WO2023145942A1 - Moisture-curable hot-melt resin composition, adhesive agent for electronic components, and cured body - Google Patents

Moisture-curable hot-melt resin composition, adhesive agent for electronic components, and cured body Download PDF

Info

Publication number
WO2023145942A1
WO2023145942A1 PCT/JP2023/002904 JP2023002904W WO2023145942A1 WO 2023145942 A1 WO2023145942 A1 WO 2023145942A1 JP 2023002904 W JP2023002904 W JP 2023002904W WO 2023145942 A1 WO2023145942 A1 WO 2023145942A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyol
moisture
resin composition
melt resin
curable hot
Prior art date
Application number
PCT/JP2023/002904
Other languages
French (fr)
Japanese (ja)
Inventor
和頼 嶋村
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2023514395A priority Critical patent/JPWO2023145942A1/ja
Priority to CN202380019351.4A priority patent/CN118647642A/en
Priority to KR1020247025316A priority patent/KR20240142434A/en
Publication of WO2023145942A1 publication Critical patent/WO2023145942A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2170/00Compositions for adhesives
    • C08G2170/20Compositions for hot melt adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/304Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being heat-activatable, i.e. not tacky at temperatures inferior to 30°C

Definitions

  • the present invention relates to a moisture-curable hot-melt resin composition, an adhesive for electronic parts comprising the moisture-curable hot-melt resin composition, and a cured body of the moisture-curable hot-melt resin composition.
  • double-sided tape was often used to glue and assemble parts of smart devices such as smartphones and wearable devices.
  • adhesives have come to be used in order to cope with narrow bonding areas and complicated bonding surfaces. Since mobile electronic devices such as smart devices are carried around, they may be accidentally dropped while being carried or used. Therefore, the bonded part of the device is required to have impact resistance so that the bonded parts do not fall off due to the impact when dropped.
  • Patent Document 1 discloses a urethane prepolymer (i) having an isocyanate group obtained by reacting a polyester polyol (A) and a polyether polyol (B) with an isocyanate (C), and a urethane prepolymer (i) and Moisture curable hot melt adhesive compositions containing non-reactive component (ii) are disclosed.
  • Patent Document 2 a moisture-curable hot melt adhesive containing a urethane prepolymer having an isocyanate group, which is a reaction product of a polyol component containing a polyester polyol, a polyether polyol and a polybutadiene polyol and an isocyanate component, and an antioxidant. Agent compositions are disclosed.
  • Patent Documents 1 and 2 describe that moisture-curable hot-melt adhesive compositions have excellent impact resistance.
  • an object of the present invention is to provide a moisture-curable hot-melt resin composition capable of achieving both excellent impact resistance and sebum resistance, and an adhesive for electronic parts and a cured product using the same.
  • the present inventor found that the above problems can be solved by using a urethane prepolymer having a specific structure and setting the initial PUSH adhesive strength to a certain value or more, and completed the following invention. rice field.
  • the present invention provides the following [1] to [19].
  • the polyol (A) contains a polyether polycarbonate polyol (a1) and a polyol (a2) different from the polyether polycarbonate polyol (a1), and the polyol (a2) is a group consisting of a polyester polyol and a polycarbonate polyol. is at least one selected from A moisture-curable hot-melt resin composition having an initial PUSH adhesive strength of 3 kgf/cm 2 or more.
  • the moisture-curable hot-melt resin composition according to any one of [1] to [3] above.
  • the linear polyol is an aliphatic polyol having 3 to 12 carbon atoms and having hydroxyl groups at both ends
  • the linear polycarboxylic acid is an aliphatic carboxylic acid having 4 to 12 carbon atoms and having carboxyl groups at both ends.
  • the linear polyol is 1,6-hexanediol
  • the linear polycarboxylic acid is at least one selected from the group consisting of adipic acid and sebacic acid [ 5], the moisture-curable hot-melt resin composition.
  • the moisture-curable hot-melt resin composition according to any one of [1] to [7] above, wherein the polycarbonate polyol contains structural units derived from a linear polyol having 8 or more carbon atoms.
  • the constituent units derived from the linear polyol having 8 or more carbon atoms are 75 mol% or more and 100 mol% or less based on the total amount of constituent units derived from the polyhydroxy compound, above
  • Moisture-curable hot-melt resin composition according to .
  • the present invention it is possible to provide a moisture-curable hot-melt resin composition that achieves both excellent impact resistance and sebum resistance, and an adhesive for electronic parts and a cured product using the composition.
  • FIG.1 (a) is a top view
  • FIG.1(b) is a side view.
  • FIG.1(b) is a side view which shows the impact-resistant evaluation method.
  • 1 is a schematic perspective view of a shooting die used in impact resistance; FIG.
  • the moisture-curable hot-melt resin composition of the present invention contains a urethane prepolymer.
  • a urethane prepolymer is a reaction product of a polyol (A) and a polyisocyanate compound (B) and has an isocyanate group.
  • the urethane prepolymer can impart moisture curability to the resin composition by containing an isocyanate group.
  • the isocyanate group contained in the urethane prepolymer is not particularly limited, and may be an aromatic isocyanate group, an aliphatic isocyanate group, or a combination thereof. When these isocyanate groups are used in combination, as the urethane prepolymer, a urethane prepolymer having an aromatic isocyanate group and a urethane prepolymer having an aliphatic isocyanate group may be used in combination. may be a compound having both an aromatic isocyanate group and an aliphatic isocyanate group.
  • the aromatic isocyanate group is an isocyanate group directly bonded to an aromatic ring, and the aliphatic isocyanate group is an isocyanate group directly bonded to an aliphatic carbon atom.
  • the aromatic isocyanate group is an isocyanate group derived from an aromatic isocyanate compound, and the details of the aromatic isocyanate compound are as described later.
  • the aliphatic isocyanate group is an isocyanate group derived from an aliphatic isocyanate compound, and the details of the aliphatic isocyanate compound are as described later.
  • the urethane prepolymer preferably contains aromatic isocyanate groups.
  • aromatic isocyanate groups When the urethane prepolymer contains an aromatic isocyanate group, it becomes easier to improve the adhesive strength (final adhesive strength) of the moisture-curable hot-melt resin composition after moisture curing. In addition, the resistance to sebum of the cured body of the moisture-curable hot-melt resin composition is improved, and the adhesive force can be easily maintained at a high value even after coming into contact with sebum.
  • the number of isocyanate groups in the urethane prepolymer is not particularly limited, but preferably two or more per molecule, and isocyanate groups at both ends of the urethane prepolymer are preferred.
  • the urethane prepolymer of the present invention can be obtained by reacting the polyol (A) and the polyisocyanate compound (B).
  • Polyol (A) is a compound having two or more hydroxyl groups
  • polyisocyanate compound (B) is a compound having two or more isocyanate groups.
  • the polyol (A) includes a polyether polycarbonate polyol (a1) and a polyol (a2) different from the polyether polycarbonate polyol (a1).
  • the polyol (a2) is at least one selected from the group consisting of polyester polyols and polycarbonate polyols.
  • Polyether polycarbonate polyol (a1)) Polyether polycarbonate polyol (a1) has a polyether skeleton and a carbonate bond.
  • Polyether polycarbonate polyol (a1) is a compound having two or more hydroxyl groups in the molecule.
  • the polyether polycarbonate polyol (a1) preferably has two or more carbonate bonds in the molecule.
  • the polyether polycarbonate polyol (a1) by using the polyether polycarbonate polyol (a1) as the polyol (A), it becomes easier to achieve excellent sebum resistance.
  • the polyether skeleton typically has a structure in which divalent hydrocarbon groups are linked by ether bonds.
  • the divalent hydrocarbon group is not particularly limited, it has, for example, 2 to 12 carbon atoms, preferably 3 to 8 carbon atoms.
  • the divalent hydrocarbon group may be either an aliphatic hydrocarbon group or an aromatic hydrocarbon group having an aromatic ring, but an aliphatic hydrocarbon group is preferred.
  • the aliphatic hydrocarbon group may be linear, branched, or have an alicyclic structure, but is preferably linear.
  • the polyether polycarbonate polyol (a1) preferably has a straight-chain alkylene group having 3 to 8 carbon atoms.
  • the polyether polycarbonate polyol (a1) has a straight-chain alkylene group with 3 to 8 carbon atoms, so that sebum resistance and final adhesive strength are easily improved.
  • the alkylene group is preferably contained in the polyether skeleton, and the divalent hydrocarbon group in the polyether skeleton is preferably a straight-chain alkylene group having 3 to 8 carbon atoms. Therefore, the polyether skeleton preferably has a structure in which straight-chain alkylene groups having 3 to 8 carbon atoms are linked via ether bonds, and the alkylene groups preferably have 3 to 5 carbon atoms. , is most preferably 4 carbon atoms.
  • the polyether polycarbonate polyol (a1) preferably has a structure in which a plurality of polyether skeletons are linked via carbonate bonds.
  • the polyether polycarbonate polyol (a1) is preferably a polyether polycarbonate diol containing two hydroxyl groups in one molecule.
  • the polyether polycarbonate diol preferably has hydroxyl groups at both ends of the molecule.
  • the polyether polycarbonate polyol (a1) is more preferably a compound represented by the following formula (1).
  • R represents a divalent hydrocarbon group having 2 to 12 carbon atoms, n is an integer of 2 to 90, and m is an integer of 1 to 35.
  • R may be the same, and may differ.
  • R preferably has 2 to 10 carbon atoms, more preferably 3 to 8 carbon atoms, still more preferably 3 to 5 carbon atoms, and most preferably 4 carbon atoms.
  • R may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group having an aromatic ring, preferably an aliphatic hydrocarbon group, more preferably a saturated aliphatic hydrocarbon group, especially linear and An alkylene group having 3 to 8 carbon atoms is more preferred.
  • R examples include a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group and an octamethylene group, and among them, a trimethylene group, a tetramethylene group and a pentamethylene group are more preferable.
  • the tetramethylene group is most preferred.
  • These alkylene groups may be used singly or in combination of two or more.
  • n is 2 to 90, preferably 2 to 45, more preferably 2 to 15, still more preferably 2 to 10, and most preferably 2 to 5.
  • m is 1 to 35, preferably 1 to 15, more preferably 1 to 10, even more preferably 1 to 6, and most preferably 2 to 6.
  • the polyether polycarbonate polyol (a1) is preferably produced using a polyoxyalkylene glycol as a raw material by a known method such as the phosgene method or the transesterification method. Therefore, the polyether skeleton described above is preferably derived from polyoxyalkylene glycol.
  • polyoxyalkylene glycol include polypropylene glycol, polytetramethylene ether glycol, copolymer polyether glycol of propylene oxide and tetrahydrofuran, etc.
  • polytetramethylene ether glycol (PTMG) is preferred. more preferred.
  • polyoxyalkylene glycol may use only 1 type, and may use 2 or more types together.
  • the polyether polycarbonate polyol (a1) is preferably liquid at room temperature (25°C).
  • the polyether polycarbonate polyol (a1) is liquid, as will be described later, by making the polyol (a2) solid, the resin composition can be hot-melted and the open time can be moderately long. It becomes easy to improve the impact resistance.
  • the number average molecular weight (Mn) of the polyether polycarbonate polyol (a1) is not particularly limited, but is, for example, 600 or more, preferably 800 or more, more preferably 1,000 or more, still more preferably 1,500 or more, Also, for example, it is 6,000 or less, preferably 5,000 or less, more preferably 4,000 or less, and still more preferably 3,500 or less.
  • Mn number average molecular weight of the polyether polycarbonate polyol (a1) is within the above range, it becomes easy to improve sebum resistance, impact resistance, etc. while improving handleability.
  • Polyol (a2) Polyol (a2) used as polyol (A) is at least either polyester polyol or polycarbonate polyol, and these may be used in combination.
  • Polyol (a2) is preferably other than polyether polycarbonate polyol having a polyether skeleton and a carbonate bond.
  • Polyester polyols used as the polyol (a2) include, for example, polyester polyols obtained by reacting polycarboxylic acids with polyols, poly- ⁇ -caprolactone polyols obtained by ring-opening polymerization of ⁇ -caprolactone, and the like. . Among these, polyester polyol obtained by reaction of polycarboxylic acid and polyol is preferable. Moreover, the polyester polyol is preferably a polyester diol. Polyester polyols may be used singly or in combination of two or more.
  • polycarboxylic acids used as raw materials for polyester polyols include divalent aromatic carboxylic acids such as terephthalic acid, isophthalic acid, 1,5-naphthalic acid and 2,6-naphthalic acid, succinic acid, glutaric acid, and adipine. acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decamethylenedicarboxylic acid, divalent aliphatic carboxylic acids such as dodecamethylenedicarboxylic acid, trimellitic acid, trimesic acid, pyromellitic acid, naphthalenetricarboxylic acid, etc.
  • divalent aromatic carboxylic acids such as terephthalic acid, isophthalic acid, 1,5-naphthalic acid and 2,6-naphthalic acid, succinic acid, glutaric acid, and adipine. acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decamethylenedicarboxylic acid,
  • trivalent or higher aliphatic carboxylic acids such as aromatic carboxylic acids having a valence or higher, cyclohexanetricarboxylic acid, hexanetricarboxylic acid, and the like. These polycarboxylic acids may be used singly or in combination of two or more.
  • Examples include chain aliphatic polyols, aliphatic polyols having branched structures such as neopentyl glycol, and aliphatic polyols having a cyclic skeleton such as cyclohexanediol. These polyols may be used singly or in combination of two or more.
  • linear polycarboxylic acids are preferred as the polycarboxylic acids used in the polyester polyol.
  • the crystallinity tends to be high, and the set time tends to be moderately fast.
  • the initial PUSH adhesive strength is increased, making it easier to improve the impact resistance.
  • the straight-chain polycarboxylic acid may be used alone as the polycarboxylic acid, or may be used in combination with a polycarboxylic acid other than the straight-chain polycarboxylic acid.
  • the polyester polyol preferably contains linear polycarboxylic acid-derived structural units, the content of which is based on the total amount of all polycarboxylic acid-derived structural units, for example, 75 mol% or more and 100 mol% or less, preferably 85 mol % or more and 100 mol % or less, more preferably 95 mol % or more and 100 mol % or less, and most preferably 100 mol %.
  • the straight-chain polycarboxylic acid is a divalent straight-chain aliphatic carboxylic acid having carboxyl groups at both ends.
  • the linear polycarboxylic acid is preferably an aliphatic carboxylic acid having 4 to 12 carbon atoms, more preferably an aliphatic carboxylic acid having 6 to 10 carbon atoms. Therefore, among the above aliphatic carboxylic acids, adipic acid, pimelic acid, suberic acid, azelaic acid and sebacic acid are preferred, and adipic acid and sebacic acid are particularly preferred.
  • the polyester polyol preferably contains polycarboxylic acid-derived structural units selected from the group consisting of adipic acid and sebacic acid, and the content thereof is based on the total amount of polycarboxylic acid-derived structural units, for example 75 mol. % or more and 100 mol % or less, preferably 85 mol % or more and 100 mol % or less, more preferably 95 mol % or more and 100 mol % or less, most preferably 100 mol %.
  • linear polycarboxylic acid may be used individually by 1 type, and may be used together 2 or more types.
  • linear polyols are preferred as the polyols used in the polyester polyols.
  • the crystallinity tends to be high and the set time tends to be moderately fast.
  • the initial PUSH adhesive strength is increased, making it easier to improve the impact resistance.
  • the straight-chain polyol may be used alone as the polyol, or may be used in combination with a polyol other than the straight-chain polyol.
  • the polyester polyol preferably contains linear polyol-derived structural units, and the content thereof is, for example, 75 mol% or more and 100 mol% or less, based on the total amount of polyol-derived structural units, and is preferably is 85 mol % or more and 100 mol % or less, more preferably 95 mol % or more and 100 mol % or less, most preferably 100 mol %.
  • Linear polyols are divalent linear aliphatic polyols having hydroxyl groups at both ends.
  • the straight-chain polyol is preferably a straight-chain polyol having 3 to 12 carbon atoms, more preferably a straight-chain polyol having 5 to 8 carbon atoms, and most preferably a straight-chain polyol having 6 carbon atoms.
  • Preferred examples of linear polyols are 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol and diethylene glycol, with 1,6-hexanediol being most preferred.
  • the polyester polyol preferably contains structural units derived from 1,6-hexanediol, and the content thereof is, for example, 75 mol% or more and 100 mol% or less based on the total amount of polyol-derived structural units, It is preferably 85 mol % or more and 100 mol % or less, more preferably 95 mol % or more and 100 mol % or less, and most preferably 100 mol %.
  • linear polyol may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the polycarbonate polyol used in the polyol (a2) has a structure in which structural units derived from a polyhydroxy compound are linked by carbonate bonds.
  • the production method of the polycarbonate polyol is not particularly limited, and may be produced by a known method such as a phosgene method or a transesterification method using a polyhydroxy compound as a raw material.
  • Polyhydroxy compounds are generally dihydroxy compounds.
  • the polyhydroxy compound may be a linear aliphatic polyol, an alicyclic polyol having a branched structure or an alicyclic structure, an aromatic polyhydroxy compound, or the like, but the polyhydroxy compound is preferably a linear polyol. .
  • the polyhydroxy compound should not have an ether bond.
  • Linear polyols are divalent linear aliphatic polyols having hydroxyl groups at both ends.
  • the linear polyol has, for example, 4 or more carbon atoms, and among these, linear polyols having 8 or more carbon atoms are preferred. Also, the number of carbon atoms in the linear polyol is, for example, 16 or less, preferably 12 or less.
  • the straight-chain polyol is preferably a straight-chain aliphatic diol having no ether bond, and more preferably an alkanediol having hydroxyl groups at both ends.
  • linear polyols used as raw materials for polycarbonate polyols include 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1 ,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, 1,13-tridecanediol, 1,14-tetradecanediol, 1,15-pentadecanediol, 1 , 16-hexadecanediol and the like.
  • 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, and 1,12-dodecanediol are preferable, and 1,8-octanediol, 1,10-decanediol and 1,12-dodecanediol are more preferred, and 1,10-decanediol and 1,12-dodecanediol are most preferred.
  • the polycarbonate polyol preferably contains structural units derived from linear polyols, and more preferably contains structural units derived from linear polyols having 8 or more carbon atoms.
  • the polycarbonate polyol contains a structural unit derived from a linear polyol having a relatively large number of carbon atoms, the crystallinity of the polycarbonate polyol is increased, and the setting time of the composition tends to be moderately fast. Therefore, the initial PUSH adhesive strength is increased, and the impact resistance can be easily improved.
  • Structural units derived from a linear polyol having 8 or more carbon atoms, based on the total amount of structural units derived from a polyhydroxy compound, are, for example, 75 mol% or more and 100 mol% or less, preferably 85 mol% or more and 100 mol% or less, It is more preferably 95 mol % or more and 100 mol % or less, and most preferably 100 mol %.
  • linear polyol may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the polycarbonate polyol is preferably a polycarbonate diol, and specific examples of the polycarbonate diol include compounds represented by the following formula (2).
  • R is a divalent hydrocarbon group having 4 to 16 carbon atoms, and n is an integer of 2 to 120.
  • R is preferably an aliphatic saturated hydrocarbon group.
  • R composed of an aliphatic saturated hydrocarbon group may have a chain structure or a cyclic structure, but preferably has a chain structure.
  • R in the chain structure may be linear or branched, but preferably linear.
  • n is preferably 2-25, more preferably 2-20, even more preferably 5-20, and most preferably 5-15.
  • R contained in the polycarbonate polyol may be used singly or in combination of two or more. When two or more are used in combination, R is preferably a linear saturated aliphatic hydrocarbon group having 8 or more carbon atoms.
  • the crystallinity is increased and the set time tends to be moderately fast. Therefore, the initial PUSH adhesive strength tends to increase, and the impact resistance also tends to improve.
  • R may be linear saturated aliphatic hydrocarbon groups having 8 or more carbon atoms, but some may be linear saturated aliphatic hydrocarbon groups having 8 or more carbon atoms.
  • R is, for example, 75 mol% or more and 100 mol% or less, preferably 85 mol% or more and 100 mol% or less, more preferably 95 mol% or more and 100 mol% or less, most preferably 100 mol% or less, relative to all R. It is preferably a straight-chain saturated aliphatic hydrocarbon group having 8 or more carbon atoms at a ratio of mol %.
  • the linear saturated aliphatic hydrocarbon group having 8 or more carbon atoms preferably has 12 or less carbon atoms.
  • R examples include tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group, undecamethylene group and dodecamethylene group.
  • a methylene group, a nonamethylene group, a decamethylene group, an undecamethylene group and a dodecamethylene group are preferable, an octamethylene group, a decamethylene group and a dodecamethylene group are more preferable, a decamethylene group and a dodecamethylene group are more preferable, and a decamethylene group is still more preferable.
  • polycarbonate polyol may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the polyol (a2) is preferably solid at room temperature (25°C). When the polyol (a2) is solid at room temperature, the resin composition can easily be hot-melted.
  • the number average molecular weight (Mn) of the polyol (a2) is not particularly limited, but is, for example, 1,000 or more, preferably 1,500 or more, more preferably 2,000 or more. ,000 or less, preferably 5,000 or less, more preferably 4,000 or less.
  • Polyol (a2) can have moderate crystallinity because the number average molecular weight is within the above range. Therefore, it has suitable open time and set time, high initial PUSH adhesive strength, and good impact resistance.
  • the number average molecular weight (Mn) of the polyether polycarbonate polyol (a1) and polyol (a2) can be calculated from the measured hydroxyl value (mgKOH/g) by the following procedure. Specifically, first, the hydroxyl value (mgKOH/g) of the polyol is measured according to JIS K 1557-1. Next, the amount of hydroxyl groups (mmol/g) is obtained from the measured hydroxyl value (mgKOH/g) and the formula weight of KOH. Then, after converting the obtained hydroxyl group amount (mmol/g) into "g/mol" by reciprocal, the number average molecular weight (Mn) can be obtained by multiplying by the number of functional groups (number of hydroxyl groups).
  • a urethane prepolymer can be obtained by reacting a mixture of a polyether polycarbonate polyol (a1) and a polyol (a2) with a polyisocyanate compound (B). Therefore, at least a part or all of the urethane prepolymer has both the structural unit derived from the polyether polycarbonate polyol (a1) and the structural unit derived from the polyol (a2) in one molecule.
  • the polyether polycarbonate polyol (a1) is contained in an amount of 35% by mass or more and 75% by mass or less and the polyol (a2) is contained in an amount of 25% by mass or more and 65% by mass or less.
  • the polyether polycarbonate polyol (a1) makes it easier to improve sebum resistance and impact resistance
  • the polyol (a2) makes it easier to improve the initial PUSH adhesive strength. becomes large, and it becomes easy to improve the impact resistance.
  • the content of the polyether polycarbonate polyol (a1) in the polyol (A) is more preferably 40% by mass or more, further preferably 50% by mass or more, and more preferably 70% by mass or less, and 65% by mass. More preferred are:
  • the content of the polyol (a2) in the polyol (A) is more preferably 30% by mass or more, still more preferably 35% by mass or more, more preferably 60% by mass or less, and even more preferably 50% by mass or less.
  • the polyol (A) may contain polyols (other polyols) other than the polyether polycarbonate polyol (a1) and the polyol (a2) as long as the effects of the present invention are not impaired.
  • the content of other polyols is, for example, 0% by mass or more and 20% by mass or less, preferably 0% by mass or more and 10% by mass or less, more preferably 0% by mass or more and 5% by mass or less, most preferably It is 0% by mass.
  • Polyisocyanate compound (B) Polyisocyanate compounds include aromatic polyisocyanate compounds and aliphatic polyisocyanate compounds. Examples of aromatic polyisocyanate compounds include diphenylmethane diisocyanate, liquid modified diphenylmethane diisocyanate, tolylene diisocyanate, and naphthalene-1,5-diisocyanate. The aromatic polyisocyanate compound may be a multimer of these compounds, polymeric MDI, or the like.
