構成に他の構成を追加してもよく、構成の一部について他の構成に置換をすることも可能である。また、図中に示した制御線や情報線は説明上必要と考えられるものを示しており、製品上で必要な全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。上記実施形態に対して可能な変形は、例えば以下のようなものである。
[Modification]
The present invention is not limited to the embodiments described above, and various modifications are possible. The above-described embodiments are exemplified for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations. Further, other configurations may be added to the configurations of the above embodiments, and part of the configurations may be replaced with other configurations. Also, the control lines and information lines shown in the drawings are those considered to be necessary for explanation, and do not necessarily show all the control lines and information lines necessary on the product. In practice, it may be considered that almost all configurations are interconnected. Possible modifications to the above embodiment are, for example, the following.
(1)上記実施形態において、電力変換装置100は交流電力系統等の交流電源120と、電力機器群130との間で電力を入出力した。しかし、近年、直流電力系統も普及しつつあるため、交流電源120に代えて、直流電力系統等の直流電源に電力変換装置100を接続してもよい。この場合、リアクトル10、電力変換器セル12およびコンデンサ13は不要になるため、直流電源に対して、電力変換器セル12-1~12-Mを直列接続するとよい。 (1) In the above embodiment, the power converter 100 inputs and outputs power between the AC power supply 120 such as an AC power system and the power equipment group 130 . However, in recent years, a DC power system has also become popular, so instead of the AC power supply 120, the power converter 100 may be connected to a DC power supply such as a DC power system. In this case, the reactor 10, the power converter cells 12 and the capacitor 13 are not required, so it is preferable to connect the power converter cells 12-1 to 12-M in series with the DC power supply.
12 電力変換器セル
14 一次回路
16 一次トランス
16a 一次巻線
16b 二次巻線
18 高周波バス(交流バス)
20 二次トランス
20a 一次巻線
20b 二次巻線
22 二次回路
32 クロック発生器
100 電力変換装置
106 筐体
120 交流電源
131 電気自動車(電気機器)
132 太陽光発電装置(電気機器)
133 蓄電池システム(電気機器)
200 駐車場
210 天井
CKS クロック信号
Vs1~Vs3 二次巻線電圧
12 Power converter cell 14 Primary circuit 16 Primary transformer 16a Primary winding 16b Secondary winding 18 High frequency bus (AC bus)
20 secondary transformer 20a primary winding 20b secondary winding 22 secondary circuit 32 clock generator 100 power converter 106 housing 120 AC power supply 131 electric vehicle (electrical equipment)
132 Photovoltaic equipment (electrical equipment)
133 Storage Battery Systems (Electrical Equipment)
200 Parking lot 210 Ceiling CKS Clock signals Vs1 to Vs3 Secondary winding voltage

Claims (6)

  1.  各々が、入力された直流電圧を交流電圧に変換する複数の一次回路と、
     各々の一次巻線が各々の前記一次回路に接続され各々の二次巻線が交流バスに接続された複数の一次トランスと、
     各々の一次巻線が前記交流バスに接続された複数の二次トランスと、
     各々の前記二次トランスの二次巻線における電圧である二次巻線電圧と、電気機器が入出力する直流電圧と、を双方向に変換する複数の二次回路と、を備える
     ことを特徴とする電力変換装置。
    a plurality of primary circuits, each of which converts an input DC voltage to an AC voltage;
    a plurality of primary transformers each having a primary winding connected to each said primary circuit and each secondary winding being connected to an AC bus;
    a plurality of secondary transformers each having a primary winding connected to the AC bus;
    A plurality of secondary circuits for bi-directionally converting a secondary winding voltage, which is a voltage in the secondary winding of each of the secondary transformers, and a DC voltage input/output by an electrical device. and power conversion equipment.
  2.  交流電源に対して直列接続され、各々が入力された交流電圧を直流電圧に変換し対応する前記一次回路に印加する複数の電力変換器セルをさらに備える
     ことを特徴とする請求項1に記載の電力変換装置。
    2. The system of claim 1, further comprising a plurality of power converter cells connected in series with an AC power source, each power converter cell converting an input AC voltage to a DC voltage for application to a corresponding said primary circuit. Power converter.
  3.  複数の前記二次回路は、各々に供給されたクロック信号に同期して、各々の前記二次巻線電圧の位相を設定する
     ことを特徴とする請求項2に記載の電力変換装置。
    3. The power converter according to claim 2, wherein the plurality of secondary circuits set the phase of each of the secondary winding voltages in synchronization with the clock signal supplied to each.
  4.  前記電気機器が入出力すべき電力に応じて、対応する前記クロック信号の位相を設定するクロック発生器をさらに備える
     ことを特徴とする請求項3に記載の電力変換装置。
    4. The power converter according to claim 3, further comprising a clock generator that sets the phase of the corresponding clock signal according to the power to be input/output by the electrical equipment.
  5.  前記交流バスは一対の導体を備え、一対の前記導体のうち一方は接地されている
     ことを特徴とする請求項4に記載の電力変換装置。
    5. The power converter according to claim 4, wherein said AC bus comprises a pair of conductors, one of said pair of conductors being grounded.
  6.  駐車場の天井に装着される筐体をさらに備える
     ことを特徴とする請求項5に記載の電力変換装置。
    The power converter according to claim 5, further comprising a housing mounted on a ceiling of a parking lot.
PCT/JP2023/001256 2022-02-02 2023-01-18 Power conversion device WO2023149202A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022014595A JP2023112723A (en) 2022-02-02 2022-02-02 Power conversion device
JP2022-014595 2022-02-02

