WO2023148999A1 - Server, control device, and self-driving support system - Google Patents

Server, control device, and self-driving support system Download PDF

Info

Publication number
WO2023148999A1
WO2023148999A1 PCT/JP2022/030635 JP2022030635W WO2023148999A1 WO 2023148999 A1 WO2023148999 A1 WO 2023148999A1 JP 2022030635 W JP2022030635 W JP 2022030635W WO 2023148999 A1 WO2023148999 A1 WO 2023148999A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
road
vehicle
unit
server
Prior art date
Application number
PCT/JP2022/030635
Other languages
French (fr)
Japanese (ja)
Inventor
バンダラ シャフリル
智定 銭
吉高 新
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2023148999A1 publication Critical patent/WO2023148999A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/107Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/109Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Definitions

  • the present disclosure relates to servers, control devices, and automatic driving support systems.
  • Patent Literature 1 discloses a server that includes a support mode acquisition section, a road link information generation section, and an information provision section (Patent Literature 1, abstract, paragraph 0008, claim 1, etc.).
  • the support mode acquisition unit acquires, from each vehicle, the support mode for each road link of the driving support implemented by the driving support device of each vehicle.
  • the road link information generation unit generates road link information in which the support mode is linked to road link data for each road link.
  • the information providing unit provides the road link information generated by the road link information generating unit to the information providing destination.
  • road link information is provided to the information providing destination by linking the driving support mode of driving support implemented by the driving support device of each vehicle to the road link data. Therefore, the information providing destination can appropriately grasp what type of driving assistance can be performed on which road (Patent Document 1, paragraph 0009, etc.).
  • the road link information generated by the above-mentioned conventional server can be used for route planning of an autonomous vehicle, but it cannot be used for target trajectory planning and control planning for an autonomous vehicle that require more detailed information. Inadequate. In addition, if all the road link information corresponding to the scheduled route planned in the route planning of the autonomous vehicle is provided, the amount of information held by the autonomous vehicle may become excessive.
  • the present disclosure includes a server that provides an appropriate amount of knowledge information that can be used for route planning, target trajectory planning, and control planning of an automatic driving vehicle, a control device that receives the knowledge information and controls the vehicle, We provide an automatic driving support system that includes these servers and control devices.
  • One aspect of the present disclosure is a probe information analysis unit that analyzes probe information acquired from a plurality of vehicles, a road information acquisition unit that acquires road information including a road identifier of each road that constitutes a road network, and a plurality of A road section extracting unit that divides the road into a plurality of more subdivided road sections and assigns a section identifier to the road information of each of the road sections, and for each section identifier based on the analysis result of the probe information a knowledge information generating unit for generating knowledge information that affects the driving behavior of each of the vehicles; and the knowledge information corresponding to the section identifier of the road section included in the route to the destination of each of the vehicles.
  • the server includes a transmission information generation unit that extracts and generates transmission information corresponding to the reception conditions of each of the vehicles, and a knowledge information transmission unit that transmits the transmission information to each of the vehicles.
  • a server that provides an appropriate amount of knowledge information that can be used for route planning, target trajectory planning, and control planning for an autonomous vehicle.
  • FIG. 1 is a schematic configuration diagram showing Embodiment 1 of an automatic driving support system according to the present disclosure
  • FIG. FIG. 2 is a functional block diagram of a server that configures the automatic driving support system in FIG. 1
  • FIG. 2 is a functional block diagram of a control device that configures the automatic driving support system in FIG. 1
  • FIG. 3 is a flowchart for explaining the flow of knowledge information generation processing by the server of FIG. 2
  • An example of a plurality of road sections partitioned by the road section extraction unit of the server of FIG. 2 An example of a plurality of road sections partitioned by the road section extraction unit of the server of FIG. 2 .
  • FIG. 5 is a detailed flow diagram of the process of setting the information level of FIG. 4 by the server of FIG. 2
  • FIG. 3 is a flowchart showing the flow of knowledge information delivery processing by the server of FIG. 2;
  • FIG. 4 is a flowchart showing the flow of automatic driving processing by the control device of FIG. 3;
  • FIG. 4 is a plan view showing an example of target trajectory generation by a target trajectory generation unit of the control device of FIG. 3 ;
  • FIG. 11 is a flowchart showing the flow of knowledge information distribution processing by the server of the second embodiment;
  • FIG. 10 is a flow chart showing the flow of automatic driving processing by the control device of the second embodiment;
  • FIG. 11 is a plan view showing an example of target trajectory generation by a target trajectory generation unit according to the second embodiment;
  • FIG. 11 is a flowchart showing the flow of knowledge information distribution processing by the server of the third embodiment;
  • FIG. 1 is a schematic configuration diagram showing Embodiment 1 of an automatic driving support system according to the present disclosure.
  • An automatic driving support system 300 of this embodiment includes a server 100 and a plurality of control devices 200 mounted on a plurality of vehicles 10 .
  • the server 100 and each control device 200 are connected so as to be able to communicate information via, for example, a wired communication line and a wireless communication line. More specifically, the server 100 and each control device 200 are connected for information communication via the Internet line INET, the wireless base station WBS, and the communication device 11 mounted on the vehicle 10, for example.
  • the server 100 includes, for example, a central processing unit (CPU) 101, a memory 102 such as ROM and RAM, a non-volatile storage device 103 such as flash memory and hard disk, and an input/output unit 104.
  • a connected computer can be configured by, for example, one or more computers.
  • the server 100 may be configured by, for example, an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit), or may be configured by a combination of a CPU, a memory, and an FPGA.
  • Each vehicle 10 is, for example, a self-driving car that is controlled by the control device 200 and runs autonomously.
  • Each vehicle 10 is, for example, an automobile such as a gasoline engine vehicle, a diesel engine vehicle, a hybrid vehicle, an electric vehicle, or a fuel cell vehicle, and includes a control device 200, a communication device 11, a sensor 12, a storage device 13, and a It has
  • the control device 200 is composed of, for example, one or more microcontrollers having a CPU, a memory, a timer, and an input/output unit. Further, the control device 200 may be configured by, for example, an FPGA or ASIC, or may be configured by a combination of a CPU, a memory, and an FPGA.
  • the storage device 13 is, for example, a non-volatile storage device such as flash memory or hard disk.
  • the communication device 11 of the vehicle 10 is, for example, a wireless communication device that is connected to the control device 200 so as to be able to communicate information, and performs wireless communication with the wireless base station WBS and the roadside communication device.
  • the communication device 11 supports communication standards such as 3G, 4G, or 5G, for example.
  • the communication device 11 may, for example, be directly connected to the server 100 equipped with a wireless communication device via a wireless communication line, and may be connected to the server 100 via the wireless communication line, the wireless base station WBS, and the Internet line INET. It may be indirectly connected.
  • the sensor 12 detects driving behavior of the vehicle 10 . More specifically, the sensor 12 detects various physical quantities of the vehicle 10, various amounts of operation of the vehicle 10, and objects around the vehicle 10, for example. More specifically, the sensor 12 includes a velocity sensor that detects the velocity of the vehicle 10, an acceleration sensor that detects the acceleration of the vehicle 10, an angular velocity sensor that detects the angular velocity of the vehicle 10, and an angular acceleration sensor that detects the angular acceleration of the vehicle 10. Includes vehicle sensors such as sensors.
  • the sensor 12 also includes, for example, a pedal sensor that detects the amount of operation of the accelerator pedal and the brake pedal, and a steering sensor that detects the rotation angle, angular velocity, angular acceleration, and the like of the steering wheel.
  • the sensor 12 includes, for example, an external sensor such as a monocular camera, a stereo camera, a laser radar, a laser range finder, a millimeter wave radar, an infrared sensor, and an ultrasonic sensor.
  • Sensors 12 also include location sensors that detect location information for vehicle 10, such as, for example, Global Navigation Satellite System (GNSS) receivers.
  • GNSS Global Navigation Satellite System
  • FIG. 2 is a functional block diagram of the server 100 that constitutes the automatic driving support system 300 of FIG.
  • the server 100 has, for example, a probe information analysis unit 111, a road information acquisition unit 112, a road section extraction unit 113, a knowledge information generation unit 114, a transmission information generation unit 115, and a knowledge information transmission unit 116. ing.
  • Server 100 may also have, for example, setting unit 117 and environment information acquisition unit 118 .
  • Each part of these server 100 expresses each function of server 100 realized, for example, by developing a program stored in ROM of memory 102 into RAM of memory 102 by CPU 101 and executing the program.
  • the server 100 also has, for example, a knowledge information database 121, high-precision map information 122, and probe information 123. Each part of these server 100 represents various information memorize
  • FIG. 3 is a functional block diagram of the control device 200 that constitutes the automatic driving support system 300 of FIG.
  • Control device 200 is mounted on vehicle 10, for example, and is connected to communication device 11, sensor 12, and storage device 13 of vehicle 10 so as to be able to communicate information therewith.
  • the control device 200 is connected to an electronic control device that drives various actuators of the vehicle 10 so as to be able to communicate information therewith.
  • the control device 200 has, for example, a route generation unit 201, a recording unit 202, an information transmission/reception unit 203, a target locus generation unit 204, a travel control unit 205, and a drive command unit 206. Each part of these control device 200 expresses each function of control device 200 realized, for example, by developing a program stored in ROM in control device 200 into RAM by CPU and executing the program.
  • the storage device 13 of the vehicle 10 for example, like the storage device 103 of the server 100, has a knowledge information database 13a, high-precision map information 13b, and probe information 13c. Each part of these storage devices 13 represents, for example, various information stored in the storage device 13 .
  • the route generation unit 201 of the control device 200 determines the destination from the current location of the vehicle 10 based on, for example, the road information of the high-precision map information 13b, the location information of the current location of the vehicle 10, and the location information of the destination of the vehicle 10. It generates route information, which is information on the driving route to the ground.
  • the road information of the high-precision map information 13b includes, for example, road identifiers, lane information, road shapes, etc. of each road constituting the road network.
  • the route generation unit 201 acquires, for example, the current position information of the vehicle 10 from the sensor 12, acquires the information of the destination input by the occupant or administrator of the vehicle 10, and based on the high-precision map information 13b. route information from the current location of the vehicle 10 to the destination is generated.
  • the route information generated by the route generation unit 201 is, for example, information having resolution to the extent that it is possible to specify the roads that the vehicle 10 passes through, and each road node included in the high-precision map information 13b. and link identifiers arranged in the order in which the vehicle 10 passes.
  • the route generation unit 201 generates only one optimal route information and outputs it to the target trajectory generation unit 204 .
  • the route generation unit 201 may generate a plurality of pieces of route information, display them on a portable information terminal or an in-vehicle monitor together with a map, and accept selection of a travel route by the occupant or administrator of the vehicle 10, for example.
  • route generation unit 201 outputs, for example, route information selected by an occupant or administrator of vehicle 10 to target locus generation unit 204 .
  • the information transmission/reception unit 203 of the control device 200 receives knowledge information from the server 100 via the communication device 11 mounted on the vehicle 10 .
  • This knowledge information is information that affects the driving behavior of the vehicle 10 on the travel route from the current location of the vehicle 10 to the destination, and is generated by the server 100 . Generation of knowledge information by the server 100 will be described later in detail with reference to flow charts.
  • the target trajectory generation unit 204 of the control device 200 uses road information in the high-precision map information 13b, route information acquired from the route generation unit 201, and knowledge information acquired from the server 100 via the information transmission/reception unit 203. Based on this, the target trajectory of the vehicle 10 is generated.
  • the target trajectory of the vehicle 10 is, for example, information in which the absolute positions that the vehicle 10 is scheduled to pass from are arranged in the order that the vehicle 10 will pass from now on.
  • the target trajectory generation unit 204 of the control device 200 generates a target trajectory of the vehicle 10 in each of a plurality of road sections obtained by subdividing a plurality of roads in the high-precision map information 13b to which road identifiers are assigned, for example. to generate Generation of road sections by the server 100 will also be described in detail later with reference to flow charts.
  • the target trajectory generation unit 204 outputs the generated target trajectory to the traveling control unit 205, for example.
  • the travel control unit 205 of the control device 200 starts automatic operation of the vehicle 10, for example, upon receiving an instruction to start automatic operation by the operation of an occupant or administrator of the vehicle 10.
  • Travel control unit 205 for example, generates a control signal based on a control amount for causing vehicle 10 to travel along the target trajectory input from target trajectory generation unit 204 , and outputs the control signal to drive command unit 206 .
  • the travel control unit 205 suspends automatic driving of the vehicle 10 in any of the following cases.
  • the driving control unit 205 can stop the automatic driving based on the detection result of the sensor 12. Automatic driving of the vehicle 10 is interrupted when it is determined to be appropriate. For example, when the travel route generated by the route generation unit 201 cannot be maintained or when the travel route cannot be reached, the travel control unit 205 determines that it is appropriate to stop the automatic operation.
  • a drive command unit 206 of the control device 200 operates the engine or motor of the vehicle 10, the accelerator pedal, the brake pedal, the steering, the transmission, etc. based on the control signal input from the travel control unit 205 during automatic operation of the vehicle 10. to control the actuator that operates the Thereby, the control device 200 can autonomously drive the vehicle 10 along the target locus on the travel route from the current location of the vehicle 10 to the destination.
  • the drive command unit 206 is an actuator that automatically operates the engine or motor of the vehicle 10, the accelerator pedal, the brake pedal, the steering, the transmission, etc., according to the driver's or manager's driving operation when the vehicle 10 is manually operated. to control.
  • the driving operation during manual driving includes, for example, turning the steering wheel, depressing the accelerator pedal, depressing the brake pedal, and operating the shift lever.
  • the recording unit 202 of the control device 200 records the probe information based on the detection result of the sensor 12 that detects the driving behavior of the vehicle 10 in the storage device 13 at a predetermined cycle.
  • the information transmitting/receiving unit 203 of the control device 200 transmits, for example, the route information generated by the route generating unit 201 and the probe information 13c recorded in the storage device 13 by the recording unit 202 to the communication device 11 mounted on the vehicle 10. to the server 100 at a predetermined cycle.
  • the information transmitter/receiver 203 may transmit the probe information 13c to the server 100 when a predetermined amount of probe information 13c is accumulated in the storage device 13 .
  • the probe information 13c includes, for example, physical quantities such as the speed and acceleration of the vehicle 10, operation amounts such as the accelerator pedal, brake pedal, and steering of the vehicle 10, external information such as objects and road shapes around the vehicle 10, and vehicle 10 including the location information of Also, the probe information 13c includes, for example, an identifier of each control device 200, a time stamp, a type of detection value, and a detection value.
  • the probe information 13c is time-series data indicating the state of the vehicle 10 during travel. Based on this probe information 13c, it is possible to calculate the trajectory along which the vehicle 10 has traveled.
  • the trajectory of the vehicle 10 is, for example, information in which the absolute positions that the vehicle 10 passed through in the past are arranged in the order in which the vehicle 10 passed.
  • the aforementioned target trajectory is information in which the absolute positions that the vehicle 10 is scheduled to pass from are arranged in the order that the vehicle 10 will pass from now on.
  • the absolute positions forming the trajectory of the vehicle 10 and the target trajectory have, for example, millimeter-class resolution.
  • the absolute position is, for example, a combination of latitude and longitude, and can be rephrased as absolute coordinates.
  • FIG. 4 is a flowchart explaining the flow of knowledge information generation processing by the server 100.
  • the server 100 executes processing P11 for recording probe information.
  • the probe information analysis unit 111 of the server 100 records the probe information acquired from the plurality of vehicles 10 in the storage device 103 .
  • the probe information analysis unit 111 analyzes the probe information transmitted at predetermined intervals from the control device 200 of each vehicle 10 via the communication device 11 to the wireless base station WBS, Internet line INET, , and through the input/output unit 104 and recorded in the storage device 103 . Thereby, the probe information 123 of the plurality of vehicles 10 is accumulated in the storage device 103 of the server 100 .
  • the probe information 123 includes, for example, an identifier for identifying each control device 200, a time stamp representing the detection date and time of the probe information, the type of detection value of the sensor 12 and the detection value, etc., as described above.
  • the types of detection values of the sensor 12 are, for example, positional information, speed, acceleration, etc. of the vehicle 10 .
  • the detected values are, for example, numerical values of latitude and longitude (degrees, minutes, seconds) in the case of location information.
  • the server 100 executes a process P12 of acquiring road information included in the route traveled by the vehicle 10 equipped with each control device 200 . More specifically, the road information acquisition unit 112 of the server 100 acquires road information from the high-definition map information 122 stored in the storage device 103 based on the position information of each vehicle 10 included in the probe information 123. do.
  • the road information includes the road identifier of each road that constitutes the road network, as described above. Further, the road information includes, for example, lane information, road shape, road link length, nodes included in the road, etc. for each road identifier.
  • the server 100 executes a process P13 of dividing the plurality of roads in the road information with road identifiers into finer road sections.
  • the road segment extraction unit 113 partitions the plurality of roads for which the road information was acquired in the previous process P12 into a plurality of further subdivided road segments, and assigns a segment identifier to the road information of each road segment. do.
  • a method of partitioning a plurality of roads into a larger number of road sections is, for example, partitioning road links with a node-to-node distance of 1 km or more into a plurality of road links with a node-to-node distance of less than 1 km, and dividing all road links with a node-to-node distance of less than 1 km
  • a method of setting one road section can be exemplified, but is not particularly limited.
  • FIG. 5 is a diagram showing an example of a plurality of roads in road information with road identifiers R1 to R4 and a plurality of more subdivided road sections.
  • the road assigned the road identifier R1 includes nodes N1 to N4 and is divided into three road sections with section identifiers S11 to S13.
  • the road assigned the road identifier R2 includes nodes N2, N5 and N7 and is divided into two road sections with section identifiers S21 and S22.
  • the road assigned road identifier R3 includes nodes N3, N6 and N8 and is divided into two road sections with section identifiers S31 and S32.
  • the road assigned the road identifier R4 includes nodes N5 and N6 and is partitioned into one road section with the section identifier S41.
  • the server 100 executes a process P14 that associates each road section with each probe information.
  • the probe information analysis unit 111 of the server 100 associates each probe information with each road section generated in the previous process P13 based on the position information included in the probe information 123, for example. . More specifically, the probe information analysis unit 111, for example, gives each piece of probe information a section identifier of a road section corresponding to the position information of each piece of probe information.
  • the server 100 executes processing P15 for analyzing the probe information linked to each road section.
  • the probe information analysis unit 111 of the server 100 analyzes the probe information linked to each road section using the analysis model. More specifically, the probe information analysis unit 111 classifies the probe information of each road section according to items of knowledge information such as the day of the week, time period, weather, etc. Extract features of driving behavior.
  • the server 100 executes a process P16 for setting the information level for the analysis result of the process P15, which is the basis of the knowledge information.
  • the setting unit 117 sets the information level based on the influence of the analysis result of the probe information on the route to the destination of the vehicle 10, the target trajectory, or the behavior or control, and the transmission information based on the information level. Set the transmission timing.
  • FIG. 6 is a detailed flowchart of the process P16 for setting the information level shown in FIG.
  • the setting unit 117 executes the process P161 of acquiring analysis results of probe information of each road section serving as the basis of knowledge information from the probe information analysis unit 111 .
  • the setting unit 117 executes a process P162 of determining whether each analysis result affects the route of the vehicle 10 or not.
  • the setting unit 117 determines that the analysis result of the probe information affects the route from the current location of the vehicle 10 to the destination (YES)
  • the information level of the analysis result is set to 1 in the process P163. to run.
  • the analysis result of the probe information indicates, for example, road closures, traffic jams due to lane restrictions, long waiting times due to railroad crossings with long closing times, etc.
  • the setting unit 117 determines the route of the vehicle 10. determine that it affects
  • the setting unit 117 determines whether the analysis result affects the target trajectory of the vehicle 10.
  • Process P164 is executed. In this process P164, when the setting unit 117 determines that the analysis result of the probe information affects the target trajectory of the vehicle 10 (YES), the process P165 of setting the information level of the knowledge information to 2 is executed.
  • the setting unit 117 determines that the analysis result of the probe information does not require a route change, such as traffic congestion at the exit or merging lane of the expressway, lane change to avoid traffic congestion in the right turn lane when driving on the left side, etc. , determines that the target trajectory is affected when the target trajectory of the vehicle 10 needs to be changed.
  • a route change such as traffic congestion at the exit or merging lane of the expressway, lane change to avoid traffic congestion in the right turn lane when driving on the left side, etc.
  • the setting unit 117 determines in process P164 that the analysis result of the probe information does not affect the target trajectory of the vehicle 10 (NO), it executes process P166 to set the information level of the analysis result to 3.
  • the analysis result of the probe information affects only the behavior or control of the vehicle 10, such as deceleration and suspension parameter changes for safely passing bumps and potholes on the road, the setting unit 117 It is determined that the target trajectory of the vehicle 10 is not affected.
  • the setting unit 117 based on the influence of the analysis results of the probe information of each road section on the route, target trajectory, or behavior or control of the vehicle 10, for example, as shown in Table 1 below: set the information level to That is, the setting unit 117 sets the information levels to 1, 2, and 3, respectively, for example, when the influence range of the analysis result of the probe information is the route, target trajectory, and behavior or control of the vehicle 10 .
  • the setting unit 117 executes process P167 for setting the transmission timing of the transmission information.
  • the setting unit 117 sets the transmission timing of the transmission information based on the information level.
  • the transmission information is information generated by the transmission information generation unit 115 in process P18, which will be described later, and includes knowledge information generated in process P17, which will be described later, based on the analysis result of the probe information.
  • the transmission timing of the transmission information is a time limit at which transmission information including knowledge information should be transmitted in order for each control device 200 to utilize the knowledge information that affects the driving behavior of the vehicle 10 .
  • the transmission information is sent before the vehicle 10 reaches the branch point before the road section where the traffic is closed. must be sent. In this case, the transmission timing of the transmission information is until the vehicle 10 reaches the branch point.
  • the processing P16 shown in FIG. 6 is completed.
  • the server 100 executes a process P17 for generating knowledge information, as shown in FIG.
  • the knowledge information generation unit 114 of the server 100 generates knowledge information that affects the driving behavior of each vehicle 10 for each section identifier of the road section based on the analysis result of the probe information described above.
  • An example of knowledge information generated by the knowledge information generation unit 114 is shown in Table 2 below.
  • the knowledge information includes items such as identifiers (ID), road IDs, section IDs, lanes, levels (Lv.), days of the week, time zones, conditions, locations, and details, for example.
  • Knowledge information IDs are given to individual pieces of knowledge information in order to identify the pieces of knowledge information.
  • a road ID is, for example, a road identifier given to each road link included in the high-definition map information 122 .
  • the section ID is a section identifier assigned when a plurality of roads to which road IDs are assigned are subdivided into a plurality of road sections by the road section extraction unit 113, as described above.
  • the lanes in Table 2 indicate lanes of road sections in which each piece of knowledge information affects the driving behavior of the vehicle 10 .
  • the level indicates the information level of each piece of knowledge information set by the setting unit 117, as described above.
  • the day of the week and time zone indicate the day of the week and time zone to which each piece of knowledge information is applied.
  • the condition, position, and content are respectively the execution condition, execution position, and execution content of the driving behavior that the vehicle 10 should execute based on each piece of knowledge information.
  • Table 2 is an example of knowledge information, and the items of knowledge information are not limited to the examples shown in Table 2.
  • the knowledge information with an ID of 2 in Table 2 is, for example, knowledge information of a road section with a road ID of R1 and a road section with a section ID of S12. It is knowledge information with an information level of 2 that affects it.
  • This knowledge information is generated, for example, based on the analysis result of probe information that road construction is being carried out on lane L1 between 8:00 and 10:00 and between 16:00 and 18:00 on weekdays.
  • This knowledge information indicates, for example, that the vehicle 10 traveling in the lane L1 on the relevant date and time is to be changed to the lane L2 within 10 meters of the road construction sites X1 and Y1.
  • the server 100 executes a process P18 of recording the generated knowledge information, as shown in FIG.
  • the knowledge information generating unit 114 of the server 100 records the knowledge information generated in the above process P17 in the knowledge information database 121 of the storage device 103.
  • FIG. thus, the processing flow P1 of the knowledge information generation processing by the server 100 shown in FIG. 4 ends.
  • the server 100 then distributes the knowledge information to each vehicle 10 .
  • FIG. 7 is a flowchart showing the flow of knowledge information distribution processing by the server 100.
  • the server 100 executes a processing P21 for determining whether or not a request for knowledge information transmitted from the control device 200 of each vehicle 10 has been received.
  • the request for knowledge information transmitted from the control device 200 mounted on each vehicle 10 via the communication device 11 of each vehicle 10 includes, for example, position information of the current location of each vehicle 10, distance from the current location to the destination and the free space of the storage device 13 of each vehicle 10 .
  • process P21 when the transmission information generation unit 115 of the server 100 determines that the request for knowledge information has not been received from each vehicle 10 (NO), it terminates the process flow P2 shown in FIG. After that, the server 100 restarts the processing flow P2 at predetermined intervals.
  • process P21 when the transmission information generation unit 115 determines that the request for knowledge information has been received from the control device 200 of at least one vehicle 10 (YES), it extracts the knowledge information to be transmitted to the vehicle 10.
  • Process P22 is executed.
  • the transmission information generation unit 115 refers to the route information included in the received request for knowledge information. Then, the transmission information generator 115 extracts from the knowledge information database 121 of the storage device 103 the knowledge information corresponding to the section identifier of the road section included in the route to the destination of each vehicle 10 . For example, as shown in Table 2 above, it is assumed that the route information of vehicle 10 referred to by transmission information generation unit 115 includes roads with road IDs R1 and R2. In this case, the transmission information generator 115 extracts the knowledge information of the IDs (1, 2 and 3) including the section IDs (S11, S12 or S21) corresponding to the road IDs (R1 and R2) from the knowledge information database 121. Extract.
  • the server 100 executes the process P23 of determining the presence or absence of the extracted knowledge information.
  • this process P23 for example, when the transmission information generation unit 115 determines that the identification information was not extracted in the previous process P22 (NO), the server 100 terminates the process flow P2 shown in FIG. , the processing flow P2 is resumed at a predetermined cycle.
  • process P23 for example, when transmission information generation unit 115 determines that knowledge information has been extracted in previous process P22 (YES), server 100 transmits knowledge information to control device 200 of vehicle 10.
  • the process P24 to select is executed.
  • the knowledge information transmission unit 116 of the server 100 transmits each piece of knowledge information to the control device 200 of the vehicle 10 concerned, based on the execution condition of each piece of knowledge information extracted in the process P22. Decide whether or not For example, knowledge information transmission unit 116 determines the day of the week and the time zone in which vehicle 10 requesting knowledge information travels in the road section of each section ID, and the day of the week and time period included in the knowledge information extracted from knowledge information database 121. Compare with band (see Table 2). Knowledge information transmission unit 116 selects, for example, knowledge information with matching results as knowledge information to be transmitted to control device 200 of vehicle 10 .
  • the server 100 executes the process P25 of determining the presence or absence of the selected knowledge information.
  • this process P23 for example, if the knowledge information transmitting unit 116 determines that knowledge information was not selected in the previous process P24 (NO), the server 100 terminates the process flow P2 shown in FIG. Processing flow P2 is restarted at a predetermined cycle.
  • process P25 for example, when knowledge information transmission unit 116 determines that knowledge information has been selected in previous process P24 (YES), server 100 transmits the knowledge information to control device 200 of vehicle 10.
  • a process P26 for generating a transmission packet is executed.
  • the transmission information generating unit 115 of the server 100 collects the knowledge information of one or more IDs selected in the process P24 to generate one transmission packet.