  • aliphatic polyisocyanate compounds include hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, norbornane diisocyanate, transcyclohexane-1,4-diisocyanate, isophorone diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, and cyclohexane diisocyanate. , bis(isocyanatomethyl)cyclohexane, dicyclohexylmethane diisocyanate, and the like. Aliphatic polyisocyanate compounds may be those obtained by increasing these.
  • a polyisocyanate compound may be used independently and may be used in combination of 2 or more type.
  • the urethane prepolymer when an aromatic polyisocyanate compound is used in the synthesis of a urethane prepolymer, the urethane prepolymer contains an aromatic isocyanate group, and when an aliphatic polyisocyanate compound is used, the urethane prepolymer contains an aliphatic isocyanate group. contains.
  • an aromatic polyisocyanate compound as the polyisocyanate compound (B), and among them, diphenylmethane diisocyanate (MDI) is more preferable.
  • the content of the urethane prepolymer in the moisture-curable hot-melt resin composition is not particularly limited, but is, for example, 30% by mass or more, preferably 50% by mass or more, more preferably 50% by mass or more, based on the total amount of the moisture-curable hot-melt resin composition. It is 70% by mass or more, more preferably 80% by mass or more.
  • the content of the urethane prepolymer may be 100% by mass or less, but is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, and more preferably 99.5% by mass or less in order to contain other components appropriately. % or less by mass is more preferable.
  • the moisture-curable hot-melt resin composition may contain a moisture curing acceleration catalyst that accelerates the moisture curing reaction of the urethane prepolymer.
  • a moisture-curing acceleration catalyst By using a moisture-curing acceleration catalyst, the moisture-curable hot-melt resin composition becomes more excellent in moisture-curing properties, making it easier to increase adhesive strength.
  • Specific examples of moisture curing acceleration catalysts include amine-based compounds and metal-based catalysts, with amine-based compounds being preferred.
  • Examples of amine compounds include compounds having a morpholine skeleton such as di(methylmorpholino) diethyl ether, 4-morpholinopropyl morpholine, bis(2-morpholinoethyl) ether, bis(2-dimethylaminoethyl) ether, 1,2- Dimethylamino group-containing amine compounds having two dimethylamino groups such as bis(dimethylamino)ethane, triethylamine, 1,4-diazabicyclo[2.2.2]octane, 2,6,7-trimethyl-1,4- diazabicyclo[2.2.2]octane and the like.
  • a morpholine skeleton such as di(methylmorpholino) diethyl ether, 4-morpholinopropyl morpholine, bis(2-morpholinoethyl) ether, bis(2-dimethylaminoethyl) ether, 1,2- Dimethylamino group-containing amine compounds having two dimethyla
  • metal-based catalysts examples include tin compounds such as di-n-butyltin dilaurate, di-n-butyltin diacetate and tin octylate; zinc compounds such as zinc octoate and zinc naphthenate; zirconium tetraacetylacetonate; copper naphthenate; Other metal compounds such as cobalt naphthenate are included.
  • the content of the moisture curing acceleration catalyst is preferably 0.01 parts by mass or more and 5 parts by mass or less, more preferably 0.05 parts by mass or more and 3 parts by mass or less, and still more preferably 0 parts by mass with respect to 100 parts by mass of the urethane prepolymer. .1 mass parts or more and 2 mass parts or less.
  • the moisture-curable hot-melt resin composition may contain a coupling agent.
  • a coupling agent By including a coupling agent in the moisture-curable hot-melt resin composition, it becomes easier to improve the adhesive force.
  • Examples of coupling agents include silane coupling agents, titanate coupling agents, zirconate coupling agents, and the like.
  • a silane coupling agent is preferable because it is excellent in the effect of improving adhesiveness.
  • mercaptan-based silane coupling agents and amine-based silane coupling agents are preferable, and amine-based silane coupling agents are more preferable, since they are excellent in the effect of improving impact resistance.
  • An amine-containing silane coupling agent having an aromatic ring is more preferred, and an aromatic amine-containing silane coupling agent having an aromatic amine is particularly preferred.
  • Examples of the amine-based silane coupling agent include N-phenyl-3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-(2-aminoethyl)aminopropyl trimethoxysilane, 3-(2-aminoethyl)aminopropyltriethoxysilane, 3-(2-aminoethyl)aminopropylmethyldimethoxysilane and the like.
  • N-phenyl-3-aminopropyltrimethoxysilane is preferred.
  • Examples of the mercaptan-based silane coupling agent include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldiethoxysilane, and the like.
  • silane coupling agents other than mercaptan-based silane coupling agents and amine-based silane coupling agents may be used.
  • Other silane coupling agents include, for example, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2-(3,4-epoxycyclohexyl ) Ethyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-(meth)acryloyloxypropyltrimethoxysilane, 3-(meth)acryloyloxypropyltriethoxysilane, 3-(meth)acryloyloxypropylmethyl dimethoxysilane, 3-(meth)acryloyloxypropylmethyldiethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-isocyanatopropyltrimeth
  • titanate-based coupling agent examples include titanium diisopropoxybis(acetylacetonate), titanium tetraacetylacetonate, and titanium diisopropoxybis(ethylacetoacetate).
  • zirconate-based coupling agent examples include zirconium tetra-normal propoxide and zirconium tetra-normal butoxide.
  • a coupling agent may be used individually by 1 type, and 2 or more types may be used in combination.
  • the content of the coupling agent is preferably 0.05 parts by mass or more and 8 parts by mass or less, more preferably 0.2 parts by mass or more and 6 parts by mass or less, and 0.5 parts by mass with respect to 100 parts by mass of the urethane prepolymer. Above 4 mass parts or less is more preferable. By setting the content of the coupling agent within these ranges, the adhesive strength can be easily improved without affecting various performances of the cured product.
  • Moisture-curable hot-melt resin compositions include thermosetting resins, photo-curable resins, moisture-curable resins, and other curable resins that are cured by heat, active energy rays, moisture, etc., in addition to the urethane prepolymers described above. It may contain, or may contain a thermoplastic resin. Further, it may contain a radically polymerizable compound having a photopolymerizable double bond such as a vinyl group or (meth)acrylic group that undergoes polymerization upon irradiation with an active energy ray. Examples of active energy rays include visible light, ultraviolet rays, infrared rays, X-rays, ⁇ rays, ⁇ rays, and ⁇ rays.
  • the moisture-curable hot-melt resin composition of the present invention may contain additives (also referred to as "other additives") in addition to the moisture-curing accelerating catalyst and coupling agent.
  • additives include plasticizers, tackifiers, colorants such as pigments and dyes, fillers, antioxidants, surfactants, flame retardants, wax particles, ionic liquids, foamed particles, expanded particles, reactive diluents and the like.
  • the moisture-curable hot-melt resin composition of the present invention has an initial PUSH adhesive strength of 3 kgf/cm 2 or more.
  • the initial PUSH adhesive strength is measured by melting the moisture-curable hot-melt resin composition and applying it to the adherend, and after a predetermined open time has passed, the moisture-curable hot-melt resin composition is applied to the adherend. It is the adhesive strength measured when the adhesive is attached to another adherend by pressure and allowed to pass for 5 minutes.
  • the open time is measured for 30 seconds or 300 seconds, and the higher numerical value is defined as the initial PUSH adhesive strength.
  • the moisture-curable hot-melt resin composition has a moderately high crystallinity and a relatively high solidification speed, so that the set time is also moderately fast, and the initial PUSH adhesive strength can be set to a certain value or more.
  • the moisture-curable hot-melt resin composition has too high crystallinity, it will solidify before bonding the adherends together, resulting in low initial PUSH adhesive strength.
  • the moisture-curable hot-melt resin composition has too low crystallinity, it will not be sufficiently solidified after 5 minutes, and the initial PUSH adhesive strength will be low.
  • the moisture-curable hot-melt resin composition has an initial PUSH adhesive strength of 3 kgf/cm 2 or more, it can also be said to be an index indicating that the urethane prepolymer has appropriate crystallinity.
  • the above-mentioned specific urethane prepolymer is used, and the initial PUSH adhesive strength is set to 3 kgf/cm 2 or more to give appropriate crystallinity to the urethane prepolymer, thereby improving impact resistance. .
  • the initial PUSH adhesive strength is preferably 4 kgf/cm 2 or higher, more preferably 5 kgf/cm 2 or higher, and even more preferably 6 kgf/cm 2 or higher, from the viewpoint of improving the initial adhesive strength and impact resistance.
  • the initial PUSH adhesive strength is not particularly limited, but may be, for example, 50 kgf/cm 2 or less, or 25 kgf/cm 2 or less. Specifically, the initial PUSH adhesive strength can be measured by the method described in Examples.
  • the initial PUSH adhesive strength can be adjusted, for example, by the components that make up the urethane prepolymer, and as described above, it becomes easier to increase the initial PUSH adhesive strength to a certain value or more by imparting moderate crystallinity to the moisture-curable hot-melt resin composition. More specifically, by using a polyol having moderate crystallinity as the polyol (a2), which is the raw material of the urethane prepolymer, the initial PUSH adhesive strength can be increased. In addition, by using a polyol having low crystallinity (preferably liquid) as the polyether polycarbonate polyol (a1), moderate flexibility can be obtained, and the initial PUSH adhesive strength can be easily increased.
  • the weight increase rate of the cured body after immersion in oleic acid is preferably 15% or less, more preferably 12% or less, further preferably 10% or less, and 8% or less. Even more preferable.
  • the cured body comes into contact with sebum, sweat, chemicals, etc., but by reducing the weight increase rate after immersion in oleic acid, the cured body can Prevents absorption of sebum. Therefore, it is possible to prevent the adhesion strength to adherends from decreasing with use, and it can be suitably used as an adhesive for portable electronic devices.
  • the weight increase rate after immersion in oleic acid was obtained by moisture-curing a moisture-curable hot-melt resin composition, as shown in Examples described later. It is the weight increase rate when immersed in acid for 3 days.
  • the moisture-curable hot-melt resin composition of the present invention is a measurement sample obtained by bonding a pair of adherends via the moisture-curable hot-melt resin composition and then moisture-curing the resin composition.
  • the number of times of endurance when an impact resistance test is carried out is preferably 50 times or more, more preferably 100 times or more, and even more preferably 150 times or more.
  • the impact resistance is improved, and even if the electronic device is dropped during use, it is possible to prevent the parts adhered by the resin composition from falling off when dropped.
  • a DuPont drop impact tester is used to repeatedly drop a 200 g stainless steel weight from a height of 150 mm onto one adherend until the other adherend is peeled off.
  • the durability is defined as the number of times the weight is dropped before one of the adherends peels off.
  • a urethane prepolymer is prepared.
  • the urethane prepolymer can be obtained by reacting the polyol (A) with the polyisocyanate compound (B). Then, if necessary, the urethane prepolymer is added with a moisture curing acceleration catalyst, a coupling agent, and other components other than these, and mixed with a known mixer to obtain a moisture-curable hot-melt resin composition.
  • mixers include, but are not limited to, homodispers, homomixers, universal mixers, planetary mixers, planetary stirrers, kneaders, and three rolls.
  • the moisture-curable hot-melt resin composition of the present invention is cured and used as a cured product.
  • the moisture-curable hot-melt resin composition of the present invention may be used, for example, as an adhesive, and the cured moisture-curable hot-melt resin composition may bond, for example, a pair of adherends.
  • the moisture-curable hot-melt resin composition of the present invention is, for example, heated until it melts, applied to one adherend in a molten state, and then applied through the moisture-curable hot-melt resin composition. Then, the other adherend is superimposed on the one adherend. As a result, the adherends are temporarily fixed by the cooled and solidified moisture-curable hot-melt resin composition.
  • the moisture-curable hot-melt resin composition may be melted by heating to, for example, 60° C. or higher and 130° C. or lower, preferably 80° C. or higher and 110° C. or lower.
  • the moisture-curable hot-melt resin composition is, for example, left in the atmosphere to be cured by moisture, and the adherends are separated from each other by the cured moisture-curable hot-melt resin composition from the time of temporary fixing. It is preferable that the main fixing is performed with a high adhesive strength (final adhesive strength).
  • the moisture-curable hot-melt resin composition of the present invention is preferably used, for example, as an adhesive for electronic parts.
  • the adherend is not particularly limited, but is preferably various electronic components that constitute electronic devices, more preferably electronic components that constitute portable electronic devices.
  • the material of the adherend may be metal, glass, plastic, or the like.
  • the shape of the adherend is not particularly limited, and examples thereof include film-like, sheet-like, plate-like, panel-like, tray-like, rod-like, box-like, and housing-like shapes.
  • portable electronic devices include, but are not limited to, mobile phones such as smartphones, digital cameras, wearable terminals, portable game devices, tablet computers, notebook computers, action cameras, and the like, among which smartphones and wearable terminals. is preferred.
  • Electronic parts generally have a substrate, therefore, electronic devices such as portable electronic devices in which the moisture-curable hot-melt resin composition of the present invention is used are It is preferable to have a cured body and a substrate. Various electronic circuits and the like are generally provided on the substrate.
  • substrates may be used as adherends, and the substrates may be bonded together via the moisture-curable hot-melt resin composition of the present invention. It may be joined to another electronic component (for example, a housing) of the electronic device through the wire.
  • the moisture-curable hot-melt resin composition of the present invention may be used, for example, to bond substrates together to obtain assembled parts inside electronic devices.
  • the assembly part thus obtained has a first substrate, a second substrate, and the cured product of the present invention, wherein at least a portion of the first substrate is at least a portion of the second substrate. is joined through a hardened body.
  • the moisture-curable hot-melt resin composition of the present invention may also be used for fixing display members.
  • the electronic component using the moisture-curable hot-melt resin composition may be a component constituting a display member.
  • the display member is a member used for image display and the like, and includes, for example, a liquid crystal panel, an organic EL panel, an LED display panel, a segment display panel, a plasma display panel, a backlight panel for display devices, and the like.
  • the moisture-curable hot-melt resin composition of the present invention may be used to adhere a display member to a member other than the display member (for example, a housing), or may be used to adhere members constituting the display member to each other. You may let
  • a first substrate 11 having a size of 90 mm ⁇ 50 mm and a thickness of 5 mm and a circular hole 11A having a diameter of 12 mm in the center and a second substrate 12 having a size of 50 mm ⁇ 50 mm and a thickness of 5 mm were prepared.
  • Both the first substrate 11 and the second substrate 12 were polycarbonate plates.
  • Spacers 15A and 15B were attached to both side ends of the second substrate 12 (see FIG. 1(b)).
  • the spacers 15A and 15B were tapes having a width of 3 mm, a length of 50 mm and a thickness of 0.15 mm.
  • a single-sided adhesive tape was used as the tape for the spacers 15A and 15B.
  • Moisture-curable hot-melt resin composition 10 heated to 100° C. is applied so as to surround hole 11A of first substrate 11 using a dispenser (manufactured by Musashi Engineering Co., Ltd., “Shotmaster 200DS”) at a coating speed of 12 mm/ s, a width of 1 mm ⁇ 0.2 mm, a height of 0.15 mm ⁇ 0.05 mm, and a circular shape of ⁇ 25 mm.
  • the center positions of the first and second substrates 11 and 12 are aligned, and the moisture-curable hot melt resin
  • a second substrate 12 is overlaid on the first substrate 11 with the composition 10 interposed therebetween, and a weight of 250 g is allowed to stand still on the second substrate 12 for 3 minutes to form the first and second substrates.
  • the substrates 11 and 12 of were pressed together with the moisture-curable hot-melt resin composition 10 interposed therebetween to obtain a sample 13 for measurement.
  • the distance between the first and second substrates 11 and 12 was kept at 0.15 mm by the spacers 15A and 15B.
  • a weight of 250 g was removed from the measurement sample 13 and left at 25° C.
  • the measurement sample 13 was placed so that the first substrate 11 was on the upper side and the second substrate 12 was on the lower side, and the first substrate 11 was supported by a jig made of stainless steel.
  • a rod-shaped member 14 having a circular cross section of 10 mm was inserted into the hole 11A.
  • the second substrate 12 is pushed vertically downward at a speed of 10 mm/min by the bar member 14, and the stress when the second substrate 12 is peeled off from the first substrate 11 is
  • the initial PUSH adhesive strength was measured.
  • the initial PUSH adhesive strength was measured after 5 minutes from the start of pressure bonding by adjusting the time of standing at 25° C. and 50% RH. In addition, from application to measurement of the initial PUSH adhesive strength, the conditions were 25° C. and 50% RH.
  • the moisture-curable hot melt resin composition is filled in a 30cc syringe ("PSY-30F” manufactured by Musashi Engineering Co., Ltd.), and a needle with an inner diameter of 0.66 mm (manufactured by Musashi Engineering Co., Ltd.) is attached to the tip of the syringe. , “PN-20G-A”).
  • PSY-30F manufactured by Musashi Engineering Co., Ltd.
  • a needle with an inner diameter of 0.66 mm manufactured by Musashi Engineering Co., Ltd.
  • the moisture-curable hot-melt resin composition was discharged from a syringe by pressing with air pressure, and an air pressure control unit "ML-5000XII” manufactured by Musashi Engineering Co., Ltd. was used.
  • the discharge amount of the moisture-curable hot-melt resin composition was adjusted by varying the air pressure between 0.01 and 0.30 MPa.
  • the measurement sample 13 was left in an environment of 25° C. and 50% RH for 72 hours. After being left for 72 hours, the first substrate 11 was arranged on the upper side and the second substrate 12 was arranged on the lower side, and then the first substrate 11 was supported by a jig made of stainless steel.
  • an aluminum plate was used as the first substrate 11 and a tempered glass plate was used as the second substrate 12 .
  • the aluminum plate had the same dimensions as the polycarbonate plate used in the initial PUSH adhesion measurement, and the tempered glass plate had the same dimensions as the polycarbonate plate except that the thickness was 1.5 mm.
  • the aluminum plate used was pretreated as follows. The process of washing with a 25 mmol/L aqueous sodium hydroxide solution for 1 minute and then rinsing with distilled water for 30 seconds was repeated three times. Thereafter, the moisture on the surface was wiped off, followed by wiping the surface with acetone, air drying, and plasma treatment. The bonding was performed within 30 minutes after the plasma treatment.
  • the plasma treatment conditions were as follows. Nitrogen gas flow rate: 200L/min Clean dry air (CDA) flow rate: 1000mL/min Voltage: 255V Current: 0.63A Plasma head speed: 250mm/min Distance between plasma head and substrate: 3 mm Apparatus: "AP-T03" manufactured by Sekisui Chemical Co., Ltd.
  • the shot die 16 is a rod-shaped member having a head 16B at one end.
  • a cylindrical large-diameter portion 16D having a length of 65 mm is provided on the 16B side, and the large-diameter portion 16D and the small-diameter portion 16C are connected via a connecting portion 16E having a length of 3 mm.
  • the connecting portion 16E has a tapered shape with a diameter gradually decreasing from the large diameter portion 16D toward the small diameter portion 16C.
  • the head portion 16B has a cylindrical base portion 16F with a diameter of 30 mm and a height of 15 mm connected to the large diameter portion 16D. It has a tip 16G.
  • the shooting die 16 inserts the large-diameter portion 16D of the rod-shaped portion 16A into the support hole (not shown) of the DuPont drop impact tester so as to stand on the center of the second substrate 12. Then, the small diameter portion 16C of the rod-shaped portion 16A was inserted into the hole 11A of the first substrate 11.
  • a 200 g stainless steel weight 17 is repeatedly dropped vertically downward onto the tip 16G of the head 16B from a position where the height of the head 16B with respect to the tip 16G is 150 mm. The number of times the weight fell until the second substrate 12 peeled off due to the impact of the weight 17 was evaluated as the number of durability. The higher the number of times of durability, the higher the impact resistance.
  • a moisture-curable hot-melt resin composition melted by heating to 100° C. was poured into a Teflon (registered trademark) mold having a width of 6 mm, a length of 35 mm, and a thickness of 0.5 mm, and cured to obtain a cured film. Curing of the moisture-curable hot-melt resin composition was carried out by allowing it to stand at 25° C. and 50% RH for 72 hours for moisture curing. 16 mL of oleic acid (reagent, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was placed in a glass container (manufactured by Maruem Co., Ltd., screw tube No.
  • Weight increase rate [%] (weight after immersion - weight before immersion) x 100 / weight before immersion
  • PEPCD polyether polycarbonate diol
  • PED polytetramethylene glycol
  • PEsD1 Toyokuni Oil Co., Ltd., "HS 2H-351A”, polyol: 1,6-hexanediol (HD), polycarboxylic acid: adipic acid (AA), solid at room temperature
  • PEsD2 Toyokuni Oil Co., Ltd., "HS 2H- 200S”, polyol: 1,6-hexanediol (HD), polycarboxylic acid: sebacic acid (SA), solid at room temperature PEsD3: manufactured by Toyokuni Oil Co., Ltd., "HS 2H-458T”, polyol: 1,6-hexanediol (HD), polycarboxylic acid: copolymer of adipic acid (AA) and TPA (terephthalic acid), solid at room temperature PEsD4: manufactured by Toyokuni Oil Co., Ltd., "HS 2H-201AP”, polyol: 1,6-hexanediol ( HD),
  • PCD1 Ube Industries, Ltd., "Etanacoll UH-200", polycarbonate diol derived from 1,6-hexanediol (HD), solid at room temperature
  • PCD2 Mitsubishi Chemical Corporation
  • BENEBiOL NL2000D 1,10-decanediol ( 1,10-DDO)-derived polycarbonate diol, solid, solid at room temperature
  • PCD3 Mitsubishi Chemical Corporation, "BENEBiOL NL2010DB", 1,4-butanediol (BD), and 1,10-decanediol (1,10-DDO )-derived copolymerized polycarbonate diol, solid at room temperature
  • ⁇ Polyisocyanate compound > "Sumidur 44S41” manufactured by Sumika Covestro Co., Ltd., diphenylmethane diisocyanate (MDI) ⁇ Coupling agent> Shin-Etsu Chemical Co., Ltd., "KBM-573", N-phenyl-3-aminopropyltrimethoxysilane ⁇ moisture curing catalyst> "U-cat660M”, bis(2-morpholinoethyl) ether manufactured by San-Apro Co., Ltd.
  • Example 1 60 parts by mass of PEPCD as polyol (A) and 40 parts by mass of PEsD1 were placed in a 500 mL separable flask. The inside of the flask was stirred under vacuum (20 mmHg or less) at 110° C. until the water content became 200 ppm or less, and the mixture was dehydrated and mixed. After that, the flask was filled with nitrogen to normal pressure, and 22 parts by mass of diphenylmethane diisocyanate as the polyisocyanate compound (B) was put into the flask and stirred at 80° C. for 3 hours to react to obtain an isocyanate group-containing urethane prepolymer.
  • a coupling agent and a moisture curing catalyst were added according to the formulation shown in Table 1, and the mixture was stirred at a temperature of 80°C with a planetary stirrer (manufactured by THINKY Co., Ltd., "Awatori Mixer”). to obtain a moisture-curable hot-melt resin composition of Example 1.
  • Example 1 was carried out in the same manner as in Example 1, except that the raw materials and amounts of the polyol used in synthesizing the urethane prepolymer and the amount of the polyisocyanate compound used were changed as shown in Table 1.
  • Mn is the number average molecular weight obtained from the hydroxyl group amount (mmol/g) obtained from the hydroxyl value and the number of functional groups.
  • polyisocyanate compounds it is the molecular weight obtained from NCO% and the number of functional groups. be.
  • the PUSH strength 5 minutes after the start of crimping is the higher numerical value among the results measured with an open time of 30 seconds or 300 seconds. The values in parentheses indicate the open time (seconds) when the indicated values were measured.
  • the moisture-curable hot melt resin composition of each example contains a polyether polycarbonate polyol (a1) and a urethane prepolymer obtained from a polyol having either a polyester polyol or a polycarbonate polyol. and the initial PUSH adhesive strength was a certain value or more. Therefore, both impact resistance and sebum resistance were excellent.
  • the moisture-curable hot-melt resin compositions of Comparative Examples 1 and 4 contain a polyether polycarbonate polyol (a1) and a urethane prepolymer obtained from a polyol having either a polyester polyol or a polycarbonate polyol.
  • the initial PUSH adhesive strength was low, the impact resistance could not be improved.
  • the polyether polycarbonate polyol (a1) was not used in Comparative Example 2
  • the sebum resistance could not be improved.
  • the polyether polycarbonate polyol (a1) was not used in Comparative Example 3, the impact resistance could not be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