Publications (1)

Publication Number Publication Date
WO2023149202A1 true WO2023149202A1 (en) 2023-08-10

Family

ID=87552004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001256 WO2023149202A1 (en) 2022-02-02 2023-01-18 Power conversion device

Country Status (2)

Country Link
JP (1) JP2023112723A (en)
WO (1) WO2023149202A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013172466A (en) * 2012-02-17 2013-09-02 Fuji Electric Co Ltd Power conversion device and system interconnection system using the same
JP2015142419A (en) * 2014-01-28 2015-08-03 新電元工業株式会社 composite transformer and resonant converter
JP6289763B1 (en) * 2016-07-26 2018-03-07 三菱電機株式会社 Resonant power converter
JP2019534674A (en) * 2016-11-11 2019-11-28 日本テキサス・インスツルメンツ合同会社 LLC resonant converter with integrated magnetic circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013172466A (en) * 2012-02-17 2013-09-02 Fuji Electric Co Ltd Power conversion device and system interconnection system using the same
JP2015142419A (en) * 2014-01-28 2015-08-03 新電元工業株式会社 composite transformer and resonant converter
JP6289763B1 (en) * 2016-07-26 2018-03-07 三菱電機株式会社 Resonant power converter
JP2019534674A (en) * 2016-11-11 2019-11-28 日本テキサス・インスツルメンツ合同会社 LLC resonant converter with integrated magnetic circuit

Also Published As

Publication number Publication date
JP2023112723A (en) 2023-08-15

Similar Documents

Publication Publication Date Title
US6058032A (en) Multiplex pulse-width modulation power converter
TWI661633B (en) Modular power system
US10840814B2 (en) Power conversion system
US9190921B2 (en) Transformerless cycloconverter
US20100102762A1 (en) Power converter
CN111434513A (en) Vehicle and energy conversion device and power system thereof
EP3046203A1 (en) Wind power conversion system
CN104104247A (en) Method and apparatus for converting direct current/alternating current power of bridge type
EP3819159A1 (en) Multi-port and multi-directional power conversion system for electric and/or hybrid vehicles
EP2787625B1 (en) Power conversion device
WO2023149202A1 (en) Power conversion device
KR20170084960A (en) Changing and discharging apparatus for electric vehicle
CN112224057A (en) Vehicle and energy conversion device and power system thereof
WO2023138072A1 (en) Power supply circuit and power supply apparatus
JP2008104253A (en) Power conversion device
CN112224038B (en) Energy conversion device, power system and vehicle
CN112224060B (en) Vehicle and energy conversion device and power system thereof
WO2018108142A1 (en) Modular power system
KR101101507B1 (en) Multi-level inverter
WO2018108143A1 (en) Modular power supply system
JP7230633B2 (en) power converter
CN216774292U (en) Power supply circuit and power supply device
CN220570331U (en) Power supply conveying device, power supply conversion device and photovoltaic system
WO2022241774A1 (en) Alternating current/direct current power conversion system
CN111052587B (en) Power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749518

Country of ref document: EP

Kind code of ref document: A1