WO2023146058A1 - 외부 광 자극 센싱 기능의 바이오 인공 눈 및 이의 제조 방법 - Google Patents

외부 광 자극 센싱 기능의 바이오 인공 눈 및 이의 제조 방법 Download PDF

Info

Publication number
WO2023146058A1
WO2023146058A1 PCT/KR2022/014095 KR2022014095W WO2023146058A1 WO 2023146058 A1 WO2023146058 A1 WO 2023146058A1 KR 2022014095 W KR2022014095 W KR 2022014095W WO 2023146058 A1 WO2023146058 A1 WO 2023146058A1
Authority
WO
WIPO (PCT)
Prior art keywords
bio
photoreceptor
light stimulation
substrate
artificial eye
Prior art date
Application number
PCT/KR2022/014095
Other languages
English (en)
French (fr)
Inventor
최정우
임종표
신민규
Original Assignee
서강대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220105450A external-priority patent/KR20230115208A/ko
Application filed by 서강대학교 산학협력단 filed Critical 서강대학교 산학협력단
Publication of WO2023146058A1 publication Critical patent/WO2023146058A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/48Operating or control means, e.g. from outside the body, control of sphincters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light

Definitions

  • the present invention was made by the task identification number 1711145073 and task number 2019R1A2C3002300 under the support of the Ministry of Science and ICT, and the research management institution of the above task is the National Research Foundation of Korea, and the research project name is "Individual Basic Research (Ministry of Science and ICT) (R&D)" , The title of the research project is "Bio-Hybrid Robot with Sensing Function that Mimics Life Based on Brain Assembleoid", the host institution is Sogang University, and the research period is from 2021-03-01 to 2022-02-28.
  • the present invention was made by the assignment number 1345345419 and the assignment number 2016R1A6A1A03012845 under the support of the Ministry of Education, and the research management institution of the above assignment is the National Research Foundation of Korea, the research project name is "Establishment of Science and Engineering Academic Research Base (R&D)", research project The name is "development of nano-biochips with brain disease drug evaluation function", the leading institution is Sogang University, and the research period is 2021-01-01 ⁇ 2021-12-31.
  • the present invention was made by the task identification number 1711156887 and task number 2022M3H4A1A01005271 under the support of the Ministry of Science and ICT, and the research management institution for the above task is the National Research Foundation of Korea, the research project name is “Nano Material Technology Development”, and the research task name is " Nano-biohybrid actuator chip for organoid-based drug screening", the leading institution is Sogang University, and the research period is from 2022-01-01 to 2022-12-31.
  • the present invention relates to a bio-artificial eye capable of sensing an external light stimulus and a method for manufacturing the same, and more particularly, to an external light-receptive biomaterial such as Bacteriorhodopsin and chlorophyllin, and a photocatalyst such as nickel/titanium dioxide (Ni/titanium dioxide).
  • an external light-receptive biomaterial such as Bacteriorhodopsin and chlorophyllin
  • a photocatalyst such as nickel/titanium dioxide (Ni/titanium dioxide).
  • the present invention relates to a method for controlling cell activity (cell membrane potential change) through external stimulation.
  • cell activity cell membrane potential change
  • signals received by sensory cells constituting external sensory organs are transmitted to nerve cells or muscle cells in the form of electrical signals to induce cell activity.
  • nerve cells or muscle cells in the form of electrical signals to induce cell activity.
  • cells used in engineering laboratories do not have these sensory cells, so other methods are needed to activate the cells.
  • Representative conventional techniques for cell activation are electrical stimulation, gene recombination, and chemical treatment.
  • cells are activated through electrical signals and transmit signals, so a method of applying an electric field or a method of applying weak electrical stimulation by piercing cells with a fine needle, etc. It is used for cell activation.
  • the biggest disadvantage of the electrical stimulation method is that a separate electrical facility is required. There are limitations in that a power system for supplying electricity and an electrode system for delivery to cells are essentially required. In addition, since electrical stimulation of excessive intensity causes cell damage, it is required to establish appropriate conditions suitable for the type of cells to be used.
  • Another method is genetic recombination.
  • a cell When a cell is induced to express a specific protein through genetic recombination, the cell also responds to the stimulus to which the protein responds and induces activity.
  • the most frequently used example is attempting genetic recombination to express channelrhodopsin protein in nerve cells in the field of optogenetics. Since channelrhodopsin has a function of controlling the opening and closing of channels in cell membranes in response to light, nerve cells expressing channelrhodopsin are endowed with characteristics that can be activated by light.
  • genetic recombination has disadvantages in that it is technically difficult and the process is complicated.
  • a specific gene must be inserted into the cell using a plasmid or CRISPR gene scissors, but there is a problem that the efficiency of performing this is low, and the process of selecting only cells into which the gene has been inserted is required.
  • the gene insertion process basically induces great stress in cells, there is a disadvantage that the condition of the cells may be poor.
  • each cell has a receptor that accepts a specific chemical substance, and if the cell is treated with an appropriate chemical substance, the active or inactive state of the cell can be controlled.
  • the method is simple, but as in the case of electrical stimulation, it has the disadvantage of adjusting the type and concentration of chemicals applied according to the type or condition of cells, and compared to the previous two methods, it is more effective in inducing cell activity.
  • the downside is that it takes a relatively long time.
  • Bacteriorhodopsin 550 nm
  • a photoreceptive biomaterial having maximum absorption wavelengths in different regions, in order to sense light in various wavelength regions of the visible ray region, like the actual human eye of a light-sensitive biomaterial.
  • maximum absorption wavelength in the region and chlorophyllin (maximum absorption wavelength in the 435 nm and 660 nm regions) were used.
  • Ni/TiO 2 nanoparticles that not only amplify the weak photocurrent generated by photoreceptive biomaterials but also generate photocurrent by absorbing light in the 500 nm region were introduced.
  • Ni/TiO 2 nanoparticles are first chemically fixed on a transparent glass-based gold substrate using a chemical linker, and then bacteriorhodopsin and chlorophyllin are fixed on the surface of Ni/TiO 2 nanoparticles through their functional groups without a separate linker, and finally A bio light stimulation sensor was fabricated.
  • Myoblasts (C2C12) were cultured and differentiated on the fabricated bio-light stimulation sensor to form skeletal muscle cells capable of controlling cell membrane potential by electrical stimulation, and as external light stimulation was turned on/off, the current generated by the bio-light stimulation sensor and successfully controlled the membrane potential of skeletal muscle cells.
  • an object of the present invention is a substrate; a photocatalyst layer in which a photocatalytic compound is bonded to the substrate; and a photoreceptor layer in which a photoreceptor is coupled to the photocatalyst layer.
  • Another object of the present invention is to provide a method for manufacturing a bio-light stimulation sensor comprising the following steps:
  • a photoreceptor binding step of forming a photoreceptor layer by binding a photoreceptor to the photocatalyst layer is a photoreceptor binding step of forming a photoreceptor layer by binding a photoreceptor to the photocatalyst layer.
  • Another object of the present invention relates to a light-stimulated sensing use of a substrate in which bacteriorhodopsin, chlorophyllin, and nickel/titanium dioxide nanoparticles, which are photocatalysts, are bonded.
  • the present invention relates to a bio-artificial eye capable of sensing an external light stimulus and a method for manufacturing the same.
  • a current generated by turning on/off an external light stimulus is transmitted to cells to increase membrane potential of the cell. indicates successful control.
  • the present inventors first chemically fixed Ni/TiO 2 nanoparticles on a transparent glass-based gold substrate using a chemical linker, and then, without a separate linker, bacteriorhodopsin and chlorophyllin were added to Ni/TiO through their functional groups. Finally, bio-artificial eyes were fabricated by fixing on the surface of 2 nanoparticles.
  • One aspect of the present invention is a substrate; a photocatalyst layer in which a photocatalytic compound is bonded to the substrate; and a photoreceptor layer in which a photoreceptor is coupled to the photocatalyst layer.
  • the substrate may be a glass or plastic substrate coated with a conductive material, and the conductive material may be gold, but is not limited thereto.
  • the photocatalytic compound may be bonded to the substrate by a linker.
  • the linker may be introduced by treatment with 11-mercaptoundecanoic acid (MUA).