This moisture-curable hot-melt resin composition is a reactant of a polyol (A) and a polyisocyanate compound (B), and contains a urethane prepolymer having an isocyanate group. The polyol (A) includes a polyether polycarbonate polyol (a1) and a polyol (a2) that is different from the polyether polycarbonate polyol (a1). The polyol (a2) is at least one selected from the group consisting of polyester polyols and polycarbonate polyols. The moisture-curable hot-melt resin composition has an initial PUSH adhesive strength of 3 kgf/cm2 or more.

Description

湿気硬化型ホットメルト樹脂組成物、電子部品用接着剤及び硬化体Moisture-curable hot-melt resin composition, adhesive for electronic parts and cured product
 本発明は、湿気硬化型ホットメルト樹脂組成物、湿気硬化型ホットメルト樹脂組成物からなる電子部品用接着剤、及び湿気硬化型ホットメルト樹脂組成物の硬化体に関する。 The present invention relates to a moisture-curable hot-melt resin composition, an adhesive for electronic parts comprising the moisture-curable hot-melt resin composition, and a cured body of the moisture-curable hot-melt resin composition.
 従来、スマートフォンやウェアラブルデバイス等のスマートデバイスのパーツ同士の接着や組み立てには両面テープが用いられることが多かった。しかしながら、近年、スマートデバイスの小型化や曲面化に伴い接着面積が狭くなったり、複雑な接着面へ対応したりするために接着剤が使用されるようになっている。スマートデバイスなどの携帯電子機器は、携帯して持ち歩くため、携帯時又は利用時に誤って落としてしまうことがある。そのため、デバイスの接着部分には、落下時の衝撃で貼り合せたパーツ同士が脱落しないように耐衝撃性が求められている。 In the past, double-sided tape was often used to glue and assemble parts of smart devices such as smartphones and wearable devices. However, in recent years, with the miniaturization and curved surfaces of smart devices, adhesives have come to be used in order to cope with narrow bonding areas and complicated bonding surfaces. Since mobile electronic devices such as smart devices are carried around, they may be accidentally dropped while being carried or used. Therefore, the bonded part of the device is required to have impact resistance so that the bonded parts do not fall off due to the impact when dropped.
 例えば、特許文献1には、ポリエステルポリオール(A)及びポリエーテルポリオール(B)とイソシアネート(C)を反応させて得られるイソシアネート基を有するウレタンプレポリマー(i)、及びウレタンプレポリマー(i)と非反応の成分(ii)を含有する湿気硬化型ホットメルト接着剤組成物が開示されている。特許文献2では、ポリエステルポリオール、ポリエーテルポリオール及びポリブタジエンポリオールを含有するポリオール成分とイソシアネート成分との反応物である、イソシアネート基を有するウレタンプレポリマーと、酸化防止剤とを含む湿気硬化型ホットメルト接着剤組成物が開示されている。特許文献1、2において、湿気硬化型ホットメルト接着剤組成物は、耐衝撃性に優れることが記載されている。 For example, Patent Document 1 discloses a urethane prepolymer (i) having an isocyanate group obtained by reacting a polyester polyol (A) and a polyether polyol (B) with an isocyanate (C), and a urethane prepolymer (i) and Moisture curable hot melt adhesive compositions containing non-reactive component (ii) are disclosed. In Patent Document 2, a moisture-curable hot melt adhesive containing a urethane prepolymer having an isocyanate group, which is a reaction product of a polyol component containing a polyester polyol, a polyether polyol and a polybutadiene polyol and an isocyanate component, and an antioxidant. Agent compositions are disclosed. Patent Documents 1 and 2 describe that moisture-curable hot-melt adhesive compositions have excellent impact resistance.
特許第6778379号公報Japanese Patent No. 6778379 特許第6947172号公報Japanese Patent No. 6947172
 ところで、人体に触れる機会が多いスマートデバイスは、皮脂、汗、さらに化粧品や日焼け止めなどのスキンケア商品に含まれる化学薬品などに接触することが多く、製品の耐久性を高める観点から、電子部品用接着剤に耐皮脂性が求められることがある。しかし、特許文献1,2に記載の接着剤では耐衝撃性と耐皮脂性を両立することが困難である。 By the way, smart devices often come into contact with the human body, and often come into contact with sebum, sweat, and chemicals contained in skin care products such as cosmetics and sunscreens. Adhesives may be required to be resistant to sebum. However, with the adhesives described in Patent Documents 1 and 2, it is difficult to achieve both impact resistance and sebum resistance.
 そこで、本発明は、優れた耐衝撃性と耐皮脂性とを両立することができる湿気硬化型ホットメルト樹脂組成物、並びにこれを用いた電子部品用接着剤及び硬化体を提供することを課題とする。 Accordingly, an object of the present invention is to provide a moisture-curable hot-melt resin composition capable of achieving both excellent impact resistance and sebum resistance, and an adhesive for electronic parts and a cured product using the same. and
 本発明者は、鋭意検討の結果、特定の構造を有するウレタンプレポリマーを使用し、かつ初期PUSH接着力を一定値以上とすることで上記課題を解決できることを見出し、以下の本発明を完成させた。本発明は、以下の[1]~[19]を提供する。
[1]ポリオール(A)とポリイソシアネート化合物(B)との反応物であり、かつイソシアネート基を有するウレタンプレポリマーを含有し、
 前記ポリオール(A)が、ポリエーテルポリカーボネートポリオール(a1)と、該ポリエーテルポリカーボネートポリオール(a1)とは異なるポリオール(a2)とを含み、前記ポリオール(a2)が、ポリエステルポリオール及びポリカーボネートポリオールからなる群から選ばれる少なくともいずれかであり、
 初期PUSH接着力が3kgf/cm以上である、湿気硬化型ホットメルト樹脂組成物。
[2]ポリエーテルポリカーボネートポリオール(a1)が、直鎖かつ炭素数3~8のアルキレン基を有する、上記[1]に記載の湿気硬化型ホットメルト樹脂組成物。
[3]ポリエーテルポリカーボネートポリオール(a1)が25℃で液状であり、ポリオール(a2)が25℃で固体である、上記[1]又は[2]に記載の湿気硬化型ホットメルト樹脂組成物。
[4]前記ポリエーテルポリオールが、ポリカルボン酸とポリオールとの反応により得られるポリエステルポリオール、及びε-カプロラクトンを開環重合して得られるポリ-ε-カプロラクトンポリオールからなる群から選択されるいずれかである、上記[1]~[3]のいずれか1項に記載の湿気硬化型ホットメルト樹脂組成物。
[5]前記ポリエステルポリオールが、直鎖のポリオールに由来する構成単位と直鎖のポリカルボン酸に由来する構成単位を含む上記[1]~[4]のいずれか1項に記載の湿気硬化型ホットメルト樹脂組成物。
[6]前記直鎖のポリオールが両末端に水酸基を有する炭素数3~12の脂肪族ポリオールであり、直鎖のポリカルボン酸が両末端にカルボキシル基を有する炭素数4~12の脂肪族カルボン酸である上記[5]に記載の湿気硬化型ホットメルト樹脂組成物。
[7]前記ポリエステルポリオールにおいて、前記直鎖のポリオールが1,6-ヘキサンジオールであり、かつ前記直鎖ポリカルボン酸がアジピン酸及びセバシン酸からなる群から選択される少なくとも1つである上記[5]に記載の湿気硬化型ホットメルト樹脂組成物。
[8]前記ポリカーボネートポリオールが、炭素数8以上の直鎖ポリオールに由来する構成単位を含む、上記[1]~[7]のいずれか1項に記載の湿気硬化型ホットメルト樹脂組成物。
[9]前記ポリカーボネートポリオールにおいて、前記炭素数8以上の直鎖ポリオールに由来する構成単位が、ポリヒドロキシ化合物由来の構成単位全量基準で、75モル%以上100モル%以下である、上記[8]に記載の湿気硬化型ホットメルト樹脂組成物。
[10]前記ポリカーボネートポリオールは、エーテル結合を有しないポリヒドロキシ化合物に由来する構成単位が、カーボネート結合により連結された構造を有する上記[1]~[9]のいずれか1項に記載の湿気硬化型ホットメルト樹脂組成物。
[11]前記ポリオール(A)において、ポリエーテルポリカーボネートポリオール(a1)が40質量%以上70質量%以下、ポリオール(a2)が30質量%以上60質量%以下含有される、上記[1]~[10]のいずれか1項に記載の湿気硬化型ホットメルト樹脂組成物。
[12]前記ポリオール(a2)の数平均分子量が2,000以上4,000以下である上記[1]~[11]のいずれか1項に記載の湿気硬化型ホットメルト樹脂組成物。
[13]さらにシランカップリング剤を含有する、上記[1]~[12]のいずれか1項に記載の湿気硬化型ホットメルト樹脂組成物。
[14]シランカップリング剤が芳香族アミン系シランカップリング剤を含有する、上記[13]に記載の湿気硬化型ホットメルト樹脂組成物。
[15]前記ウレタンプレポリマーの含有量が、湿気硬化型ホットメルト樹脂組成物全量基準で、30質量%以上100質量%以下である、上記[1]~[14]のいずれか1項に記載の湿気硬化型ホットメルト樹脂組成物。
[16]上記[1]~[15]のいずれか1項に記載の湿気硬化型ホットメルト樹脂組成物からなる、電子部品用接着剤。
[17]上記[1]~[15]のいずれか1項に記載の湿気硬化型ホットメルト樹脂組成物の硬化体。
[18]電子部品に対する上記[1]~[15]のいずれか1項に記載の湿気硬化型ホットメルト樹脂組成物の使用。
[19]電子部品が表示部材を構成する部品である上記[18]に記載の湿気硬化型ホットメルト樹脂組成物の使用。
As a result of intensive studies, the present inventor found that the above problems can be solved by using a urethane prepolymer having a specific structure and setting the initial PUSH adhesive strength to a certain value or more, and completed the following invention. rice field. The present invention provides the following [1] to [19].
[1] containing a urethane prepolymer that is a reaction product of a polyol (A) and a polyisocyanate compound (B) and has an isocyanate group,
The polyol (A) contains a polyether polycarbonate polyol (a1) and a polyol (a2) different from the polyether polycarbonate polyol (a1), and the polyol (a2) is a group consisting of a polyester polyol and a polycarbonate polyol. is at least one selected from
A moisture-curable hot-melt resin composition having an initial PUSH adhesive strength of 3 kgf/cm 2 or more.
[2] The moisture-curable hot-melt resin composition according to [1] above, wherein the polyether polycarbonate polyol (a1) has a straight-chain alkylene group with 3 to 8 carbon atoms.
[3] The moisture-curable hot-melt resin composition according to [1] or [2] above, wherein the polyether polycarbonate polyol (a1) is liquid at 25°C and the polyol (a2) is solid at 25°C.
[4] Any one selected from the group consisting of a polyester polyol obtained by the reaction of a polycarboxylic acid and a polyol, and a poly-ε-caprolactone polyol obtained by ring-opening polymerization of ε-caprolactone. The moisture-curable hot-melt resin composition according to any one of [1] to [3] above.
[5] The moisture-curable type according to any one of the above [1] to [4], wherein the polyester polyol contains a structural unit derived from a linear polyol and a structural unit derived from a linear polycarboxylic acid. A hot-melt resin composition.
[6] The linear polyol is an aliphatic polyol having 3 to 12 carbon atoms and having hydroxyl groups at both ends, and the linear polycarboxylic acid is an aliphatic carboxylic acid having 4 to 12 carbon atoms and having carboxyl groups at both ends. The moisture-curable hot-melt resin composition according to [5] above, which is an acid.
[7] In the polyester polyol, the linear polyol is 1,6-hexanediol, and the linear polycarboxylic acid is at least one selected from the group consisting of adipic acid and sebacic acid [ 5], the moisture-curable hot-melt resin composition.
[8] The moisture-curable hot-melt resin composition according to any one of [1] to [7] above, wherein the polycarbonate polyol contains structural units derived from a linear polyol having 8 or more carbon atoms.
[9] In the polycarbonate polyol, the constituent units derived from the linear polyol having 8 or more carbon atoms are 75 mol% or more and 100 mol% or less based on the total amount of constituent units derived from the polyhydroxy compound, above [8] Moisture-curable hot-melt resin composition according to .
[10] The moisture-curable according to any one of [1] to [9] above, wherein the polycarbonate polyol has a structure in which structural units derived from a polyhydroxy compound having no ether bond are linked by a carbonate bond. type hot melt resin composition.
[11] The above [1] to [1] to [1], wherein the polyether polycarbonate polyol (a1) is 40% by mass or more and 70% by mass or less and the polyol (a2) is 30% by mass or more and 60% by mass or less in the polyol (A). 10], the moisture-curable hot-melt resin composition according to any one of items.
[12] The moisture-curable hot-melt resin composition according to any one of [1] to [11] above, wherein the polyol (a2) has a number average molecular weight of 2,000 or more and 4,000 or less.
[13] The moisture-curable hot-melt resin composition according to any one of [1] to [12] above, further comprising a silane coupling agent.
[14] The moisture-curable hot-melt resin composition according to [13] above, wherein the silane coupling agent contains an aromatic amine-based silane coupling agent.
[15] Any one of [1] to [14] above, wherein the content of the urethane prepolymer is 30% by mass or more and 100% by mass or less based on the total amount of the moisture-curable hot-melt resin composition. moisture-curable hot-melt resin composition.
[16] An adhesive for electronic parts, comprising the moisture-curable hot-melt resin composition according to any one of [1] to [15] above.
[17] A cured body of the moisture-curable hot-melt resin composition according to any one of [1] to [15] above.
[18] Use of the moisture-curable hot-melt resin composition according to any one of [1] to [15] above for electronic parts.
[19] Use of the moisture-curable hot-melt resin composition according to the above [18], wherein the electronic component is a component constituting a display member.
 本発明によれば、優れた耐衝撃性と耐皮脂性とを両立する湿気硬化型ホットメルト樹脂組成物、並びにこれを用いた電子部品用接着剤及び硬化体を提供することができる。 According to the present invention, it is possible to provide a moisture-curable hot-melt resin composition that achieves both excellent impact resistance and sebum resistance, and an adhesive for electronic parts and a cured product using the composition.
初期PUSH接着力の評価方法を示す概略図であり、図1(a)が平面図、図1(b)が側面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows the evaluation method of initial PUSH adhesive strength, Fig.1 (a) is a top view, FIG.1(b) is a side view. 耐衝撃性の評価方法を示す概略側面図である。It is a schematic side view which shows the impact-resistant evaluation method. 耐衝撃性で使用する撃ち型の概略斜視図である。1 is a schematic perspective view of a shooting die used in impact resistance; FIG.
 以下、本発明について実施形態を参照しつつ説明する。
<ウレタンプレポリマー>
 本発明の湿気硬化型ホットメルト樹脂組成物は、ウレタンプレポリマーを含有する。ウレタンプレポリマーは、ポリオール(A)とポリイソシアネート化合物(B)との反応物であり、イソシアネート基を有する。
Hereinafter, the present invention will be described with reference to embodiments.
<Urethane prepolymer>
The moisture-curable hot-melt resin composition of the present invention contains a urethane prepolymer. A urethane prepolymer is a reaction product of a polyol (A) and a polyisocyanate compound (B) and has an isocyanate group.
 ウレタンプレポリマーは、イソシアネート基を含有することで、樹脂組成物に湿気硬化性を付与できる。ウレタンプレポリマーに含有されるイソシアネート基は、特に制限はなく、芳香族イソシアネート基でもよいし、脂肪族イソシアネート基でもよいし、これらを併用してもよい。これらイソシアネート基を併用する場合、ウレタンプレポリマーとしては、芳香族イソシアネート基を有するウレタンプレポリマーと、脂肪族イソシアネート基を有するウレタンプレポリマーを併用してもよいし、ウレタンプレポリマーは、一分子中に芳香族イソシアネート基及び脂肪族イソシアネート基の両方を有する化合物であってもよい。
 なお、芳香族イソシアネート基は、芳香族環に直接結合したイソシアネート基であり、脂肪族イソシアネート基は、イソシアネート基が脂肪族の炭素原子に直接結合したイソシアネート基である。芳香族イソシアネート基は、芳香族イソシアネート化合物由来のイソシアネート基であり、芳香族イソシアネート化合物の詳細は後述するとおりである。脂肪族イソシアネート基は、脂肪族イソシアネート化合物由来のイソシアネート基であり、脂肪族イソシアネート化合物の詳細は後述するとおりである。
The urethane prepolymer can impart moisture curability to the resin composition by containing an isocyanate group. The isocyanate group contained in the urethane prepolymer is not particularly limited, and may be an aromatic isocyanate group, an aliphatic isocyanate group, or a combination thereof. When these isocyanate groups are used in combination, as the urethane prepolymer, a urethane prepolymer having an aromatic isocyanate group and a urethane prepolymer having an aliphatic isocyanate group may be used in combination. may be a compound having both an aromatic isocyanate group and an aliphatic isocyanate group.
The aromatic isocyanate group is an isocyanate group directly bonded to an aromatic ring, and the aliphatic isocyanate group is an isocyanate group directly bonded to an aliphatic carbon atom. The aromatic isocyanate group is an isocyanate group derived from an aromatic isocyanate compound, and the details of the aromatic isocyanate compound are as described later. The aliphatic isocyanate group is an isocyanate group derived from an aliphatic isocyanate compound, and the details of the aliphatic isocyanate compound are as described later.
 ウレタンプレポリマーは、芳香族イソシアネート基を含有することが好ましい。ウレタンプレポリマーが芳香族イソシアネート基を含有すると、湿気硬化型ホットメルト樹脂組成物の湿気硬化後の接着力(最終接着力)を向上させやすくなる。また、湿気硬化型ホットメルト樹脂組成物の硬化体の耐皮脂性が向上して、皮脂分に接触した後でも接着力を高い値に維持しやすくなる。
 ウレタンプレポリマーにおけるイソシアネート基の数は、特に限定されないが、一分子中に2個以上含有することが好ましく、ウレタンプレポリマーの両末端にイソシアネート基を含有することが好ましい。
The urethane prepolymer preferably contains aromatic isocyanate groups. When the urethane prepolymer contains an aromatic isocyanate group, it becomes easier to improve the adhesive strength (final adhesive strength) of the moisture-curable hot-melt resin composition after moisture curing. In addition, the resistance to sebum of the cured body of the moisture-curable hot-melt resin composition is improved, and the adhesive force can be easily maintained at a high value even after coming into contact with sebum.
The number of isocyanate groups in the urethane prepolymer is not particularly limited, but preferably two or more per molecule, and isocyanate groups at both ends of the urethane prepolymer are preferred.
 本発明のウレタンプレポリマーは、ポリオール(A)とポリイソシアネート化合物(B)とを反応することで得ることができる。ポリオール(A)は、水酸基を2個以上有する化合物であり、ポリイソシアネート化合物(B)は2個以上のイソシアネート基を有する化合物である。
 ポリオール化合物(A)とポリイソシアネート化合物(B)との反応は、例えば、ポリオール中の水酸基(OH)とポリイソシアネート化合物中のイソシアネート基(NCO)のモル比で[NCO]/[OH]=1.5~2.5の範囲で行われる。
The urethane prepolymer of the present invention can be obtained by reacting the polyol (A) and the polyisocyanate compound (B). Polyol (A) is a compound having two or more hydroxyl groups, and polyisocyanate compound (B) is a compound having two or more isocyanate groups.
In the reaction between the polyol compound (A) and the polyisocyanate compound (B), for example, the molar ratio of the hydroxyl group (OH) in the polyol and the isocyanate group (NCO) in the polyisocyanate compound is [NCO]/[OH]=1. .5 to 2.5.
[ポリオール(A)]
 本発明において、ポリオール(A)は、ポリエーテルポリカーボネートポリオール(a1)と、ポリエーテルポリカーボネートポリオール(a1)とは異なるポリオール(a2)とを含む。ここで、ポリオール(a2)は、ポリエステルポリオール及びポリカーボネートポリオールからなる群から選ばれる少なくともいずれかである。本発明では、ウレタンプレポリマーにおけるポリオール(A)として、以上の特定のものを使用することで、優れた耐衝撃性と耐皮脂性とを両立することができる。以下、各成分について詳細に説明する。
[Polyol (A)]
In the present invention, the polyol (A) includes a polyether polycarbonate polyol (a1) and a polyol (a2) different from the polyether polycarbonate polyol (a1). Here, the polyol (a2) is at least one selected from the group consisting of polyester polyols and polycarbonate polyols. In the present invention, by using the above specific polyol (A) in the urethane prepolymer, both excellent impact resistance and sebum resistance can be achieved. Each component will be described in detail below.
(ポリエーテルポリカーボネートポリオール(a1))
 ポリエーテルポリカーボネートポリオール(a1)は、ポリエーテル骨格と、カーボネート結合を有する。ポリエーテルポリカーボネートポリオール(a1)は、分子中に水酸基を2つ以上有する化合物である。また、ポリエーテルポリカーボネートポリオール(a1)は、分子中にカーボネート結合を2つ以上有することが好ましい。本発明では、ポリオール(A)として、ポリエーテルポリカーボネートポリオール(a1)を使用することで、耐皮脂性を優れたものにしやすくなる。
(Polyether polycarbonate polyol (a1))
Polyether polycarbonate polyol (a1) has a polyether skeleton and a carbonate bond. Polyether polycarbonate polyol (a1) is a compound having two or more hydroxyl groups in the molecule. Moreover, the polyether polycarbonate polyol (a1) preferably has two or more carbonate bonds in the molecule. In the present invention, by using the polyether polycarbonate polyol (a1) as the polyol (A), it becomes easier to achieve excellent sebum resistance.
 ポリエーテルポリカーボネートポリオール(a1)において、ポリエーテル骨格は、典型的には二価の炭化水素基がエーテル結合で連結された構造を有する。二価の炭化水素基は、特に限定されないが、例えば炭素数2~12、好ましくは炭素数3~8である。また、二価の炭化水素基は、脂肪族炭化水素基でもよいし、芳香環を有する芳香族炭化水素基でもよいが、脂肪族炭化水素基が好ましい。脂肪族炭化水素基は、直鎖であってもよいし、分岐を有してもよいし、脂環構造を有してもよいが、直鎖状であることが好ましい。 In the polyether polycarbonate polyol (a1), the polyether skeleton typically has a structure in which divalent hydrocarbon groups are linked by ether bonds. Although the divalent hydrocarbon group is not particularly limited, it has, for example, 2 to 12 carbon atoms, preferably 3 to 8 carbon atoms. The divalent hydrocarbon group may be either an aliphatic hydrocarbon group or an aromatic hydrocarbon group having an aromatic ring, but an aliphatic hydrocarbon group is preferred. The aliphatic hydrocarbon group may be linear, branched, or have an alicyclic structure, but is preferably linear.
 また、ポリエーテルポリカーボネートポリオール(a1)は、直鎖かつ炭素数3~8のアルキレン基を有することが好ましい。ポリエーテルポリカーボネートポリオール(a1)は、直鎖で炭素数3~8のアルキレン基を有することで、耐皮脂性や最終接着力が向上しやすくなる。
 上記アルキレン基は、ポリエーテル骨格中に含まれることが好ましく、ポリエーテル骨格における上記した二価の炭化水素基が、直鎖でかつ炭素数3~8のアルキレン基であることが好ましい。したがって、ポリエーテル骨格は、直鎖かつ炭素数3~8のアルキレン基がエーテル結合を介して連結された構造を有することが好ましく、アルキレン基としては、炭素数3~5であることがより好ましく、炭素数4であることが最も好ましい。
Further, the polyether polycarbonate polyol (a1) preferably has a straight-chain alkylene group having 3 to 8 carbon atoms. The polyether polycarbonate polyol (a1) has a straight-chain alkylene group with 3 to 8 carbon atoms, so that sebum resistance and final adhesive strength are easily improved.
The alkylene group is preferably contained in the polyether skeleton, and the divalent hydrocarbon group in the polyether skeleton is preferably a straight-chain alkylene group having 3 to 8 carbon atoms. Therefore, the polyether skeleton preferably has a structure in which straight-chain alkylene groups having 3 to 8 carbon atoms are linked via ether bonds, and the alkylene groups preferably have 3 to 5 carbon atoms. , is most preferably 4 carbon atoms.
 また、ポリエーテルポリカーボネートポリオール(a1)は、複数のポリエーテル骨格が、カーボネート結合を介して結合された構造を有するとよい。ポリエーテルポリカーボネートポリオール(a1)は、一分子中に含有される水酸基が2つであるポリエーテルポリカーボネートジオールが好ましい。ポリエーテルポリカーボネートジオールは、水酸基を分子の両末端に有するとよい。ポリエーテルポリカーボネートポリオール(a1)は、具体的には、以下の式(1)で示される化合物であることがより好ましい。 In addition, the polyether polycarbonate polyol (a1) preferably has a structure in which a plurality of polyether skeletons are linked via carbonate bonds. The polyether polycarbonate polyol (a1) is preferably a polyether polycarbonate diol containing two hydroxyl groups in one molecule. The polyether polycarbonate diol preferably has hydroxyl groups at both ends of the molecule. Specifically, the polyether polycarbonate polyol (a1) is more preferably a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001

