WO2023148929A1 - Container sorting system - Google Patents

Container sorting system Download PDF

Info

Publication number
WO2023148929A1
WO2023148929A1 PCT/JP2022/004454 JP2022004454W WO2023148929A1 WO 2023148929 A1 WO2023148929 A1 WO 2023148929A1 JP 2022004454 W JP2022004454 W JP 2022004454W WO 2023148929 A1 WO2023148929 A1 WO 2023148929A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
extracted
unit
bottle
extraction
Prior art date
Application number
PCT/JP2022/004454
Other languages
French (fr)
Japanese (ja)
Inventor
凜大朗 清水
義人 平井
雅信 本江
Original Assignee
株式会社Pfu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Pfu filed Critical 株式会社Pfu
Priority to PCT/JP2022/004454 priority Critical patent/WO2023148929A1/en
Publication of WO2023148929A1 publication Critical patent/WO2023148929A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/16Sorting according to weight

Definitions

  • the present disclosure relates to a container sorting system.
  • sorting waste is performed manually. While sorting waste is a simple task, it places a heavy burden on workers who sort waste (hereafter sometimes referred to as "sorters"). A device (sometimes referred to hereinafter as a “waste sorter”) has been developed to do so.
  • JP-A-11-193105 JP 2019-181573 A Japanese Patent Publication No. 2021-523026
  • the waste sorting device When the waste sorting device is made to do the work that the sorting worker was doing instead of the sorting worker, the waste sorting device recognizes each waste flowing on the belt conveyor, and based on the recognition result, the suction pad etc., to extract the desired waste (hereinafter sometimes referred to as "desired waste") from the waste group flowing on the belt conveyor.
  • the desired waste is a bottle
  • a bottle in which an object such as a liquid is present (hereinafter sometimes referred to as a "bottle with an object") is not subject to recycling and therefore excluded from collection.
  • this disclosure proposes a technique that can avoid collection of non-recyclable containers.
  • a container sorting system of the present disclosure includes a camera, a recognition section, a first extraction section, a first determination section, and a control section.
  • the camera captures an image of the waste group along the transport path along which the waste group is transported.
  • the recognition unit recognizes a desired container included in the waste group based on the image.
  • the first extractor extracts the desired container from the waste group conveyed on the conveying path.
  • the first determination unit determines whether or not an object exists in the extracted container, which is the desired container that has already been extracted.
  • the control unit controls whether or not to cause the first extraction unit to return the extracted container to the conveying path based on whether or not the object exists in the extracted container. .
  • FIG. 1 is a diagram illustrating a configuration example of a container sorting system according to Example 1 of the present disclosure.
  • FIG. 2 is a diagram illustrating a configuration example of a control device and a sorting device according to Example 1 of the present disclosure.
  • FIG. 3 is a diagram illustrating a configuration example of an extraction unit according to the first embodiment of the present disclosure;
  • FIG. 4 is a diagram illustrating a configuration example of an extraction unit according to the first embodiment of the present disclosure;
  • FIG. 5 is a diagram illustrating an operation example of an image recognition unit and an area centroid calculation unit according to the first embodiment of the present disclosure;
  • FIG. 6 is a diagram illustrating an operation example of the space determination unit according to the first embodiment of the present disclosure;
  • FIG. 1 is a diagram illustrating a configuration example of a container sorting system according to Example 1 of the present disclosure.
  • FIG. 2 is a diagram illustrating a configuration example of a control device and a sorting device according to Example 1 of the present disclosure.
  • FIG. 7 is a diagram illustrating an operation example of a space determination unit according to the first embodiment of the present disclosure
  • FIG. 8 is a diagram illustrating an operation example of the space determination unit according to the first embodiment of the present disclosure
  • FIG. 9 is a diagram illustrating an example of a presence/absence determination table according to the first embodiment of the present disclosure
  • FIG. 10 is a diagram illustrating a configuration example of a control device and a sorting device according to a second embodiment of the present disclosure
  • FIG. 11 is a diagram illustrating an operation example of a presence/absence determination unit according to the second embodiment of the present disclosure
  • FIG. 12 is a diagram illustrating a configuration example of a container sorting system according to Example 3 of the present disclosure.
  • FIG. 13 is a diagram illustrating a configuration example of a control device and a sorting device according to a third embodiment of the present disclosure;
  • FIG. 1 is a diagram illustrating a configuration example of a container sorting system according to Example 1 of the present disclosure.
  • the container sorting system 1 includes a control device 10, a camera 20, a sorting device 30, a belt conveyor 40, a first collection box 51, a second collection box 52, a first disposal box 53, and a second disposal bin 54 .
  • the sorting device 30 has a first extraction section 31a and a second extraction section 31b.
  • the control device 10, camera 20, and sorting device 30 are connected to each other via a network.
  • the container sorting system 1 shown in FIG. That is, hereinafter, the case where the objects to be sorted by the container sorting system 1 are waste will be described as an example. Further, the case where the desired waste is a bottle will be described below as an example.
  • a bottle is an example of a container, and the technology disclosed herein can also be applied to containers other than bottles. In other words, objects to be sorted by the container sorting system 1 are not limited to bottles, and the container sorting system 1 can be used for various containers.
  • the belt conveyor 40 conveys the waste group placed on the belt conveyor 40 in the conveyance direction CD (+X direction). That is, the belt conveyor 40 forms a transport path along which the waste group is transported in the transport direction CD.
  • the waste group includes bottles and objects other than bottles.
  • the bottles included in the waste group are bottles of desired waste (hereinafter sometimes referred to as “desired bottles”) and bottles of undesired waste (hereinafter sometimes referred to as “undesired bottles”). ) and
  • the camera 20 is arranged above the belt conveyor 40 on which the waste group is conveyed, has a predetermined angle of view, and photographs a predetermined area on the upper surface of the belt conveyor 40 from above the belt conveyor 40 at a constant frame rate. do. Therefore, the image captured by the camera 20 is an image of the waste group (hereinafter sometimes referred to as a "waste group image"). A waste group image is transmitted from the camera 20 to the control device 10 .
  • the control device 10 controls the operation of the sorting device 30 based on the waste group image, and causes the first extraction unit 31a or the second extraction unit 31b to extract the desired bottle from among the bottles included in the waste group.
  • the sorting device 30 sorts the bottles by extracting them from the waste group conveyed in the conveying direction CD by the belt conveyor 40, and removes the extracted bottles outside the belt conveyor 40. transport.
  • the sorting device 30 extracts bottles from the waste group using the first extraction part 31a and the second extraction part 31b.
  • the first collection box 51 , the second collection box 52 and the first disposal box 53 are installed along the side of the belt conveyor 40 .
  • the first collection box 51 is installed within the movable range of the first extraction part 31a in the X-axis direction
  • the second collection box 52 is installed within the movable range of the second extraction part 31b in the X-axis direction.
  • the first disposal box 53 is installed within the movable range of the first extractor 31a and the second extractor 31b in the X-axis direction.
  • the second disposal box 54 is arranged at the end of the belt conveyor 40 in the X-axis direction, and the first collection box 51, the second collection box 52, and the first disposal The waste remaining on the belt conveyor 40 without being thrown into the box 53 is thrown from the belt conveyor 40 into the second disposal box 54.
  • FIG. 2 is a diagram illustrating a configuration example of a control device and a sorting device according to Example 1 of the present disclosure.
  • the control device 10 has an image processing section 11 , a presence/absence determination section 15 , a learned model storage section 16 , and a sorting device control section 17 .
  • the image processing unit 11 has an image recognition unit 12 , an area centroid calculation unit 13 , and a space determination unit 14 .
  • the sorting device 30 has a first extraction section 31a and a second extraction section 31b.
  • the first extraction part 31a has a first measurement part 61a
  • the second extraction part 31b has a second measurement part 61b.
  • a waste group image captured by the camera 20 is input to the image processing section 11 .
  • the first measurement unit 61a measures the weight of the desired bottle extracted by the first extraction unit 31a
  • the second measurement unit 61b measures the weight of the desired bottle extracted by the second extraction unit 31b.
  • the first extraction section 31a and the second extraction section 31b may be collectively referred to as the "extraction section 31”
  • the first measurement section 61a and the second measurement section 61b may be collectively referred to as the "measurement section 61".
  • ⁇ Structure of extraction unit> 3 and 4 are diagrams illustrating configuration examples of an extraction unit according to the first embodiment of the present disclosure.
  • the extractor 31 is formed using a suction pad 311, as shown in FIGS.
  • the sorting device 30 sorts out the desired bottles from the waste group conveyed on the belt conveyor 40 using the extraction unit 31 under the control of the sorting device control unit 17 .
  • the extraction unit 31 is movable in the ⁇ X, ⁇ Y, and ⁇ Z directions, and lifts the bottle extracted from the waste group in the +Z direction and moves it in the ⁇ X and ⁇ Y directions. , first collection box 51 , second collection box 52 or first disposal box 53 .
  • the first extraction unit 31a puts the desired bottle extracted from the waste group into either the first collection box 51 or the first disposal box 53, and the second extraction unit 31b extracts it from the waste group.
  • the desired bottle thus obtained is put into either the second collection box 52 or the first disposal box 53 .
  • the second extraction unit 31b is arranged downstream of the first extraction unit 31a in the conveying direction CD, and after the desired bottles are extracted by the first extraction unit 31a, the waste bottles are conveyed on the belt conveyor 40. Extract other desired bottles from the object group.
  • a strain sensor 611 is installed on the column 312 of the extractor 31 .
  • the strain sensor 611 measures the weight of the extracted bottle by detecting the extension amount of the support.
  • the strain sensor 611 is an example of the measuring section 61 .
  • strain sensors 612a, 612b, 612c, and 612d are installed on the arm 313 of the extraction unit 31, as shown in FIG. Since the deformation amount of the arm 313 (hereinafter sometimes referred to as "arm deformation amount") changes according to the weight of the extracted bottle, strain sensors 612a, 612b, 612c, and 612d detect the arm deformation amount. Measure the weight of the brewed bottle.
  • the strain sensors 612 a , 612 b , 612 c and 612 d are examples of the measuring section 61 .
  • FIG. 5 is a diagram illustrating an operation example of an image recognition unit and an area centroid calculation unit according to the first embodiment of the present disclosure
  • the image recognition unit 12 recognizes the existence area and type of bottles included in the waste group by image recognition based on the waste group image.
  • the bottle presence area recognized by the image recognition unit 12 may be referred to as a "bottle area”
  • the type of bottle recognized by the image recognition unit 12 may be referred to as a "bottle type”.
  • the image recognition unit 12 uses the learned model stored in the learned model storage unit 16 to recognize the bottle area and the bottle type.
  • the image recognition unit 12 converts the bottle area and bottle type into the image of the bottle existing in the waste group image (hereinafter sometimes referred to as the "bottle image”) as information indicating the characteristics of the bottle (hereinafter referred to as (sometimes referred to as “feature information”).
  • the image recognition unit 12 gives feature information including label information LA indicating the bottle type and contour information CO indicating the bottle area to the bottle image BI.
  • Bottle types are classified into, for example, small energy drink bottles, medium energy drink bottles, large energy drink bottles, wine bottles, champagne bottles, and other bottles.
  • the contour information CO consists of a plurality of coordinate points (x0, y0), (x1, y1), . formed by That is, an area surrounded by lines connecting a plurality of coordinate points (x0, y0), (x1, y1), .
  • the area center of gravity calculation unit 13 calculates the coordinates of the area center of gravity of the bottle (hereinafter sometimes referred to as "area center of gravity coordinates").
  • the area-center-of-gravity calculator 13 calculates the coordinates of the center of gravity of the bottle region recognized by the image recognition unit 12 as the area-center-of-gravity coordinates.
  • the area-center-of-gravity calculator 13 calculates area-center-of-gravity coordinates AC(Xa, Ya) in the bottle area based on the contour information CO.
  • the area barycentric calculation unit 13 sets the area barycentric coordinates to the coordinates indicating the extraction point when the extraction unit 31 extracts the bottle (hereinafter sometimes referred to as "extraction point coordinates"), and calculates the set extraction point coordinates. is output to the sorting device control unit 17 .
  • the extraction point coordinates set by the area barycentric calculation unit 13 are based on the coordinate system of the waste group image, that is, the coordinate system of the camera 20 (hereinafter referred to as the “camera coordinates in a coordinate system). Therefore, the sorting device control unit 17 converts the extraction point coordinates in the camera coordinate system set by the area barycenter calculation unit 13 into the extraction point coordinates in the coordinate system of the sorting device 30 . The sorting device control unit 17 outputs a control signal including the extracted point coordinates after conversion to the sorting device 30 . Further, the sorting device control unit 17 causes the second extraction unit 31b to extract bottles that cannot be extracted by the first extraction unit 31a.
  • the sorting device 30 moves the extraction unit 31 directly above the extraction point coordinates indicated by the control signal, and the extraction unit 31 uses the extraction point coordinates as the extraction point to extract waste from the waste group conveyed on the belt conveyor 40 . Extract the desired bottle from When the extraction part 31 is formed using the suction pad 311 , the extraction part 31 extracts the bottle by suction of the suction pad 311 with the extraction point on the bottle being the suction position of the suction pad 311 with respect to the bottle.
  • ⁇ Operation of the space determination unit> 6, 7, and 8 are diagrams illustrating an operation example of the space determination unit according to the first embodiment of the present disclosure.
  • the waste group image I1 shown in FIG. 6 includes bottle images BI11, BI12, BI13, BI14, and BI15.
  • a bottle image BI11 is an image of a desired bottle
  • bottle images BI12, BI13, BI14, and BI15 are images of an undesired bottle.
  • the space determination unit 14 sets bounding boxes BB11, BB12, BB13, BB14, and BB15 to the bottle images BI11, BI12, BI13, BI14, and BI15, respectively.
  • the space determination unit 14 detects the length of the long side and the length of the short side of the bounding box BB11 set in the bottle image BI11 among the bounding boxes BB11, BB12, BB13, BB14, and BB15, thereby determining the bounding box.
  • the size of box BB11 is detected. Since the bottle B11 that is the subject of the bottle image BI11 is the desired bottle, the bottle B11 is extracted from the waste group by the first extraction unit 31a or the second extraction unit 31b.
  • a waste group image I2a shown in FIG. 7 is a waste group image taken after the waste group image I1 (FIG. 6) was taken.
  • the waste group image I2a shown in FIG. 7 includes bottle images BI21, BI22, BI23, BI24, and BI25.
  • the space determination unit 14 sets bounding boxes BB21, BB22, BB23, BB24, and BB25 to the bottle images BI21, BI22, BI23, BI24, and BI25, respectively. Further, based on the waste group image I2a, the space determination unit 14 determines a space in which the extracted bottle can be returned between the waste groups on the belt conveyor (hereinafter sometimes referred to as "empty space"). exists.
  • the space determination unit 14 calculates the mutual distances between adjacent sides in the bounding boxes BB21, BB22, BB23, BB24, and BB25 and the waste group image I2a, thereby obtaining a rectangle having no bounding box. , the maximum space (hereinafter sometimes referred to as “maximum space”) is detected.
  • the maximum space in the waste group image I2a is the space MSa.
  • the space determination unit 14 also determines whether or not the bounding box BB11 (FIG. 6) fits within the detected maximum space MSa.
  • the space determination unit 14 determines that there is an empty space for the bottle B11 that is the subject of the bottle image BI11, and determines that the bounding box BB11 exists within the detected maximum space MSa. If the box BB11 does not fit, it is determined that there is no empty space for the bottle B11 that is the subject of the bottle image BI11. Since the bounding box BB11 (FIG. 6) fits within the maximum space MSa shown in FIG. 7, when the waste group image I2a is captured by the camera 20, the space determination unit 14 determines that there is an empty space. .
  • a waste group image I2b shown in FIG. 8 is another waste group image taken after the waste group image I1 (FIG. 6) was taken.
  • the waste group image I2b shown in FIG. 8 includes bottle images BI31, BI32, BI33, BI34, BI35, and BI36.
  • the space determination unit 14 sets bounding boxes BB31, BB32, BB33, BB34, BB35, and BB36 to the bottle images BI31, BI32, BI33, BI34, BI35, and BI36, respectively. Also, the space determination unit 14 determines whether or not there is an empty space based on the waste group image I2b.
  • the space determination unit 14 detects the maximum space by calculating the mutual distances between adjacent sides in the bounding boxes BB31, BB32, BB33, BB34, BB35, and BB36 and the waste group image I2b. .
  • the maximum space in the waste group image I2b is the space MSb.
  • the space determination unit 14 also determines whether or not the bounding box BB11 (FIG. 6) fits within the detected maximum space MSb. When the bounding box BB11 fits within the detected maximum space MSb, the space determination unit 14 determines that there is an empty space for the bottle B11 that is the subject of the bottle image BI11, and determines that the bounding box BB11 exists within the detected maximum space MSb. If the box BB11 does not fit, it is determined that there is no empty space for the bottle B11 that is the subject of the bottle image BI11. Since the bounding box BB11 (FIG. 6) cannot fit within the maximum space MSb shown in FIG. judge.
  • FIG. 9 is a diagram illustrating an example of a presence/absence determination table according to the first embodiment of the present disclosure.
  • the presence/absence determination unit 15 has a presence/absence determination table TA1 shown in FIG.
  • the presence/absence determination table TA1 associations between bottle types and threshold values THA[g] are set in advance. Based on the bottle type recognized by the image recognition unit 12 and the bottle weight measured by the measurement unit 61, the presence/absence determination unit 15 determines whether the extracted bottle is an object-existing bottle (that is, the extracted bottle (whether or not there is an object in).
  • the presence/absence determination unit 15 uses the presence/absence determination table TA1 to determine that when the bottle type of the extracted bottle is a "small nutritional drink bottle", the weight of the extracted bottle is equal to or greater than the threshold THA of 74 [g]. Determine that the bottle is an object-existing bottle, and determine that the extracted bottle is not an object-existing bottle (that is, there is no object in the extracted bottle) when the bottle weight is less than the threshold value THA of 74 [g]. . Further, for example, the presence/absence determination unit 15 uses the presence/absence determination table TA1 to extract when the bottle type of the extracted bottle is a "medium-sized nutritional drink bottle” and the weight of the bottle is equal to or greater than the threshold value THA of 102 [g].
  • the presence/absence determination unit 15 uses the presence/absence determination table TA1 to extract when the bottle type of the extracted bottle is a “large nutritional drink bottle” and the weight of the bottle is equal to or greater than the threshold THA of 144 [g]. It is determined that the finished bottle is an object-existing bottle, and that the extracted bottle is not an object-existing bottle when the bottle weight is less than the threshold value THA of 144 [g].
  • the presence/absence determination unit 15 uses the presence/absence determination table TA1 to determine that when the bottle type of the extracted bottle is "wine bottle", the weight of the extracted bottle is equal to or greater than the threshold value THA of 400 [g]. is determined to be an object-existing bottle, and the extracted bottle is determined not to be an object-existing bottle when the bottle weight is less than the threshold value THA of 400 [g]. Further, for example, the presence/absence determination unit 15 uses the presence/absence determination table TA1 to determine that when the bottle type of the extracted bottle is "champagne bottle", the weight of the extracted bottle is equal to or greater than the threshold value THA of 590 [g]. is determined to be an object-existing bottle, and the extracted bottle is determined not to be an object-existing bottle when the bottle weight is less than the threshold THA of 590 [g].
  • the weight of the empty small-sized energy drink bottle is less than 70 [g]
  • the weight of the empty medium-sized energy drink bottle is less than 98 [g]
  • the weight of an empty large nutritional drink bottle is less than 140 [g]
  • the weight of an empty wine bottle is less than 380 [g]
  • the weight of an empty champagne bottle is less than 570 [g].
  • the sorting device control unit 17 controls whether or not to cause the extraction unit 31 to return the extracted bottle to the belt conveyor 40 based on whether the extracted bottle is an object-existing bottle.
  • the sorting device control unit 17 first collects the extracted bottle.
  • the extraction unit 31 is made to perform an operation of throwing into the box 51 or the second collection box 52 .
  • the sorting device control unit 17 causes the first extraction unit 31a to put the extracted bottles into the first collection box 51, and causes the second extraction unit 31b to put the extracted bottles into the second collection box 52. let it happen
  • the sorting device control unit 17 moves the extracted bottle to the belt.
  • the extraction unit 31 is caused to perform the operation of returning to the conveyor 40 .
  • the second extraction section 31b is arranged downstream of the first extraction section 31a in the conveying direction CD, the extracted bottle can be placed on the belt conveyor 40 even though there is no empty space on the belt conveyor 40.
  • the first extraction unit 31a performs the operation of returning to The position of the desired bottle in the image may be shifted. If the position of the desired bottle to be extracted by the second extraction unit 31b deviates from the position of the desired bottle in the waste group image captured by the camera 20, it becomes difficult for the second extraction unit 31b to extract the desired bottle. . Therefore, when the space determination unit 14 determines that there is an empty space, the sorting device control unit 17 causes the first extraction unit 31a to return the extracted bottle to the empty space.
  • the desired bottle returned to the empty space by the first extractor 31 a is conveyed by the belt conveyor 40 and thrown into the second disposal box 54 .
  • the sorting device control unit 17 does not cause the first extraction unit 31a to return the extracted bottles onto the belt conveyor 40.
  • the first extraction unit 31a is made to perform the operation of throwing the extracted bottle into the first disposal box 53.
  • the position of the desired bottle to be extracted by the second extraction unit 31b is photographed by the camera 20 by throwing the extracted bottle into the first disposal box 53 by the first extraction unit 31a when there is no empty space. It is possible to prevent the bottle from deviating from the desired position in the waste group image.
  • the sorting device control unit 17 controls whether or not there is an empty space (In other words, the second extraction unit 31b is caused to return the extracted bottle onto the belt conveyor 40 (regardless of whether there is an empty space).
  • the first embodiment has been described above.
  • FIG. 10 is a diagram illustrating a configuration example of a control device and a sorting device according to a second embodiment of the present disclosure
  • the control device 10 has an image processing section 11 , a presence/absence determination section 15 , a learned model storage section 16 , and a sorting device control section 17 .
  • the image processing unit 11 has an image recognition unit 12 , an area centroid calculation unit 13 , a space determination unit 14 , and a cross-sectional area calculation unit 18 .
  • the sorting device 30 has a first extraction section 31a and a second extraction section 31b.
  • the first extraction part 31a has a first measurement part 61a
  • the second extraction part 31b has a second measurement part 61b.
  • the cross-sectional area calculation unit 18 calculates the cross-sectional area of the desired bottle (hereinafter sometimes referred to as “bottle cross-sectional area”) based on the bottle area recognized by the image recognition unit 12 .
  • the cross-sectional area calculator 18 calculates the cross-sectional area of the bottle by multiplying the area of the bottle region by a predetermined coefficient corresponding to the image size of the waste group image.
  • FIG. 11 is a diagram illustrating an operation example of a presence/absence determination unit according to the second embodiment of the present disclosure.
  • the presence/absence determination unit 15 determines whether the extracted bottle is an object-existing bottle (that is, the extracted bottle). (whether or not there is an object in the used bottle).
  • the presence/absence determination unit 15 has a linear function graph ( FIG. 11 ) showing the correspondence relationship between the bottle cross-sectional area [cm 2 ] and the threshold value THB [g]. Calculate THB. For example, when the bottle cross-sectional area is 100 [cm 2 ], the presence/absence determining unit 15 calculates the threshold THB as 350 [g].
  • the presence/absence determining unit 15 determines that the extracted bottle is an object-existing bottle when the bottle weight is equal to or greater than the threshold THB, and determines that the extracted bottle is not an object-existing bottle when the bottle weight is less than the threshold THB. There is no object in the extracted bottle).
  • FIG. 12 is a diagram illustrating a configuration example of a container sorting system according to Example 3 of the present disclosure.
  • the first disposal box 53 is not provided, and the belt conveyor 40 has three areas: the first area R1a, the second area R2, and the third area R1b. It differs from the container sorting system 1 of the first embodiment.
  • illustration of the control device 10, the camera 20, and the sorting device 30 of the container sorting system 2 is omitted for easy understanding of the explanation.
  • FIG. 13 is a diagram illustrating a configuration example of a control device and a sorting device according to a third embodiment of the present disclosure.
  • the control device 10 has an image processing section 11 , a presence/absence determination section 15 , a learned model storage section 16 , and a sorting device control section 17 .
  • the image processing unit 11 has an image recognition unit 12 and an area centroid calculation unit 13, but does not have a space determination unit 14 (FIG. 2).
  • the sorting device 30 has a first extraction section 31a and a second extraction section 31b.
  • the first extraction part 31a has a first measurement part 61a
  • the second extraction part 31b has a second measurement part 61b.
  • the first region R1a is a predetermined region at one end of the belt conveyor 40 in the Y-axis direction
  • the third region R1b is a predetermined region at the other end of the belt conveyor 40 in the Y-axis direction. is a predetermined area at the end of the .
  • the first region R1a and the third region R1b may be collectively referred to as "edge regions”.
  • the second region R2 is a region other than the end regions in the Y-axis direction of the belt conveyor 40 .
  • the second area R2 is preset as an area where the waste group can be placed, while the end area is preset as an area where the waste group is prohibited. Thus, there is always free space in the edge region.
  • the sorting device control unit 17 causes the extraction unit 31 to return the extracted bottle to the end region of the belt conveyor 40 when the presence/absence determination unit 15 determines that the extracted bottle is an object-existing bottle.
  • the third embodiment has been described above.
  • Example 4 If the object in the desired bottle is liquid, the liquid shakes when the desired bottle is extracted from the waste group, resulting in a large error in the weight of the bottle measured by the measuring unit 61.
  • the measuring unit 61 measures the weight of the desired bottle extracted by the extracting unit 31 multiple times.
  • the measurement unit 61 also determines the average value of bottle weights measured a plurality of times (hereinafter, sometimes referred to as “bottle weight average value”) as the final bottle weight.
  • the sorting device control unit 17 controls whether or not to cause the extraction unit 31 to return the extracted bottles to the belt conveyor 40 based on the bottle weight average value.
  • the sorting device control unit 17 instructs the extraction unit 31 to return the extracted bottle to the belt conveyor 40 when the difference between the maximum value and the minimum value of bottle weights measured multiple times is equal to or greater than the threshold THC. Instead, the extraction unit 31 is caused to perform the operation of throwing the extracted bottle into the first disposal box 53 . When this causes a large error in the bottle weight measured by the measurement unit 61, it is difficult for the control device 10 to determine whether or not the extracted bottle is an object-existing bottle. In addition, it is possible for the sorting operator to confirm whether or not the extracted bottle is an object-existing bottle.
  • the fourth embodiment has been described above.
  • the measurement unit 61 increases the number of times the bottle weight is measured compared to when the desired bottle does not have a cap. For example, the measuring unit 61 measures the weight of a desired bottle without a cap five times and determines the average value of the weights of the five measurements as the final bottle weight, whereas the weight of the desired bottle with a cap is determined. The weight is measured 10 times and the average value of the 10 weight measurements is determined as the final bottle weight.
  • the fifth embodiment has been described above.
  • the trained model storage unit 16 is implemented as hardware, for example, by memory or storage.
  • the image processing unit 11, the presence/absence determination unit 15, and the sorting device control unit 17 include hardware such as a CPU (Central Processing Unit), DSP (Digital Signal Processor), FPGA (Field Programmable Gate Array), ASIC (Application Specific Integrated Circuit) or the like.
  • all or part of each processing in the above description in the image processing unit 11, presence/absence determination unit 15, and sorting device control unit 17 may be realized by causing a processor to execute a program corresponding to each processing.
  • a program corresponding to each process described above may be stored in the memory of the control device 10, and the program may be read from the memory and executed by the processor.
  • the program is stored in a program server connected to the control device 10 via an arbitrary network, downloaded from the program server to the control device 10 and executed, or stored in a recording medium readable by the control device 10. and may be read from the recording medium and executed.
  • Recording media readable by the control device 10 include, for example, memory cards, USB memories, SD cards, flexible disks, magneto-optical disks, CD-ROMs, and portable storage media such as DVDs.
  • Examples 1 to 6 as an example, the case where the sorting device 30 has two extraction units, the first extraction unit 31a and the second extraction unit 31b, has been described.
  • the technology disclosed is also applicable to a container sorting system in which the sorting device 30 has a single extractor.
  • the disclosed technology can also be applied to a container sorting system in which the sorting device 30 has three or more extraction units.
  • the container sorting system of the present disclosure includes a camera (camera 20 of the embodiment), a recognition unit (image recognition unit 12 of the embodiment), and a first extraction It has a section (first extraction section 31a in the embodiment), a first determination section (presence/absence determination section 15 in the embodiment), and a control section (sorting device control section 17 in the embodiment).
  • the camera captures an image of the waste group on the transport path (belt conveyor 40 in the embodiment) along which the waste group is transported.
  • the recognition unit recognizes a desired container included in the waste group based on the image captured by the camera.
  • the first extractor extracts a desired container from the waste group conveyed on the conveying path.
  • the first determination unit determines whether an object exists in the extracted container, which is the desired extracted container.
  • the control unit controls whether or not to cause the first extraction unit to return the extracted container to the conveying path based on whether or not there is an object in the extracted container.
  • the container sorting system of the present disclosure has a measurement unit (first measurement unit 61a in the embodiment) that measures the weight of the extracted container.
  • the recognition unit recognizes the type of desired container based on the image captured by the camera.
  • the first determination unit determines that an object exists in the extracted container when the measured weight is equal to or greater than a threshold value corresponding to the recognized type.
  • the container sorting system of the present disclosure has a calculation unit (cross-sectional area calculation unit 18 in the embodiment), and the recognition unit recognizes the existence area of the desired container.
  • the calculation unit calculates the cross-sectional area of the desired container based on the recognized presence area.
  • the first determination unit determines that an object exists in the extracted container when the measured weight is equal to or greater than a threshold value corresponding to the calculated cross-sectional area.
  • control unit causes the first extraction unit to return the extracted container to the conveying path when it is determined that there is an object in the extracted container.
  • control unit when it is determined that an object exists in the extracted container, the control unit causes the first extraction unit to return the extracted container to a predetermined area at the end of the conveying path.
  • the container sorting system of the present disclosure has a second determination unit (space determination unit 14 in the embodiment).
  • the second determination unit can return the extracted container between the waste groups based on the image of the waste group captured by the camera after the desired container is extracted by the first extraction unit. Determine whether there is free space.
  • the control unit causes the first extraction unit to return the extracted container to the empty space when it is determined that the empty space exists.
  • the container sorting system of the present disclosure has a second extraction unit (second extraction unit 31b in the embodiment).
  • the second extraction part is arranged downstream of the first extraction part in the conveying path, and after the desired container is extracted by the first extraction part, other desired wastes are extracted from the waste group conveyed in the conveying path. extract container.
  • the control unit causes the first extraction unit to return the extracted container to the empty space.
  • control unit when it is determined that there is no empty space, the control unit does not cause the first extraction unit to return the extracted container to the conveying path, and places the extracted container in a predetermined box (in the embodiment).
  • the first extractor is made to perform the operation of throwing it into the first disposal box 53).
  • control unit causes the extracted container to return to the transport path regardless of whether there is an empty space. Let the one extraction part do it.
  • the measurement unit measures the weight of the extracted container multiple times.
  • the control unit does not cause the first extraction unit to return the extracted container to the conveying path when the difference between the maximum value and the minimum value of the weight measured a plurality of times is equal to or greater than the threshold value, and into a predetermined box.