  • UAA 11-mercaptoundecanoic acid
  • the photocatalytic compound may be nickel/titanium dioxide (Ni/TiO 2 ) nanoparticles.
  • the photoreceptor may be at least one selected from the group consisting of Bacteriorhodopsin and Chlorophyllin, and for example, a mixture of Bacteriorhodopsin and Chlorophyllin may be used.
  • the photoreceptor may be a mixture of bacteriorhodopsin and chlorophyllin in a volume ratio of 5:1 to 1:5, preferably 5:1 to 1:3, 5:1 to 1:2, 5:1 to 1:5. 1:1, 3:1 to 1:5, 3:1 to 1:3, 3:1 to 1:2, 3:1 to 1:1, 2:1 to 1:5, 2:1 to 1: It may be a mixture mixed in a volume ratio of 3, 2:1 to 1:2, 2:1 to 1:1, 1:1 to 1:5, or 1:1 to 1:3, for example, 1 : It may be a mixture mixed in a volume ratio of 1 to 1:2, but is not limited thereto.
  • the bio-light stimulation sensor may additionally include cells cultured in a photoreceptor layer, the cells may be muscle cells or nerve cells, and the muscle cells may be skeletal muscle cells. It is not limited.
  • Another aspect of the present invention is to provide a method for manufacturing a bio-light stimulation sensor comprising the following steps:
  • a photoreceptor binding step of forming a photoreceptor layer by binding a photoreceptor to the photocatalyst layer is a photoreceptor binding step of forming a photoreceptor layer by binding a photoreceptor to the photocatalyst layer.
  • the manufacturing method may further include a cell culturing step of culturing cells in the photoreceptor layer, and the cells may be muscle cells or nerve cells, and the muscle cells may be skeletal muscle cells. , but is not limited thereto.
  • the substrate may be a glass or plastic substrate coated with a conductive material, and the conductive material may be gold, but is not limited thereto.
  • the photocatalytic coupling step may be performed after introducing the linker into the substrate.
  • the linker may be introduced by treatment with 11-mercaptodecanoic acid (MUA).
  • UAA 11-mercaptodecanoic acid
  • the photocatalytic compound may be nickel/titanium dioxide nanoparticles.
  • the photoreceptor may be at least one selected from the group consisting of bacteriorhodopsin and chlorophyllin, and for example, a mixture of bacteriorhodopsin and chlorophyllin may be used.
  • the photoreceptor may be a mixture of bacteriorhodopsin and chlorophyllin in a volume ratio of 5:1 to 1:5, preferably 5:1 to 1:3, 5:1 to 1:2, 5:1 to 1:5. 1:1, 3:1 to 1:5, 3:1 to 1:3, 3:1 to 1:2, 3:1 to 1:1, 2:1 to 1:5, 2:1 to 1: It may be a mixture mixed in a volume ratio of 3, 2:1 to 1:2, 2:1 to 1:1, 1:1 to 1:5, or 1:1 to 1:3, for example, 1 : It may be a mixture mixed in a volume ratio of 1 to 1:2, but is not limited thereto.
  • the present invention relates to a bio-artificial eye with an external light stimulus sensing function, wherein the bio-artificial eye can control cell membrane potential of muscle cells without a separate external power device or genetic recombination, It can be used to control the activity of various biological tissues, such as organoids, and is expected to be used to manufacture a sensing platform for a biohybrid robot composed of biological tissues.
  • 1A is a graph showing Fourier-transform infrared spectroscopy (FT-IR) of chlorophyllin prepared according to an embodiment of the present invention compared to chlorophyll.
  • FT-IR Fourier-transform infrared spectroscopy
  • Figure 1b is a graph showing the UV-Visible spectroscopy (UV-Visible spectroscopy) measurement results of chlorophyllin prepared according to an embodiment of the present invention compared to chlorophyll.
  • FE-SEM field emission scanning electron microscope
  • Ni/TiO 2 nickel/titanium dioxide
  • EDS energy dispersive X-ray spectroscopy
  • FIG. 3 is a schematic diagram showing a manufacturing process of a bio-artificial eye manufactured according to an embodiment of the present invention.
  • FIG. 4 shows a gold substrate (a) prepared according to an embodiment of the present invention, a gold substrate to which nickel/titanium dioxide nanoparticles are fixed (b), and a bio-artificial eye finally manufactured by fixing bacteriorhodopsin and chlorophyllin thereto (c)
  • AFM atomic force microscopy
  • 5A is a graph showing the measurement of photocurrent values obtained by irradiating various types of wavelengths to a bio-artificial eye manufactured according to an embodiment of the present invention.
  • FIG. 5B is a graph showing the average value of photocurrents obtained by irradiating various types of wavelengths to a bio-artificial eye manufactured according to an embodiment of the present invention.
  • 5C is a graph of measurement of photocurrent values showing the results of irradiating various types of wavelengths to a bio-artificial eye manufactured using titanium dioxide nanoparticles manufactured according to an embodiment of the present invention.
  • FIG. 6 is a graph showing changes in cell membrane potential as light is irradiated on a bio-artificial eye manufactured according to an embodiment of the present invention.
  • the present invention is a substrate; a photocatalyst layer in which a photocatalytic compound is bonded to the substrate; and a photoreceptor layer in which a photoreceptor is coupled to the photocatalyst layer.
  • % used to indicate the concentration of a particular substance is (weight/weight)% for solids/solids, (weight/volume)% for solids/liquids, and liquid/liquid is (volume/volume) %.
  • Example 1 Preparation of chlorophyllin and synthesis of nickel/titanium dioxide nanoparticles
  • Chlorophyll of plant cells has a characteristic of generating a photocurrent by receiving an external light stimulus, but has a characteristic that it is difficult to chemically fix on a substrate or the like because there is no separate functional group in its molecular structure. Therefore, after producing chlorophyllin in which three carboxyl groups were added to chlorophyll, it was selected as a biomaterial constituting the bio-artificial eye and used in this experiment.
  • chlorophyll extracted from spinach was converted into chlorophyllin by treating with a 25% by mass methanol-potassium hydroxide solution to induce alkali reaction.
  • the characteristics of the prepared chlorophyllin were measured in contrast to chlorophyll by Fourier-transform infrared spectroscopy (FT-IR) and UV-Visible spectroscopy, and the absorption wavelength region of the two materials was analyzed and confirmed. .
  • FT-IR Fourier-transform infrared spectroscopy
  • UV-Visible spectroscopy UV-Visible spectroscopy
  • nickel/titanium dioxide nanoparticles they were synthesized through hydrothermal synthesis. First, TiO 2 nanoparticle powder was added to a 10 ml, 1 N hydrochloric acid solution to a concentration of 1 M, and then nickel oxide was added to a concentration of 2 mol%. Thereafter, 1 ml of n-butylamine was slowly added to modify the surface of the TiO 2 nanoparticles and reacted at 100° C. for 12 hours to finally synthesize nickel/titanium dioxide nanoparticles.
  • the structure of synthesized nickel/titanium dioxide nanoparticles was analyzed through a field emission scanning electron microscope (FE-SEM), and energy dispersive X-ray spectroscopy (EDS) Component analysis of the nickel/titanium dioxide nanoparticles was performed and shown in FIG. 2 .
  • FE-SEM field emission scanning electron microscope
  • EDS energy dispersive X-ray spectroscopy
  • a transparent glass-based gold substrate designed to transmit light was immersed in a piranha solution (consisting of sulfuric acid and hydrogen peroxide in a 4: 1 ratio) for 3 minutes, and then washed with ethanol and distilled water. .
  • the washed gold substrate was put in a 2 mM 11-mercaptoundecanoic acid (MUA) solution, reacted at room temperature for 12 hours, and then washed with ethanol and distilled water.
  • MUA 11-mercaptoundecanoic acid
  • nickel/titanium dioxide nanoparticles were placed on the surface of the gold substrate, reacted for 3 hours, washed with distilled water, and bacteriorhodopsin (0.1 mg/ml) and chlorophyllin (0.1 mg/ml) were added at a volume ratio of 1:1. The mixture was put on the surface of a gold substrate on which nickel/titanium dioxide nanoparticles were fixed and reacted for 3 hours to finally manufacture bio-artificial eyes.
  • a 1 M KCl solution was used as an electrolyte in a three-electrode system composed of a bio-artificial eye as a working electrode, platinum as a counter electrode, and an Ag/AgCl electrode as a reference electrode. .
  • a total of 4 types of light wavelengths were irradiated singly or mixed to the bio-artificial eye through an LED lamp.
  • the selected wavelengths are 435 nm (maximum absorption wavelength of chlorophyllin), 500 nm (maximum absorption wavelength of nickel/titanium dioxide), 550 nm (maximum absorption wavelength of bacteriorhodopsin), and 660 nm (maximum absorption wavelength of chlorophyllin).
  • Example 4 Control of cell membrane potential of skeletal muscle cells using bio-artificial eyes
  • skeletal muscle cells C2C12
  • DMEM medium containing 1% penicillin antibiotics and 2% Horse Serum
  • the culture medium was replaced every 2 days, and differentiation was performed for more than 10 days.
  • the present invention relates to a bio-artificial eye capable of sensing an external light stimulus and a method for manufacturing the same, and more particularly, to an external light-receptive biomaterial such as Bacteriorhodopsin and chlorophyllin, and a photocatalyst such as nickel/titanium dioxide (Ni/titanium dioxide).
  • an external light-receptive biomaterial such as Bacteriorhodopsin and chlorophyllin
  • a photocatalyst such as nickel/titanium dioxide (Ni/titanium dioxide).

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 외부 광 자극 센싱 기능의 바이오 인공 눈에 관한 것으로서, 상기 바이오 인공 눈은 별도의 외부 전력 장치 또는 유전자 재조합 없이 근육세포의 세포막 전위를 제어할 수 있고, 이는 향후 근육세포 뿐만 아니라 신경세포, 오가노이드 등 다양한 생체 조직의 활성을 제어하는데 활용 가능하며, 생체 조직으로 구성된 바이오하이브리드 로봇의 센싱 플랫폼 제작에 활용할 수 있을 것으로 전망된다.

Description

외부 광 자극 센싱 기능의 바이오 인공 눈 및 이의 제조 방법
본 발명은 과학기술정보통신부의 지원 하에서 과제고유번호 1711145073, 과제번호 2019R1A2C3002300에 의해 이루어진 것으로서, 상기 과제의 연구관리전문기관은 한국연구재단, 연구사업명은 "개인기초연구(과기정통부)(R&D)", 연구과제명은 "뇌어셈블로이드 기반 생명체 모방 센싱 기능 바이오하이브리드 로봇", 주관기관은 서강대학교, 연구기간은 2021-03-01 ~ 2022-02-28이다.
또한 본 발명은 교육부의 지원 하에서 과제고유번호 1345345419, 과제번호 2016R1A6A1A03012845에 의해 이루어진 것으로서, 상기 과제의 연구관리전문기관은 한국연구재단, 연구사업명은 "이공학학술연구기반구축(R&D)", 연구과제명은 "뇌질환 약물 평가 기능 나노바이오칩 개발", 주관기관은 서강대학교, 연구기간은 2021-01-01 ~ 2021-12-31이다.
또한 본 발명은 과학기술정보통신부의 지원 하에서 과제고유번호 1711156887, 과제번호 2022M3H4A1A01005271에 의해 이루어진 것으로서, 상기 과제의 연구관리전문기관은 한국연구재단, 연구사업명은 "나노소재기술개발", 연구과제명은 "오가노이드 기반 약물 스크리닝용 나노바이오하이브리드 엑츄에이터 칩", 주관기관은 서강대학교, 연구기간은 2022-01-01 ~ 2022-12-31이다.
본 특허출원은 2022년 1월 26일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2022-0011813호, 및 2022년 8월 23일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2022-0105450호에 대하여 우선권을 주장하며, 상기 특허출원의 개시 사항은 본 명세서에 참조로서 삽입된다.
본 발명은 외부 광 자극 센싱 기능의 바이오 인공 눈 및 이의 제조 방법에 관한 것으로서, 더욱 상세하게는 외부 광 수용성 생체물질인 박테리오로돕신(Bacteriorhodopsin), 클로로필린(Chlorophyllin) 및 광촉매인 니켈/이산화 티타늄(Ni/TiO2) 나노입자를 사용하여, 외부 광 자극을 센싱한 후 세포로 전달 가능한 광전류를 생성하는 바이오 인공 눈을 제작하는 방법에 관한 것이다.
본 발명은 외부 자극을 통해 세포의 활성(세포막 전위 변화)을 제어하는 방법에 관한 것이다. 인간과 같은 생명체에서는 외부 감각기관을 구성하는 감각 세포들이 수용한 신호를 전기신호의 형태로 신경세포 또는 근육세포에 전달하여 세포의 활성이 유도된다. 하지만 공학적으로 실험실에서 사용되는 세포들은 이러한 감각 세포들이 부재하여 세포의 활성을 위해 다른 방법들의 도입이 필요하다.
세포의 활성을 위한 대표적인 종래기술은 전기 자극, 유전자 재조합, 화학물질 처리 3가지이다.
이들 방법 중 하나인 전기 자극을 가해 주는 방법의 경우, 세포는 전기 신호를 통해 활성화되고, 또 신호를 전달하기 때문에 전기장을 걸어주는 방법 또는 미세한 바늘 등으로 세포를 찔러 약한 전기 자극을 가해주는 방법 등이 세포 활성화에 사용되고 있다.
전기 자극 방법의 가장 큰 단점은 별도의 전기 설비가 필요하다는 점이다. 전기 공급을 위한 전력 시스템과, 세포로의 전달을 위한 전극 시스템이 필수적으로 요구되는 한계가 존재한다. 또한 과도한 세기의 전기 자극은 세포 손상을 유발하기 때문에 사용하는 세포의 종류에 맞는 적당한 조건을 확립하는 것이 요구된다.
다른 방법으로는 유전자 재조합이 있다. 유전자 재조합 방법을 통해 세포에 특정 단백질이 발현되도록 유도하면, 단백질이 반응하는 자극에 의해 세포 또한 반응하여 활성을 유도할 수 있게 된다. 가장 많이 사용되는 예시는 광유전학 분야에서 신경세포에 채널로돕신 단백질이 발현되도록 유전자 재조합을 시도하는 것이다. 채널로돕신은 빛에 반응하여 세포막에서 채널의 열고 닫힘을 조절하는 기능이 있기 때문에 채널로돕신이 발현된 신경세포는 빛에 의해 활성화될 수 있는 특성이 부여된다.
그러나 유전자 재조합은 기술적으로 어렵고, 과정이 복잡하다는 단점이 있다. 플라스미드 또는 크리스퍼 유전자 가위 등을 사용하여 특정 유전자를 세포 내부로 삽입하여야 하는데 이를 수행하는 효율이 낮다는 문제가 있고, 유전자가 삽입된 세포들만 선별하여 골라내는 과정이 필요하다는 점도 단점으로 작용한다. 또한 유전자 삽입 과정은 기본적으로 세포에 큰 스트레스를 유발하기 때문에 세포의 상태가 좋지 않을 수 있다는 단점도 존재한다.
또한, 세포에 직접 화학물질을 처리하는 방법도 있다. 세포마다 특정한 화학물질을 수용하는 수용체가 있는데, 적절한 화학물질을 세포에 처리해주면, 세포가 활성 또는 비활성 되는 상태를 조절할 수 있다.
화학물질 처리의 경우, 방법은 간단하지만 전기 자극의 경우와 마찬가지로 세포의 종류 또는 상태에 따라 가해주는 화학물질의 종류와 농도를 조절해야 하는 단점이 있고 앞의 두 방법에 비해 세포의 활성을 유도하는데 비교적 오래 걸리는 단점이 존재한다.
이에 본 발명자들은 빛 감응성 생체물질이 갖는 실제 인간의 눈과 같이 가시광선 영역의 다양한 파장 영역 빛을 센싱하기 위해, 서로 다른 영역의 최대 흡수 파장을 갖는 광 수용성 생체물질인 박테리오로돕신(Bacteriorhodopsin)(550 nm 영역에서 최대 흡수파장)과 클로로필린(Chlorophyllin)(435 nm, 660 nm 영역에서 최대 흡수파장)을 사용하였다. 또한, 광 수용성 생체물질이 생성하는 약한 광전류를 증폭시킬 뿐만 아니라 500 nm 영역의 빛을 흡수해 자체적으로도 광전류를 생성하는 Ni/TiO2 나노입자를 도입하였다.
투명한 유리 기반 금 기판에 화학 링커를 사용하여 Ni/TiO2 나노입자를 먼저 화학적으로 고정한 후, 별도의 링커 없이 박테리오로돕신과 클로로필린을 자체의 작용기를 통해 Ni/TiO2 나노입자 표면에 고정하여 최종적으로 바이오 광 자극 센서를 제작하였다. 제작된 바이오 광 자극 센서 상에서 근아세포(C2C12)를 배양 및 분화하여 전기 자극에 의해 세포막 전위 제어가 가능한 골격근세포를 형성하였고, 외부 광 자극을 on/off 함에 따라 바이오 광 자극 센서에서 생성된 전류가 전달되어 골격근세포의 막 전위를 성공적으로 제어하였다.
이에, 본 발명의 목적은 기판; 상기 기판에 광촉매 화합물이 결합된 광촉매 층; 및 상기 광촉매 층에 광 수용체가 결합된 광 수용체 층을 포함하는 바이오 광 자극 센서를 제공하는 것이다.
본 발명의 다른 목적은 다음 단계를 포함하는 바이오 광 자극 센서의 제조 방법을 제공하는 것이다:
기판에 광촉매 화합물을 결합시켜 광촉매 층을 형성하는 광촉매 결합 단계; 및
상기 광촉매 층에 광 수용체를 결합시켜 광 수용체 층을 형성하는 광 수용체 결합 단계.
본 발명의 또 다른 목적은 박테리오로돕신, 클로로필린 및 광촉매인 니켈/이산화 티타늄 나노입자가 결합된 기판의 광 자극 센싱 용도에 관한 것이다.
본 발명은 외부 광 자극 센싱 기능의 바이오 인공 눈 및 이의 제조 방법에 관한 것으로, 본 발명에 따른 바이오 인공 눈은 외부 광 자극을 on/off 함에 따라 생성된 전류가 세포로 전달되어 세포의 막 전위를 성공적으로 제어할 수 있음을 나타낸다.
본 발명자들은 투명한 유리 기반 금 기판에 화학 링커를 사용하여 Ni/TiO2 나노입자를 먼저 화학적으로 고정한 후, 별도의 링커 없이 박테리오로돕신(Bacteriorhodopsin)과 클로로필린(Chlorophyllin)을 자체의 작용기를 통해 Ni/TiO2 나노입자 표면에 고정하여 최종적으로 바이오 인공 눈을 제작하였다.
이하 본 발명을 더욱 자세히 설명하고자 한다.
본 발명의 일 양태는 기판; 상기 기판에 광촉매 화합물이 결합된 광촉매 층; 및 상기 광촉매 층에 광 수용체가 결합된 광 수용체 층을 포함하는 바이오 광 자극 센서(인공 눈)이다.
본 발명에 있어서 상기 기판은 전도성 물질로 코팅된 유리 또는 플라스틱 기판인 것일 수 있고, 상기 전도성 물질은 금인 것일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서 상기 광촉매 화합물은 링커에 의해 기판에 결합된 것일 수 있다.
상기 링커는 11-메캅토운데카노익 엑시드(11-mercaptoundecanoic acid; MUA)의 처리에 의해 도입된 것일 수 있다.
본 발명에 있어서 상기 광촉매 화합물은 니켈/이산화 티타늄(Ni/TiO2) 나노입자인 것일 수 있다.
본 발명에 있어서 상기 광 수용체는 박테리오로돕신(Bacteriorhodopsin) 및 클로로필린(Chlorophyllin)으로 이루어진 군으로부터 선택되는 1종 이상인 것일 수 있고, 예를 들어, 박테리오로돕신 및 클로로필린을 혼합하여 사용되는 것일 수 있다.
상기 광 수용체는 박테리오로돕신 및 클로로필린을 5:1 내지 1:5의 부피비로 혼합한 혼합물인 것일 수 있고, 바람직하게는 5:1 내지 1:3, 5:1 내지 1:2, 5:1 내지 1:1, 3:1 내지 1:5, 3:1 내지 1:3, 3:1 내지 1:2, 3:1 내지 1:1, 2:1 내지 1:5, 2:1 내지 1:3, 2:1 내지 1:2, 2:1 내지 1:1, 1:1 내지 1:5, 또는 1:1 내지 1:3의 부피비로 혼합한 혼합물인 것일 수 있고, 예를 들어, 1:1 내지 1:2의 부피비로 혼합한 혼합물인 것일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서 상기 바이오 광 자극 센서는 광 수용체 층에 배양된 세포를 추가적으로 포함하는 것일 수 있고, 상기 세포는 근육세포 또는 신경세포인 것일 수 있고, 상기 근육세포는 골격근세포인 것일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 다른 양태는 다음 단계를 포함하는 바이오 광 자극 센서의 제조 방법을 제공하는 것이다:
기판에 광촉매 화합물을 결합시켜 광촉매 층을 형성하는 광촉매 결합 단계; 및
상기 광촉매 층에 광 수용체를 결합시켜 광 수용체 층을 형성하는 광 수용체 결합 단계.
본 발명에 있어서 상기 제조 방법은 광 수용체 층에 세포를 배양하는 세포 배양 단계를 추가적으로 포함하는 것일 수 있고, 상기 세포는 근육세포 또는 신경세포인 것일 수 있고, 상기 근육세포는 골격근세포인 것일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서 상기 기판은 전도성 물질로 코팅된 유리 또는 플라스틱 기판인 것일 수 있고, 상기 전도성 물질은 금인 것일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서 상기 광촉매 결합 단계는 기판에 링커 도입 후 수행되는 것일 수 있다.
상기 링커는 11-메캅토운데카노익 엑시드(MUA)의 처리에 의해 도입된 것일 수 있다.
본 발명에 있어서 상기 광촉매 화합물은 니켈/이산화 티타늄 나노입자인 것일 수 있다.
본 발명에 있어서 상기 광 수용체는 박테리오로돕신 및 클로로필린으로 이루어진 군으로부터 선택되는 1종 이상인 것일 수 있고, 예를 들어, 박테리오로돕신 및 클로로필린을 혼합하여 사용되는 것일 수 있다.
상기 광 수용체는 박테리오로돕신 및 클로로필린을 5:1 내지 1:5의 부피비로 혼합한 혼합물인 것일 수 있고, 바람직하게는 5:1 내지 1:3, 5:1 내지 1:2, 5:1 내지 1:1, 3:1 내지 1:5, 3:1 내지 1:3, 3:1 내지 1:2, 3:1 내지 1:1, 2:1 내지 1:5, 2:1 내지 1:3, 2:1 내지 1:2, 2:1 내지 1:1, 1:1 내지 1:5, 또는 1:1 내지 1:3의 부피비로 혼합한 혼합물인 것일 수 있고, 예를 들어, 1:1 내지 1:2의 부피비로 혼합한 혼합물인 것일 수 있으나, 이에 한정되는 것은 아니다.
본 발명은 외부 광 자극 센싱 기능의 바이오 인공 눈에 관한 것으로서, 상기 바이오 인공 눈은 별도의 외부 전력 장치 또는 유전자 재조합 없이 근육세포의 세포막 전위를 제어할 수 있고, 이는 향후 근육세포 뿐만 아니라 신경세포, 오가노이드 등 다양한 생체 조직의 활성을 제어하는데 활용 가능하며, 생체 조직으로 구성된 바이오하이브리드 로봇의 센싱 플랫폼 제작에 활용할 수 있을 것으로 전망된다.
도 1a는 본 발명의 실시예에 따라 제조된 클로로필린의 푸리에 변환 적외선 분광학(Fourier-transform infrared spectroscopy; FT-IR)를 클로로필에 대비하여 보여주는 그래프이다.
도 1b는 본 발명의 실시예에 따라 제조된 클로로필린의 자외선/가시광선 분광법(UV-Visible spectroscopy) 측정 결과를 클로로필에 대비하여 보여주는 그래프이다.
도 2는 본 발명의 실시예에 따라 제조된 니켈/이산화 티타늄(Ni/TiO2) 나노입자가 고정된 금 기판의 구조를 분석한 전계방출형 주사전자현미경(Field emission scanning electron microscope; FE-SEM) 사진 및 성분 분석을 수행한 에너지 분산 X선 분광법(Energy dispersive X-ray spectroscopy; EDS) 사진이다.
도 3은 본 발명의 실시예에 따라 제조된 바이오 인공 눈의 제조 과정을 나타낸 모식도이다.
도 4는 본 발명의 실시예에 따라 제조된 금 기판(a), 니켈/이산화 티타늄 나노입자가 고정된 금 기판(b), 및 이에 박테리오로돕신과 클로로필린이 고정되어 최종 제작된 바이오 인공 눈(c)의 각 단계별 표면 변화를 분석한 원자힘 현미경(Atomic force microscopy; AFM) 사진이다.
도 5a는 본 발명의 실시예에 따라 제조된 바이오 인공 눈에 여러 종류의 파장을 조사한 결과를 나타낸 광전류 값의 측정 그래프이다.
도 5b는 본 발명의 실시예에 따라 제조된 바이오 인공 눈에 여러 종류의 파장을 조사한 결과를 나타낸 광전류의 평균값 측정 그래프이다.
도 5c는 본 발명의 실시예에 따라 제조된 이산화 티타늄 나노입자를 사용하여 제조된 바이오 인공 눈에 여러 종류의 파장을 조사한 결과를 나타낸 광전류 값의 측정 그래프이다.
도 6은 본 발명의 실시예에 따라 제조된 바이오 인공 눈에 빛을 조사함에 따라 세포막 전위의 변화를 나타낸 그래프이다.
본 발명은 기판; 상기 기판에 광촉매 화합물이 결합된 광촉매 층; 및 상기 광촉매 층에 광 수용체가 결합된 광 수용체 층을 포함하는 바이오 광 자극 센서에 관한 것이다.
이하, 본 발명을 하기의 실시예에 의하여 더욱 상세히 설명한다. 그러나 이들 실시예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이들 실시예에 의하여 한정되는 것은 아니다.
본 명세서 전체에 걸쳐, 특정 물질의 농도를 나타내기 위하여 사용되는 "%"는 별도의 언급이 없는 경우, 고체/고체는 (중량/중량)%, 고체/액체는 (중량/부피)%, 그리고 액체/액체는 (부피/부피)%이다.
실시예 1: 클로로필린 제작 및 니켈/이산화 티타늄 나노입자 합성
식물세포의 클로로필(chlorophyll)은 외부 광 자극을 받아 광전류를 생성하는 특성을 가지고 있지만, 분자 구조상 별도의 작용기가 존재하지 않아, 기판 등에 화학적으로 고정하기 어려운 특성이 있다. 따라서 클로로필에 3개의 카복실기가 추가된 클로로필린(chlorophyllin)을 제작한 후 바이오 인공 눈을 구성하는 생체물질로 선택하여 본 실험에 사용하였다.
구체적으로, 시금치에서 추출한 클로로필을 25 질량% 메탄올-수산화칼륨 용액을 처리하여 알칼리 반응화를 유도함으로써 클로로필린으로 전환하였다. 제조된 클로로필린의 특성은 푸리에 변환 적외선 분광학(Fourier-transform infrared spectroscopy; FT-IR) 및 자외선/가시광선 분광법(UV-Visible spectroscopy)으로 클로로필 대비 측정하여 두 물질의 흡수 파장 영역을 분석하여 확인하였다.
도 1a에서 확인할 수 있듯이, 푸리에 변환 적외선 분광학을 통해 클로로필린의 3400 cm-1 영역에서 클로로필에서는 관찰되지 않는 새로운 피크가 생긴 것을 분석하여 확인함으로써 클로로필린을 수득하였음을 확인하였다.
도 1b에서도 마찬가지로 확인할 수 있듯이, 자외선/가시광선 분광법을 통해 확인한 결과 큰 범위에서 흡수파장 영역이 바뀌지는 않았으나, 최대 피크가 430 nm에서 405 nm로, 그리고 664 nm에서 655 nm로 쉬프트(shift)됨에 따라 클로로필린이 성공적으로 제작됨을 확인하였다.
니켈/이산화 티타늄 나노입자의 경우, 수열합성법(Hydrothermal synthesis)을 통해 합성하였다. 먼저 10 ml, 1 N 염산 용액에 TiO2 나노입자 파우더를 1 M이 되도록 넣어준 후 2 mol%가 되도록 산화 니켈을 넣어주었다. 이후 TiO2 나노입자의 표면 개질을 위해 1 ml의 n-부틸아민을 천천히 넣어주고 100℃에서 12시간 동안 반응시켜 최종적으로 니켈/이산화 티타늄 나노입자를 합성하였다.
전계방출형 주사전자현미경(Field emission scanning electron microscope; FE-SEM)을 통해 합성된 니켈/이산화 티타늄 나노입자의 구조를 분석하였고, 에너지 분산 X선 분광법(Energy dispersive X-ray spectroscopy; EDS)를 통해 니켈/이산화 티타늄 나노입자의 성분 분석을 진행하여 도 2와 같이 나타내었다.
실시예 2: 바이오 인공 눈 제작과 구조 확인
도 3과 같이 바이오 인공 눈을 제작하기 위해, 빛이 투과하도록 설계된 투명한 유리 기반 금 기판을 피라냐 용액(4:1 비율의 황산과 과산화수소로 구성)에 3분간 담가준 후 에탄올과 증류수로 세척해주었다. 세척된 금 기판을 2 mM 11-메캅토운데카노익 엑시드(11-mercaptoundecanoic acid; MUA) 용액에 넣고 상온에서 12시간 동안 반응시킨 후 에탄올과 증류수로 세척해주었다.
1 mg/ml의 니켈/이산화 티타늄 나노입자를 금 기판 표면에 올린 후 3시간 동안 반응시킨 후 증류수로 세척하고 박테리오로돕신(0.1 mg/ml)과 클로로필린(0.1 mg/ml)을 1:1의 부피비로 혼합한 혼합물을 니켈/이산화 티타늄 나노입자가 고정된 금 기판 표면에 올리고 3시간 동안 반응시켜 최종적으로 바이오 인공 눈을 제작하였다.
도 4에서 확인할 수 있듯이, 원자힘 현미경(Atomic force microscopy; AFM)을 통해 금 기판(a), 니켈/이산화 티타늄 나노입자가 고정된 금 기판(b), 및 이에 박테리오로돕신과 클로로필린이 고정되어 최종 제작된 바이오 인공 눈(c) 각 단계에서 기판의 표면이 변화하는 모습을 분석하였다.
실시예 3: 바이오 인공 눈에 의해 생성되는 광전류 확인
제작된 바이오 인공 눈이 빛에 의해 광전류를 생성할 수 있는지 확인하였다. 바이오 인공 눈을 작업전극(Working electrode)으로 사용하고 백금을 상대전극 (Counter electrode), Ag/AgCl 전극을 기준 전극(Reference electrode)으로 선택하여 구성된 3전극 시스템에 전해질로서 1 M KCl 용액을 사용하였다.
LED 램프를 통해 총 4가지 종류의 광 파장을 단일 또는 혼합하여 바이오 인공 눈에 조사하였다. 선택된 파장은 435 nm(클로로필린 최대 흡수파장), 500 nm(니켈/이산화 티타늄 최대 흡수파장), 550 nm(박테리오로돕신 최대 흡수파장), 660 nm(클로로필린 최대 흡수파장)이다.
순차적으로 1) 500 nm의 단일 파장, 2) 550 nm의 단일 파장, 3) 435 nm 및 660 nm의 혼합 파장, 4) 435 nm, 500 nm, 550 nm 및 660 nm의 혼합 파장의 광을 10초 간격으로 조사하였고, 각 파장에 의해 발생하는 광전류 값을 측정하였다.
도 5a 및 5b에서 확인할 수 있듯이, 반복 실험을 통해 평균적으로 1)에서 11.14 nA, 2)에서 43.00 nA, 3)에서 129.98 nA, 4)에서 148.95 nA의 광전류가 재현성 있게 생성되는 것을 확인하였다.
광촉매로서 기존의 이산화 티타늄 나노입자를 사용하여 동일한 조건에서 제조된 바이오 인공 눈을 대조군으로 준비하여 4) 435 nm, 500 nm, 550 nm 및 660 nm의 혼합 파장의 광을 조사하는 동일한 조건에서 비교하였다.
도 5c에서 확인할 수 있듯이, 니켈/이산화 티티늄 나노입자를 사용한 경우에 대비하여 매우 작은 값인 약 5 nA의 광전류가 주기적으로 발생하는 것을 관찰할 수 있었다. 따라서 기존의 이산화 티타늄 나노입자 대비 니켈/이산화 티타늄 나노입자를 바이오 인공 눈 제작에 사용하는 경우 훨씬 큰 광전류를 생성할 수 있는 것으로 기대할 수 있다.
실시예 4: 바이오 인공 눈을 사용한 골격근세포 세포막 전위 제어
바이오 인공 눈 상에 골격근세포를 배양한 후, 광 자극을 가했을 때 바이오 인공 눈에 의해 생성된 전류가 전달되어 골격근세포의 세포막 전위가 변화하는 것을 확인하였다.
먼저 5% CO2, 37℃ 조건의 인큐베이터를 이용하여, 골격근세포인 C2C12를 바이오 인공 눈에 시딩한 뒤 잘 부착될 수 있도록 1% 페니실린 항생제, 10% 소 혈청 세럼(Fetal Bovine Serum)이 포함된 DMEM 배양액에서 하루 동안 배양하고, 이후 골격근세포로의 분화를 위해 분화 배양액(1% 페니실린 항생제, 2% 말 세럼(Horse Serum)이 포함된 DMEM 배양액)으로 교체해주었다. 2일에 한 번씩 배양액을 교체하고, 10일 이상 분화를 진행하였다.
분화가 완료되어 골격근세포가 형성된 이후 패치 클램프(Patch clamp) 장비를 사용하여 단일 세포의 신호를 분석하였다.
도 6에서 확인할 수 있듯이, 바이오 인공 눈에 광을 반복적으로 조사했을 때 빛을 조사한 경우에만 골격근세포의 세포막 전위가 약 0.2 mV 정도 상승되는 것을 측정하였고, 빛 조사를 멈추었을 때, 다시 세포막 전위가 내려가는 것을 확인하였다.
본 발명은 외부 광 자극 센싱 기능의 바이오 인공 눈 및 이의 제조 방법에 관한 것으로서, 더욱 상세하게는 외부 광 수용성 생체물질인 박테리오로돕신(Bacteriorhodopsin), 클로로필린(Chlorophyllin) 및 광촉매인 니켈/이산화 티타늄(Ni/TiO2) 나노입자를 사용하여, 외부 광 자극을 센싱한 후 세포로 전달 가능한 광전류를 생성하는 바이오 인공 눈을 제작하는 방법에 관한 것이다.

Claims (14)

  1. 기판;
    상기 기판에 광촉매 화합물이 결합된 광촉매 층; 및
    상기 광촉매 층에 광 수용체가 결합된 광 수용체 층
    을 포함하는 바이오 광 자극 센서.
  2. 제1항에 있어서, 상기 기판은 전도성 물질로 코팅된 것인, 바이오 광 자극 센서.
  3. 제1항에 있어서, 상기 광촉매 화합물은 링커에 의해 기판에 결합된 것인, 바이오 광 자극 센서.
  4. 제3항에 있어서, 상기 링커는 11-메캅토운데카노익 엑시드(11-mercaptoundecanoic acid; MUA)의 처리에 의해 도입된 것인, 바이오 광 자극 센서.
  5. 제1항에 있어서, 상기 광촉매 화합물은 니켈/이산화 티타늄(Ni/TiO2) 나노입자인 것인, 바이오 광 자극 센서.
  6. 제1항에 있어서, 상기 광 수용체는 박테리오로돕신(Bacteriorhodopsin) 및 클로로필린(Chlorophyllin)으로 이루어진 군으로부터 선택되는 1종 이상인 것인, 바이오 광 자극 센서.
  7. 제1항에 있어서, 상기 바이오 광 자극 센서는 광 수용체 층에 배양된 세포를 추가적으로 포함하는 것인, 바이오 광 자극 센서.
  8. 다음 단계를 포함하는 바이오 광 자극 센서의 제조 방법:
    기판에 광촉매 화합물을 결합시켜 광촉매 층을 형성하는 광촉매 결합 단계; 및
    상기 광촉매 층에 광 수용체를 결합시켜 광 수용체 층을 형성하는 광 수용체 결합 단계.
  9. 제8항에 있어서, 상기 제조 방법은 광 수용체 층에 세포를 배양하는 세포 배양 단계를 추가적으로 포함하는 것인, 바이오 광 자극 센서의 제조 방법.
  10. 제8항에 있어서, 상기 기판은 전도성 물질로 코팅된 것인, 바이오 광 자극 센서의 제조 방법.
  11. 제8항에 있어서, 상기 광촉매 결합 단계는 기판에 링커 도입 후 수행되는 것인, 바이오 광 자극 센서의 제조 방법.
  12. 제11항에 있어서, 상기 링커는 11-메캅토운데카노익 엑시드(11-mercaptoundecanoic acid; MUA)의 처리에 의해 도입된 것인, 바이오 광 자극 센서의 제조 방법.
  13. 제8항에 있어서, 상기 광촉매 화합물은 니켈/이산화 티타늄(Ni/TiO2) 나노입자인 것인, 바이오 광 자극 센서의 제조 방법.
  14. 제8항에 있어서, 상기 광 수용체는 박테리오로돕신(Bacteriorhodopsin) 및 클로로필린(Chlorophyllin)으로 이루어진 군으로부터 선택되는 1종 이상인 것인, 바이오 광 자극 센서의 제조 방법.
PCT/KR2022/014095 2022-01-26 2022-09-21 외부 광 자극 센싱 기능의 바이오 인공 눈 및 이의 제조 방법 WO2023146058A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220011813 2022-01-26
KR10-2022-0011813 2022-01-26
KR1020220105450A KR20230115208A (ko) 2022-01-26 2022-08-23 외부 광 자극 센싱 기능의 바이오 인공 눈 및 이의 제조 방법
KR10-2022-0105450 2022-08-23

Publications (1)

Publication Number Publication Date
WO2023146058A1 true WO2023146058A1 (ko) 2023-08-03

Family

ID=87472199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014095 WO2023146058A1 (ko) 2022-01-26 2022-09-21 외부 광 자극 센싱 기능의 바이오 인공 눈 및 이의 제조 방법

Country Status (1)

Country Link
WO (1) WO2023146058A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563026B2 (en) * 2009-03-05 2013-10-22 University Of Connecticut Protein-based artificial retinas
WO2018208703A1 (en) * 2017-05-08 2018-11-15 Lambdavision Incorporated A method for stimulating retinal cells and treating vision loss
KR20200101779A (ko) * 2019-02-20 2020-08-28 충북대학교 산학협력단 ReRAM-CMOS 기반의 인공 망막 장치
KR20210017041A (ko) * 2019-08-06 2021-02-17 인천대학교 산학협력단 인공안구를 위한 투명 시각피질

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563026B2 (en) * 2009-03-05 2013-10-22 University Of Connecticut Protein-based artificial retinas
WO2018208703A1 (en) * 2017-05-08 2018-11-15 Lambdavision Incorporated A method for stimulating retinal cells and treating vision loss
KR20200101779A (ko) * 2019-02-20 2020-08-28 충북대학교 산학협력단 ReRAM-CMOS 기반의 인공 망막 장치
KR20210017041A (ko) * 2019-08-06 2021-02-17 인천대학교 산학협력단 인공안구를 위한 투명 시각피질

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIM JOUNGPYO: "Biophotosensor composed of bacteriorhodopsin with Ni/TiO2 hybrid nanoparticles", THESIS SOGANG UNIVERSITY, 11 December 2019 (2019-12-11), pages 1 - 27, XP093080489 *
PUCCI CARLOTTA, MARTINELLI CHIARA, DEGL'INNOCENTI ANDREA, DESII ANDREA, DE PASQUALE DANIELE, CIOFANI GIANNI: "Light‐Activated Biomedical Applications of Chlorophyll Derivatives", MACROMOLECULAR BIOSCIENCE, WILEY-VCH VERLAG GMBH, DE, vol. 21, no. 9, 1 September 2021 (2021-09-01), DE , XP093080491, ISSN: 1616-5187, DOI: 10.1002/mabi.202100181 *

Similar Documents

Publication Publication Date Title
Tian et al. Roadmap on semiconductor–cell biointerfaces
CN106660236B (zh) 经由动态光学投影的无分层生物打印及其用途
JP6635383B2 (ja) 細胞膜電位の操作のためのグラフェンおよびグラフェン関連材料
Ben-Jacob et al. Carbon nanotube micro-electrodes for neuronal interfacing
Zhang et al. New frontiers and challenges for single-cell electrochemical analysis
CN100344960C (zh) 刺激动物细胞并记录其生理信号的装置及其生产使用方法
US20110257501A1 (en) Bio-Hybrid Implant for Connecting a Neural Interface With a Host Nervous System
CN102580794A (zh) 可定位细胞及生物体的微流控芯片及其应用
WO2016086040A1 (en) Patterned neuromuscular junctions and methods of use
WO2001033207A1 (en) Microscopic multi-site sensor array with integrated control and analysis circuitry
US20230062382A1 (en) System, method and device for culture of a multicellular structure
Shi et al. Fabrication of nanocomposites and hybrid materials using microbial biotemplates
Liu et al. Reconstructing soma–soma synapse-like vesicular exocytosis with DNA origami
Zhou et al. Nanoelectrochemical architectures for high-spatial-resolution single cell analysis
Rotenberg et al. Talking to cells: semiconductor nanomaterials at the cellular interface
Wan et al. Biomedical sensors
WO2023146058A1 (ko) 외부 광 자극 센싱 기능의 바이오 인공 눈 및 이의 제조 방법
Casanova et al. Self-aligned functionalization approach to order neuronal networks at the single-cell level
Liu et al. Toward the development of an artificial brain on a micropatterned and material-regulated biochip by guiding and promoting the differentiation and neurite outgrowth of neural stem/progenitor cells
WO2022124581A1 (ko) 근육번들의 제조방법 및 이를 이용한 바이오하이브리드 로봇
KR20230115208A (ko) 외부 광 자극 센싱 기능의 바이오 인공 눈 및 이의 제조 방법
Potter et al. Long-term bidirectional neuron interfaces for robotic control, and in vitro learning studies
CN113476749A (zh) 一种液态金属柔性光遗传神经电极及其制备方法和应用
WO2004046707A1 (en) Microscopic multi-site sensor array with integrated control and analysis circuitry
Frega Neuronal network dynamics in 2D and 3D in vitro neuroengineered systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924313

Country of ref document: EP

Kind code of ref document: A1