 上記式(1)において、Rは炭素数2~12の二価の炭化水素基を表し、nは2~90の整数であり、mは1~35の整数である。なお、式(1)中、複数のRは同一であってもよく、異なるものであってもよい。
Figure JPOXMLDOC01-appb-C000001

In formula (1) above, R represents a divalent hydrocarbon group having 2 to 12 carbon atoms, n is an integer of 2 to 90, and m is an integer of 1 to 35. In addition, in Formula (1), several R may be the same, and may differ.
 上記式(1)において、Rは、好ましくは炭素数2~10、より好ましくは炭素数3~8、さらに好ましくは炭素数3~5、最も好ましくは炭素数4である。Rは、脂肪族炭化水素基でもよいし、芳香環を有する芳香族炭化水素基であってもよいが、脂肪族炭化水素基が好ましく、脂肪族飽和炭化水素基がより好ましく、中でも直鎖かつ炭素数3~8のアルキレン基がさらに好ましい。
 したがって、具体的な好ましいRとしては、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基が挙げられ、中でもトリメチレン基、テトラメチレン基、ペンタメチレン基がより好ましく、テトラメチレン基が最も好ましい。これらアルキレン基は1種単独で使用してもよいし、2種以上併用してもよい。
 上記(1)において、nは2~90であり、好ましくは2~45、より好ましくは2~15であり、更に好ましくは2~10であり、最も好ましくは2~5である。また、mは1~35であり、好ましくは1~15、より好ましくは1~10であり、更に好ましくは1~6であり、最も好ましくは2~6である。
In the above formula (1), R preferably has 2 to 10 carbon atoms, more preferably 3 to 8 carbon atoms, still more preferably 3 to 5 carbon atoms, and most preferably 4 carbon atoms. R may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group having an aromatic ring, preferably an aliphatic hydrocarbon group, more preferably a saturated aliphatic hydrocarbon group, especially linear and An alkylene group having 3 to 8 carbon atoms is more preferred.
Therefore, specific preferable examples of R include a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group and an octamethylene group, and among them, a trimethylene group, a tetramethylene group and a pentamethylene group are more preferable. , the tetramethylene group is most preferred. These alkylene groups may be used singly or in combination of two or more.
In (1) above, n is 2 to 90, preferably 2 to 45, more preferably 2 to 15, still more preferably 2 to 10, and most preferably 2 to 5. Also, m is 1 to 35, preferably 1 to 15, more preferably 1 to 10, even more preferably 1 to 6, and most preferably 2 to 6.
 ポリエーテルポリカーボネートポリオール(a1)は、好ましくはポリオキシアルキレングリコールを原料として、ホスゲン法、エステル交換法などの公知の方法により製造するとよい。したがって、上記したポリエーテル骨格は、ポリオキシアルキレングリコール由来であるとよい。ポリオキシアルキレングリコールの好ましい具体例としては、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、プロピレンオキサイドとテトラヒドロフランの共重合ポリエーテルグリコール等が挙げられるが、これらの中では、ポリテトラメチレンエーテルグリコール(PTMG)がより好ましい。
 なお、ポリオキシアルキレングリコールは1種のみを用いてもよく、2種以上を併用してもよい。
The polyether polycarbonate polyol (a1) is preferably produced using a polyoxyalkylene glycol as a raw material by a known method such as the phosgene method or the transesterification method. Therefore, the polyether skeleton described above is preferably derived from polyoxyalkylene glycol. Preferable specific examples of polyoxyalkylene glycol include polypropylene glycol, polytetramethylene ether glycol, copolymer polyether glycol of propylene oxide and tetrahydrofuran, etc. Among these, polytetramethylene ether glycol (PTMG) is preferred. more preferred.
In addition, polyoxyalkylene glycol may use only 1 type, and may use 2 or more types together.
 ポリエーテルポリカーボネートポリオール(a1)は、常温(25℃)で液状であることが好ましい。ポリオール(A)において、ポリエーテルポリカーボネートポリオール(a1)を液状にする一方で、後述する通り、ポリオール(a2)を固体とすることで、樹脂組成物をホットメルトとしつつ、オープンタイムも適度に長くなり、耐衝撃性を良好にしやすくなる。 The polyether polycarbonate polyol (a1) is preferably liquid at room temperature (25°C). In the polyol (A), while the polyether polycarbonate polyol (a1) is liquid, as will be described later, by making the polyol (a2) solid, the resin composition can be hot-melted and the open time can be moderately long. It becomes easy to improve the impact resistance.
 ポリエーテルポリカーボネートポリオール(a1)の数平均分子量(Mn)は、特に限定されないが、例えば600以上であり、好ましくは800以上、より好ましくは1,000以上、さらに好ましくは1,500以上であり、また、例えば6,000以下、好ましくは5,000以下、より好ましくは4,000以下、さらに好ましくは3,500以下である。 ポリエーテルポリカーボネートポリオール(a1)の数平均分子量が、上記範囲内であることで、取扱い性を良好にしつつ、耐皮脂性、耐衝撃性などを向上させやすくなる。 The number average molecular weight (Mn) of the polyether polycarbonate polyol (a1) is not particularly limited, but is, for example, 600 or more, preferably 800 or more, more preferably 1,000 or more, still more preferably 1,500 or more, Also, for example, it is 6,000 or less, preferably 5,000 or less, more preferably 4,000 or less, and still more preferably 3,500 or less. When the number average molecular weight of the polyether polycarbonate polyol (a1) is within the above range, it becomes easy to improve sebum resistance, impact resistance, etc. while improving handleability.
(ポリオール(a2))
 ポリオール(A)として使用されるポリオール(a2)は、ポリエステルポリオール又はポリカーボネートポリオールの少なくともいずれかであり、これらは併用してもよい。ポリオール(a2)は、ポリエーテル骨格と、カーボネート結合を有する、ポリエーテルポリカーボネートポリオール以外であるとよい。
(Polyol (a2))
Polyol (a2) used as polyol (A) is at least either polyester polyol or polycarbonate polyol, and these may be used in combination. Polyol (a2) is preferably other than polyether polycarbonate polyol having a polyether skeleton and a carbonate bond.
<<ポリエステルポリオール>>
 ポリオール(a2)として使用されるポリエステルポリオールとしては、例えば、ポリカルボン酸とポリオールとの反応により得られるポリエステルポリオール、ε-カプロラクトンを開環重合して得られるポリ-ε-カプロラクトンポリオール等が挙げられる。これらの中では、ポリカルボン酸とポリオールとの反応により得られるポリエステルポリオールが好ましい。また、ポリエステルポリオールは、ポリエステルジオールが好ましい。ポリエステルポリオールは、1種単独で使用してもよいし、2種以上併用してもよい。
<<polyester polyol>>
Polyester polyols used as the polyol (a2) include, for example, polyester polyols obtained by reacting polycarboxylic acids with polyols, poly-ε-caprolactone polyols obtained by ring-opening polymerization of ε-caprolactone, and the like. . Among these, polyester polyol obtained by reaction of polycarboxylic acid and polyol is preferable. Moreover, the polyester polyol is preferably a polyester diol. Polyester polyols may be used singly or in combination of two or more.
 ポリエステルポリオールの原料となるポリカルボン酸としては、例えば、テレフタル酸、イソフタル酸、1,5-ナフタル酸、2,6-ナフタル酸などの二価の芳香族カルボン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカメチレンジカルボン酸、ドデカメチレンジカルボン酸等の二価の脂肪族カルボン酸、トリメリット酸、トリメシン酸、ピロメリット酸、ナフタレントリカルボン酸等の三価以上の芳香族カルボン酸、シクロヘキサントリカルボン酸、ヘキサントリカルボン酸などの三価以上の脂肪族カルボン酸などが挙げられる。これらポリカルボン酸は、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of polycarboxylic acids used as raw materials for polyester polyols include divalent aromatic carboxylic acids such as terephthalic acid, isophthalic acid, 1,5-naphthalic acid and 2,6-naphthalic acid, succinic acid, glutaric acid, and adipine. acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decamethylenedicarboxylic acid, divalent aliphatic carboxylic acids such as dodecamethylenedicarboxylic acid, trimellitic acid, trimesic acid, pyromellitic acid, naphthalenetricarboxylic acid, etc. trivalent or higher aliphatic carboxylic acids such as aromatic carboxylic acids having a valence or higher, cyclohexanetricarboxylic acid, hexanetricarboxylic acid, and the like. These polycarboxylic acids may be used singly or in combination of two or more.
 ポリエステルポリオールの原料となるポリオールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコールなどの直鎖の脂肪族ポリオール、ネオペンチルグリコールなどの分岐構造を有する脂肪族ポリオール、シクロヘキサンジオール等の環状骨格を有する脂肪族ポリオールなどが挙げられる。これらポリオールは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of polyols used as raw materials for polyester polyols include direct polyols such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, and diethylene glycol. Examples include chain aliphatic polyols, aliphatic polyols having branched structures such as neopentyl glycol, and aliphatic polyols having a cyclic skeleton such as cyclohexanediol. These polyols may be used singly or in combination of two or more.
 ポリエステルポリオールに使用されるポリカルボン酸としては、上記の中では、直鎖のポリカルボン酸が好ましい。直鎖のポリカルボン酸を使用することで、結晶性が高くなりやすく、セットタイムも適度に速くしやすくなる。そのため、初期PUSH接着力が高くなって、耐衝撃性を良好にしやすくなる。
 ポリエステルポリオールにおいて、直鎖のポリカルボン酸は、ポリカルボン酸として、単独で使用されてもよいが、直鎖のポリカルボン酸以外のポリカルボン酸と併用されてもよい。
Among the polycarboxylic acids described above, linear polycarboxylic acids are preferred as the polycarboxylic acids used in the polyester polyol. By using a straight-chain polycarboxylic acid, the crystallinity tends to be high, and the set time tends to be moderately fast. As a result, the initial PUSH adhesive strength is increased, making it easier to improve the impact resistance.
In the polyester polyol, the straight-chain polycarboxylic acid may be used alone as the polycarboxylic acid, or may be used in combination with a polycarboxylic acid other than the straight-chain polycarboxylic acid.
 上記のとおり、ポリエステルポリオールは、直鎖のポリカルボン酸由来の構成単位を含むことが好ましいが、その含有量は、全ポリカルボン酸由来の構成単位全量基準で、例えば75モル%以上100モル%以下であり、好ましくは85モル%以上100モル%以下であり、より好ましくは95モル%以上100モル%以下であり、最も好ましくは100モル%である。 As described above, the polyester polyol preferably contains linear polycarboxylic acid-derived structural units, the content of which is based on the total amount of all polycarboxylic acid-derived structural units, for example, 75 mol% or more and 100 mol% or less, preferably 85 mol % or more and 100 mol % or less, more preferably 95 mol % or more and 100 mol % or less, and most preferably 100 mol %.
 なお、直鎖のポリカルボン酸は、二価の直鎖の脂肪族カルボン酸であり、その両末端にカルボキシル基を有するものである。直鎖のポリカルボン酸は、中でも炭素数4~12の脂肪族カルボン酸が好ましく、炭素数6~10の脂肪族カルボン酸がさらに好ましい。したがって、脂肪族カルボン酸は、上記の中でも、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸が好ましく、特にアジピン酸又はセバシン酸が好ましい。 The straight-chain polycarboxylic acid is a divalent straight-chain aliphatic carboxylic acid having carboxyl groups at both ends. The linear polycarboxylic acid is preferably an aliphatic carboxylic acid having 4 to 12 carbon atoms, more preferably an aliphatic carboxylic acid having 6 to 10 carbon atoms. Therefore, among the above aliphatic carboxylic acids, adipic acid, pimelic acid, suberic acid, azelaic acid and sebacic acid are preferred, and adipic acid and sebacic acid are particularly preferred.
 ポリエステルポリオールは、アジピン酸及びセバシン酸からなる群から選択されるポリカルボン酸由来の構成単位を含有することが好ましいが、その含有量は、ポリカルボン酸由来の構成単位全量基準で、例えば75モル%以上100モル%以下であり、好ましくは85モル%以上100モル%以下であり、より好ましくは95モル%以上100モル%以下であり、最も好ましくは100モル%である。
 なお、直鎖のポリカルボン酸は、1種単独で使用されてもよいし、2種以上併用されてもよい。
The polyester polyol preferably contains polycarboxylic acid-derived structural units selected from the group consisting of adipic acid and sebacic acid, and the content thereof is based on the total amount of polycarboxylic acid-derived structural units, for example 75 mol. % or more and 100 mol % or less, preferably 85 mol % or more and 100 mol % or less, more preferably 95 mol % or more and 100 mol % or less, most preferably 100 mol %.
In addition, linear polycarboxylic acid may be used individually by 1 type, and may be used together 2 or more types.
 ポリエステルポリオールに使用されるポリオールとしては、上記の中では、直鎖のポリオールが好ましい。直鎖のポリポールを使用することで、結晶性が高くなりやすくセットタイムが適度に速くなりやすくなる。そのため、初期PUSH接着力が高くなって、耐衝撃性を良好にしやすくなる。
 ポリエステルポリオールにおいて、直鎖のポリオールは、ポリオールとして単独で使用されてもよいが、直鎖のポリオール以外のポリオールと併用されてもよい。
Among the polyols described above, linear polyols are preferred as the polyols used in the polyester polyols. By using a linear polypol, the crystallinity tends to be high and the set time tends to be moderately fast. As a result, the initial PUSH adhesive strength is increased, making it easier to improve the impact resistance.
In the polyester polyol, the straight-chain polyol may be used alone as the polyol, or may be used in combination with a polyol other than the straight-chain polyol.
 ポリエステルポリオールは、上記の通り、直鎖のポリオール由来の構成単位を含むことが好ましいが、その含有量は、ポリオール由来の構成単位全量基準で、例えば75モル%以上100モル%以下であり、好ましくは85モル%以上100モル%以下であり、より好ましくは95モル%以上100モル%以下であり、最も好ましくは100モル%である。
 また、ポリエステルポリオールにおいては、結晶性をより高くする観点から、ポリオールとして直鎖のポリオールが使用され、かつポリカルボン酸として直鎖のポリカルボン酸が使用されることが好ましい。
As described above, the polyester polyol preferably contains linear polyol-derived structural units, and the content thereof is, for example, 75 mol% or more and 100 mol% or less, based on the total amount of polyol-derived structural units, and is preferably is 85 mol % or more and 100 mol % or less, more preferably 95 mol % or more and 100 mol % or less, most preferably 100 mol %.
Moreover, in the polyester polyol, it is preferable to use a linear polyol as the polyol and a linear polycarboxylic acid as the polycarboxylic acid, from the viewpoint of further increasing the crystallinity.
 直鎖のポリオールは、二価の直鎖状の脂肪族ポリオールであり、その両末端に水酸基を有するものである。直鎖ポリオールは、中でも炭素数3~12の直鎖ポリオールが好ましく、炭素数5~8の直鎖ポリオールがさらに好ましく、炭素数6の直鎖ポリオールが最も好ましい。
 直鎖ポリオールの具体例としては、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコールが好ましく、中でも1,6-ヘキサンジオールが最も好ましい。
 したがって、ポリエステルポリオールは、1,6-ヘキサンジオール由来の構成単位を含有することが好ましいが、その含有量は、ポリオール由来の構成単位全量基準で、例えば75モル%以上100モル%以下であり、好ましくは85モル%以上100モル%以下であり、より好ましくは95モル%以上100モル%以下であり、最も好ましくは100モル%である。
 なお、直鎖のポリオールは、1種単独で使用してもよいし、2種以上併用してもよい。
Linear polyols are divalent linear aliphatic polyols having hydroxyl groups at both ends. The straight-chain polyol is preferably a straight-chain polyol having 3 to 12 carbon atoms, more preferably a straight-chain polyol having 5 to 8 carbon atoms, and most preferably a straight-chain polyol having 6 carbon atoms.
Preferred examples of linear polyols are 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol and diethylene glycol, with 1,6-hexanediol being most preferred.
Therefore, the polyester polyol preferably contains structural units derived from 1,6-hexanediol, and the content thereof is, for example, 75 mol% or more and 100 mol% or less based on the total amount of polyol-derived structural units, It is preferably 85 mol % or more and 100 mol % or less, more preferably 95 mol % or more and 100 mol % or less, and most preferably 100 mol %.
In addition, linear polyol may be used individually by 1 type, and may be used in combination of 2 or more types.
<<ポリカーボネートポリオール>>
 ポリオール(a2)において使用されるポリカーボネートポリオールは、ポリヒドロキシ化合物由来の構成単位が、カーボネート結合により連結された構造を有する。ポリカーボネートポリオールは、その製造方法については特に限定されず、ポリヒドロキシ化合物を原料として、例えば、ホスゲン法、エステル交換法などの公知の方法により製造されるとよい。
<<Polycarbonate Polyol>>
The polycarbonate polyol used in the polyol (a2) has a structure in which structural units derived from a polyhydroxy compound are linked by carbonate bonds. The production method of the polycarbonate polyol is not particularly limited, and may be produced by a known method such as a phosgene method or a transesterification method using a polyhydroxy compound as a raw material.
 ポリヒドロキシ化合物は、一般的にジヒドロキシ化合物である。ポリヒドロキシ化合物は、直鎖の脂肪族ポリオール、分岐構造や脂環構造を有する脂環族ポリオール、芳香族ポリヒドロキシ化合物などのいずれでもよいが、ポリヒドロキシ化合物は、直鎖ポリオールであることが好ましい。また、ポリヒドロキシ化合物はエーテル結合を有しないとよい。
直鎖ポリオールは、二価の直鎖の脂肪族ポリオールであり、その両末端に水酸基を有するものである。直鎖ポリオールは、例えば炭素数4以上であるが、中でも炭素数8以上の直鎖ポリオールが好ましい。また、直鎖ポリオールの炭素数は、例えば16以下であり、好ましくは12以下である。
 上記直鎖ポリオールは、エーテル結合を有しない直鎖の脂肪族ジオールが好ましく、中でも、両末端に水酸基を有するアルカンジオールが好ましい。
Polyhydroxy compounds are generally dihydroxy compounds. The polyhydroxy compound may be a linear aliphatic polyol, an alicyclic polyol having a branched structure or an alicyclic structure, an aromatic polyhydroxy compound, or the like, but the polyhydroxy compound is preferably a linear polyol. . Also, the polyhydroxy compound should not have an ether bond.
Linear polyols are divalent linear aliphatic polyols having hydroxyl groups at both ends. The linear polyol has, for example, 4 or more carbon atoms, and among these, linear polyols having 8 or more carbon atoms are preferred. Also, the number of carbon atoms in the linear polyol is, for example, 16 or less, preferably 12 or less.
The straight-chain polyol is preferably a straight-chain aliphatic diol having no ether bond, and more preferably an alkanediol having hydroxyl groups at both ends.
 ポリカーボネートポリオールの原料となる直鎖ポリオールとしては、例えば、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール、1,13-トリデカンジオール、1,14-テトラデカンジオール、1,15-ペンタデカンジオール、1,16-ヘキサデカンジオールなどが挙げられる。これらの中では、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオールが好ましく、中でも1,8-オクタンジオール、1,10-デカンジオール、1,12-ドデカンジオールがより好ましく、特に1,10-デカンジオール、1,12-ドデカンジオールが最も好ましい。 Examples of linear polyols used as raw materials for polycarbonate polyols include 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1 ,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, 1,13-tridecanediol, 1,14-tetradecanediol, 1,15-pentadecanediol, 1 , 16-hexadecanediol and the like. Among these, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, and 1,12-dodecanediol are preferable, and 1,8-octanediol, 1,10-decanediol and 1,12-dodecanediol are more preferred, and 1,10-decanediol and 1,12-dodecanediol are most preferred.
 したがって、ポリカーボネートポリオールは、直鎖ポリオール由来の構成単位を含有することが好ましく、中でも炭素数8以上の直鎖ポリオール由来の構成単位を含有すること好ましい。ポリカーボネートポリオールが比較的炭素数が多い直鎖ポリオール由来の構成単位を含有することで、結晶性が高くなって、組成物のセットタイムが適度に速くなりやすくなる。そのため、初期PUSH接着力が高くなり、耐衝撃性も向上させやすくなる。
 炭素数8以上の直鎖ポリオール由来の構成単位は、ポリヒドロキシ化合物由来の構成単位全量基準で、例えば75モル%以上100モル%以下であり、好ましくは85モル%以上100モル%以下であり、より好ましくは95モル%以上100モル%以下であり、最も好ましくは100モル%である。
 なお、直鎖ポリオールは、1種単独で使用してもよいし、2種以上併用してもよい。
Therefore, the polycarbonate polyol preferably contains structural units derived from linear polyols, and more preferably contains structural units derived from linear polyols having 8 or more carbon atoms. When the polycarbonate polyol contains a structural unit derived from a linear polyol having a relatively large number of carbon atoms, the crystallinity of the polycarbonate polyol is increased, and the setting time of the composition tends to be moderately fast. Therefore, the initial PUSH adhesive strength is increased, and the impact resistance can be easily improved.
Structural units derived from a linear polyol having 8 or more carbon atoms, based on the total amount of structural units derived from a polyhydroxy compound, are, for example, 75 mol% or more and 100 mol% or less, preferably 85 mol% or more and 100 mol% or less, It is more preferably 95 mol % or more and 100 mol % or less, and most preferably 100 mol %.
In addition, linear polyol may be used individually by 1 type, and may be used in combination of 2 or more types.
 ポリカーボネートポリオールは、ポリカーボネートジオールが好ましく、ポリカーボネートジオールの具体例としては、以下の式(2)で表される化合物が挙げられる。 The polycarbonate polyol is preferably a polycarbonate diol, and specific examples of the polycarbonate diol include compounds represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000002