Abstract

Provided is a container sorting system, wherein: a camera 20 captures images of a waste group on a conveyor belt conveying the waste group; an image recognition unit 12 recognizes a desired container in the waste group based on the images captured by the camera 20; a first extraction unit 31a extracts the desired container from the waste group conveyed on the conveyor belt; a presence/absence determination unit 15 determines whether any object is present in the extracted desired container; and a sorting device control unit 17 controls whether to have the first extraction unit 31a perform an operation to return the extracted container onto the conveyor belt based on whether any object is present in the extracted container.

Description

容器選別システムContainer sorting system
 本開示は、容器選別システムに関する。 The present disclosure relates to a container sorting system.
 廃棄物処理場では日々大量の廃棄物がベルトコンベア上を流れ、処理されている。廃棄物が処理される現場では人の手によって廃棄物の選別作業が行われている。廃棄物の選別作業は単純作業である一方で、廃棄物の選別を行う作業者(以下では「選別作業者」と呼ぶことがある)の負担が大きいことから、廃棄物の選別を自動的に行う装置(以下では「廃棄物選別装置」と呼ぶことがある)が開発されている。 At the waste disposal site, a large amount of waste flows on a belt conveyor and is processed every day. At sites where waste is processed, sorting of waste is performed manually. While sorting waste is a simple task, it places a heavy burden on workers who sort waste (hereafter sometimes referred to as "sorters"). A device (sometimes referred to hereinafter as a "waste sorter") has been developed to do so.
特開平11-193105号公報JP-A-11-193105 特開2019-181573号公報JP 2019-181573 A 特表2021-523026号公報Japanese Patent Publication No. 2021-523026
 選別作業者が行っていた作業を選別作業者に代わって廃棄物選別装置にやらせる場合、廃棄物選別装置が、ベルトコンベア上を流れる各々の廃棄物を認識し、認識結果に基づいて吸引パッド等を用いて、ベルトコンベア上を流れる廃棄物群から所望の廃棄物(以下では「所望廃棄物」と呼ぶことがある)を抽出することが考えられる。 When the waste sorting device is made to do the work that the sorting worker was doing instead of the sorting worker, the waste sorting device recognizes each waste flowing on the belt conveyor, and based on the recognition result, the suction pad etc., to extract the desired waste (hereinafter sometimes referred to as "desired waste") from the waste group flowing on the belt conveyor.
 ここで、所望廃棄物がボトルである場合、ボトルの中に飲み残しの液体等が存在することがある。ボトルの中に液体等の物体が存在するボトル(以下では「物体存在ボトル」と呼ぶことがある)は、リサイクルの対象外となっているため、回収対象から除外されている。 Here, if the desired waste is a bottle, there may be leftover liquid or the like in the bottle. A bottle in which an object such as a liquid is present (hereinafter sometimes referred to as a "bottle with an object") is not subject to recycling and therefore excluded from collection.
 そこで、本開示では、リサイクル対象外の容器の回収を回避することができる技術を提案する。 Therefore, this disclosure proposes a technique that can avoid collection of non-recyclable containers.
 本開示の容器選別システムは、カメラと、認識部と、第一抽出部と、第一判定部と、制御部とを有する。前記カメラは、廃棄物群が搬送される搬送路において前記廃棄物群の画像を撮影する。前記認識部は、前記画像に基づいて、前記廃棄物群に含まれる所望の容器を認識する。前記第一抽出部は、前記搬送路を搬送される前記廃棄物群の中から前記所望の容器を抽出する。前記第一判定部は、抽出済みの前記所望の容器である抽出済容器の中に物体が存在するか否かを判定する。前記制御部は、前記抽出済容器の中に前記物体が存在するか否かに基づいて、前記抽出済容器を前記搬送路に戻す動作を前記第一抽出部に行わせるか否かを制御する。 A container sorting system of the present disclosure includes a camera, a recognition section, a first extraction section, a first determination section, and a control section. The camera captures an image of the waste group along the transport path along which the waste group is transported. The recognition unit recognizes a desired container included in the waste group based on the image. The first extractor extracts the desired container from the waste group conveyed on the conveying path. The first determination unit determines whether or not an object exists in the extracted container, which is the desired container that has already been extracted. The control unit controls whether or not to cause the first extraction unit to return the extracted container to the conveying path based on whether or not the object exists in the extracted container. .
 開示の技術によれば、リサイクル対象外の容器の回収を回避することができる。 According to the disclosed technology, it is possible to avoid collecting non-recyclable containers.
図1は、本開示の実施例1の容器選別システムの構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a container sorting system according to Example 1 of the present disclosure. 図2は、本開示の実施例1の制御装置及び選別装置の構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of a control device and a sorting device according to Example 1 of the present disclosure. 図3は、本開示の実施例1の抽出部の構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of an extraction unit according to the first embodiment of the present disclosure; 図4は、本開示の実施例1の抽出部の構成例を示す図である。FIG. 4 is a diagram illustrating a configuration example of an extraction unit according to the first embodiment of the present disclosure; 図5は、本開示の実施例1の画像認識部及び面積重心算出部の動作例を示す図である。FIG. 5 is a diagram illustrating an operation example of an image recognition unit and an area centroid calculation unit according to the first embodiment of the present disclosure; 図6は、本開示の実施例1のスペース判定部の動作例を示す図である。FIG. 6 is a diagram illustrating an operation example of the space determination unit according to the first embodiment of the present disclosure; 図7は、本開示の実施例1のスペース判定部の動作例を示す図である。FIG. 7 is a diagram illustrating an operation example of a space determination unit according to the first embodiment of the present disclosure; 図8は、本開示の実施例1のスペース判定部の動作例を示す図である。FIG. 8 is a diagram illustrating an operation example of the space determination unit according to the first embodiment of the present disclosure; 図9は、本開示の実施例1の存否判定テーブルの一例を示す図である。FIG. 9 is a diagram illustrating an example of a presence/absence determination table according to the first embodiment of the present disclosure; 図10は、本開示の実施例2の制御装置及び選別装置の構成例を示す図である。FIG. 10 is a diagram illustrating a configuration example of a control device and a sorting device according to a second embodiment of the present disclosure; 図11は、本開示の実施例2の存否判定部の動作例を示す図である。FIG. 11 is a diagram illustrating an operation example of a presence/absence determination unit according to the second embodiment of the present disclosure; 図12は、本開示の実施例3の容器選別システムの構成例を示す図である。FIG. 12 is a diagram illustrating a configuration example of a container sorting system according to Example 3 of the present disclosure. 図13は、本開示の実施例3の制御装置及び選別装置の構成例を示す図である。FIG. 13 is a diagram illustrating a configuration example of a control device and a sorting device according to a third embodiment of the present disclosure;
 以下、本開示の実施例を図面に基づいて説明する。以下の実施例において同一の構成には同一の符号を付す。 Hereinafter, embodiments of the present disclosure will be described based on the drawings. The same symbols are attached to the same configurations in the following embodiments.
 [実施例1]
 <容器選別システムの構成>
 図1は、本開示の実施例1の容器選別システムの構成例を示す図である。
[Example 1]
<Configuration of container sorting system>
FIG. 1 is a diagram illustrating a configuration example of a container sorting system according to Example 1 of the present disclosure.
 図1において、容器選別システム1は、制御装置10と、カメラ20と、選別装置30と、ベルトコンベア40と、第一回収箱51と、第二回収箱52と、第一廃棄箱53と、第二廃棄箱54とを有する。選別装置30は、第一抽出部31aと、第二抽出部31bとを有する。制御装置10と、カメラ20と、選別装置30とは、ネットワークを介して互いに接続される。 1, the container sorting system 1 includes a control device 10, a camera 20, a sorting device 30, a belt conveyor 40, a first collection box 51, a second collection box 52, a first disposal box 53, and a second disposal bin 54 . The sorting device 30 has a first extraction section 31a and a second extraction section 31b. The control device 10, camera 20, and sorting device 30 are connected to each other via a network.
 以下では、図1に示す容器選別システム1が、ベルトコンベア40上を廃棄物群が流れる廃棄物処理場に設置される場合を一例に挙げて説明する。つまり、以下では、容器選別システム1の選別対象の物体が廃棄物である場合を一例に挙げて説明する。また、以下では、所望廃棄物がボトルである場合を一例に挙げて説明する。ボトルは容器の一例であり、開示の技術は、ボトル以外の容器に対しても適用可能である。つまり、容器選別システム1の選別対象の物体はボトルに限定されず、容器選別システム1は様々な容器に対して使用可能である。 In the following, a case where the container sorting system 1 shown in FIG. That is, hereinafter, the case where the objects to be sorted by the container sorting system 1 are waste will be described as an example. Further, the case where the desired waste is a bottle will be described below as an example. A bottle is an example of a container, and the technology disclosed herein can also be applied to containers other than bottles. In other words, objects to be sorted by the container sorting system 1 are not limited to bottles, and the container sorting system 1 can be used for various containers.
 ベルトコンベア40は、ベルトコンベア40上に載せられた廃棄物群を搬送方向CD(+X方向)へ搬送する。つまり、ベルトコンベア40は、搬送方向CDへ廃棄物群が搬送される搬送路を形成する。廃棄物群には、ボトルと、ボトル以外の物体とが含まれる。また、廃棄物群に含まれるボトルは、所望廃棄物のボトル(以下では「所望ボトル」と呼ぶことがある)と、非所望廃棄物のボトル(以下では「非所望ボトル」と呼ぶことがある)とに大別される。 The belt conveyor 40 conveys the waste group placed on the belt conveyor 40 in the conveyance direction CD (+X direction). That is, the belt conveyor 40 forms a transport path along which the waste group is transported in the transport direction CD. The waste group includes bottles and objects other than bottles. The bottles included in the waste group are bottles of desired waste (hereinafter sometimes referred to as "desired bottles") and bottles of undesired waste (hereinafter sometimes referred to as "undesired bottles"). ) and
 カメラ20は、廃棄物群が搬送されるベルトコンベア40の上方に配置され、所定の画角を有し、ベルトコンベア40の上方からベルトコンベア40の上面における所定の領域を一定のフレームレートで撮影する。よって、カメラ20によって撮影された画像は、廃棄物群の画像(以下では「廃棄物群画像」と呼ぶことがある)となる。廃棄物群画像は、カメラ20から制御装置10へ送信される。 The camera 20 is arranged above the belt conveyor 40 on which the waste group is conveyed, has a predetermined angle of view, and photographs a predetermined area on the upper surface of the belt conveyor 40 from above the belt conveyor 40 at a constant frame rate. do. Therefore, the image captured by the camera 20 is an image of the waste group (hereinafter sometimes referred to as a "waste group image"). A waste group image is transmitted from the camera 20 to the control device 10 .
 制御装置10は、廃棄物群画像に基づいて選別装置30の動作を制御し、廃棄物群に含まれるボトルのうち所望ボトルを第一抽出部31aまたは第二抽出部31bに抽出させる。 The control device 10 controls the operation of the sorting device 30 based on the waste group image, and causes the first extraction unit 31a or the second extraction unit 31b to extract the desired bottle from among the bottles included in the waste group.
 選別装置30は、制御装置10の制御の下で、ベルトコンベア40によって搬送方向CDへ搬送される廃棄物群の中からボトルを抽出することにより選別し、抽出したボトルをベルトコンベア40の外に運搬する。選別装置30は、第一抽出部31a及び第二抽出部31bを用いて廃棄物群の中からボトルを抽出する。 Under the control of the control device 10, the sorting device 30 sorts the bottles by extracting them from the waste group conveyed in the conveying direction CD by the belt conveyor 40, and removes the extracted bottles outside the belt conveyor 40. transport. The sorting device 30 extracts bottles from the waste group using the first extraction part 31a and the second extraction part 31b.
 第一回収箱51、第二回収箱52及び第一廃棄箱53は、ベルトコンベア40の側面に沿って設置される。第一回収箱51はX軸方向において第一抽出部31aの可動範囲内に設置され、第二回収箱52はX軸方向において第二抽出部31bの可動範囲内に設置される。第一廃棄箱53は、X軸方向において第一抽出部31a及び第二抽出部31bの可動範囲内に設置される。また、第二廃棄箱54は、X軸方向においてベルトコンベア40の終端に配置され、搬送方向CDへ搬送される廃棄物群のうち、第一回収箱51、第二回収箱52及び第一廃棄箱53に投入されずにベルトコンベア40上に残った廃棄物がベルトコンベア40から第二廃棄箱54に投入される。 The first collection box 51 , the second collection box 52 and the first disposal box 53 are installed along the side of the belt conveyor 40 . The first collection box 51 is installed within the movable range of the first extraction part 31a in the X-axis direction, and the second collection box 52 is installed within the movable range of the second extraction part 31b in the X-axis direction. The first disposal box 53 is installed within the movable range of the first extractor 31a and the second extractor 31b in the X-axis direction. Further, the second disposal box 54 is arranged at the end of the belt conveyor 40 in the X-axis direction, and the first collection box 51, the second collection box 52, and the first disposal The waste remaining on the belt conveyor 40 without being thrown into the box 53 is thrown from the belt conveyor 40 into the second disposal box 54. - 特許庁
 <制御装置及び選別装置の構成>
 図2は、本開示の実施例1の制御装置及び選別装置の構成例を示す図である。図2において、制御装置10は、画像処理部11と、存否判定部15と、学習済モデル記憶部16と、選別装置制御部17とを有する。画像処理部11は、画像認識部12と、面積重心算出部13と、スペース判定部14とを有する。選別装置30は、第一抽出部31aと、第二抽出部31bとを有する。第一抽出部31aは第一測定部61aを有し、第二抽出部31bは第二測定部61bを有する。カメラ20によって撮影された廃棄物群画像は、画像処理部11に入力される。第一測定部61aは、第一抽出部31aによって抽出された所望ボトルの重量を測定し、第二測定部61bは、第二抽出部31bによって抽出された所望ボトルの重量を測定する。以下では、第一抽出部31a及び第二抽出部31bを「抽出部31」と総称し、第一測定部61a及び第二測定部61bを「測定部61」と総称することがある。
<Configuration of control device and sorting device>
FIG. 2 is a diagram illustrating a configuration example of a control device and a sorting device according to Example 1 of the present disclosure. In FIG. 2 , the control device 10 has an image processing section 11 , a presence/absence determination section 15 , a learned model storage section 16 , and a sorting device control section 17 . The image processing unit 11 has an image recognition unit 12 , an area centroid calculation unit 13 , and a space determination unit 14 . The sorting device 30 has a first extraction section 31a and a second extraction section 31b. The first extraction part 31a has a first measurement part 61a, and the second extraction part 31b has a second measurement part 61b. A waste group image captured by the camera 20 is input to the image processing section 11 . The first measurement unit 61a measures the weight of the desired bottle extracted by the first extraction unit 31a, and the second measurement unit 61b measures the weight of the desired bottle extracted by the second extraction unit 31b. Hereinafter, the first extraction section 31a and the second extraction section 31b may be collectively referred to as the "extraction section 31", and the first measurement section 61a and the second measurement section 61b may be collectively referred to as the "measurement section 61".
 <抽出部の構成>
 図3及び図4は、本開示の実施例1の抽出部の構成例を示す図である。例えば、抽出部31は、図3及び図4に示すように、吸引パッド311を用いて形成される。選別装置30は、選別装置制御部17からの制御に従って、抽出部31を用いて、ベルトコンベア40上を搬送される廃棄物群の中から所望ボトルを抽出することにより選別する。抽出部31は、±X方向、±Y方向及び±Z方向に移動可能であり、廃棄物群の中から抽出したボトルを+Z方向に持ち上げるとともに、±X方向及び±Y方向へ移動させることにより、第一回収箱51、第二回収箱52または第一廃棄箱53まで運搬する。第一抽出部31aは、廃棄物群の中から抽出した所望ボトルを第一回収箱51または第一廃棄箱53の何れかに投入し、第二抽出部31bは、廃棄物群の中から抽出した所望ボトルを第二回収箱52または第一廃棄箱53の何れかに投入する。また、第二抽出部31bは、搬送方向CDにおいて第一抽出部31aより下流側に配置されており、第一抽出部31aによる所望ボトルの抽出が行われた後にベルトコンベア40を搬送される廃棄物群の中から他の所望ボトルを抽出する。
<Structure of extraction unit>
3 and 4 are diagrams illustrating configuration examples of an extraction unit according to the first embodiment of the present disclosure. For example, the extractor 31 is formed using a suction pad 311, as shown in FIGS. The sorting device 30 sorts out the desired bottles from the waste group conveyed on the belt conveyor 40 using the extraction unit 31 under the control of the sorting device control unit 17 . The extraction unit 31 is movable in the ±X, ±Y, and ±Z directions, and lifts the bottle extracted from the waste group in the +Z direction and moves it in the ±X and ±Y directions. , first collection box 51 , second collection box 52 or first disposal box 53 . The first extraction unit 31a puts the desired bottle extracted from the waste group into either the first collection box 51 or the first disposal box 53, and the second extraction unit 31b extracts it from the waste group. The desired bottle thus obtained is put into either the second collection box 52 or the first disposal box 53 . In addition, the second extraction unit 31b is arranged downstream of the first extraction unit 31a in the conveying direction CD, and after the desired bottles are extracted by the first extraction unit 31a, the waste bottles are conveyed on the belt conveyor 40. Extract other desired bottles from the object group.
 また、図3に示すように、例えば、抽出部31の支柱312には歪みセンサ611が設置される。吸引パッド311によって廃棄物群の中から抽出されたボトル(以下では「抽出済ボトル」と呼ぶことがある)の重量(以下では「ボトル重量」と呼ぶことがある)が大きいほど、支柱312のZ軸方向での伸長量(以下では「支柱伸長量」と呼ぶことがある)が大きくなるため、歪みセンサ611は、支柱伸長量を検出することにより抽出済ボトルの重量を測定する。歪みセンサ611は測定部61の一例である。 Further, as shown in FIG. 3, for example, a strain sensor 611 is installed on the column 312 of the extractor 31 . The larger the weight of the bottle extracted from the waste group by the suction pad 311 (hereinafter sometimes referred to as the “extracted bottle”) (hereinafter sometimes referred to as the “bottle weight”), the greater the weight of the column 312 . Since the amount of extension in the Z-axis direction (hereinafter sometimes referred to as the "support extension amount") increases, the strain sensor 611 measures the weight of the extracted bottle by detecting the extension amount of the support. The strain sensor 611 is an example of the measuring section 61 .
 また例えば、図4に示すように、抽出部31のアーム313には歪みセンサ612a,612b,612c,612dが設置される。抽出済ボトルの重量に応じてアーム313の変形量(以下では「アーム変形量」と呼ぶことがある)が変化するため、歪みセンサ612a,612b,612c,612dは、アーム変形量を検出することにより抽出済ボトルの重量を測定する。歪みセンサ612a,612b,612c,612dは測定部61の一例である。 Also, for example, strain sensors 612a, 612b, 612c, and 612d are installed on the arm 313 of the extraction unit 31, as shown in FIG. Since the deformation amount of the arm 313 (hereinafter sometimes referred to as "arm deformation amount") changes according to the weight of the extracted bottle, strain sensors 612a, 612b, 612c, and 612d detect the arm deformation amount. Measure the weight of the brewed bottle. The strain sensors 612 a , 612 b , 612 c and 612 d are examples of the measuring section 61 .
 <画像認識部及び面積重心算出部の動作>
 図5は、本開示の実施例1の画像認識部及び面積重心算出部の動作例を示す図である。
<Operation of Image Recognition Unit and Area Gravity Center Calculation Unit>
FIG. 5 is a diagram illustrating an operation example of an image recognition unit and an area centroid calculation unit according to the first embodiment of the present disclosure;
 画像認識部12は、廃棄物群画像に基づく画像認識により、廃棄物群に含まれるボトルの存在領域及び種類を認識する。以下では、画像認識部12によって認識されたボトルの存在領域を「ボトル領域」と呼び、画像認識部12によって認識されたボトルの種類を「ボトル種類」と呼ぶことがある。画像認識部12は、学習済モデル記憶部16に記憶されている学習済モデルを用いて、ボトル領域及びボトル種類を認識する。画像認識部12は、廃棄物群画像の中に存在するボトルの画像(以下では「ボトル画像」と呼ぶことがある)に対して、ボトル領域及びボトル種類をボトルの特徴を示す情報(以下では「特徴情報」と呼ぶことがある)として付与する。 The image recognition unit 12 recognizes the existence area and type of bottles included in the waste group by image recognition based on the waste group image. Hereinafter, the bottle presence area recognized by the image recognition unit 12 may be referred to as a "bottle area", and the type of bottle recognized by the image recognition unit 12 may be referred to as a "bottle type". The image recognition unit 12 uses the learned model stored in the learned model storage unit 16 to recognize the bottle area and the bottle type. The image recognition unit 12 converts the bottle area and bottle type into the image of the bottle existing in the waste group image (hereinafter sometimes referred to as the "bottle image") as information indicating the characteristics of the bottle (hereinafter referred to as (sometimes referred to as “feature information”).
 例えば、画像認識部12は、図5に示すように、ボトル画像BIに対して、ボトル種類を示すラベル情報LAと、ボトル領域を示す輪郭情報COとを含む特徴情報を付与する。ボトル種類は、例えば、小型栄養ドリンクボトルと、中型栄養ドリンクボトルと、大型栄養ドリンクボトルと、ワインボトルと、シャンパンボトルと、その他のボトルとに区別される。廃棄物群に含まれるボトルのうち、小型栄養ドリンクボトル、中型栄養ドリンクボトル、大型栄養ドリンクボトル、ワインボトル、及び、シャンパンボトルが所望ボトルであり、その他のボトルが非所望ボトルである。また、矩形の廃棄物群画像の長辺をX軸、短辺をY軸として、輪郭情報COは、複数の座標点(x0,y0),(x1,y1),…,(xn,yn)で形成される。つまり、輪郭情報COを形成する複数の座標点(x0,y0),(x1,y1),…,(xn,yn)を結ぶ線で囲まれた領域がボトル領域となる。 For example, as shown in FIG. 5, the image recognition unit 12 gives feature information including label information LA indicating the bottle type and contour information CO indicating the bottle area to the bottle image BI. Bottle types are classified into, for example, small energy drink bottles, medium energy drink bottles, large energy drink bottles, wine bottles, champagne bottles, and other bottles. Among the bottles included in the waste group, small energy drink bottles, medium energy drink bottles, large energy drink bottles, wine bottles, and champagne bottles are desired bottles, and the other bottles are undesired bottles. In addition, the contour information CO consists of a plurality of coordinate points (x0, y0), (x1, y1), . formed by That is, an area surrounded by lines connecting a plurality of coordinate points (x0, y0), (x1, y1), .
 また、面積重心算出部13は、ボトルの面積重心の座標(以下では「面積重心座標」と呼ぶことがある)を算出する。面積重心算出部13は、画像認識部12によって認識されたボトル領域の重心の座標を面積重心座標として算出する。面積重心算出部13は、輪郭情報COに基づいて、ボトル領域における面積重心座標AC(Xa,Ya)を算出する。面積重心算出部13は、面積重心座標を、抽出部31によるボトルの抽出の際の抽出点を示す座標(以下では「抽出点座標」と呼ぶことがある)に設定し、設定した抽出点座標を選別装置制御部17へ出力する。 In addition, the area center of gravity calculation unit 13 calculates the coordinates of the area center of gravity of the bottle (hereinafter sometimes referred to as "area center of gravity coordinates"). The area-center-of-gravity calculator 13 calculates the coordinates of the center of gravity of the bottle region recognized by the image recognition unit 12 as the area-center-of-gravity coordinates. The area-center-of-gravity calculator 13 calculates area-center-of-gravity coordinates AC(Xa, Ya) in the bottle area based on the contour information CO. The area barycentric calculation unit 13 sets the area barycentric coordinates to the coordinates indicating the extraction point when the extraction unit 31 extracts the bottle (hereinafter sometimes referred to as "extraction point coordinates"), and calculates the set extraction point coordinates. is output to the sorting device control unit 17 .
 面積重心座標の算出は廃棄物群画像に基づいて行われるため、面積重心算出部13によって設定された抽出点座標は廃棄物群画像の座標系、つまり、カメラ20の座標系(以下では「カメラ座標系」と呼ぶことがある)における座標である。そこで、選別装置制御部17は、面積重心算出部13によって設定されたカメラ座標系の抽出点座標を選別装置30の座標系の抽出点座標に変換する。選別装置制御部17は、変換後の抽出点座標を含む制御信号を選別装置30へ出力する。また、選別装置制御部17は、第一抽出部31aによって抽出しきれないボトルを第二抽出部31bに抽出させる。 Since the area barycentric coordinates are calculated based on the waste group image, the extraction point coordinates set by the area barycentric calculation unit 13 are based on the coordinate system of the waste group image, that is, the coordinate system of the camera 20 (hereinafter referred to as the “camera coordinates in a coordinate system). Therefore, the sorting device control unit 17 converts the extraction point coordinates in the camera coordinate system set by the area barycenter calculation unit 13 into the extraction point coordinates in the coordinate system of the sorting device 30 . The sorting device control unit 17 outputs a control signal including the extracted point coordinates after conversion to the sorting device 30 . Further, the sorting device control unit 17 causes the second extraction unit 31b to extract bottles that cannot be extracted by the first extraction unit 31a.
 選別装置30は、制御信号に示された抽出点座標の真上に抽出部31を移動させ、抽出部31が、抽出点座標を抽出点として、ベルトコンベア40を搬送される廃棄物群の中から所望ボトルを抽出する。抽出部31が吸引パッド311を用いて形成される場合は、抽出部31は、ボトル上の抽出点をボトルに対する吸引パッド311の吸引位置にして吸引パッド311の吸引によってボトルを抽出する。 The sorting device 30 moves the extraction unit 31 directly above the extraction point coordinates indicated by the control signal, and the extraction unit 31 uses the extraction point coordinates as the extraction point to extract waste from the waste group conveyed on the belt conveyor 40 . Extract the desired bottle from When the extraction part 31 is formed using the suction pad 311 , the extraction part 31 extracts the bottle by suction of the suction pad 311 with the extraction point on the bottle being the suction position of the suction pad 311 with respect to the bottle.
 <スペース判定部の動作>
 図6、図7及び図8は、本開示の実施例1のスペース判定部の動作例を示す図である。
<Operation of the space determination unit>
6, 7, and 8 are diagrams illustrating an operation example of the space determination unit according to the first embodiment of the present disclosure.
 図6に示す廃棄物群画像I1には、ボトル画像BI11,BI12,BI13,BI14,BI15が含まれる。ボトル画像BI11は所望ボトルの画像であり、ボトル画像BI12,BI13,BI14,BI15は非所望ボトルの画像である。スペース判定部14は、ボトル画像BI11,BI12,BI13,BI14,BI15のそれぞれに、バウンディングボックスBB11,BB12,BB13,BB14,BB15を設定する。また、スペース判定部14は、バウンディングボックスBB11,BB12,BB13,BB14,BB15のうち、ボトル画像BI11に設定されたバウンディングボックスBB11の長辺の長さと短辺の長さとを検出することにより、バウンディングボックスBB11の大きさを検出する。ボトル画像BI11の被写体となったボトルB11は所望ボトルであるため、ボトルB11は、第一抽出部31aまたは第二抽出部31bによって廃棄物群から抽出される。 The waste group image I1 shown in FIG. 6 includes bottle images BI11, BI12, BI13, BI14, and BI15. A bottle image BI11 is an image of a desired bottle, and bottle images BI12, BI13, BI14, and BI15 are images of an undesired bottle. The space determination unit 14 sets bounding boxes BB11, BB12, BB13, BB14, and BB15 to the bottle images BI11, BI12, BI13, BI14, and BI15, respectively. Further, the space determination unit 14 detects the length of the long side and the length of the short side of the bounding box BB11 set in the bottle image BI11 among the bounding boxes BB11, BB12, BB13, BB14, and BB15, thereby determining the bounding box. The size of box BB11 is detected. Since the bottle B11 that is the subject of the bottle image BI11 is the desired bottle, the bottle B11 is extracted from the waste group by the first extraction unit 31a or the second extraction unit 31b.
 図7に示す廃棄物群画像I2aは、廃棄物群画像I1(図6)が撮影された後に撮影された廃棄物群画像である。図7に示す廃棄物群画像I2aには、ボトル画像BI21,BI22,BI23,BI24,BI25が含まれる。スペース判定部14は、ボトル画像BI21,BI22,BI23,BI24,BI25のそれぞれに、バウンディングボックスBB21,BB22,BB23,BB24,BB25を設定する。また、スペース判定部14は、廃棄物群画像I2aに基づいて、ベルトコンベア上の廃棄物群の間に抽出済ボトルを戻すことが可能なスペース(以下では「空きスペース」と呼ぶことがある)が存在するか否かを判定する。例えば、スペース判定部14は、バウンディングボックスBB21,BB22,BB23,BB24,BB25と廃棄物群画像I2aとにおいて、互いに隣接する各辺間の相互の距離を算出することにより、バウンディングボックスが存在しない矩形の最大の空間(以下では「最大空間」と呼ぶことがある)を検出する。廃棄物群画像I2aにおける最大空間は空間MSaとなる。また、スペース判定部14は、検出した最大空間MSa内にバウンディングボックスBB11(図6)が収まるか否かを判定する。スペース判定部14は、検出した最大空間MSa内にバウンディングボックスBB11が収まる場合は、ボトル画像BI11の被写体となったボトルB11のための空きスペースが存在すると判定し、検出した最大空間MSa内にバウンディングボックスBB11が収まらない場合は、ボトル画像BI11の被写体となったボトルB11のための空きスペースが存在しないと判定する。図7に示す最大空間MSa内にはバウンディングボックスBB11(図6)が収まるため、廃棄物群画像I2aがカメラ20によって撮影された場合には、スペース判定部14は、空きスペースが存在すると判定する。 A waste group image I2a shown in FIG. 7 is a waste group image taken after the waste group image I1 (FIG. 6) was taken. The waste group image I2a shown in FIG. 7 includes bottle images BI21, BI22, BI23, BI24, and BI25. The space determination unit 14 sets bounding boxes BB21, BB22, BB23, BB24, and BB25 to the bottle images BI21, BI22, BI23, BI24, and BI25, respectively. Further, based on the waste group image I2a, the space determination unit 14 determines a space in which the extracted bottle can be returned between the waste groups on the belt conveyor (hereinafter sometimes referred to as "empty space"). exists. For example, the space determination unit 14 calculates the mutual distances between adjacent sides in the bounding boxes BB21, BB22, BB23, BB24, and BB25 and the waste group image I2a, thereby obtaining a rectangle having no bounding box. , the maximum space (hereinafter sometimes referred to as “maximum space”) is detected. The maximum space in the waste group image I2a is the space MSa. The space determination unit 14 also determines whether or not the bounding box BB11 (FIG. 6) fits within the detected maximum space MSa. When the bounding box BB11 fits within the detected maximum space MSa, the space determination unit 14 determines that there is an empty space for the bottle B11 that is the subject of the bottle image BI11, and determines that the bounding box BB11 exists within the detected maximum space MSa. If the box BB11 does not fit, it is determined that there is no empty space for the bottle B11 that is the subject of the bottle image BI11. Since the bounding box BB11 (FIG. 6) fits within the maximum space MSa shown in FIG. 7, when the waste group image I2a is captured by the camera 20, the space determination unit 14 determines that there is an empty space. .
 また、図8に示す廃棄物群画像I2bは、廃棄物群画像I1(図6)が撮影された後に撮影された他の廃棄物群画像である。図8に示す廃棄物群画像I2bには、ボトル画像BI31,BI32,BI33,BI34,BI35,BI36が含まれる。スペース判定部14は、ボトル画像BI31,BI32,BI33,BI34,BI35,BI36のそれぞれに、バウンディングボックスBB31,BB32,BB33,BB34,BB35,BB36を設定する。また、スペース判定部14は、廃棄物群画像I2bに基づいて、空きスペースが存在するか否かを判定する。例えば、スペース判定部14は、バウンディングボックスBB31,BB32,BB33,BB34,BB35,BB36と廃棄物群画像I2bとにおいて、互いに隣接する各辺間の相互の距離を算出することにより最大空間を検出する。廃棄物群画像I2bにおける最大空間は空間MSbとなる。また、スペース判定部14は、検出した最大空間MSb内にバウンディングボックスBB11(図6)が収まるか否かを判定する。スペース判定部14は、検出した最大空間MSb内にバウンディングボックスBB11が収まる場合は、ボトル画像BI11の被写体となったボトルB11のための空きスペースが存在すると判定し、検出した最大空間MSb内にバウンディングボックスBB11が収まらない場合は、ボトル画像BI11の被写体となったボトルB11のための空きスペースが存在しないと判定する。図8に示す最大空間MSb内にはバウンディングボックスBB11(図6)が収まらないため、廃棄物群画像I2bがカメラ20によって撮影された場合には、スペース判定部14は、空きスペースが存在しないと判定する。 A waste group image I2b shown in FIG. 8 is another waste group image taken after the waste group image I1 (FIG. 6) was taken. The waste group image I2b shown in FIG. 8 includes bottle images BI31, BI32, BI33, BI34, BI35, and BI36. The space determination unit 14 sets bounding boxes BB31, BB32, BB33, BB34, BB35, and BB36 to the bottle images BI31, BI32, BI33, BI34, BI35, and BI36, respectively. Also, the space determination unit 14 determines whether or not there is an empty space based on the waste group image I2b. For example, the space determination unit 14 detects the maximum space by calculating the mutual distances between adjacent sides in the bounding boxes BB31, BB32, BB33, BB34, BB35, and BB36 and the waste group image I2b. . The maximum space in the waste group image I2b is the space MSb. The space determination unit 14 also determines whether or not the bounding box BB11 (FIG. 6) fits within the detected maximum space MSb. When the bounding box BB11 fits within the detected maximum space MSb, the space determination unit 14 determines that there is an empty space for the bottle B11 that is the subject of the bottle image BI11, and determines that the bounding box BB11 exists within the detected maximum space MSb. If the box BB11 does not fit, it is determined that there is no empty space for the bottle B11 that is the subject of the bottle image BI11. Since the bounding box BB11 (FIG. 6) cannot fit within the maximum space MSb shown in FIG. judge.
 <存否判定部の動作>
 図9は、本開示の実施例1の存否判定テーブルの一例を示す図である。存否判定部15は、図9に示す存否判定テーブルTA1を有する。存否判定テーブルTA1には、ボトル種類と、閾値THA[g]との対応付けが予め設定されている。存否判定部15は、画像認識部12によって認識されたボトル種類と、測定部61によって測定されたボトル重量とに基づいて、抽出済ボトルが物体存在ボトルであるか否か(つまり、抽出済ボトルの中に物体が存在するか否か)を判定する。
<Operation of presence/absence determination unit>
FIG. 9 is a diagram illustrating an example of a presence/absence determination table according to the first embodiment of the present disclosure; The presence/absence determination unit 15 has a presence/absence determination table TA1 shown in FIG. In the presence/absence determination table TA1, associations between bottle types and threshold values THA[g] are set in advance. Based on the bottle type recognized by the image recognition unit 12 and the bottle weight measured by the measurement unit 61, the presence/absence determination unit 15 determines whether the extracted bottle is an object-existing bottle (that is, the extracted bottle (whether or not there is an object in).
 例えば、存否判定部15は、存否判定テーブルTA1を用いて、抽出済ボトルのボトル種類が「小型栄養ドリンクボトル」であるときは、ボトル重量が閾値THAの74[g]以上のときに抽出済ボトルが物体存在ボトルであると判定し、ボトル重量が閾値THAの74[g]未満のときに抽出済ボトルが物体存在ボトルでない(つまり、抽出済ボトルの中に物体が存在しない)と判定する。また例えば、存否判定部15は、存否判定テーブルTA1を用いて、抽出済ボトルのボトル種類が「中型栄養ドリンクボトル」であるときは、ボトル重量が閾値THAの102[g]以上のときに抽出済ボトルが物体存在ボトルであると判定し、ボトル重量が閾値THAの102[g]未満のときに抽出済ボトルが物体存在ボトルでないと判定する。また例えば、存否判定部15は、存否判定テーブルTA1を用いて、抽出済ボトルのボトル種類が「大型栄養ドリンクボトル」であるときは、ボトル重量が閾値THAの144[g]以上のときに抽出済ボトルが物体存在ボトルであると判定し、ボトル重量が閾値THAの144[g]未満のときに抽出済ボトルが物体存在ボトルでないと判定する。また例えば、存否判定部15は、存否判定テーブルTA1を用いて、抽出済ボトルのボトル種類が「ワインボトル」であるときは、ボトル重量が閾値THAの400[g]以上のときに抽出済ボトルが物体存在ボトルであると判定し、ボトル重量が閾値THAの400[g]未満のときに抽出済ボトルが物体存在ボトルでないと判定する。また例えば、存否判定部15は、存否判定テーブルTA1を用いて、抽出済ボトルのボトル種類が「シャンパンボトル」であるときは、ボトル重量が閾値THAの590[g]以上のときに抽出済ボトルが物体存在ボトルであると判定し、ボトル重量が閾値THAの590[g]未満のときに抽出済ボトルが物体存在ボトルでないと判定する。 For example, the presence/absence determination unit 15 uses the presence/absence determination table TA1 to determine that when the bottle type of the extracted bottle is a "small nutritional drink bottle", the weight of the extracted bottle is equal to or greater than the threshold THA of 74 [g]. Determine that the bottle is an object-existing bottle, and determine that the extracted bottle is not an object-existing bottle (that is, there is no object in the extracted bottle) when the bottle weight is less than the threshold value THA of 74 [g]. . Further, for example, the presence/absence determination unit 15 uses the presence/absence determination table TA1 to extract when the bottle type of the extracted bottle is a "medium-sized nutritional drink bottle" and the weight of the bottle is equal to or greater than the threshold value THA of 102 [g]. It is determined that the finished bottle is an object-existing bottle, and that the extracted bottle is not an object-existing bottle when the bottle weight is less than the threshold value THA of 102 [g]. Further, for example, the presence/absence determination unit 15 uses the presence/absence determination table TA1 to extract when the bottle type of the extracted bottle is a “large nutritional drink bottle” and the weight of the bottle is equal to or greater than the threshold THA of 144 [g]. It is determined that the finished bottle is an object-existing bottle, and that the extracted bottle is not an object-existing bottle when the bottle weight is less than the threshold value THA of 144 [g]. Further, for example, the presence/absence determination unit 15 uses the presence/absence determination table TA1 to determine that when the bottle type of the extracted bottle is "wine bottle", the weight of the extracted bottle is equal to or greater than the threshold value THA of 400 [g]. is determined to be an object-existing bottle, and the extracted bottle is determined not to be an object-existing bottle when the bottle weight is less than the threshold value THA of 400 [g]. Further, for example, the presence/absence determination unit 15 uses the presence/absence determination table TA1 to determine that when the bottle type of the extracted bottle is "champagne bottle", the weight of the extracted bottle is equal to or greater than the threshold value THA of 590 [g]. is determined to be an object-existing bottle, and the extracted bottle is determined not to be an object-existing bottle when the bottle weight is less than the threshold THA of 590 [g].
 ここで、存否判定テーブルTA1における閾値THAの設定にあたり、例えば、空の小型栄養ドリンクボトルの重量は70[g]未満であり、空の中型栄養ドリンクボトルの重量は98[g]未満であり、空の大型栄養ドリンクボトルの重量は140[g]未満であり、空のワインボトルの重量は380[g]未満であり、空のシャンパンボトルの重量は570[g]未満であると想定した。 Here, in setting the threshold THA in the presence/absence determination table TA1, for example, the weight of the empty small-sized energy drink bottle is less than 70 [g], the weight of the empty medium-sized energy drink bottle is less than 98 [g], It was assumed that the weight of an empty large nutritional drink bottle is less than 140 [g], the weight of an empty wine bottle is less than 380 [g], and the weight of an empty champagne bottle is less than 570 [g].
 <選別装置制御部の動作>
 選別装置制御部17は、抽出済ボトルが物体存在ボトルであるか否かに基づいて、抽出済ボトルをベルトコンベア40に戻す動作を抽出部31に行わせるか否かを制御する。
<Operation of Sorting Device Control Unit>
The sorting device control unit 17 controls whether or not to cause the extraction unit 31 to return the extracted bottle to the belt conveyor 40 based on whether the extracted bottle is an object-existing bottle.
 例えば、選別装置制御部17は、存否判定部15によって抽出済ボトルが物体存在ボトルでない(つまり、抽出済ボトルの中に物体が存在しない)と判定されたときに、抽出済ボトルを第一回収箱51または第二回収箱52に投入する動作を抽出部31に行わせる。選別装置制御部17は、抽出済ボトルを第一回収箱51に投入する動作を第一抽出部31aに行わせ、抽出済ボトルを第二回収箱52に投入する動作を第二抽出部31bに行わせる。 For example, when the presence/absence determination unit 15 determines that the extracted bottle is not a bottle with an object (that is, no object exists in the extracted bottle), the sorting device control unit 17 first collects the extracted bottle. The extraction unit 31 is made to perform an operation of throwing into the box 51 or the second collection box 52 . The sorting device control unit 17 causes the first extraction unit 31a to put the extracted bottles into the first collection box 51, and causes the second extraction unit 31b to put the extracted bottles into the second collection box 52. let it happen
 一方で、選別装置制御部17は、存否判定部15によって抽出済ボトルが物体存在ボトルである(つまり、抽出済ボトルの中に物体が存在する)と判定されたときに、抽出済ボトルをベルトコンベア40に戻す動作を抽出部31に行わせる。 On the other hand, when the presence/absence determination unit 15 determines that the extracted bottle is an object-existing bottle (that is, an object exists in the extracted bottle), the sorting device control unit 17 moves the extracted bottle to the belt. The extraction unit 31 is caused to perform the operation of returning to the conveyor 40 .
 ここで、搬送方向CDにおいて第一抽出部31aより下流側に第二抽出部31bが配置されているため、ベルトコンベア40上に空きスペースが存在しないにも関わらず抽出済ボトルをベルトコンベア40上に戻す動作を第一抽出部31aが行うと、ベルトコンベア40上に戻された抽出済ボトルによって、第二抽出部31bによる抽出対象の所望ボトルの位置が、カメラ20によって撮影された廃棄物群画像における所望ボトルの位置からずれてしまうことがある。第二抽出部31bによる抽出対象の所望ボトルの位置が、カメラ20によって撮影された廃棄物群画像における所望ボトルの位置からずれてしまうと、第二抽出部31bによる所望ボトルの抽出が困難になる。そこで、選別装置制御部17は、スペース判定部14によって空きスペースが存在すると判定されたときに、その空きスペースに抽出済ボトルを戻す動作を第一抽出部31aに行わせる。第一抽出部31aによって空きスペースに戻された所望ボトルは、ベルトコンベア40によって搬送されて第二廃棄箱54に投入される。一方で、選別装置制御部17は、スペース判定部14によって空きスペースが存在しないと判定されたときに、抽出済ボトルをベルトコンベア40上に戻す動作を第一抽出部31aに行わせずに、抽出済ボトルを第一廃棄箱53に投入する動作を第一抽出部31aに行わせる。空きスペースが存在しないときに第一抽出部31aによって抽出済ボトルが第一廃棄箱53に投入されることで、第二抽出部31bによる抽出対象の所望ボトルの位置が、カメラ20によって撮影された廃棄物群画像における所望ボトルの位置からずれてしまうことを防止できる。 Here, since the second extraction section 31b is arranged downstream of the first extraction section 31a in the conveying direction CD, the extracted bottle can be placed on the belt conveyor 40 even though there is no empty space on the belt conveyor 40. When the first extraction unit 31a performs the operation of returning to The position of the desired bottle in the image may be shifted. If the position of the desired bottle to be extracted by the second extraction unit 31b deviates from the position of the desired bottle in the waste group image captured by the camera 20, it becomes difficult for the second extraction unit 31b to extract the desired bottle. . Therefore, when the space determination unit 14 determines that there is an empty space, the sorting device control unit 17 causes the first extraction unit 31a to return the extracted bottle to the empty space. The desired bottle returned to the empty space by the first extractor 31 a is conveyed by the belt conveyor 40 and thrown into the second disposal box 54 . On the other hand, when the space determination unit 14 determines that there is no empty space, the sorting device control unit 17 does not cause the first extraction unit 31a to return the extracted bottles onto the belt conveyor 40. The first extraction unit 31a is made to perform the operation of throwing the extracted bottle into the first disposal box 53. The position of the desired bottle to be extracted by the second extraction unit 31b is photographed by the camera 20 by throwing the extracted bottle into the first disposal box 53 by the first extraction unit 31a when there is no empty space. It is possible to prevent the bottle from deviating from the desired position in the waste group image.
 また、搬送方向CDにおいて第二抽出部31bより下流側には、所望ボトルを抽出する抽出部は配置されていないため、選別装置制御部17は、空きスペースが存在するか否かに関わらず(つまり、空きスペースの有無に関わらず)、ベルトコンベア40上に抽出済ボトルを戻す動作を第二抽出部31bに行わせる。 In addition, since no extracting unit for extracting the desired bottle is arranged downstream of the second extracting unit 31b in the transport direction CD, the sorting device control unit 17 controls whether or not there is an empty space ( In other words, the second extraction unit 31b is caused to return the extracted bottle onto the belt conveyor 40 (regardless of whether there is an empty space).
 以上、実施例1について説明した。 The first embodiment has been described above.
 [実施例2]
 <制御装置及び選別装置の構成>
 図10は、本開示の実施例2の制御装置及び選別装置の構成例を示す図である。図10において、制御装置10は、画像処理部11と、存否判定部15と、学習済モデル記憶部16と、選別装置制御部17とを有する。画像処理部11は、画像認識部12と、面積重心算出部13と、スペース判定部14と、断面積算出部18とを有する。選別装置30は、第一抽出部31aと、第二抽出部31bとを有する。第一抽出部31aは第一測定部61aを有し、第二抽出部31bは第二測定部61bを有する。
[Example 2]
<Configuration of control device and sorting device>
FIG. 10 is a diagram illustrating a configuration example of a control device and a sorting device according to a second embodiment of the present disclosure; In FIG. 10 , the control device 10 has an image processing section 11 , a presence/absence determination section 15 , a learned model storage section 16 , and a sorting device control section 17 . The image processing unit 11 has an image recognition unit 12 , an area centroid calculation unit 13 , a space determination unit 14 , and a cross-sectional area calculation unit 18 . The sorting device 30 has a first extraction section 31a and a second extraction section 31b. The first extraction part 31a has a first measurement part 61a, and the second extraction part 31b has a second measurement part 61b.
 一般に、ボトルの断面積が大きくなるほどボトルの重量が大きくなる。そこで、断面積算出部18は、画像認識部12によって認識されたボトル領域に基づいて、所望ボトルの断面積(以下では「ボトル断面積」と呼ぶことがある)を算出する。例えば、断面積算出部18は、廃棄物群画像の画像サイズに応じた所定の係数をボトル領域の面積に乗算することによりボトル断面積を算出する。 In general, the larger the cross-sectional area of the bottle, the greater the weight of the bottle. Therefore, the cross-sectional area calculation unit 18 calculates the cross-sectional area of the desired bottle (hereinafter sometimes referred to as “bottle cross-sectional area”) based on the bottle area recognized by the image recognition unit 12 . For example, the cross-sectional area calculator 18 calculates the cross-sectional area of the bottle by multiplying the area of the bottle region by a predetermined coefficient corresponding to the image size of the waste group image.
 <存否判定部の動作>
 図11は、本開示の実施例2の存否判定部の動作例を示す図である。
<Operation of presence/absence determination unit>
FIG. 11 is a diagram illustrating an operation example of a presence/absence determination unit according to the second embodiment of the present disclosure;
 存否判定部15は、断面積算出部18によって算出されたボトル断面積と、測定部61によって測定されたボトル重量とに基づいて、抽出済ボトルが物体存在ボトルであるか否か(つまり、抽出済ボトルの中に物体が存在するか否か)を判定する。 Based on the bottle cross-sectional area calculated by the cross-sectional area calculating unit 18 and the bottle weight measured by the measuring unit 61, the presence/absence determination unit 15 determines whether the extracted bottle is an object-existing bottle (that is, the extracted bottle). (whether or not there is an object in the used bottle).
 例えば、存否判定部15は、ボトル断面積[cm]と閾値THB[g]との対応関係を示す一次関数のグラフ(図11)を有し、このグラフに従って、ボトル断面積に応じた閾値THBを算出する。例えば、存否判定部15は、ボトル断面積が100[cm]であるときは、閾値THBを350[g]と算出する。 For example, the presence/absence determination unit 15 has a linear function graph ( FIG. 11 ) showing the correspondence relationship between the bottle cross-sectional area [cm 2 ] and the threshold value THB [g]. Calculate THB. For example, when the bottle cross-sectional area is 100 [cm 2 ], the presence/absence determining unit 15 calculates the threshold THB as 350 [g].
 そして、存否判定部15は、ボトル重量が閾値THB以上のときに抽出済ボトルが物体存在ボトルであると判定し、ボトル重量が閾値THB未満のときに抽出済ボトルが物体存在ボトルでない(つまり、抽出済ボトルの中に物体が存在しない)と判定する。 Then, the presence/absence determining unit 15 determines that the extracted bottle is an object-existing bottle when the bottle weight is equal to or greater than the threshold THB, and determines that the extracted bottle is not an object-existing bottle when the bottle weight is less than the threshold THB. There is no object in the extracted bottle).
 ここで、図11に示す一次関数のグラフの設定にあたり、例えば、ボトル断面積が100[cm]である空のボトルの重量は300[g]であると想定した。 Here, in setting the graph of the linear function shown in FIG. 11, for example, it is assumed that the weight of an empty bottle with a bottle cross-sectional area of 100 [cm 2 ] is 300 [g].
 以上、実施例2について説明した。 The second embodiment has been described above.
 [実施例3]
 <容器選別システムの構成>
 図12は、本開示の実施例3の容器選別システムの構成例を示す図である。実施例3の容器選別システム2では、第一廃棄箱53を有しない点と、ベルトコンベア40が第一領域R1a、第二領域R2、第三領域R1bの三個の領域を有する点とが、実施例1の容器選別システム1と異なる。図12では、説明を分かりやすくするために、容器選別システム2が有する制御装置10、カメラ20及び選別装置30の図示を省略する。
[Example 3]
<Configuration of container sorting system>
FIG. 12 is a diagram illustrating a configuration example of a container sorting system according to Example 3 of the present disclosure. In the container sorting system 2 of the third embodiment, the first disposal box 53 is not provided, and the belt conveyor 40 has three areas: the first area R1a, the second area R2, and the third area R1b. It differs from the container sorting system 1 of the first embodiment. In FIG. 12, illustration of the control device 10, the camera 20, and the sorting device 30 of the container sorting system 2 is omitted for easy understanding of the explanation.
 <制御装置及び選別装置の構成>
 図13は、本開示の実施例3の制御装置及び選別装置の構成例を示す図である。図13において、制御装置10は、画像処理部11と、存否判定部15と、学習済モデル記憶部16と、選別装置制御部17とを有する。画像処理部11は、画像認識部12と、面積重心算出部13とを有する一方で、スペース判定部14(図2)を有しない。選別装置30は、第一抽出部31aと、第二抽出部31bとを有する。第一抽出部31aは第一測定部61aを有し、第二抽出部31bは第二測定部61bを有する。
<Configuration of control device and sorting device>
FIG. 13 is a diagram illustrating a configuration example of a control device and a sorting device according to a third embodiment of the present disclosure; In FIG. 13 , the control device 10 has an image processing section 11 , a presence/absence determination section 15 , a learned model storage section 16 , and a sorting device control section 17 . The image processing unit 11 has an image recognition unit 12 and an area centroid calculation unit 13, but does not have a space determination unit 14 (FIG. 2). The sorting device 30 has a first extraction section 31a and a second extraction section 31b. The first extraction part 31a has a first measurement part 61a, and the second extraction part 31b has a second measurement part 61b.
 ここで、ベルトコンベア40において、第一領域R1aは、ベルトコンベア40のY軸方向での一方の端部の所定の領域であり、第三領域R1bは、ベルトコンベア40のY軸方向での他方の端部の所定の領域である。以下では、第一領域R1a及び第三領域R1bを「端部領域」と総称することがある。一方で、第二領域R2は、ベルトコンベア40のY軸方向で、端部領域以外の領域である。第二領域R2は、廃棄物群を置くことが可能な領域として予め設定されている一方で、端部領域は、廃棄物群を置くことが禁止される領域として予め設定されている。よって、端部領域には、空きスペースが常に存在する。 Here, in the belt conveyor 40, the first region R1a is a predetermined region at one end of the belt conveyor 40 in the Y-axis direction, and the third region R1b is a predetermined region at the other end of the belt conveyor 40 in the Y-axis direction. is a predetermined area at the end of the . Below, the first region R1a and the third region R1b may be collectively referred to as "edge regions". On the other hand, the second region R2 is a region other than the end regions in the Y-axis direction of the belt conveyor 40 . The second area R2 is preset as an area where the waste group can be placed, while the end area is preset as an area where the waste group is prohibited. Thus, there is always free space in the edge region.
 そこで、選別装置制御部17は、存否判定部15によって抽出済ボトルが物体存在ボトルであると判定されたときに、抽出済ボトルをベルトコンベア40の端部領域に戻す動作を抽出部31に行わせる。 Therefore, the sorting device control unit 17 causes the extraction unit 31 to return the extracted bottle to the end region of the belt conveyor 40 when the presence/absence determination unit 15 determines that the extracted bottle is an object-existing bottle. Let
 以上、実施例3について説明した。 The third embodiment has been described above.
 [実施例4]
 所望ボトルの中に存在する物体が液体であった場合、廃棄物群から所望ボトルが抽出される際に液体が揺れることにより、測定部61によって測定されるボトル重量に大きな誤差が生じてしまうことがある。
[Example 4]
If the object in the desired bottle is liquid, the liquid shakes when the desired bottle is extracted from the waste group, resulting in a large error in the weight of the bottle measured by the measuring unit 61. There is
 そこで、測定部61は、抽出部31によって抽出された所望ボトルの重量を複数回測定する。また、測定部61は、複数回測定したボトル重量の平均値(以下では「ボトル重量平均値」と呼ぶことがある)を最終的なボトル重量として決定する。 Therefore, the measuring unit 61 measures the weight of the desired bottle extracted by the extracting unit 31 multiple times. The measurement unit 61 also determines the average value of bottle weights measured a plurality of times (hereinafter, sometimes referred to as “bottle weight average value”) as the final bottle weight.
 選別装置制御部17は、ボトル重量平均値に基づいて、抽出済ボトルをベルトコンベア40に戻す動作を抽出部31に行わせるか否かを制御する。 The sorting device control unit 17 controls whether or not to cause the extraction unit 31 to return the extracted bottles to the belt conveyor 40 based on the bottle weight average value.
 また、選別装置制御部17は、複数回測定されたボトル重量における最大値と最小値との差が閾値THC以上であるときに、抽出済ボトルをベルトコンベア40上に戻す動作を抽出部31に行わせずに、抽出済ボトルを第一廃棄箱53に投入する動作を抽出部31に行わせる。こうすることで、測定部61によって測定されるボトル重量に大きな誤差が生じてしまうことにより、制御装置10によって抽出済ボトルが物体存在ボトルであるか否かの判定を行うことが困難であるときに、抽出済ボトルが物体存在ボトルであるか否かの確認を選別作業者が行うことが可能になる。 The sorting device control unit 17 instructs the extraction unit 31 to return the extracted bottle to the belt conveyor 40 when the difference between the maximum value and the minimum value of bottle weights measured multiple times is equal to or greater than the threshold THC. Instead, the extraction unit 31 is caused to perform the operation of throwing the extracted bottle into the first disposal box 53 . When this causes a large error in the bottle weight measured by the measurement unit 61, it is difficult for the control device 10 to determine whether or not the extracted bottle is an object-existing bottle. In addition, it is possible for the sorting operator to confirm whether or not the extracted bottle is an object-existing bottle.
 以上、実施例4について説明した。 The fourth embodiment has been described above.
 [実施例5]
 所望ボトルにキャップがついている場合は、所望ボトルの中に液体が存在している可能性が高い。そこで、画像認識部12によって所望ボトルにキャップがついていることが検出されたときは、測定部61は、所望ボトルにキャップがついていないときに比べて、ボトル重量の測定回数を増加させる。例えば、測定部61は、キャップがついていない所望ボトルの重量を5回測定し、測定した5回の重量の平均値を最終的なボトル重量として決定するのに対し、キャップがついている所望ボトルの重量を10回測定し、測定した10回の重量の平均値を最終的なボトル重量として決定する。
[Example 5]
If the desired bottle has a cap, there is a high probability that liquid is present in the desired bottle. Therefore, when the image recognition unit 12 detects that the desired bottle has a cap, the measurement unit 61 increases the number of times the bottle weight is measured compared to when the desired bottle does not have a cap. For example, the measuring unit 61 measures the weight of a desired bottle without a cap five times and determines the average value of the weights of the five measurements as the final bottle weight, whereas the weight of the desired bottle with a cap is determined. The weight is measured 10 times and the average value of the 10 weight measurements is determined as the final bottle weight.
 以上、実施例5について説明した。 The fifth embodiment has been described above.
 [実施例6]
 学習済モデル記憶部16は、ハードウェアとして、例えば、メモリまたはストレージにより実現される。画像処理部11、存否判定部15及び選別装置制御部17は、ハードウェアとして、例えば、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)等のプロセッサにより実現される。
[Example 6]
The trained model storage unit 16 is implemented as hardware, for example, by memory or storage. The image processing unit 11, the presence/absence determination unit 15, and the sorting device control unit 17 include hardware such as a CPU (Central Processing Unit), DSP (Digital Signal Processor), FPGA (Field Programmable Gate Array), ASIC (Application Specific Integrated Circuit) or the like.
 また、画像処理部11、存否判定部15及び選別装置制御部17での上記説明における各処理の全部または一部は、各処理に対応するプログラムをプロセッサに実行させることによって実現しても良い。例えば、上記説明における各処理に対応するプログラムが制御装置10が有するメモリに記憶され、プログラムがプロセッサによってメモリから読み出されて実行されても良い。また、プログラムは、任意のネットワークを介して制御装置10に接続されたプログラムサーバに記憶され、そのプログラムサーバから制御装置10にダウンロードされて実行されたり、制御装置10が読み取り可能な記録媒体に記憶され、その記録媒体から読み出されて実行されても良い。制御装置10が読み取り可能な記録媒体には、例えば、メモリカード、USBメモリ、SDカード、フレキシブルディスク、光磁気ディスク、CD-ROM、及び、DVD等の可搬の記憶媒体が含まれる。 Further, all or part of each processing in the above description in the image processing unit 11, presence/absence determination unit 15, and sorting device control unit 17 may be realized by causing a processor to execute a program corresponding to each processing. For example, a program corresponding to each process described above may be stored in the memory of the control device 10, and the program may be read from the memory and executed by the processor. The program is stored in a program server connected to the control device 10 via an arbitrary network, downloaded from the program server to the control device 10 and executed, or stored in a recording medium readable by the control device 10. and may be read from the recording medium and executed. Recording media readable by the control device 10 include, for example, memory cards, USB memories, SD cards, flexible disks, magneto-optical disks, CD-ROMs, and portable storage media such as DVDs.
 以上、実施例6について説明した。 The sixth embodiment has been described above.
 なお、実施例1~6では、一例として、選別装置30が第一抽出部31a及び第二抽出部31bの二個の抽出部を有する場合について説明した。しかし、開示の技術は、選別装置30が単一の抽出部を有する容器選別システムにも適用可能である。さらに、開示の技術は、選別装置30が三個以上の抽出部を有する容器選別システムにも適用可能である。 In addition, in Examples 1 to 6, as an example, the case where the sorting device 30 has two extraction units, the first extraction unit 31a and the second extraction unit 31b, has been described. However, the technology disclosed is also applicable to a container sorting system in which the sorting device 30 has a single extractor. Furthermore, the disclosed technology can also be applied to a container sorting system in which the sorting device 30 has three or more extraction units.
 以上のように、本開示の容器選別システム(実施例の容器選別システム1,2)は、カメラ(実施例のカメラ20)と、認識部(実施例の画像認識部12)と、第一抽出部(実施例の第一抽出部31a)と、第一判定部(実施例の存否判定部15)と、制御部(実施例の選別装置制御部17)とを有する。カメラは、廃棄物群が搬送される搬送路(実施例のベルトコンベア40)において廃棄物群の画像を撮影する。認識部は、カメラによって撮影された画像に基づいて、廃棄物群に含まれる所望の容器を認識する。第一抽出部は、搬送路を搬送される廃棄物群の中から所望の容器を抽出する。第一判定部は、抽出済みの所望の容器である抽出済容器の中に物体が存在するか否かを判定する。制御部は、抽出済容器の中に物体が存在するか否かに基づいて、抽出済容器を搬送路に戻す動作を第一抽出部に行わせるか否かを制御する。 As described above, the container sorting system of the present disclosure ( container sorting systems 1 and 2 of the embodiment) includes a camera (camera 20 of the embodiment), a recognition unit (image recognition unit 12 of the embodiment), and a first extraction It has a section (first extraction section 31a in the embodiment), a first determination section (presence/absence determination section 15 in the embodiment), and a control section (sorting device control section 17 in the embodiment). The camera captures an image of the waste group on the transport path (belt conveyor 40 in the embodiment) along which the waste group is transported. The recognition unit recognizes a desired container included in the waste group based on the image captured by the camera. The first extractor extracts a desired container from the waste group conveyed on the conveying path. The first determination unit determines whether an object exists in the extracted container, which is the desired extracted container. The control unit controls whether or not to cause the first extraction unit to return the extracted container to the conveying path based on whether or not there is an object in the extracted container.
 こうすることで、容器の中に液体等の物体が存在する容器等、リサイクル対象外の容器の回収を回避することができる。 By doing this, it is possible to avoid collecting containers that are not subject to recycling, such as containers that contain objects such as liquids.
 例えば、本開示の容器選別システムは、抽出済容器の重量を測定する測定部(実施例の第一測定部61a)を有する。認識部は、カメラによって撮影された画像に基づいて、所望の容器の種類を認識する。第一判定部は、測定された重量が、認識された種類に対応する閾値以上であるときに、抽出済容器の中に物体が存在すると判定する。 For example, the container sorting system of the present disclosure has a measurement unit (first measurement unit 61a in the embodiment) that measures the weight of the extracted container. The recognition unit recognizes the type of desired container based on the image captured by the camera. The first determination unit determines that an object exists in the extracted container when the measured weight is equal to or greater than a threshold value corresponding to the recognized type.
 また例えば、本開示の容器選別システムは算出部(実施例の断面積算出部18)を有し、認識部は、所望の容器の存在領域を認識する。算出部は、認識された存在領域に基づいて、所望の容器の断面積を算出する。第一判定部は、測定された重量が、算出された断面積に対応する閾値以上であるときに、抽出済容器の中に物体が存在すると判定する。 Further, for example, the container sorting system of the present disclosure has a calculation unit (cross-sectional area calculation unit 18 in the embodiment), and the recognition unit recognizes the existence area of the desired container. The calculation unit calculates the cross-sectional area of the desired container based on the recognized presence area. The first determination unit determines that an object exists in the extracted container when the measured weight is equal to or greater than a threshold value corresponding to the calculated cross-sectional area.
 また例えば、制御部は、抽出済容器の中に物体が存在すると判定されたときに、抽出済容器を搬送路に戻す動作を第一抽出部に行わせる。 Also, for example, the control unit causes the first extraction unit to return the extracted container to the conveying path when it is determined that there is an object in the extracted container.
 また例えば、制御部は、抽出済容器の中に物体が存在すると判定されたときに、抽出済容器を搬送路の端部の所定の領域に戻す動作を第一抽出部に行わせる。 Also, for example, when it is determined that an object exists in the extracted container, the control unit causes the first extraction unit to return the extracted container to a predetermined area at the end of the conveying path.
 また例えば、本開示の容器選別システムは、第二判定部(実施例のスペース判定部14)を有する。第二判定部は、第一抽出部による所望の容器の抽出が行われた後にカメラによって撮影された廃棄物群の画像に基づいて、廃棄物群の間に抽出済容器を戻すことが可能な空きスペースが存在するか否かを判定する。制御部は、空きスペースが存在すると判定されたときに、空きスペースに抽出済容器を戻す動作を第一抽出部に行わせる。 Also, for example, the container sorting system of the present disclosure has a second determination unit (space determination unit 14 in the embodiment). The second determination unit can return the extracted container between the waste groups based on the image of the waste group captured by the camera after the desired container is extracted by the first extraction unit. Determine whether there is free space. The control unit causes the first extraction unit to return the extracted container to the empty space when it is determined that the empty space exists.
 また例えば、本開示の容器選別システムは、第二抽出部(実施例の第二抽出部31b)を有する。第二抽出部は、搬送路において第一抽出部より下流側に配置され、第一抽出部による所望の容器の抽出が行われた後に搬送路を搬送される廃棄物群の中から他の所望の容器を抽出する。制御部は、空きスペースが存在すると判定され、かつ、第二抽出部が配置されている場合に、空きスペースに抽出済容器を戻す動作を第一抽出部に行わせる。 Also, for example, the container sorting system of the present disclosure has a second extraction unit (second extraction unit 31b in the embodiment). The second extraction part is arranged downstream of the first extraction part in the conveying path, and after the desired container is extracted by the first extraction part, other desired wastes are extracted from the waste group conveyed in the conveying path. extract container. When it is determined that an empty space exists and the second extraction unit is arranged, the control unit causes the first extraction unit to return the extracted container to the empty space.
 また例えば、制御部は、空きスペースが存在しないと判定されたときに、抽出済容器を搬送路に戻す動作を第一抽出部に行わせずに、抽出済容器を所定の箱(実施例の第一廃棄箱53)に投入する動作を第一抽出部に行わせる。 Further, for example, when it is determined that there is no empty space, the control unit does not cause the first extraction unit to return the extracted container to the conveying path, and places the extracted container in a predetermined box (in the embodiment). The first extractor is made to perform the operation of throwing it into the first disposal box 53).
 また例えば、第二抽出部が搬送路において第一抽出部より下流側に配置されていない場合には、制御部は、空きスペースの有無に関わらず、抽出済容器を搬送路に戻す動作を第一抽出部に行わせる。 Further, for example, when the second extraction unit is not arranged downstream of the first extraction unit in the transport path, the control unit causes the extracted container to return to the transport path regardless of whether there is an empty space. Let the one extraction part do it.
 また例えば、測定部は、抽出済容器の重量を複数回測定する。制御部は、複数回測定された重量における最大値と最小値との差が閾値以上であるときに、抽出済容器を搬送路に戻す動作を第一抽出部に行わせずに、抽出済容器を所定の箱に投入する動作を第一抽出部に行わせる。 Also, for example, the measurement unit measures the weight of the extracted container multiple times. The control unit does not cause the first extraction unit to return the extracted container to the conveying path when the difference between the maximum value and the minimum value of the weight measured a plurality of times is equal to or greater than the threshold value, and into a predetermined box.
1,2 容器選別システム
10 制御装置
11 画像処理部
12 画像認識部
13 面積重心算出部
14 スペース判定部
15 存否判定部
16 学習済モデル記憶部
17 選別装置制御部
18 断面積算出部
20 カメラ
30 選別装置
31a 第一抽出部
31b 第二抽出部
61a 第一測定部
61b 第二測定部
1, 2 container sorting system 10 control device 11 image processing unit 12 image recognition unit 13 center of gravity calculation unit 14 space determination unit 15 presence/absence determination unit 16 learned model storage unit 17 sorting device control unit 18 cross-sectional area calculation unit 20 camera 30 sorting Apparatus 31a First extraction unit 31b Second extraction unit 61a First measurement unit 61b Second measurement unit

Claims (10)

  1.  廃棄物群が搬送される搬送路において前記廃棄物群の画像を撮影するカメラと、
     前記画像に基づいて、前記廃棄物群に含まれる所望の容器を認識する認識部と、
     前記搬送路を搬送される前記廃棄物群の中から前記所望の容器を抽出する第一抽出部と、
     抽出済みの前記所望の容器である抽出済容器の中に物体が存在するか否かを判定する第一判定部と、
     前記抽出済容器の中に前記物体が存在するか否かに基づいて、前記抽出済容器を前記搬送路に戻す動作を前記第一抽出部に行わせるか否かを制御する制御部と、
     を具備する容器選別システム。
    a camera that captures an image of the waste group on a transport path along which the waste group is transported;
    a recognition unit that recognizes a desired container included in the waste group based on the image;
    a first extraction unit for extracting the desired container from the waste group transported along the transport path;
    a first determination unit that determines whether or not an object exists in the extracted container that is the desired container that has been extracted;
    a control unit for controlling whether or not to cause the first extraction unit to return the extracted container to the conveying path based on whether or not the object exists in the extracted container;
    A container sorting system comprising:
  2.  前記抽出済容器の重量を測定する測定部、をさらに具備し、
     前記認識部は、前記画像に基づいて、前記所望の容器の種類を認識し、
     前記第一判定部は、測定された前記重量が、認識された前記種類に対応する閾値以上であるときに、前記抽出済容器の中に前記物体が存在すると判定する、
     請求項1に記載の容器選別システム。
    a measuring unit that measures the weight of the extracted container,
    The recognition unit recognizes the type of the desired container based on the image,
    The first determination unit determines that the object exists in the extracted container when the measured weight is equal to or greater than a threshold value corresponding to the recognized type.
    The container sorting system according to claim 1.
  3.  前記認識部は、前記所望の容器の存在領域を認識し、
     認識された前記存在領域に基づいて、前記所望の容器の断面積を算出する算出部と、
      前記抽出済容器の重量を測定する測定部と、
     をさらに具備し、
     前記第一判定部は、測定された前記重量が、前記断面積に対応する閾値以上であるときに、前記抽出済容器の中に前記物体が存在すると判定する、
     請求項1に記載の容器選別システム。
    The recognition unit recognizes the presence area of the desired container,
    a calculation unit that calculates the cross-sectional area of the desired container based on the recognized presence area;
    a measuring unit that measures the weight of the extracted container;
    further comprising
    The first determination unit determines that the object exists in the extracted container when the measured weight is equal to or greater than a threshold value corresponding to the cross-sectional area.
    The container sorting system according to claim 1.
  4.  前記制御部は、前記抽出済容器の中に前記物体が存在すると判定されたときに、前記抽出済容器を前記搬送路に戻す動作を前記第一抽出部に行わせる、
     請求項1に記載の容器選別システム。
    The control unit causes the first extraction unit to return the extracted container to the conveying path when it is determined that the object exists in the extracted container.
    The container sorting system according to claim 1.
  5.  前記制御部は、前記抽出済容器の中に前記物体が存在すると判定されたときに、前記抽出済容器を前記搬送路の端部の所定の領域に戻す動作を前記第一抽出部に行わせる、
     請求項1に記載の容器選別システム。
    The control unit causes the first extraction unit to return the extracted container to a predetermined area at the end of the conveying path when it is determined that the object exists in the extracted container. ,
    The container sorting system according to claim 1.
  6.  前記第一抽出部による前記所望の容器の抽出が行われた後に前記カメラによって撮影された前記廃棄物群の画像に基づいて、前記廃棄物群の間に前記抽出済容器を戻すことが可能な空きスペースが存在するか否かを判定する第二判定部、をさらに具備し、
     前記制御部は、前記空きスペースが存在すると判定されたときに、前記空きスペースに前記抽出済容器を戻す動作を前記第一抽出部に行わせる、
     請求項1に記載の容器選別システム。
    It is possible to return the extracted container between the waste groups based on the image of the waste group taken by the camera after the desired container is extracted by the first extraction unit. further comprising a second determination unit that determines whether or not there is an empty space,
    The control unit causes the first extraction unit to return the extracted container to the empty space when it is determined that the empty space exists.
    The container sorting system according to claim 1.
  7.  前記空きスペースが存在すると判定され、かつ、前記第一抽出部による前記所望の容器の抽出が行われた後に前記搬送路を搬送される前記廃棄物群の中から他の所望の容器を抽出する第二抽出部が前記搬送路において前記第一抽出部より下流側に配置されている場合に、前記制御部は、前記空きスペースに前記抽出済容器を戻す動作を前記第一抽出部に行わせる、
     請求項6に記載の容器選別システム。
    Extracting another desired container from the waste group transported on the transport path after it is determined that the empty space exists and the desired container is extracted by the first extraction unit. When the second extraction section is arranged downstream of the first extraction section in the transport path, the control section causes the first extraction section to return the extracted container to the empty space. ,
    The container sorting system according to claim 6.
  8.  前記制御部は、前記空きスペースが存在しないと判定されたときに、前記抽出済容器を前記搬送路に戻す動作を前記第一抽出部に行わせずに、前記抽出済容器を所定の箱に投入する動作を前記第一抽出部に行わせる、
     請求項6に記載の容器選別システム。
    When it is determined that the empty space does not exist, the control unit places the extracted container in a predetermined box without causing the first extraction unit to return the extracted container to the conveying path. cause the first extraction unit to perform an operation of inputting;
    The container sorting system according to claim 6.
  9.  前記第一抽出部による前記所望の容器の抽出が行われた後に前記搬送路を搬送される前記廃棄物群の中から他の所望の容器を抽出する第二抽出部が前記搬送路において前記第一抽出部より下流側に配置されていない場合に、前記制御部は、前記空きスペースの有無に関わらず、前記抽出済容器を前記搬送路に戻す動作を前記第一抽出部に行わせる、
     請求項6に記載の容器選別システム。
    A second extraction unit for extracting another desired container from the waste group conveyed on the conveying path after the desired container has been extracted by the first extracting unit on the conveying path. If the first extraction unit is not arranged downstream, the control unit causes the first extraction unit to return the extracted container to the conveying path regardless of the presence or absence of the empty space.
    The container sorting system according to claim 6.
  10.  前記測定部は、前記重量を複数回測定し、
     前記制御部は、複数回測定された重量における最大値と最小値との差が閾値以上であるときに、前記抽出済容器を前記搬送路に戻す動作を前記第一抽出部に行わせずに、前記抽出済容器を所定の箱に投入する動作を前記第一抽出部に行わせる、
     請求項2に記載の容器選別システム。
    The measuring unit measures the weight a plurality of times,
    without causing the first extraction unit to return the extracted container to the conveying path when a difference between the maximum value and the minimum value of weights measured a plurality of times is equal to or greater than a threshold value; , causing the first extraction unit to perform an operation of putting the extracted container into a predetermined box;
    The container sorting system according to claim 2.
PCT/JP2022/004454 2022-02-04 2022-02-04 Container sorting system WO2023148929A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/004454 WO2023148929A1 (en) 2022-02-04 2022-02-04 Container sorting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/004454 WO2023148929A1 (en) 2022-02-04 2022-02-04 Container sorting system