  • the route of the vehicle 10 equipped with the control device 200 that requested the knowledge information includes the road with the road ID R1 shown in FIG.
  • the transmission information generation unit 115 generates the knowledge information with the ID of 2 shown in Table 2, extracted in process P22 and selected in process P24, as one transmission packet. Note that when a plurality of pieces of knowledge information are selected in process P24, the transmission information generating unit 115 generates one transmission packet in which the selected pieces of knowledge information are put together.
  • the server 100 executes a process P27 of determining whether or not the amount of information in the transmitted packet is equal to or less than a threshold.
  • the transmission information generator 115 sets, for example, the free space of the storage device 13 of each vehicle 10 included in the knowledge information request received from the control device 200 as a threshold.
  • the server 100 executes the process P28 of transmitting knowledge information. .
  • the knowledge information transmission unit 116 of the server 100 transmits the transmission packet generated by the transmission information generation unit 115 in process P26 to the control device 200 that requested the knowledge information as transmission information.
  • the control device 200 of the vehicle 10 that has received the transmission packet as the transmission information records, for example, the knowledge information included in the transmission information in the knowledge information database 13a of the storage device 13, and utilizes it for controlling the vehicle 10.
  • the server 100 corrects the transmission packet. Execute P29. If the amount of information in the transmission packet exceeds the threshold, the control device 200 of the vehicle 10 that received the transmission packet cannot record the knowledge information in the knowledge information database 13a of the storage device 13, and the knowledge information may not be utilized.
  • the transmission information generation unit 115 of the server 100 divides the transmission packet generated in process P26 for each section ID of the road section included in the knowledge information. Thereby, the transmission information generator 115 generates a transmission packet as transmission information corresponding to the reception conditions of each vehicle 10 .
  • transmission information generation section 115 divides the transmission packets shown in Table 3 into first divided packets with section ID S11 and IDs 1 to 5 and section ID S12 with IDs 6 and 7. and third segmented packets with section ID S13 and IDs 8 and 9.
  • the server 100 executes the aforementioned process P27 again.
  • the transmission information generator 115 determines whether or not the information amount of each fragmented packet is equal to or less than a threshold.
  • the server 100 executes the aforementioned process P28.
  • the knowledge information transmitting unit 116 transmits each divided packet in the order in which the vehicle 10 travels the road section of the section ID included in each divided packet.
  • transmission information generating section 115 determines, for example, that the information amount of the first fragmented packet exceeds the threshold (NO) in process P27, server 100 performs process P29 of correcting the transmission packet again. Execute. In this process P29, the transmission information generation unit 115 further divides the first divided packet into a plurality of sub-divided packets, for example, as shown in Table 4 below.
  • the transmission information generation unit 115 re-divides the first divided packet containing a plurality of knowledge information IDs into three sub-divided packets each containing two or less knowledge information IDs.
  • the transmission information generator 115 assigns new section IDs (S111, S112, and S113) to the road sections of each subdivided packet.
  • each sub-divided packet can be rearranged in the order in which the vehicle 10 travels on each road section.
  • the server 100 executes the aforementioned process P27 again.
  • the transmission information generator 115 determines that the information amount of each sub-divided packet is equal to or less than the threshold (YES)
  • the server 100 executes the above-described process P28.
  • the knowledge information transmitting unit 116 transmits each sub-divided packet and each divided packet to the control device 200 of the vehicle 10 in the order in which the vehicle 10 travels through each road section.
  • the knowledge information transmitting unit 116 transmits, for example, subdivided packets or divided packets one by one.
  • Knowledge information transmitting section 116 for example, transmits the next sub-divided packet or sub-packet after control by control device 200 based on the knowledge information contained in the transmitted sub-divided packet or sub-packet ends.
  • the server 100 terminates the processing flow P2 shown in FIG. 7 and repeatedly executes the processing flow P2 at a predetermined cycle.
  • FIG. 8 is a flow chart showing the flow of automatic driving processing by the control device 200 mounted on each vehicle 10 shown in FIG.
  • Control device 200 mounted on each vehicle 10 starts processing flow P3 shown in FIG. 8, for example, when a new destination for each vehicle 10 is set.
  • An occupant or administrator of each vehicle 10 sets the destination of the vehicle 10 to the control device 200 via, for example, an input device mounted on the vehicle 10 or an information terminal carried by the occupant or administrator.
  • the control device 200 executes processing P31 for planning a route from the current location of the vehicle 10 to the destination.
  • the route generating unit 201 of the control device 200 generates a route based on the road information including the road identifier of each road constituting the road network and the position information of the current location and the destination of the vehicle 10, as described above. to generate route information from the current location to the destination.
  • the control device 200 executes the process P32 of requesting knowledge information.
  • the information transmission/reception unit 203 of the control device 200 transmits a request for knowledge information to the server 100 via the communication device 11 .
  • the request for knowledge information includes, for example, the position information of the current location of each vehicle 10, the route information from the current location to the destination, and the free space of the storage device 13 of each vehicle 10.
  • control device 200 executes the process P33 of determining whether knowledge information has been received.
  • process P33 for example, when information transmitter/receiver 203 determines that knowledge information has not been received (NO), control device 200 executes process P37 for generating a target trajectory.
  • the target trajectory generator 204 generates the target trajectory of the vehicle 10 on each road based on the route information generated in the process P31.
  • the control device 200 executes the process P34 of storing the knowledge information.
  • the recording unit 202 records the received knowledge information in the knowledge information database 13a of the storage device 13.
  • the control device 200 executes a process P35 of acquiring knowledge information and a process P36 of determining whether or not the range of influence of the acquired knowledge information is a route.
  • the target trajectory generation unit 204 acquires knowledge information of each road section along which the vehicle 10 is scheduled to travel from the knowledge information database 13a of the storage device 13 based on the route information of the vehicle 10. . Furthermore, in process P36, for example, the target trajectory generation unit 204 determines whether or not the range of influence of the knowledge information is a route based on the information level of the acquired knowledge information.
  • process P36 if the information level of the knowledge information for any road section on the route is 1, the target trajectory generation unit 204 determines that the range of influence of the knowledge information is in the route planning stage (YES). do. In this case, the control device 200 executes the route planning process P31 again, and the route generation unit 201 generates a route that does not include the road section corresponding to the knowledge information with the information level of 1. FIG. On the other hand, in process P36, if the information level of the knowledge information for all road sections on the route is not 1, the target trajectory generation unit 204 determines that the range of influence of each knowledge information is not the route (NO). do.
  • the control device 200 executes a process P37 for generating the target trajectory of the vehicle 10.
  • the target trajectory generation unit 204 determines that the road section in which the information level of the knowledge information is 3, that is, the road section in which the range of influence of the knowledge information is the behavior or control of the vehicle 10, is generated in the above-described process P31.
  • a target trajectory is generated based on the obtained route information.
  • the target trajectory generation unit 204 generates the target trajectory based on the content of the knowledge information in the road section where the information level of the knowledge information is 2, that is, in the road section where the range of influence of the knowledge information is the target trajectory. to generate
  • FIG. 9 is a plan view showing an example of generation of the target trajectory T1 by the target trajectory generation unit 204 based on the content of the knowledge information.
  • the dashed line represents the target trajectory T0 of the vehicle 10 when the knowledge information is not used
  • the solid line represents the target trajectory T1 based on the contents of the knowledge information.
  • the knowledge information with an ID of 2 shown in Table 2 above is the knowledge information of a two-lane road section with a section ID of S12 shown in FIG. In this road section, from 8:00 to 10:00 and from 16:00 to 18:00 on weekdays, road construction CS is being carried out in a predetermined range from positions X1 and Y1 of lane L1.
  • road construction CS is being carried out in a predetermined range from positions X1 and Y1 of lane L1.
  • the vehicle travels in the lane L1 of this road section.
  • the target trajectory generation unit 204 determines the vehicle 10 traveling in the lane L1 to be the point where the road construction CS is being performed, based on the knowledge information of the road section whose section ID is S12 in Table 2. 10 m before X1 and Y1, a target trajectory T1 for changing lanes to the adjacent lane L2 is generated. As a result, compared to the case where the vehicle 10 changes lanes after the road construction CS is detected by the sensor 12 of the vehicle 10, the vehicle 10 can be smoothly run while avoiding sudden deceleration and sudden course changes. be possible.
  • control device 200 executes a process P38 for controlling the traveling of the vehicle 10.
  • travel control unit 205 generates, for example, an operation command for causing vehicle 10 to travel along target trajectory T1, and outputs it to drive command unit 206.
  • FIG. Drive command unit 206 operates the actuators of each part of vehicle 10 based on the operation command input from travel control unit 205 .
  • the drive command unit 206 can control the accelerator, brake, steering, transmission, etc. of the vehicle 10 to autonomously drive the vehicle 10 along the target trajectory T1.
  • the travel control unit 205 instructs the occupant of the vehicle 10 via the user interface to change lanes to avoid road construction. ” may be notified regarding knowledge information.
  • the control device 200 executes a process P39 of determining whether or not the vehicle 10 has arrived at the destination.
  • the travel control unit 205 determines whether or not the vehicle 10 has arrived at the destination based on the position information of the vehicle 10 acquired from the sensor 12 .
  • the control device 200 repeats the processing P38 and the processing P39 until the vehicle 10 reaches the destination, and terminates the processing flow P3 shown in FIG. 8 when the vehicle 10 reaches the destination.
  • sensors mounted on automobiles may not be able to detect objects and events that affect the driving behavior of the automobile, depending on the shape of the road on which they are traveling and obstacles in the surroundings.
  • the conventional server described in the above-mentioned Patent Document 1 provides road link information in which the driving support mode implemented by the driving support device of each vehicle is linked to the road link data.
  • road link information linked to road link data is insufficient for use in target trajectory planning and control planning for self-driving vehicles, which require more detailed information.
  • the amount of information held by the autonomous vehicle may become excessive.
  • the server 100 of this embodiment includes the probe information analysis unit 111, the road information acquisition unit 112, the road section extraction unit 113, the knowledge information generation unit 114, and the transmission information generation unit 115 as described above. and a knowledge information transmission unit 116 .
  • the probe information analysis unit 111 analyzes probe information acquired from multiple vehicles 10 .
  • the road information acquisition unit 112 acquires road information including the road identifiers of the roads that make up the road network.
  • the road section extracting unit 113 divides a plurality of roads into a plurality of road sections, and assigns a section identifier to the road information of each road section.
  • the knowledge information generation unit 114 generates knowledge information that affects the driving behavior of each vehicle 10 for each section identifier based on the analysis result of the probe information.
  • the transmission information generation unit 115 extracts knowledge information corresponding to the section identifier of the road section included in the route to the destination of each vehicle 10 and generates transmission information corresponding to the reception conditions of each vehicle 10 .
  • the knowledge information transmission unit 116 transmits transmission information to each vehicle 10 .
  • control device 200 of the present embodiment is mounted on the vehicle 10 as described above, and includes a route generation unit 201, a recording unit 202, an information transmission/reception unit 203, a target locus generation unit 204, and a travel control unit 205.
  • the route generation unit 201 generates route information from the current location to the destination based on road information including the road identifiers of the roads that make up the road network and position information on the current location of the vehicle 10 and the destination.
  • the recording unit 202 records probe information based on the detection result of the sensor 12 that detects driving behavior of the vehicle 10 .
  • the information transmitter/receiver 203 transmits route information and probe information to the server 100 via the communication device 11 mounted on the vehicle 10 and receives knowledge information that affects driving behavior from the server 100 .
  • the target trajectory generator 204 generates a target trajectory for the vehicle 10 in each of a plurality of road sections obtained by subdividing a plurality of roads based on road information, route information, and knowledge information.
  • the traveling control unit 205 causes the vehicle 10 to travel along the target locus.
  • the automatic driving support system 300 of this embodiment includes the aforementioned server 100 and a plurality of control devices 200 mounted on a plurality of vehicles 10 .
  • the server 100 of the present embodiment can collect and analyze probe information based on the detection results of the sensors 12 mounted on the multiple vehicles 10 from the multiple control devices 200 . Furthermore, the server 100 generates knowledge information that affects the driving behavior of the vehicle 10 based on the analysis results of the probe information, and for each of a plurality of road sections obtained by subdividing the plurality of roads that make up the road network, Each piece of knowledge information can be associated with it. Further, the server 100 generates transmission information including knowledge information for each road section included in the route of the vehicle 10 in correspondence with the reception conditions of the vehicle 10 such as the free space of the storage device 103, and transmits the transmission information to the vehicle 10. . Therefore, according to the server 100 and the automatic driving support system 300 of the present embodiment, each control device 200 can be provided with detailed and appropriate amount of knowledge information that can be used for target trajectory planning and control planning of the vehicle 10. can be done.
  • the automatic driving of the vehicle 10 can be performed more efficiently, safely, and comfortably based on knowledge information for each of a plurality of road sections obtained by subdividing a plurality of roads that constitute the road network.
  • the server 100, the control device 200, and the automatic driving support system 300 of the present embodiment by using the knowledge information for each road section, the sensor 12 mounted on the vehicle 10 cannot detect, and the vehicle 10 able to respond appropriately to objects and events that affect their driving behavior. Therefore, according to the server 100, the control device 200, and the automatic driving support system 300 of the present embodiment, the route and target trajectory of the vehicle 10 can be planned more efficiently, safely, and comfortably than the conventional server. More efficient, safer, and more comfortable automatic driving of the vehicle 10 can be realized.
  • the server 100 of the present embodiment further includes the setting unit 117 as described above. and the transmission timing of the transmission information based on the information level.
  • the server 100 of the present embodiment knowledge information that affects the driving behavior of a vehicle can be given an information level based on its range of influence.
  • the server 100 can transmit the transmission information including the knowledge information to the vehicle 10 at appropriate transmission timing according to the route of the vehicle 10, the target trajectory, or the influence on the behavior or control.
  • the server 100 that provides an appropriate amount of knowledge information that can be used for route planning, target trajectory planning, and control planning for an autonomous vehicle, and receives the knowledge information. It is possible to provide a control device 200 that controls the vehicle 10 by doing so, and an automatic driving support system 300 that includes the server 100 and the control device 200 .
  • Embodiment 2 of the server, control device, and automatic driving support system according to the present disclosure will be described with reference to FIGS. 1 to 6 and FIGS.
  • the configurations of the server 100, the control device 200, and the automatic driving support system 300 of this embodiment are the same as the configurations of the server 100, the control device 200, and the automatic driving support system 300 of the first embodiment.
  • the same reference numerals are assigned to the parts, and the description thereof is omitted.
  • the processing by the knowledge information transmission unit 116 of the server 100 is mainly performed by the server 100, the control device 200, and the automatic driving support system of the first embodiment. It differs from system 300 .
  • the knowledge information transmitting unit 116 sequentially transmits transmission information corresponding to road sections included in a predetermined range in front of the vehicle 10 based on the position information of each vehicle 10 included in the probe information.
  • FIG. 10 is a flow diagram showing the flow of knowledge information distribution processing by the server 100 of this embodiment.
  • the server 100 executes processing P41 of acquiring probe information based on the detection result of the sensor 12 from the control device 200 mounted on each vehicle 10 .
  • the probe information analysis unit 111 of the server 100 receives the probe information transmitted from the control device 200 and stores it in the storage device 103.
  • FIG. 10 is a flow diagram showing the flow of knowledge information distribution processing by the server 100 of this embodiment.
  • the server 100 executes a process P42 for extracting road sections and a process P43 for extracting knowledge information.
  • the road section extracting unit 113 of the server 100 determines whether the vehicle 10 is about to travel based on the route to the destination of the vehicle 10 acquired from the control device 200 and the position information of the vehicle 10 included in the probe information. Extract the road section that Also, in process P43, the knowledge information generation unit 114 extracts from the knowledge information database 121 of the storage device 103 the knowledge information corresponding to the road section extracted in the previous process P42.
  • the server 100 executes the process P44 of determining the presence or absence of the extracted knowledge information.
  • this process P44 for example, when the transmission information generation unit 115 determines that the identification information was not extracted in the previous process P43 (NO), the server 100 terminates the process flow P4 shown in FIG. , the processing flow P4 is restarted at a predetermined cycle.
  • process P44 for example, when transmission information generation unit 115 determines that knowledge information has been extracted in previous process P43 (YES), server 100 transmits knowledge information to control device 200 of vehicle 10. The process P45 to select is performed.
  • the knowledge information transmitting unit 116 of the server 100 for example, similar to the process P24 of the first embodiment, based on the execution condition of each knowledge information extracted in the process 43, the control device 200 of the vehicle 10 Select the knowledge information to send to.
  • the server 100 executes the process P46 of determining the presence or absence of the selected knowledge information.
  • this process P46 for example, if the knowledge information transmitting unit 116 determines that knowledge information was not selected in the previous process P45 (NO), the server 100 terminates the process flow P4 shown in FIG. Processing flow P4 is resumed at a predetermined cycle.
  • process P46 for example, when knowledge information transmitting unit 116 determines that knowledge information has been selected in previous process P45 (YES), server 100 transmits the knowledge information to control device 200 of vehicle 10.
  • Process P47 for formulating a transmission plan is executed.
  • the knowledge information transmission unit 116 of the server 100 formulates a transmission plan of transmission information so that the amount of knowledge information held by the control device 200 of the vehicle 10 is as small as possible. Specifically, for example, the knowledge information transmitting unit 116 sequentially transmits transmission information corresponding to road sections included in a predetermined range in front of the vehicle 10 based on the position information of each vehicle 10 included in the probe information. do.
  • the setting unit 117 may set the transmission timing of the transmission information based on the information level.
  • the knowledge information transmitting section 116 sequentially transmits the transmission information according to the set transmission timing. That is, the knowledge information transmitting unit 116 specifies, for example, that the stage of the automatic driving process in each vehicle 10 is any stage of route planning, target trajectory planning, or behavior or control planning of the vehicle 10. , the transmission information including the knowledge information used in the identified automated driving process stages may be transmitted to each vehicle 10 in turn.
  • the knowledge information generation unit 114 adds a transmission deadline to the items of knowledge information shown in Table 2 described in the first embodiment, for example.
  • the deadline for sending knowledge information with an ID of 1 shown in Table 2 is, for example, a road connected to the road with the road ID of R1 so that the route can be smoothly changed to a route that does not include the road with the road ID of R1 that is closed to traffic. It is set 100 m before the last branch point of the road with ID R0.
  • the server 100 executes the process P48 of transmitting knowledge information.
  • the knowledge information transmission unit 116 refers to the position information based on the probe information acquired from the vehicle 10, and if the position information matches the transmission plan formulated in the previous process P47, The transmission information including the knowledge information based thereon is transmitted to the control device 200 of the vehicle 10 .
  • the server 100 terminates the processing flow P4 shown in FIG. 10 and repeatedly executes the processing flow P4 at a predetermined cycle.
  • FIG. 11 is a flow chart showing the flow of automatic driving processing of the vehicle 10 by the control device 200 of this embodiment.
  • the control device 200 mounted on each vehicle 10 starts the processing flow P5 shown in FIG. , a process P51 for planning a route is executed.
  • the route generation unit 201 of the control device 200 generates route information from the current location to the destination, as in the first embodiment described above.
  • control device 200 executes a process P52 for generating the target trajectory of the vehicle 10 and a process P53 for controlling the running of the vehicle 10 .
  • the target trajectory generator 204 generates a target trajectory of the vehicle 10 for the route of the vehicle 10 planned in the previous process P51.
  • travel control unit 205 generates, for example, an operation command for causing vehicle 10 to travel along target trajectory T1, and outputs it to drive command unit 206.
  • the drive command unit 206 operates the actuators of each part of the vehicle 10 based on the operation commands input from the travel control unit 205 . Accordingly, drive command unit 206 can control the accelerator, brake, steering, transmission, and the like of vehicle 10 to autonomously drive vehicle 10 along the target trajectory.
  • the control device 200 executes a process P54 of transmitting probe information and a process P55 of acquiring knowledge information.
  • the information transmitting/receiving unit 203 transmits the probe information 13 c detected by the sensor 12 and recorded in the storage device 13 by the recording unit 202 to the server 100 via the communication device 11 .
  • the information transmitting/receiving unit 203 receives transmission information sequentially transmitted from the server 100 at appropriate transmission timing via the communication device 11, acquires knowledge information included in the transmission information, and stores it. It is recorded in the knowledge information database 13a of the device 13.
  • the control device 200 determines whether or not the knowledge information acquired in the previous process P55 affects the route of the vehicle 10, i.e., whether or not the information level of the knowledge information is 1 (process P56). to run.
  • the control device 200 executes the process P51 of planning the route again.
  • the route generation unit 201 of the control device 200 generates new route information for the vehicle 10 based on the road information in the high-precision map information 13b, the current location and destination of the vehicle 10, and knowledge information.
  • the driving control unit 205 determines in the process P56 that the information level of the knowledge information is not 1 (NO)
  • the control device 200 performs the process P57 of determining whether or not the vehicle 10 has arrived at the destination. Execute.
  • the travel control unit 205 determines whether or not the vehicle 10 has arrived at the destination based on the position information of the vehicle 10 acquired from the sensor 12. Control device 200 repeats processing P52 to processing P57 until vehicle 10 arrives at the destination, and terminates processing flow P5 shown in FIG. 11 when vehicle 10 arrives at the destination.
  • FIG. 12 is a plan view showing an example of generation of the target trajectory T1 by the target trajectory generation unit 204 of this embodiment.
  • the control device 200 of the present embodiment can generate the target trajectory T1 reflecting the knowledge information included in the transmission information.
  • the knowledge information with an ID of 3 shown in Table 2 above is the knowledge information of a one-lane road section with a section ID of S21 shown in FIG.
  • bumps B for reducing the speed of the vehicle 10 are provided at positions X2 and Y2 of the lane L1 all day every day, and the vehicle 10 runs on the lane L1 of this road section.
  • the target trajectory generation unit 204 determines the vehicle 10 traveling in the lane L1 at a speed of 9 km/h or more in this road section based on the knowledge information of the road section with the section ID of S21 in Table 2.
  • a target trajectory T1 is generated 5 m before the points X2 and Y2 where the vehicle is moving slowly.
  • the knowledge information transmission unit 116 based on the position information of each vehicle 10 included in the probe information, moves to a road section included in a predetermined range in front of the vehicle 10.
  • the corresponding transmission information is transmitted sequentially.
  • the knowledge information transmission unit 116 determines whether the stage of the automatic driving process in each vehicle 10 is route planning, target trajectory planning, or behavior or control planning of the vehicle 10. to be specified. Further, the knowledge information transmission unit 116 transmits transmission information including knowledge information used in the specified stage of the automated driving process to each vehicle 10 . With such a configuration as well, it is possible to provide detailed knowledge information required for safe and comfortable automatic driving of the vehicle 10 with the minimum required amount of information when the vehicle 10 needs it.
  • the server 100 that provides an appropriate amount of knowledge information that can be used for route planning, target trajectory planning, and control planning for an autonomous vehicle, and receives the knowledge information. It is possible to provide a control device 200 that controls the vehicle 10 by doing so, and an automatic driving support system 300 that includes the server 100 and the control device 200 .
  • the processing of the road section extraction unit 113 of the server 100 is mainly performed by the server 100, the control device 200, and the automatic driving support system of the first embodiment. It differs from system 300 .
  • Other configurations of the server 100, the control device 200, and the automatic driving support system 300 of this embodiment are the same as the configurations of the server 100, the control device 200, and the automatic driving support system 300 of the first embodiment.
  • the same reference numerals are assigned to the same parts, and the description thereof is omitted.
  • the server 100 includes, for example, the environment information acquisition unit 118 shown in FIG.
  • the environment information acquisition unit 118 acquires environment information about the external environment of each road included in the planned route of each vehicle 10 .
  • environmental information includes, for example, information on weather, temperature, and humidity.
  • the environment information may also include, for example, information about the network connection environment.
  • the environment information acquisition unit 118 acquires environment information from outside the server 100 via, for example, the Internet line INET.
  • FIG. 13 is a flow diagram showing the flow of knowledge information distribution processing by the server 100 of this embodiment.
  • the server 100 executes a processing P61 of acquiring route information to the destination of each vehicle 10 from the control device 200 mounted on each vehicle 10 .
  • the road segment extraction unit 113 of the server 100 acquires route information including road identifiers, segment identifiers, and nodes from the control device 200 mounted on each vehicle 10 .
  • the server 100 executes the process P62 of acquiring probe information.
  • the probe information analysis unit 111 of the server 100 acquires probe information based on the detection result of the sensor 12 from the control device 200 mounted on each vehicle 10 .
  • the probe information includes, for example, travel information of the vehicle 10 such as position, speed, acceleration, angular velocity, and angular acceleration.
  • the server 100 executes a process P63 for acquiring environmental information and a process P64 for acquiring road geometry.
  • the environment information acquisition unit 118 of the server 100 acquires environment information related to the external environment of the road included in the route information acquired by the road segment extraction unit 113 in process P61.
  • the road information acquisition unit 112 of the server 100 acquires from the high definition map information 122 the road shape of the road included in the route information acquired by the road segment extraction unit 113 in process P61.
  • the road shape includes road-related attributes such as road gradient, curve, presence/absence of tunnels, and the like.
  • the server 100 executes processing P65 for correcting the road section.
  • the road section extraction unit 113 of the server 100 extracts travel information of each vehicle 10 based on the probe information, environment information of each road on which each vehicle 10 travels, The length of the road section is set based on the road shape included in the road information of each road on which the vehicle travels.
  • knowledge information can be transmitted to the vehicle 10 at appropriate timing.
  • the length of the road section is lengthened so that more knowledge information can be transmitted to the vehicle 10 .
  • a plurality of road sections in which there are many tunnels and it is difficult for the control device 200 of the vehicle 10 to connect to the network may be treated as one road section and the knowledge information may be transmitted in advance.
  • the server 100 executes the process P66 of determining whether or not the information amount of the transmission information is equal to or less than the threshold.
  • the transmission information generation unit 115 of the server 100 generates the knowledge information for each road section corrected in the previous process P65 as one transmission packet.
  • the knowledge information transmission unit 116 of the server 100 determines whether or not the information amount of each transmission packet is equal to or less than the threshold.
  • the server 100 repeats the process P66 to reduce the amount of information in the transmitted packet.
  • the server 100 formulates a transmission plan in the same manner as the processes P47 and P48 of the second embodiment described above. Processing P67 and processing P68 for transmitting knowledge information are executed, and the processing flow P6 shown in FIG. 13 is terminated.
  • the server 100 of the present embodiment further includes the environment information acquisition unit 118 that acquires environment information about the external environment of each road included in the planned route of each vehicle 10 . Further, the road segment extraction unit 113 extracts travel information of each vehicle 10 based on the probe information, environment information of each road on which each vehicle 10 travels, and road information of each road on which each vehicle 10 travels. Set the length of the road section based on the road geometry included in .
  • the server 100 of the present embodiment not only can the same effects as the server 100 of the first embodiment described above be obtained, but also the travel information of the vehicle 10, the environment information of the road, and the shape of the road can be obtained. A decrease in reliability due to influence can be suppressed. Therefore, according to this embodiment, the server 100 that provides an appropriate amount of knowledge information that can be used for route planning, target trajectory planning, and control planning for an autonomous vehicle, and the vehicle 10 that receives the knowledge information and an automatic driving support system 300 including the server 100 and the control device 200 can be provided.

Abstract

The present disclosure provides a server that provides an appropriate information amount of knowledge information that can be used for route planning, target path planning, and control planning for self-driving vehicles. A server 100 comprises a probe information analysis unit 111, a road information acquisition unit 112, a road section extraction unit 113, a knowledge information generation unit 114, a transmission information generation unit 115, and a knowledge information transmission unit 116. The probe information analysis unit 111 analyzes probe information acquired from a plurality of vehicles 10. The road information acquisition unit 112 acquires road information including road identifiers for respective roads. The road section extraction unit 113 divides the plurality of roads into a subdivided plurality of road sections and assigns section identifiers to the road information on respective road sections. The knowledge information generation unit 114 generates knowledge information which influences a driving behavior of each of the vehicles 10 for each road identifier on the basis of a result of the analysis of the probe information. The transmission information generation unit 115 extracts the knowledge information corresponding to the section identifiers of road sections included in a route to a destination of each of the vehicles 10 and generates transmission information corresponding to reception conditions of each of the vehicles 10. The knowledge information transmission unit 116 transmits the transmission information to each of the vehicles 10.

Description

サーバ、制御装置、および自動運転支援システムServers, control devices, and automated driving support systems
 本開示は、サーバ、制御装置、および自動運転支援システムに関する。 The present disclosure relates to servers, control devices, and automatic driving support systems.
 従来からどの道路でどのような支援態様の運転支援が実施可能なのかを適切に把握することが可能なサーバに関する発明が知られている。たとえば、下記特許文献1は、支援態様取得部と、道路リンク情報生成部と、情報提供部とを備えるサーバを開示している(特許文献1、要約、第0008段落および請求項1等)。 Conventionally, there have been known inventions related to servers that are capable of appropriately ascertaining what types of driving assistance can be implemented on which roads. For example, Patent Literature 1 below discloses a server that includes a support mode acquisition section, a road link information generation section, and an information provision section (Patent Literature 1, abstract, paragraph 0008, claim 1, etc.).
 上記支援態様取得部は、各車両の運転支援装置が実施した運転支援の道路リンク毎の支援態様を、各車両から通信で取得する。上記道路リンク情報生成部は、前記支援態様を道路リンクのデータに道路リンク毎に紐づけた道路リンク情報を生成する。上記情報提供部は、前記道路リンク情報生成部が生成した道路リンク情報を情報提供先に提供する。 The support mode acquisition unit acquires, from each vehicle, the support mode for each road link of the driving support implemented by the driving support device of each vehicle. The road link information generation unit generates road link information in which the support mode is linked to road link data for each road link. The information providing unit provides the road link information generated by the road link information generating unit to the information providing destination.
 この従来のサーバによれば、各車両の運転支援装置が実施した運転支援の支援態様を道路リンクのデータに紐づけた道路リンク情報が上記情報提供先に提供される。したがって、上記情報提供先は、どの道路でどのような支援態様の運転支援が実施可能なのかを適切に把握できる(特許文献1、第0009段落等)。 According to this conventional server, road link information is provided to the information providing destination by linking the driving support mode of driving support implemented by the driving support device of each vehicle to the road link data. Therefore, the information providing destination can appropriately grasp what type of driving assistance can be performed on which road (Patent Document 1, paragraph 0009, etc.).
特開2017-191516号公報JP 2017-191516 A
 上記従来のサーバによって生成された道路リンク情報は、自動運転車の経路計画に利用することはできるが、より詳細な情報を必要とする自動運転車の目標軌跡計画や制御計画に利用するには不十分である。また、自動運転車の経路計画で計画された予定経路に対応するすべての道路リンク情報が提供されると、自動運転車で保持する情報量が過大になるおそれがある。 The road link information generated by the above-mentioned conventional server can be used for route planning of an autonomous vehicle, but it cannot be used for target trajectory planning and control planning for an autonomous vehicle that require more detailed information. Inadequate. In addition, if all the road link information corresponding to the scheduled route planned in the route planning of the autonomous vehicle is provided, the amount of information held by the autonomous vehicle may become excessive.
 本開示は、自動運転車の経路計画、目標軌跡計画、および制御計画に利用可能な適切な情報量の知識情報を提供するサーバと、その知識情報を受信して車両を制御する制御装置と、これらのサーバおよび制御装置を含む自動運転支援システムを提供する。 The present disclosure includes a server that provides an appropriate amount of knowledge information that can be used for route planning, target trajectory planning, and control planning of an automatic driving vehicle, a control device that receives the knowledge information and controls the vehicle, We provide an automatic driving support system that includes these servers and control devices.
 本開示の一態様は、複数の車両から取得されるプローブ情報を解析するプローブ情報解析部と、道路網を構成する各々の道路の道路識別子を含む道路情報を取得する道路情報取得部と、複数の前記道路をより細分化した複数の道路区間に区画し、各々の前記道路区間の前記道路情報に区間識別子を付与する道路区間抽出部と、前記プローブ情報の解析結果に基いて前記区間識別子ごとに各々の前記車両の運転行動に影響を与える知識情報を生成する知識情報生成部と、各々の前記車両の目的地までの経路に含まれる前記道路区間の前記区間識別子に対応する前記知識情報を抽出して各々の前記車両の受信条件に対応する送信情報を生成する送信情報生成部と、前記送信情報を各々の前記車両へ送信する知識情報送信部と、を備えるサーバである。 One aspect of the present disclosure is a probe information analysis unit that analyzes probe information acquired from a plurality of vehicles, a road information acquisition unit that acquires road information including a road identifier of each road that constitutes a road network, and a plurality of A road section extracting unit that divides the road into a plurality of more subdivided road sections and assigns a section identifier to the road information of each of the road sections, and for each section identifier based on the analysis result of the probe information a knowledge information generating unit for generating knowledge information that affects the driving behavior of each of the vehicles; and the knowledge information corresponding to the section identifier of the road section included in the route to the destination of each of the vehicles. The server includes a transmission information generation unit that extracts and generates transmission information corresponding to the reception conditions of each of the vehicles, and a knowledge information transmission unit that transmits the transmission information to each of the vehicles.
 本開示の上記一態様によれば、自動運転車の経路計画、目標軌跡計画、および制御計画に利用可能な適切な情報量の知識情報を提供するサーバを提供することができる。 According to the above aspect of the present disclosure, it is possible to provide a server that provides an appropriate amount of knowledge information that can be used for route planning, target trajectory planning, and control planning for an autonomous vehicle.
本開示に係る自動運転支援システムの実施形態1を示す模式的な構成図。1 is a schematic configuration diagram showing Embodiment 1 of an automatic driving support system according to the present disclosure; FIG. 図1の自動運転支援システムを構成するサーバの機能ブロック図。FIG. 2 is a functional block diagram of a server that configures the automatic driving support system in FIG. 1; 図1の自動運転支援システムを構成する制御装置の機能ブロック図。FIG. 2 is a functional block diagram of a control device that configures the automatic driving support system in FIG. 1; 図2のサーバによる知識情報生成処理の流れを説明するフロー図。FIG. 3 is a flowchart for explaining the flow of knowledge information generation processing by the server of FIG. 2; 図2のサーバの道路区間抽出部によって区画された複数の道路区間の一例。An example of a plurality of road sections partitioned by the road section extraction unit of the server of FIG. 2 . 図2のサーバによる図4の情報レベルを設定する処理の詳細なフロー図。FIG. 5 is a detailed flow diagram of the process of setting the information level of FIG. 4 by the server of FIG. 2; 図2のサーバによる知識情報配信処理の流れを示すフロー図。FIG. 3 is a flowchart showing the flow of knowledge information delivery processing by the server of FIG. 2; 図3の制御装置による自動運転処理の流れを示すフロー図。FIG. 4 is a flowchart showing the flow of automatic driving processing by the control device of FIG. 3; 図3の制御装置の目標軌跡生成部による目標軌跡の生成例を示す平面図。FIG. 4 is a plan view showing an example of target trajectory generation by a target trajectory generation unit of the control device of FIG. 3 ; 実施形態2のサーバによる知識情報配信処理の流れを示すフロー図。FIG. 11 is a flowchart showing the flow of knowledge information distribution processing by the server of the second embodiment; 実施形態2の制御装置による自動運転処理の流れを示すフロー図。FIG. 10 is a flow chart showing the flow of automatic driving processing by the control device of the second embodiment; 実施形態2の目標軌跡生成部による目標軌跡の生成例を示す平面図。FIG. 11 is a plan view showing an example of target trajectory generation by a target trajectory generation unit according to the second embodiment; 実施形態3のサーバによる知識情報配信処理の流れを示すフロー図FIG. 11 is a flowchart showing the flow of knowledge information distribution processing by the server of the third embodiment; FIG.
 以下、図面を参照して本開示に係るサーバ、制御装置、および自動運転支援システムの実施形態を説明する。 Embodiments of a server, a control device, and an automatic driving support system according to the present disclosure will be described below with reference to the drawings.
[実施形態1]
 図1は、本開示に係る自動運転支援システムの実施形態1を示す模式的な構成図である。本実施形態の自動運転支援システム300は、サーバ100と、複数の車両10に搭載された複数の制御装置200とを備えている。サーバ100と各々の制御装置200は、たとえば、有線通信回線および無線通信回線を介して情報通信可能に接続されている。より具体的には、サーバ100と各々の制御装置200は、たとえば、インターネット回線INET、無線基地局WBS、および車両10に搭載された通信装置11を介して情報通信可能に接続されている。
[Embodiment 1]
FIG. 1 is a schematic configuration diagram showing Embodiment 1 of an automatic driving support system according to the present disclosure. An automatic driving support system 300 of this embodiment includes a server 100 and a plurality of control devices 200 mounted on a plurality of vehicles 10 . The server 100 and each control device 200 are connected so as to be able to communicate information via, for example, a wired communication line and a wireless communication line. More specifically, the server 100 and each control device 200 are connected for information communication via the Internet line INET, the wireless base station WBS, and the communication device 11 mounted on the vehicle 10, for example.
 サーバ100は、たとえば、中央処理装置(CPU)101、ROMやRAMなどのメモリ102、フラッシュメモリやハードディスクなどの不揮発性の記憶装置103、および入出力部104を備え、インターネット回線INETなどのネットワークに接続されたコンピュータである。サーバ100は、たとえば、一つまたは複数のコンピュータによって構成することができる。また、サーバ100は、たとえば、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)によって構成してもよく、CPUとメモリとFPGAとの組み合わせによって構成してもよい。 The server 100 includes, for example, a central processing unit (CPU) 101, a memory 102 such as ROM and RAM, a non-volatile storage device 103 such as flash memory and hard disk, and an input/output unit 104. A connected computer. Server 100 can be configured by, for example, one or more computers. Moreover, the server 100 may be configured by, for example, an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit), or may be configured by a combination of a CPU, a memory, and an FPGA.
 各々の車両10は、たとえば、制御装置200によって制御されて自律的に走行する自動運転車である。各々の車両10は、たとえば、ガソリンエンジン車、ディーゼルエンジン車、ハイブリッド車、電気自動車、または燃料電池車などの自動車であり、制御装置200と、通信装置11と、センサ12と、記憶装置13とを備えている。 Each vehicle 10 is, for example, a self-driving car that is controlled by the control device 200 and runs autonomously. Each vehicle 10 is, for example, an automobile such as a gasoline engine vehicle, a diesel engine vehicle, a hybrid vehicle, an electric vehicle, or a fuel cell vehicle, and includes a control device 200, a communication device 11, a sensor 12, a storage device 13, and a It has
 制御装置200は、たとえば、CPU、メモリ、タイマ、および入出力部を備えた一つ以上のマイクロコントローラによって構成されている。また、制御装置200は、たとえば、FPGAやASICによって構成してもよく、CPUとメモリとFPGAとの組み合わせによって構成してもよい。記憶装置13は、たとえば、フラッシュメモリやハードディスクなどの不揮発性の記憶装置である。 The control device 200 is composed of, for example, one or more microcontrollers having a CPU, a memory, a timer, and an input/output unit. Further, the control device 200 may be configured by, for example, an FPGA or ASIC, or may be configured by a combination of a CPU, a memory, and an FPGA. The storage device 13 is, for example, a non-volatile storage device such as flash memory or hard disk.
 車両10の通信装置11は、たとえば、制御装置200に情報通信可能に接続され、無線基地局WBSや路側通信装置との無線通信を行う無線通信機である。通信装置11は、たとえば、3G、4G、または5Gなどの通信規格に対応する。通信装置11は、たとえば、無線通信回線を介して無線通信機を備えたサーバ100に直接的に接続されてもよく、無線通信回線、無線基地局WBS、およびインターネット回線INETを介してサーバ100に間接的に接続されてもよい。 The communication device 11 of the vehicle 10 is, for example, a wireless communication device that is connected to the control device 200 so as to be able to communicate information, and performs wireless communication with the wireless base station WBS and the roadside communication device. The communication device 11 supports communication standards such as 3G, 4G, or 5G, for example. The communication device 11 may, for example, be directly connected to the server 100 equipped with a wireless communication device via a wireless communication line, and may be connected to the server 100 via the wireless communication line, the wireless base station WBS, and the Internet line INET. It may be indirectly connected.
 センサ12は、車両10の運転行動を検出する。より具体的には、センサ12は、たとえば、車両10の各種の物理量や、車両10の各種の操作量や、車両10の周囲の物体を検出する。より具体的には、センサ12は、車両10の速度を検出する速度センサ、車両10の加速度を検出する加速度センサ、車両10の角速度を検出する角速度センサ、車両10の角加速度を検出する角加速度センサなどの車両センサを含む。 The sensor 12 detects driving behavior of the vehicle 10 . More specifically, the sensor 12 detects various physical quantities of the vehicle 10, various amounts of operation of the vehicle 10, and objects around the vehicle 10, for example. More specifically, the sensor 12 includes a velocity sensor that detects the velocity of the vehicle 10, an acceleration sensor that detects the acceleration of the vehicle 10, an angular velocity sensor that detects the angular velocity of the vehicle 10, and an angular acceleration sensor that detects the angular acceleration of the vehicle 10. Includes vehicle sensors such as sensors.
 また、センサ12は、たとえば、アクセルペダルおよびブレーキペダルの操作量を検出するペダルセンサ、ならびに、ステアリングの回転角度、角速度、および角加速度などを検出するステアリングセンサを含む。また、センサ12は、たとえば、単眼カメラ、ステレオカメラ、レーザレーダ、レーザレンジファインダ、ミリ波レーダ、赤外線センサ、超音波センサなどの外界センサを含む。また、センサ12は、たとえば、全球測位衛星システム(GNSS)の受信機など、車両10の位置情報を検出する位置センサを含む。 The sensor 12 also includes, for example, a pedal sensor that detects the amount of operation of the accelerator pedal and the brake pedal, and a steering sensor that detects the rotation angle, angular velocity, angular acceleration, and the like of the steering wheel. Also, the sensor 12 includes, for example, an external sensor such as a monocular camera, a stereo camera, a laser radar, a laser range finder, a millimeter wave radar, an infrared sensor, and an ultrasonic sensor. Sensors 12 also include location sensors that detect location information for vehicle 10, such as, for example, Global Navigation Satellite System (GNSS) receivers.
 図2は、図1の自動運転支援システム300を構成するサーバ100の機能ブロック図である。サーバ100は、たとえば、プローブ情報解析部111と、道路情報取得部112と、道路区間抽出部113と、知識情報生成部114と、送信情報生成部115と、知識情報送信部116とを有している。また、サーバ100は、たとえば、設定部117と、環境情報取得部118とを有してもよい。これらのサーバ100の各部は、たとえば、メモリ102のROMに記憶されたプログラムを、CPU101によってメモリ102のRAMに展開して実行することで実現されるサーバ100の各機能を表している。 FIG. 2 is a functional block diagram of the server 100 that constitutes the automatic driving support system 300 of FIG. The server 100 has, for example, a probe information analysis unit 111, a road information acquisition unit 112, a road section extraction unit 113, a knowledge information generation unit 114, a transmission information generation unit 115, and a knowledge information transmission unit 116. ing. Server 100 may also have, for example, setting unit 117 and environment information acquisition unit 118 . Each part of these server 100 expresses each function of server 100 realized, for example, by developing a program stored in ROM of memory 102 into RAM of memory 102 by CPU 101 and executing the program.
 また、サーバ100は、たとえば、知識情報データベース121と、高精度地図情報122と、プローブ情報123とを有している。これらのサーバ100の各部は、たとえば、サーバ100の記憶装置103に記憶された各種の情報を表している。図2に示すサーバ100の各部の動作や機能については、後でフロー図を参照しながら詳細に説明する。 The server 100 also has, for example, a knowledge information database 121, high-precision map information 122, and probe information 123. Each part of these server 100 represents various information memorize|stored in the memory|storage device 103 of the server 100, for example. The operations and functions of each unit of the server 100 shown in FIG. 2 will be described later in detail with reference to flowcharts.
 図3は、図1の自動運転支援システム300を構成する制御装置200の機能ブロック図である。制御装置200は、たとえば、車両10に搭載され、車両10の通信装置11、センサ12、および記憶装置13に対して情報通信可能に接続されている。また、図示を省略するが、制御装置200は、たとえば、車両10の各種のアクチュエータを駆動させる電子制御装置に対して情報通信可能に接続されている。 FIG. 3 is a functional block diagram of the control device 200 that constitutes the automatic driving support system 300 of FIG. Control device 200 is mounted on vehicle 10, for example, and is connected to communication device 11, sensor 12, and storage device 13 of vehicle 10 so as to be able to communicate information therewith. Although not shown, the control device 200 is connected to an electronic control device that drives various actuators of the vehicle 10 so as to be able to communicate information therewith.
 制御装置200は、たとえば、経路生成部201と、記録部202と、情報送受信部203と、目標軌跡生成部204と、走行制御部205と、駆動指令部206とを有している。これらの制御装置200の各部は、たとえば、制御装置200においてROMに記憶されたプログラムを、CPUによってRAMに展開して実行することで実現される制御装置200の各機能を表している。 The control device 200 has, for example, a route generation unit 201, a recording unit 202, an information transmission/reception unit 203, a target locus generation unit 204, a travel control unit 205, and a drive command unit 206. Each part of these control device 200 expresses each function of control device 200 realized, for example, by developing a program stored in ROM in control device 200 into RAM by CPU and executing the program.
 また、車両10の記憶装置13は、たとえば、サーバ100の記憶装置103と同様に、知識情報データベース13aと、高精度地図情報13bと、プローブ情報13cとを有している。これらの記憶装置13の各部は、たとえば、記憶装置13に記憶された各種の情報を表している。 Also, the storage device 13 of the vehicle 10, for example, like the storage device 103 of the server 100, has a knowledge information database 13a, high-precision map information 13b, and probe information 13c. Each part of these storage devices 13 represents, for example, various information stored in the storage device 13 .
 制御装置200の経路生成部201は、たとえば、高精度地図情報13bの道路情報と、車両10の現在地の位置情報と、車両10の目的地の位置情報とに基いて、車両10の現在地から目的地までの走行経路の情報である経路情報を生成する。高精度地図情報13bの道路情報は、たとえば、道路網を構成する各々の道路の道路識別子、車線の情報、および道路形状などを含む。 The route generation unit 201 of the control device 200 determines the destination from the current location of the vehicle 10 based on, for example, the road information of the high-precision map information 13b, the location information of the current location of the vehicle 10, and the location information of the destination of the vehicle 10. It generates route information, which is information on the driving route to the ground. The road information of the high-precision map information 13b includes, for example, road identifiers, lane information, road shapes, etc. of each road constituting the road network.
 経路生成部201は、たとえば、センサ12から車両10の現在の位置情報を取得するとともに、車両10の乗員または管理者によって入力された目的地の情報を取得して、高精度地図情報13bに基いて車両10の現在地から目的地までの経路情報を生成する。ここで、経路生成部201が生成する経路情報は、たとえば、車両10が通過する道路を特定することができる程度の分解能を有する情報であり、高精度地図情報13bに含まれる各々の道路のノードやリンクの識別子を車両10が通過する順に並べた情報である。 The route generation unit 201 acquires, for example, the current position information of the vehicle 10 from the sensor 12, acquires the information of the destination input by the occupant or administrator of the vehicle 10, and based on the high-precision map information 13b. route information from the current location of the vehicle 10 to the destination is generated. Here, the route information generated by the route generation unit 201 is, for example, information having resolution to the extent that it is possible to specify the roads that the vehicle 10 passes through, and each road node included in the high-precision map information 13b. and link identifiers arranged in the order in which the vehicle 10 passes.
 経路生成部201は、たとえば、最適な一つの経路情報のみを生成して目標軌跡生成部204へ出力する。また、経路生成部201は、たとえば、複数の経路情報を生成して携帯情報端末や車載モニタに地図とともに表示させ、車両10の乗員または管理者による走行経路の選択を受け付けてもよい。この場合、経路生成部201は、たとえば、車両10の乗員または管理者によって選択された経路情報を目標軌跡生成部204へ出力する。 For example, the route generation unit 201 generates only one optimal route information and outputs it to the target trajectory generation unit 204 . Further, the route generation unit 201 may generate a plurality of pieces of route information, display them on a portable information terminal or an in-vehicle monitor together with a map, and accept selection of a travel route by the occupant or administrator of the vehicle 10, for example. In this case, route generation unit 201 outputs, for example, route information selected by an occupant or administrator of vehicle 10 to target locus generation unit 204 .
 制御装置200の情報送受信部203は、車両10に搭載された通信装置11を介してサーバ100から知識情報を受信する。この知識情報は、車両10の現在地から目的地までの走行経路において、車両10の運転行動に影響を与える情報であり、サーバ100によって生成される。サーバ100による知識情報の生成については、後でフロー図を参照しながら詳細に説明する。 The information transmission/reception unit 203 of the control device 200 receives knowledge information from the server 100 via the communication device 11 mounted on the vehicle 10 . This knowledge information is information that affects the driving behavior of the vehicle 10 on the travel route from the current location of the vehicle 10 to the destination, and is generated by the server 100 . Generation of knowledge information by the server 100 will be described later in detail with reference to flow charts.
 制御装置200の目標軌跡生成部204は、たとえば、高精度地図情報13bの道路情報と、経路生成部201から取得した経路情報と、情報送受信部203を介してサーバ100から取得した知識情報とに基いて、車両10の目標軌跡を生成する。ここで、車両10の目標軌跡は、たとえば、車両10がこれから通過する予定の絶対位置を、車両10がこれから通過する順に並べた情報である。 The target trajectory generation unit 204 of the control device 200, for example, uses road information in the high-precision map information 13b, route information acquired from the route generation unit 201, and knowledge information acquired from the server 100 via the information transmission/reception unit 203. Based on this, the target trajectory of the vehicle 10 is generated. Here, the target trajectory of the vehicle 10 is, for example, information in which the absolute positions that the vehicle 10 is scheduled to pass from are arranged in the order that the vehicle 10 will pass from now on.
 本実施形態において、制御装置200の目標軌跡生成部204は、たとえば、道路識別子が付与された高精度地図情報13bの複数の道路をより細分化した複数の道路区間の各々における車両10の目標軌跡を生成する。サーバ100による道路区間の生成についても、後でフロー図を参照しながら詳細に説明する。目標軌跡生成部204は、たとえば、生成した目標軌跡を走行制御部205へ出力する。 In the present embodiment, the target trajectory generation unit 204 of the control device 200 generates a target trajectory of the vehicle 10 in each of a plurality of road sections obtained by subdividing a plurality of roads in the high-precision map information 13b to which road identifiers are assigned, for example. to generate Generation of road sections by the server 100 will also be described in detail later with reference to flow charts. The target trajectory generation unit 204 outputs the generated target trajectory to the traveling control unit 205, for example.
 制御装置200の走行制御部205は、たとえば、車両10の乗員または管理者の操作による自動運転の開始指示を受けると、車両10の自動運転を開始する。走行制御部205は、たとえば、目標軌跡生成部204から入力された目標軌跡に沿って車両10を走行させるための制御量に基く制御信号を生成して駆動指令部206へ出力する。走行制御部205は、次のいずれかの場合に、車両10の自動運転を中断する。 The travel control unit 205 of the control device 200 starts automatic operation of the vehicle 10, for example, upon receiving an instruction to start automatic operation by the operation of an occupant or administrator of the vehicle 10. Travel control unit 205 , for example, generates a control signal based on a control amount for causing vehicle 10 to travel along the target trajectory input from target trajectory generation unit 204 , and outputs the control signal to drive command unit 206 . The travel control unit 205 suspends automatic driving of the vehicle 10 in any of the following cases.
 すなわち、走行制御部205は、たとえば、車両10が目的地に到着した場合、車両10の乗員または管理者が手動運転を行った場合、センサ12の検出結果に基いて自動運転を中止することが適切であると判定した場合に、車両10の自動運転を中断する。走行制御部205は、たとえば、経路生成部201によって生成された走行経路を維持できない場合や、その走行経路に到達できない場合に、自動運転を中止することが適切であると判定する。 That is, for example, when the vehicle 10 has arrived at the destination, or when the occupant or manager of the vehicle 10 performs manual driving, the driving control unit 205 can stop the automatic driving based on the detection result of the sensor 12. Automatic driving of the vehicle 10 is interrupted when it is determined to be appropriate. For example, when the travel route generated by the route generation unit 201 cannot be maintained or when the travel route cannot be reached, the travel control unit 205 determines that it is appropriate to stop the automatic operation.
 制御装置200の駆動指令部206は、車両10の自動運転時に走行制御部205から入力される制御信号に基いて、車両10のエンジンまたはモータ、ならびにアクセルペダル、ブレーキペダル、ステアリング、および変速機などを操作するアクチュエータを制御する。これにより、制御装置200は、車両10の現在地から目的地までの走行経路において、車両10を目標軌跡に沿って自律的に走行させることができる。 A drive command unit 206 of the control device 200 operates the engine or motor of the vehicle 10, the accelerator pedal, the brake pedal, the steering, the transmission, etc. based on the control signal input from the travel control unit 205 during automatic operation of the vehicle 10. to control the actuator that operates the Thereby, the control device 200 can autonomously drive the vehicle 10 along the target locus on the travel route from the current location of the vehicle 10 to the destination.
 また、駆動指令部206は、車両10の手動運転時に乗員または管理者の運転操作に従って、車両10のエンジンまたはモータ、ならびにアクセルペダル、ブレーキペダル、ステアリング、および変速機などを自動的に操作するアクチュエータを制御する。ここで、手動運転時の運転操作は、たとえば、ステアリングホイールの回転操作、アクセルペダルの踏み込み、ブレーキペダルの踏み込み、およびシフトレバーの操作を含む。 In addition, the drive command unit 206 is an actuator that automatically operates the engine or motor of the vehicle 10, the accelerator pedal, the brake pedal, the steering, the transmission, etc., according to the driver's or manager's driving operation when the vehicle 10 is manually operated. to control. Here, the driving operation during manual driving includes, for example, turning the steering wheel, depressing the accelerator pedal, depressing the brake pedal, and operating the shift lever.
 制御装置200の記録部202は、車両10の運転行動を検出するセンサ12の検出結果に基くプローブ情報を所定の周期で記憶装置13に記録する。制御装置200の情報送受信部203は、たとえば、経路生成部201によって生成された経路情報と、記録部202によって記憶装置13に記録されたプローブ情報13cを、車両10に搭載された通信装置11を介して所定の周期でサーバ100へ送信する。情報送受信部203は、記憶装置13に所定の容量のプローブ情報13cが蓄積されたときに、プローブ情報13cをサーバ100へ送信するようにしてもよい。 The recording unit 202 of the control device 200 records the probe information based on the detection result of the sensor 12 that detects the driving behavior of the vehicle 10 in the storage device 13 at a predetermined cycle. The information transmitting/receiving unit 203 of the control device 200 transmits, for example, the route information generated by the route generating unit 201 and the probe information 13c recorded in the storage device 13 by the recording unit 202 to the communication device 11 mounted on the vehicle 10. to the server 100 at a predetermined cycle. The information transmitter/receiver 203 may transmit the probe information 13c to the server 100 when a predetermined amount of probe information 13c is accumulated in the storage device 13 .
 プローブ情報13cは、たとえば、車両10の速度や加速度などの物理量、車両10のアクセルペダル、ブレーキペダル、およびステアリングなどの操作量、車両10の周囲の物体や道路形状などの外界情報、ならびに車両10の位置情報などを含む。また、プローブ情報13cは、たとえば、各々の制御装置200の識別子、タイムスタンプ、検出値の種別、および検出値を含む。プローブ情報13cは、走行中の車両10の状態を示す時系列データである。このプローブ情報13cに基いて、車両10が走行した軌跡を算出することが可能である。 The probe information 13c includes, for example, physical quantities such as the speed and acceleration of the vehicle 10, operation amounts such as the accelerator pedal, brake pedal, and steering of the vehicle 10, external information such as objects and road shapes around the vehicle 10, and vehicle 10 including the location information of Also, the probe information 13c includes, for example, an identifier of each control device 200, a time stamp, a type of detection value, and a detection value. The probe information 13c is time-series data indicating the state of the vehicle 10 during travel. Based on this probe information 13c, it is possible to calculate the trajectory along which the vehicle 10 has traveled.
 なお、車両10の軌跡とは、たとえば、車両10が過去に通過した絶対位置を、車両10が通過した順に並べた情報である。これに対し、前述の目標軌跡は、車両10がこれから通過する予定の絶対位置を、車両10がこれから通過する順に並べた情報である。車両10の軌跡および目標軌跡を構成する絶対位置は、たとえば、ミリメートル級の分解能を有している。ここで、絶対位置は、たとえば、緯度と経度の組合せであり、絶対座標と言い換えることができる。 Note that the trajectory of the vehicle 10 is, for example, information in which the absolute positions that the vehicle 10 passed through in the past are arranged in the order in which the vehicle 10 passed. On the other hand, the aforementioned target trajectory is information in which the absolute positions that the vehicle 10 is scheduled to pass from are arranged in the order that the vehicle 10 will pass from now on. The absolute positions forming the trajectory of the vehicle 10 and the target trajectory have, for example, millimeter-class resolution. Here, the absolute position is, for example, a combination of latitude and longitude, and can be rephrased as absolute coordinates.
 図4は、サーバ100による知識情報の生成処理の流れを説明するフロー図である。サーバ100は、図4に示す処理フローP1を開始すると、プローブ情報を記録する処理P11を実行する。この処理P11において、サーバ100のプローブ情報解析部111は、複数の車両10から取得されるプローブ情報を記憶装置103へ記録する。 FIG. 4 is a flowchart explaining the flow of knowledge information generation processing by the server 100. FIG. When starting the processing flow P1 shown in FIG. 4, the server 100 executes processing P11 for recording probe information. In this process P<b>11 , the probe information analysis unit 111 of the server 100 records the probe information acquired from the plurality of vehicles 10 in the storage device 103 .
 より詳細には、プローブ情報解析部111は、たとえば、各々の車両10の各々の制御装置200から通信装置11を介して所定の周期で送信されるプローブ情報を、無線基地局WBS、インターネット回線INET、および入出力部104を介して取得して記憶装置103に記録する。これにより、サーバ100の記憶装置103に複数の車両10のプローブ情報123が蓄積される。 More specifically, the probe information analysis unit 111, for example, analyzes the probe information transmitted at predetermined intervals from the control device 200 of each vehicle 10 via the communication device 11 to the wireless base station WBS, Internet line INET, , and through the input/output unit 104 and recorded in the storage device 103 . Thereby, the probe information 123 of the plurality of vehicles 10 is accumulated in the storage device 103 of the server 100 .
 プローブ情報123は、たとえば、前述のように、各々の制御装置200を識別するための識別子、プローブ情報の検出日時を表すタイムスタンプ、センサ12の検出値の種別および検出値などを含む。センサ12の検出値の種別は、たとえば、車両10の位置情報、速度、加速度などである。検出値は、たとえば、位置情報であれば緯度および経度(度、分、秒)の数値である。 The probe information 123 includes, for example, an identifier for identifying each control device 200, a time stamp representing the detection date and time of the probe information, the type of detection value of the sensor 12 and the detection value, etc., as described above. The types of detection values of the sensor 12 are, for example, positional information, speed, acceleration, etc. of the vehicle 10 . The detected values are, for example, numerical values of latitude and longitude (degrees, minutes, seconds) in the case of location information.
 次に、サーバ100は、各々の制御装置200を搭載した車両10が走行した経路に含まれる道路情報を取得する処理P12を実行する。より具体的には、サーバ100の道路情報取得部112は、プローブ情報123に含まれる各々の車両10の位置情報に基いて、記憶装置103に記憶された高精度地図情報122から道路情報を取得する。道路情報は、前述のように、道路網を構成する各々の道路の道路識別子を含む。また、道路情報は、たとえば、道路識別子ごとに、車線の情報、道路形状、道路リンクの長さ、道路に含まれるノードなどを含む。 Next, the server 100 executes a process P12 of acquiring road information included in the route traveled by the vehicle 10 equipped with each control device 200 . More specifically, the road information acquisition unit 112 of the server 100 acquires road information from the high-definition map information 122 stored in the storage device 103 based on the position information of each vehicle 10 included in the probe information 123. do. The road information includes the road identifier of each road that constitutes the road network, as described above. Further, the road information includes, for example, lane information, road shape, road link length, nodes included in the road, etc. for each road identifier.
 次に、サーバ100は、道路識別子が付された道路情報の複数の道路をより細かい道路区間に区画する処理P13を実行する。この処理P13において、道路区間抽出部113は、前の処理P12で道路情報を取得した複数の道路をより細分化した複数の道路区間に区画し、各々の道路区間の道路情報に区間識別子を付与する。複数の道路をより多くの複数の道路区間に区画する方法は、たとえば、ノード間が1km以上の道路リンクを1km未満の複数の道路区間に区画し、ノード間が1km未満の道路リンクの全体を一つの道路区間とする方法を例示することができるが、特に限定はされない。 Next, the server 100 executes a process P13 of dividing the plurality of roads in the road information with road identifiers into finer road sections. In this process P13, the road segment extraction unit 113 partitions the plurality of roads for which the road information was acquired in the previous process P12 into a plurality of further subdivided road segments, and assigns a segment identifier to the road information of each road segment. do. A method of partitioning a plurality of roads into a larger number of road sections is, for example, partitioning road links with a node-to-node distance of 1 km or more into a plurality of road links with a node-to-node distance of less than 1 km, and dividing all road links with a node-to-node distance of less than 1 km A method of setting one road section can be exemplified, but is not particularly limited.
 図5は、道路識別子R1~R4が付与された道路情報の複数の道路と、より細分化された複数の道路区間の一例を示す図である。図5に示すように、道路識別子R1が付与された道路は、ノードN1~N4を含み、区間識別子S11~S13の3つの道路区間に区画されている。また、道路識別子R2が付与された道路は、ノードN2、N5およびN7を含み、区間識別子S21とS22の2つの道路区間に区画されている。また、道路識別子R3が付与された道路は、ノードN3、N6およびN8を含み、区間識別子S31とS32の2つの道路区間に区画されている。また、道路識別子R4が付与された道路は、ノードN5およびN6を含み、区間識別子S41の1つの道路区間に区画されている。 FIG. 5 is a diagram showing an example of a plurality of roads in road information with road identifiers R1 to R4 and a plurality of more subdivided road sections. As shown in FIG. 5, the road assigned the road identifier R1 includes nodes N1 to N4 and is divided into three road sections with section identifiers S11 to S13. Also, the road assigned the road identifier R2 includes nodes N2, N5 and N7 and is divided into two road sections with section identifiers S21 and S22. The road assigned road identifier R3 includes nodes N3, N6 and N8 and is divided into two road sections with section identifiers S31 and S32. Also, the road assigned the road identifier R4 includes nodes N5 and N6 and is partitioned into one road section with the section identifier S41.
 次に、サーバ100は、各々の道路区間と各々のプローブ情報とを紐づける処理P14を実行する。この処理P14において、サーバ100のプローブ情報解析部111は、たとえば、プローブ情報123に含まれる位置情報に基いて、前の処理P13で生成した各々の道路区間に対して各々のプローブ情報を紐づける。より具体的には、プローブ情報解析部111は、たとえば、各々のプローブ情報に対して、各々のプローブ情報の位置情報に対応する道路区間の区間識別子を付与する。 Next, the server 100 executes a process P14 that associates each road section with each probe information. In this process P14, the probe information analysis unit 111 of the server 100 associates each probe information with each road section generated in the previous process P13 based on the position information included in the probe information 123, for example. . More specifically, the probe information analysis unit 111, for example, gives each piece of probe information a section identifier of a road section corresponding to the position information of each piece of probe information.
 次に、サーバ100は、各々の道路区間に紐づけられたプローブ情報を解析する処理P15を実行する。この処理P15において、サーバ100のプローブ情報解析部111は、解析モデルを用いて各々の道路区間に紐づけられたプローブ情報を解析する。より具体的には、プローブ情報解析部111は、各々の道路区間のプローブ情報を、たとえば、曜日、時間帯、天気など、知識情報の項目によって分類し、各項目の組合せに対して車両10の運転行動の特徴を抽出する。 Next, the server 100 executes processing P15 for analyzing the probe information linked to each road section. In this process P15, the probe information analysis unit 111 of the server 100 analyzes the probe information linked to each road section using the analysis model. More specifically, the probe information analysis unit 111 classifies the probe information of each road section according to items of knowledge information such as the day of the week, time period, weather, etc. Extract features of driving behavior.
 たとえば、ある道路区間において、複数の車線のうち一車線で週末の土曜日と日曜日に工事が行われる場合を想定する。この場合、週末の土曜日と日曜日のプローブ情報の解析結果として、車両10が工事地点の手前で減速して車線変更するという運転行動の特徴が抽出される。一方、平日の月曜日から金曜日までのプローブ情報の解析結果からは、週末のような運転行動の特徴は抽出されない。 For example, assume that one of the multiple lanes in a certain road section is under construction on weekends on Saturdays and Sundays. In this case, as a result of analysis of the probe information on Saturday and Sunday of the weekend, the characteristics of the driving behavior that the vehicle 10 decelerates and changes lanes before the construction site are extracted. On the other hand, from the analysis results of probe information from Monday to Friday on weekdays, features of driving behavior such as those on weekends are not extracted.
 次に、サーバ100は、知識情報の基礎となる処理P15の解析結果に対して、情報レベルを設定する処理P16を実行する。この処理P16において、設定部117は、プローブ情報の解析結果が車両10の目的地までの経路、目標軌跡、または、挙動もしくは制御に与える影響に基く情報レベルと、その情報レベルに基く送信情報の送信タイミングとを設定する。 Next, the server 100 executes a process P16 for setting the information level for the analysis result of the process P15, which is the basis of the knowledge information. In this process P16, the setting unit 117 sets the information level based on the influence of the analysis result of the probe information on the route to the destination of the vehicle 10, the target trajectory, or the behavior or control, and the transmission information based on the information level. Set the transmission timing.
 図6は、図4に示す情報レベルを設定する処理P16の詳細なフロー図である。サーバ100が処理P16を開始すると、設定部117は、プローブ情報解析部111から知識情報の基礎となる各々の道路区間のプローブ情報の解析結果を取得する処理P161を実行する。次に、設定部117は、各々の解析結果が車両10の経路に影響するか否かを判定する処理P162を実行する。 FIG. 6 is a detailed flowchart of the process P16 for setting the information level shown in FIG. When the server 100 starts the process P16, the setting unit 117 executes the process P161 of acquiring analysis results of probe information of each road section serving as the basis of knowledge information from the probe information analysis unit 111 . Next, the setting unit 117 executes a process P162 of determining whether each analysis result affects the route of the vehicle 10 or not.
 この処理P162において、設定部117は、プローブ情報の解析結果が車両10の現在地から目的地までの経路に影響すること(YES)を判定すると、その解析結果の情報レベルを1に設定する処理P163を実行する。ここで、設定部117は、プローブ情報の解析結果が、たとえば、道路の通行止め、車線規制による渋滞の発生、閉鎖時間の長い踏切による長時間の待機などを表している場合に、車両10の経路に影響することを判定する。 In this process P162, when the setting unit 117 determines that the analysis result of the probe information affects the route from the current location of the vehicle 10 to the destination (YES), the information level of the analysis result is set to 1 in the process P163. to run. Here, if the analysis result of the probe information indicates, for example, road closures, traffic jams due to lane restrictions, long waiting times due to railroad crossings with long closing times, etc., the setting unit 117 determines the route of the vehicle 10. determine that it affects
 一方、設定部117は、処理P162において、プローブ情報の解析結果が車両10の経路に影響しないこと(NO)を判定すると、その解析結果が車両10の目標軌跡に影響するか否かを判定する処理P164を実行する。この処理P164において、設定部117は、プローブ情報の解析結果が車両10の目標軌跡に影響すること(YES)を判定すると、その知識情報の情報レベルを2に設定する処理P165を実行する。 On the other hand, when determining in process P162 that the analysis result of the probe information does not affect the route of the vehicle 10 (NO), the setting unit 117 determines whether the analysis result affects the target trajectory of the vehicle 10. Process P164 is executed. In this process P164, when the setting unit 117 determines that the analysis result of the probe information affects the target trajectory of the vehicle 10 (YES), the process P165 of setting the information level of the knowledge information to 2 is executed.
 ここで、設定部117は、プローブ情報の解析結果が、たとえば、高速道路の出口もしくは合流車線の渋滞、左側通行時の右折車線の渋滞を回避するための車線変更など、経路変更を必要とせず、車両10の目標軌跡の変更が必要な場合に、目標軌跡に影響することを判定する。 Here, the setting unit 117 determines that the analysis result of the probe information does not require a route change, such as traffic congestion at the exit or merging lane of the expressway, lane change to avoid traffic congestion in the right turn lane when driving on the left side, etc. , determines that the target trajectory is affected when the target trajectory of the vehicle 10 needs to be changed.
 一方、設定部117は、処理P164において、プローブ情報の解析結果が車両10の目標軌跡に影響しないこと(NO)を判定すると、その解析結果の情報レベルを3に設定する処理P166を実行する。ここで、設定部117は、プローブ情報の解析結果が、たとえば、道路のバンプやポットホールを安全に通過するための減速やサスペンションパラメータの変更など、車両10の挙動または制御にのみ影響する場合に車両10の目標軌跡に影響しないことを判定する。 On the other hand, when the setting unit 117 determines in process P164 that the analysis result of the probe information does not affect the target trajectory of the vehicle 10 (NO), it executes process P166 to set the information level of the analysis result to 3. Here, if the analysis result of the probe information affects only the behavior or control of the vehicle 10, such as deceleration and suspension parameter changes for safely passing bumps and potholes on the road, the setting unit 117 It is determined that the target trajectory of the vehicle 10 is not affected.
 以上のように、設定部117は、各々の道路区間のプローブ情報の解析結果が車両10の経路、目標軌跡、または、挙動もしくは制御に与える影響に基いて、たとえば、以下の表1に示すように、情報レベルを設定する。すなわち、設定部117は、たとえば、プローブ情報の解析結果の影響範囲が車両10の経路、目標軌跡、および挙動または制御である場合に、情報レベルをそれぞれ1、2および3に設定する。 As described above, the setting unit 117, based on the influence of the analysis results of the probe information of each road section on the route, target trajectory, or behavior or control of the vehicle 10, for example, as shown in Table 1 below: set the information level to That is, the setting unit 117 sets the information levels to 1, 2, and 3, respectively, for example, when the influence range of the analysis result of the probe information is the route, target trajectory, and behavior or control of the vehicle 10 .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 設定部117は、前述の処理P163、処理P165、または処理P166においてプローブ情報の解析結果の情報レベルを設定すると、送信情報の送信タイミングを設定する処理P167を実行する。この処理P167において、設定部117は、情報レベルに基いて、送信情報の送信タイミングを設定する。なお、送信情報は、後述する処理P18において送信情報生成部115によって生成される情報であり、プローブ情報の解析結果に基いて後述の処理P17で生成される知識情報を含む。 After setting the information level of the analysis result of the probe information in the above-described process P163, process P165, or process P166, the setting unit 117 executes process P167 for setting the transmission timing of the transmission information. In this process P167, the setting unit 117 sets the transmission timing of the transmission information based on the information level. The transmission information is information generated by the transmission information generation unit 115 in process P18, which will be described later, and includes knowledge information generated in process P17, which will be described later, based on the analysis result of the probe information.
 ここで、送信情報の送信タイミングとは、各々の制御装置200において車両10の運転行動に影響を与える知識情報を活用するために、知識情報を含む送信情報を送信すべきタイムリミットである。たとえば、知識情報がある道路区間の通行止めを示し、影響範囲が車両10の現在地から目的地までの経路である場合、通行止めの道路区間の手前の分岐点に車両10が到達するまでに送信情報を送信しなければならない。この場合、送信情報の送信タイミングは、車両10がその分岐点へ到達するまでとなる。以上により、図6に示す処理P16が終了する。 Here, the transmission timing of the transmission information is a time limit at which transmission information including knowledge information should be transmitted in order for each control device 200 to utilize the knowledge information that affects the driving behavior of the vehicle 10 . For example, if knowledge information indicates that a road section is closed to traffic, and the range of influence is the route from the current location of the vehicle 10 to the destination, the transmission information is sent before the vehicle 10 reaches the branch point before the road section where the traffic is closed. must be sent. In this case, the transmission timing of the transmission information is until the vehicle 10 reaches the branch point. Thus, the processing P16 shown in FIG. 6 is completed.
 次に、サーバ100は、図4に示すように、知識情報を生成する処理P17を実行する。この処理P17において、サーバ100の知識情報生成部114は、前述のプローブ情報の解析結果に基いて、道路区間の区間識別子ごとに、各々の車両10の運転行動に影響を与える知識情報を生成する。知識情報生成部114によって生成される知識情報の一例を、以下の表2に示す。 Next, the server 100 executes a process P17 for generating knowledge information, as shown in FIG. In this process P17, the knowledge information generation unit 114 of the server 100 generates knowledge information that affects the driving behavior of each vehicle 10 for each section identifier of the road section based on the analysis result of the probe information described above. . An example of knowledge information generated by the knowledge information generation unit 114 is shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、知識情報は、たとえば、識別子(ID)、道路ID、区間ID、車線、レベル(Lv.)、曜日、時間帯、条件、位置、および内容などの項目を含む。知識情報のIDは、個々の知識情報を識別するために、個々の知識情報に付与される。道路IDは、たとえば、高精度地図情報122に含まれる各々の道路リンクに付与された道路識別子である。区間IDは、前述のように、道路IDが付与された複数の道路を、道路区間抽出部113によって複数の道路区間に細分化したときに付与される区間識別子である。 As shown in Table 2, the knowledge information includes items such as identifiers (ID), road IDs, section IDs, lanes, levels (Lv.), days of the week, time zones, conditions, locations, and details, for example. Knowledge information IDs are given to individual pieces of knowledge information in order to identify the pieces of knowledge information. A road ID is, for example, a road identifier given to each road link included in the high-definition map information 122 . The section ID is a section identifier assigned when a plurality of roads to which road IDs are assigned are subdivided into a plurality of road sections by the road section extraction unit 113, as described above.
 表2の車線は、各々の知識情報が車両10の運転行動に影響を及ぼす道路区間の車線を示している。レベルは、前述のように、設定部117によって設定された各々の知識情報の情報レベルを示している。曜日および時間帯は、各々の知識情報が適用される曜日と時間帯を示している。条件、位置、および内容は、それぞれ、各々の知識情報に基いて車両10が実行すべき運転行動の実行条件、実行位置、および実行内容である。なお、表2は知識情報の一例であり、知識情報の項目は表2に示す例に限定されない。 The lanes in Table 2 indicate lanes of road sections in which each piece of knowledge information affects the driving behavior of the vehicle 10 . The level indicates the information level of each piece of knowledge information set by the setting unit 117, as described above. The day of the week and time zone indicate the day of the week and time zone to which each piece of knowledge information is applied. The condition, position, and content are respectively the execution condition, execution position, and execution content of the driving behavior that the vehicle 10 should execute based on each piece of knowledge information. Note that Table 2 is an example of knowledge information, and the items of knowledge information are not limited to the examples shown in Table 2.
 表2のIDが2の知識情報は、たとえば、道路IDがR1の道路の区間IDがS12の道路区間の知識情報であり、車線L1とL2を含む道路区間を走行する車両10の目標軌跡に影響を与える情報レベルが2の知識情報である。この知識情報は、たとえば、平日の8時から10時までと16時から18時までの間に車線L1で道路工事が行われているというプローブ情報の解析結果に基いて生成される。この知識情報は、たとえば、該当する日時に車線L1を走行する車両10を、道路工事が行われている地点X1,Y1の10m手間で車線L2へ車線変更させることを示している。 The knowledge information with an ID of 2 in Table 2 is, for example, knowledge information of a road section with a road ID of R1 and a road section with a section ID of S12. It is knowledge information with an information level of 2 that affects it. This knowledge information is generated, for example, based on the analysis result of probe information that road construction is being carried out on lane L1 between 8:00 and 10:00 and between 16:00 and 18:00 on weekdays. This knowledge information indicates, for example, that the vehicle 10 traveling in the lane L1 on the relevant date and time is to be changed to the lane L2 within 10 meters of the road construction sites X1 and Y1.
 次に、サーバ100は、図4に示すように、生成された知識情報を記録する処理P18を実行する。この処理P18において、サーバ100の知識情報生成部114は、前述の処理P17において生成した知識情報を、記憶装置103の知識情報データベース121に記録する。以上により、図4に示すサーバ100による知識情報生成処理の処理フローP1が終了する。次に、サーバ100は、各々の車両10へ知識情報を配信する。 Next, the server 100 executes a process P18 of recording the generated knowledge information, as shown in FIG. In this process P18, the knowledge information generating unit 114 of the server 100 records the knowledge information generated in the above process P17 in the knowledge information database 121 of the storage device 103. FIG. Thus, the processing flow P1 of the knowledge information generation processing by the server 100 shown in FIG. 4 ends. The server 100 then distributes the knowledge information to each vehicle 10 .
 図7は、サーバ100による知識情報配信処理の流れを示すフロー図である。サーバ100は、図7に示す処理フローP2を開始すると、各々の車両10の制御装置200から送信される知識情報の要求を受信したか否かを判定する処理P21を実行する。各々の車両10に搭載された制御装置200から、各々の車両10の通信装置11を介して送信される知識情報の要求は、たとえば、各々の車両10の現在地の位置情報、現在地から目的地までの経路情報、および各々の車両10の記憶装置13の空き容量を含む。 FIG. 7 is a flowchart showing the flow of knowledge information distribution processing by the server 100. FIG. When the server 100 starts the processing flow P2 shown in FIG. 7, the server 100 executes a processing P21 for determining whether or not a request for knowledge information transmitted from the control device 200 of each vehicle 10 has been received. The request for knowledge information transmitted from the control device 200 mounted on each vehicle 10 via the communication device 11 of each vehicle 10 includes, for example, position information of the current location of each vehicle 10, distance from the current location to the destination and the free space of the storage device 13 of each vehicle 10 .
 この処理P21において、サーバ100の送信情報生成部115は、各々の車両10から知識情報の要求を受信していないこと(NO)を判定すると、図7に示す処理フローP2を終了させる。その後、サーバ100は、所定の周期で処理フローP2を再開する。一方、処理P21において、送信情報生成部115は、少なくとも一台の車両10の制御装置200から知識情報の要求を受信したこと(YES)を判定すると、その車両10に送信する知識情報を抽出する処理P22を実行する。 In this process P21, when the transmission information generation unit 115 of the server 100 determines that the request for knowledge information has not been received from each vehicle 10 (NO), it terminates the process flow P2 shown in FIG. After that, the server 100 restarts the processing flow P2 at predetermined intervals. On the other hand, in process P21, when the transmission information generation unit 115 determines that the request for knowledge information has been received from the control device 200 of at least one vehicle 10 (YES), it extracts the knowledge information to be transmitted to the vehicle 10. Process P22 is executed.
 この処理P22において、送信情報生成部115は、たとえば、受信した知識情報の要求に含まれる経路情報を参照する。そして、送信情報生成部115は、各々の車両10の目的地までの経路に含まれる道路区間の区間識別子に対応する知識情報を記憶装置103の知識情報データベース121から抽出する。たとえば、前述の表2に示すように、送信情報生成部115が参照した車両10の経路情報に、道路IDがR1とR2の道路が含まれるとする。この場合、送信情報生成部115は、その道路ID(R1およびR2)に対応する区間ID(S11、S12またはS21)を含むID(1、2および3)の知識情報を、知識情報データベース121から抽出する。 In this process P22, the transmission information generation unit 115, for example, refers to the route information included in the received request for knowledge information. Then, the transmission information generator 115 extracts from the knowledge information database 121 of the storage device 103 the knowledge information corresponding to the section identifier of the road section included in the route to the destination of each vehicle 10 . For example, as shown in Table 2 above, it is assumed that the route information of vehicle 10 referred to by transmission information generation unit 115 includes roads with road IDs R1 and R2. In this case, the transmission information generator 115 extracts the knowledge information of the IDs (1, 2 and 3) including the section IDs (S11, S12 or S21) corresponding to the road IDs (R1 and R2) from the knowledge information database 121. Extract.
 次に、サーバ100は、抽出された知識情報の有無を判定する処理P23を実行する。この処理P23において、送信情報生成部115が、たとえば、前の処理P22で識情報が抽出されなかったこと(NO)を判定すると、サーバ100は、図7に示す処理フローP2を終了させ、その後、所定の周期で処理フローP2を再開させる。一方、処理P23において、送信情報生成部115が、たとえば、前の処理P22で知識情報が抽出されたこと(YES)を判定すると、サーバ100は、車両10の制御装置200へ送信する知識情報を選択する処理P24を実行する。 Next, the server 100 executes the process P23 of determining the presence or absence of the extracted knowledge information. In this process P23, for example, when the transmission information generation unit 115 determines that the identification information was not extracted in the previous process P22 (NO), the server 100 terminates the process flow P2 shown in FIG. , the processing flow P2 is resumed at a predetermined cycle. On the other hand, in process P23, for example, when transmission information generation unit 115 determines that knowledge information has been extracted in previous process P22 (YES), server 100 transmits knowledge information to control device 200 of vehicle 10. The process P24 to select is executed.
 この処理P24において、サーバ100の知識情報送信部116は、たとえば、処理P22で抽出された各々の知識情報の実行条件に基いて、各々の知識情報を該当する車両10の制御装置200へ送信するか否かを決定する。たとえば、知識情報送信部116は、知識情報を要求している車両10が各々の区間IDの道路区間を走行する曜日および時間帯と、知識情報データベース121から抽出した知識情報に含まれる曜日および時間帯(表2参照)とを照合する。知識情報送信部116は、たとえば、照合結果が合致する知識情報を車両10の制御装置200へ送信する知識情報として選択する。 In this process P24, the knowledge information transmission unit 116 of the server 100 transmits each piece of knowledge information to the control device 200 of the vehicle 10 concerned, based on the execution condition of each piece of knowledge information extracted in the process P22. Decide whether or not For example, knowledge information transmission unit 116 determines the day of the week and the time zone in which vehicle 10 requesting knowledge information travels in the road section of each section ID, and the day of the week and time period included in the knowledge information extracted from knowledge information database 121. Compare with band (see Table 2). Knowledge information transmission unit 116 selects, for example, knowledge information with matching results as knowledge information to be transmitted to control device 200 of vehicle 10 .
 次に、サーバ100は、選択された知識情報の有無を判定する処理P25を実行する。この処理P23において、たとえば、知識情報送信部116が、前の処理P24で知識情報が選択されなかったこと(NO)を判定すると、サーバ100は図7に示す処理フローP2を終了させ、その後、所定の周期で処理フローP2を再開する。一方、処理P25において、たとえば、知識情報送信部116が、前の処理P24で知識情報が選択されたこと(YES)を判定すると、サーバ100は、車両10の制御装置200へ送信する知識情報の送信パケットを生成する処理P26を実行する。 Next, the server 100 executes the process P25 of determining the presence or absence of the selected knowledge information. In this process P23, for example, if the knowledge information transmitting unit 116 determines that knowledge information was not selected in the previous process P24 (NO), the server 100 terminates the process flow P2 shown in FIG. Processing flow P2 is restarted at a predetermined cycle. On the other hand, in process P25, for example, when knowledge information transmission unit 116 determines that knowledge information has been selected in previous process P24 (YES), server 100 transmits the knowledge information to control device 200 of vehicle 10. A process P26 for generating a transmission packet is executed.
 この処理P26において、サーバ100の送信情報生成部115は、たとえば、処理P24で選択された一つ以上のIDの知識情報をまとめて一つの送信パケットを生成する。たとえば、知識情報を要求した制御装置200が搭載された車両10の経路が、図5に示す道路IDがR1の道路を含み、その車両10が平日の午前9時台に区間IDがS12の道路区間を走行するとする。この場合、送信情報生成部115は、処理P22で抽出され、処理P24で選択された表2に示すIDが2の知識情報を、一つの送信パケットとして生成する。なお、処理P24で複数の知識情報が選択された場合、送信情報生成部115は、選択された複数の知識情報をまとめた一つの送信パケットを生成する。 In this process P26, the transmission information generating unit 115 of the server 100, for example, collects the knowledge information of one or more IDs selected in the process P24 to generate one transmission packet. For example, the route of the vehicle 10 equipped with the control device 200 that requested the knowledge information includes the road with the road ID R1 shown in FIG. Suppose you run a section. In this case, the transmission information generation unit 115 generates the knowledge information with the ID of 2 shown in Table 2, extracted in process P22 and selected in process P24, as one transmission packet. Note that when a plurality of pieces of knowledge information are selected in process P24, the transmission information generating unit 115 generates one transmission packet in which the selected pieces of knowledge information are put together.
 次に、サーバ100は、たとえば、送信パケットの情報量が閾値以下であるか否かを判定する処理P27を実行する。この処理P27において、送信情報生成部115は、たとえば、制御装置200から受信した知識情報の要求に含まれる各々の車両10の記憶装置13の空き容量を閾値に設定する。この処理P27において、送信情報生成部115が、前の処理P26で生成した送信パケットの情報量が閾値以下であること(YES)を判定すると、サーバ100は知識情報を送信する処理P28を実行する。 Next, the server 100, for example, executes a process P27 of determining whether or not the amount of information in the transmitted packet is equal to or less than a threshold. In this process P27, the transmission information generator 115 sets, for example, the free space of the storage device 13 of each vehicle 10 included in the knowledge information request received from the control device 200 as a threshold. In this process P27, when the transmission information generation unit 115 determines that the information amount of the transmission packet generated in the previous process P26 is equal to or less than the threshold (YES), the server 100 executes the process P28 of transmitting knowledge information. .
 この処理P28において、サーバ100の知識情報送信部116は、処理P26で送信情報生成部115によって生成された送信パケットを、知識情報を要求した制御装置200へ、送信情報として送信する。送信情報としての送信パケットを受信した車両10の制御装置200は、たとえば、送信情報に含まれる知識情報を記憶装置13の知識情報データベース13aに記録して、車両10の制御に活用する。その後、サーバ100は、図7に示す処理フローP2を終了させ、所定の周期で繰り返し実行する。 In this process P28, the knowledge information transmission unit 116 of the server 100 transmits the transmission packet generated by the transmission information generation unit 115 in process P26 to the control device 200 that requested the knowledge information as transmission information. The control device 200 of the vehicle 10 that has received the transmission packet as the transmission information records, for example, the knowledge information included in the transmission information in the knowledge information database 13a of the storage device 13, and utilizes it for controlling the vehicle 10. FIG. After that, the server 100 terminates the processing flow P2 shown in FIG. 7 and repeatedly executes it at a predetermined cycle.
 一方、前述の処理P27において、送信情報生成部115が、前の処理P26で生成した送信パケットの情報量が閾値を超えていること(NO)を判定すると、サーバ100は送信パケットを修正する処理P29を実行する。送信パケットの情報量が閾値を超えている場合、送信パケットを受信した車両10の制御装置200が知識情報を記憶装置13の知識情報データベース13aに記録することができず、知識情報を活用できないおそれがある。 On the other hand, when the transmission information generation unit 115 determines in the above-described process P27 that the amount of information in the transmission packet generated in the previous process P26 exceeds the threshold (NO), the server 100 corrects the transmission packet. Execute P29. If the amount of information in the transmission packet exceeds the threshold, the control device 200 of the vehicle 10 that received the transmission packet cannot record the knowledge information in the knowledge information database 13a of the storage device 13, and the knowledge information may not be utilized. There is
 そのため、処理P29において、サーバ100の送信情報生成部115は、処理P26で生成した送信パケットを、知識情報に含まれる道路区間の区間IDごとに分割する。これにより、送信情報生成部115は、各々の車両10の受信条件に対応する送信情報としての送信パケットを生成する。 Therefore, in process P29, the transmission information generation unit 115 of the server 100 divides the transmission packet generated in process P26 for each section ID of the road section included in the knowledge information. Thereby, the transmission information generator 115 generates a transmission packet as transmission information corresponding to the reception conditions of each vehicle 10 .
 たとえば、以下の表3に示すように、送信パケットがS11、S12、およびS13の3つの区間IDを含むとする。この場合、送信情報生成部115は、たとえば、表3に示す送信パケットを、区間IDがS11であるIDが1から5までの第1分割パケットと、区間IDがS12であるIDが6および7の第2分割パケットと、区間IDがS13であるIDが8および9の第3分割パケットとに分割する。 For example, as shown in Table 3 below, suppose a transmission packet contains three interval IDs S11, S12, and S13. In this case, transmission information generation section 115, for example, divides the transmission packets shown in Table 3 into first divided packets with section ID S11 and IDs 1 to 5 and section ID S12 with IDs 6 and 7. and third segmented packets with section ID S13 and IDs 8 and 9.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 その後、サーバ100は、再度、前述の処理P27を実行する。この処理P27において、送信情報生成部115は、各々の分割パケットの情報量が閾値以下であるか否かを判定する。送信情報生成部115がすべての分割パケットの情報量が閾値以下であること(YES)を判定すると、サーバ100は前述の処理P28を実行する。この処理P28において、知識情報送信部116は、各々の分割パケットに含まれる区間IDの道路区間を車両10が走行する順に、各々の分割パケットを送信する。 After that, the server 100 executes the aforementioned process P27 again. In this process P27, the transmission information generator 115 determines whether or not the information amount of each fragmented packet is equal to or less than a threshold. When the transmission information generation unit 115 determines that the information amount of all the fragmented packets is equal to or less than the threshold (YES), the server 100 executes the aforementioned process P28. In this process P28, the knowledge information transmitting unit 116 transmits each divided packet in the order in which the vehicle 10 travels the road section of the section ID included in each divided packet.
 一方、処理P27において、送信情報生成部115が、たとえば、第1分割パケットの情報量が閾値を超えていること(NO)を判定すると、サーバ100は、再度、送信パケットを修正する処理P29を実行する。この処理P29において、送信情報生成部115は、たとえば、以下の表4に示すように、第1分割パケットを、さらに複数の小分割パケットに分割する。 On the other hand, when transmission information generating section 115 determines, for example, that the information amount of the first fragmented packet exceeds the threshold (NO) in process P27, server 100 performs process P29 of correcting the transmission packet again. Execute. In this process P29, the transmission information generation unit 115 further divides the first divided packet into a plurality of sub-divided packets, for example, as shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示す例において、送信情報生成部115は、複数の知識情報のIDを含む第1分割パケットを、各々が2つ以下の知識情報のIDを含む3つの小分割パケットに再分割している。さらに、送信情報生成部115は、たとえば、それぞれの小分割パケットの道路区間に対し、新たな区間ID(S111、S112、およびS113)を付与する。これにより、各々の小分割パケットを、車両10が各々の道路区間を走行する順に並べ替えることができる。 In the example shown in Table 4, the transmission information generation unit 115 re-divides the first divided packet containing a plurality of knowledge information IDs into three sub-divided packets each containing two or less knowledge information IDs. there is Furthermore, the transmission information generator 115, for example, assigns new section IDs (S111, S112, and S113) to the road sections of each subdivided packet. As a result, each sub-divided packet can be rearranged in the order in which the vehicle 10 travels on each road section.
 その後、サーバ100は、再度、前述の処理P27を実行する。この処理P27において、送信情報生成部115が、各々の小分割パケットの情報量が閾値以下であること(YES)を判定すると、サーバ100は、前述の処理P28を実行する。この処理P28において、知識情報送信部116は、車両10が各々の道路区間を走行する順に、各々の小分割パケットおよび各々の分割パケットを車両10の制御装置200へ送信する。 After that, the server 100 executes the aforementioned process P27 again. In this process P27, when the transmission information generator 115 determines that the information amount of each sub-divided packet is equal to or less than the threshold (YES), the server 100 executes the above-described process P28. In this process P28, the knowledge information transmitting unit 116 transmits each sub-divided packet and each divided packet to the control device 200 of the vehicle 10 in the order in which the vehicle 10 travels through each road section.
 ここで、知識情報送信部116は、たとえば、小分割パケットまたは分割パケットを一つずつ送信する。知識情報送信部116は、たとえば、送信した小分割パケットまたは分割パケットに含まれる知識情報に基く制御装置200の制御が終了してから、次の小分割パケットまたは分割パケットを送信する。その後、サーバ100は、図7に示す処理フローP2を終了させ、所定の周期で処理フローP2を繰り返し実行する。 Here, the knowledge information transmitting unit 116 transmits, for example, subdivided packets or divided packets one by one. Knowledge information transmitting section 116, for example, transmits the next sub-divided packet or sub-packet after control by control device 200 based on the knowledge information contained in the transmitted sub-divided packet or sub-packet ends. After that, the server 100 terminates the processing flow P2 shown in FIG. 7 and repeatedly executes the processing flow P2 at a predetermined cycle.
 図8は、図3に示す各々の車両10に搭載された制御装置200による自動運転処理の流れを示すフロー図である。各々の車両10に搭載された制御装置200は、たとえば、各々の車両10の新たな目的地が設定されると、図8に示す処理フローP3を開始する。各々の車両10の乗員または管理者は、たとえば、車両10に搭載された入力装置または乗員もしくは管理者が携帯する情報端末を介して、制御装置200へ車両10の目的地を設定する。 FIG. 8 is a flow chart showing the flow of automatic driving processing by the control device 200 mounted on each vehicle 10 shown in FIG. Control device 200 mounted on each vehicle 10 starts processing flow P3 shown in FIG. 8, for example, when a new destination for each vehicle 10 is set. An occupant or administrator of each vehicle 10 sets the destination of the vehicle 10 to the control device 200 via, for example, an input device mounted on the vehicle 10 or an information terminal carried by the occupant or administrator.
 制御装置200は、図8に示す処理フローP3を開始すると、車両10の現在地から目的地までの経路を計画する処理P31を実行する。この処理P31において、制御装置200の経路生成部201は、前述のように、道路網を構成する各々の道路の道路識別子を含む道路情報と、車両10の現在地および目的地の位置情報とに基いて、現在地から目的地までの経路情報を生成する。 Upon starting the processing flow P3 shown in FIG. 8, the control device 200 executes processing P31 for planning a route from the current location of the vehicle 10 to the destination. In this process P31, the route generating unit 201 of the control device 200 generates a route based on the road information including the road identifier of each road constituting the road network and the position information of the current location and the destination of the vehicle 10, as described above. to generate route information from the current location to the destination.
 次に、制御装置200は、知識情報を要求する処理P32を実行する。この処理P32において、制御装置200の情報送受信部203は、知識情報の要求を、通信装置11を介してサーバ100へ送信する。前述のように、知識情報の要求は、たとえば、各々の車両10の現在地の位置情報、現在地から目的地までの経路情報、各々の車両10の記憶装置13の空き容量を含む。 Next, the control device 200 executes the process P32 of requesting knowledge information. In this process P<b>32 , the information transmission/reception unit 203 of the control device 200 transmits a request for knowledge information to the server 100 via the communication device 11 . As described above, the request for knowledge information includes, for example, the position information of the current location of each vehicle 10, the route information from the current location to the destination, and the free space of the storage device 13 of each vehicle 10. FIG.
 次に、制御装置200は、知識情報を受信したか否かを判定する処理P33を実行する。処理P33において、たとえば、情報送受信部203が知識情報を受信しなかったこと(NO)を判定すると、制御装置200は、目標軌跡を生成する処理P37を実行する。この処理P37において、目標軌跡生成部204は、処理P31で生成された経路情報に基いて、各々の道路における車両10の目標軌跡を生成する。 Next, the control device 200 executes the process P33 of determining whether knowledge information has been received. In process P33, for example, when information transmitter/receiver 203 determines that knowledge information has not been received (NO), control device 200 executes process P37 for generating a target trajectory. In this process P37, the target trajectory generator 204 generates the target trajectory of the vehicle 10 on each road based on the route information generated in the process P31.
 一方、処理P33において、たとえば、情報送受信部203が知識情報を受信したこと(YES)を判定すると、制御装置200は、知識情報を格納する処理P34を実行する。この処理P34において、記録部202は、受信した知識情報を記憶装置13の知識情報データベース13aに記録する。その後、制御装置200は、知識情報を取得する処理P35と、取得した知識情報の影響範囲が経路か否かを判定する処理P36を実行する。 On the other hand, if it is determined in the process P33 that the information transmitting/receiving unit 203 has received the knowledge information (YES), the control device 200 executes the process P34 of storing the knowledge information. In this process P34, the recording unit 202 records the received knowledge information in the knowledge information database 13a of the storage device 13. FIG. Thereafter, the control device 200 executes a process P35 of acquiring knowledge information and a process P36 of determining whether or not the range of influence of the acquired knowledge information is a route.
 処理P35において、たとえば、目標軌跡生成部204は、車両10の経路情報に基いて、記憶装置13の知識情報データベース13aから車両10が走行を予定している各々の道路区間の知識情報を取得する。さらに、処理P36において、たとえば、目標軌跡生成部204は、取得した知識情報の情報レベルに基いて、知識情報の影響範囲が経路であるか否かを判定する。 In process P35, for example, the target trajectory generation unit 204 acquires knowledge information of each road section along which the vehicle 10 is scheduled to travel from the knowledge information database 13a of the storage device 13 based on the route information of the vehicle 10. . Furthermore, in process P36, for example, the target trajectory generation unit 204 determines whether or not the range of influence of the knowledge information is a route based on the information level of the acquired knowledge information.
 この処理P36において、目標軌跡生成部204は、経路上のいずれかの道路区間の知識情報の情報レベルが1である場合に、知識情報の影響範囲が経路計画段階であること(YES)を判定する。この場合、制御装置200は、再度、経路を計画する処理P31を実行し、経路生成部201によって情報レベルが1の知識情報に対応する道路区間を含まない経路を生成する。一方、処理P36において、目標軌跡生成部204は、経路上のすべての道路区間の知識情報の情報レベルが1ではない場合に、各々の知識情報の影響範囲が経路ではないこと(NO)を判定する。 In this process P36, if the information level of the knowledge information for any road section on the route is 1, the target trajectory generation unit 204 determines that the range of influence of the knowledge information is in the route planning stage (YES). do. In this case, the control device 200 executes the route planning process P31 again, and the route generation unit 201 generates a route that does not include the road section corresponding to the knowledge information with the information level of 1. FIG. On the other hand, in process P36, if the information level of the knowledge information for all road sections on the route is not 1, the target trajectory generation unit 204 determines that the range of influence of each knowledge information is not the route (NO). do.
 この場合、制御装置200は、車両10の目標軌跡を生成する処理P37を実行する。この処理P37において、目標軌跡生成部204は、知識情報の情報レベルが3の道路区間、すなわち、知識情報の影響範囲が車両10の挙動または制御である道路区間では、前述の処理P31で生成された経路情報に基いて目標軌跡を生成する。一方、この処理P37において、目標軌跡生成部204は、知識情報の情報レベルが2の道路区間、すなわち、知識情報の影響範囲が目標軌跡である道路区間では、知識情報の内容に基いて目標軌跡を生成する。 In this case, the control device 200 executes a process P37 for generating the target trajectory of the vehicle 10. In this process P37, the target trajectory generation unit 204 determines that the road section in which the information level of the knowledge information is 3, that is, the road section in which the range of influence of the knowledge information is the behavior or control of the vehicle 10, is generated in the above-described process P31. A target trajectory is generated based on the obtained route information. On the other hand, in this process P37, the target trajectory generation unit 204 generates the target trajectory based on the content of the knowledge information in the road section where the information level of the knowledge information is 2, that is, in the road section where the range of influence of the knowledge information is the target trajectory. to generate
 図9は、知識情報の内容に基く目標軌跡生成部204の目標軌跡T1の生成例を示す平面図である。図9では、知識情報を使用しない場合の車両10の目標軌跡T0を破線で表し、知識情報の内容に基く目標軌跡T1を実線で表している。たとえば、前述の表2に示すIDが2の知識情報が、図9に示す区間IDがS12の片側二車線の道路区間の知識情報であるとする。この道路区間では、平日の8時から10時までと16時から18時まで、車線L1の位置X1,Y1から所定の範囲で道路工事CSが行われており、車両10が平日のその時間帯にこの道路区間の車線L1を走行するとする。 FIG. 9 is a plan view showing an example of generation of the target trajectory T1 by the target trajectory generation unit 204 based on the content of the knowledge information. In FIG. 9, the dashed line represents the target trajectory T0 of the vehicle 10 when the knowledge information is not used, and the solid line represents the target trajectory T1 based on the contents of the knowledge information. For example, assume that the knowledge information with an ID of 2 shown in Table 2 above is the knowledge information of a two-lane road section with a section ID of S12 shown in FIG. In this road section, from 8:00 to 10:00 and from 16:00 to 18:00 on weekdays, road construction CS is being carried out in a predetermined range from positions X1 and Y1 of lane L1. Suppose that the vehicle travels in the lane L1 of this road section.
 この場合、目標軌跡生成部204は、この道路区間において、表2の区間IDがS12の道路区間の知識情報に基いて、車線L1を走行する車両10を、道路工事CSが行われている地点X1,Y1の10m手前で、隣の車線L2へ車線変更させる目標軌跡T1を生成する。これにより、車両10のセンサ12によって道路工事CSを検出してから車両10を車線変更させる場合と比較して、急な減速や急な進路変更を回避して車両10を円滑に走行させることが可能になる。 In this case, the target trajectory generation unit 204 determines the vehicle 10 traveling in the lane L1 to be the point where the road construction CS is being performed, based on the knowledge information of the road section whose section ID is S12 in Table 2. 10 m before X1 and Y1, a target trajectory T1 for changing lanes to the adjacent lane L2 is generated. As a result, compared to the case where the vehicle 10 changes lanes after the road construction CS is detected by the sensor 12 of the vehicle 10, the vehicle 10 can be smoothly run while avoiding sudden deceleration and sudden course changes. be possible.
 その後、制御装置200は、車両10の走行制御を行う処理P38を実行する。この処理P38において、走行制御部205は、たとえば、車両10を目標軌跡T1に沿って走行させるための動作指令を生成して、駆動指令部206へ出力する。駆動指令部206は、走行制御部205から入力された動作指令に基いて車両10の各部のアクチュエータを作動させる。 After that, the control device 200 executes a process P38 for controlling the traveling of the vehicle 10. In this process P38, travel control unit 205 generates, for example, an operation command for causing vehicle 10 to travel along target trajectory T1, and outputs it to drive command unit 206. FIG. Drive command unit 206 operates the actuators of each part of vehicle 10 based on the operation command input from travel control unit 205 .
 これにより、駆動指令部206は、車両10のアクセル、ブレーキ、ステアリング、および変速機などを制御して、車両10を目標軌跡T1に沿って自律的に走行させることができる。なお、走行制御部205は、たとえば、車両10を知識情報に基く目標軌跡T1に沿って走行させる際に、車両10の乗員に対し、ユーザインタフェースを介して「道路工事回避のため車線変更します」というような知識情報に関する通知を行ってもよい。 As a result, the drive command unit 206 can control the accelerator, brake, steering, transmission, etc. of the vehicle 10 to autonomously drive the vehicle 10 along the target trajectory T1. For example, when the vehicle 10 is caused to travel along the target trajectory T1 based on the knowledge information, the travel control unit 205 instructs the occupant of the vehicle 10 via the user interface to change lanes to avoid road construction. ” may be notified regarding knowledge information.
 次に、制御装置200は、車両10が目的地に到着したか否かを判定する処理P39を実行する。この処理P39において、走行制御部205は、センサ12から取得する車両10の位置情報に基いて、車両10が目的地に到着したか否かを判定する。制御装置200は、車両10が目的地に到着するまで処理P38と処理P39を繰り返し、車両10が目的地に到着すると図8に示す処理フローP3を終了させる。 Next, the control device 200 executes a process P39 of determining whether or not the vehicle 10 has arrived at the destination. In this process P39, the travel control unit 205 determines whether or not the vehicle 10 has arrived at the destination based on the position information of the vehicle 10 acquired from the sensor 12 . The control device 200 repeats the processing P38 and the processing P39 until the vehicle 10 reaches the destination, and terminates the processing flow P3 shown in FIG. 8 when the vehicle 10 reaches the destination.
 以下、本実施形態のサーバ100、制御装置200、および自動運転支援システム300の作用を説明する。 The actions of the server 100, the control device 200, and the automatic driving support system 300 of this embodiment will be described below.
 近年、周囲の物体を検知するセンサを搭載し、目的地まで自律的に走行することが可能な自動運転車の実用化が進められている。しかし、自動車に搭載されたセンサは、走行する道路の形状や周囲の障害物によって、自動車の運転行動に影響を与える物体や事象を検出できないおそれがある。 In recent years, self-driving cars equipped with sensors that detect surrounding objects and can autonomously drive to their destination have been put to practical use. However, sensors mounted on automobiles may not be able to detect objects and events that affect the driving behavior of the automobile, depending on the shape of the road on which they are traveling and obstacles in the surroundings.
 前述の特許文献1に記載された従来のサーバは、各車両の運転支援装置が実施した運転支援の支援態様を道路リンクのデータに紐づけた道路リンク情報を提供する。しかし、道路リンクのデータに紐づけた道路リンク情報は、より詳細な情報を必要とする自動運転車の目標軌跡計画や制御計画に利用するには不十分である。また、自動運転車の経路計画で計画された予定経路に対応するすべての道路リンク情報が提供されると、自動運転車で保持する情報量が過大になるおそれがある。 The conventional server described in the above-mentioned Patent Document 1 provides road link information in which the driving support mode implemented by the driving support device of each vehicle is linked to the road link data. However, road link information linked to road link data is insufficient for use in target trajectory planning and control planning for self-driving vehicles, which require more detailed information. In addition, if all the road link information corresponding to the scheduled route planned in the route planning of the autonomous vehicle is provided, the amount of information held by the autonomous vehicle may become excessive.
 これに対し、本実施形態のサーバ100は、前述のように、プローブ情報解析部111と、道路情報取得部112と、道路区間抽出部113と、知識情報生成部114と、送信情報生成部115と、知識情報送信部116とを備える。プローブ情報解析部111は、複数の車両10から取得されるプローブ情報を解析する。道路情報取得部112は、道路網を構成する各々の道路の道路識別子を含む道路情報を取得する。道路区間抽出部113は、複数の道路をより細分化した複数の道路区間に区画し、各々の道路区間の道路情報に区間識別子を付与する。知識情報生成部114は、プローブ情報の解析結果に基いて区間識別子ごとに各々の車両10の運転行動に影響を与える知識情報を生成する。送信情報生成部115は、各々の車両10の目的地までの経路に含まれる道路区間の区間識別子に対応する知識情報を抽出して各々の車両10の受信条件に対応する送信情報を生成する。知識情報送信部116は、送信情報を各々の車両10へ送信する。 On the other hand, the server 100 of this embodiment includes the probe information analysis unit 111, the road information acquisition unit 112, the road section extraction unit 113, the knowledge information generation unit 114, and the transmission information generation unit 115 as described above. and a knowledge information transmission unit 116 . The probe information analysis unit 111 analyzes probe information acquired from multiple vehicles 10 . The road information acquisition unit 112 acquires road information including the road identifiers of the roads that make up the road network. The road section extracting unit 113 divides a plurality of roads into a plurality of road sections, and assigns a section identifier to the road information of each road section. The knowledge information generation unit 114 generates knowledge information that affects the driving behavior of each vehicle 10 for each section identifier based on the analysis result of the probe information. The transmission information generation unit 115 extracts knowledge information corresponding to the section identifier of the road section included in the route to the destination of each vehicle 10 and generates transmission information corresponding to the reception conditions of each vehicle 10 . The knowledge information transmission unit 116 transmits transmission information to each vehicle 10 .
 また、本実施形態の制御装置200は、前述のように、車両10に搭載され、経路生成部201と、記録部202と、情報送受信部203と、目標軌跡生成部204と、走行制御部205とを有している。経路生成部201は、道路網を構成する各々の道路の道路識別子を含む道路情報と、車両10の現在地および目的地の位置情報とに基いて、現在地から目的地までの経路情報を生成する。記録部202は、車両10の運転行動を検出するセンサ12の検出結果に基くプローブ情報を記録する。情報送受信部203は、車両10に搭載された通信装置11を介して経路情報およびプローブ情報をサーバ100へ送信するとともに、サーバ100から運転行動に影響を与える知識情報を受信する。目標軌跡生成部204は、道路情報と経路情報と知識情報とに基いて複数の道路をより細分化した複数の道路区間の各々における車両10の目標軌跡を生成する。走行制御部205は、目標軌跡に沿って車両10を走行させる。さらに、本実施形態の自動運転支援システム300は、前述のサーバ100と複数の車両10に搭載される複数の制御装置200とを備える。 Further, the control device 200 of the present embodiment is mounted on the vehicle 10 as described above, and includes a route generation unit 201, a recording unit 202, an information transmission/reception unit 203, a target locus generation unit 204, and a travel control unit 205. and The route generation unit 201 generates route information from the current location to the destination based on road information including the road identifiers of the roads that make up the road network and position information on the current location of the vehicle 10 and the destination. The recording unit 202 records probe information based on the detection result of the sensor 12 that detects driving behavior of the vehicle 10 . The information transmitter/receiver 203 transmits route information and probe information to the server 100 via the communication device 11 mounted on the vehicle 10 and receives knowledge information that affects driving behavior from the server 100 . The target trajectory generator 204 generates a target trajectory for the vehicle 10 in each of a plurality of road sections obtained by subdividing a plurality of roads based on road information, route information, and knowledge information. The traveling control unit 205 causes the vehicle 10 to travel along the target locus. Further, the automatic driving support system 300 of this embodiment includes the aforementioned server 100 and a plurality of control devices 200 mounted on a plurality of vehicles 10 .
 このような構成により、本実施形態のサーバ100は、複数の車両10に搭載されたセンサ12の検出結果に基くプローブ情報を、複数の制御装置200から収集して解析することができる。さらに、サーバ100は、プローブ情報の解析結果に基いて車両10の運転行動に影響を与える知識情報を生成し、道路網を構成する複数の道路をより細分化した複数の道路区間の各々に対して、各々の知識情報を紐づけることができる。さらに、サーバ100は、車両10の経路に含まれる道路区間ごとの知識情報を含む送信情報を、記憶装置103の空き容量などの車両10の受信条件に対応させて生成し、車両10へ送信する。したがって、本実施形態のサーバ100および自動運転支援システム300によれば、車両10の目標軌跡計画や制御計画に利用可能な詳細かつ適切な情報量の知識情報を各々の制御装置200に提供することができる。 With such a configuration, the server 100 of the present embodiment can collect and analyze probe information based on the detection results of the sensors 12 mounted on the multiple vehicles 10 from the multiple control devices 200 . Furthermore, the server 100 generates knowledge information that affects the driving behavior of the vehicle 10 based on the analysis results of the probe information, and for each of a plurality of road sections obtained by subdividing the plurality of roads that make up the road network, Each piece of knowledge information can be associated with it. Further, the server 100 generates transmission information including knowledge information for each road section included in the route of the vehicle 10 in correspondence with the reception conditions of the vehicle 10 such as the free space of the storage device 103, and transmits the transmission information to the vehicle 10. . Therefore, according to the server 100 and the automatic driving support system 300 of the present embodiment, each control device 200 can be provided with detailed and appropriate amount of knowledge information that can be used for target trajectory planning and control planning of the vehicle 10. can be done.
 そのため、本実施形態の制御装置200によれば、道路網を構成する複数の道路をより細分化した複数の道路区間ごとの知識情報に基いて、車両10の自動運転をより効率よく安全で快適に実行することができる。すなわち、本実施形態のサーバ100、制御装置200、および自動運転支援システム300によれば、道路区間ごとの知識情報を利用することで、車両10に搭載されたセンサ12では検出できず、車両10の運転行動に影響を与える物体や事象に適切に対処することができる。したがって、本実施形態のサーバ100、制御装置200、および自動運転支援システム300によれば、従来のサーバよりも、より効率よく安全で快適な車両10の経路および目標軌跡を計画することができ、より効率よく安全で快適な車両10の自動運転を実現することができる。 Therefore, according to the control device 200 of the present embodiment, the automatic driving of the vehicle 10 can be performed more efficiently, safely, and comfortably based on knowledge information for each of a plurality of road sections obtained by subdividing a plurality of roads that constitute the road network. can run to That is, according to the server 100, the control device 200, and the automatic driving support system 300 of the present embodiment, by using the knowledge information for each road section, the sensor 12 mounted on the vehicle 10 cannot detect, and the vehicle 10 able to respond appropriately to objects and events that affect their driving behavior. Therefore, according to the server 100, the control device 200, and the automatic driving support system 300 of the present embodiment, the route and target trajectory of the vehicle 10 can be planned more efficiently, safely, and comfortably than the conventional server. More efficient, safer, and more comfortable automatic driving of the vehicle 10 can be realized.
 また、本実施形態のサーバ100は、前述のように、設定部117をさらに備えている設定部117は、プローブ情報の解析結果が車両10の経路、目標軌跡、または、挙動もしくは制御に与える影響に基く情報レベルと、その情報レベルに基く送信情報の送信タイミングとを設定する。 In addition, the server 100 of the present embodiment further includes the setting unit 117 as described above. and the transmission timing of the transmission information based on the information level.
 このような構成により、本実施形態のサーバ100によれば、車両の運転行動に影響を与える知識情報に、その影響範囲に基く情報レベルを付与することができる。これにより、サーバ100は、車両10の経路、目標軌跡、または、挙動もしくは制御に与える影響に応じて、知識情報を含む送信情報を適切な送信タイミングで車両10へ送信することができる。 With such a configuration, according to the server 100 of the present embodiment, knowledge information that affects the driving behavior of a vehicle can be given an information level based on its range of influence. Thereby, the server 100 can transmit the transmission information including the knowledge information to the vehicle 10 at appropriate transmission timing according to the route of the vehicle 10, the target trajectory, or the influence on the behavior or control.
 以上説明したように、本実施形態によれば、自動運転車の経路計画、目標軌跡計画、および制御計画に利用可能な適切な情報量の知識情報を提供するサーバ100と、その知識情報を受信して車両10を制御する制御装置200と、これらのサーバ100および制御装置200を含む自動運転支援システム300を提供することができる。 As described above, according to the present embodiment, the server 100 that provides an appropriate amount of knowledge information that can be used for route planning, target trajectory planning, and control planning for an autonomous vehicle, and receives the knowledge information. It is possible to provide a control device 200 that controls the vehicle 10 by doing so, and an automatic driving support system 300 that includes the server 100 and the control device 200 .
[実施形態2]
 次に、前述の実施形態1の図1から図6を援用し、図10から図12を参照して、本開示に係るサーバ、制御装置、および自動運転支援システムの実施形態2を説明する。本実施形態のサーバ100、制御装置200、および自動運転支援システム300の構成は、前述の実施形態1のサーバ100、制御装置200、および自動運転支援システム300の構成と同様であるので、同様の部分には同一の符号を付して説明を省略する。
[Embodiment 2]
Next, Embodiment 2 of the server, control device, and automatic driving support system according to the present disclosure will be described with reference to FIGS. 1 to 6 and FIGS. The configurations of the server 100, the control device 200, and the automatic driving support system 300 of this embodiment are the same as the configurations of the server 100, the control device 200, and the automatic driving support system 300 of the first embodiment. The same reference numerals are assigned to the parts, and the description thereof is omitted.
 本実施形態のサーバ100、制御装置200、および自動運転支援システム300は、主にサーバ100の知識情報送信部116による処理が、前述の実施形態1のサーバ100、制御装置200、および自動運転支援システム300と異なっている。本実施形態において、知識情報送信部116は、プローブ情報に含まれる各々の車両10の位置情報に基いて、車両10の前方の所定範囲に含まれる道路区間に対応する送信情報を順次送信する。 In the server 100, the control device 200, and the automatic driving support system 300 of the present embodiment, the processing by the knowledge information transmission unit 116 of the server 100 is mainly performed by the server 100, the control device 200, and the automatic driving support system of the first embodiment. It differs from system 300 . In this embodiment, the knowledge information transmitting unit 116 sequentially transmits transmission information corresponding to road sections included in a predetermined range in front of the vehicle 10 based on the position information of each vehicle 10 included in the probe information.
 図10は、本実施形態のサーバ100による知識情報配信処理の流れを示すフロー図である。サーバ100は、図10に示す処理フローP4を開始すると、各々の車両10に搭載された制御装置200から、センサ12の検出結果に基くプローブ情報を取得する処理P41を実行する。この処理P41において、サーバ100のプローブ情報解析部111は、制御装置200から送信されたプローブ情報を受信して、記憶装置103に格納する。 FIG. 10 is a flow diagram showing the flow of knowledge information distribution processing by the server 100 of this embodiment. When the processing flow P4 shown in FIG. 10 is started, the server 100 executes processing P41 of acquiring probe information based on the detection result of the sensor 12 from the control device 200 mounted on each vehicle 10 . In this process P41, the probe information analysis unit 111 of the server 100 receives the probe information transmitted from the control device 200 and stores it in the storage device 103. FIG.
 次に、サーバ100は、道路区間を抽出する処理P42と、知識情報を抽出する処理P43を実行する。処理P42において、サーバ100の道路区間抽出部113は、制御装置200から取得した車両10の目的地までの経路と、プローブ情報に含まれる車両10の位置情報とに基いて、車両10がこれから走行する道路区間を抽出する。また、処理P43において、知識情報生成部114は、前の処理P42で抽出した道路区間に対応する知識情報を記憶装置103の知識情報データベース121から抽出する。 Next, the server 100 executes a process P42 for extracting road sections and a process P43 for extracting knowledge information. In process P42, the road section extracting unit 113 of the server 100 determines whether the vehicle 10 is about to travel based on the route to the destination of the vehicle 10 acquired from the control device 200 and the position information of the vehicle 10 included in the probe information. Extract the road section that Also, in process P43, the knowledge information generation unit 114 extracts from the knowledge information database 121 of the storage device 103 the knowledge information corresponding to the road section extracted in the previous process P42.
 次に、サーバ100は、抽出された知識情報の有無を判定する処理P44を実行する。この処理P44において、送信情報生成部115が、たとえば、前の処理P43で識情報が抽出されなかったこと(NO)を判定すると、サーバ100は、図10に示す処理フローP4を終了させ、その後、所定の周期で処理フローP4を再開させる。一方、処理P44において、送信情報生成部115が、たとえば、前の処理P43で知識情報が抽出されたこと(YES)を判定すると、サーバ100は、車両10の制御装置200へ送信する知識情報を選択する処理P45を実行する。 Next, the server 100 executes the process P44 of determining the presence or absence of the extracted knowledge information. In this process P44, for example, when the transmission information generation unit 115 determines that the identification information was not extracted in the previous process P43 (NO), the server 100 terminates the process flow P4 shown in FIG. , the processing flow P4 is restarted at a predetermined cycle. On the other hand, in process P44, for example, when transmission information generation unit 115 determines that knowledge information has been extracted in previous process P43 (YES), server 100 transmits knowledge information to control device 200 of vehicle 10. The process P45 to select is performed.
 この処理P45において、サーバ100の知識情報送信部116は、たとえば、実施形態1の処理P24と同様に、処理43で抽出された各々の知識情報の実行条件に基いて、車両10の制御装置200へ送信する知識情報を選択する。 In this process P45, the knowledge information transmitting unit 116 of the server 100, for example, similar to the process P24 of the first embodiment, based on the execution condition of each knowledge information extracted in the process 43, the control device 200 of the vehicle 10 Select the knowledge information to send to.
 次に、サーバ100は、選択された知識情報の有無を判定する処理P46を実行する。この処理P46において、たとえば、知識情報送信部116が、前の処理P45で知識情報が選択されなかったこと(NO)を判定すると、サーバ100は図10に示す処理フローP4を終了させ、その後、所定の周期で処理フローP4を再開する。一方、処理P46において、たとえば、知識情報送信部116が、前の処理P45で知識情報が選択されたこと(YES)を判定すると、サーバ100は、車両10の制御装置200へ送信する知識情報の送信計画を策定する処理P47を実行する。 Next, the server 100 executes the process P46 of determining the presence or absence of the selected knowledge information. In this process P46, for example, if the knowledge information transmitting unit 116 determines that knowledge information was not selected in the previous process P45 (NO), the server 100 terminates the process flow P4 shown in FIG. Processing flow P4 is resumed at a predetermined cycle. On the other hand, in process P46, for example, when knowledge information transmitting unit 116 determines that knowledge information has been selected in previous process P45 (YES), server 100 transmits the knowledge information to control device 200 of vehicle 10. Process P47 for formulating a transmission plan is executed.
 この処理P47において、サーバ100の知識情報送信部116は、車両10の制御装置200が保持する知識情報の情報量が可能な限り少なくなるように、送信情報の送信計画を策定する。具体的には、知識情報送信部116は、たとえば、プローブ情報に含まれる各々の車両10の位置情報に基いて、車両10の前方の所定範囲に含まれる道路区間に対応する送信情報を順次送信する。 In this process P47, the knowledge information transmission unit 116 of the server 100 formulates a transmission plan of transmission information so that the amount of knowledge information held by the control device 200 of the vehicle 10 is as small as possible. Specifically, for example, the knowledge information transmitting unit 116 sequentially transmits transmission information corresponding to road sections included in a predetermined range in front of the vehicle 10 based on the position information of each vehicle 10 included in the probe information. do.
 また、前述の実施形態1の図6に示す処理P16と同様に、設定部117によって情報レベルに基く送信情報の送信タイミングを設定してもよい。この場合、知識情報送信部116は、設定された送信タイミングに応じて送信情報を順次送信する。すなわち、知識情報送信部116は、たとえば、各々の車両10における自動運転プロセスの段階が、車両10の経路計画、目標軌跡計画、または、挙動もしくは制御計画のいずれかの段階であることを特定し、特定された自動運転プロセスの段階で使用される知識情報を含む送信情報を各々の車両10へ順次送信してもよい。 Further, similarly to the process P16 shown in FIG. 6 of the first embodiment described above, the setting unit 117 may set the transmission timing of the transmission information based on the information level. In this case, the knowledge information transmitting section 116 sequentially transmits the transmission information according to the set transmission timing. That is, the knowledge information transmitting unit 116 specifies, for example, that the stage of the automatic driving process in each vehicle 10 is any stage of route planning, target trajectory planning, or behavior or control planning of the vehicle 10. , the transmission information including the knowledge information used in the identified automated driving process stages may be transmitted to each vehicle 10 in turn.
 本実施形態において、知識情報生成部114は、たとえば、実施形態1で説明した表2に示す知識情報の項目に送信期限を追加する。表2に示すIDが1の知識情報の送信期限は、たとえば、道路IDがR1の通行止めの道路を含まない経路への変更が円滑に実施できるように、道路IDがR1の道路に接続する道路IDがR0の道路の最後の分岐点の100m手前に設定される。 In this embodiment, the knowledge information generation unit 114 adds a transmission deadline to the items of knowledge information shown in Table 2 described in the first embodiment, for example. The deadline for sending knowledge information with an ID of 1 shown in Table 2 is, for example, a road connected to the road with the road ID of R1 so that the route can be smoothly changed to a route that does not include the road with the road ID of R1 that is closed to traffic. It is set 100 m before the last branch point of the road with ID R0.
 次に、サーバ100は、知識情報を送信する処理P48を実行する。この処理P48において、知識情報送信部116は、車両10から取得したプローブ情報に基く位置情報を参照し、その位置情報が前の処理P47で策定した送信計画に適合した場合に、その送信計画に基く知識情報を含む送信情報を車両10の制御装置200へ送信する。以上により、サーバ100は、図10に示す処理フローP4を終了させ、所定の周期で処理フローP4を繰り返し実行する。 Next, the server 100 executes the process P48 of transmitting knowledge information. In this process P48, the knowledge information transmission unit 116 refers to the position information based on the probe information acquired from the vehicle 10, and if the position information matches the transmission plan formulated in the previous process P47, The transmission information including the knowledge information based thereon is transmitted to the control device 200 of the vehicle 10 . As described above, the server 100 terminates the processing flow P4 shown in FIG. 10 and repeatedly executes the processing flow P4 at a predetermined cycle.
 図11は、本実施形態の制御装置200による車両10の自動運転処理の流れを示すフロー図である。各々の車両10に搭載された制御装置200は、前述の実施形態1と同様に、たとえば、各々の車両10の新たな目的地が設定されると、図11に示す処理フローP5を開始して、経路を計画する処理P51を実行する。この処理P31において、制御装置200の経路生成部201は、前述の実施形態1と同様に、現在地から目的地までの経路情報を生成する。 FIG. 11 is a flow chart showing the flow of automatic driving processing of the vehicle 10 by the control device 200 of this embodiment. For example, when a new destination for each vehicle 10 is set, the control device 200 mounted on each vehicle 10 starts the processing flow P5 shown in FIG. , a process P51 for planning a route is executed. In this process P31, the route generation unit 201 of the control device 200 generates route information from the current location to the destination, as in the first embodiment described above.
 次に、制御装置200は、車両10の目標軌跡を生成する処理P52と、車両10の走行制御を行う処理P53を実行する。処理P52において、目標軌跡生成部204は、前の処理P51で計画された車両10の経路に対して車両10の目標軌跡を生成する。また、処理P53において、走行制御部205は、たとえば、車両10を目標軌跡T1に沿って走行させるための動作指令を生成して、駆動指令部206へ出力する。 Next, the control device 200 executes a process P52 for generating the target trajectory of the vehicle 10 and a process P53 for controlling the running of the vehicle 10 . In process P52, the target trajectory generator 204 generates a target trajectory of the vehicle 10 for the route of the vehicle 10 planned in the previous process P51. Further, in process P53, travel control unit 205 generates, for example, an operation command for causing vehicle 10 to travel along target trajectory T1, and outputs it to drive command unit 206. FIG.
 駆動指令部206は、走行制御部205から入力された動作指令に基いて車両10の各部のアクチュエータを作動させる。これにより、駆動指令部206は、車両10のアクセル、ブレーキ、ステアリング、および変速機などを制御して、車両10を目標軌跡に沿って自律的に走行させることができる。 The drive command unit 206 operates the actuators of each part of the vehicle 10 based on the operation commands input from the travel control unit 205 . Accordingly, drive command unit 206 can control the accelerator, brake, steering, transmission, and the like of vehicle 10 to autonomously drive vehicle 10 along the target trajectory.
 次に、制御装置200は、プローブ情報を送信する処理P54と、知識情報を取得する処理P55を実行する。処理P54において、情報送受信部203は、センサ12によって検出されて記録部202によって記憶装置13に記録されたプローブ情報13cを、通信装置11を介してサーバ100へ送信する。また、処理P55において、情報送受信部203は、通信装置11を介して、サーバ100から適切な送信タイミングで順次送信された送信情報を受信し、送信情報に含まれる知識情報を取得して、記憶装置13の知識情報データベース13aに記録する。 Next, the control device 200 executes a process P54 of transmitting probe information and a process P55 of acquiring knowledge information. In process P<b>54 , the information transmitting/receiving unit 203 transmits the probe information 13 c detected by the sensor 12 and recorded in the storage device 13 by the recording unit 202 to the server 100 via the communication device 11 . Further, in process P55, the information transmitting/receiving unit 203 receives transmission information sequentially transmitted from the server 100 at appropriate transmission timing via the communication device 11, acquires knowledge information included in the transmission information, and stores it. It is recorded in the knowledge information database 13a of the device 13. FIG.
 次に、制御装置200は、前の処理P55で取得した知識情報が、車両10の経路に影響を与えるか否か、すなわち、知識情報の情報レベルが1であるか否かを判定する処理P56を実行する。この処理P56において、走行制御部205が、知識情報の情報レベルが1であること(YES)を判定すると、制御装置200は、再度、経路を計画する処理P51を実行する。 Next, the control device 200 determines whether or not the knowledge information acquired in the previous process P55 affects the route of the vehicle 10, i.e., whether or not the information level of the knowledge information is 1 (process P56). to run. In this process P56, when the travel control unit 205 determines that the information level of the knowledge information is 1 (YES), the control device 200 executes the process P51 of planning the route again.
 この場合、制御装置200の経路生成部201は、高精度地図情報13bの道路情報、車両10の現在地および目的地、ならびに知識情報に基いて、車両10の新たな経路情報を生成する。一方、処理P56において、走行制御部205が、知識情報の情報レベルが1でないこと(NO)を判定すると、制御装置200は、車両10が目的地に到着したか否かを判定する処理P57を実行する。 In this case, the route generation unit 201 of the control device 200 generates new route information for the vehicle 10 based on the road information in the high-precision map information 13b, the current location and destination of the vehicle 10, and knowledge information. On the other hand, when the driving control unit 205 determines in the process P56 that the information level of the knowledge information is not 1 (NO), the control device 200 performs the process P57 of determining whether or not the vehicle 10 has arrived at the destination. Execute.
 この処理P57において、走行制御部205は、センサ12から取得する車両10の位置情報に基いて、車両10が目的地に到着したか否かを判定する。制御装置200は、車両10が目的地に到着するまで処理P52から処理P57までを繰り返し、車両10が目的地に到着すると図11に示す処理フローP5を終了させる。 In this process P57, the travel control unit 205 determines whether or not the vehicle 10 has arrived at the destination based on the position information of the vehicle 10 acquired from the sensor 12. Control device 200 repeats processing P52 to processing P57 until vehicle 10 arrives at the destination, and terminates processing flow P5 shown in FIG. 11 when vehicle 10 arrives at the destination.
 図12は、本実施形態の目標軌跡生成部204による目標軌跡T1の生成例を示す平面図である。図12では、知識情報を使用しない場合の車両10の目標軌跡T0と、知識情報の内容に基く目標軌跡T1とにおいて、通常走行を実線で表し、徐行を破線で表している。本実施形態の制御装置200は、サーバ100から送信された送信情報を受信した後に目標軌跡を生成することで、送信情報に含まれる知識情報を反映した目標軌跡T1を生成することができる。 FIG. 12 is a plan view showing an example of generation of the target trajectory T1 by the target trajectory generation unit 204 of this embodiment. In FIG. 12, in the target trajectory T0 of the vehicle 10 when the knowledge information is not used and the target trajectory T1 based on the content of the knowledge information, normal running is indicated by a solid line and slowing is indicated by a broken line. By generating the target trajectory after receiving the transmission information transmitted from the server 100, the control device 200 of the present embodiment can generate the target trajectory T1 reflecting the knowledge information included in the transmission information.
 たとえば、前述の表2に示すIDが3の知識情報が、図12に示す区間IDがS21の片側一車線の道路区間の知識情報であるとする。この道路区間では、毎日、終日にわたって、車線L1の位置X2,Y2に車両10の速度を低減させるためのバンプBが設けられており、車両10がこの道路区間の車線L1を走行するとする。 For example, assume that the knowledge information with an ID of 3 shown in Table 2 above is the knowledge information of a one-lane road section with a section ID of S21 shown in FIG. In this road section, bumps B for reducing the speed of the vehicle 10 are provided at positions X2 and Y2 of the lane L1 all day every day, and the vehicle 10 runs on the lane L1 of this road section.
 この場合、目標軌跡生成部204は、この道路区間において、表2の区間IDがS21の道路区間の知識情報に基いて、車線L1を時速9km以上で走行する車両10を、バンプBが設けられている地点X2,Y2の5m手前で徐行させる目標軌跡T1を生成する。これにより、車両10のセンサ12によってバンプBを検出してから車両10を減速させる目標軌跡T0と比較して、急な減速を回避して車両10を安全かつ快適に走行させることが可能になる。 In this case, the target trajectory generation unit 204 determines the vehicle 10 traveling in the lane L1 at a speed of 9 km/h or more in this road section based on the knowledge information of the road section with the section ID of S21 in Table 2. A target trajectory T1 is generated 5 m before the points X2 and Y2 where the vehicle is moving slowly. As a result, compared with the target locus T0 in which the vehicle 10 is decelerated after the bump B is detected by the sensor 12 of the vehicle 10, it is possible to avoid sudden deceleration and drive the vehicle 10 safely and comfortably. .
 以上説明したように、本実施形態のサーバ100において、知識情報送信部116は、プローブ情報に含まれる各々の車両10の位置情報に基いて、車両10の前方の所定範囲に含まれる道路区間に対応する送信情報を順次送信する。このような構成により、車両10の安全かつ快適な自動運転のために必要な詳細な知識情報を、車両10で必要とされる時に必要最小限の情報量で提供することが可能になる。 As described above, in the server 100 of the present embodiment, the knowledge information transmission unit 116, based on the position information of each vehicle 10 included in the probe information, moves to a road section included in a predetermined range in front of the vehicle 10. The corresponding transmission information is transmitted sequentially. With such a configuration, it is possible to provide detailed knowledge information necessary for safe and comfortable automatic driving of the vehicle 10 with the minimum necessary amount of information when the vehicle 10 needs it.
 また、本実施形態のサーバ100において、知識情報送信部116は、各々の車両10における自動運転プロセスの段階が、車両10の経路計画、目標軌跡計画、または、挙動もしくは制御計画のいずれかの段階であることを特定する。さらに、知識情報送信部116は、特定された自動運転プロセスの段階で使用される知識情報を含む送信情報を各々の車両10へ送信する。このような構成によっても、車両10の安全かつ快適な自動運転のために必要な詳細な知識情報を、車両10で必要とされる時に必要最小限の情報量で提供することが可能になる。 In the server 100 of the present embodiment, the knowledge information transmission unit 116 determines whether the stage of the automatic driving process in each vehicle 10 is route planning, target trajectory planning, or behavior or control planning of the vehicle 10. to be specified. Further, the knowledge information transmission unit 116 transmits transmission information including knowledge information used in the specified stage of the automated driving process to each vehicle 10 . With such a configuration as well, it is possible to provide detailed knowledge information required for safe and comfortable automatic driving of the vehicle 10 with the minimum required amount of information when the vehicle 10 needs it.
 以上説明したように、本実施形態によれば、自動運転車の経路計画、目標軌跡計画、および制御計画に利用可能な適切な情報量の知識情報を提供するサーバ100と、その知識情報を受信して車両10を制御する制御装置200と、これらのサーバ100および制御装置200を含む自動運転支援システム300を提供することができる。 As described above, according to the present embodiment, the server 100 that provides an appropriate amount of knowledge information that can be used for route planning, target trajectory planning, and control planning for an autonomous vehicle, and receives the knowledge information. It is possible to provide a control device 200 that controls the vehicle 10 by doing so, and an automatic driving support system 300 that includes the server 100 and the control device 200 .
[実施形態3]
 次に、前述の実施形態1の図1から図6および図8を援用し、図13を参照して、本開示に係るサーバ、制御装置、および自動運転支援システムの実施形態3を説明する。
[Embodiment 3]
Next, a third embodiment of the server, the control device, and the automatic driving support system according to the present disclosure will be described with reference to FIG. 13 with reference to FIGS.
 本実施形態のサーバ100、制御装置200、および自動運転支援システム300は、主にサーバ100の道路区間抽出部113の処理が、前述の実施形態1のサーバ100、制御装置200、および自動運転支援システム300と異なっている。本実施形態のサーバ100、制御装置200、および自動運転支援システム300のその他の構成は、前述の実施形態1のサーバ100、制御装置200、および自動運転支援システム300の構成と同様であるので、同様の部分には同一の符号を付して説明を省略する。 In the server 100, the control device 200, and the automatic driving support system 300 of the present embodiment, the processing of the road section extraction unit 113 of the server 100 is mainly performed by the server 100, the control device 200, and the automatic driving support system of the first embodiment. It differs from system 300 . Other configurations of the server 100, the control device 200, and the automatic driving support system 300 of this embodiment are the same as the configurations of the server 100, the control device 200, and the automatic driving support system 300 of the first embodiment. The same reference numerals are assigned to the same parts, and the description thereof is omitted.
 サーバ100は、たとえば、図2に示す環境情報取得部118を備えている。環境情報取得部118は、各々の車両10の計画された経路に含まれる各々の道路の外部環境に関する環境情報を取得する。ここで、環境情報は、たとえば、天気、温度、および湿度に関する情報を含む。また、環境情報は、たとえば、ネットワーク接続環境に関する情報を含んでもよい。環境情報取得部118は、たとえば、インターネット回線INETを介してサーバ100の外部から環境情報を取得する。 The server 100 includes, for example, the environment information acquisition unit 118 shown in FIG. The environment information acquisition unit 118 acquires environment information about the external environment of each road included in the planned route of each vehicle 10 . Here, environmental information includes, for example, information on weather, temperature, and humidity. The environment information may also include, for example, information about the network connection environment. The environment information acquisition unit 118 acquires environment information from outside the server 100 via, for example, the Internet line INET.
 図13は、本実施形態のサーバ100による知識情報配信処理の流れを示すフロー図である。サーバ100は、図13に示す処理フローP6を開始すると、各々の車両10に搭載された制御装置200から、各々の車両10の目的地までの経路情報を取得する処理P61を実行する。この処理P61において、たとえば、サーバ100の道路区間抽出部113は、各々の車両10に搭載された制御装置200から道路識別子、区間識別子、およびノードを含む経路情報を取得する。 FIG. 13 is a flow diagram showing the flow of knowledge information distribution processing by the server 100 of this embodiment. When the processing flow P6 shown in FIG. 13 is started, the server 100 executes a processing P61 of acquiring route information to the destination of each vehicle 10 from the control device 200 mounted on each vehicle 10 . In this process P61, for example, the road segment extraction unit 113 of the server 100 acquires route information including road identifiers, segment identifiers, and nodes from the control device 200 mounted on each vehicle 10 .
 次に、サーバ100は、プローブ情報を取得する処理P62を実行する。この処理P62において、たとえば、サーバ100のプローブ情報解析部111は、各々の車両10に搭載された制御装置200からセンサ12の検出結果に基くプローブ情報を取得する。プローブ情報は、たとえば、位置、速度、加速度、角速度、および角加速度などの車両10の走行情報を含む。 Next, the server 100 executes the process P62 of acquiring probe information. In this process P<b>62 , for example, the probe information analysis unit 111 of the server 100 acquires probe information based on the detection result of the sensor 12 from the control device 200 mounted on each vehicle 10 . The probe information includes, for example, travel information of the vehicle 10 such as position, speed, acceleration, angular velocity, and angular acceleration.
 次に、サーバ100は、環境情報を取得する処理P63と、道路形状を取得する処理P64を実行する。処理P63において、たとえば、サーバ100の環境情報取得部118は、処理P61で道路区間抽出部113が取得した経路情報に含まれる道路の外部環境に関する環境情報を取得する。処理P64において、たとえば、サーバ100の道路情報取得部112は、処理P61で道路区間抽出部113が取得した経路情報に含まれる道路の道路形状を、高精度地図情報122から取得する。道路形状は、たとえば、道路の勾配、カーブ、トンネルの有無などの道路に関する属性を含む。 Next, the server 100 executes a process P63 for acquiring environmental information and a process P64 for acquiring road geometry. In process P63, for example, the environment information acquisition unit 118 of the server 100 acquires environment information related to the external environment of the road included in the route information acquired by the road segment extraction unit 113 in process P61. In process P64, for example, the road information acquisition unit 112 of the server 100 acquires from the high definition map information 122 the road shape of the road included in the route information acquired by the road segment extraction unit 113 in process P61. The road shape includes road-related attributes such as road gradient, curve, presence/absence of tunnels, and the like.
 次に、サーバ100は、道路区間を修正する処理P65を実行する。この処理P65において、たとえば、サーバ100の道路区間抽出部113は、プローブ情報に基く各々の車両10の走行情報と、各々の車両10が走行する各々の道路の環境情報と、各々の車両10が走行する各々の道路の道路情報に含まれる道路形状とに基いて、道路区間の長さを設定する。 Next, the server 100 executes processing P65 for correcting the road section. In this process P65, for example, the road section extraction unit 113 of the server 100 extracts travel information of each vehicle 10 based on the probe information, environment information of each road on which each vehicle 10 travels, The length of the road section is set based on the road shape included in the road information of each road on which the vehicle travels.
 より具体的には、たとえば、車両10の速度に応じて道路区間の長さを変更することで、適切なタイミングで知識情報を車両10へ送信できるようにする。また、天気によって車両10のセンサ12の検出精度が低下する場合には、道路区間の長さを長くして車両10へより多くの知識情報を送信できるようにする。また、トンネルが多く車両10の制御装置200のネットワークへの接続が困難な複数の道路区間を一つの道路区間としてまとめて事前に知識情報を送信するようにしてもよい。 More specifically, for example, by changing the length of the road section according to the speed of the vehicle 10, knowledge information can be transmitted to the vehicle 10 at appropriate timing. In addition, when the detection accuracy of the sensor 12 of the vehicle 10 deteriorates due to the weather, the length of the road section is lengthened so that more knowledge information can be transmitted to the vehicle 10 . In addition, a plurality of road sections in which there are many tunnels and it is difficult for the control device 200 of the vehicle 10 to connect to the network may be treated as one road section and the knowledge information may be transmitted in advance.
 次に、サーバ100は、送信情報の情報量が閾値以下であるか否かを判定する処理P66を実行する。この処理P66において、サーバ100の送信情報生成部115は、前の処理P65において修正された道路区間ごとの知識情報を一つの送信パケットとして生成する。また、サーバ100の知識情報送信部116は、各々の送信パケットの情報量が閾値以下であるか否かを判定する。 Next, the server 100 executes the process P66 of determining whether or not the information amount of the transmission information is equal to or less than the threshold. In this process P66, the transmission information generation unit 115 of the server 100 generates the knowledge information for each road section corrected in the previous process P65 as one transmission packet. Also, the knowledge information transmission unit 116 of the server 100 determines whether or not the information amount of each transmission packet is equal to or less than the threshold.
 この処理P66において、知識情報送信部116が閾値よりも送信パケット情報量が大きいこと(NO)を判定すると、サーバ100は、処理P66を繰り返し、送信パケットの情報量を減少させる。一方、知識情報送信部116が送信パケットの情報量が閾値以下であること(YES)を判定すると、サーバ100は、前述の実施形態2の処理P47および処理P48と同様に、送信計画を策定する処理P67と、知識情報を送信する処理P68を実行して、図13に示す処理フローP6を終了させる。 In this process P66, if the knowledge information transmitting unit 116 determines that the amount of information in the transmitted packet is larger than the threshold (NO), the server 100 repeats the process P66 to reduce the amount of information in the transmitted packet. On the other hand, when the knowledge information transmission unit 116 determines that the amount of information in the transmission packet is equal to or less than the threshold (YES), the server 100 formulates a transmission plan in the same manner as the processes P47 and P48 of the second embodiment described above. Processing P67 and processing P68 for transmitting knowledge information are executed, and the processing flow P6 shown in FIG. 13 is terminated.
 以上のように、本実施形態のサーバ100は、各々の車両10の計画された経路に含まれる各々の道路の外部環境に関する環境情報を取得する環境情報取得部118をさらに備えている。また、道路区間抽出部113は、プローブ情報に基く各々の車両10の走行情報と、各々の車両10が走行する各々の道路の環境情報と、各々の車両10が走行する各々の道路の道路情報に含まれる道路形状とに基いて、道路区間の長さを設定する。 As described above, the server 100 of the present embodiment further includes the environment information acquisition unit 118 that acquires environment information about the external environment of each road included in the planned route of each vehicle 10 . Further, the road segment extraction unit 113 extracts travel information of each vehicle 10 based on the probe information, environment information of each road on which each vehicle 10 travels, and road information of each road on which each vehicle 10 travels. Set the length of the road section based on the road geometry included in .
 このような構成により、本実施形態のサーバ100によれば、前述の実施形態1のサーバ100と同様の効果を奏することができるだけでなく、車両10の走行情報、道路の環境情報および道路形状の影響による信頼性低下を抑制することができる。したがって、本実施形態によれば、自動運転車の経路計画、目標軌跡計画、および制御計画に利用可能な適切な情報量の知識情報を提供するサーバ100と、その知識情報を受信して車両10を制御する制御装置200と、これらのサーバ100および制御装置200を含む自動運転支援システム300を提供することができる。 With such a configuration, according to the server 100 of the present embodiment, not only can the same effects as the server 100 of the first embodiment described above be obtained, but also the travel information of the vehicle 10, the environment information of the road, and the shape of the road can be obtained. A decrease in reliability due to influence can be suppressed. Therefore, according to this embodiment, the server 100 that provides an appropriate amount of knowledge information that can be used for route planning, target trajectory planning, and control planning for an autonomous vehicle, and the vehicle 10 that receives the knowledge information and an automatic driving support system 300 including the server 100 and the control device 200 can be provided.
 以上、図面を用いて本開示に係るサーバ、制御装置、および自動運転支援システムの実施形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲における設計変更等があっても、それらは本開示に含まれるものである。 The embodiments of the server, the control device, and the automatic driving support system according to the present disclosure have been described above in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and the gist of the present disclosure Even if there are design changes etc. within the range not departing from the above, they are included in the present disclosure.
10      車両
11      通信装置
12      センサ
100     サーバ
111     プローブ情報解析部
112     道路情報取得部
113     道路区間抽出部
114     知識情報生成部
115     送信情報生成部
116     知識情報送信部
117     設定部
118     環境情報取得部
200     制御装置
201     経路生成部
202     記録部
203     情報送受信部
204     目標軌跡生成部
205     走行制御部
300     自動運転支援システム
R1~R4   道路識別子
S11~S41 区間識別子
T1      目標軌跡
10 vehicle 11 communication device 12 sensor 100 server 111 probe information analysis unit 112 road information acquisition unit 113 road section extraction unit 114 knowledge information generation unit 115 transmission information generation unit 116 knowledge information transmission unit 117 setting unit 118 environment information acquisition unit 200 control device 201 Route generation unit 202 Recording unit 203 Information transmission/reception unit 204 Target locus generation unit 205 Travel control unit 300 Automatic driving support system R1 to R4 Road identifiers S11 to S41 Section identifier T1 Target locus

Claims (7)

  1.  複数の車両から取得されるプローブ情報を解析するプローブ情報解析部と、
     道路網を構成する各々の道路の道路識別子を含む道路情報を取得する道路情報取得部と、
     複数の前記道路をより細分化した複数の道路区間に区画し、各々の前記道路区間の前記道路情報に区間識別子を付与する道路区間抽出部と、
     前記プローブ情報の解析結果に基いて前記区間識別子ごとに各々の前記車両の運転行動に影響を与える知識情報を生成する知識情報生成部と、
     各々の前記車両の目的地までの経路に含まれる前記道路区間の前記区間識別子に対応する前記知識情報を抽出して各々の前記車両の受信条件に対応する送信情報を生成する送信情報生成部と、
     前記送信情報を各々の前記車両へ送信する知識情報送信部と、
     を備えるサーバ。
    A probe information analysis unit that analyzes probe information acquired from a plurality of vehicles;
    a road information acquisition unit that acquires road information including a road identifier of each road that constitutes a road network;
    a road section extracting unit that partitions the plurality of roads into a plurality of road sections that are more subdivided and assigns a section identifier to the road information of each of the road sections;
    a knowledge information generating unit that generates knowledge information that affects the driving behavior of each vehicle for each of the section identifiers based on the analysis result of the probe information;
    a transmission information generating unit for extracting the knowledge information corresponding to the section identifier of the road section included in the route to the destination of each vehicle and generating transmission information corresponding to the reception conditions of each vehicle; ,
    a knowledge information transmission unit that transmits the transmission information to each of the vehicles;
    A server with
  2.  前記プローブ情報の解析結果が前記車両の前記経路、目標軌跡、または、挙動もしくは制御に与える影響に基く情報レベルと、該情報レベルに基く前記送信情報の送信タイミングとを設定する、設定部をさらに備える、請求項1に記載のサーバ。 a setting unit configured to set an information level based on the influence of the analysis result of the probe information on the route, target trajectory, behavior or control of the vehicle, and a transmission timing of the transmission information based on the information level; 2. The server of claim 1, comprising:
  3.  各々の前記車両の計画された経路に含まれる各々の前記道路の外部環境に関する環境情報を取得する環境情報取得部をさらに備え、
     前記道路区間抽出部は、前記プローブ情報に基く各々の前記車両の走行情報と、各々の前記車両が走行する各々の前記道路の前記環境情報と、各々の前記車両が走行する各々の前記道路の前記道路情報に含まれる道路形状とに基いて、前記道路区間の長さを設定する、請求項1に記載のサーバ。
    further comprising an environment information acquisition unit that acquires environment information regarding the external environment of each of the roads included in the planned route of each of the vehicles;
    The road segment extraction unit is configured to extract travel information of each vehicle based on the probe information, environment information of each road on which each vehicle travels, and information on each road on which each vehicle travels. 2. The server according to claim 1, which sets the length of said road section based on the road shape included in said road information.
  4.  前記知識情報送信部は、前記プローブ情報に含まれる各々の前記車両の位置情報に基いて、前記車両の前方の所定範囲に含まれる前記道路区間に対応する前記送信情報を順次送信する、請求項1に記載のサーバ。 3. The knowledge information transmitting unit sequentially transmits the transmission information corresponding to the road section included in a predetermined range in front of the vehicle based on the position information of each vehicle included in the probe information. 1. The server according to 1.
  5.  前記知識情報送信部は、各々の前記車両における自動運転プロセスの段階が、前記車両の経路計画、目標軌跡計画、または、挙動もしくは制御計画のいずれかの段階であることを特定し、特定された前記自動運転プロセスの段階で使用される前記知識情報を含む前記送信情報を各々の前記車両へ送信する、請求項1に記載のサーバ。 The knowledge information transmitting unit specifies that the stage of the automated driving process in each of the vehicles is any stage of path planning, target trajectory planning, or behavior or control planning of the vehicle, and 2. The server of claim 1, wherein said transmission information including said knowledge information used in stages of said automated driving process is transmitted to each of said vehicles.
  6.  車両に搭載される制御装置であって、
     道路網を構成する各々の道路の道路識別子を含む道路情報と、前記車両の現在地および目的地の位置情報とに基いて、前記現在地から前記目的地までの経路情報を生成する経路生成部と、
     前記車両の運転行動を検出するセンサの検出結果に基くプローブ情報を記録する記録部と、
     前記車両に搭載された通信装置を介して前記経路情報および前記プローブ情報をサーバへ送信するとともに、前記サーバから前記運転行動に影響を与える知識情報を受信する情報送受信部と、
     前記道路情報と前記経路情報と前記知識情報とに基いて複数の前記道路をより細分化した複数の道路区間の各々における前記車両の目標軌跡を生成する目標軌跡生成部と、
     前記目標軌跡に沿って前記車両を走行させる走行制御部と、
     を備える制御装置。
    A control device mounted on a vehicle,
    a route generation unit that generates route information from the current location to the destination based on road information including road identifiers of roads that make up a road network and location information of the current location and destination of the vehicle;
    a recording unit that records probe information based on detection results of a sensor that detects driving behavior of the vehicle;
    an information transmitting/receiving unit that transmits the route information and the probe information to a server via a communication device mounted on the vehicle and receives knowledge information that affects the driving behavior from the server;
    a target trajectory generation unit that generates a target trajectory of the vehicle in each of a plurality of road sections obtained by subdividing the plurality of roads based on the road information, the route information, and the knowledge information;
    a travel control unit that causes the vehicle to travel along the target trajectory;
    A control device comprising:
  7.  請求項1から請求項5のいずれか一項に記載のサーバと、複数の前記車両に搭載される複数の制御装置とを備える自動運転支援システムであって、
     前記制御装置は、
     各々の前記道路の前記道路情報と、前記車両の現在地および目的地の位置情報とに基いて、前記現在地から前記目的地までの経路情報を生成する経路生成部と、
     前記車両の運転行動を検出するセンサの検出結果に基く前記プローブ情報を記録する記録部と、
     前記車両に搭載された通信装置を介して前記経路情報および前記プローブ情報を前記サーバへ送信するとともに、前記サーバから前記知識情報を受信する情報送受信部と、
     前記道路情報と前記経路情報と前記知識情報とに基いて各々の前記道路区間における前記車両の目標軌跡を生成する目標軌跡生成部と、
     前記目標軌跡に沿って前記車両を走行させる走行制御部と、
     を備える自動運転支援システム。
    An automatic driving support system comprising the server according to any one of claims 1 to 5 and a plurality of control devices mounted on a plurality of the vehicles,
    The control device is
    a route generation unit that generates route information from the current location to the destination based on the road information of each of the roads and position information of the vehicle's current location and destination;
    a recording unit that records the probe information based on the detection result of the sensor that detects the driving behavior of the vehicle;
    an information transmission/reception unit that transmits the route information and the probe information to the server via a communication device mounted on the vehicle and receives the knowledge information from the server;
    a target trajectory generation unit that generates a target trajectory of the vehicle in each of the road sections based on the road information, the route information, and the knowledge information;
    a travel control unit that causes the vehicle to travel along the target trajectory;
    An automated driving support system.
PCT/JP2022/030635 2022-02-04 2022-08-10 Server, control device, and self-driving support system WO2023148999A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022016024 2022-02-04
JP2022-016024 2022-07-27

Publications (1)

Publication Number Publication Date
WO2023148999A1 true WO2023148999A1 (en) 2023-08-10

Family

ID=87551992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030635 WO2023148999A1 (en) 2022-02-04 2022-08-10 Server, control device, and self-driving support system

Country Status (1)

Country Link
WO (1) WO2023148999A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019109675A (en) * 2017-12-18 2019-07-04 株式会社豊田中央研究所 Driving behavior data generation device and driving behavior database
JP2020015494A (en) * 2018-07-27 2020-01-30 バイドゥ ユーエスエイ エルエルシーBaidu USA LLC Adjusting speed along path for autonomous driving vehicles
JP2021117914A (en) * 2020-01-29 2021-08-10 住友電気工業株式会社 Transmitter, system, receiver, method, and transmission processing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019109675A (en) * 2017-12-18 2019-07-04 株式会社豊田中央研究所 Driving behavior data generation device and driving behavior database
JP2020015494A (en) * 2018-07-27 2020-01-30 バイドゥ ユーエスエイ エルエルシーBaidu USA LLC Adjusting speed along path for autonomous driving vehicles
JP2021117914A (en) * 2020-01-29 2021-08-10 住友電気工業株式会社 Transmitter, system, receiver, method, and transmission processing device

Similar Documents

Publication Publication Date Title
CN110164122B (en) Vehicle queuing system control for intersections
CN111123933B (en) Vehicle track planning method and device, intelligent driving area controller and intelligent vehicle
CN110603497B (en) Autonomous vehicle and method of autonomous vehicle operation management control
KR101371866B1 (en) Autonomous driving service apparatus based on driving information database and method thereof
EP3750144A1 (en) Traffic light signal adjustment notification improvement
JP2008276286A (en) Travel information collecting device and method for learning travel information
EP2610782A1 (en) Method for planning the route of a vehicle
CN113168762B (en) Vehicle travel support method, vehicle travel support device, and automatic driving system
US20170043761A1 (en) Movement assistance apparatus, movement assistance method, and driving assistance system
US11618455B2 (en) Driving data used to improve infrastructure
CN110568847B (en) Intelligent control system and method for vehicle, vehicle-mounted equipment and storage medium
US20220068052A1 (en) Simulation of autonomous vehicle to improve safety and reliability of autonomous vehicle
US20220207208A1 (en) Variable system for simulating operation of autonomous vehicles
CN115769287A (en) Automatic driving device and vehicle control method
Hoque et al. Parallel closed-loop connected vehicle simulator for large-scale transportation network management: Challenges, issues, and solution approaches
Ansariyar et al. Investigating the effects of gradual deployment of market penetration rates (MPR) of connected vehicles on delay time and fuel consumption
CN110544389A (en) automatic driving control method, device and system
CN112639913B (en) Vehicle control device and method, automatic driving vehicle development system, and storage medium
WO2023148999A1 (en) Server, control device, and self-driving support system
US20220223038A1 (en) Vehicle control system and server device
US20230182734A1 (en) Vehicle localization
US20230080281A1 (en) Precautionary observation zone for vehicle routing
US11539621B2 (en) Controller area network messages in an autonomous vehicle
WO2021253374A1 (en) V2X Message For Platooning
CN114407915A (en) Method and device for processing operation design domain ODD and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924904

Country of ref document: EP

Kind code of ref document: A1