 式(2)においてRは炭素数4~16の二価の炭化水素基、nは2~120の整数である。
Figure JPOXMLDOC01-appb-C000002

In formula (2), R is a divalent hydrocarbon group having 4 to 16 carbon atoms, and n is an integer of 2 to 120.
 式(2)において、Rは、好ましくは脂肪族飽和炭化水素基である。Rが脂肪族飽和炭化水素基であることで、耐熱性、柔軟性が良好になりやすくなる。脂肪族飽和炭化水素基からなるRは、鎖状構造又は環状構造を有していてもよいが、鎖状構造を有することが好ましい。また、鎖状構造のRは直鎖状又は分岐状のいずれでもよいが、直鎖状であることが好ましい。
 nは2~25であることが好ましく、2~20であることがより好ましく、5~20であることがさらに好ましく、5~15であることが最も好ましい。
 また、ウレタンプレポリマーにおいてポリカーボネートポリオールに含まれるRは、1種単独で使用してよいし、2種以上を併用してもよい。2種以上併用する場合には、Rは、炭素数8以上の直鎖状の脂肪族飽和炭化水素基であることが好ましい。Rとして、炭素数8以上の直鎖状の脂肪族飽和炭化水素基を使用することで、結晶性が高くなってセットタイムも適度に速くなりやすくなる。そのため、初期PUSH接着力が高くなりやすく、耐衝撃性も向上させやすくなる。
In formula (2), R is preferably an aliphatic saturated hydrocarbon group. When R is an aliphatic saturated hydrocarbon group, heat resistance and flexibility are likely to be improved. R composed of an aliphatic saturated hydrocarbon group may have a chain structure or a cyclic structure, but preferably has a chain structure. In addition, R in the chain structure may be linear or branched, but preferably linear.
n is preferably 2-25, more preferably 2-20, even more preferably 5-20, and most preferably 5-15.
In the urethane prepolymer, R contained in the polycarbonate polyol may be used singly or in combination of two or more. When two or more are used in combination, R is preferably a linear saturated aliphatic hydrocarbon group having 8 or more carbon atoms. By using a linear saturated aliphatic hydrocarbon group having 8 or more carbon atoms as R, the crystallinity is increased and the set time tends to be moderately fast. Therefore, the initial PUSH adhesive strength tends to increase, and the impact resistance also tends to improve.
 ポリカーボネートポリオールにおいて、Rのすべてが炭素数8以上の直鎖状の脂肪族飽和炭化水素基であってもよいが、一部が炭素数8以上の直鎖状の脂肪族飽和炭化水素基であってもよい。ポリカーボネートポリオールにおいて、Rは、全Rに対して、例えば75モル%以上100モル%以下、好ましくは85モル%以上100モル%以下、より好ましくは95モル%以上100モル%以下、最も好ましくは100モル%の割合で、炭素数8以上の直鎖状の脂肪族飽和炭化水素基であるとよい。炭素数8以上の直鎖状の脂肪族飽和炭化水素基は、炭素数12以下であることが好ましい。 In the polycarbonate polyol, all of R may be linear saturated aliphatic hydrocarbon groups having 8 or more carbon atoms, but some may be linear saturated aliphatic hydrocarbon groups having 8 or more carbon atoms. may In the polycarbonate polyol, R is, for example, 75 mol% or more and 100 mol% or less, preferably 85 mol% or more and 100 mol% or less, more preferably 95 mol% or more and 100 mol% or less, most preferably 100 mol% or less, relative to all R. It is preferably a straight-chain saturated aliphatic hydrocarbon group having 8 or more carbon atoms at a ratio of mol %. The linear saturated aliphatic hydrocarbon group having 8 or more carbon atoms preferably has 12 or less carbon atoms.
 Rの好ましい具体例としては、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基が挙げられ、これらの中でもオクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基が好ましく、オクタメチレン基、デカメチレン基、ドデカメチレン基がより好ましく、デカメチレン基、ドデカメチレン基がさらに好ましく、デカメチレン基がよりさらに好ましい。
 なお、ポリカーボネートポリオールは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Preferred specific examples of R include tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group, undecamethylene group and dodecamethylene group. A methylene group, a nonamethylene group, a decamethylene group, an undecamethylene group and a dodecamethylene group are preferable, an octamethylene group, a decamethylene group and a dodecamethylene group are more preferable, a decamethylene group and a dodecamethylene group are more preferable, and a decamethylene group is still more preferable. .
In addition, polycarbonate polyol may be used individually by 1 type, and may be used in combination of 2 or more type.
 ポリオール(a2)は、常温(25℃)で固体であるとよい。ポリオール(a2)が常温で固体であると、樹脂組成物をホットメルトにしやすくなる。
 ポリオール(a2)の数平均分子量(Mn)は、特に限定されないが、例えば1,000以上であるが、好ましくは1,500以上であり、より好ましくは2,000以上であり、また、例えば6,000以下、好ましくは5,000以下、より好ましくは4,000以下である。ポリオール(a2)は、数平均分子量が、上記範囲内であることで、適度な結晶性を有することができる。そのため、適度なオープンタイムとセットタイムを有し、初期PUSH接着力が高くなり、耐衝撃性も良好にしやすくなる。
The polyol (a2) is preferably solid at room temperature (25°C). When the polyol (a2) is solid at room temperature, the resin composition can easily be hot-melted.
The number average molecular weight (Mn) of the polyol (a2) is not particularly limited, but is, for example, 1,000 or more, preferably 1,500 or more, more preferably 2,000 or more. ,000 or less, preferably 5,000 or less, more preferably 4,000 or less. Polyol (a2) can have moderate crystallinity because the number average molecular weight is within the above range. Therefore, it has suitable open time and set time, high initial PUSH adhesive strength, and good impact resistance.
 なお、ポリエーテルポリカーボネートポリオール(a1)及びポリオール(a2)の数平均分子量(Mn)は、測定された水酸基価(mgKOH/g)より以下の手順で算出できる。具体的には、まず、JIS K 1557-1に従ってポリオールの水酸基価(mgKOH/g)を測定する。次に、測定された水酸基価(mgKOH/g)と、KOHの式量により、水酸基量(mmol/g)を求める。そして、得られた水酸基量(mmol/g)を逆数にして「g/mol」に換算したうえで、官能基数(水酸基数)を掛けることで数平均分子量(Mn)を求めることができる。 The number average molecular weight (Mn) of the polyether polycarbonate polyol (a1) and polyol (a2) can be calculated from the measured hydroxyl value (mgKOH/g) by the following procedure. Specifically, first, the hydroxyl value (mgKOH/g) of the polyol is measured according to JIS K 1557-1. Next, the amount of hydroxyl groups (mmol/g) is obtained from the measured hydroxyl value (mgKOH/g) and the formula weight of KOH. Then, after converting the obtained hydroxyl group amount (mmol/g) into "g/mol" by reciprocal, the number average molecular weight (Mn) can be obtained by multiplying by the number of functional groups (number of hydroxyl groups).
 ウレタンプレポリマーは、ポリエーテルポリカーボネートポリオール(a1)及びポリオール(a2)の混合物と、ポリイソシアネート化合物(B)とを反応することで得ることができる。したがって、ウレタンプレポリマーの少なくとも一部又は全部は、一分子中にポリエーテルポリカーボネートポリオール(a1)由来の構成単位と、ポリオール(a2)由来の構成単位の両方を有する。 A urethane prepolymer can be obtained by reacting a mixture of a polyether polycarbonate polyol (a1) and a polyol (a2) with a polyisocyanate compound (B). Therefore, at least a part or all of the urethane prepolymer has both the structural unit derived from the polyether polycarbonate polyol (a1) and the structural unit derived from the polyol (a2) in one molecule.
 ポリオール(A)において、ポリエーテルポリカーボネートポリオール(a1)が35質量%以上75質量%以下含有され、かつポリオール(a2)が25質量%以上65質量%以下含有されることが好ましい。ジオール(a1)及びポリオール(a2)の含有量を上記範囲内とすると、ポリエーテルポリカーボネートポリオール(a1)により耐皮脂性と耐衝撃性を向上させやすくなり、かつポリオール(a2)により初期PUSH接着力が大きくなり、耐衝撃性も向上させやすくなる。
 上記観点から、ポリオール(A)におけるポリエーテルポリカーボネートポリオール(a1)の含有量は、40質量%以上がより好ましく、50質量%以上がさらに好ましく、また、70質量%以下がより好ましく、65質量%以下がさらに好ましい。
 また、ポリオール(A)におけるポリオール(a2)の含有量は、30質量%以上がより好ましく、35質量%以上がさらに好ましく、また、60質量%以下がより好ましく、50質量%以下がさらに好ましい。
In the polyol (A), it is preferable that the polyether polycarbonate polyol (a1) is contained in an amount of 35% by mass or more and 75% by mass or less and the polyol (a2) is contained in an amount of 25% by mass or more and 65% by mass or less. When the content of the diol (a1) and the polyol (a2) is within the above range, the polyether polycarbonate polyol (a1) makes it easier to improve sebum resistance and impact resistance, and the polyol (a2) makes it easier to improve the initial PUSH adhesive strength. becomes large, and it becomes easy to improve the impact resistance.
From the above viewpoint, the content of the polyether polycarbonate polyol (a1) in the polyol (A) is more preferably 40% by mass or more, further preferably 50% by mass or more, and more preferably 70% by mass or less, and 65% by mass. More preferred are:
The content of the polyol (a2) in the polyol (A) is more preferably 30% by mass or more, still more preferably 35% by mass or more, more preferably 60% by mass or less, and even more preferably 50% by mass or less.
 なお、ポリオール(A)は、本発明の効果を損なわない限り、ポリエーテルポリカーボネートポリオール(a1)及びポリオール(a2)以外のポリオール(その他のポリオール)を含有してもよい。ポリオール(A)において、その他のポリオールの含有量は、例えば0質量%以上20質量%以下、好ましくは0質量%以上10質量%以下、より好ましくは0質量%以上5質量%以下、最も好ましくは0質量%である。 The polyol (A) may contain polyols (other polyols) other than the polyether polycarbonate polyol (a1) and the polyol (a2) as long as the effects of the present invention are not impaired. In the polyol (A), the content of other polyols is, for example, 0% by mass or more and 20% by mass or less, preferably 0% by mass or more and 10% by mass or less, more preferably 0% by mass or more and 5% by mass or less, most preferably It is 0% by mass.
(ポリイソシアネート化合物(B))
 ポリイソシアネート化合物としては、芳香族ポリイソシアネート化合物、脂肪族ポリイソシアネート化合物が挙げられる。芳香族ポリイソシアネート化合物としては、例えば、ジフェニルメタンジイソシアネート、ジフェニルメタンジイソシアネートの液状変性物、トリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート等が挙げられる。芳香族ポリイソシアネート化合物は、これらを多量化したものでもあってもよく、ポリメリックMDIなどでもよい。
 脂肪族ポリイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、ノルボルナンジイソシアネート、トランスシクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート、シクロヘキサンジイソシアネート、ビス(イソシアネートメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート等が挙げられる。脂肪族ポリイソシアネート化合物は、これらを多量化したものなどであってもよい。
 ポリイソシアネート化合物は、単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。
 本発明では、ウレタンプレポリマーの合成において、芳香族ポリイソシアネート化合物を使用すると、ウレタンプレポリマーが芳香族イソシアネート基を含有し、脂肪族ポリイソシアネート化合物を使用すると、ウレタンプレポリマーが脂肪族イソシアネート基を含有する。本発明では、ポリイソシアネート化合物(B)としては、芳香族ポリイソシアネート化合物を使用することが好ましく、中でもジフェニルメタンジイソシアネート(MDI)がより好ましい。
(Polyisocyanate compound (B))
Polyisocyanate compounds include aromatic polyisocyanate compounds and aliphatic polyisocyanate compounds. Examples of aromatic polyisocyanate compounds include diphenylmethane diisocyanate, liquid modified diphenylmethane diisocyanate, tolylene diisocyanate, and naphthalene-1,5-diisocyanate. The aromatic polyisocyanate compound may be a multimer of these compounds, polymeric MDI, or the like.
Examples of aliphatic polyisocyanate compounds include hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, norbornane diisocyanate, transcyclohexane-1,4-diisocyanate, isophorone diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, and cyclohexane diisocyanate. , bis(isocyanatomethyl)cyclohexane, dicyclohexylmethane diisocyanate, and the like. Aliphatic polyisocyanate compounds may be those obtained by increasing these.
A polyisocyanate compound may be used independently and may be used in combination of 2 or more type.
In the present invention, when an aromatic polyisocyanate compound is used in the synthesis of a urethane prepolymer, the urethane prepolymer contains an aromatic isocyanate group, and when an aliphatic polyisocyanate compound is used, the urethane prepolymer contains an aliphatic isocyanate group. contains. In the present invention, it is preferable to use an aromatic polyisocyanate compound as the polyisocyanate compound (B), and among them, diphenylmethane diisocyanate (MDI) is more preferable.
 湿気硬化型ホットメルト樹脂組成物におけるウレタンプレポリマーの含有量は、特に限定されないが、湿気硬化型ホットメルト樹脂組成物全量基準で、例えば30質量%以上、好ましくは50質量%以上、より好ましくは70質量%以上であり、さらに好ましくは80質量%以上である。ウレタンプレポリマーの含有量を上記下限値以上とすることで、湿気硬化型ホットメルト樹脂組成物に耐衝撃性と耐皮脂性を付与しやすくなる。また、ウレタンプレポリマーにより樹脂組成物を適切に湿気硬化できるようになる。ウレタンプレポリマーの上記含有量は、100質量%以下であればよいが、他の成分を適度に含有させるために、99.9質量%以下が好ましく、99.5質量%以下がより好ましく、99質量%以下がさらに好ましい。 The content of the urethane prepolymer in the moisture-curable hot-melt resin composition is not particularly limited, but is, for example, 30% by mass or more, preferably 50% by mass or more, more preferably 50% by mass or more, based on the total amount of the moisture-curable hot-melt resin composition. It is 70% by mass or more, more preferably 80% by mass or more. By setting the content of the urethane prepolymer to the above lower limit or more, it becomes easier to impart impact resistance and sebum resistance to the moisture-curable hot-melt resin composition. The urethane prepolymer also allows the resin composition to be properly moisture cured. The content of the urethane prepolymer may be 100% by mass or less, but is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, and more preferably 99.5% by mass or less in order to contain other components appropriately. % or less by mass is more preferable.
[湿気硬化促進触媒]
 湿気硬化型ホットメルト樹脂組成物は、ウレタンプレポリマーの湿気硬化反応を促進させる湿気硬化促進触媒を含有してもよい。湿気硬化促進触媒を使用することにより、湿気硬化型ホットメルト樹脂組成物は、湿気硬化性がより優れたものとなり、接着力を高めやすくなる。
 湿気硬化促進触媒としては、具体的にはアミン系化合物、金属系触媒などが挙げられ、アミン系化合物が好ましい。アミン系化合物としては、ジ(メチルモルホリノ)ジエチルエーテル、4-モルホリノプロピルモルホリン、ビス(2-モルホリノエチル)エーテル等のモルホリン骨格を有する化合物、ビス(2-ジメチルアミノエチル)エーテル、1,2-ビス(ジメチルアミノ)エタンなどのジメチルアミノ基を2つ有するジメチルアミノ基含有アミン化合物、トリエチルアミン、1,4-ジアザビシクロ[2.2.2]オクタン、2,6,7-トリメチル-1,4-ジアザビシクロ[2.2.2]オクタン等が挙げられる。
 金属系触媒としては、ジラウリル酸ジn-ブチルスズ、ジ酢酸ジn-ブチルスズ、オクチル酸スズ等のスズ化合物、オクチル酸亜鉛、ナフテン酸亜鉛等の亜鉛化合物、ジルコニウムテトラアセチルアセトナート、ナフテン酸銅、ナフテン酸コバルト等のその他の金属化合物が挙げられる。
 湿気硬化促進触媒の含有量は、ウレタンプレポリマー100質量部に対して、好ましくは0.01質量部以上5質量部以下、より好ましくは0.05質量部以上3量部以下、さらに好ましくは0.1質量部以上2質量部以下である。
[Moisture Curing Acceleration Catalyst]
The moisture-curable hot-melt resin composition may contain a moisture curing acceleration catalyst that accelerates the moisture curing reaction of the urethane prepolymer. By using a moisture-curing acceleration catalyst, the moisture-curable hot-melt resin composition becomes more excellent in moisture-curing properties, making it easier to increase adhesive strength.
Specific examples of moisture curing acceleration catalysts include amine-based compounds and metal-based catalysts, with amine-based compounds being preferred. Examples of amine compounds include compounds having a morpholine skeleton such as di(methylmorpholino) diethyl ether, 4-morpholinopropyl morpholine, bis(2-morpholinoethyl) ether, bis(2-dimethylaminoethyl) ether, 1,2- Dimethylamino group-containing amine compounds having two dimethylamino groups such as bis(dimethylamino)ethane, triethylamine, 1,4-diazabicyclo[2.2.2]octane, 2,6,7-trimethyl-1,4- diazabicyclo[2.2.2]octane and the like.
Examples of metal-based catalysts include tin compounds such as di-n-butyltin dilaurate, di-n-butyltin diacetate and tin octylate; zinc compounds such as zinc octoate and zinc naphthenate; zirconium tetraacetylacetonate; copper naphthenate; Other metal compounds such as cobalt naphthenate are included.
The content of the moisture curing acceleration catalyst is preferably 0.01 parts by mass or more and 5 parts by mass or less, more preferably 0.05 parts by mass or more and 3 parts by mass or less, and still more preferably 0 parts by mass with respect to 100 parts by mass of the urethane prepolymer. .1 mass parts or more and 2 mass parts or less.
[カップリング剤]
 湿気硬化型ホットメルト樹脂組成物は、カップリング剤を含有してもよい。湿気硬化型ホットメルト樹脂組成物にカップリング剤を含有させることで、接着力を向上させやすくなる。カップリング剤としては、例えば、シランカップリング剤、チタネート系カップリング剤、ジルコネート系カップリング剤等が挙げられる。
 カップリング剤の中でも、接着性を向上させる効果に優れることから、シランカップリング剤が好ましい。また、シランカップリング剤の中でも、耐衝撃性を改善させる効果に優れることから、メルカプタン系シランカップリング剤、アミン系シランカップリング剤が好ましく、アミン系シランカップリング剤がより好ましく、分子内に芳香族環を有するアミン系含有シランカップリング剤がさらに好ましく、中でも芳香族アミンを有する芳香族アミン系含有シランカップリング剤が特に好ましい。
[Coupling agent]
The moisture-curable hot-melt resin composition may contain a coupling agent. By including a coupling agent in the moisture-curable hot-melt resin composition, it becomes easier to improve the adhesive force. Examples of coupling agents include silane coupling agents, titanate coupling agents, zirconate coupling agents, and the like.
Among the coupling agents, a silane coupling agent is preferable because it is excellent in the effect of improving adhesiveness. Further, among the silane coupling agents, mercaptan-based silane coupling agents and amine-based silane coupling agents are preferable, and amine-based silane coupling agents are more preferable, since they are excellent in the effect of improving impact resistance. An amine-containing silane coupling agent having an aromatic ring is more preferred, and an aromatic amine-containing silane coupling agent having an aromatic amine is particularly preferred.
 上記アミン系シランカップリング剤としては、例えば、N-フェニル-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルメチルジメトキシシラン等が挙げられる。これらの中でも、N-フェニル-3-アミノプロピルトリメトキシシランが好ましい。
 上記メルカプタン系シランカップリング剤としては、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジエトキシシラン等が挙げられる。
Examples of the amine-based silane coupling agent include N-phenyl-3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-(2-aminoethyl)aminopropyl trimethoxysilane, 3-(2-aminoethyl)aminopropyltriethoxysilane, 3-(2-aminoethyl)aminopropylmethyldimethoxysilane and the like. Among these, N-phenyl-3-aminopropyltrimethoxysilane is preferred.
Examples of the mercaptan-based silane coupling agent include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldiethoxysilane, and the like.
 シランカップリング剤としては、メルカプタン系シランカップリング剤、アミン系シランカップリング剤以外のその他のシランカップリング剤を使用してもよい。
 その他のシランカップリング剤としては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルメチルジメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルメチルジエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、テジルトリメトキシシラン、1,6-ビス(トリメトキシリル)ヘキサン等が挙げられる。
As the silane coupling agent, silane coupling agents other than mercaptan-based silane coupling agents and amine-based silane coupling agents may be used.