Publications (1)

Publication Number Publication Date
WO2023148929A1 true WO2023148929A1 (en) 2023-08-10

Family

ID=87553429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004454 WO2023148929A1 (en) 2022-02-04 2022-02-04 Container sorting system

Country Status (1)

Country Link
WO (1) WO2023148929A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5969685B1 (en) * 2015-12-15 2016-08-17 ウエノテックス株式会社 Waste sorting system and sorting method
JP2017029875A (en) * 2015-07-29 2017-02-09 株式会社 西原商事 Pneumatic classifier
JP2021099691A (en) * 2019-12-23 2021-07-01 株式会社タクマ Container sorting system, container sorting method and container sorting program for sorting container from garbage including container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017029875A (en) * 2015-07-29 2017-02-09 株式会社 西原商事 Pneumatic classifier
JP5969685B1 (en) * 2015-12-15 2016-08-17 ウエノテックス株式会社 Waste sorting system and sorting method
JP2021099691A (en) * 2019-12-23 2021-07-01 株式会社タクマ Container sorting system, container sorting method and container sorting program for sorting container from garbage including container

Similar Documents

Publication Publication Date Title
US9364865B2 (en) System and method for sorting parcel
US20200143127A1 (en) Systems and methods for limiting induction of objects to one or more object processing systems
US11080496B2 (en) Systems and methods for separating objects using vacuum diverts with one or more object processing systems
US11055504B2 (en) Systems and methods for separating objects using a vacuum roller with one or more object processing systems
US11734526B2 (en) Systems and methods for distributing induction of objects to a plurality of object processing systems
US11205059B2 (en) Systems and methods for separating objects using conveyor transfer with one or more object processing systems
US11200390B2 (en) Systems and methods for separating objects using drop conveyors with one or more object processing systems
CA3126138C (en) Systems and methods for separating objects using vacuum diverts with one or more object processing systems
US20220261738A1 (en) Systems and methods for dynamic processing of objects with data verification
JP2000219317A (en) Cargo handling/sorting device
Yunardi Contour-based object detection in Automatic Sorting System for a parcel boxes
CN113501275B (en) Article unloading control method and system, electronic equipment and storage medium
WO2023148929A1 (en) Container sorting system
JP2016168558A (en) Delivery object processing apparatus and delivery object processing program
JP2015147653A (en) Conveyance order determination device, delivery assorting system, and conveyance order determination method
WO2023119490A1 (en) Container sorting system
US9440264B2 (en) Method and system for weighing mail pieces
JPH05338906A (en) Mail matter full load detecting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924839

Country of ref document: EP

Kind code of ref document: A1