WO2023148796A1 - Information processing device, information processing method, information processing system, and computer-readable medium - Google Patents

Information processing device, information processing method, information processing system, and computer-readable medium Download PDF

Info

Publication number
WO2023148796A1
WO2023148796A1 PCT/JP2022/003708 JP2022003708W WO2023148796A1 WO 2023148796 A1 WO2023148796 A1 WO 2023148796A1 JP 2022003708 W JP2022003708 W JP 2022003708W WO 2023148796 A1 WO2023148796 A1 WO 2023148796A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
signal
information processing
collected
collector
Prior art date
Application number
PCT/JP2022/003708
Other languages
French (fr)
Japanese (ja)
Inventor
善裕 梶木
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2022/003708 priority Critical patent/WO2023148796A1/en
Publication of WO2023148796A1 publication Critical patent/WO2023148796A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/04Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using a single signalling line, e.g. in a closed loop

Definitions

  • the present disclosure relates to an information processing device, an information processing method, an information processing system, and a non-transitory computer-readable medium storing a program.
  • Patent Document 2 sound is collected with a plurality of microphones, and the position of the sound source is estimated from the arrival time difference of the sound from the sound source to each microphone, the sound pressure ratio due to the diffusion and attenuation of the sound, etc. (sound source stereotaxic) methods are disclosed.
  • JP 2013-131153 A Japanese Patent Publication No. 2013-545382
  • Patent Documents 1 and 2 have a problem that, for example, abnormal sounds may not be detected appropriately.
  • An object of the present disclosure is to provide an information processing device, an information processing method, an information processing system, and a non-temporary computer-readable medium storing a program that can appropriately detect abnormal sounds in view of the above-described problems. .
  • an acquisition means for acquiring a second signal of sound collected by a first sound collecting device, the first signal and the second signal acquired by the acquisition means There is provided an information processing apparatus having detection means for detecting an abnormality based on the above.
  • a first signal of sound collected by the first sound collector and a second signal of sound collected by the second sound collector are obtained, An information processing method is provided for detecting an abnormality based on the obtained first signal and the second signal.
  • a third aspect of the present disclosure includes a first sound collector, a second sound collector, and an information processing device, and the information processing device receives sound collected by the first sound collector.
  • An information processing system having detection means for detecting an abnormality is provided.
  • a first signal of sound collected by the first sound collector and a second signal of sound collected by the second sound collector are obtained
  • a non-transitory computer-readable medium storing a program for causing a computer to execute a process of detecting an abnormality based on the obtained first signal and the second signal is provided.
  • abnormal sounds can be detected appropriately.
  • FIG. 1 is a diagram illustrating a configuration example of an information processing system according to an embodiment
  • FIG. It is a figure which shows the hardware structural example of the information processing apparatus which concerns on embodiment.
  • 4 is a flowchart showing an example of processing of the information processing device according to the embodiment;
  • FIG. 1 is a diagram showing an example of the configuration of an information processing device 10 according to an embodiment.
  • the information processing device 10 has an acquisition unit 11 and a detection unit 12 .
  • Each of these units may be implemented by cooperation of one or more programs installed in the information processing device 10 and hardware such as the processor 101 and the memory 102 of the information processing device 10 .
  • the acquisition unit 11 acquires a first signal of sound collected by the first sound collector and a second signal of sound collected by the second sound collector.
  • the detection unit 12 detects an abnormality based on the first signal and the second signal acquired by the acquisition unit 11 .
  • FIG. 2 is a diagram showing a configuration example of the information processing system 1 according to the embodiment.
  • an example of detecting abnormal sounds such as shouts and screams at a station visited by an unspecified number of people and facilities such as commercial facilities will be described, but the technology of the present disclosure is not limited to this.
  • the technology of the present disclosure can be applied to detect abnormal sounds in various places such as robots or factories where products move around.
  • each microphone 20 may have not only a microphone that converts sound into an electrical signal (audio signal), but also a circuit or arithmetic device that analyzes the electrical signal of the sound in the same housing, or may be provided as a separate device. You may have it outside.
  • the information processing device (parent device) 10 that collects sounds detected by the microphones 20 and determines whether or not they are abnormal sounds is also installed on the ceiling 202 .
  • Each microphone 20 and the information processing apparatus 10 may be connected so as to be communicable by, for example, wireless communication.
  • the information processing apparatus 10 may transmit a notification to that effect to a host system such as a center to notify the security guard and the user at the location (for example, the same floor) where the abnormality was detected. good.
  • Sound pressure will be used as an index representing the loudness of sound.
  • Sound pressure attenuation can be calculated, for example, by the following equation (1).
  • D1 is the distance from the sound source to the first point (m)
  • D2 is the distance from the sound source to the second point
  • L1 is the noise level at the first point (dB)
  • L2 is the noise level at the second point ( dB).
  • D2/D1 L1-L2 (1)
  • the sound pressure measured at a distance of 5 meters from the sound source is attenuated to 1/25 of the sound pressure measured at a distance of 1 meter from the sound source, and at a distance of 20 meters from the sound source.
  • the sound pressure measured at is attenuated to 1/400.
  • the sound pressure measured at a distance of 5 meters from the sound source is reduced by 14 dB compared to the sound pressure measured at a distance of 1 meter from the sound source, and the sound pressure at a distance of 20 meters from the sound source is reduced by 14 dB.
  • the sound pressure measured at is reduced by 26 dB.
  • the interval at which each microphone 20 is arranged is determined by the volume of an abnormal sound to be detected (for example, sound pressure) and the volume of background sound, and the microphones 20 can be installed. It may be determined based on conditions such as a position where the sound source can exist and a position where the sound source can exist.
  • the first microphone 20 detects an abnormal sound that is greater than or equal to a first threshold value (for example, the loudness of a sound that is determined to be an abnormal sound) generated at a position corresponding to the second microphone 20, For example, it may be arranged at a position where the attenuation of the second signal compared with the first signal is less than a predetermined value) where the attenuation does not fall below the loudness of the sound that can be distinguished from the surrounding background sound.
  • a first threshold value for example, the loudness of a sound that is determined to be an abnormal sound
  • the sound pressure of the background sound at an arbitrary position is 60 to 70 decibels
  • the height from the floor surface 201 to the mouth of the person 50A is 1.5 meters
  • the height from the floor surface 201 to the ceiling 202 is 3 meters. do.
  • a case will be described in which a scream or scream emitted from the mouth of a person standing at an arbitrary position on the floor surface 201 at 100 decibels is detected as an abnormal sound.
  • the distance from the mouth of the human 50A to the microphone 20B is the shortest, and the distance is 1.5 meters.
  • the distance from the adjacent microphone 20A (an example of the "first microphone 20") to the mouth of the human 50A is approximately 10.1 meters. Therefore, a cry or scream emitted from the human 50A at 100 decibels reaches the microphone 20A only attenuating to about 80 decibels. Therefore, the abnormal sound can be collected by the two microphones 20B and 20A with a sound pressure higher than that of the background sound.
  • the distance from the mouth of a person standing at an arbitrary position on the floor surface 201 to the second closest microphone 20 among the plurality of microphones 20 is approximately 10.1 meters or less. Therefore, a scream or scream emitted at 100 decibels reaches at least two microphones 20 with a minimum attenuation of about 80 decibels. That is, two or more microphones 20 are arranged in a range where a sound of 100 decibels is attenuated only up to 80 decibels. Therefore, the abnormal sound can be collected by at least two microphones 20 with a sound pressure higher than the sound pressure of the background sound.
  • FIG. 3 is a diagram showing a hardware configuration example of the information processing apparatus 10 according to the embodiment.
  • the information processing device 10 (computer 100) includes a processor 101, a memory 102, and a communication interface 103. FIG. These units may be connected by a bus or the like.
  • Memory 102 stores at least a portion of program 104 .
  • Communication interface 103 includes interfaces necessary for communication with other network elements.
  • Memory 102 may be of any type suitable for a local technology network. Memory 102 may be, as a non-limiting example, a non-transitory computer-readable storage medium. Also, memory 102 may be implemented using any suitable data storage technology, such as semiconductor-based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed and removable memory, and the like. Although only one memory 102 is shown in computer 100, there may be several physically different memory modules in computer 100.
  • FIG. Processor 101 may be of any type.
  • Processor 101 may include one or more of a general purpose computer, a special purpose computer, a microprocessor, a Digital Signal Processor (DSP), and a processor based on a multi-core processor architecture as non-limiting examples.
  • Computer 100 may have multiple processors, such as application specific integrated circuit chips that are temporally dependent on a clock that synchronizes the main processor.
  • Embodiments of the present disclosure may be implemented in hardware or dedicated circuitry, software, logic, or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software, which may be executed by a controller, microprocessor or other computing device.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer-readable storage medium.
  • a computer program product comprises computer-executable instructions, such as those contained in program modules, to be executed on a device on a target real or virtual processor to perform the processes or methods of the present disclosure.
  • Program modules include routines, programs, libraries, objects, classes, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within local or distributed devices. In a distributed device, program modules can be located in both local and remote storage media.
  • Program code for executing the methods of the present disclosure may be written in any combination of one or more programming languages. These program codes are provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus. When the program code is executed by the processor or controller, the functions/acts in the flowchart illustrations and/or implementing block diagrams are performed. Program code may run entirely on a machine, partly on a machine, as a stand-alone software package, partly on a machine, partly on a remote machine, or entirely on a remote machine or server. be.
  • Non-transitory computer-readable media include various types of tangible storage media.
  • Examples of non-transitory computer-readable media include magnetic recording media, magneto-optical recording media, optical disc media, semiconductor memories, and the like.
  • Magnetic recording media include, for example, flexible disks, magnetic tapes, hard disk drives, and the like.
  • Magneto-optical recording media include, for example, magneto-optical disks.
  • Optical disc media include, for example, Blu-ray discs, CD (Compact Disc)-ROM (Read Only Memory), CD-R (Recordable), CD-RW (ReWritable), and the like.
  • the semiconductor memory includes, for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (random access memory), and the like.
  • the program may also be delivered to the computer by various types of transitory computer readable media. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves. Transitory computer-readable media can deliver the program to the computer via wired channels, such as wires and optical fibers, or wireless channels.
  • FIG. 4 is a sequence diagram showing an example of processing of the information processing system 1 according to the embodiment.
  • each of the one or more microphones 20 transmits a signal of the collected sound to the information processing device 10 .
  • the microphone 20 may transmit the signal of the collected sound to the information processing device 10 only when the volume of the collected sound is equal to or greater than a threshold.
  • the acquisition unit 11 of the information processing device 10 acquires (receives) the signal of the sound collected by each microphone 20 (step S2).
  • the detection unit 12 of the information processing device 10 detects an abnormality based on the sound signals collected by the microphones 20 acquired by the acquisition unit 11 (step S3).
  • the detection unit 12 (output unit) of the information processing device 10 outputs information based on the detection result (step S4).
  • the detection unit 12 for example, transmits a message indicating that an abnormality has been detected to a host system such as a center, and sends a message from the center or the like to a security guard and a user at the location (for example, the same floor) where the abnormality is detected. etc. may be notified.
  • the detection unit 12 may detect an abnormality by, for example, processing described below.
  • the detection unit 12 may execute the following processing examples in combination as appropriate. ⁇ Example of judging the same sound based on the arrival time of the sound>>> For example, the detection unit 12 may determine that an abnormality has occurred when a plurality of microphones 20 collect sounds having a volume equal to or larger than a threshold at substantially the same time (substantially at the same time). As a result, for example, it can be determined that an abnormality has occurred when a sound that is considered to be the same sound is collected by a plurality of microphones 20 with a loudness equal to or greater than the threshold.
  • the detection unit 12 determines that the difference between the times at which sounds equal to or greater than the threshold are collected by the plurality of microphones 20 (for example, the time at which sound collection is started or the time at which sound collection is finished) is a specific time. If it is within (for example, 50 milliseconds), it may be determined that the sounds were collected substantially simultaneously.
  • the specific time may be set to 50 milliseconds in the information processing apparatus 10 in consideration of the measurement error of the arrival time. Further, the detection unit 12 may determine the specific time based on, for example, the room temperature measured by the temperature sensor and the preset distance between the microphones 20 .
  • the detection unit 12 inputs, for example, sound pressure (volume), power obtained by squaring sound pressure, time differential value of sound pressure, time integral value of sound pressure, and sound into an electric circuit as an index representing the loudness of sound.
  • sound pressure volume
  • power obtained by squaring sound pressure time differential value of sound pressure
  • time integral value of sound pressure time integral value of sound pressure
  • sound into an electric circuit as an index representing the loudness of sound.
  • the strength of the audio signal, the loudness value obtained by correcting the sensitivity characteristic of hearing to the sound pressure, the noise level obtained by correcting the sensitivity characteristic of hearing and logarithmically, and the like may be used.
  • the detection unit 12 may use, for example, a physical quantity equivalent to the sound pressure of a specific frequency component after frequency-resolving the sound instead of the sound pressure of the entire sound wave as an index representing the loudness of the sound.
  • the detection unit 12 may use, for example, the sound pressure of frequency components that are often included in the abnormal sound to be detected as an index representing the loudness of the sound.
  • the detection unit 12 may use, for example, a physical quantity that can be converted from sound pressure or the like by some calculation formula as an index representing the loudness of sound.
  • the detection unit 12 uses, for example, a signal waveform corresponding to a change in sound pressure over time, a spectrum obtained by frequency-resolving the sound, and a spectrogram (also called a soundprint) that is a change in the spectrum over time as an index representing the loudness of the sound. ), pitch which means main frequency components, roughness which expresses the degree of modulation of sound pressure and pitch, cepstrum which is extracted spectrum envelope, and formants contained in human voice may be used.
  • the detection unit 12 compares waveforms of sounds collected by each of the plurality of microphones 20 to determine whether or not they are signals of the same sound. It may be determined that an abnormality has occurred when the sound is collected at a large size. In this case, the detection unit 12 may determine that an abnormality has occurred when, for example, the waveforms are collated and the same sound is picked up by a plurality of microphones 20 with a loudness equal to or greater than the threshold. As a result, for example, it is possible to reduce erroneous detection that occurs when different sounds are accidentally input to a plurality of microphones 20 at the same time, and to improve the accuracy of abnormality detection.
  • the detection unit 12 may, for example, frequency-decompose the sound signal from each microphone 20 and compare the time change of the frequency component.
  • the detection unit 12 may perform verification using, for example, a correlation coefficient between one waveform and the other waveform, or a mean square error.
  • the detection unit 12 determines that the difference between the times at which sounds equal to or greater than the threshold are collected by the plurality of microphones 20 is within a specific time (for example, 50 milliseconds), and that each waveform is collated to obtain a plurality of If the same sound is picked up by the microphone 20 with a loudness equal to or greater than the threshold, it may be determined that an abnormality has occurred.
  • a specific time for example, 50 milliseconds
  • the detection unit 12 may estimate the loudness of the sound from the sound source, and determine that an abnormality has occurred when the estimated loudness of the sound is equal to or greater than a threshold. As a result, for example, even in an environment where non-abnormal sounds close to the sound pressure of abnormal sounds are generated, the accuracy of abnormality detection can be improved.
  • FIG. 5 is a flowchart showing an example of processing of the information processing device 10 according to the embodiment.
  • step S101 the detection unit 12 detects the difference between the time of sound collected by each microphone 20 and the loudness ratio of the sound collected by each microphone 20, based on at least one of them. Estimate distance.
  • the detection unit 12 may select two or more microphones 20 in descending order of the volume of the collected sound. Then, the detection unit 12 may compare each waveform of the sound collected by each microphone 20 and calculate the difference between the times when the sound was collected by each microphone 20 . Then, the detection unit 12 may calculate the distance from the sound source to each microphone 20 based on the difference in time when the sound is collected by each microphone 20 .
  • the detection unit 12 may calculate the distance from the sound source to each microphone 20 based on the volume of the sound collected by each microphone 20 using Equation (1) described above.
  • the sound source exists on a hyperboloid of revolution obtained by rotating the hyperbola with each position of the two microphones 20 as the focal point about the straight line connecting the microphones 20 as an axis.
  • the detection unit 12 calculates a plurality of rotational hyperboloids for each combination of the two microphones 20, and determines the line of intersection of the calculated plurality of rotational hyperboloids. It may be assumed that there is a sound source above.
  • the detection unit 12 may estimate the position of the sound source from the intersection of the intersection line and the plane. Also, when the same sound is collected only by two microphones 20, the position of the sound source becomes indefinite on the hyperboloid of revolution in principle. Therefore, the detection unit 12 may estimate the shortest possible position as the position of the sound source by using the constraint conditions of the sound source position in the actual site.
  • the detection unit 12 estimates the loudness of the sound source (step S102).
  • the detection unit 12 calculates the volume of the sound at the sound source using the above equation (1). can be estimated.
  • the sound pressure at a position of 1 meter from the sound source is 120 decibels. can be calculated backwards. From this, it can be estimated that the sound is not a sneeze or the like but an abnormal sound accompanying a burst or an explosion.
  • the detection unit 12 determines whether or not the volume of the sound from the estimated sound source is equal to or greater than the threshold (step S103). If the volume of the sound from the estimated sound source is greater than or equal to the threshold (YES in step S103), the detection unit 12 detects an abnormality (determines that the sound is abnormal) (step S104), and terminates the process. On the other hand, if the volume of the sound from the estimated sound source is equal to or greater than the threshold (NO in step S103), the detection unit 12 determines that the sound is not abnormal (step S105), and terminates the process.
  • the distance from the pre-arranged microphone to the sound source will be indeterminate. Since the sound pressure attenuates in inverse proportion to the square of the distance from the sound source, it is difficult to determine whether the sound is abnormal from the sound pressure of the sound collected by the microphone. For example, if we compare the case where something explodes far from the microphone and the case where someone sneezes near the microphone, in both cases, relatively high (e.g., similar) sound pressure is picked up. Therefore, in the method of detecting abnormality based on sound pressure, it becomes impossible to determine whether the sound is abnormal.
  • plosive sounds generally have a sound pressure of about 120 decibels near the sound source, but attenuate to about 100 decibels when the distance is 10 meters.
  • a sneeze emitted near the microphone may have a sound pressure of about 100 decibels, it is impossible to distinguish between a plosive sound and a sneeze from the sound pressure reaching the microphone.
  • background sounds of about 60 to 80 decibels are always generated in stations and commercial facilities. There is a restriction that the abnormal sound cannot be distinguished from the background sound unless the microphone is placed at a distance where the sound reaches a level of about 90 to 100 decibels, which is sufficiently higher than the background sound.
  • multiple microphones are arranged, and abnormal sound is detected based on the volume of sound reaching the multiple microphones.
  • the distance from the microphone to the sound source is indefinite, it is possible to distinguish normal sounds and abnormal sounds emitted in the vicinity of the microphone. Therefore, an abnormal sound can be appropriately detected.
  • the information processing device 10 may be implemented by cloud computing, which is configured by one or more computers, for example. Further, the information processing device 10 and the microphone 20 may be configured as an integrated device. Further, at least part of the processing of the microphone 20 may be configured to be executed by the information processing device 10 . Further, at least part of the processing of the information processing device 10 may be configured to be executed by the microphone 20 .
  • (Appendix 1) Acquisition means for acquiring a first signal of sound collected by the first sound collector and a second signal of sound collected by the second sound collector; detection means for detecting an abnormality based on the first signal and the second signal acquired by the acquisition means; Information processing device having (Appendix 2) The first sound collecting device is arranged at a position where the attenuation of the second signal is less than a predetermined value. The information processing device according to appendix 1. (Appendix 3) The detection means determines that an abnormality has been detected when the first signal and the second signal are equal to or greater than a threshold; The information processing device according to appendix 1 or 2.
  • the detection means determines whether the sound signals are emitted from the same sound source based on the first signal and the second signal, and determines that the sound signals are emitted from the same sound source. If so, it is determined that an abnormality is detected.
  • the information processing device according to appendix 3. (Appendix 5) When the second signal is collected within a specific time after the first signal is collected, the detection means detects that the first signal and the second signal are sound emitted from the same sound source. determine that it is a signal, The information processing device according to appendix 4.
  • the detection means detects that the first signal and the second signal are sound signals emitted from the same sound source.
  • the information processing apparatus according to appendix 4 or 5, which determines that (Appendix 7)
  • the detection means detects the difference between the time of sound collected by the first sound collector and the time of sound collected by the second sound collector, and the magnitude of sound collected by the first sound collector and the 2 Estimate the sound volume at the sound source based on at least one of the ratio of the sound volume to the sound collected by the sound collector, and when the estimated sound volume at the sound source is equal to or greater than a threshold , determine that an abnormality has occurred, 7.
  • the information processing device according to any one of appendices 1 to 6.
  • Appendix 8 Acquiring a first signal of sound collected by the first sound collector and a second signal of sound collected by the second sound collector; Detecting an abnormality based on the acquired first signal and the second signal; Information processing methods.
  • the first sound collecting device is arranged at a position where the attenuation of the second signal is less than a predetermined value.
  • the information processing method according to appendix 8. (Appendix 10) In the detecting process, when the first signal and the second signal are equal to or greater than a threshold value, it is determined that an abnormality is detected;
  • the information processing method according to any one of Appendices 8 to 13.
  • Appendix 15 Having a first sound collecting device, a second sound collecting device, and an information processing device,
  • the information processing device is Acquisition means for acquiring a first signal of sound collected by the first sound collector and a second signal of sound collected by the second sound collector; detection means for detecting an abnormality based on the first signal and the second signal acquired by the acquisition means;
  • An information processing system having The first sound collecting device is arranged at a position where the attenuation of the second signal is less than a predetermined value.
  • the information processing system according to appendix 15.
  • the detection means determines that an abnormality has been detected when the first signal and the second signal are equal to or greater than a threshold; The information processing system according to appendix 15 or 16.
  • the detection means determines whether the sound signals are emitted from the same sound source based on the first signal and the second signal, and determines that the sound signals are emitted from the same sound source. If so, it is determined that an abnormality is detected. 17.
  • the information processing system according to appendix 17. (Appendix 19) When the second signal is collected within a specific time after the first signal is collected, the detection means detects that the first signal and the second signal are sound emitted from the same sound source. determine that it is a signal, 18. The information processing system according to appendix 18.
  • the detection means detects that the first signal and the second signal are sound signals emitted from the same sound source.
  • the information processing system according to appendix 18 or 19, which determines that (Appendix 21)
  • the detection means detects the difference between the time of sound collected by the first sound collector and the time of sound collected by the second sound collector, and the magnitude of sound collected by the first sound collector and the 2 Estimate the sound volume at the sound source based on at least one of the ratio of the sound volume to the sound collected by the sound collector, and when the estimated sound volume at the sound source is equal to or greater than a threshold , determine that an abnormality has occurred, 21.
  • the information processing system according to any one of appendices 15 to 20.
  • Appendix 22 Acquiring a first signal of sound collected by the first sound collector and a second signal of sound collected by the second sound collector; Detecting an abnormality based on the acquired first signal and the second signal; A non-transitory computer-readable medium storing a program that causes a computer to execute a process.
  • the first sound collecting device is arranged at a position where the attenuation of the second signal is less than a predetermined value. 23.
  • Appendix 24 In the detecting process, when the first signal and the second signal are equal to or greater than a threshold value, it is determined that an abnormality is detected; 24.
  • the computer readable medium of clause 22 or 23. (Appendix 25) In the detecting process, based on the first signal and the second signal, it is determined whether the sound signals are emitted from the same sound source, and the sound signals are detected as being emitted from the same sound source. If it is determined, it is determined that an abnormality has been detected, 25. The computer-readable medium of clause 24. (Appendix 26) In the detecting process, when the second signal is collected within a specific time after the first signal is collected, the first signal and the second signal are sounds emitted from the same sound source. determined to be the signal of 26. The computer-readable medium of clause 25.

Abstract

An information processing device (10) comprises: an acquisition means (11) for acquiring a first signal of a sound collected by a first sound collection device and a second signal of a sound collected by a second sound collection device; and a detection means (2) for detecting an abnormality on the basis of the first and second signals acquired by the acquisition means.

Description

情報処理装置、情報処理方法、情報処理システム、及びコンピュータ可読媒体Information processing device, information processing method, information processing system, and computer readable medium
 本開示は、情報処理装置、情報処理方法、情報処理システム、及びプログラムが格納された非一時的なコンピュータ可読媒体に関する。 The present disclosure relates to an information processing device, an information processing method, an information processing system, and a non-transitory computer-readable medium storing a program.
 近年、街中、駅、電車の中などの公衆の面前で、テロ、暴行、痴漢などの犯罪が増えているが、一方で人手不足による無人化が進み、人による監視の目が行き届きにくくなっている。これを補うために、防犯カメラやマイクなどを設置し、取得した映像や音などをプログラムで解析して異常を検知する、異常検知方法が考案されている(例えば、特許文献1)。 In recent years, crimes such as terrorism, assault, and molestation have been increasing in public places such as streets, stations, and trains. there is In order to compensate for this, an anomaly detection method has been devised in which security cameras, microphones, and the like are installed, and the obtained images and sounds are analyzed by a program to detect anomalies (for example, Patent Document 1).
 また、特許文献2には、複数のマイクにて音を収集し、音源から各々のマイクまでの音の到達時刻差、音の拡散及び減衰による音圧比などから、音源の位置を推定する(音源定位)方法が開示されている。 In addition, in Patent Document 2, sound is collected with a plurality of microphones, and the position of the sound source is estimated from the arrival time difference of the sound from the sound source to each microphone, the sound pressure ratio due to the diffusion and attenuation of the sound, etc. (sound source stereotaxic) methods are disclosed.
特開2013-131153号公報JP 2013-131153 A 特表2013-545382号公報Japanese Patent Publication No. 2013-545382
 しかしながら、特許文献1、2記載の技術では、例えば、異常音を適切に検知できない場合があるという問題点がある。 However, the techniques described in Patent Documents 1 and 2 have a problem that, for example, abnormal sounds may not be detected appropriately.
 本開示の目的は、上述した課題を鑑み、異常音を適切に検知できる情報処理装置、情報処理方法、情報処理システム、及びプログラムが格納された非一時的なコンピュータ可読媒体を提供することである。 An object of the present disclosure is to provide an information processing device, an information processing method, an information processing system, and a non-temporary computer-readable medium storing a program that can appropriately detect abnormal sounds in view of the above-described problems. .
 本開示に係る第1の態様では、第1集音装置で集音された音の第2信号と、を取得する取得手段と、前記取得手段により取得された前記第1信号及び前記第2信号に基づき、異常を検知する検知手段と、を有する情報処理装置が提供される。 In a first aspect according to the present disclosure, an acquisition means for acquiring a second signal of sound collected by a first sound collecting device, the first signal and the second signal acquired by the acquisition means There is provided an information processing apparatus having detection means for detecting an abnormality based on the above.
 また、本開示に係る第2の態様では、第1集音装置で集音された音の第1信号と、第2集音装置で集音された音の第2信号と、を取得し、取得した前記第1信号及び前記第2信号に基づき、異常を検知する、情報処理方法が提供される。 Further, in a second aspect according to the present disclosure, a first signal of sound collected by the first sound collector and a second signal of sound collected by the second sound collector are obtained, An information processing method is provided for detecting an abnormality based on the obtained first signal and the second signal.
 また、本開示に係る第3の態様では、第1集音装置と、第2集音装置と、情報処理装置とを有し、前記情報処理装置は、前記第1集音装置で集音された音の第1信号と、前記第2集音装置で集音された音の第2信号と、を取得する取得手段と、前記取得手段により取得された前記第1信号及び前記第2信号に基づき、異常を検知する検知手段と、を有する情報処理システムが提供される。 Further, a third aspect of the present disclosure includes a first sound collector, a second sound collector, and an information processing device, and the information processing device receives sound collected by the first sound collector. Acquisition means for acquiring a first signal of the sound collected by the second sound collecting device and a second signal of the sound collected by the second sound collecting device; An information processing system having detection means for detecting an abnormality is provided.
 また、本開示に係る第4の態様では、第1集音装置で集音された音の第1信号と、第2集音装置で集音された音の第2信号と、を取得し、取得した前記第1信号及び前記第2信号に基づき、異常を検知する、処理をコンピュータに実行させるプログラムが格納された非一時的なコンピュータ可読媒体が提供される。 Further, in a fourth aspect according to the present disclosure, a first signal of sound collected by the first sound collector and a second signal of sound collected by the second sound collector are obtained, A non-transitory computer-readable medium storing a program for causing a computer to execute a process of detecting an abnormality based on the obtained first signal and the second signal is provided.
 一側面によれば、異常音を適切に検知することができる。 According to one aspect, abnormal sounds can be detected appropriately.
実施形態に係る情報処理装置の構成例を示す図である。It is a figure which shows the structural example of the information processing apparatus which concerns on embodiment. 実施形態に係る情報処理システムの構成例を示す図である。1 is a diagram illustrating a configuration example of an information processing system according to an embodiment; FIG. 実施形態に係る情報処理装置のハードウェア構成例を示す図である。It is a figure which shows the hardware structural example of the information processing apparatus which concerns on embodiment. 実施形態に係る情報処理システムの処理の一例を示すシーケンス図である。It is a sequence diagram showing an example of processing of the information processing system according to the embodiment. 実施形態に係る情報処理装置の処理の一例を示すフローチャートである。4 is a flowchart showing an example of processing of the information processing device according to the embodiment;
 本開示の原理は、いくつかの例示的な実施形態を参照して説明される。これらの実施形態は、例示のみを目的として記載されており、本開示の範囲に関する制限を示唆することなく、当業者が本開示を理解および実施するのを助けることを理解されたい。本明細書で説明される開示は、以下で説明されるもの以外の様々な方法で実装される。
 以下の説明および特許請求の範囲において、他に定義されない限り、本明細書で使用されるすべての技術用語および科学用語は、本開示が属する技術分野の当業者によって一般に理解されるのと同じ意味を有する。
 以下、図面を参照して、本開示の実施形態を説明する。
The principles of the present disclosure will be explained with reference to several exemplary embodiments. It should be understood that these embodiments are described for illustrative purposes only, and do not imply any limitation on the scope of the disclosure, and are intended to assist those skilled in the art in understanding and practicing the present disclosure. The disclosure described herein can be implemented in various ways other than those described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. have
Embodiments of the present disclosure will be described below with reference to the drawings.
 (実施の形態1)
 <構成>
 図1を参照し、実施形態に係る情報処理装置10の構成について説明する。図1は、実施形態に係る情報処理装置10の構成の一例を示す図である。情報処理装置10は、取得部11、及び検知部12を有する。これら各部は、情報処理装置10にインストールされた1以上のプログラムと、情報処理装置10のプロセッサ101、及びメモリ102等のハードウェアとの協働により実現されてもよい。
(Embodiment 1)
<Configuration>
A configuration of an information processing apparatus 10 according to an embodiment will be described with reference to FIG. FIG. 1 is a diagram showing an example of the configuration of an information processing device 10 according to an embodiment. The information processing device 10 has an acquisition unit 11 and a detection unit 12 . Each of these units may be implemented by cooperation of one or more programs installed in the information processing device 10 and hardware such as the processor 101 and the memory 102 of the information processing device 10 .
 取得部11は、第1集音装置で集音された音の第1信号と、第2集音装置で集音された音の第2信号と、を取得する。検知部12は、取得部11により取得された第1信号及び第2信号に基づき、異常を検知する。 The acquisition unit 11 acquires a first signal of sound collected by the first sound collector and a second signal of sound collected by the second sound collector. The detection unit 12 detects an abnormality based on the first signal and the second signal acquired by the acquisition unit 11 .
 (実施の形態2)
 次に、図2を参照し、実施形態に係る情報処理システム1の構成について説明する。
 <システム構成>
 図2は、実施形態に係る情報処理システム1の構成例を示す図である。なお、以下では、不特定多数の人が来訪する駅、及び商業施設等の施設において、叫び声や悲鳴などの異常音を検知する例について説明するが、本開示の技術はこれに限定されない。本開示の技術は、例えば、ロボット、または生産品が動き回る工場等、各種の場所における異常音を検知することに適用できる。
(Embodiment 2)
Next, the configuration of the information processing system 1 according to the embodiment will be described with reference to FIG.
<System configuration>
FIG. 2 is a diagram showing a configuration example of the information processing system 1 according to the embodiment. In the following, an example of detecting abnormal sounds such as shouts and screams at a station visited by an unspecified number of people and facilities such as commercial facilities will be described, but the technology of the present disclosure is not limited to this. The technology of the present disclosure can be applied to detect abnormal sounds in various places such as robots or factories where products move around.
 図2の例では、床面201から所定の高さH(例えば、3メートル)にある天井202に、特定間隔D(例えば、10メートル間隔)となるように複数のマイク20A~20H(以下で、区別する必要が無い場合は、単に、「マイク20」とも称する。「集音装置」の一例。)が配置されている。なお、各マイク20は、音を電気信号(音声信号)に変換するマイクロホンだけでなく、音の電気信号を分析する回路または演算装置を、同一筐体内に有してもよいし、別装置として外部に有してもよい。 In the example of FIG. 2, a plurality of microphones 20A to 20H (hereinafter referred to as , and when there is no need to distinguish between them, they are simply referred to as "microphones 20." An example of "sound collectors.") are arranged. Each microphone 20 may have not only a microphone that converts sound into an electrical signal (audio signal), but also a circuit or arithmetic device that analyzes the electrical signal of the sound in the same housing, or may be provided as a separate device. You may have it outside.
 また、図2の例では、天井202には、各マイク20が検知した音を収集して異常音か否かの判定を行う情報処理装置(親機)10も設置されている。各マイク20と情報処理装置10とは、例えば、無線通信等にて通信可能なように接続されてもよい。情報処理装置10は、異常音を検知した場合、センター等の上位システムにその旨を送信して、警備員、及び異常を検知した場所(例えば、同一フロア)にいるユーザ等へ通知させてもよい。 In the example of FIG. 2, the information processing device (parent device) 10 that collects sounds detected by the microphones 20 and determines whether or not they are abnormal sounds is also installed on the ceiling 202 . Each microphone 20 and the information processing apparatus 10 may be connected so as to be communicable by, for example, wireless communication. When the information processing apparatus 10 detects an abnormal sound, the information processing apparatus 10 may transmit a notification to that effect to a host system such as a center to notify the security guard and the user at the location (for example, the same floor) where the abnormality was detected. good.
 <<各マイク20の配置について>>
 以下で、音の大きさを表す指標として、音圧を用いて説明する。音圧の減衰は、例えば、以下の式(1)により算出できる。なお、D1は音源から第1地点までの距離(m)、D2は音源から第2地点までの距離、L1は第1地点での騒音レベル(dB)、L2は第2地点での騒音レベル(dB)である。
 20×log10(D2/D1) = L1-L2 ・・・(1)
<<Arrangement of each microphone 20>>
In the following, sound pressure will be used as an index representing the loudness of sound. Sound pressure attenuation can be calculated, for example, by the following equation (1). D1 is the distance from the sound source to the first point (m), D2 is the distance from the sound source to the second point, L1 is the noise level at the first point (dB), L2 is the noise level at the second point ( dB).
20×log 10 (D2/D1) = L1-L2 (1)
 音源が点状と仮定した場合、音源から1メートルの距離で測定される音圧に対し、音源から5メートルの距離で測定される音圧は1/25に減衰し、音源から20メートルの距離で測定される音圧は1/400に減衰する。音圧を対数化した騒音レベルで説明すると、音源から1メートルの距離で測定される音圧に対し、音源から5メートルの距離で測定される音圧は14dB減少し、音源から20メートルの距離で測定される音圧は26dB減少する。 Assuming that the sound source is point-like, the sound pressure measured at a distance of 5 meters from the sound source is attenuated to 1/25 of the sound pressure measured at a distance of 1 meter from the sound source, and at a distance of 20 meters from the sound source. The sound pressure measured at is attenuated to 1/400. When explained in terms of the sound pressure logarithmized sound level, the sound pressure measured at a distance of 5 meters from the sound source is reduced by 14 dB compared to the sound pressure measured at a distance of 1 meter from the sound source, and the sound pressure at a distance of 20 meters from the sound source is reduced by 14 dB. The sound pressure measured at is reduced by 26 dB.
 本開示の技術では、各マイク20が配置される間隔(隣接するマイク20間の距離)は、検知したい異常音の大きさ(例えば、音圧)と背景音の大きさ、マイク20を設置可能な位置、及び音源が存在可能な位置などの条件に基づいて決定されてもよい。この場合、第1マイク20は、第2マイク20に対応する位置で発生した第1閾値(例えば、異常音と判定される音の大きさ)以上の大きさの異常音が、第2閾値(例えば、周囲の背景音と識別できる音の大きさ)以下に減衰しない位置(第1信号と比較した第2信号の減衰が所定値未満となる位置)に配置されてもよい。なお、本開示の技術は、各マイク20間の距離の情報を情報処理装置10が取得できればよいため、各マイク20を移動可能なロボット等に設置する場合にも適用できる。 In the technology of the present disclosure, the interval at which each microphone 20 is arranged (distance between adjacent microphones 20) is determined by the volume of an abnormal sound to be detected (for example, sound pressure) and the volume of background sound, and the microphones 20 can be installed. It may be determined based on conditions such as a position where the sound source can exist and a position where the sound source can exist. In this case, the first microphone 20 detects an abnormal sound that is greater than or equal to a first threshold value (for example, the loudness of a sound that is determined to be an abnormal sound) generated at a position corresponding to the second microphone 20, For example, it may be arranged at a position where the attenuation of the second signal compared with the first signal is less than a predetermined value) where the attenuation does not fall below the loudness of the sound that can be distinguished from the surrounding background sound. Note that the technology of the present disclosure only needs the information processing apparatus 10 to acquire information about the distance between the microphones 20, and thus can be applied to a case where the microphones 20 are installed in a movable robot or the like.
 例えば、任意の位置における背景音の音圧を60~70デシベル、床面201から人間50Aの口までの高さを1.5メートル、床面201から天井202までの高さを3メートルと仮定する。この場合に、床面201上の任意の位置に起立している人間の口から100デシベルにて発せられる叫び声や悲鳴を異常音として検知する場合について説明する。 For example, assume that the sound pressure of the background sound at an arbitrary position is 60 to 70 decibels, the height from the floor surface 201 to the mouth of the person 50A is 1.5 meters, and the height from the floor surface 201 to the ceiling 202 is 3 meters. do. In this case, a case will be described in which a scream or scream emitted from the mouth of a person standing at an arbitrary position on the floor surface 201 at 100 decibels is detected as an abnormal sound.
 人間50Aがマイク20B(「第2マイク20」の一例。)の直下に起立している場合、人間50Aの口元からマイク20Bまでの距離が最も近くなり、その距離は1.5メートルとなる。この時、隣接するマイク20A(「第1マイク20」の一例。)から人間50Aの口元までの距離は約10.1メートルとなる。そのため、人間50Aから100デシベルにて発せられた叫び声や悲鳴は、約80デシベルまでしか減衰せずに、マイク20Aに到達する。そのため、背景音の音圧よりも大きい音圧で、異常音を2つのマイク20B、20Aで集音できる。 When the human 50A stands directly under the microphone 20B (an example of the "second microphone 20"), the distance from the mouth of the human 50A to the microphone 20B is the shortest, and the distance is 1.5 meters. At this time, the distance from the adjacent microphone 20A (an example of the "first microphone 20") to the mouth of the human 50A is approximately 10.1 meters. Therefore, a cry or scream emitted from the human 50A at 100 decibels reaches the microphone 20A only attenuating to about 80 decibels. Therefore, the abnormal sound can be collected by the two microphones 20B and 20A with a sound pressure higher than that of the background sound.
 また、同様に、床面201上の任意の位置に起立している人間の口元から、複数のマイク20のうち2番目に近いマイク20までの距離は約10.1メートル以下となる。そのため、100デシベルにて発せられた叫び声や悲鳴は、最小でも約80デシベルまでしか減衰せずに、少なくとも2つのマイク20に到達する。すなわち、100デシベルの音が80デシベルまでにしか減衰しない範囲において、2つ以上のマイク20が配置されている。そのため、背景音の音圧よりも大きい音圧で、異常音を少なくとも2つのマイク20で集音できる。 Similarly, the distance from the mouth of a person standing at an arbitrary position on the floor surface 201 to the second closest microphone 20 among the plurality of microphones 20 is approximately 10.1 meters or less. Therefore, a scream or scream emitted at 100 decibels reaches at least two microphones 20 with a minimum attenuation of about 80 decibels. That is, two or more microphones 20 are arranged in a range where a sound of 100 decibels is attenuated only up to 80 decibels. Therefore, the abnormal sound can be collected by at least two microphones 20 with a sound pressure higher than the sound pressure of the background sound.
 <ハードウェア構成>
 図3は、実施形態に係る情報処理装置10のハードウェア構成例を示す図である。図3の例では、情報処理装置10(コンピュータ100)は、プロセッサ101、メモリ102、通信インターフェイス103を含む。これら各部は、バス等により接続されてもよい。メモリ102は、プログラム104の少なくとも一部を格納する。通信インターフェイス103は、他のネットワーク要素との通信に必要なインターフェイスを含む。
<Hardware configuration>
FIG. 3 is a diagram showing a hardware configuration example of the information processing apparatus 10 according to the embodiment. In the example of FIG. 3, the information processing device 10 (computer 100) includes a processor 101, a memory 102, and a communication interface 103. FIG. These units may be connected by a bus or the like. Memory 102 stores at least a portion of program 104 . Communication interface 103 includes interfaces necessary for communication with other network elements.
 プログラム104が、プロセッサ101及びメモリ102等の協働により実行されると、コンピュータ100により本開示の実施形態の少なくとも一部の処理が行われる。メモリ102は、ローカル技術ネットワークに適した任意のタイプのものであってもよい。メモリ102は、非限定的な例として、非一時的なコンピュータ可読記憶媒体でもよい。また、メモリ102は、半導体ベースのメモリデバイス、磁気メモリデバイスおよびシステム、光学メモリデバイスおよびシステム、固定メモリおよびリムーバブルメモリなどの任意の適切なデータストレージ技術を使用して実装されてもよい。コンピュータ100には1つのメモリ102のみが示されているが、コンピュータ100にはいくつかの物理的に異なるメモリモジュールが存在してもよい。プロセッサ101は、任意のタイプのものであってよい。プロセッサ101は、汎用コンピュータ、専用コンピュータ、マイク20ロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、および非限定的な例としてマルチコアプロセッサアーキテクチャに基づくプロセッサの1つ以上を含んでよい。コンピュータ100は、メインプロセッサを同期させるクロックに時間的に従属する特定用途向け集積回路チップなどの複数のプロセッサを有してもよい。 When the program 104 is executed by cooperation of the processor 101 and the memory 102, etc., the computer 100 performs at least part of the processing of the embodiment of the present disclosure. Memory 102 may be of any type suitable for a local technology network. Memory 102 may be, as a non-limiting example, a non-transitory computer-readable storage medium. Also, memory 102 may be implemented using any suitable data storage technology, such as semiconductor-based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed and removable memory, and the like. Although only one memory 102 is shown in computer 100, there may be several physically different memory modules in computer 100. FIG. Processor 101 may be of any type. Processor 101 may include one or more of a general purpose computer, a special purpose computer, a microprocessor, a Digital Signal Processor (DSP), and a processor based on a multi-core processor architecture as non-limiting examples. Computer 100 may have multiple processors, such as application specific integrated circuit chips that are temporally dependent on a clock that synchronizes the main processor.
 本開示の実施形態は、ハードウェアまたは専用回路、ソフトウェア、ロジックまたはそれらの任意の組み合わせで実装され得る。いくつかの態様はハードウェアで実装されてもよく、一方、他の態様はコントローラ、マイク20ロプロセッサまたは他のコンピューティングデバイスによって実行され得るファームウェアまたはソフトウェアで実装されてもよい。 Embodiments of the present disclosure may be implemented in hardware or dedicated circuitry, software, logic, or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software, which may be executed by a controller, microprocessor or other computing device.
 本開示はまた、非一時的なコンピュータ可読記憶媒体に有形に記憶された少なくとも1つのコンピュータプログラム製品を提供する。コンピュータプログラム製品は、プログラムモジュールに含まれる命令などのコンピュータ実行可能命令を含み、対象の実プロセッサまたは仮想プロセッサ上のデバイスで実行され、本開示のプロセスまたは方法を実行する。プログラムモジュールには、特定のタスクを実行したり、特定の抽象データ型を実装したりするルーチン、プログラム、ライブラリ、オブジェクト、クラス、コンポーネント、データ構造などが含まれる。プログラムモジュールの機能は、様々な実施形態で望まれるようにプログラムモジュール間で結合または分割されてもよい。プログラムモジュールのマシン実行可能命令は、ローカルまたは分散デバイス内で実行できる。分散デバイスでは、プログラムモジュールはローカルとリモートの両方のストレージメディアに配置できる。 The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer-readable storage medium. A computer program product comprises computer-executable instructions, such as those contained in program modules, to be executed on a device on a target real or virtual processor to perform the processes or methods of the present disclosure. Program modules include routines, programs, libraries, objects, classes, components, data structures, etc. that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within local or distributed devices. In a distributed device, program modules can be located in both local and remote storage media.
 本開示の方法を実行するためのプログラムコードは、1つ以上のプログラミング言語の任意の組み合わせで書かれてもよい。これらのプログラムコードは、汎用コンピュータ、専用コンピュータ、またはその他のプログラム可能なデータ処理装置のプロセッサまたはコントローラに提供される。プログラムコードがプロセッサまたはコントローラによって実行されると、フローチャートおよび/または実装するブロック図内の機能/動作が実行される。プログラムコードは、完全にマシン上で実行され、一部はマシン上で、スタンドアロンソフトウェアパッケージとして、一部はマシン上で、一部はリモートマシン上で、または完全にリモートマシンまたはサーバ上で実行される。 Program code for executing the methods of the present disclosure may be written in any combination of one or more programming languages. These program codes are provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus. When the program code is executed by the processor or controller, the functions/acts in the flowchart illustrations and/or implementing block diagrams are performed. Program code may run entirely on a machine, partly on a machine, as a stand-alone software package, partly on a machine, partly on a remote machine, or entirely on a remote machine or server. be.
 プログラムは、様々なタイプの非一時的なコンピュータ可読媒体を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体を含む。非一時的なコンピュータ可読媒体の例には、磁気記録媒体、光磁気記録媒体、光ディスク媒体、半導体メモリ等が含まれる。磁気記録媒体には、例えば、フレキシブルディスク、磁気テープ、ハードディスクドライブ等が含まれる。光磁気記録媒体には、例えば、光磁気ディスク等が含まれる。光ディスク媒体には、例えば、ブルーレイディスク、CD(Compact Disc)-ROM(Read Only Memory)、CD-R(Recordable)、CD-RW(ReWritable)等が含まれる。半導体メモリには、例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory)等が含まれる。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 Programs can be stored and supplied to computers using various types of non-transitory computer-readable media. Non-transitory computer-readable media include various types of tangible storage media. Examples of non-transitory computer-readable media include magnetic recording media, magneto-optical recording media, optical disc media, semiconductor memories, and the like. Magnetic recording media include, for example, flexible disks, magnetic tapes, hard disk drives, and the like. Magneto-optical recording media include, for example, magneto-optical disks. Optical disc media include, for example, Blu-ray discs, CD (Compact Disc)-ROM (Read Only Memory), CD-R (Recordable), CD-RW (ReWritable), and the like. The semiconductor memory includes, for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (random access memory), and the like. The program may also be delivered to the computer by various types of transitory computer readable media. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves. Transitory computer-readable media can deliver the program to the computer via wired channels, such as wires and optical fibers, or wireless channels.
 <処理>
 図4を参照し、実施形態に係る情報処理システム1の処理の一例について説明する。図4は、実施形態に係る情報処理システム1の処理の一例を示すシーケンス図である。
<Processing>
An example of processing of the information processing system 1 according to the embodiment will be described with reference to FIG. 4 . FIG. 4 is a sequence diagram showing an example of processing of the information processing system 1 according to the embodiment.
 ステップS1において、1以上の各マイク20は、集音した音の信号を情報処理装置10に送信する。ここで、マイク20は、例えば、集音した音の大きさが閾値以上である場合にのみ、集音した音の信号を情報処理装置10に送信してもよい。 In step S<b>1 , each of the one or more microphones 20 transmits a signal of the collected sound to the information processing device 10 . Here, for example, the microphone 20 may transmit the signal of the collected sound to the information processing device 10 only when the volume of the collected sound is equal to or greater than a threshold.
 続いて、情報処理装置10の取得部11は、各マイク20により集音された音の信号を取得(受信)する(ステップS2)。続いて、情報処理装置10の検知部12は、取得部11により取得された各マイク20により集音された音の信号に基づき、異常を検知する(ステップS3)。 Subsequently, the acquisition unit 11 of the information processing device 10 acquires (receives) the signal of the sound collected by each microphone 20 (step S2). Subsequently, the detection unit 12 of the information processing device 10 detects an abnormality based on the sound signals collected by the microphones 20 acquired by the acquisition unit 11 (step S3).
 続いて、情報処理装置10の検知部12(出力部)は、検知した結果に基づく情報を出力する(ステップS4)。ここで、検知部12は、例えば、センター等の上位システムに異常を検知した旨を示すメッセージを送信して、センター等から警備員、及び異常を検知した場所(例えば、同一フロア)にいるユーザ等へ通知させてもよい。 Subsequently, the detection unit 12 (output unit) of the information processing device 10 outputs information based on the detection result (step S4). Here, the detection unit 12, for example, transmits a message indicating that an abnormality has been detected to a host system such as a center, and sends a message from the center or the like to a security guard and a user at the location (for example, the same floor) where the abnormality is detected. etc. may be notified.
 ステップS3において、検知部12は、例えば、以下に説明する処理等により、異常を検知してもよい。なお、検知部12は、以下の各処理例を、適宜組み合わせて実行してもよい。
 <<音の到達時刻に基づく同一音の判定例>>
 検知部12は、例えば、複数のマイク20で、略同時(ほぼ同時刻)に閾値以上の大きさの音が集音された場合、異常が発生したと判定してもよい。これにより、例えば、同一の音と考えられる音が閾値以上の大きさで複数のマイク20で集音された場合に、異常が発生したと判定できる。
In step S3, the detection unit 12 may detect an abnormality by, for example, processing described below. Note that the detection unit 12 may execute the following processing examples in combination as appropriate.
<<Example of judging the same sound based on the arrival time of the sound>>
For example, the detection unit 12 may determine that an abnormality has occurred when a plurality of microphones 20 collect sounds having a volume equal to or larger than a threshold at substantially the same time (substantially at the same time). As a result, for example, it can be determined that an abnormality has occurred when a sound that is considered to be the same sound is collected by a plurality of microphones 20 with a loudness equal to or greater than the threshold.
 この場合、検知部12は、例えば、複数のマイク20で閾値以上の音が集音された時刻(例えば、集音が開始された時刻、または集音が終了された時刻)の差が特定時間(例えば、50ミリ秒)内である場合には、略同時に集音されたと判定してもよい。 In this case, for example, the detection unit 12 determines that the difference between the times at which sounds equal to or greater than the threshold are collected by the plurality of microphones 20 (for example, the time at which sound collection is started or the time at which sound collection is finished) is a specific time. If it is within (for example, 50 milliseconds), it may be determined that the sounds were collected substantially simultaneously.
 なお、例えば、気温20度の空気中における音速は約344メートル毎秒であるため、各マイク20間の距離が10メートルの場合、同一の音が隣接する2つのマイク20に到達するまでの最大の時刻差は、約30ミリ秒である。そこで、到達時刻の測定誤差も考慮して、当該特定時間を50ミリ秒として情報処理装置10に設定してもよい。また、検知部12は、例えば、温度センサで測定された室内温度、及び予め設定されている各マイク20間の距離に基づいて、当該特定時間を決定してもよい。 Note that, for example, since the speed of sound in air at a temperature of 20 degrees Celsius is about 344 meters per second, if the distance between the microphones 20 is 10 meters, the maximum speed for the same sound to reach two adjacent microphones 20 is The time difference is approximately 30 milliseconds. Therefore, the specific time may be set to 50 milliseconds in the information processing apparatus 10 in consideration of the measurement error of the arrival time. Further, the detection unit 12 may determine the specific time based on, for example, the room temperature measured by the temperature sensor and the preset distance between the microphones 20 .
 (音の大きさについて)
 本開示において、音の大きさとして、音の大きさを表す各種の指標を用いることができる。検知部12は、音の大きさを表す指標として、例えば、音圧(音量)、音圧を二乗したパワー、音圧の時間微分値、音圧の時間積分値、音を電気回路に入力した音声信号の強度、音圧に聴覚の感度特性を補正したラウドネス値、聴覚の感度特性を補正して対数化した騒音レベルなどを用いてもよい。
(Regarding the loudness of sound)
In the present disclosure, various indicators representing the volume of sound can be used as the volume of sound. The detection unit 12 inputs, for example, sound pressure (volume), power obtained by squaring sound pressure, time differential value of sound pressure, time integral value of sound pressure, and sound into an electric circuit as an index representing the loudness of sound. The strength of the audio signal, the loudness value obtained by correcting the sensitivity characteristic of hearing to the sound pressure, the noise level obtained by correcting the sensitivity characteristic of hearing and logarithmically, and the like may be used.
 また、検知部12は、音の大きさを表す指標として、例えば、音波全体の音圧ではなく、音を周波数分解した上で、特定の周波数成分の音圧相当の物理量を用いてもよい。この場合、検知部12は、音の大きさを表す指標として、例えば、検知対象とする異常音に多く含まれる周波数成分の音圧等を用いてもよい。 In addition, the detection unit 12 may use, for example, a physical quantity equivalent to the sound pressure of a specific frequency component after frequency-resolving the sound instead of the sound pressure of the entire sound wave as an index representing the loudness of the sound. In this case, the detection unit 12 may use, for example, the sound pressure of frequency components that are often included in the abnormal sound to be detected as an index representing the loudness of the sound.
 また、検知部12は、音の大きさを表す指標として、例えば、音圧等から何らかの計算式で換算できる物理量を用いてもよい。この場合、検知部12は、音の大きさを表す指標として、例えば、音圧の時間変化に相当する信号波形、音を周波数分解したスペクトル、そのスペクトルの時間変化であるスペクトログラム(音紋とも呼ばれる)、主要な周波数成分を意味する音高、音圧や音高の変調度を表すラフネス、スペクトルの包絡を抽出したケプストラム、人の声に含まれるフォルマントを用いてもよい。 In addition, the detection unit 12 may use, for example, a physical quantity that can be converted from sound pressure or the like by some calculation formula as an index representing the loudness of sound. In this case, the detection unit 12 uses, for example, a signal waveform corresponding to a change in sound pressure over time, a spectrum obtained by frequency-resolving the sound, and a spectrogram (also called a soundprint) that is a change in the spectrum over time as an index representing the loudness of the sound. ), pitch which means main frequency components, roughness which expresses the degree of modulation of sound pressure and pitch, cepstrum which is extracted spectrum envelope, and formants contained in human voice may be used.
 <<音の波形に基づく同一音の判定例>>
 検知部12は、複数のマイク20のそれぞれで集音された音の各波形を照合して同一の音の信号であるか否かを判定し、複数のマイク20で同一の音が閾値以上の大きさで集音された場合、異常が発生したと判定してもよい。この場合、検知部12は、例えば、各波形を照合して複数のマイク20で同一の音が閾値以上の大きさで集音された場合、異常が発生したと判定してもよい。これにより、例えば、偶然に同時刻に異なる音が複数のマイク20に入力した際に発生する誤検知を低減し、異常検知の精度を高めることができる。
<<Example of judging the same sound based on sound waveform>>
The detection unit 12 compares waveforms of sounds collected by each of the plurality of microphones 20 to determine whether or not they are signals of the same sound. It may be determined that an abnormality has occurred when the sound is collected at a large size. In this case, the detection unit 12 may determine that an abnormality has occurred when, for example, the waveforms are collated and the same sound is picked up by a plurality of microphones 20 with a loudness equal to or greater than the threshold. As a result, for example, it is possible to reduce erroneous detection that occurs when different sounds are accidentally input to a plurality of microphones 20 at the same time, and to improve the accuracy of abnormality detection.
 各マイク20の位置は離れているため、壁面からの反射などの条件が大きく異なり、音声信号のままでは照合困難な場合がある。そのため、検知部12は、例えば、各マイク20からの音の信号を周波数分解し、周波数成分の時間変化を照合してもよい。検知部12は、例えば、一方の波形と他方の波形との相関係数、または平均2乗誤差等を用いて照合を行ってもよい。また、検知部12は、例えば、複数のマイク20で閾値以上の音が集音された時刻の差が特定時間(例えば、50ミリ秒)内であり、かつ、各波形を照合して複数のマイク20で同一の音が閾値以上の大きさで集音された場合、異常が発生したと判定してもよい。  Since the positions of the microphones 20 are far apart, the conditions such as reflection from the wall surface are greatly different, and it may be difficult to collate the voice signals as they are. Therefore, the detection unit 12 may, for example, frequency-decompose the sound signal from each microphone 20 and compare the time change of the frequency component. The detection unit 12 may perform verification using, for example, a correlation coefficient between one waveform and the other waveform, or a mean square error. In addition, for example, the detection unit 12 determines that the difference between the times at which sounds equal to or greater than the threshold are collected by the plurality of microphones 20 is within a specific time (for example, 50 milliseconds), and that each waveform is collated to obtain a plurality of If the same sound is picked up by the microphone 20 with a loudness equal to or greater than the threshold, it may be determined that an abnormality has occurred. 
 <<音源での音の大きさを推定して、異常を検知する例>>
 検知部12は、音源での音の大きさを推定し、推定した音の大きさが閾値以上である場合に、異常が発生したと判定してもよい。これにより、例えば、異常音の音圧に近い異常ではない音が発生する様な環境においても、異常検知の精度を向上させることができる。
<<Example of detecting anomalies by estimating the loudness of the sound source>>
The detection unit 12 may estimate the loudness of the sound from the sound source, and determine that an abnormality has occurred when the estimated loudness of the sound is equal to or greater than a threshold. As a result, for example, even in an environment where non-abnormal sounds close to the sound pressure of abnormal sounds are generated, the accuracy of abnormality detection can be improved.
 図5を参照し、図4のステップS3において音源での音の大きさを推定して異常を検知する場合の情報処理装置10の処理の一例について説明する。図5は、実施形態に係る情報処理装置10の処理の一例を示すフローチャートである。 An example of the processing of the information processing device 10 when an abnormality is detected by estimating the sound volume of the sound source in step S3 of FIG. 4 will be described with reference to FIG. FIG. 5 is a flowchart showing an example of processing of the information processing device 10 according to the embodiment.
 ステップS101において、検知部12は、各マイク20で集音された時間の差、及び各マイク20で集音された音の大きさの比の少なくとも一方に基づいて、音源から各マイク20での距離を推定する。 In step S101, the detection unit 12 detects the difference between the time of sound collected by each microphone 20 and the loudness ratio of the sound collected by each microphone 20, based on at least one of them. Estimate distance.
 ここで、検知部12は、集音された音の大きさが大きい順に2つ以上のマイク20を選択してもよい。そして、検知部12は、各マイク20で集音された音の各波形を照合して、当該各マイク20で集音された時間の差を算出してもよい。そして、検知部12は、当該各マイク20で集音された時間の差に基づいて、音源から当該各マイク20への距離を算出してもよい。 Here, the detection unit 12 may select two or more microphones 20 in descending order of the volume of the collected sound. Then, the detection unit 12 may compare each waveform of the sound collected by each microphone 20 and calculate the difference between the times when the sound was collected by each microphone 20 . Then, the detection unit 12 may calculate the distance from the sound source to each microphone 20 based on the difference in time when the sound is collected by each microphone 20 .
 また、検知部12は、上述した式(1)を用いて、各マイク20で集音された音の大きさに基づいて、音源から各マイク20への距離を算出してもよい。この場合、理論的には、2つのマイク20の各位置を焦点とする双曲線を、各マイク20を結ぶ直線を軸として回転させた回転双曲面の上に音源が存在することとなる。検知部12は、3つ以上のマイク20で同一の音が集音された場合、2つのマイク20の組み合わせ毎に複数の回転双曲面を算出し、算出した複数の回転双曲面の交線の上に音源が存在すると推定してもよい。また、例えば、異常音が叫び声や悲鳴の場合、音源は口の高さである床面から距離約1.5メートルの平面内に位置すると仮定できる。そのため、検知部12は、当該交線と当該平面の交点から、音源の位置を推定してもよい。また、2つのマイク20でしか同一の音が集音されなかった場合、原理的には音源の位置は回転双曲面の上で不定となる。そのため、検知部12は、実際の現場における音源位置の制約条件等を用いて、取り得る最短の位置を音源の位置と推定してもよい。 Further, the detection unit 12 may calculate the distance from the sound source to each microphone 20 based on the volume of the sound collected by each microphone 20 using Equation (1) described above. In this case, theoretically, the sound source exists on a hyperboloid of revolution obtained by rotating the hyperbola with each position of the two microphones 20 as the focal point about the straight line connecting the microphones 20 as an axis. When the same sound is collected by three or more microphones 20, the detection unit 12 calculates a plurality of rotational hyperboloids for each combination of the two microphones 20, and determines the line of intersection of the calculated plurality of rotational hyperboloids. It may be assumed that there is a sound source above. Also, for example, if the abnormal sound is a shout or scream, it can be assumed that the sound source is located within a plane at a distance of about 1.5 meters from the floor, which is the height of the mouth. Therefore, the detection unit 12 may estimate the position of the sound source from the intersection of the intersection line and the plane. Also, when the same sound is collected only by two microphones 20, the position of the sound source becomes indefinite on the hyperboloid of revolution in principle. Therefore, the detection unit 12 may estimate the shortest possible position as the position of the sound source by using the constraint conditions of the sound source position in the actual site.
 続いて、検知部12は、音源での音の大きさを推定する(ステップS102)。ここで、検知部12は、音源からマイク20までの距離と、当該マイク20で集音された音の大きさとに基づいて、上述した式(1)を用いて、音源での音の大きさを推定してもよい。 Subsequently, the detection unit 12 estimates the loudness of the sound source (step S102). Here, based on the distance from the sound source to the microphone 20 and the volume of the sound collected by the microphone 20, the detection unit 12 calculates the volume of the sound at the sound source using the above equation (1). can be estimated.
 例えば、音源からマイク20までの距離が20メートルであり、マイク20に音が96デシベルで到達した場合、上述した式(1)を用いて、音源から1メートルの位置での音圧は120デシベルであると逆算できる。これにより、当該音はくしゃみなどではなく、破裂や爆発などに伴う異常音であると推定できる。 For example, if the distance from the sound source to the microphone 20 is 20 meters and the sound reaches the microphone 20 at 96 decibels, using the above equation (1), the sound pressure at a position of 1 meter from the sound source is 120 decibels. can be calculated backwards. From this, it can be estimated that the sound is not a sneeze or the like but an abnormal sound accompanying a burst or an explosion.
 続いて、検知部12は、推定した音源での音の大きさが閾値以上であるか否かを判定する(ステップS103)。推定した音源での音の大きさが閾値以上である場合(ステップS103でYES)、検知部12は、異常を検知(異常音であると判定)し(ステップS104)、処理を終了する。一方、推定した音源での音の大きさが閾値以上でなお場合(ステップS103でNO)、検知部12は、異常音ではないと判定し(ステップS105)、処理を終了する。 Subsequently, the detection unit 12 determines whether or not the volume of the sound from the estimated sound source is equal to or greater than the threshold (step S103). If the volume of the sound from the estimated sound source is greater than or equal to the threshold (YES in step S103), the detection unit 12 detects an abnormality (determines that the sound is abnormal) (step S104), and terminates the process. On the other hand, if the volume of the sound from the estimated sound source is equal to or greater than the threshold (NO in step S103), the detection unit 12 determines that the sound is not abnormal (step S105), and terminates the process.
 <その他>
 一般に、産業機械に故障が発生した場合には、正常時とは明らかに異なる異常音が発生することが多い。この原理を用い、無人環境で稼働している産業機械の故障の自動検知などの目的で、マイクにて音を収集し、収集した音の音圧や周波数などの特徴から、異常を検知する方法が考えられる。
<Others>
In general, when a failure occurs in an industrial machine, abnormal noise that is clearly different from normal noise is often generated. Using this principle, for the purpose of automatic detection of failures in industrial machinery operating in an unmanned environment, a method of collecting sound with a microphone and detecting anomalies from characteristics such as sound pressure and frequency of the collected sound. can be considered.
 異常の発生を検知するだけでなく、監視対象の周囲に複数のマイクを設置し、異常が発生した場所を推定する方法も考えられる。なお、点状の音源から発した音は、音源からの距離の二乗に逆比例して音圧が減衰するため、異常音を発している場所の近傍のマイクには高い音圧で到達し、遠方のマイクには低い音圧に減衰して到達する。そのため、最も高い音圧で異常音を検知したマイクの近傍にて、異常が発生したと推定できる。 In addition to detecting the occurrence of anomalies, it is also possible to install multiple microphones around the monitored object and estimate the location of the anomaly. The sound pressure of sound emitted from a point-like sound source is attenuated in inverse proportion to the square of the distance from the sound source. It reaches the distant microphone with a low sound pressure attenuated. Therefore, it can be estimated that an abnormality has occurred in the vicinity of the microphone that detected the abnormal sound with the highest sound pressure.
 また、人が危険に遭遇した場合にも、叫び声や悲鳴、あるいは銃声や爆発音など、平時とは明らかに異なる異常音を発することが多いため、音による異常検知は、社会における安全確保(ソーシャルセキュリティ)の目的にも、適用することができる。 In addition, when people encounter danger, they often emit abnormal sounds that are clearly different from normal times, such as screams, screams, gunshots, and explosions. security) purposes.
 しかしながら、例えば、駅、商業施設などで、監視対象の人や物が動き回ることなどにより、音源の位置が不定な場合は、予め配置されているマイクから音源までの距離が不定となる。音は音源からの距離の二乗に逆比例して音圧が減衰するため、当該マイクにて収集した音の音圧からは、その音が異常音なのかを判別することが困難になる。例えば、マイクの遠くで何かが破裂した場合と、マイクの近傍で誰かがくしゃみをした場合とを比較すると、いずれのケースにおいても比較的高い(例えば、同程度の)音圧で集音されるため、音圧を基準に異常を検知する方法では、その音が異常音なのかを判別することができなくなる。 However, if the position of the sound source is indeterminate due to the movement of people or objects to be monitored, for example, in stations, commercial facilities, etc., the distance from the pre-arranged microphone to the sound source will be indeterminate. Since the sound pressure attenuates in inverse proportion to the square of the distance from the sound source, it is difficult to determine whether the sound is abnormal from the sound pressure of the sound collected by the microphone. For example, if we compare the case where something explodes far from the microphone and the case where someone sneezes near the microphone, in both cases, relatively high (e.g., similar) sound pressure is picked up. Therefore, in the method of detecting abnormality based on sound pressure, it becomes impossible to determine whether the sound is abnormal.
 具体的には、一般に破裂音は、音源付近では120デシベル程度の音圧を有するが、距離が10メートル離れると100デシベル程度にまで減衰する。これに対し、マイクの近傍で発したくしゃみは100デシベル程度の音圧を有することもあるため、マイクに到達した音圧からは破裂音とくしゃみを判別できないのである。 Specifically, plosive sounds generally have a sound pressure of about 120 decibels near the sound source, but attenuate to about 100 decibels when the distance is 10 meters. On the other hand, since a sneeze emitted near the microphone may have a sound pressure of about 100 decibels, it is impossible to distinguish between a plosive sound and a sneeze from the sound pressure reaching the microphone.
 加えて、駅や商業施設などでは、60~80デシベル程度の背景音が常時発生しているのに対し、マイク自身や音声信号入力回路には感度や分解能やダイナミックレンジの制限があるため、異常音が背景音を十分に上回る90~100デシベル程度で到達する距離にマイクを配置しておかないと、異常音と背景音の識別ができないという制約がある。 In addition, background sounds of about 60 to 80 decibels are always generated in stations and commercial facilities. There is a restriction that the abnormal sound cannot be distinguished from the background sound unless the microphone is placed at a distance where the sound reaches a level of about 90 to 100 decibels, which is sufficiently higher than the background sound.
 本開示の技術では、複数のマイクを配置し、複数のマイクに到達する音の大きさ等に基づいて、異常音と検知する。これにより、例えば、マイクから音源までの距離が不定である場合においても、マイクの近傍で発した異常ではない音と異常音とを識別できる。そのため、異常音を適切に検知できる。 With the technology of the present disclosure, multiple microphones are arranged, and abnormal sound is detected based on the volume of sound reaching the multiple microphones. As a result, for example, even when the distance from the microphone to the sound source is indefinite, it is possible to distinguish normal sounds and abnormal sounds emitted in the vicinity of the microphone. Therefore, an abnormal sound can be appropriately detected.
 <変形例>
 情報処理装置10は、例えば1以上のコンピュータにより構成されるクラウドコンピューティングにより実現されていてもよい。また、情報処理装置10とマイク20とを一体の装置として構成してもよい。また、マイク20の処理の少なくとも一部を、情報処理装置10にて実行させる構成としてもよい。また、情報処理装置10の処理の少なくとも一部を、マイク20にて実行させる構成としてもよい。
<Modification>
The information processing device 10 may be implemented by cloud computing, which is configured by one or more computers, for example. Further, the information processing device 10 and the microphone 20 may be configured as an integrated device. Further, at least part of the processing of the microphone 20 may be configured to be executed by the information processing device 10 . Further, at least part of the processing of the information processing device 10 may be configured to be executed by the microphone 20 .
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 It should be noted that the present invention is not limited to the above embodiments, and can be modified as appropriate without departing from the scope of the invention.
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)
 第1集音装置で集音された音の第1信号と、第2集音装置で集音された音の第2信号と、を取得する取得手段と、
 前記取得手段により取得された前記第1信号及び前記第2信号に基づき、異常を検知する検知手段と、
を有する情報処理装置。
 (付記2)
 前記第1集音装置は、前記第2信号の減衰が所定値未満となる位置に配置される、
付記1に記載の情報処理装置。
 (付記3)
 前記検知手段は、前記第1信号及び前記第2信号が閾値以上である場合、異常を検知したと判定する、
付記1または2に記載の情報処理装置。
 (付記4)
 前記検知手段は、前記第1信号と前記第2信号とに基づいて、同一の音源から発せられた音の信号であるかを判定し、同一の音源から発せられた音の信号であると判定した場合、異常を検知したと判定する、
付記3に記載の情報処理装置。
 (付記5)
 前記検知手段は、前記第1信号が集音されてから特定時間内に前記第2信号が集音された場合、前記第1信号と前記第2信号とが同一の音源から発せられた音の信号であると判定する、
付記4に記載の情報処理装置。
 (付記6)
 前記検知手段は、前記第1信号における波形と前記第2信号における波形とが所定の関係にある場合、前記第1信号と前記第2信号とが同一の音源から発せられた音の信号であると判定する
付記4または5に記載の情報処理装置。
 (付記7)
 前記検知手段は、前記第1集音装置で集音された時間と前記第2集音装置で集音された時間との差、及び前記第1集音装置で集音された大きさと前記第2集音装置で集音された音の大きさとの比の少なくとも一方に基づいて、音源での音の大きさを推定し、推定した前記音源での音の大きさが閾値以上である場合に、異常が発生したと判定する、
付記1から6のいずれか一項に記載の情報処理装置。
 (付記8)
 第1集音装置で集音された音の第1信号と、第2集音装置で集音された音の第2信号と、を取得し、
 取得した前記第1信号及び前記第2信号に基づき、異常を検知する、
情報処理方法。
 (付記9)
 前記第1集音装置は、前記第2信号の減衰が所定値未満となる位置に配置される、
付記8に記載の情報処理方法。
 (付記10)
 前記検知する処理では、前記第1信号及び前記第2信号が閾値以上である場合、異常を検知したと判定する、
付記8または9に記載の情報処理方法。
 (付記11)
 前記検知する処理では、前記第1信号と前記第2信号とに基づいて、同一の音源から発せられた音の信号であるかを判定し、同一の音源から発せられた音の信号であると判定した場合、異常を検知したと判定する、
付記10に記載の情報処理方法。
 (付記12)
 前記検知する処理では、前記第1信号が集音されてから特定時間内に前記第2信号が集音された場合、前記第1信号と前記第2信号とが同一の音源から発せられた音の信号であると判定する、
付記11に記載の情報処理方法。
 (付記13)
 前記検知する処理では、前記第1信号における波形と前記第2信号における波形とが所定の関係にある場合、前記第1信号と前記第2信号とが同一の音源から発せられた音の信号であると判定する
付記11または12に記載の情報処理方法。
 (付記14)
 前記検知する処理では、前記第1集音装置で集音された時間と前記第2集音装置で集音された時間との差、及び前記第1集音装置で集音された大きさと前記第2集音装置で集音された音の大きさとの比の少なくとも一方に基づいて、音源での音の大きさを推定し、推定した前記音源での音の大きさが閾値以上である場合に、異常が発生したと判定する、
付記8から13のいずれか一項に記載の情報処理方法。
 (付記15)
 第1集音装置と、第2集音装置と、情報処理装置とを有し、
 前記情報処理装置は、
 前記第1集音装置で集音された音の第1信号と、前記第2集音装置で集音された音の第2信号と、を取得する取得手段と、
 前記取得手段により取得された前記第1信号及び前記第2信号に基づき、異常を検知する検知手段と、
を有する情報処理システム。
 (付記16)
 前記第1集音装置は、前記第2信号の減衰が所定値未満となる位置に配置される、
付記15に記載の情報処理システム。
 (付記17)
 前記検知手段は、前記第1信号及び前記第2信号が閾値以上である場合、異常を検知したと判定する、
付記15または16に記載の情報処理システム。
 (付記18)
 前記検知手段は、前記第1信号と前記第2信号とに基づいて、同一の音源から発せられた音の信号であるかを判定し、同一の音源から発せられた音の信号であると判定した場合、異常を検知したと判定する、
付記17に記載の情報処理システム。
 (付記19)
 前記検知手段は、前記第1信号が集音されてから特定時間内に前記第2信号が集音された場合、前記第1信号と前記第2信号とが同一の音源から発せられた音の信号であると判定する、
付記18に記載の情報処理システム。
 (付記20)
 前記検知手段は、前記第1信号における波形と前記第2信号における波形とが所定の関係にある場合、前記第1信号と前記第2信号とが同一の音源から発せられた音の信号であると判定する
付記18または19に記載の情報処理システム。
 (付記21)
 前記検知手段は、前記第1集音装置で集音された時間と前記第2集音装置で集音された時間との差、及び前記第1集音装置で集音された大きさと前記第2集音装置で集音された音の大きさとの比の少なくとも一方に基づいて、音源での音の大きさを推定し、推定した前記音源での音の大きさが閾値以上である場合に、異常が発生したと判定する、
付記15から20のいずれか一項に記載の情報処理システム。
 (付記22)
 第1集音装置で集音された音の第1信号と、第2集音装置で集音された音の第2信号と、を取得し、
 取得した前記第1信号及び前記第2信号に基づき、異常を検知する、
処理をコンピュータに実行させるプログラムが格納された非一時的なコンピュータ可読媒体。
 (付記23)
 前記第1集音装置は、前記第2信号の減衰が所定値未満となる位置に配置される、
付記22に記載のコンピュータ可読媒体。
 (付記24)
 前記検知する処理では、前記第1信号及び前記第2信号が閾値以上である場合、異常を検知したと判定する、
付記22または23に記載のコンピュータ可読媒体。
 (付記25)
 前記検知する処理では、前記第1信号と前記第2信号とに基づいて、同一の音源から発せられた音の信号であるかを判定し、同一の音源から発せられた音の信号であると判定した場合、異常を検知したと判定する、
付記24に記載のコンピュータ可読媒体。
 (付記26)
 前記検知する処理では、前記第1信号が集音されてから特定時間内に前記第2信号が集音された場合、前記第1信号と前記第2信号とが同一の音源から発せられた音の信号であると判定する、
付記25に記載のコンピュータ可読媒体。
 (付記27)
 前記検知する処理では、前記第1信号における波形と前記第2信号における波形とが所定の関係にある場合、前記第1信号と前記第2信号とが同一の音源から発せられた音の信号であると判定する
付記25または26に記載のコンピュータ可読媒体。
 (付記28)
 前記検知する処理では、前記第1集音装置で集音された時間と前記第2集音装置で集音された時間との差、及び前記第1集音装置で集音された大きさと前記第2集音装置で集音された音の大きさとの比の少なくとも一方に基づいて、音源での音の大きさを推定し、推定した前記音源での音の大きさが閾値以上である場合に、異常が発生したと判定する、
付記22から27のいずれか一項に記載のコンピュータ可読媒体。
Some or all of the above-described embodiments can also be described in the following supplementary remarks, but are not limited to the following.
(Appendix 1)
Acquisition means for acquiring a first signal of sound collected by the first sound collector and a second signal of sound collected by the second sound collector;
detection means for detecting an abnormality based on the first signal and the second signal acquired by the acquisition means;
Information processing device having
(Appendix 2)
The first sound collecting device is arranged at a position where the attenuation of the second signal is less than a predetermined value.
The information processing device according to appendix 1.
(Appendix 3)
The detection means determines that an abnormality has been detected when the first signal and the second signal are equal to or greater than a threshold;
The information processing device according to appendix 1 or 2.
(Appendix 4)
The detection means determines whether the sound signals are emitted from the same sound source based on the first signal and the second signal, and determines that the sound signals are emitted from the same sound source. If so, it is determined that an abnormality is detected.
The information processing device according to appendix 3.
(Appendix 5)
When the second signal is collected within a specific time after the first signal is collected, the detection means detects that the first signal and the second signal are sound emitted from the same sound source. determine that it is a signal,
The information processing device according to appendix 4.
(Appendix 6)
When the waveform of the first signal and the waveform of the second signal have a predetermined relationship, the detection means detects that the first signal and the second signal are sound signals emitted from the same sound source. The information processing apparatus according to appendix 4 or 5, which determines that
(Appendix 7)
The detection means detects the difference between the time of sound collected by the first sound collector and the time of sound collected by the second sound collector, and the magnitude of sound collected by the first sound collector and the 2 Estimate the sound volume at the sound source based on at least one of the ratio of the sound volume to the sound collected by the sound collector, and when the estimated sound volume at the sound source is equal to or greater than a threshold , determine that an abnormality has occurred,
7. The information processing device according to any one of appendices 1 to 6.
(Appendix 8)
Acquiring a first signal of sound collected by the first sound collector and a second signal of sound collected by the second sound collector;
Detecting an abnormality based on the acquired first signal and the second signal;
Information processing methods.
(Appendix 9)
The first sound collecting device is arranged at a position where the attenuation of the second signal is less than a predetermined value.
The information processing method according to appendix 8.
(Appendix 10)
In the detecting process, when the first signal and the second signal are equal to or greater than a threshold value, it is determined that an abnormality is detected;
The information processing method according to appendix 8 or 9.
(Appendix 11)
In the detecting process, based on the first signal and the second signal, it is determined whether the sound signals are emitted from the same sound source, and the sound signals are detected as being emitted from the same sound source. If it is determined, it is determined that an abnormality has been detected,
The information processing method according to appendix 10.
(Appendix 12)
In the detecting process, when the second signal is collected within a specific time after the first signal is collected, the first signal and the second signal are sounds emitted from the same sound source. determined to be the signal of
The information processing method according to appendix 11.
(Appendix 13)
In the detecting process, when the waveform of the first signal and the waveform of the second signal have a predetermined relationship, the first signal and the second signal are sound signals emitted from the same sound source. 13. The information processing method according to appendix 11 or 12, in which it is determined that there is
(Appendix 14)
In the detection process, the difference between the time collected by the first sound collecting device and the time collected by the second sound collecting device, and the magnitude of sound collected by the first sound collecting device and the When the loudness of the sound at the sound source is estimated based on at least one of the ratio to the loudness of the sound collected by the second sound collector, and the estimated loudness of the sound at the sound source is equal to or greater than a threshold to determine that an abnormality has occurred,
14. The information processing method according to any one of Appendices 8 to 13.
(Appendix 15)
Having a first sound collecting device, a second sound collecting device, and an information processing device,
The information processing device is
Acquisition means for acquiring a first signal of sound collected by the first sound collector and a second signal of sound collected by the second sound collector;
detection means for detecting an abnormality based on the first signal and the second signal acquired by the acquisition means;
An information processing system having
(Appendix 16)
The first sound collecting device is arranged at a position where the attenuation of the second signal is less than a predetermined value.
The information processing system according to appendix 15.
(Appendix 17)
The detection means determines that an abnormality has been detected when the first signal and the second signal are equal to or greater than a threshold;
The information processing system according to appendix 15 or 16.
(Appendix 18)
The detection means determines whether the sound signals are emitted from the same sound source based on the first signal and the second signal, and determines that the sound signals are emitted from the same sound source. If so, it is determined that an abnormality is detected.
17. The information processing system according to appendix 17.
(Appendix 19)
When the second signal is collected within a specific time after the first signal is collected, the detection means detects that the first signal and the second signal are sound emitted from the same sound source. determine that it is a signal,
18. The information processing system according to appendix 18.
(Appendix 20)
When the waveform of the first signal and the waveform of the second signal have a predetermined relationship, the detection means detects that the first signal and the second signal are sound signals emitted from the same sound source. The information processing system according to appendix 18 or 19, which determines that
(Appendix 21)
The detection means detects the difference between the time of sound collected by the first sound collector and the time of sound collected by the second sound collector, and the magnitude of sound collected by the first sound collector and the 2 Estimate the sound volume at the sound source based on at least one of the ratio of the sound volume to the sound collected by the sound collector, and when the estimated sound volume at the sound source is equal to or greater than a threshold , determine that an abnormality has occurred,
21. The information processing system according to any one of appendices 15 to 20.
(Appendix 22)
Acquiring a first signal of sound collected by the first sound collector and a second signal of sound collected by the second sound collector;
Detecting an abnormality based on the acquired first signal and the second signal;
A non-transitory computer-readable medium storing a program that causes a computer to execute a process.
(Appendix 23)
The first sound collecting device is arranged at a position where the attenuation of the second signal is less than a predetermined value.
23. The computer-readable medium of clause 22.
(Appendix 24)
In the detecting process, when the first signal and the second signal are equal to or greater than a threshold value, it is determined that an abnormality is detected;
24. The computer readable medium of clause 22 or 23.
(Appendix 25)
In the detecting process, based on the first signal and the second signal, it is determined whether the sound signals are emitted from the same sound source, and the sound signals are detected as being emitted from the same sound source. If it is determined, it is determined that an abnormality has been detected,
25. The computer-readable medium of clause 24.
(Appendix 26)
In the detecting process, when the second signal is collected within a specific time after the first signal is collected, the first signal and the second signal are sounds emitted from the same sound source. determined to be the signal of
26. The computer-readable medium of clause 25.
(Appendix 27)
In the detecting process, when the waveform of the first signal and the waveform of the second signal have a predetermined relationship, the first signal and the second signal are sound signals emitted from the same sound source. 27. The computer readable medium of Clause 25 or 26.
(Appendix 28)
In the detection process, the difference between the time collected by the first sound collector and the time collected by the second sound collector, and the magnitude of the sound collected by the first sound collector and the When the loudness of the sound at the sound source is estimated based on at least one of the ratio to the loudness of the sound collected by the second sound collector, and the estimated loudness of the sound at the sound source is equal to or greater than a threshold to determine that an abnormality has occurred,
28. The computer-readable medium of any one of clauses 22-27.
1 情報処理システム
10 情報処理装置
11 取得部
12 検知部
20 マイク
1 information processing system 10 information processing device 11 acquisition unit 12 detection unit 20 microphone

Claims (10)

  1.  第1集音装置で集音された音の第1信号と、第2集音装置で集音された音の第2信号と、を取得する取得手段と、
     前記取得手段により取得された前記第1信号及び前記第2信号に基づき、異常を検知する検知手段と、
    を有する情報処理装置。
    Acquisition means for acquiring a first signal of sound collected by the first sound collector and a second signal of sound collected by the second sound collector;
    detection means for detecting an abnormality based on the first signal and the second signal acquired by the acquisition means;
    Information processing device having
  2.  前記第1集音装置は、前記第2信号の減衰が所定値未満となる位置に配置される、
    請求項1に記載の情報処理装置。
    The first sound collecting device is arranged at a position where the attenuation of the second signal is less than a predetermined value.
    The information processing device according to claim 1 .
  3.  前記検知手段は、前記第1信号及び前記第2信号が閾値以上である場合、異常を検知したと判定する、
    請求項1または2に記載の情報処理装置。
    The detection means determines that an abnormality has been detected when the first signal and the second signal are equal to or greater than a threshold;
    The information processing apparatus according to claim 1 or 2.
  4.  前記検知手段は、前記第1信号と前記第2信号とに基づいて、同一の音源から発せられた音の信号であるかを判定し、同一の音源から発せられた音の信号であると判定した場合、異常を検知したと判定する、
    請求項3に記載の情報処理装置。
    The detection means determines whether the sound signals are emitted from the same sound source based on the first signal and the second signal, and determines that the sound signals are emitted from the same sound source. If so, it is determined that an abnormality is detected.
    The information processing apparatus according to claim 3.
  5.  前記検知手段は、前記第1信号が集音されてから特定時間内に前記第2信号が集音された場合、前記第1信号と前記第2信号とが同一の音源から発せられた音の信号であると判定する、
    請求項4に記載の情報処理装置。
    When the second signal is collected within a specific time after the first signal is collected, the detection means detects that the first signal and the second signal are sound emitted from the same sound source. determine that it is a signal,
    The information processing apparatus according to claim 4.
  6.  前記検知手段は、前記第1信号における波形と前記第2信号における波形とが所定の関係にある場合、前記第1信号と前記第2信号とが同一の音源から発せられた音の信号であると判定する
    請求項4または5に記載の情報処理装置。
    When the waveform of the first signal and the waveform of the second signal have a predetermined relationship, the detection means detects that the first signal and the second signal are sound signals emitted from the same sound source. 6. The information processing apparatus according to claim 4 or 5, which determines that
  7.  前記検知手段は、前記第1集音装置で集音された時間と前記第2集音装置で集音された時間との差、及び前記第1集音装置で集音された大きさと前記第2集音装置で集音された音の大きさとの比の少なくとも一方に基づいて、音源での音の大きさを推定し、推定した前記音源での音の大きさが閾値以上である場合に、異常が発生したと判定する、
    請求項1から6のいずれか一項に記載の情報処理装置。
    The detection means detects the difference between the time of sound collected by the first sound collector and the time of sound collected by the second sound collector, and the magnitude of sound collected by the first sound collector and the 2 Estimate the sound volume at the sound source based on at least one of the ratio of the sound volume to the sound collected by the sound collector, and when the estimated sound volume at the sound source is equal to or greater than a threshold , determine that an abnormality has occurred,
    The information processing apparatus according to any one of claims 1 to 6.
  8.  第1集音装置で集音された音の第1信号と、第2集音装置で集音された音の第2信号と、を取得し、
     取得した前記第1信号及び前記第2信号に基づき、異常を検知する、
    情報処理方法。
    Acquiring a first signal of sound collected by the first sound collector and a second signal of sound collected by the second sound collector;
    Detecting an abnormality based on the acquired first signal and the second signal;
    Information processing methods.
  9.  第1集音装置と、第2集音装置と、情報処理装置とを有し、
     前記情報処理装置は、
     前記第1集音装置で集音された音の第1信号と、前記第2集音装置で集音された音の第2信号と、を取得する取得手段と、
     前記取得手段により取得された前記第1信号及び前記第2信号に基づき、異常を検知する検知手段と、
    を有する情報処理システム。
    Having a first sound collecting device, a second sound collecting device, and an information processing device,
    The information processing device is
    Acquisition means for acquiring a first signal of sound collected by the first sound collector and a second signal of sound collected by the second sound collector;
    detection means for detecting an abnormality based on the first signal and the second signal acquired by the acquisition means;
    An information processing system having
  10.  第1集音装置で集音された音の第1信号と、第2集音装置で集音された音の第2信号と、を取得し、
     取得した前記第1信号及び前記第2信号に基づき、異常を検知する、
    処理をコンピュータに実行させるプログラムが格納された非一時的なコンピュータ可読媒体。
    Acquiring a first signal of sound collected by the first sound collector and a second signal of sound collected by the second sound collector;
    Detecting an abnormality based on the acquired first signal and the second signal;
    A non-transitory computer-readable medium storing a program that causes a computer to execute a process.
PCT/JP2022/003708 2022-02-01 2022-02-01 Information processing device, information processing method, information processing system, and computer-readable medium WO2023148796A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/003708 WO2023148796A1 (en) 2022-02-01 2022-02-01 Information processing device, information processing method, information processing system, and computer-readable medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/003708 WO2023148796A1 (en) 2022-02-01 2022-02-01 Information processing device, information processing method, information processing system, and computer-readable medium

Publications (1)

Publication Number Publication Date
WO2023148796A1 true WO2023148796A1 (en) 2023-08-10

Family

ID=87553308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003708 WO2023148796A1 (en) 2022-02-01 2022-02-01 Information processing device, information processing method, information processing system, and computer-readable medium

Country Status (1)

Country Link
WO (1) WO2023148796A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007104546A (en) * 2005-10-07 2007-04-19 National Institute Of Advanced Industrial & Technology Safety management apparatus
JP2017028529A (en) * 2015-07-23 2017-02-02 パナソニックIpマネジメント株式会社 Monitoring system and monitoring method
JP2018101916A (en) * 2016-12-20 2018-06-28 キヤノン株式会社 Information processing apparatus, information processing method, and program
JP2021181283A (en) * 2020-05-20 2021-11-25 公益財団法人鉄道総合技術研究所 Rail breakage detection device and rail breakage detection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007104546A (en) * 2005-10-07 2007-04-19 National Institute Of Advanced Industrial & Technology Safety management apparatus
JP2017028529A (en) * 2015-07-23 2017-02-02 パナソニックIpマネジメント株式会社 Monitoring system and monitoring method
JP2018101916A (en) * 2016-12-20 2018-06-28 キヤノン株式会社 Information processing apparatus, information processing method, and program
JP2021181283A (en) * 2020-05-20 2021-11-25 公益財団法人鉄道総合技術研究所 Rail breakage detection device and rail breakage detection method

Similar Documents

Publication Publication Date Title
AU2016380948B2 (en) Gas leak detection and location determination
EP2724554B1 (en) Time difference of arrival determination with direct sound
US11532226B2 (en) System and method for acoustically identifying gunshots fired indoors
KR101218175B1 (en) Seismic monitoring system and method of validity verifying for event using the same
US9972179B2 (en) System and method for noise detection
US11635341B2 (en) Internal failure detection of an external failure detection system for industrial plants
US9030916B2 (en) Method and system for monitoring fire based on detection of sound field variation
US11604050B2 (en) Method for acoustically counting gunshots fired indoors
EP3262621B1 (en) Alarm event determinations via microphone arrays
CN104471359A (en) Noise identification device and noise identification method
KR20130108033A (en) Method and system for monitoring fire based on detection of sound field variation
EP3153834B1 (en) Acoustic profile recognition for discriminating between hazardous emissions and non-hazardous emissions
WO2020147644A1 (en) Monitoring method and system based on terminal detection
JP2913552B1 (en) Method for identifying abnormal equipment of air conditioning fan and pump by acoustic method
WO2023148796A1 (en) Information processing device, information processing method, information processing system, and computer-readable medium
KR20110086210A (en) System and method for intrusion perception using 3-dimensional sound source position measurement
KR102030802B1 (en) Checking system and method for fire alarm
US11557188B2 (en) Gunshot detection device, system and method
WO2023021598A1 (en) Information processing device, information processing method, computer-readable medium, and inspection system
JP7376660B1 (en) fire detection device
WO2022140341A1 (en) Event detection unit
CN114151736B (en) Ultrasonic three-array element alarm positioning instrument and method for monitoring natural gas leakage
KR20220067954A (en) Processing Method of a fire alarm and electronic device supporting the same
JP2024059346A (en) Fire detection devices
JP2024059347A (en) Fire detection devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924710

Country of ref document: EP

Kind code of ref document: A1