Other silane coupling agents include, for example, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2-(3,4-epoxycyclohexyl ) Ethyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-(meth)acryloyloxypropyltrimethoxysilane, 3-(meth)acryloyloxypropyltriethoxysilane, 3-(meth)acryloyloxypropylmethyl dimethoxysilane, 3-(meth)acryloyloxypropylmethyldiethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropylmethyldimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-isocyanatopropylmethyldiethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane silane, hexyltrimethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, tedyltrimethoxysilane, 1,6-bis(trimethoxyryl)hexane and the like.
 上記チタネート系カップリング剤としては、例えば、チタンジイソプロポキシビス(アセチルアセトネート)、チタンテトラアセチルアセトネート、チタンジイソプロポキシビス(エチルアセトアセテート)等が挙げられる。
 上記ジルコネート系カップリング剤としては、例えば、ジルコニウムテトラノルマルプロポキシド、シルコニウムテトラノルマルブトキシド等が挙げられる。
 カップリング剤は、1種単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
Examples of the titanate-based coupling agent include titanium diisopropoxybis(acetylacetonate), titanium tetraacetylacetonate, and titanium diisopropoxybis(ethylacetoacetate).
Examples of the zirconate-based coupling agent include zirconium tetra-normal propoxide and zirconium tetra-normal butoxide.
A coupling agent may be used individually by 1 type, and 2 or more types may be used in combination.
 カップリング剤の含有量は、ウレタンプレポリマー100質量部に対して、0.05質量部以上8量部以下が好ましく、0.2質量部以上6質量部以下がより好ましく、0.5質量部以上4質量部以下がさらに好ましい。カップリング剤の含有量をこれら範囲内とすることで、硬化体の各種性能に影響を及ぼすことなく、接着力を向上させやすくなる。 The content of the coupling agent is preferably 0.05 parts by mass or more and 8 parts by mass or less, more preferably 0.2 parts by mass or more and 6 parts by mass or less, and 0.5 parts by mass with respect to 100 parts by mass of the urethane prepolymer. Above 4 mass parts or less is more preferable. By setting the content of the coupling agent within these ranges, the adhesive strength can be easily improved without affecting various performances of the cured product.
(その他の成分)
 湿気硬化型ホットメルト樹脂組成物は、上記したウレタンプレポリマー以外にも、熱硬化性樹脂、光硬化性樹脂、湿気硬化性樹脂などの熱、活性エネルギー線、湿気などにより硬化する硬化性樹脂を含有してもよいし、熱可塑性樹脂を含有してもよい。さらには、活性エネルギー線の照射により重合が進行するビニル基、(メタ)アクリル基などの光重合性二重結合を有するラジカル重合性化合物を含有してもよい。なお、活性エネルギー線としては、可視光、紫外線、赤外線、X線、α線、β線、γ線などを挙げることができる。
(other ingredients)
Moisture-curable hot-melt resin compositions include thermosetting resins, photo-curable resins, moisture-curable resins, and other curable resins that are cured by heat, active energy rays, moisture, etc., in addition to the urethane prepolymers described above. It may contain, or may contain a thermoplastic resin. Further, it may contain a radically polymerizable compound having a photopolymerizable double bond such as a vinyl group or (meth)acrylic group that undergoes polymerization upon irradiation with an active energy ray. Examples of active energy rays include visible light, ultraviolet rays, infrared rays, X-rays, α rays, β rays, and γ rays.
 また、本発明の湿気硬化型ホットメルト樹脂組成物は、湿気硬化促進触媒、カップリング剤以外にも、添加剤(「その他の添加剤」ともいう)を含有してもよい。その他の添加剤としては、可塑剤、粘着付与剤、顔料、染料などの着色剤、充填剤、酸化防止剤、界面活性剤、難燃剤、ワックス粒子、イオン液体、発泡粒子、膨張粒子、反応性希釈剤などが挙げられる。 In addition, the moisture-curable hot-melt resin composition of the present invention may contain additives (also referred to as "other additives") in addition to the moisture-curing accelerating catalyst and coupling agent. Other additives include plasticizers, tackifiers, colorants such as pigments and dyes, fillers, antioxidants, surfactants, flame retardants, wax particles, ionic liquids, foamed particles, expanded particles, reactive diluents and the like.
[初期PUSH接着力]
 本発明の湿気硬化型ホットメルト樹脂組成物は、初期PUSH接着力が3kgf/cm以上である。初期PUSH接着力は、湿気硬化型ホットメルト樹脂組成物を溶融させて被着体に塗布し、所定のオープンタイム経過後、その被着体を塗布された湿気硬化型ホットメルト樹脂組成物を介して別の被着体に貼り合わせて圧着し、5分経過させたときに測定される接着力である。なお、オープンタイムとして30秒又は300秒それぞれで測定し、より高い数値を初期PUSH接着力とする。湿気硬化型ホットメルト樹脂組成物は、結晶性が適度に高く固化する速度がある程度早いことで、セットタイムも適度に早くなり、初期PUSH接着力を一定値以上とすることができる。
 一方で、湿気硬化型ホットメルト樹脂組成物は、結晶性が高すぎると被着体の貼り合わせ前に固化してしまい、初期PUSH接着力が低くなる。また、湿気硬化型ホットメルト樹脂組成物は、結晶性が低すぎると、5分経過後では十分に固化せずに初期PUSH接着力が低くなる。
 したがって、湿気硬化型ホットメルト樹脂組成物は、初期PUSH接着力が3kgf/cm以上であると、ウレタンプレポリマーが適度な結晶性を有することを示す指標ともいえる。そして、本発明では、上述した特定のウレタンプレポリマーを使用し、かつ初期PUSH接着力を3kgf/cm以上としてウレタンプレポリマーに適度な結晶性を持たせることで、耐衝撃性が良好となる。
[Initial PUSH adhesive strength]
The moisture-curable hot-melt resin composition of the present invention has an initial PUSH adhesive strength of 3 kgf/cm 2 or more. The initial PUSH adhesive strength is measured by melting the moisture-curable hot-melt resin composition and applying it to the adherend, and after a predetermined open time has passed, the moisture-curable hot-melt resin composition is applied to the adherend. It is the adhesive strength measured when the adhesive is attached to another adherend by pressure and allowed to pass for 5 minutes. The open time is measured for 30 seconds or 300 seconds, and the higher numerical value is defined as the initial PUSH adhesive strength. The moisture-curable hot-melt resin composition has a moderately high crystallinity and a relatively high solidification speed, so that the set time is also moderately fast, and the initial PUSH adhesive strength can be set to a certain value or more.
On the other hand, if the moisture-curable hot-melt resin composition has too high crystallinity, it will solidify before bonding the adherends together, resulting in low initial PUSH adhesive strength. In addition, if the moisture-curable hot-melt resin composition has too low crystallinity, it will not be sufficiently solidified after 5 minutes, and the initial PUSH adhesive strength will be low.
Therefore, if the moisture-curable hot-melt resin composition has an initial PUSH adhesive strength of 3 kgf/cm 2 or more, it can also be said to be an index indicating that the urethane prepolymer has appropriate crystallinity. In the present invention, the above-mentioned specific urethane prepolymer is used, and the initial PUSH adhesive strength is set to 3 kgf/cm 2 or more to give appropriate crystallinity to the urethane prepolymer, thereby improving impact resistance. .
 上記初期PUSH接着力は、初期接着力及び耐衝撃性を向上させる観点から、4kgf/cm以上が好ましく、5kgf/cm以上がより好ましく、6kgf/cm以上がさらに好ましい。また、初期PUSH接着力は、特に限定されないが、例えば50kgf/cm以下でもよいが、25kgf/cm以下でもよい。
 初期PUSH接着力は、具体的には、実施例に記載の方法により測定できる。
The initial PUSH adhesive strength is preferably 4 kgf/cm 2 or higher, more preferably 5 kgf/cm 2 or higher, and even more preferably 6 kgf/cm 2 or higher, from the viewpoint of improving the initial adhesive strength and impact resistance. The initial PUSH adhesive strength is not particularly limited, but may be, for example, 50 kgf/cm 2 or less, or 25 kgf/cm 2 or less.
Specifically, the initial PUSH adhesive strength can be measured by the method described in Examples.
 初期PUSH接着力は、例えば、ウレタンプレポリマーを構成する成分により調整でき、上記の通り、湿気硬化型ホットメルト樹脂組成物に適度に結晶性を持たせることで一定値以上にしやすくなる。より具体的には、ウレタンプレポリマーの原料であるポリオール(a2)に適度に結晶性を有するポリオールを使用することで、初期PUSH接着力を高めることができる。また、ポリエーテルポリカーボネートポリオール(a1)に結晶性が低い(好ましくは液状である)ポリオールを使用することでほどよい柔軟性が得られ、初期PUSH接着力を高めやすくなる。 The initial PUSH adhesive strength can be adjusted, for example, by the components that make up the urethane prepolymer, and as described above, it becomes easier to increase the initial PUSH adhesive strength to a certain value or more by imparting moderate crystallinity to the moisture-curable hot-melt resin composition. More specifically, by using a polyol having moderate crystallinity as the polyol (a2), which is the raw material of the urethane prepolymer, the initial PUSH adhesive strength can be increased. In addition, by using a polyol having low crystallinity (preferably liquid) as the polyether polycarbonate polyol (a1), moderate flexibility can be obtained, and the initial PUSH adhesive strength can be easily increased.
[オレイン酸浸漬後の重量増加率]
 本発明の湿気硬化型ホットメルト樹脂組成物は、硬化体のオレイン酸浸漬後の重量増加率が、15%以下が好ましく、12%以下がより好ましく、10%以下がさらに好ましく、8%以下がよりさらに好ましい。携帯電子機器において長期間使用すると、硬化体に皮脂、汗、化学薬品などが接触するが、オレイン酸浸漬後の重量増加率を低くすることで、硬化体は、皮脂分に接触しても、皮脂分を吸収することを防止できる。そのため、使用に伴って被着体に対する接着力が低くなることを防止でき、携帯電子機器用の接着剤として好適に使用することができる。オレイン酸浸漬後の重量増加率は、低くければ低いほどよく、0%以上であればよいが、実用的には1%以上であってもよい。
 なお、オレイン酸浸漬後の重量増加率は、後述する実施例で示すとおり、湿気硬化型ホットメルト樹脂組成物を湿気硬化させることで得た、所定サイズのフィルム状のサンプルを、40℃のオレイン酸に3日間浸漬した際の重量増加率である。
[Weight increase rate after immersion in oleic acid]
In the moisture-curable hot melt resin composition of the present invention, the weight increase rate of the cured body after immersion in oleic acid is preferably 15% or less, more preferably 12% or less, further preferably 10% or less, and 8% or less. Even more preferable. When used in mobile electronic devices for a long period of time, the cured body comes into contact with sebum, sweat, chemicals, etc., but by reducing the weight increase rate after immersion in oleic acid, the cured body can Prevents absorption of sebum. Therefore, it is possible to prevent the adhesion strength to adherends from decreasing with use, and it can be suitably used as an adhesive for portable electronic devices. The lower the rate of weight increase after immersion in oleic acid, the better.
In addition, the weight increase rate after immersion in oleic acid was obtained by moisture-curing a moisture-curable hot-melt resin composition, as shown in Examples described later. It is the weight increase rate when immersed in acid for 3 days.
[耐久回数]
 本発明の湿気硬化型ホットメルト樹脂組成物は、一対の被着体間を湿気硬化型ホットメルト樹脂組成物を介して貼り合わせ、その後、該樹脂組成物を湿気硬化させて得た測定用サンプルに対して、耐衝撃試験を実施した際の耐久回数が、50回以上であることが好ましく、100回以上であることがより好ましく、150回以上であることがさらに好ましい。本発明では上記耐久回数が多くなることで、耐衝撃性が良好となり、使用時に電子機器が落下しても、樹脂組成物により接着された部品が落下時に脱落したりすることを防止できる。
 なお、耐衝撃試験は、デュポン式落下衝撃試験機を用いて、150mmの高さから200gのステンレス製のおもりを、一方の被着体が剥がれ落ちるまで、一方の被着体に対して繰り返し落下させることにより行うものであり、一方の被着体が剥がれ落ちるまでにおもりを落下させた回数を耐久回数とする。
[Endurance times]
The moisture-curable hot-melt resin composition of the present invention is a measurement sample obtained by bonding a pair of adherends via the moisture-curable hot-melt resin composition and then moisture-curing the resin composition. On the other hand, the number of times of endurance when an impact resistance test is carried out is preferably 50 times or more, more preferably 100 times or more, and even more preferably 150 times or more. In the present invention, by increasing the number of times of durability, the impact resistance is improved, and even if the electronic device is dropped during use, it is possible to prevent the parts adhered by the resin composition from falling off when dropped.
In the impact resistance test, a DuPont drop impact tester is used to repeatedly drop a 200 g stainless steel weight from a height of 150 mm onto one adherend until the other adherend is peeled off. The durability is defined as the number of times the weight is dropped before one of the adherends peels off.
(製造方法)
 本発明の湿気硬化型ホットメルト樹脂組成物の製造においては、まず、ウレタンプレポリマーを用意する。ウレタンプレポリマーは、上記の通り、ポリオール(A)にポリイソシアネート化合物(B)を反応させることで得ることができる。その後、ウレタンプレポリマーに、必要に応じて、湿気硬化促進触媒、カップリング剤、これら以外のその他の成分などを加えて、公知の混合機で混合することで、湿気硬化型ホットメルト樹脂組成物を得ることができる。混合機としては、特に限定されないが、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、遊星式撹拌装置、ニーダー、3本ロール等が挙げられる。
(Production method)
In the production of the moisture-curable hot-melt resin composition of the present invention, first, a urethane prepolymer is prepared. As described above, the urethane prepolymer can be obtained by reacting the polyol (A) with the polyisocyanate compound (B). Then, if necessary, the urethane prepolymer is added with a moisture curing acceleration catalyst, a coupling agent, and other components other than these, and mixed with a known mixer to obtain a moisture-curable hot-melt resin composition. can be obtained. Examples of mixers include, but are not limited to, homodispers, homomixers, universal mixers, planetary mixers, planetary stirrers, kneaders, and three rolls.
<使用方法>
 本発明の湿気硬化型ホットメルト樹脂組成物は、硬化され、硬化体として使用されるものである。本発明の上記湿気硬化型ホットメルト樹脂組成物は、例えば、接着剤として使用され、硬化された湿気硬化型ホットメルト樹脂組成物により例えば一対の被着体間を接着させるとよい。
<How to use>
The moisture-curable hot-melt resin composition of the present invention is cured and used as a cured product. The moisture-curable hot-melt resin composition of the present invention may be used, for example, as an adhesive, and the cured moisture-curable hot-melt resin composition may bond, for example, a pair of adherends.
本発明の湿気硬化型ホットメルト樹脂組成物は、例えば、溶融するまで加熱して、溶融した状態で一方の被着体に塗布し、その後、塗布された湿気硬化型ホットメルト樹脂組成物を介して、他方の被着体を一方の被着体に重ね合わせるとよい。これにより、被着体間は、冷却され固化された湿気硬化型ホットメルト樹脂組成物により、仮固定されることになる。湿気硬化型ホットメルト樹脂組成物は、例えば60℃以上130℃以下、好ましくは80℃以上110℃以下に加熱されて溶融されるとよい。
 その後、湿気硬化型ホットメルト樹脂組成物は、例えば大気中に放置されることで、湿気により硬化され、被着体間が、硬化された湿気硬化型ホットメルト樹脂組成物により、仮固定時よりも高い接着力(最終接着力)で本固定されるとよい。
The moisture-curable hot-melt resin composition of the present invention is, for example, heated until it melts, applied to one adherend in a molten state, and then applied through the moisture-curable hot-melt resin composition. Then, the other adherend is superimposed on the one adherend. As a result, the adherends are temporarily fixed by the cooled and solidified moisture-curable hot-melt resin composition. The moisture-curable hot-melt resin composition may be melted by heating to, for example, 60° C. or higher and 130° C. or lower, preferably 80° C. or higher and 110° C. or lower.
After that, the moisture-curable hot-melt resin composition is, for example, left in the atmosphere to be cured by moisture, and the adherends are separated from each other by the cured moisture-curable hot-melt resin composition from the time of temporary fixing. It is preferable that the main fixing is performed with a high adhesive strength (final adhesive strength).
 本発明の湿気硬化型ホットメルト樹脂組成物は、例えば電子部品用接着剤として使用さることが好ましい。被着体は、特に限定されないが、好ましくは電子機器を構成する各種電子部品、より好ましくは携帯電子機器を構成する電子部品である。被着体の材質としては、金属、ガラス、プラスチック等のいずれでもよい。また、被着体の形状としては、特に限定されず、例えば、フィルム状、シート状、板状、パネル状、トレイ状、ロッド(棒状体)状、箱体状、筐体状等が挙げられる。
 携帯電子機器としては、特に限定されないが、スマートフォンなどの携帯電話、デジタルカメラ、ウェラブル端末、携帯ゲーム機器、タブレット型コンピューター、ノート型コンピューター、アクションカメラなどが挙げられ、これらの中ではスマートフォン、ウェラブル端末が好ましい。
The moisture-curable hot-melt resin composition of the present invention is preferably used, for example, as an adhesive for electronic parts. The adherend is not particularly limited, but is preferably various electronic components that constitute electronic devices, more preferably electronic components that constitute portable electronic devices. The material of the adherend may be metal, glass, plastic, or the like. The shape of the adherend is not particularly limited, and examples thereof include film-like, sheet-like, plate-like, panel-like, tray-like, rod-like, box-like, and housing-like shapes. .
Examples of portable electronic devices include, but are not limited to, mobile phones such as smartphones, digital cameras, wearable terminals, portable game devices, tablet computers, notebook computers, action cameras, and the like, among which smartphones and wearable terminals. is preferred.
 電子部品は、一般的に基板を有しており、したがって、本発明の湿気硬化型ホットメルト樹脂組成物が使用される、携帯電子機器などの電子機器は、湿気硬化型ホットメルト樹脂組成物の硬化体と、基板とを有するとよい。基板上には、一般的に各種電子回路などが設けられている。 Electronic parts generally have a substrate, therefore, electronic devices such as portable electronic devices in which the moisture-curable hot-melt resin composition of the present invention is used are It is preferable to have a cured body and a substrate. Various electronic circuits and the like are generally provided on the substrate.
 電子機器では、例えば基板を被着体として、本発明の湿気硬化型ホットメルト樹脂組成物を介して基板同士を接合してもよいが、基板を本発明の湿気硬化型ホットメルト樹脂組成物を介して電子機器の他の電子部品(例えば、筐体)などに接合してもよい。
 例えば、本発明の湿気硬化型ホットメルト樹脂組成物は、電子機器内部などにおいて、例えば基板と基板とを接合して組立部品を得るために使用されてもよい。このようにして得られた組立部品は、第1の基板と、第2の基板と、本発明の硬化体を有し、第1の基板の少なくとも一部が、第2の基板の少なくとも一部に硬化体を介して接合される。
 また、本発明の湿気硬化型ホットメルト樹脂組成物は、表示部材の固定用途に使用されてもよい。すなわち、湿気硬化型ホットメルト樹脂組成物が使用される電子部品は、表示部材を構成する部品であってもよい。表示部材は、画像表示などに使用される部材であり、例えば液晶パネル、有機ELパネル、LEDディスプレイパネル、セグメントディスプレイパネル、プラズマディスプレイパネル、表示装置用のバックライトパネルなどが挙げられる。本発明の湿気硬化型ホットメルト樹脂組成物は、表示部材を表示部材以外の他の部材(例えば、筐体)に接着させるために使用してもよいし、表示部材を構成する部材同士を接着させてもよい。
In electronic devices, for example, substrates may be used as adherends, and the substrates may be bonded together via the moisture-curable hot-melt resin composition of the present invention. It may be joined to another electronic component (for example, a housing) of the electronic device through the wire.
For example, the moisture-curable hot-melt resin composition of the present invention may be used, for example, to bond substrates together to obtain assembled parts inside electronic devices. The assembly part thus obtained has a first substrate, a second substrate, and the cured product of the present invention, wherein at least a portion of the first substrate is at least a portion of the second substrate. is joined through a hardened body.
The moisture-curable hot-melt resin composition of the present invention may also be used for fixing display members. That is, the electronic component using the moisture-curable hot-melt resin composition may be a component constituting a display member. The display member is a member used for image display and the like, and includes, for example, a liquid crystal panel, an organic EL panel, an LED display panel, a segment display panel, a plasma display panel, a backlight panel for display devices, and the like. The moisture-curable hot-melt resin composition of the present invention may be used to adhere a display member to a member other than the display member (for example, a housing), or may be used to adhere members constituting the display member to each other. You may let
 本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。 The present invention will be described in more detail by way of examples, but the present invention is not limited by these examples.
 本実施例において、各種物性を以下のように測定した。 In this example, various physical properties were measured as follows.
(初期PUSH接着力)
 図1(a)に示すように、90mm×50mmで厚み5mmであり、中央に直径12mmの円形の孔11Aを有する第1の基板11、及び50mm×50mmで厚み5mmの第2の基板12を用意した。第1の基板11及び第2の基板12はいずれもポリカーボネート板であった。第2の基板12の両側端部には、スペーサ15A、15Bを貼り付けた(図1(b)参照)。なお、スペーサ15A、15Bは、幅3mm、長さ50mm、厚み0.15mmのテープであった。なお、スペーサ15A、15Bのテープとしては、片面接着テープを使用した。
 第1の基板11の孔11Aを中心に囲むように、100℃に加熱した湿気硬化型ホットメルト樹脂組成物10を、ディスペンサー(武蔵エンジニアリング社製、「Shotmaster200DS」)を用いて、塗布速度12mm/s、幅1mm±0.2mm、高さ0.15mm±0.05mmでφ25mmの円形状に塗布した。
(Initial PUSH adhesive strength)
As shown in FIG. 1(a), a first substrate 11 having a size of 90 mm×50 mm and a thickness of 5 mm and a circular hole 11A having a diameter of 12 mm in the center and a second substrate 12 having a size of 50 mm×50 mm and a thickness of 5 mm were prepared. prepared. Both the first substrate 11 and the second substrate 12 were polycarbonate plates. Spacers 15A and 15B were attached to both side ends of the second substrate 12 (see FIG. 1(b)). The spacers 15A and 15B were tapes having a width of 3 mm, a length of 50 mm and a thickness of 0.15 mm. A single-sided adhesive tape was used as the tape for the spacers 15A and 15B.
Moisture-curable hot-melt resin composition 10 heated to 100° C. is applied so as to surround hole 11A of first substrate 11 using a dispenser (manufactured by Musashi Engineering Co., Ltd., “Shotmaster 200DS”) at a coating speed of 12 mm/ s, a width of 1 mm±0.2 mm, a height of 0.15 mm±0.05 mm, and a circular shape of φ25 mm.
 上記の塗布完了時点を0秒として、30秒、又は300秒のオープンタイムが経過後、第1及び第2の基板11,12同士の中心位置が一致するようにして、湿気硬化型ホットメルト樹脂組成物10を介して、第1の基板11の上に第2の基板12を重ね合わせ、第2の基板12の上にさらに250gのおもりを3分間静置させることで、第1及び第2の基板11,12を、湿気硬化型ホットメルト樹脂組成物10を介して圧着させて測定用サンプル13を得た。この際、第1及び第2の基板11、12間の距離は、スペーサ15A,15Bより0.15mmに保持された。測定用サンプル13は、250gのおもりを取り除き、25℃、50%RHで放置した。
 次いで、測定用サンプル13を、第1の基板11が上側、第2の基板12が下側になるように配置して、第1の基板11をステンレス製治具で支持した状態で、直径が10mmの断面円形状である棒状部材14を、孔11Aに挿入した。そして、図1(b)に示すように、棒状部材14により10mm/分の速度で第2の基板12を鉛直下向きに押して、第2の基板12が第1の基板11から剥がれる際の応力を測定して初期PUSH接着力とした。なお、初期PUSH接着力は、25℃、50%RHで放置する時間を調整して、圧着開始5分後に測定するようにした。なお、塗布から初期PUSH接着力の測定まで25℃、50%RHの環境下で行った。
After an open time of 30 seconds or 300 seconds, with the above application completion time being 0 seconds, the center positions of the first and second substrates 11 and 12 are aligned, and the moisture-curable hot melt resin A second substrate 12 is overlaid on the first substrate 11 with the composition 10 interposed therebetween, and a weight of 250 g is allowed to stand still on the second substrate 12 for 3 minutes to form the first and second substrates. The substrates 11 and 12 of were pressed together with the moisture-curable hot-melt resin composition 10 interposed therebetween to obtain a sample 13 for measurement. At this time, the distance between the first and second substrates 11 and 12 was kept at 0.15 mm by the spacers 15A and 15B. A weight of 250 g was removed from the measurement sample 13 and left at 25° C. and 50% RH.
Next, the measurement sample 13 was placed so that the first substrate 11 was on the upper side and the second substrate 12 was on the lower side, and the first substrate 11 was supported by a jig made of stainless steel. A rod-shaped member 14 having a circular cross section of 10 mm was inserted into the hole 11A. Then, as shown in FIG. 1(b), the second substrate 12 is pushed vertically downward at a speed of 10 mm/min by the bar member 14, and the stress when the second substrate 12 is peeled off from the first substrate 11 is The initial PUSH adhesive strength was measured. The initial PUSH adhesive strength was measured after 5 minutes from the start of pressure bonding by adjusting the time of standing at 25° C. and 50% RH. In addition, from application to measurement of the initial PUSH adhesive strength, the conditions were 25° C. and 50% RH.
 なお、上記のディスペンサーにおいて、湿気硬化型ホットメルト樹脂組成物は30ccシリンジ(武蔵エンジニアリング社製、「PSY-30F」)に充填され、シリンジの先には内径0.66mmのニードル(武蔵エンジニアリング社製、「PN-20G-A」)をセットした。シリンジの加温ホルダーと温度コントロールユニットは武蔵エンジニアリング社製の「TCU-02」を使用した。シリンジからの湿気硬化型ホットメルト樹脂組成物の吐出方法はエア圧で押す方法を採用し、エア圧コントロールユニットは武蔵エンジニアリング社製の「ML-5000XII」を使用した。湿気硬化型ホットメルト樹脂組成物の吐出量はエア圧を0.01~0.30MPaの間で可変させることによって調整した。 In the above dispenser, the moisture-curable hot melt resin composition is filled in a 30cc syringe ("PSY-30F" manufactured by Musashi Engineering Co., Ltd.), and a needle with an inner diameter of 0.66 mm (manufactured by Musashi Engineering Co., Ltd.) is attached to the tip of the syringe. , “PN-20G-A”). As a syringe heating holder and temperature control unit, “TCU-02” manufactured by Musashi Engineering Co., Ltd. was used. The moisture-curable hot-melt resin composition was discharged from a syringe by pressing with air pressure, and an air pressure control unit "ML-5000XII" manufactured by Musashi Engineering Co., Ltd. was used. The discharge amount of the moisture-curable hot-melt resin composition was adjusted by varying the air pressure between 0.01 and 0.30 MPa.
(耐衝撃性試験)
 図2に示すとおり、初期PUSH接着力と同様の手順で測定用サンプル13を得た後、測定用サンプル13を25℃、湿度50%RHの環境下に72時間放置した。72時間放置後、第1の基板11を上側、第2の基板12を下側に配置したうえで第1の基板11をステンレス製治具で支持した。ただし、耐衝撃性試験では、第1の基板11としてアルミニウム板、第2の基板12として強化ガラス板を使用した。アルミニウム板は、初期PUSH接着力測定時に使用するポリカーボネート板と同じ寸法であり、強化ガラス板は厚みを1.5mmとした以外は、ポリカーボネート板と同じ寸法であった。
 なお、アルミニウム板は、以下の通りに前処理したものを使用した。25mmol/Lの水酸化ナトリウム水溶液で1分間洗浄し、次に、蒸留水で30秒間すすぐ処理を3回繰り返した。その後、表面の水分をふき取り、引き続き、アセトンで表面を拭いて、自然乾燥し、プラズマ処理をした。プラズマ処理を行ってから30分以内に貼り合わせを行った。プラズマ処理の条件は以下の通りであった。
 窒素ガス流量 : 200L/min
 クリーンドライエア(CDA)流量:1000mL/min
 電圧:255V   電流:0.63A
 プラズマヘッドスピード:250mm/min
 プラズマヘッドと基材間の距離:3mm
 装置:積水化学工業社製、「AP-T03」
(Impact resistance test)
As shown in FIG. 2, after obtaining the measurement sample 13 in the same procedure as for the initial PUSH adhesive strength, the measurement sample 13 was left in an environment of 25° C. and 50% RH for 72 hours. After being left for 72 hours, the first substrate 11 was arranged on the upper side and the second substrate 12 was arranged on the lower side, and then the first substrate 11 was supported by a jig made of stainless steel. However, in the impact resistance test, an aluminum plate was used as the first substrate 11 and a tempered glass plate was used as the second substrate 12 . The aluminum plate had the same dimensions as the polycarbonate plate used in the initial PUSH adhesion measurement, and the tempered glass plate had the same dimensions as the polycarbonate plate except that the thickness was 1.5 mm.
The aluminum plate used was pretreated as follows. The process of washing with a 25 mmol/L aqueous sodium hydroxide solution for 1 minute and then rinsing with distilled water for 30 seconds was repeated three times. Thereafter, the moisture on the surface was wiped off, followed by wiping the surface with acetone, air drying, and plasma treatment. The bonding was performed within 30 minutes after the plasma treatment. The plasma treatment conditions were as follows.
Nitrogen gas flow rate: 200L/min
Clean dry air (CDA) flow rate: 1000mL/min
Voltage: 255V Current: 0.63A
Plasma head speed: 250mm/min
Distance between plasma head and substrate: 3 mm
Apparatus: "AP-T03" manufactured by Sekisui Chemical Co., Ltd.
 また、図3に示すステンレス製の撃ち型16を用意した。撃ち型16は、一端に頭部16Bが設けられた棒状の部材であり、撃ち型16の棒状部分16Aは、他端側に直径10mm、長さ17mmの円柱状の小径部16Cと、頭部16B側に長さ65mmの円柱状の大径部16Dが設けられ、大径部16D及び小径部16Cは、長さ3mmの接続部16Eを介して接続される。接続部16Eは、テーパー状に直径が大部16Dから小径部16Cに向かって漸次小さくなる。
 頭部16Bは、大径部16Dに接続される直径30mm、高さ15mmの円柱状のベース部16Fを有し、かつベース部16Fの一端側に、端面の直径が16mmで高さが3mmである先端16Gを備える。
Also, a stainless steel punch die 16 shown in FIG. 3 was prepared. The shot die 16 is a rod-shaped member having a head 16B at one end. A cylindrical large-diameter portion 16D having a length of 65 mm is provided on the 16B side, and the large-diameter portion 16D and the small-diameter portion 16C are connected via a connecting portion 16E having a length of 3 mm. The connecting portion 16E has a tapered shape with a diameter gradually decreasing from the large diameter portion 16D toward the small diameter portion 16C.
The head portion 16B has a cylindrical base portion 16F with a diameter of 30 mm and a height of 15 mm connected to the large diameter portion 16D. It has a tip 16G.
 撃ち型16は、図2に示すとおり、第2の基板12の中央上に立たせるように、棒状部分16Aの大径部16Dを、デュポン式落下衝撃試験機の支持孔(図示しない)に挿入し、かつ棒状部分16Aの小径部16Cを第1の基板11の孔11Aに挿入した。
 その状態で、デュポン式落下衝撃試験機を用いて、頭部16Bの先端16Gに対する高さが150mmとなる位置から、頭部16Bの先端16Gに鉛直下向きに200gのステンレス製のおもり17を繰り返し落下させ、おもり17の衝撃により、第2の基板12が剥がれ落ちるまでのおもりの落下回数を耐久回数として評価した。耐久回数が多いほど耐衝撃性が高いことを示す。
As shown in FIG. 2, the shooting die 16 inserts the large-diameter portion 16D of the rod-shaped portion 16A into the support hole (not shown) of the DuPont drop impact tester so as to stand on the center of the second substrate 12. Then, the small diameter portion 16C of the rod-shaped portion 16A was inserted into the hole 11A of the first substrate 11. As shown in FIG.
In this state, using a DuPont drop impact tester, a 200 g stainless steel weight 17 is repeatedly dropped vertically downward onto the tip 16G of the head 16B from a position where the height of the head 16B with respect to the tip 16G is 150 mm. The number of times the weight fell until the second substrate 12 peeled off due to the impact of the weight 17 was evaluated as the number of durability. The higher the number of times of durability, the higher the impact resistance.
(耐皮脂性)
 100℃に加熱して溶融した湿気硬化型ホットメルト樹脂組成物を、幅6mm、長さ35mm、厚み0.5mmのテフロン(登録商標)型に流し込み、硬化させることで硬化体フィルムを得た。湿気硬化型ホットメルト樹脂組成物の硬化は、25℃、50%RHで72時間放置することにより湿気硬化させることで行った。
 ガラス容器(マルエム社製、スクリュー管No.5)にオレイン酸(試薬、富士フイルム和光純薬(株)製)を16mL入れ、40℃、湿度90%RHの雰囲気下で、上記容器内のオレイン酸に硬化体フィルムを72時間浸漬させた。その後、浸漬後の硬化体フィルムを引き上げた後、表面に付着したオレイン酸を拭き取って、重量を測定して、浸漬前の硬化体フィルムに対する重量増加率を求めた。重量増加率が低い方が、耐皮脂性が高いことを示す。
重量増加率は以下の通りに計算した。
重量増加率[%]=(浸漬後の重量-浸漬前の重量)×100/浸漬前の重量
(Sebum resistance)
A moisture-curable hot-melt resin composition melted by heating to 100° C. was poured into a Teflon (registered trademark) mold having a width of 6 mm, a length of 35 mm, and a thickness of 0.5 mm, and cured to obtain a cured film. Curing of the moisture-curable hot-melt resin composition was carried out by allowing it to stand at 25° C. and 50% RH for 72 hours for moisture curing.
16 mL of oleic acid (reagent, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was placed in a glass container (manufactured by Maruem Co., Ltd., screw tube No. 5), and the oleic acid in the container was treated under an atmosphere of 40 ° C. and a humidity of 90% RH. The cured film was immersed in acid for 72 hours. Thereafter, the cured film after immersion was pulled up, oleic acid adhering to the surface was wiped off, and the weight was measured to determine the weight increase rate relative to the cured film before immersion. A lower weight increase rate indicates a higher sebum resistance.
The weight gain rate was calculated as follows.
Weight increase rate [%] = (weight after immersion - weight before immersion) x 100 / weight before immersion
各実施例、比較例で使用した成分は、以下のとおりであった。
<ポリオール>
(ポリエーテルポリカーボネートポリオール)
 PEPCD:ポリエーテルポリカーボネートジオール(ポリエーテル骨格:PTMG由来)、三菱ケミカル社製、「PEPCD NT-2002」、常温で液状
(ポリエーテルジオール)
 PED:ポリテトラメチレングリコール、保土谷化学社製「PTG L-2000」、常温で液状
The components used in each example and comparative example were as follows.
<Polyol>
(polyether polycarbonate polyol)
PEPCD: polyether polycarbonate diol (polyether skeleton: derived from PTMG), manufactured by Mitsubishi Chemical Corporation, "PEPCD NT-2002", liquid at room temperature (polyether diol)
PED: polytetramethylene glycol, "PTG L-2000" manufactured by Hodogaya Chemical Co., Ltd., liquid at room temperature
(ポリエステルジオール)
 PEsD1:豊国製油社製、「HS 2H-351A」、ポリオール:1,6-ヘキサンジオール(HD)、ポリカルボン酸:アジピン酸(AA)、常温で固体
 PEsD2:豊国製油社製、「HS 2H-200S」、ポリオール:1,6-ヘキサンジオール(HD)、ポリカルボン酸:セバシン酸(SA)、常温で固体
 PEsD3:豊国製油社製、「HS 2H-458T」、ポリオール:1,6-ヘキサンジオール(HD)、ポリカルボン酸:アジピン酸(AA)及びTPA(テレフタル酸)の共重合体、常温で固体
 PEsD4:豊国製油社製、「HS 2H-201AP」、ポリオール:1,6-ヘキサンジオール(HD)、ポリカルボン酸:アジピン酸(AA)、常温で固体
(polyester diol)
PEsD1: Toyokuni Oil Co., Ltd., "HS 2H-351A", polyol: 1,6-hexanediol (HD), polycarboxylic acid: adipic acid (AA), solid at room temperature PEsD2: Toyokuni Oil Co., Ltd., "HS 2H- 200S", polyol: 1,6-hexanediol (HD), polycarboxylic acid: sebacic acid (SA), solid at room temperature PEsD3: manufactured by Toyokuni Oil Co., Ltd., "HS 2H-458T", polyol: 1,6-hexanediol (HD), polycarboxylic acid: copolymer of adipic acid (AA) and TPA (terephthalic acid), solid at room temperature PEsD4: manufactured by Toyokuni Oil Co., Ltd., "HS 2H-201AP", polyol: 1,6-hexanediol ( HD), polycarboxylic acid: adipic acid (AA), solid at normal temperature
(ポリカーボネートポリオール)
 PCD1:宇部興産社製、「Etanacoll UH-200」、1,6-ヘキサンジオール(HD)由来のポリカーボネートジオール、常温で固体
 PCD2:三菱ケミカル社製、「BENEBiOL NL2000D」、1,10-デカンジオール(1,10-DDO)由来のポリカーボネートジオール、固体、常温で固体
 PCD3:三菱ケミカル社製、「BENEBiOL NL2010DB」、1,4-ブタンジール(BD)、及び1,10-デカンジオール(1,10-DDO)由来の共重合ポリカーボネートジオール、常温で固体
(polycarbonate polyol)
PCD1: Ube Industries, Ltd., "Etanacoll UH-200", polycarbonate diol derived from 1,6-hexanediol (HD), solid at room temperature PCD2: Mitsubishi Chemical Corporation, "BENEBiOL NL2000D", 1,10-decanediol ( 1,10-DDO)-derived polycarbonate diol, solid, solid at room temperature PCD3: Mitsubishi Chemical Corporation, "BENEBiOL NL2010DB", 1,4-butanediol (BD), and 1,10-decanediol (1,10-DDO )-derived copolymerized polycarbonate diol, solid at room temperature
<ポリイソシアネート化合物>
 住化コベストロ社製、「Sumidur 44S41」、ジフェニルメタンジイソシアネート(MDI)
<カップリング剤>
信越化学工業社製、「KBM-573」、N-フェニル-3-アミノプロピルトリメトキシシラン
<湿気硬化触媒>
サンアプロ社製、「U―cat660M」、ビス(2-モルホリノエチル)エーテル
<Polyisocyanate compound>
"Sumidur 44S41" manufactured by Sumika Covestro Co., Ltd., diphenylmethane diisocyanate (MDI)
<Coupling agent>
Shin-Etsu Chemical Co., Ltd., "KBM-573", N-phenyl-3-aminopropyltrimethoxysilane <moisture curing catalyst>
"U-cat660M", bis(2-morpholinoethyl) ether manufactured by San-Apro Co., Ltd.
[実施例1]
 ポリオール(A)としての60質量部のPEPCD及び40質量部のPEsD1を500mL容量のセパラブルフラスコに入れた。フラスコ内を真空下(20mmHg以下)、110℃で水分が200ppm以下になるまで撹拌して脱水混合した。その後窒素封入して常圧とし、ポリイソシアネート化合物(B)としてジフェニルメタンジイソシアネート22質量部をフラスコ内に入れ、さらに80℃で3時間撹拌して反応させ、イソシアネート基を有するウレタンプレポリマーを得た。
 得られたウレタンプレポリマーに対して、カップリング剤及び湿気硬化触媒を表1に記載の配合にて加えて、遊星式撹拌装置(シンキー社製、「あわとり練太郎」)にて温度80℃で撹拌し、実施例1の湿気硬化型ホットメルト樹脂組成物を得た。
[Example 1]
60 parts by mass of PEPCD as polyol (A) and 40 parts by mass of PEsD1 were placed in a 500 mL separable flask. The inside of the flask was stirred under vacuum (20 mmHg or less) at 110° C. until the water content became 200 ppm or less, and the mixture was dehydrated and mixed. After that, the flask was filled with nitrogen to normal pressure, and 22 parts by mass of diphenylmethane diisocyanate as the polyisocyanate compound (B) was put into the flask and stirred at 80° C. for 3 hours to react to obtain an isocyanate group-containing urethane prepolymer.
To the obtained urethane prepolymer, a coupling agent and a moisture curing catalyst were added according to the formulation shown in Table 1, and the mixture was stirred at a temperature of 80°C with a planetary stirrer (manufactured by THINKY Co., Ltd., "Awatori Mixer"). to obtain a moisture-curable hot-melt resin composition of Example 1.
[実施例2~6、比較例1~4]
 ウレタンプレポリマーの合成の際に使用するポリオールの原料、及び使用量、並びにポリイソシアネート化合物の使用量を表1に記載の通りに変更した点を除いて実施例1と同様に実施した。
[Examples 2 to 6, Comparative Examples 1 to 4]
Example 1 was carried out in the same manner as in Example 1, except that the raw materials and amounts of the polyol used in synthesizing the urethane prepolymer and the amount of the polyisocyanate compound used were changed as shown in Table 1.

Figure JPOXMLDOC01-appb-T000003

※表1におけるmmol/gは、ポリオールについては、1gあたりの水酸基量を示し、ポリイソシアネート化合物については1gあたりのイソシアネート基量を示す。
※Mnは、ポリオールについては、水酸基価から得られた水酸基量(mmol/g)と官能基数により求められた数平均分子量であり、ポリイソシアネート化合物についてはNCO%と官能基数により求められた分子量である。
※圧着開始5分後のPUSH強度は、オープンタイム30秒又は300秒で測定した結果のうち、高い方の数値を記載した。なお、括弧内は、記載した値を測定したときのオープンタイム(秒)を示す。

Figure JPOXMLDOC01-appb-T000003

*mmol/g in Table 1 indicates the amount of hydroxyl groups per 1 g of polyols, and the amount of isocyanate groups per 1 g of polyisocyanate compounds.
* For polyols, Mn is the number average molecular weight obtained from the hydroxyl group amount (mmol/g) obtained from the hydroxyl value and the number of functional groups.For polyisocyanate compounds, it is the molecular weight obtained from NCO% and the number of functional groups. be.
* The PUSH strength 5 minutes after the start of crimping is the higher numerical value among the results measured with an open time of 30 seconds or 300 seconds. The values in parentheses indicate the open time (seconds) when the indicated values were measured.
 表1に示すように、各実施例の湿気硬化型ホットメルト樹脂組成物は、ポリエーテルポリカーボネートポリオール(a1)と、ポリエステルポリオール及びポリカーボネートポリオールのいずれかとを有するポリオールから得られたウレタンプレポリマーを含有し、かつ初期PUSH接着力が一定値以上であった。そのため、耐衝撃性及び耐皮脂性の両方が優れたものとなった。
 それに対して、比較例1、4の湿気硬化型ホットメルト樹脂組成物は、ポリエーテルポリカーボネートポリオール(a1)と、ポリエステルポリオール及びポリカーボネートポリオールのいずれかとを有するポリオールから得られたウレタンプレポリマーを含有するものの、初期PUSH接着力が低かったため、耐衝撃性を良好にできなかった。
 また、比較例2は、ポリエーテルポリカーボネートポリオール(a1)を使用しなかったため、耐皮脂性を良好にすることができなかった。比較例3ではポリエーテルポリカーボネートポリオール(a1)を使用しなかったため、耐衝撃性を良好にすることができなかった。

 
As shown in Table 1, the moisture-curable hot melt resin composition of each example contains a polyether polycarbonate polyol (a1) and a urethane prepolymer obtained from a polyol having either a polyester polyol or a polycarbonate polyol. and the initial PUSH adhesive strength was a certain value or more. Therefore, both impact resistance and sebum resistance were excellent.
On the other hand, the moisture-curable hot-melt resin compositions of Comparative Examples 1 and 4 contain a polyether polycarbonate polyol (a1) and a urethane prepolymer obtained from a polyol having either a polyester polyol or a polycarbonate polyol. However, since the initial PUSH adhesive strength was low, the impact resistance could not be improved.
Moreover, since the polyether polycarbonate polyol (a1) was not used in Comparative Example 2, the sebum resistance could not be improved. Since the polyether polycarbonate polyol (a1) was not used in Comparative Example 3, the impact resistance could not be improved.

Claims (11)

  1.  ポリオール(A)とポリイソシアネート化合物(B)との反応物であり、かつイソシアネート基を有するウレタンプレポリマーを含有し、
     前記ポリオール(A)が、ポリエーテルポリカーボネートポリオール(a1)と、該ポリエーテルポリカーボネートポリオール(a1)とは異なるポリオール(a2)とを含み、前記ポリオール(a2)が、ポリエステルポリオール及びポリカーボネートポリオールからなる群から選ばれる少なくともいずれかであり、
     初期PUSH接着力が3kgf/cm以上である、湿気硬化型ホットメルト樹脂組成物。
    A urethane prepolymer that is a reaction product of a polyol (A) and a polyisocyanate compound (B) and has an isocyanate group,
    The polyol (A) contains a polyether polycarbonate polyol (a1) and a polyol (a2) different from the polyether polycarbonate polyol (a1), and the polyol (a2) is a group consisting of a polyester polyol and a polycarbonate polyol. is at least one selected from
    A moisture-curable hot-melt resin composition having an initial PUSH adhesive strength of 3 kgf/cm 2 or more.
  2.  ポリエーテルポリカーボネートポリオール(a1)が、直鎖かつ炭素数3~8のアルキレン基を有する、請求項1に記載の湿気硬化型ホットメルト樹脂組成物。 The moisture-curable hot-melt resin composition according to claim 1, wherein the polyether polycarbonate polyol (a1) has a straight-chain alkylene group with 3 to 8 carbon atoms.
  3.  前記ポリエステルポリオールが、直鎖のポリオールに由来する構成単位と直鎖のポリカルボン酸に由来する構成単位を含む請求項1又は2に記載の湿気硬化型ホットメルト樹脂組成物。 The moisture-curable hot-melt resin composition according to claim 1 or 2, wherein the polyester polyol contains structural units derived from linear polyol and structural units derived from linear polycarboxylic acid.
  4.  前記ポリエステルポリオールにおいて、前記直鎖のポリオールが1,6-ヘキサンジオールであり、かつ前記直鎖ポリカルボン酸がアジピン酸及びセバシン酸からなる群から選択される少なくとも1つである請求項3に記載の湿気硬化型ホットメルト樹脂組成物。 4. The polyester polyol according to claim 3, wherein the linear polyol is 1,6-hexanediol, and the linear polycarboxylic acid is at least one selected from the group consisting of adipic acid and sebacic acid. moisture-curable hot-melt resin composition.
  5.  前記ポリカーボネートポリオールが、炭素数8以上の直鎖ポリオールに由来する構成単位を含む、請求項1~4のいずれか1項に記載の湿気硬化型ホットメルト樹脂組成物。 The moisture-curable hot-melt resin composition according to any one of claims 1 to 4, wherein the polycarbonate polyol contains structural units derived from linear polyols having 8 or more carbon atoms.
  6.  前記ポリオール(A)において、ポリエーテルポリカーボネートポリオール(a1)が40質量%以上70質量%以下、ポリオール(a2)が30質量%以上60質量%以下含有される、請求項1~5のいずれか1項に記載の湿気硬化型ホットメルト樹脂組成物。 Any one of claims 1 to 5, wherein the polyether polycarbonate polyol (a1) is 40% by mass or more and 70% by mass or less, and the polyol (a2) is 30% by mass or more and 60% by mass or less in the polyol (A). The moisture-curable hot-melt resin composition according to Item 1.
  7.  前記ポリオール(a2)の数平均分子量が2,000以上4,000以下である請求項1~6のいずれか1項に記載の湿気硬化型ホットメルト樹脂組成物。 The moisture-curable hot melt resin composition according to any one of claims 1 to 6, wherein the polyol (a2) has a number average molecular weight of 2,000 or more and 4,000 or less.
  8.  さらにシランカップリング剤を含有する、請求項1~7のいずれか1項に記載の湿気硬化型ホットメルト樹脂組成物。 The moisture-curable hot-melt resin composition according to any one of claims 1 to 7, further comprising a silane coupling agent.
  9.  前記シランカップリング剤が芳香族アミン系シランカップリング剤を含有する、請求項8に記載の湿気硬化型ホットメルト樹脂組成物。 The moisture-curable hot-melt resin composition according to claim 8, wherein the silane coupling agent contains an aromatic amine-based silane coupling agent.
  10.  請求項1~9のいずれか1項に記載の湿気硬化型ホットメルト樹脂組成物からなる、電子部品用接着剤。 An adhesive for electronic parts, comprising the moisture-curable hot-melt resin composition according to any one of claims 1 to 9.
  11.  請求項1~10のいずれか1項に記載の湿気硬化型ホットメルト樹脂組成物の硬化体。

     
    A cured body of the moisture-curable hot-melt resin composition according to any one of claims 1 to 10.

PCT/JP2023/002904 2022-01-31 2023-01-30 Moisture-curable hot-melt resin composition, adhesive agent for electronic components, and cured body WO2023145942A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023514395A JPWO2023145942A1 (en) 2022-01-31 2023-01-30
CN202380019351.4A CN118647642A (en) 2022-01-31 2023-01-30 Moisture-curable hot-melt resin composition, adhesive for electronic component, and cured product
KR1020247025316A KR20240142434A (en) 2022-01-31 2023-01-30 Moisture-curable hot melt resin composition, adhesive and curing agent for electronic components

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022013573 2022-01-31
JP2022-013573 2022-01-31

Publications (1)

Publication Number Publication Date
WO2023145942A1 true WO2023145942A1 (en) 2023-08-03

Family

ID=87471709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002904 WO2023145942A1 (en) 2022-01-31 2023-01-30 Moisture-curable hot-melt resin composition, adhesive agent for electronic components, and cured body

Country Status (5)

Country Link
JP (1) JPWO2023145942A1 (en)
KR (1) KR20240142434A (en)
CN (1) CN118647642A (en)
TW (1) TW202337922A (en)
WO (1) WO2023145942A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214713A (en) * 1990-02-16 1992-08-05 Basf Ag Thermoplastic elastomer
JP2020128461A (en) * 2019-02-07 2020-08-27 三菱ケミカル株式会社 Polyurethane elastomer and method for producing the same
CN113462339A (en) * 2020-03-30 2021-10-01 南通天洋新材料有限公司 Preparation method of sebum and sweat resistant moisture-curing polyurethane hot melt adhesive
CN113881388A (en) * 2021-10-20 2022-01-04 烟台德邦科技股份有限公司 Moisture-curing polyurethane hot melt adhesive and preparation method thereof
CN113980631A (en) * 2021-10-13 2022-01-28 烟台德邦科技股份有限公司 Reactive polyurethane hot melt adhesive and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214713A (en) * 1990-02-16 1992-08-05 Basf Ag Thermoplastic elastomer
JP2020128461A (en) * 2019-02-07 2020-08-27 三菱ケミカル株式会社 Polyurethane elastomer and method for producing the same
CN113462339A (en) * 2020-03-30 2021-10-01 南通天洋新材料有限公司 Preparation method of sebum and sweat resistant moisture-curing polyurethane hot melt adhesive
CN113980631A (en) * 2021-10-13 2022-01-28 烟台德邦科技股份有限公司 Reactive polyurethane hot melt adhesive and preparation method thereof
CN113881388A (en) * 2021-10-20 2022-01-04 烟台德邦科技股份有限公司 Moisture-curing polyurethane hot melt adhesive and preparation method thereof

Also Published As

Publication number Publication date
CN118647642A (en) 2024-09-13
TW202337922A (en) 2023-10-01
KR20240142434A (en) 2024-09-30
JPWO2023145942A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
JP5597397B2 (en) Adhesive polyurethane adhesive
JP5472525B1 (en) Adhesive composition, laminate and method for producing the same
JP4770370B2 (en) Method for producing urethane resin and pressure-sensitive adhesive
TW201022392A (en) Adhesive laminate
CN113195666B (en) Moisture-curable heat-sealing adhesive
JP2015151497A (en) adhesive composition and laminate using the same
WO2021230373A1 (en) Photo/moisture-curable resin composition, adhesive for electronic component, cured body and electronic component
JP2011162579A (en) Solventless adhesive composition and laminate using the same
WO2023145942A1 (en) Moisture-curable hot-melt resin composition, adhesive agent for electronic components, and cured body
JP3063342B2 (en) Polyurethane and method for producing the same
JP7453606B2 (en) Method for manufacturing laminate including adhesive sheet
JP2021165385A (en) Adhesive sheet, laminate using the adhesive sheet and method for manufacturing the same
JP2019173001A (en) Curable adhesive composition, adhesive sheet using the same, laminate containing the adhesive sheet, and manufacturing method therefor
JP2002038119A (en) Pressure-sensitive adhesive and its use
JPWO2019017133A1 (en) Release agent for reactive hot melt resin
KR20230028207A (en) Light moisture curable resin composition, and cured product
CN118541456A (en) High biological content polyurethane hot melt adhesive composition
JP2021166289A (en) Adhesive sheet, laminate using adhesive sheet, and method for manufacturing the same, and method for manufacturing article
JP7114870B2 (en) Reactive hot melt adhesive composition
JP2019173002A (en) Curable adhesive composition, adhesive sheet using the same, laminate containing the same, and manufacturing method therefor
JP2024148329A (en) Photo-curable hot melt resin composition, adhesive for electronic components and cured product
WO2023176795A1 (en) Light-moisture curable resin composition, adhesive agent for electronic component, and adhesive agent for display element
JP2014062207A (en) Urethane (meth)acrylate copolymer and cured product of the same
JP2024148330A (en) Photo-curable hot melt resin composition, adhesive for electronic components and cured product
WO2024130663A1 (en) Dually curable adhesive composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023514395

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23747152

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202380019351.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE