WO2023145923A1 - Resist underlayer film forming composition for nanoimprinting - Google Patents

Resist underlayer film forming composition for nanoimprinting Download PDF

Info

Publication number
WO2023145923A1
WO2023145923A1 PCT/JP2023/002799 JP2023002799W WO2023145923A1 WO 2023145923 A1 WO2023145923 A1 WO 2023145923A1 JP 2023002799 W JP2023002799 W JP 2023002799W WO 2023145923 A1 WO2023145923 A1 WO 2023145923A1
Authority
WO
WIPO (PCT)
Prior art keywords
underlayer film
resist underlayer
group
forming
ring
Prior art date
Application number
PCT/JP2023/002799
Other languages
French (fr)
Japanese (ja)
Inventor
光 ▲徳▼永
誠 中島
裕和 西巻
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2023145923A1 publication Critical patent/WO2023145923A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G14/00Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention provides a composition for forming a resist underlayer film for nanoimprinting, a resist underlayer film which is a cured product of a coating film made of the composition, a method for producing the resist underlayer film, a pattern forming method using the resist underlayer film, and a semiconductor. It relates to a method of manufacturing an apparatus.
  • a liquid resist composition is dropped onto a pattern formation area on a substrate using an inkjet method or the like, and the droplets of the resist composition are spread over the substrate (pre-spreading).
  • the resist composition is then molded using a patterned mold that is transparent to the radiation.
  • the droplets of the resist composition spread over the entire gap between the substrate and the mold due to capillary action (spread).
  • the resist composition is also filled (filled) into the recesses on the mold by capillary action. The time it takes to complete the spread and fill is the fill time.
  • light is applied to cure the resist composition, and then the two are separated.
  • n represents the number of composite unit structures AB'
  • A represents an organic group having an aromatic hydrocarbon containing heteroatoms
  • B' represents one or more unit structures containing a structure represented by the following formula (B1), (B2) or (B3)
  • * indicates a binding hand.
  • [17] forming a resist underlayer film on a semiconductor substrate from the composition for forming a resist underlayer film for nanoimprints according to any one of [1] to [12];
  • a method of manufacturing a semiconductor device comprising the steps of etching a resist underlayer film, an adhesion layer, and an optionally formed hard mask layer with a formed resist pattern, and processing a semiconductor substrate with the patterned underlayer film.
  • a resist underlayer film on a semiconductor substrate from the composition for forming a resist underlayer film for nanoimprints according to any one of [1] to [12];
  • a hard mask layer is formed on the resist underlayer film by coating or vapor deposition, an adhesion layer is formed on the resist underlayer film or the hard mask layer by coating or vapor deposition, and further the hard mask layer.
  • a method of manufacturing a semiconductor device comprising: [19] The pattern formation method according to [15] or [16], wherein nanoimprinting is performed in an atmosphere containing at least one gas selected from the group consisting of air, oxygen, nitrogen, argon, helium, and carbon dioxide.
  • At least one monocyclic ring is an aromatic monocyclic ring, and the remaining monocyclic rings forming a condensed ring with the aromatic monocyclic ring may be monocyclic heterocyclic rings (heteromonocyclic rings) or monocyclic rings. It may be an alicyclic hydrocarbon (alicyclic monocyclic).
  • R represents the hydrocarbon group -R
  • amide group (- NHCOR, -CONHR, -NRCOR (the two R's may be the same or different) or -CONR 2 (the two R's may be the same or different), wherein R is said hydrocarbon group -R ), a sulfonyl-containing group (--SO 2 R, where R represents the hydrocarbon group --R or hydroxyl group --OH), a thiol group (--SH), a sulfide-containing group (---SR, where R represents the represents a hydrocarbon group —R); an organic group containing an ether bond [R 11 -OR 11 (R 11 is each independently an alkyl group having 1 to 6 carbon atoms such as a methyl group or an ethyl group, a phenyl group,
  • organic groups having a condensed ring of one or more aromatic rings (benzene, naphthalene, anthracene, pyrene, etc.) and one or more aliphatic or heterocyclic rings.
  • aromatic rings benzene, naphthalene, anthracene, pyrene, etc.
  • aliphatic ring herein include cyclobutane, cyclobutene, cyclopentane, cyclopentene, cyclohexane, cyclohexene, methylcyclohexane, methylcyclohexene, cycloheptane, and cycloheptene.
  • heterocyclic ring include furan, thiophene, pyrrole, and imidazole.
  • pyran pyridine, pyrimidine, pyrazine, pyrrolidine, piperidine, piperazine, and morpholine.
  • An organic group having a structure in which two or more aromatic rings are linked by a divalent linking group such as an alkylene group may also be used.
  • heterocycle includes both aliphatic heterocycles and aromatic heterocycles, and is a concept that includes not only monocyclic (heteromonocyclic) but also polycyclic (heteropolycyclic).
  • polycyclic at least one monocyclic ring is a heteromonocyclic ring, and the remaining monocyclic rings may be either aromatic hydrocarbon monocyclic rings or alicyclic monocyclic rings.
  • aromatic heterocycle the examples of (I-3) above can be referred to. It may have a substituent similarly to the aromatic ring (I-3).
  • Non-aromatic polycyclic refers to polycyclic hydrocarbons that do not belong to aromatics, typically polycyclic alicyclic compounds.
  • Aliphatic polycyclic [aliphatic heteropolycyclic (at least one of the monocyclic rings constituting the polycyclic ring is an aliphatic heterocyclic ring) may be included, and unless it belongs to an aromatic compound, it may contain an unsaturated bond You can call it good.
  • Non-aromatic bicyclic, non-aromatic tricyclic and non-aromatic tetracyclic rings may be included, and unless it belongs to an aromatic compound, it may contain an unsaturated bond You can call it good.
  • Non-aromatic bicyclic ring refers to a condensed ring composed of two monocyclic hydrocarbons not belonging to aromatics, typically a condensed ring of two alicyclic compounds. In the present specification, it may be referred to as an aliphatic bicyclic ring (which may include an aliphatic heterobicyclic ring and may contain an unsaturated bond as long as it does not belong to an aromatic compound).
  • Non-aromatic bicyclic rings include bicyclopentane, bicyclooctane, bicycloheptene, and the like.
  • Non-aromatic tricyclic means a condensed ring composed of three monocyclic hydrocarbons not belonging to the aromatic group, typically three alicyclic compounds (each of which is a heterocyclic may contain an unsaturated bond unless it belongs to an aromatic compound).
  • Non-aromatic tricyclics include tricyclooctane, tricyclononane, tricyclodecane, and the like.
  • Non-aromatic tetracyclic ring means a condensed ring composed of four monocyclic hydrocarbons not belonging to the aromatic group, typically four alicyclic compounds (each of which is a heterocyclic may contain an unsaturated bond unless it belongs to an aromatic compound).
  • Non-aromatic tetracycles include hexadecahydropyrene and the like.
  • carbon atoms constituting a ring (part) refers to a hydrocarbon ring (which may be an aromatic ring, an aliphatic ring, or a heterocyclic ring) without a substituent, and means a carbon atom constituting the ring. do.
  • a compound containing an aromatic ring may be a compound containing no repeating unit structure or a compound (polymer) containing a repeating unit structure.
  • Polymers containing aromatic rings are not particularly limited, and examples include polyvinyl alcohol, polyacrylamide, (meth)acrylic resins, polyamic acids, polyhydroxystyrenes, polyhydroxystyrene derivatives, and polymethacrylates, each containing an aromatic ring.
  • the aromatic hydrocarbon having at least one oxygen-containing substituent is more preferably an aromatic hydrocarbon having at least two oxygen-containing substituents, more preferably an aromatic hydrocarbon having two oxygen-containing substituents.
  • Oxygen-containing substituents include hydroxyl groups; hydroxyl groups in which hydrogen atoms are replaced by saturated or unsaturated straight chain, branched or cyclic hydrocarbon groups; and saturated or unsaturated straight chains interrupted one or more times by oxygen atoms. , branched or cyclic hydrocarbon groups, aromatic compounds and the like.
  • Aromatic hydrocarbons include benzene, indene, naphthalene, azulene, styrene, toluene, xylene, mesitylene, cumene, anthracene, phenanthrene, triphenylene, benzanthracene, pyrene, chrysene, fluorene, biphenyl, corannulene, perylene, fluoranthene, benzo[ k]fluoranthene, benzo[b]fluoranthene, benzo[ghi]perylene, coronene, dibenzo[g,p]chrysene, acenaphthylene, acenaphthene, naphthacene, pentacene and the like, but are not limited thereto.
  • the derived unit structure includes a unit structure formed by replacing some of the constituent atoms of the original compound molecule with other atoms or groups, or by changing bonds.
  • R and R′ are each independently a hydrogen atom, an optionally substituted aromatic hydrocarbon group having 6 to 30 carbon atoms, an optionally substituted represents a heterocyclic group having 3 to 30 carbon atoms, or an optionally substituted linear, branched or cyclic alkyl group having 10 or less carbon atoms.
  • X and Y each independently represent an optionally substituted aromatic hydrocarbon group having 6 to 30 carbon atoms
  • i and j each independently represent 0 or 1.
  • the "aromatic hydrocarbon-containing organic group" in group A has from 6 to 30, or from 6 to 24 carbon atoms.
  • the “organic group having an aromatic hydrocarbon” for Group A is an organic group having one or more benzene rings, naphthalene rings, or condensed rings of benzene rings and heterocyclic or aliphatic rings.
  • Aromatic hydrocarbons may be linked to each other by an alkylene group, an ether group, an ester group, an amide group, a sulfonyl group, a sulfide group, a ketone group, or the like.
  • the "organic group having an aromatic hydrocarbon containing a heteroatom" in the group A is the above-described heterocyclic ring, an aromatic hydrocarbon having an oxygen-containing substituent, and an aromatic hydrocarbon linked by -NH- Including the unit structure derived from.
  • Substituents include halogen atoms, saturated or unsaturated linear, branched or cyclic hydrocarbon groups which may contain heteroatoms, hydroxyl groups, amino groups, carboxyl groups, cyano groups, nitro groups, alkoxyl groups, esters. groups, amide groups, sulfonyl groups, sulfide groups, ether groups, aryl groups, etc., but are not limited to these as long as they do not impair the effects of the present invention.
  • NH of the amine skeleton and H of OH of the phenol skeleton may be replaced with substituents described below.
  • the “alkyl group” includes, for example, methyl group, ethyl group, n-propyl group, i-propyl group, cyclopropyl group, n-butyl group, i- butyl group, s-butyl group, t-butyl group, cyclobutyl group, 1-methyl-cyclopropyl group, 2-methyl-cyclopropyl group, n-pentyl group, 1-methyl-n-butyl group, 2-methyl- n-butyl group, 3-methyl-n-butyl group, 1,1-dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl -n-propyl group, cyclopentyl group, 1-methyl-cyclobutyl group, 2-methyl-cyclobutyl group, 3-methyl-cyclobutyl group, 1,2-
  • R and R' are each independently phenyl, naphthalenyl, anthracenyl, phenanthrenyl, naphthacenyl, pyrenyl.
  • organic group containing the structure represented by formula (II) are as follows. * indicates the bonding site with the group A. Needless to say, a structure including the illustrated structure as a part of the whole may be used.
  • X and Y each independently represent an optionally substituted aromatic hydrocarbon group having 6 to 30 carbon atoms; i, j and k each independently represent 0 or 1; show.
  • Aromatic hydrocarbon groups are divalent.
  • "Aromatic hydrocarbon” is as described above.
  • the 4- to 12-membered monocyclic ring formed by Z together with C includes cyclopropane, cyclobutane, cyclopentane, cyclohexane, cyclohexene and the like, and the bicyclic ring includes bicyclopentane, bicyclooctane and bicycloheptene.
  • the tricyclic ring includes tricyclooctane, tricyclononane, tricyclodecane and the like.
  • Aromatic rings which may be condensed into monocyclic, bicyclic or tricyclic rings include benzene ring, naphthalene ring, anthracene ring, pyrene ring and the like. One or more of these may be condensed.
  • aromatic hydrocarbon is as described above.
  • the “divalent organic group” is preferably a linear or It is a branched alkylene group. Examples of linear alkylene groups include methylene, ethylene, propylene, butylene, pentylene, and hexylene groups.
  • organic group containing the structure represented by formula (IV) are as follows. * indicates the bonding site with the group A. Needless to say, a structure including the illustrated structure as a part of the whole may be used.
  • a novolac resin having a repeating unit structure represented by formula (I) can be prepared by a known method.
  • One kind of the ring-containing compound and the oxygen-containing compound may be used together, or two or more kinds thereof may be used in combination.
  • the oxygen-containing compound can be used in an amount of 0.1 to 10 mol, preferably 0.1 to 2 mol, per 1 mol of the ring-containing compound.
  • catalysts used in the condensation reaction include mineral acids such as sulfuric acid, phosphoric acid and perchloric acid; Carboxylic acids such as sulfonic acids, formic acid and oxalic acid can be used.
  • the amount of the catalyst used varies depending on the type of catalyst used, but is usually 0.001 to 10,000 parts by mass, preferably 0.001 to 10,000 parts by mass, per 100 parts by mass of the ring-containing compound (in the case of multiple types, the total of them). 01 to 1,000 parts by mass, more preferably 0.05 to 100 parts by mass.
  • the condensation reaction can be carried out without a solvent, but it is usually carried out using a solvent.
  • the solvent is not particularly limited as long as it can dissolve the reaction substrate and does not inhibit the reaction.
  • the condensation reaction temperature is usually 40°C to 200°C, preferably 100°C to 180°C.
  • the reaction time varies depending on the reaction temperature, it is usually 5 minutes to 50 hours, preferably 5 minutes to 24 hours.
  • the weight average molecular weight of the novolak resin according to the present invention is usually 500-100,000, preferably 600-50,000, 700-10,000, or 800-8,000.
  • n represents the number of composite unit structures A-B', and unit structure A is the same as group A in formula (I) above.
  • At least one composite unit structure AB' is equivalent to one unit structure (IIA-2-2-3), (IIA-2-3-2), (IIA-2-4 -3) may be replaced with one or more unit structures C including structures represented by formulas (C1), (C2) and (C3) respectively.
  • R and R' are each independently a hydrogen atom, an optionally substituted aromatic ring having 6 to 30 carbon atoms, and an optionally substituted heterocyclic ring having 3 to 30 carbon atoms. , or an optionally substituted linear, branched or cyclic alkyl group having 10 or less carbon atoms.
  • the two bonding hands of formula (B1) can be covalently bonded to the aromatic ring in unit structure A.
  • the "alkyl group” includes, for example, methyl group, ethyl group, n-propyl group, i-propyl group, cyclopropyl group, n-butyl group, i- butyl group, s-butyl group, t-butyl group, cyclobutyl group, 1-methyl-cyclopropyl group, 2-methyl-cyclopropyl group, n-pentyl group, 1-methyl-n-butyl group, 2-methyl- n-butyl group, 3-methyl-n-butyl group, 1,1-dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl -n-propyl group, cyclopentyl group, 1-methyl-cyclobutyl group, 2-methyl-cyclobutyl group, 3-methyl-cyclobutyl group, 1,2-
  • Examples of such a linking group include a linking group having two or three aromatic rings (corresponding to unit structure A).
  • Specific examples of divalent or trivalent linking groups include the following divalent linking groups (L1) exemplified in formula (B11) above: [X 1 represents a single bond, a methylene group, an oxygen atom, a sulfur atom, -N(R 5 )-, and R 5 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms (chain hydrocarbon, cyclic hydrocarbon represents hydrogen (which may be aromatic or non-aromatic). ]
  • divalent or trivalent linking groups of the following formulas (L2) and (L3) can be exemplified.
  • X 2 represents a methylene group, an oxygen atom or -N(R 6 )-, and R 6 is a hydrogen atom, an aliphatic hydrocarbon group having 1 to 10 carbon atoms, or an aromatic hydrocarbon group having 5 to 20 carbon atoms represents a group.
  • a divalent linking group such as the following formula (L4), which can form a covalent bond with a linking carbon atom through an addition reaction between acetylide and a ketone, can also be exemplified.
  • One of the connecting carbon atoms is a polymer terminal T (hydrogen atom; hydroxyl group, various functional groups such as unsaturated aliphatic hydrocarbon groups, terminal unit structure A, unit structure A in other polymer chains etc.), it can be replaced with at least one composite unit structure AB' as one unit structure C equivalent to the composite unit structure AB'. That is, the aromatic ring [Ar in formula (C1)] in formula (C1) and another unit structure B' are bonded, and the bonds from the remaining connecting carbon atoms shown in formula (C1) The polymer chain may be extended by manually bonding to the aromatic ring of the unit structure A.
  • Z 0 is selected from the group consisting of an optionally substituted aromatic ring residue or aliphatic ring residue having 6 to 30 carbon atoms, or the aromatic ring residue and the aliphatic ring residue represents an organic group in which two groups are linked by a single bond.
  • the organic group in which two groups selected from the group consisting of the aromatic ring residue and the aliphatic ring residue are linked by a single bond includes bivalent divalent groups such as biphenyl, cyclohexylphenyl, and bicyclohexyl. residues can be mentioned.
  • two or three of the above formulas (B2 ) may include a structure that is bound to a divalent or trivalent linking group to form a dimer or trimer structure.
  • formula (B2) includes an embodiment containing an aromatic ring [Z 0 of formula (B2)], the same as (IIA-2-2-3) of formula (B1) above,
  • An aromatic ring [for example, an aromatic ring in Z 0 Ar in formula (B21) below] may additionally bond to another unit structure B' [longitudinal bond in formula (B21)] .
  • Z 0 Ar is an optionally substituted aromatic ring residue having 6 to 30 carbon atoms, or two groups selected from the group consisting of the aromatic ring residue and the aliphatic ring residue is an organic group having at least one aromatic ring linked by a single bond, wherein the bond extending downward from Z 0 Ar extends from the aromatic ring in Z 0 Ar , J 1 and J 2 are the same as defined in formula (B2).
  • One of the connecting carbon atoms is a polymer terminal T (hydrogen atom; hydroxyl group, various functional groups such as unsaturated aliphatic hydrocarbon groups, terminal unit structure A, unit structure A in other polymer chains etc.), it can be replaced with at least one composite unit structure AB' as one unit structure C equivalent to the composite unit structure AB'. That is, the aromatic ring in formula (C2) [the aromatic ring in Z 0 Ar in formula (C2)] and another unit structure B' are bonded, and the remaining The polymer chain may be extended by bonding with the aromatic ring of the unit structure A with the bond from the linking carbon atom.
  • unit structure containing the structure represented by formula (B2) are as follows. * indicates a binding site with the unit structure A. Needless to say, it may be a unit structure that partially includes the illustrated structure.
  • the monocyclic, bicyclic, tricyclic or tetracyclic condensed ring may further form a condensed ring with one or more aromatic rings to form a pentacyclic or more condensed ring,
  • the carbon number of the pentacyclic or higher condensed ring is preferably 40 or less. excluding the number of heteroatoms constituting the heterocyclic ring when the condensed ring of five or more rings is a heterocyclic ring.
  • formula (B3) it may optionally contain a linking carbon atom other than carbon atoms 1 and 2 [see (IIA-2-4-2) below]
  • Z is a tricyclic or higher condensed ring
  • the permutation positional relationship is arbitrary, and when carbon atom 1 and carbon atom 2 belong to different non-aromatic monocyclic rings (referred to as “non-aromatic monocyclic ring 1” and “non-aromatic monocyclic ring 2” respectively), the non-aromatic monocyclic ring
  • the permutation positional relationship in the condensed ring of the aromatic single ring 1 and the non-aromatic single ring 2 is also arbitrary.
  • Z 1 represents at least one non-aromatic monocyclic ring
  • Ar 1 represents at least one aromatic monocyclic ring forming a condensed ring with the non-aromatic monocyclic ring of Z 1
  • Z and Ar 1 together represent a substituent constitutes a bicyclic, tricyclic, tetracyclic or pentacyclic condensed ring having 8 to 25 carbon atoms.
  • the number of carbon atoms referred to herein means only the number of carbon atoms constituting the ring skeleton of a bicyclic, tricyclic or tetracyclic condensed ring excluding substituents.
  • a fused ring in a formula is a heterocyclic ring, the number of heteroatoms that make up the heterocyclic ring is not included.
  • one or more non-aromatic monocyclic rings belonging to Z 1 and one or more aromatic monocyclic rings belonging to Ar 1 may have any order positional relationship.
  • the non-aromatic monocyclic ring belonging to Z1 and the aromatic monocyclic ring belonging to Ar1 are may be arranged alternately to form a condensed ring.
  • T represents a polymer terminal.
  • One of the connecting carbon atoms is a polymer terminal T (hydrogen atom; hydroxyl group, various functional groups such as unsaturated aliphatic hydrocarbon groups, terminal unit structure A, unit structure A in other polymer chains etc.), it can be replaced with at least one composite unit structure AB' as one unit structure C equivalent to the composite unit structure AB'.
  • the aromatic ring [Ar 1 in formula (C3)] in formula (C3) and another unit structure B′ are bonded, and the bonds from the remaining connecting carbon atoms shown in formula (C3)
  • the polymer chain may be extended by bonding to the aromatic ring of the unit structure A with the hand of .
  • T in formula (C3) is a hydrogen atom that is a terminal group, and p, k 1 and k 2 that can serve as a bond Of these, p and k 1 or p and k 2 can form one unit structure C equivalent to the composite unit structure AB'.
  • T in formula (C3) is an example of a phenyl group.
  • p and k 1 , p and k 2 , or p and m among p, k 1 , k 2 and m that can be a bond make one unit equivalent to the composite unit structure AB′ Structure C can be obtained.
  • a novolak resin having a structure represented by formula (AB) can be prepared by a known method.
  • OR represents a halogen or an alkyl group having about 1 to 3 carbon atoms.
  • the ring-containing compound and the oxygen-containing compound may be used either singly or in combination of two or more.
  • the oxygen-containing compound can be used in an amount of 0.1 to 10 mol, preferably 0.1 to 2 mol, per 1 mol of the ring-containing compound.
  • catalysts used in the condensation reaction include mineral acids such as sulfuric acid, phosphoric acid and perchloric acid; Carboxylic acids such as sulfonic acids, formic acid and oxalic acid can be used.
  • the amount of the catalyst to be used varies depending on the type of catalyst used, but it is usually 0.001 to 10,000 parts by mass, preferably 0.000 parts by mass, per 100 parts by mass of the ring-containing compound (in the case of multiple types, the total of them). 01 to 1,000 parts by mass, more preferably 0.05 to 100 parts by mass.
  • the condensation reaction can be carried out without a solvent, but it is usually carried out using a solvent.
  • the solvent is not particularly limited as long as it can dissolve the reaction substrate and does not inhibit the reaction.
  • the condensation reaction temperature is usually 40°C to 200°C, preferably 100°C to 180°C.
  • the reaction time varies depending on the reaction temperature, it is usually 5 minutes to 50 hours, preferably 5 minutes to 24 hours.
  • the weight average molecular weight of the novolac resin according to one aspect of the present invention is usually 500-100,000, preferably 600-50,000, 700-10,000, or 800-8,000.
  • the resist underlayer film-forming composition of one embodiment of the present invention optionally contains a cross-linking agent, a surfactant, a light absorber, a rheology modifier, an adhesion aid, etc., in addition to the above. be able to.
  • the composition for forming a resist underlayer film for nanoimprints according to the present invention contains a solvent.
  • the solvent is not particularly limited as long as it can dissolve the compound containing an aromatic ring and optional components added as necessary.
  • the composition for forming a resist underlayer film for nanoimprinting according to the present invention is used in the form of a uniform solution, it is recommended to use a solvent that is commonly used in the lithography process together, considering its coating performance. be done.
  • Such solvents include, for example, methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, methyl isobutyl carbinol, propylene glycol monobutyl ether, propylene glycol monomethyl Ether acetate, propylene glycol monoether ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethyl 2-hydroxypropionate, 2-hydroxy-2-methylpropion Ethyl Acetate, Ethyl Ethoxyacetate, Ethyl Hydroxyacetate, Methyl 2-hydroxy-3-methylbutanoate, Methyl 3-meth
  • a solvent having a boiling point of 160° C. or higher can be included.
  • the following compounds described in WO2018/131562A1 can be used.
  • R 1 , R 2 and R 3 in formula (i) each represent a hydrogen atom, an oxygen atom, a sulfur atom or an alkyl group having 1 to 20 carbon atoms which may be interrupted by an amide bond, and are the same They may be present or different, and may be combined with each other to form a ring structure.
  • 1,6-diacetoxyhexane (boiling point 260° C.), tripropylene glycol monomethyl ether (boiling point 242° C.), and other various high boiling points described in paragraph 0082 of JP-A-2021-84974.
  • a solvent can preferably be used.
  • dipropylene glycol monomethyl ether acetate (boiling point 213° C.), diethylene glycol monoethyl ether acetate (boiling point 217° C.), diethylene glycol monobutyl ether acetate (boiling point 247° C.), dipropylene glycol dimethyl ether (boiling point 171°C), dipropylene glycol monomethyl ether (boiling point 187°C), dipropylene glycol monobutyl ether (boiling point 231°C), tripropylene glycol monomethyl ether (boiling point 242°C), ⁇ -butyrolactone (boiling point 204°C), benzyl alcohol (boiling point 205°C), propylene carbonate (boiling point 242°C), tetraethylene glycol dimethyl ether (boiling point 275°C), 1,6-diacetoxyhexane (boiling
  • composition for forming a resist underlayer film for nanoimprinting according to the present invention may contain optional components other than the above. Each component will be described below.
  • the composition for forming a resist underlayer film for nanoimprints according to the present invention can contain a cross-linking agent.
  • the cross-linking agent include melamine-based, substituted urea-based, or polymer-based thereof.
  • crosslinkers having at least two crosslink-forming substituents, methoxymethylated glycoluril (e.g., tetramethoxymethylglycoluril), butoxymethylated glycoluril, methoxymethylated melamine, butoxymethylated melamine, methoxy Compounds such as methylated benzogwanamine, butoxymethylated benzogwanamine, methoxymethylated urea, butoxymethylated urea, or methoxymethylated thiourea. Condensates of these compounds can also be used.
  • methoxymethylated glycoluril e.g., tetramethoxymethylglycoluril
  • butoxymethylated glycoluril methoxymethylated melamine
  • methoxymethylated melamine methoxymethylated melamine
  • methoxy Compounds such as methylated benzogwanamine, butoxymethylated benzogwanamine, methoxymethylated urea, butoxymethylated urea, or methoxy
  • a cross-linking agent with high heat resistance can be used as the cross-linking agent.
  • a compound containing a cross-linking substituent having an aromatic ring (eg, benzene ring, naphthalene ring) in the molecule can be preferably used.
  • Examples of this compound include compounds having a partial structure of the following formula (4), and polymers or oligomers having repeating units of the following formula (5).
  • the above R 11 , R 12 , R 13 and R 14 are hydrogen atoms or alkyl groups having 1 to 10 carbon atoms, and the above examples can be used for these alkyl groups.
  • n1 is an integer of 1-4
  • n2 is an integer of 1-(5-n1)
  • (n1+n2) is an integer of 2-5.
  • n3 is an integer of 1-4
  • n4 is 0-(4-n3)
  • (n3+n4) is an integer of 1-4.
  • Oligomers and polymers can be used in the range of 2 to 100 or 2 to 50 repeating unit structures.
  • the above compounds are available as products of Asahi Organic Chemical Industry Co., Ltd. and Honshu Chemical Industry Co., Ltd.
  • the compound of formula (4-23) is Honshu Chemical Industry Co., Ltd., trade name TMOM-BP
  • the compound of formula (4-20) is Asahi Organic Chemical Industry Co., Ltd., trade name TM. - BIP-A.
  • the amount of the cross-linking agent added varies depending on the coating solvent used, the substrate used, the required solution viscosity, the required film shape, etc., but it is 0.001% by mass or more and 0.01% by mass based on the total solid content. % or more, 0.05% by mass or more, 0.5% by mass or more, or 1.0% by mass or more, and 80% by mass or less, 50% by mass or less, 40% by mass or less, 20% by mass or less, or 10% by mass % or less.
  • cross-linking agents may cause a cross-linking reaction due to self-condensation, but when cross-linkable substituents are present in the above aromatic ring-containing compound of the present invention, they cause a cross-linking reaction with those cross-linkable substituents. be able to.
  • composition for forming a resist underlayer film for nanoimprints according to the present invention can contain an acid and/or a salt thereof and/or an acid generator.
  • acids examples include p-toluenesulfonic acid, trifluoromethanesulfonic acid, salicylic acid, 5-sulfosalicylic acid, 4-phenolsulfonic acid, camphorsulfonic acid, 4-chlorobenzenesulfonic acid, benzenedisulfonic acid, 1-naphthalenesulfonic acid, citric acid, acid, benzoic acid, hydroxybenzoic acid, naphthalenecarboxylic acid and the like.
  • the blending amount is generally 0.0001 to 20% by mass, preferably 0.0005 to 10% by mass, more preferably 0.01 to 5% by mass, based on the total solid content.
  • acid generators examples include thermal acid generators and photoacid generators.
  • the photoacid generator produces acid when the resist is exposed to light. Therefore, the acidity of the underlayer film can be adjusted. This is one way to match the acidity of the underlayer film to that of the overlying resist. Also, the pattern shape of the resist formed on the upper layer can be adjusted by adjusting the acidity of the lower layer film.
  • Examples of the photoacid generator contained in the resist underlayer film-forming composition for nanoimprints of the present invention include onium salt compounds, sulfonimide compounds, and disulfonyldiazomethane compounds.
  • Onium salt compounds include diphenyliodonium hexafluorophosphate, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-normal butanesulfonate, diphenyliodonium perfluoro-normal octane sulfonate, diphenyliodonium camphorsulfonate, bis(4-tert-butylphenyl)iodonium camphor.
  • iodonium salt compounds such as sulfonates and bis(4-tert-butylphenyl)iodonium trifluoromethanesulfonate, and triphenylsulfonium hexafluoroantimonate, triphenylsulfonium nonafluoro-normal butanesulfonate, triphenylsulfonium camphorsulfonate and triphenylsulfonium trifluoromethane Examples include sulfonium salt compounds such as sulfonate.
  • sulfonimide compounds include N-(trifluoromethanesulfonyloxy)succinimide, N-(nonafluoro-normalbutanesulfonyloxy)succinimide, N-(camphorsulfonyloxy)succinimide and N-(trifluoromethanesulfonyloxy)naphthalimide. mentioned.
  • Only one type of acid generator can be used, or two or more types can be used in combination.
  • Polyoxyethylene alkyl allyl ethers such as polyoxyethylene/polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate, etc.
  • sorbitan fatty acid esters polyoxyethylene sorbitan such as polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate
  • Nonionic surfactants such as fatty acid esters, Ftop EF301, EF303, EF352 (manufactured by Tochem Products Co., Ltd., trade names), Megaface F171, F173, R-40, R-40N, R-40LM (DIC stock company, product name), Florard FC430, FC431 (manufactured by Sumitomo 3M Co., Ltd., product name), Asahiguard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd., product name) ), organosiloxane polymer KP341 (manufact
  • the blending amount of these surfactants is usually 2.0% by mass or less, preferably 1.0% by mass or less, based on the total solid content of the resist underlayer film-forming composition.
  • These surfactants may be used alone or in combination of two or more.
  • a surfactant When a surfactant is used, its proportion is 0.0001 to 5 parts by weight, or 0.001 to 1 part by weight, or 0 parts by weight with respect to 100 parts by weight of the solid content of the nanoimprint resist underlayer film-forming composition. 0.01 to 0.5 parts by mass.
  • a light absorber, a rheology modifier, an adhesion aid, and the like can be added to the composition for forming a resist underlayer film for nanoimprints of the present invention.
  • Rheology modifiers are effective in improving the fluidity of the Underlayer film-forming composition.
  • Adhesion aids are effective in improving the adhesion between the semiconductor substrate or resist and the underlying film.
  • the light absorbing agent is usually blended in a proportion of 10% by mass or less, preferably 5% by mass or less, based on the total solid content of the resist underlayer film-forming composition for nanoimprinting.
  • the rheology modifier mainly improves the fluidity of the resist underlayer film-forming composition for nanoimprinting, and particularly in the baking process, improves the uniformity of the film thickness of the resist underlayer film and the inside of the holes. It is added for the purpose of increasing the fillability of the Specific examples include phthalic acid derivatives such as dimethyl phthalate, diethyl phthalate, diisobutyl phthalate, dihexyl phthalate, and butyl isodecyl phthalate; Maleic acid derivatives such as normal butyl maleate, diethyl maleate and dinonyl maleate; oleic acid derivatives such as methyl oleate, butyl oleate and tetrahydrofurfuryl oleate; and stearic acid derivatives such as normal butyl stearate and glyceryl stearate. can. These rheology modifiers are usually blended in a ratio of less than 30% by mass based on the total solid content of
  • the adhesion aid is mainly added for the purpose of improving the adhesion between the substrate or the resist and the resist underlayer film-forming composition for nanoimprinting, and especially for the purpose of preventing the resist from peeling off during development.
  • Specific examples include chlorosilanes such as trimethylchlorosilane, dimethylmethylolchlorosilane, methyldiphenylchlorosilane, chloromethyldimethylchlorosilane, trimethylmethoxysilane, dimethyldiethoxysilane, methyldimethoxysilane, dimethylolethoxysilane, diphenyldimethoxysilane, Alkoxysilanes such as enyltriethoxysilane, silazanes such as hexamethyldisilazane, N,N'-bis(trimethylsilyl)urea, dimethyltrimethylsilylamine, trimethylsilylimidazole, methyloltrichlorosilane, ⁇
  • the solid content of the resist underlayer film-forming composition for nanoimprinting according to the present invention is usually 0.1 to 70% by mass, preferably 0.1 to 60% by mass.
  • the solid content is the content ratio of all components except for the solvent in the resist underlayer film-forming composition for nanoimprinting.
  • the ratio of the compound containing the aromatic ring in the solid content is 1 to 100% by mass, 1 to 99.9% by mass, 50 to 99.9% by mass, 50 to 95% by mass, 50 to 90% by mass. preferred in order.
  • One measure for evaluating whether the composition for forming a resist underlayer film for nanoimprints is in a uniform solution state is to observe the permeability of a specific microfilter.
  • the forming composition passes through a microfilter with a pore size of 0.1 ⁇ m and presents a uniform solution state.
  • microfilter material examples include fluorine-based resins such as PTFE (polytetrafluoroethylene) and PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer), PE (polyethylene), UPE (ultra-high molecular weight polyethylene), PP ( polypropylene), PSF (polysulfone), PES (polyethersulfone), and nylon, but PTFE (polytetrafluoroethylene) is preferred.
  • fluorine-based resins such as PTFE (polytetrafluoroethylene) and PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer)
  • PE polyethylene
  • UPE ultra-high molecular weight polyethylene
  • PP polypropylene
  • PSF polysulfone
  • PES polyethersulfone
  • nylon but PTFE (polytetrafluoroethylene) is preferred.
  • the compound containing an aromatic ring according to the present invention is mixed with a solvent and other optional components to form a resist underlayer film-forming composition for nanoimprinting, applied onto a substrate (silicon wafer), and baked at a predetermined temperature to form a film.
  • a resist underlayer film-forming composition for nanoimprinting applied onto a substrate (silicon wafer), and baked at a predetermined temperature to form a film.
  • the film is characterized in that the difference between the contact angle to pure water when baked in the air at the same temperature and the contact angle to pure water when baked in a nitrogen atmosphere is within 26 degrees.
  • a method for producing a resist underlayer film, a pattern forming method, and a method for producing a semiconductor device using the composition for forming a resist underlayer film for nanoimprinting according to the present invention will be described below.
  • a resist underlayer film is formed by applying the resist underlayer film-forming composition for nanoimprinting and then baking the resist underlayer film.
  • Air may be used as the atmosphere gas during firing, or an inert gas such as nitrogen or argon may be used. In one aspect, it is particularly preferred that the oxygen concentration is 1% or less.
  • the firing conditions are appropriately selected from a firing temperature of 80° C. to 800° C. and a firing time of 0.3 to 60 minutes.
  • the firing temperature is 150° C. to 400° C. and the firing time is 0.5 to 2 minutes.
  • the film thickness of the lower layer film to be formed is, for example, 10 to 1000 nm, 20 to 500 nm, 30 to 400 nm, or 50 to 300 nm.
  • a quartz substrate is used as the substrate, a replica of a quartz imprint mold (mold replica) can be produced.
  • composition for forming a resist underlayer film for nanoimprinting according to the present invention is applied onto a semiconductor substrate having a portion having a step and a portion having no step (a so-called stepped substrate), and baked to obtain a substrate having the step.
  • the step between the portion and the portion without the step can be reduced.
  • There is no upper limit to the step but it is preferably less than 10 nm, 30 nm, 50 nm, 70 nm, 80 nm, 90 nm, or 100 nm or less.
  • a hard mask (silicone) layer is optionally formed by coating or vapor deposition on the resist underlayer film for nanoimprinting according to the present invention, and the hard mask (silicone) layer is formed on the resist underlayer film or (if present) the hard mask (silicone) layer.
  • An adhesion layer can be formed thereon by coating or vapor deposition.
  • the hard mask (silicone) layer preferably contains 99 wt% or less, or 50 wt% or less of Si.
  • a Si-based inorganic material film can be formed by a CVD method or the like.
  • the pattern forming method comprises: a step of forming a resist underlayer film from the composition for forming a resist underlayer film for nanoimprinting according to the present invention; applying a curable composition onto the resist underlayer film; contacting the curable composition with a mold; A step of irradiating the curable composition with light or an electron beam to form a cured film, and a step of separating the cured film and the mold; including.
  • the photoresist to be formed on the resist underlayer film is not particularly limited as long as it is sensitive to the light used for exposure. Both negative and positive photoresists can be used. Examples include APEX-E (trade name) manufactured by Shipley, PAR710 (trade name) manufactured by Sumitomo Chemical Co., Ltd., SEPR430 (trade name) manufactured by Shin-Etsu Chemical Co., Ltd., and the like. Also, for example, Proc. SPIE, Vol. 3999, 330-334 (2000), Proc. SPIE, Vol. 3999, 357-364 (2000), and Proc. SPIE, Vol. 3999, 365-374 (2000).
  • Step of applying curable composition This step is a step of applying a curable composition onto the resist underlayer film formed by the method for producing a resist underlayer film according to the present invention.
  • methods for applying the curable composition include an inkjet method, a dip coating method, an air knife coating method, a curtain coating method, a wire bar coating method, a gravure coating method, an extrusion coating method, a spin coating method, and a slit scanning method. etc. can be used.
  • An inkjet method is suitable for applying the curable composition as droplets
  • a spin coating method is suitable for applying the curable composition.
  • an adhesion layer may be formed by coating or vapor deposition on the resist underlayer film, and the curable composition may be applied thereon, and a hard mask (silicone) layer and an adhesion layer may be sequentially applied on the resist underlayer film.
  • a hard mask (silicone) layer and an adhesion layer may be sequentially applied on the resist underlayer film.
  • it can be formed by vapor deposition and the curable composition applied thereon.
  • Step of Contacting Curable Composition with Mold the curable composition and the mold are brought into contact.
  • a liquid curable composition is brought into contact with a mold having a master pattern for transferring the pattern shape
  • a liquid film is formed in which the curable composition fills the recesses of the fine pattern on the mold surface. be done.
  • the mold base material is preferably glass, quartz, PMMA, optically transparent resin such as polycarbonate resin, transparent metal deposition film, flexible film such as polydimethylsiloxane, photocured film, metal film, and the like.
  • the mold base material is more preferably quartz because it has a small coefficient of thermal expansion and a small pattern distortion.
  • the fine pattern on the surface of the mold preferably has a pattern height of 4 nm or more and 200 nm or less.
  • a certain degree of pattern height is necessary to improve the processing accuracy of the substrate, but the lower the pattern height, the stronger the force to separate the mold from the cured film in the later-described step of separating the cured film and the mold. Also, the number of defects remaining on the mask side due to the resist pattern being torn off is small. It is recommended to select and adopt an appropriately balanced pattern height in consideration of these factors.
  • the mold can be surface-treated in advance.
  • the surface treatment method include a method of applying a release agent to the surface of the mold to form a release agent layer.
  • Release agents include silicone release agents, fluorine release agents, hydrocarbon release agents, polyethylene release agents, polypropylene release agents, paraffin release agents, montan release agents, carnauba and a release agent. Preferred are fluorine-based and hydrocarbon-based release agents.
  • Commercially available products include OPTOOL (registered trademark) DSX manufactured by Daikin Industries, Ltd., for example.
  • the releasing agents may be used singly or in combination of two or more.
  • the pressure applied to the curable composition when bringing the mold and the curable composition into contact is not particularly limited.
  • a pressure of 0 MPa or more and 100 MPa or less is recommended.
  • the pressure is preferably 0 MPa or higher and 50 MPa or lower, 30 MPa or lower, or 20 MPa or lower.
  • This step can be performed under any of an atmospheric atmosphere, a reduced pressure atmosphere, and an inert gas atmosphere, but is preferably performed under a pressure of 0.0001 atmosphere or more and 10 atmospheres or less.
  • an inert gas atmosphere In order to prevent the curing reaction from being affected by oxygen and moisture, it is recommended to perform the curing under a reduced pressure atmosphere or an inert gas atmosphere.
  • Specific examples of inert gases that can be used to create the inert gas atmosphere include nitrogen, argon, helium, carbon dioxide, CFCs, HCFCs, HFCs, or mixtures thereof. At least one gas selected from the group consisting of nitrogen, argon, helium, and carbon dioxide is preferred.
  • This step may be performed in an atmosphere containing condensable gas (hereinafter referred to as "condensable gas atmosphere").
  • the condensable gas is condensed by the capillary pressure generated at the time of filling the concave portion of the fine pattern formed on the mold and the gap between the mold and the substrate together with the curable composition. It is a gas that liquefies.
  • the condensable gas exists as a gas in the atmosphere before the curable composition and the mold come into contact with each other in this step.
  • the condensable gas may dissolve in the curable composition.
  • the boiling point of the condensable gas is not limited as long as it is equal to or lower than the atmospheric temperature in this step, but is preferably -10°C or higher, or +10°C or higher and +23°C or lower.
  • the vapor pressure of the condensable gas at the atmospheric temperature in this process is not particularly limited as long as it is equal to or lower than the mold pressure. It is preferably in the range of 0.1 MPa to 0.4 MPa.
  • condensable gases include chlorofluorocarbons (CFCs) such as trichlorofluoromethane, fluorocarbons (FCs), hydrochlorofluorocarbons (HCFCs), 1,1,1,3,3-pentafluoropropane (CHF 2 CH 2 CF 3 , HFC-245fa, PFP), hydrofluoroethers (HFE) such as pentafluoroethyl methyl ether (CF 3 CF 2 OCH 3 , HFE-245mc), and the like.
  • CFCs chlorofluorocarbons
  • FCs fluorocarbons
  • HCFCs hydrochlorofluorocarbons
  • CHF 2 CH 2 CF 3 , HFC-245fa, PFP 1,1,1,3,3-pentafluoropropane
  • HFE hydrofluoroethers
  • CF 3 CF 2 OCH 3 , HFE-245mc pentafluoroethyl methyl ether
  • the condensable gas may be used singly or in combination of two or more. These condensable gases may also be mixed with non-condensable gases such as air, nitrogen, carbon dioxide, helium and argon. Air and helium are preferable as the non-condensable gas to be mixed with the condensable gas.
  • Step of irradiating the curable composition with light or an electron beam to form a cured film the curable composition is irradiated with light or an electron beam to form a cured film. That is, the curable composition filled in the fine pattern of the mold is irradiated with light or an electron beam through the mold, and the curable composition filled in the fine pattern of the mold is cured as it is, thereby forming a pattern. A cured film having a shape is obtained.
  • the light or electron beam is selected according to the sensitivity wavelength of the curable composition. Specifically, extreme ultraviolet light with a wavelength of 13.5 nm or more and 400 nm or less, ultraviolet light, X-rays, electron beams, or the like can be appropriately selected and used.
  • Light or electron beam light sources include, for example, high-pressure mercury lamps, ultra-high pressure mercury lamps, low-pressure mercury lamps, deep-UV lamps, carbon arc lamps, chemical lamps, metal halide lamps, xenon lamps, KrF excimer lasers, ArF excimer lasers, and F2 excimer lasers. , CO2 laser, and the like.
  • the number of light sources may be one or plural.
  • Irradiation may be performed on the entire curable composition filled in the fine pattern of the mold, or may be performed only on a partial region.
  • the light irradiation may be performed intermittently a plurality of times over the entire region on the substrate, or may be continuously irradiated over the entire region. It is also possible to irradiate a part of the substrate for the first time and irradiate a different area for the second time. After that, development can be carried out by a known method.
  • the cured film thus obtained preferably has a pattern with a size of 1 nm or more, or 10 nm or more, 10 mm or less, or 100 ⁇ m or less.

Abstract

The present invention provides a resist underlayer film forming composition for nanoimprinting, the resist underlayer film forming composition being capable of forming a film which exhibits good planarization properties, while achieving high hydrophobicity and gas permeability by means of firing, and which has improved adhesion to a hydrophobic upper film; and this resist underlayer film forming composition for nanoimprinting is capable of adjusting the optical constants or the etching rate thereof by altering the molecular skeleton of a resin so as to adapt to a process. The present invention provides a resist underlayer film forming composition for nanoimprinting, the resist underlayer film forming composition containing an organic solvent and a compound that has an aromatic ring. If films are formed by firing this composition at the same temperature in the ambient atmosphere and in a nitrogen atmosphere, the difference between the contact angles with pure water of these films is 26 degrees or less.

Description

ナノインプリント用レジスト下層膜形成組成物Composition for forming resist underlayer film for nanoimprint
 本発明は、ナノインプリント用レジスト下層膜形成組成物、当該組成物からなる塗布膜の硬化物であるレジスト下層膜、当該レジスト下層膜の製造方法、並びに当該レジスト下層膜を利用したパターン形成方法及び半導体装置の製造方法に関する。 The present invention provides a composition for forming a resist underlayer film for nanoimprinting, a resist underlayer film which is a cured product of a coating film made of the composition, a method for producing the resist underlayer film, a pattern forming method using the resist underlayer film, and a semiconductor. It relates to a method of manufacturing an apparatus.
 微細化が求められる半導体デバイスやMEMS等の製造においては、基板上に数ナノメートルオーダーの微細な構造体を形成できるナノインプリント技術が注目されている。これは、基板(ウエハ)上に硬化性組成物(レジスト組成物)を塗布し、表面に微細な凹凸パターンが形成されたモールド(型)を押し付け、その状態のままレジストを熱又は光によって硬化させ、モールドの凹凸パターンをレジスト硬化膜に転写し、モールドを引き離して、パターンを基板上に形成する技術である。 In the manufacture of semiconductor devices, MEMS, etc., which require miniaturization, attention is focused on nanoimprint technology that can form fine structures on the order of several nanometers on substrates. In this method, a curable composition (resist composition) is applied to a substrate (wafer), a mold with a fine uneven pattern formed on the surface is pressed, and the resist is cured by heat or light in that state. Then, the uneven pattern of the mold is transferred to the cured resist film, and the mold is separated to form the pattern on the substrate.
 一般的な光ナノインプリント技術では、まず、基板上のパターン形成領域にインクジェット法等を用いて、液状のレジスト組成物を滴下し、レジスト組成物の液滴を基板上に広げる(プレスプレッド)。次に、このレジスト組成物を、照射光に対して透明で、パターン形成されたモールド(型)を用いて成形する。このとき、レジスト組成物の液滴は毛細管現象により基板とモールドの間隙の全域へ拡がる(スプレッド)。レジスト組成物はまた、モールド上の凹部の内部へも毛細管現象により充填される(フィル)。スプレッドとフィルが完了するまでの時間が充填時間である。レジスト組成物の充填が完了した後、光を照射してレジスト組成物を硬化させ、次いで両者を引き離す。これらの工程を実施することにより、所定の形状を有するレジストのパターンが基板上に形成される。 In general photo-nanoimprint technology, first, a liquid resist composition is dropped onto a pattern formation area on a substrate using an inkjet method or the like, and the droplets of the resist composition are spread over the substrate (pre-spreading). The resist composition is then molded using a patterned mold that is transparent to the radiation. At this time, the droplets of the resist composition spread over the entire gap between the substrate and the mold due to capillary action (spread). The resist composition is also filled (filled) into the recesses on the mold by capillary action. The time it takes to complete the spread and fill is the fill time. After the filling of the resist composition is completed, light is applied to cure the resist composition, and then the two are separated. By performing these steps, a resist pattern having a predetermined shape is formed on the substrate.
 光ナノインプリント技術の離型工程においては、レジスト組成物と基材との間の密着性が重要である。レジスト組成物と基材との間の密着性が低いと、離型工程においてモールドを引き離す際に、レジスト組成物を硬化させて得られた光硬化物の一部がモールドに付着したまま剥がれてしまう、パターン剥がれ欠陥が発生してしまう場合があるからである。レジスト組成物と基材との間の密着性を向上させる技術として、レジスト組成物と基材との間に、レジスト組成物と基材とを密着させるための層である密着層を形成する技術が提案されている。 The adhesion between the resist composition and the substrate is important in the release process of photo-nanoimprint technology. If the adhesion between the resist composition and the substrate is low, when the mold is separated in the mold release process, a part of the photocured product obtained by curing the resist composition is peeled off while remaining adhered to the mold. This is because, in some cases, a pattern peeling defect may occur. As a technique for improving the adhesion between the resist composition and the substrate, a technique for forming an adhesion layer, which is a layer for adhering the resist composition and the substrate, between the resist composition and the substrate. is proposed.
 また、ナノインプリントでのパターン後の加工性を確保するため、多層プロセスが適用される場合がある。多層プロセスに適用される高エッチング耐性層の材料としては、塗布型の有機系材料、シリコーン系材料またはCVD等による蒸着膜が一般的に用いられる。更に、ナノインプリント用レジスト下層膜上に、密着層やSiを含むハードマスク(シリコーン)層を、塗布又は蒸着により形成することができる。これらの密着層やSiを含むハードマスク(シリコーン)層が疎水性で、高い純水接触角を示す場合には、下層膜もまた疎水性で、高い純水接触角を示す方が、膜間の密着性が高まり、剥離しにくくなることが期待される。 In addition, a multilayer process may be applied to ensure workability after patterning in nanoimprinting. Coating-type organic materials, silicone materials, or deposited films by CVD or the like are generally used as materials for the high etching resistance layer applied to the multilayer process. Furthermore, an adhesive layer and a hard mask (silicone) layer containing Si can be formed on the nanoimprint resist underlayer film by coating or vapor deposition. If the adhesion layer and the hard mask (silicone) layer containing Si are hydrophobic and exhibit a high pure water contact angle, the lower layer film is also hydrophobic and exhibits a high pure water contact angle. It is expected that the adhesiveness of the adhesive will increase and it will be difficult to peel off.
 また、ナノインプリントプロセスは製造時のスループットの観点から、ガス透過性も重要視されている。一般的に用いられるHe、H、N、CO、空気などは室温で比較的疎水性な気体であるため、高接触角の膜とは親和性が高く、ガス透過性が上がると期待される。このため、ガスが透過する下層膜材料としても水接触角の高いものが好ましく、これによりスループットを上げることが期待できる。 In addition, in the nanoimprint process, gas permeability is also regarded as important from the viewpoint of manufacturing throughput. Commonly used gases such as He, H 2 , N 2 , CO 2 and air are relatively hydrophobic gases at room temperature. be done. For this reason, it is preferable that the underlayer film material through which the gas permeates should have a high water contact angle, which can be expected to increase the throughput.
特開2019-36725号公報JP 2019-36725 A
 そこで、本発明が解決しようとする課題は、焼成により高い疎水性とガス透過性を有する膜を与え、疎水性の上層膜との密着性を高めることが可能なナノインプリント用レジスト下層膜形成組成物を提供することである。 Therefore, the problem to be solved by the present invention is to provide a resist underlayer film-forming composition for nanoimprints, which can provide a film having high hydrophobicity and gas permeability by baking, and can improve adhesion to a hydrophobic upper layer film. is to provide
 本発明は以下を包含する。
[1]
 芳香族環を含有する化合物、及び有機溶剤を含むナノインプリント用レジスト下層膜形成組成物であって、該組成物が同一温度にて大気中で焼成したときと窒素雰囲気下に焼成したときの純水に対する接触角の差が26度以内である膜を形成するナノインプリント用レジスト下層膜形成組成物。
[2]
 前記芳香族環を含有する化合物が芳香族環を含有するポリマーである[1]記載のナノインプリント用レジスト下層膜形成組成物。
[3]
 前記芳香族環を含有するポリマーがノボラック樹脂である[2]記載のナノインプリント用レジスト下層膜形成組成物。
[4]
 前記芳香族環を含有するポリマーが、ヘテロ原子を含む芳香族炭化水素に由来する単位構造を含むノボラック樹脂である[3]記載のナノインプリント用レジスト下層膜形成組成物。
[5]
 前記ヘテロ原子を含む芳香族炭化水素に由来する単位構造が、複素環、少なくとも1つの含酸素置換基を有する芳香族炭化水素、又は少なくとも1つの-NH-によって連結された芳香族炭化水素に由来する単位構造である[4]記載のナノインプリント用レジスト下層膜形成組成物。
[6]
 前記芳香族環を含有するポリマーが、置換基を有してもよい芳香族炭化水素、又は芳香族環が縮合または縮環してもよく、置換基を有していてもよい4乃至12員の単環、二環、若しくは三環化合物に由来する単位構造を含むノボラック樹脂である[4]又は[5]記載のナノインプリント用レジスト下層膜形成組成物。
[7]
  前記ポリマーが下記式(I)で表される繰り返し単位構造を含むノボラック樹脂である、[1]記載のナノインプリント用レジスト下層膜形成組成物。
Figure JPOXMLDOC01-appb-C000011

[式(I)中、nは1-5の数を表す。Aは、ヘテロ原子を含む芳香族炭化水素を有する有機基を表す。Bは下記式(II)、(III)又は(IV)で表される構造を含む有機基を表す。
Figure JPOXMLDOC01-appb-C000012

(式(II)中、R、及びR’はそれぞれ独立に水素原子、置換基を有していてもよい炭素原子数6乃至30の芳香族炭化水素基、置換基を有していてもよい炭素原子数3乃至30の複素環基、又は置換基を有していてもよい炭素原子数10以下の直鎖、分岐若しくは環状のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000013

(式(III)中、X及びYはそれぞれ独立に置換基を有していてもよい炭素原子数6乃至30の芳香族炭化水素基を表し、i及びjはそれぞれ独立に0又は1を表し、p、q、及びkは結合手の数を表し、p及びqはそれぞれ独立に0又は1を表し、p及びqが同時に0になることはなく、kは0乃至2の整数を表し、Zは、Cと共に、芳香族環が縮合していてもよく、置換基を有していてもよく、ヘテロ原子を含んでもよい4乃至12員の単環、二環、又は三環を形成する。)
Figure JPOXMLDOC01-appb-C000014

(式(IV)中、Arは置換基を有していてもよい炭素原子数6乃至30の芳香族炭化水素基を表し、J及びJはそれぞれ独立に直接結合又は2価の有機基を表す。)]
[8]
 前記ノボラック樹脂が、下記式(AB)で表わされる複合単位構造A-B’を含む、請求項1に記載のレジスト下層膜形成組成物。
Figure JPOXMLDOC01-appb-C000015

前記式(AB)中、
 nは複合単位構造A-B’の数を表し、
 Aは、ヘテロ原子を含む芳香族炭化水素を有する有機基を表し、
 B’は、下記式(B1)、(B2)又は(B3)で表される構造を含む一種又は二種以上の単位構造を表し、
 *は結合の手であることを示す。
Figure JPOXMLDOC01-appb-C000016

[式(B1)中、
 R及びR’はそれぞれ独立に水素原子、置換基を有していてもよい炭素原子数6~30の芳香族環残基、置換基を有していてもよい炭素原子数3~30の複素環残基、又は置換基を有していてもよい炭素原子数10以下の直鎖、分岐若しくは環状のアルキル基を表し、
 *は結合の手であることを示す。]
Figure JPOXMLDOC01-appb-C000017

[式(B2)中、
 Zは置換基を有していてもよい炭素原子数6~30の芳香族環残基若しくは脂肪族環残基、又は前記芳香族環残基及び前記脂肪族環残基からなる群より選択される2つの基が単結合で連結された有機基を表し、
 J及びJはそれぞれ独立に直接結合、又は置換基を有していてもよい二価の有機基を表し、
 *は結合の手であることを示す。]
Figure JPOXMLDOC01-appb-C000018

[式(B3)中、
 Zは、置換基を有していてもよい炭素数4~25の単環、二環、三環又は四環式の縮合環であり、前記単環は非芳香族単環であり;前記二環、三環及び四環を構成する単環の少なくとも1つは非芳香族単環であり、残りの単環は芳香族単環でも非芳香族単環でもよく、前記単環、二環、三環若しくは四環式の縮合環が、1又は複数の芳香族環と更に縮合環を形成して、五環式以上の縮合環となっていてもよく、
 X、Yは同一又は異なって、-CR3132-基を表し、R31及びR32はそれぞれ同一又は異なって、水素原子、又は炭素原子数1~6の炭化水素基を表し、
 x、yはそれぞれ、X、Yの数を表し、それぞれ独立に0又は1を表し、
Figure JPOXMLDOC01-appb-C000019

は、xが1の場合、Zの前記非芳香族単環を構成するいずれかの炭素原子1と結合し、xが0の場合、炭素原子1から延びており、
Figure JPOXMLDOC01-appb-C000020

は、yが1の場合、Zの前記非芳香族単環を構成するいずれかの炭素原子2と結合し、yが0の場合、炭素原子2から延びており、
 前記炭素原子1と炭素原子2は同一でも異なっていてもよく、異なっている場合、同一の非芳香族単環に属していてもよいし、異なる非芳香族単環に属していてもよく、
 *は結合の手であることを示す。]
[9]
 界面活性剤を更に含む[1]乃至[8]のいずれか一項に記載のナノインプリント用レジスト下層膜形成組成物。
[10]
 架橋剤を更に含む[1]乃至[9]のいずれか一項に記載のナノインプリント用レジスト下層膜形成組成物。
[11]
 酸、その塩及び酸発生剤からなる群より選択される少なくとも一種を更に含む[1]乃至[10]のいずれか一項に記載のナノインプリント用レジスト下層膜形成組成物。
[12]
 上記溶剤の沸点が160℃以上である[1]乃至[11]のいずれか一項に記載のナノインプリント用レジスト下層膜形成組成物。
[13]
 [1]乃至[12]のいずれか一項に記載のナノインプリント用レジスト下層膜形成組成物からなる塗布膜の硬化物であるレジスト下層膜。
[14]
 [1]乃至[12]のいずれか一項に記載のナノインプリント用レジスト下層膜形成組成物を半導体基板上に塗布し焼成することを含むレジスト下層膜の製造方法。
[15]
 半導体基板上に[1]乃至[12]のいずれか一項に記載のナノインプリント用レジスト下層膜形成組成物からレジスト下層膜を形成する工程、
前記レジスト下層膜上に硬化性組成物を適用する工程、
前記硬化性組成物とモールドとを接触させる工程、
前記硬化性組成物に光又は電子線を照射して硬化膜とする工程、及び
前記硬化膜と前記モールドとを引き離す工程、
を含むパターン形成方法。
[16]
 前記レジスト下層膜上に硬化性組成物を適用する工程が、
任意選択的に前記レジスト下層膜上にハードマスク層又はシリコーン層を塗布又は蒸着により形成し、
前記レジスト下層膜上又は前記ハードマスク層又はシリコーン層上に、密着層を塗布又は蒸着により形成し、
前記密着層上に硬化性組成物を適用することを含む
[15]に記載のパターン形成方法。
[17]
 半導体基板上に[1]乃至[12]のいずれか一項に記載のナノインプリント用レジスト下層膜形成組成物からレジスト下層膜を形成する工程、
任意選択的に前記レジスト下層膜上にハードマスク層又はシリコーン層を塗布又は蒸着により形成する工程、
前記レジスト下層膜上又は前記ハードマスク層又はシリコーン層上に密着層を塗布又は蒸着により形成する工程、
前記密着層上又は前記ハードマスク上に硬化組成物を適用する工程、
光又は電子線の照射によりレジストパターンを形成する工程、
形成されたレジストパターンによりレジスト下層膜、密着層、及び任意選択的に形成されたハードマスク層をエッチングする工程、及び
パターン化された下層膜により半導体基板を加工する工程
を含む半導体装置の製造方法。
[18]
 半導体基板上に[1]乃至[12]のいずれか一項に記載のナノインプリント用レジスト下層膜形成組成物からレジスト下層膜を形成する工程、
任意選択的にレジスト下層膜の上に、ハードマスク層を塗布又は蒸着により形成し、前記レジスト下層膜上又は前記ハードマスク層上に、密着層を塗布又は蒸着により形成し、更に前記ハードマスク層上又は密着層上に、硬化組成物を適用する工程、
光又は電子線の照射により、レジスト膜に対してレジストパターンを形成する工程、
レジストパターンを介して、ハードマスク層をエッチングし、パターン化する工程、
エッチングされたハードマスク層を介して、前記レジスト下層膜をエッチングし、パターン化する工程、
ハードマスク層を除去する工程、
ハードマスク層除去後のレジスト下層膜に、蒸着膜(スペーサー)を形成する工程、
蒸着膜(スペーサー)をエッチングにより加工する工程、
パターン化されたレジスト下層膜を除去して、パターン化された蒸着膜(スペーサー)を残す工程、及び
パターン化された蒸着膜(スペーサー)を介して、半導体基板を加工する工程、
を含む半導体装置の製造方法。
[19]
 空気、酸素、窒素、アルゴン、ヘリウム、及び二酸化炭素からなる群より選択される少なくとも1種のガスを含む雰囲気下でナノインプリントを行う、[15]又は[16]に記載のパターン形成方法。
[20]
 空気、酸素、窒素、アルゴン、ヘリウム、及び二酸化炭素からなる群より選択される少なくとも1種のガスを含む雰囲気下でナノインプリントを行う、[17]又は[18]に記載の半導体装置の製造方法。
[21]
 ハードマスク層の除去を、エッチングまたはアルカリ薬液のいずれかで行う、[18]に記載の半導体装置の製造方法。
The present invention includes the following.
[1]
A composition for forming a resist underlayer film for nanoimprinting containing an aromatic ring-containing compound and an organic solvent, wherein the composition is fired in the air at the same temperature and pure water when fired in a nitrogen atmosphere. A composition for forming a resist underlayer film for nanoimprints, which forms a film having a contact angle difference of 26 degrees or less.
[2]
The composition for forming a resist underlayer film for nanoimprinting according to [1], wherein the compound containing an aromatic ring is a polymer containing an aromatic ring.
[3]
The composition for forming a resist underlayer film for nanoimprinting according to [2], wherein the polymer containing an aromatic ring is a novolac resin.
[4]
The composition for forming a resist underlayer film for nanoimprinting according to [3], wherein the polymer containing an aromatic ring is a novolak resin containing a unit structure derived from an aromatic hydrocarbon containing a heteroatom.
[5]
The unit structure derived from the heteroatom-containing aromatic hydrocarbon is derived from a heterocyclic ring, an aromatic hydrocarbon having at least one oxygen-containing substituent, or an aromatic hydrocarbon linked by at least one -NH- The composition for forming a resist underlayer film for nanoimprinting according to [4], which has a unit structure that
[6]
The aromatic ring-containing polymer is an optionally substituted aromatic hydrocarbon, or an aromatic ring may be condensed or condensed, and may have a substituent 4 to 12-membered The composition for forming a resist underlayer film for nanoimprinting according to [4] or [5], which is a novolak resin containing a unit structure derived from a monocyclic, bicyclic, or tricyclic compound of
[7]
The composition for forming a resist underlayer film for nanoimprinting according to [1], wherein the polymer is a novolac resin containing a repeating unit structure represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000011

[In formula (I), n represents a number from 1 to 5. A represents an organic group having an aromatic hydrocarbon containing heteroatoms. B represents an organic group having a structure represented by formula (II), (III) or (IV) below.
Figure JPOXMLDOC01-appb-C000012

(In formula (II), R and R′ are each independently a hydrogen atom, an optionally substituted aromatic hydrocarbon group having 6 to 30 carbon atoms, an optionally substituted represents a heterocyclic group having 3 to 30 carbon atoms, or an optionally substituted linear, branched or cyclic alkyl group having 10 or less carbon atoms.)
Figure JPOXMLDOC01-appb-C000013

(In formula (III), X and Y each independently represent an optionally substituted aromatic hydrocarbon group having 6 to 30 carbon atoms, and i and j each independently represent 0 or 1. , p, q, and k represent the number of bonds, p and q each independently represent 0 or 1, p and q are not 0 at the same time, k represents an integer from 0 to 2, Z, together with C, forms a 4- to 12-membered monocyclic, bicyclic, or tricyclic ring which may be condensed with an aromatic ring, may have a substituent, and may contain a heteroatom. .)
Figure JPOXMLDOC01-appb-C000014

(In formula (IV), Ar represents an optionally substituted aromatic hydrocarbon group having 6 to 30 carbon atoms, and J 1 and J 2 are each independently a direct bond or a divalent organic group represents.)]
[8]
2. The resist underlayer film-forming composition according to claim 1, wherein the novolac resin comprises a composite unit structure AB' represented by the following formula (AB).
Figure JPOXMLDOC01-appb-C000015

In the formula (AB),
n represents the number of composite unit structures AB',
A represents an organic group having an aromatic hydrocarbon containing heteroatoms,
B' represents one or more unit structures containing a structure represented by the following formula (B1), (B2) or (B3),
* indicates a binding hand.
Figure JPOXMLDOC01-appb-C000016

[In formula (B1),
R and R' are each independently a hydrogen atom, an optionally substituted aromatic ring residue having 6 to 30 carbon atoms, an optionally substituted heterocyclic group having 3 to 30 carbon atoms Represents a cyclic residue or a linear, branched or cyclic alkyl group having 10 or less carbon atoms which may have a substituent,
* indicates a binding hand. ]
Figure JPOXMLDOC01-appb-C000017

[In formula (B2),
Z 0 is selected from the group consisting of an optionally substituted aromatic ring residue or aliphatic ring residue having 6 to 30 carbon atoms, or the aromatic ring residue and the aliphatic ring residue represents an organic group in which the two groups are connected by a single bond,
J 1 and J 2 each independently represent a direct bond or a divalent organic group optionally having a substituent,
* indicates a binding hand. ]
Figure JPOXMLDOC01-appb-C000018

[In formula (B3),
Z is an optionally substituted monocyclic, bicyclic, tricyclic or tetracyclic condensed ring having 4 to 25 carbon atoms, said monocyclic ring being a non-aromatic monocyclic ring; At least one of the monocyclic rings constituting the ring, tricyclic ring and tetracyclic ring is a non-aromatic monocyclic ring, and the remaining monocyclic rings may be aromatic monocyclic or non-aromatic monocyclic rings, and the monocyclic, bicyclic, A tricyclic or tetracyclic condensed ring may further form a condensed ring with one or more aromatic rings to form a pentacyclic or more condensed ring,
X and Y are the same or different and represent a -CR 31 R 32 - group, R 31 and R 32 are the same or different and represent a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms,
x and y each represent the number of X and Y, each independently representing 0 or 1;
Figure JPOXMLDOC01-appb-C000019

is bonded to any carbon atom 1 constituting the non-aromatic monocyclic ring of Z when x is 1, and extends from carbon atom 1 when x is 0;
Figure JPOXMLDOC01-appb-C000020

is bonded to any carbon atom 2 constituting the non-aromatic monocyclic ring of Z when y is 1, and extends from carbon atom 2 when y is 0;
The carbon atom 1 and the carbon atom 2 may be the same or different, and when different, may belong to the same non-aromatic monocyclic ring or different non-aromatic monocyclic rings,
* indicates a binding hand. ]
[9]
The composition for forming a resist underlayer film for nanoimprints according to any one of [1] to [8], further comprising a surfactant.
[10]
The resist underlayer film-forming composition for nanoimprints according to any one of [1] to [9], further comprising a cross-linking agent.
[11]
The composition for forming a resist underlayer film for nanoimprints according to any one of [1] to [10], further comprising at least one selected from the group consisting of acids, salts thereof and acid generators.
[12]
The composition for forming a resist underlayer film for nanoimprints according to any one of [1] to [11], wherein the solvent has a boiling point of 160° C. or higher.
[13]
A resist underlayer film which is a cured product of a coating film made of the composition for forming a resist underlayer film for nanoimprints according to any one of [1] to [12].
[14]
A method for producing a resist underlayer film, comprising applying the resist underlayer film-forming composition for nanoimprinting according to any one of [1] to [12] onto a semiconductor substrate and baking the composition.
[15]
forming a resist underlayer film on a semiconductor substrate from the composition for forming a resist underlayer film for nanoimprints according to any one of [1] to [12];
applying a curable composition onto the resist underlayer film;
contacting the curable composition with a mold;
A step of irradiating the curable composition with light or an electron beam to form a cured film, and a step of separating the cured film and the mold;
A patterning method comprising:
[16]
The step of applying a curable composition onto the resist underlayer film comprises
Optionally forming a hard mask layer or silicone layer on the resist underlayer film by coating or vapor deposition,
forming an adhesion layer by coating or vapor deposition on the resist underlayer film or on the hard mask layer or silicone layer;
The pattern forming method of [15], comprising applying a curable composition on the adhesion layer.
[17]
forming a resist underlayer film on a semiconductor substrate from the composition for forming a resist underlayer film for nanoimprints according to any one of [1] to [12];
Optionally forming a hard mask layer or silicone layer on the resist underlayer film by coating or vapor deposition;
forming an adhesion layer on the resist underlayer film or on the hard mask layer or silicone layer by coating or vapor deposition;
applying a curable composition onto the adhesion layer or onto the hard mask;
forming a resist pattern by irradiation with light or an electron beam;
A method of manufacturing a semiconductor device, comprising the steps of etching a resist underlayer film, an adhesion layer, and an optionally formed hard mask layer with a formed resist pattern, and processing a semiconductor substrate with the patterned underlayer film. .
[18]
forming a resist underlayer film on a semiconductor substrate from the composition for forming a resist underlayer film for nanoimprints according to any one of [1] to [12];
Optionally, a hard mask layer is formed on the resist underlayer film by coating or vapor deposition, an adhesion layer is formed on the resist underlayer film or the hard mask layer by coating or vapor deposition, and further the hard mask layer. applying a curing composition on top or onto the cling layer;
forming a resist pattern on the resist film by irradiation with light or an electron beam;
etching and patterning the hard mask layer through the resist pattern;
etching and patterning the resist underlayer film through the etched hard mask layer;
removing the hard mask layer;
A step of forming a deposited film (spacer) on the resist underlayer film after removing the hard mask layer,
A step of processing the deposited film (spacer) by etching,
A step of removing the patterned resist underlayer film to leave a patterned deposited film (spacer), and a step of processing the semiconductor substrate through the patterned deposited film (spacer),
A method of manufacturing a semiconductor device comprising:
[19]
The pattern formation method according to [15] or [16], wherein nanoimprinting is performed in an atmosphere containing at least one gas selected from the group consisting of air, oxygen, nitrogen, argon, helium, and carbon dioxide.
[20]
The method of manufacturing a semiconductor device according to [17] or [18], wherein nanoimprinting is performed in an atmosphere containing at least one gas selected from the group consisting of air, oxygen, nitrogen, argon, helium, and carbon dioxide.
[21]
The method for manufacturing a semiconductor device according to [18], wherein the hard mask layer is removed by either etching or an alkaline chemical.
 本発明に係るナノインプリント用レジスト下層膜形成組成物は、同一温度にて大気中で焼成したときと窒素雰囲気下に焼成したときの純水に対する接触角の差が26度以内である膜を形成する組成物であり、低温から高温に及ぶ広い焼成温度範囲において、高い純水接触角(=疎水性)とガス透過性を示す膜を形成することができる。これにより、疎水性の上層膜との密着性を高めることが可能であり、また疎水性ガスに対して良好な透過性を示すことが期待できる。更に、本発明に係るレジスト下層膜形成組成物は、良好な平坦化性を示し、分子骨格を変更することで、プロセスに適応する光学定数やエッチング速度に調整することができる。 The composition for forming a resist underlayer film for nanoimprinting according to the present invention forms a film having a contact angle difference of 26 degrees or less with respect to pure water when baked in the air at the same temperature and when baked in a nitrogen atmosphere. It is a composition that can form a film that exhibits a high pure water contact angle (=hydrophobicity) and gas permeability over a wide firing temperature range from low to high temperatures. As a result, it is possible to improve the adhesion with the hydrophobic upper layer film, and it is expected that the film exhibits good permeability to the hydrophobic gas. Furthermore, the composition for forming a resist underlayer film according to the present invention exhibits good flattening properties, and by changing the molecular skeleton, it is possible to adjust the optical constant and etching rate to suit the process.
[I.用語の定義]
 本明細書において、本願発明の一態様であるノボラック樹脂に関する主な用語の定義について以下、説明する。個別に特段の記載がない限り、ノボラック樹脂に関しては以下の各用語の定義が適用される。
[I. Definition of terms]
In the present specification, definitions of major terms relating to the novolac resin, which is one embodiment of the present invention, will be explained below. The following definitions of terms apply with respect to novolac resins, unless specifically stated otherwise.
(I-1)「ノボラック樹脂」
 「ノボラック樹脂」とは、狭義のフェノール・ホルムアルデヒド樹脂(いわゆるノボラック型フェノール樹脂)やアニリン・ホルムアルデヒド樹脂(いわゆるノボラック型アニリン樹脂)のみならず、一般に酸触媒の存在下あるいはそれと同等な反応条件下で、芳香族環との共有結合を可能とする官能基[例えば、アルデヒド基、ケトン基、アセタール基、ケタール基、二級又は三級炭素に結合する水酸基又はアルコキシ基、アルキルアリール基のα位炭素原子(ベンジル位炭素原子など)に結合する水酸基、アルコキシ基又はハロ基;ジビニルベンゼンやジシクロペンタジエンなどの炭素-炭素不飽和結合など]を有する有機化合物と、芳香族環を有する化合物(好ましくは芳香族環上に、酸素原子、窒素原子、硫黄原子などのヘテロ原子含有置換基を有する)中の芳香族環との共有結合形成(置換反応、付加反応、縮合反応或いは付加縮合反応など)により形成される重合ポリマーを広く包含する広義の意味で用いられる。
(I-1) "novolac resin"
"Novolac resin" means not only phenol-formaldehyde resin (so-called novolak-type phenol resin) and aniline-formaldehyde resin (so-called novolak-type aniline resin) in a narrow sense, but also in the presence of an acid catalyst or under equivalent reaction conditions. , a functional group that enables covalent bonding with an aromatic ring [e.g., an aldehyde group, a ketone group, an acetal group, a ketal group, a hydroxyl group or an alkoxy group bonded to a secondary or tertiary carbon, the α-position carbon of an alkylaryl group a hydroxyl group, an alkoxy group, or a halo group bonded to an atom (such as a benzylic carbon atom); a carbon-carbon unsaturated bond such as divinylbenzene or dicyclopentadiene; By forming a covalent bond with an aromatic ring (having a heteroatom-containing substituent such as an oxygen atom, a nitrogen atom, or a sulfur atom on the aromatic ring) It is used in its broadest sense to broadly encompass the polymerized polymer formed.
 従って、本願明細書にいうノボラック樹脂は、前記官能基に由来する炭素原子(「連結炭素原子」と呼ぶ場合がある)を含む有機化合物が、連結炭素原子を介して芳香族環を有する化合物中の芳香族環と共有結合を形成することにより、複数の芳香族環を有する化合物を連結してポリマーを形成している。 Therefore, the novolac resin referred to in the present specification is an organic compound containing a carbon atom (sometimes referred to as a "connected carbon atom") derived from the functional group, but in a compound having an aromatic ring via the connected carbon atom. By forming a covalent bond with the aromatic ring of , the compound having a plurality of aromatic rings is linked to form a polymer.
 本明細書では、「ノボラック樹脂」を構成する単位構造として、単位構造A、単位構造B、単位構造B’及び単位構造Cの用語を用いている。単位構造Aは芳香族環を有する化合物に由来する単位構造である。単位構造Bは単位構造Aの芳香族環との共有結合を可能とする官能基を有する化合物に由来する単位構造である。単位構造Cは複合単位構造A-B’と結合様式が等価な1つの単位構造であり、芳香族環を有し、かつ単位構造Aの芳香族環との共有結合を可能とする官能基を有する化合物に由来する単位構造である。結合様式が同一のため、単位構造Cは複合単位構造A-B’に置き換えることができる。 In this specification, the terms unit structure A, unit structure B, unit structure B', and unit structure C are used as unit structures that constitute the "novolac resin". Unit structure A is a unit structure derived from a compound having an aromatic ring. Unit structure B is a unit structure derived from a compound having a functional group that enables covalent bonding with the aromatic ring of unit structure A. Unit structure C is one unit structure equivalent in bonding mode to composite unit structure AB', has an aromatic ring, and has a functional group capable of covalent bonding with the aromatic ring of unit structure A. It is a unit structure derived from a compound having Since the bonding modes are the same, the unit structure C can be replaced with the composite unit structure A-B'.
(I-2)「残基」
 「残基」とは、炭素原子またはヘテロ原子(窒素原子、酸素原子、硫黄原子など)に結合する水素原子を結合の手に置き換えた有機基を指し、一価基であっても多価基であってもよい。たとえば、1つの水素原子を1つの結合の手で置き換えれば一価の有機基となり、2つの水素原子を結合の手に置き換えれば二価の有機基となる。
(I-2) "Residue"
"Residue" refers to an organic group in which a hydrogen atom bonded to a carbon atom or a heteroatom (nitrogen atom, oxygen atom, sulfur atom, etc.) is replaced by a bond, and even a monovalent group may be For example, replacing one hydrogen atom with one bond will result in a monovalent organic group, and replacing two hydrogen atoms with a bond will result in a divalent organic group.
(I-3)「芳香族環」(芳香族基、アリール基、アリーレン基)
 「芳香族環」とは、芳香族炭化水素環、芳香族複素環、及びそれらの残基[「芳香族基」、「アリール基」(一価の基の場合)又は「アリーレン基」(二価の基の場合)と呼ぶ場合もある]を包含する概念であり、単環式(芳香族単環)のみならず多環式(芳香族多環)も包含するものとする。多環式の場合、少なくとも一つの単環は芳香族単環であるが、該芳香族単環と縮合環を形成する残りの単環は単環式複素環(複素単環)でも、単環脂環式炭化水素(脂環式単環)でもよい。
(I-3) "Aromatic ring" (aromatic group, aryl group, arylene group)
“Aromatic ring” means an aromatic hydrocarbon ring, an aromatic heterocyclic ring, and residues thereof [“aromatic group”, “aryl group” (in the case of a monovalent group) or “arylene group” (two In the case of a valent group)], it is intended to include not only monocyclic (aromatic monocyclic) but also polycyclic (aromatic polycyclic). In the case of a polycyclic ring, at least one monocyclic ring is an aromatic monocyclic ring, and the remaining monocyclic rings forming a condensed ring with the aromatic monocyclic ring may be monocyclic heterocyclic rings (heteromonocyclic rings) or monocyclic rings. It may be an alicyclic hydrocarbon (alicyclic monocyclic).
 芳香族環としては、ベンゼン、インデン、ナフタレン、アズレン、スチレン、トルエン、キシレン、メシチレン、クメン、アントラセン、フェナントレン、トリフェニレン、ベンゾアントラセン、ピレン、クリセン、フルオレン、ビフェニル、コランヌレン、ペリレン、フルオランテン、ベンゾ[k]フルオランテン、ベンゾ[b]フルオランテン、ベンゾ[ghi]ペリレン、コロネン、ジベンゾ[g,p]クリセン、アセナフチレン、アセナフテン、ナフタセン、ペンタセン、シクロオクタテトラエン等の芳香族炭化水素環、より典型的にはベンゼン、ナフタレン、アントラセン、ピレンなどの芳香族炭化水素環や;フラン、チオフェン、ピロール、N-アルキルピロール、N-アリールピロール、イミダゾール、ピリジン、ピリミジン、ピラジン、トリアジン、チアゾール、インドール、フェニルインドール、プリン、キノリン、イソキノリン、クロメン、チアントレン、フェノチアジン、フェノキサジン、キサンテン、アクリジン、フェナジン、カルバゾール、インドロカルバゾール等の芳香族複素環、より典型的には、フラン、チオフェン、ピロール、イミダゾール、ピラン、ピリジン、ピリミジン、ピラジン、ピロリジン、ピペリジン、ピペラジン、モルホリンが挙げられるが、これらに限定されるものではない。 Aromatic rings include benzene, indene, naphthalene, azulene, styrene, toluene, xylene, mesitylene, cumene, anthracene, phenanthrene, triphenylene, benzanthracene, pyrene, chrysene, fluorene, biphenyl, corannulene, perylene, fluoranthene, benzo[k ]fluoranthene, benzo[b]fluoranthene, benzo[ghi]perylene, coronene, dibenzo[g,p]chrysene, acenaphthylene, acenaphthene, naphthacene, pentacene, cyclooctatetraene, etc., more typically aromatic hydrocarbon rings such as benzene, naphthalene, anthracene, pyrene; , quinoline, isoquinoline, chromene, thianthrene, phenothiazine, phenoxazine, xanthene, acridine, phenazine, carbazole, indolocarbazole, more typically furan, thiophene, pyrrole, imidazole, pyran, pyridine, Non-limiting examples include pyrimidine, pyrazine, pyrrolidine, piperidine, piperazine, morpholine.
 芳香族環(たとえばベンゼン環、ナフタレン環など)は任意に置換基を有していてもよいが、かかる置換基としては、ハロゲン原子、飽和又は不飽和の直鎖、分枝又は環状の炭化水素基(-R)(炭化水素鎖の途中で酸素原子により一回以上中断されていてもよい。アルキル基、アルケニル基、アルキニル基、プロパルギル基などを包含する。)、アルコキシ基若しくはアリールオキシ基(-OR、ここでRは前記炭化水素基-Rを表す)、アルキルアミノ基[-NHR若しくは-NR(2つのRは互いに同じでも異なっていてもよい)、ここでRは前記炭化水素基-Rを表し、炭化水素鎖の途中で酸素原子により一回以上中断されていてもよいアルキル基、アルケニル基、アルキニル基、プロパルギル基などを包含する。]、水酸基、アミノ基(-NH)、カルボキシル基、シアノ基、ニトロ基、エステル基(-COR若しくは-OCOR、ここでRは前記炭化水素基-Rを表す)、アミド基(-NHCOR、-CONHR、-NRCOR(2つのRは互いに同じでも異なっていてもよい)若しくは-CONR(2つのRは互いに同じでも異なっていてもよい)、ここでRは前記炭化水素基-Rを表す)、スルホニル含有基(-SOR、ここでRは前記炭化水素基-Rまたは水酸基-OHを表す)、チオール基(-SH)、スルフィド含有基(-SR、ここでRは前記炭化水素基-Rを表す);エーテル結合を含む有機基[R11-O-R11(R11は各々独立にメチル基、エチル基等の炭素数1~6のアルキル基や、フェニル基、ナフチル基、アントラニル基、ピレニル基などのアリール基を示す。)で示されるエーテル化合物の残基;例えば、メトキシ基、エトキシ基、フェノキシ基を含むエーテル結合を含む有機基]、アリール基等の置換基を挙げることができる。 Aromatic rings (e.g., benzene ring, naphthalene ring, etc.) may optionally have substituents, and such substituents include halogen atoms, saturated or unsaturated straight-chain, branched or cyclic hydrocarbons. A group (-R) (which may be interrupted by an oxygen atom one or more times in the middle of the hydrocarbon chain, including alkyl groups, alkenyl groups, alkynyl groups, propargyl groups, etc.), an alkoxy group or an aryloxy group ( —OR, where R represents the hydrocarbon group —R), an alkylamino group [—NHR or —NR 2 (the two Rs may be the same or different), where R is the hydrocarbon group It represents -R and includes an alkyl group, an alkenyl group, an alkynyl group, a propargyl group, etc., which may be interrupted one or more times by an oxygen atom in the middle of the hydrocarbon chain. ], hydroxyl group, amino group (-NH 2 ), carboxyl group, cyano group, nitro group, ester group (-CO 2 R or -OCOR, where R represents the hydrocarbon group -R), amide group (- NHCOR, -CONHR, -NRCOR (the two R's may be the same or different) or -CONR 2 (the two R's may be the same or different), wherein R is said hydrocarbon group -R ), a sulfonyl-containing group (--SO 2 R, where R represents the hydrocarbon group --R or hydroxyl group --OH), a thiol group (--SH), a sulfide-containing group (--SR, where R represents the represents a hydrocarbon group —R); an organic group containing an ether bond [R 11 -OR 11 (R 11 is each independently an alkyl group having 1 to 6 carbon atoms such as a methyl group or an ethyl group, a phenyl group, aryl groups such as naphthyl group, anthranyl group, pyrenyl group, etc.); groups can be mentioned.
 更に、1又は複数の芳香族環(ベンゼン、ナフタレン、アントラセン、ピレンなど)と、1又は複数の脂肪族環若しくは複素環との縮合環を有する有機基も含まれる。そして、ここにいう脂肪族環としては、シクロブタン、シクロブテン、シクロペンタン、シクロペンテン、シクロヘキサン、シクロヘキセン、メチルシクロヘキサン、メチルシクロヘキセン、シクロヘプタン、シクロヘプテンを例示でき、複素環としては、フラン、チオフェン、ピロール、イミダゾール、ピラン、ピリジン、ピリミジン、ピラジン、ピロリジン、ピペリジン、ピペラジン、モルホリンを例示できる。 Also included are organic groups having a condensed ring of one or more aromatic rings (benzene, naphthalene, anthracene, pyrene, etc.) and one or more aliphatic or heterocyclic rings. Examples of the aliphatic ring herein include cyclobutane, cyclobutene, cyclopentane, cyclopentene, cyclohexane, cyclohexene, methylcyclohexane, methylcyclohexene, cycloheptane, and cycloheptene. Examples of the heterocyclic ring include furan, thiophene, pyrrole, and imidazole. , pyran, pyridine, pyrimidine, pyrazine, pyrrolidine, piperidine, piperazine, and morpholine.
 2つ以上の芳香族環がアルキレン基等の二価の連結基で連結された構造を有する有機基でもよい。 An organic group having a structure in which two or more aromatic rings are linked by a divalent linking group such as an alkylene group may also be used.
(I-4)「複素環」
 「複素環」は、脂肪族複素環と芳香族複素環の両方を包含し、単環式(複素単環)のみならず多環式(複素多環)も包含する概念とする。多環式の場合、少なくとも一つの単環は複素単環であるが、残りの単環は芳香族炭化水素単環でも、脂環式単環でもよい。芳香族複素環としては、前記(I-3)の例示を参照できる。前記(I-3)の芳香族環と同様、置換基を有していてもよい。
(I-4) “heterocycle”
The term "heterocycle" includes both aliphatic heterocycles and aromatic heterocycles, and is a concept that includes not only monocyclic (heteromonocyclic) but also polycyclic (heteropolycyclic). When polycyclic, at least one monocyclic ring is a heteromonocyclic ring, and the remaining monocyclic rings may be either aromatic hydrocarbon monocyclic rings or alicyclic monocyclic rings. As the aromatic heterocycle, the examples of (I-3) above can be referred to. It may have a substituent similarly to the aromatic ring (I-3).
(I-5)「非芳香族環」(脂肪族環)
「非芳香族単環」とは、芳香族に属しない単環系炭化水素のことであり、典型的には脂環式化合物の単環である。脂肪族単環(脂肪族複素単環を包含してもよいし、芳香族化合物に属しない限り不飽和結合を含んでいてもよい)と呼んでもよい。前記(I-3)の芳香族環と同様、置換基を有していてもよい。
(I-5) "Non-aromatic ring" (aliphatic ring)
A “non-aromatic monocyclic ring” is a monocyclic hydrocarbon that does not belong to an aromatic group, typically a monocyclic alicyclic compound. It may also be referred to as an aliphatic monocyclic ring (which may include aliphatic heterocyclic monocyclic rings and may contain an unsaturated bond unless it belongs to an aromatic compound). It may have a substituent similarly to the aromatic ring (I-3).
 非芳香族単環(脂肪族環、脂肪族単環)としては例えば、シクロプロパン、シクロブタン、シクロブテン、シクロペンタン、シクロペンテン、シクロヘキサン、メチルシクロヘキサン、シクロヘキセン、メチルシクロヘキセン、シクロヘプタン、シクロヘプテン等が挙げられる。 Examples of non-aromatic monocyclic rings (aliphatic rings, aliphatic monocyclic rings) include cyclopropane, cyclobutane, cyclobutene, cyclopentane, cyclopentene, cyclohexane, methylcyclohexane, cyclohexene, methylcyclohexene, cycloheptane, and cycloheptene.
 「非芳香族多環」とは、芳香族に属しない多環式炭化水素のことであり、典型的には脂環式化合物の多環である。脂肪族多環[脂肪族複素多環(多環を構成する単環の少なくとも一つが脂肪族複素環)を包含してもよいし、芳香族化合物に属しない限り不飽和結合を含んでいてもよい]と呼んでもよい。非芳香族二環、非芳香族三環、非芳香族四環を包含する。 "Non-aromatic polycyclic" refers to polycyclic hydrocarbons that do not belong to aromatics, typically polycyclic alicyclic compounds. Aliphatic polycyclic [aliphatic heteropolycyclic (at least one of the monocyclic rings constituting the polycyclic ring is an aliphatic heterocyclic ring) may be included, and unless it belongs to an aromatic compound, it may contain an unsaturated bond You can call it good. Includes non-aromatic bicyclic, non-aromatic tricyclic and non-aromatic tetracyclic rings.
 「非芳香族二環」とは、芳香族に属しない二つの単環系炭化水素で構成される縮合環のことであり、典型的には二つの脂環式化合物の縮合環である。本明細書において、脂肪族二環(脂肪族複素二環を包含してもよいし、芳香族化合物に属しない限り不飽和結合を含んでいてもよい)と呼ぶこともある。非芳香族二環としては、ビシクロペンタン、ビシクロオクタン、ビシクロヘプテン等が挙げられる。 "Non-aromatic bicyclic ring" refers to a condensed ring composed of two monocyclic hydrocarbons not belonging to aromatics, typically a condensed ring of two alicyclic compounds. In the present specification, it may be referred to as an aliphatic bicyclic ring (which may include an aliphatic heterobicyclic ring and may contain an unsaturated bond as long as it does not belong to an aromatic compound). Non-aromatic bicyclic rings include bicyclopentane, bicyclooctane, bicycloheptene, and the like.
 「非芳香族三環」とは、芳香族に属しない三つの単環系炭化水素で構成される縮合環のことであり、典型的には三つの脂環式化合物(それぞれ複素環であってもよいし、芳香族化合物に属しない限り不飽和結合を含んでいてもよい)の縮合環である。非芳香族三環としては、トリシクロオクタン、トリシクロノナン、トリシクロデカン等が挙げられる。 "Non-aromatic tricyclic" means a condensed ring composed of three monocyclic hydrocarbons not belonging to the aromatic group, typically three alicyclic compounds (each of which is a heterocyclic may contain an unsaturated bond unless it belongs to an aromatic compound). Non-aromatic tricyclics include tricyclooctane, tricyclononane, tricyclodecane, and the like.
 「非芳香族四環」とは、芳香族に属しない四つの単環系炭化水素で構成される縮合環のことであり、典型的には四つの脂環式化合物(それぞれ複素環であってもよいし、芳香族化合物に属しない限り不飽和結合を含んでいてもよい)の縮合環である。非芳香族四環としては、ヘキサデカヒドロピレンなどが挙げられる。 "Non-aromatic tetracyclic ring" means a condensed ring composed of four monocyclic hydrocarbons not belonging to the aromatic group, typically four alicyclic compounds (each of which is a heterocyclic may contain an unsaturated bond unless it belongs to an aromatic compound). Non-aromatic tetracycles include hexadecahydropyrene and the like.
(1-6)
「環(部分)を構成する炭素原子」とは、置換基のない状態の炭化水素環(芳香族環、脂肪族環、複素環のいずれでもよい)について、当該環を構成する炭素原子を意味する。
(1-6)
The term "carbon atoms constituting a ring (part)" refers to a hydrocarbon ring (which may be an aromatic ring, an aliphatic ring, or a heterocyclic ring) without a substituent, and means a carbon atom constituting the ring. do.
(I-8)
 「炭化水素基」とは、炭化水素から水素原子1つあるいは2つ以上を取り除いてできる基をいい、かかる炭化水素には、飽和又は不飽和の脂肪族炭化水素、飽和又は不飽和の脂環式炭化水素、及び芳香族炭化水素が含まれる。
(I-8)
"Hydrocarbon group" refers to a group formed by removing one or more hydrogen atoms from a hydrocarbon, such hydrocarbons include saturated or unsaturated aliphatic hydrocarbons, saturated or unsaturated alicyclic Formula hydrocarbons, and aromatic hydrocarbons are included.
(1-9)
 本願明細書のノボラック樹脂の単位構造を示す化学構造式には、便宜的に結合の手(*で表記)が記載されている場合があるが、かかる結合の手は、特段の記載がない限り、該単位構造中の結合可能な任意の結合位置を採ることができ、単位構造中の結合位置を何ら限定するものではない。
(1-9)
In the chemical structural formula showing the unit structure of the novolac resin in the specification of the present application, a bond (denoted by *) may be described for convenience, but such a bond is , any bondable bonding position in the unit structure can be adopted, and the bonding position in the unit structure is not limited at all.
[ナノインプリント用レジスト下層膜形成組成物]
 本発明に係るナノインプリント用レジスト下層膜形成組成物は、芳香族環を含有する化合物、及び有機溶剤を含み、任意選択的にその他の成分を含むナノインプリント用レジスト下層膜形成組成物であって、該組成物が同一温度にて大気中で焼成したときと窒素雰囲気下に焼成したときの純水に対する接触角の差が26度以内である膜を形成する組成物である。
[Nanoimprint Resist Underlayer Film-Forming Composition]
The composition for forming a resist underlayer film for nanoimprinting according to the present invention comprises a compound containing an aromatic ring, an organic solvent, and optionally other components. It is a composition that forms a film with a contact angle difference of 26 degrees or less with respect to pure water when the composition is fired in air at the same temperature and when fired in a nitrogen atmosphere.
 芳香族環を含有する化合物は、繰り返し単位構造を含まない化合物であってもよく、繰り返し単位構造を含む化合物(ポリマー)であってもよい。 A compound containing an aromatic ring may be a compound containing no repeating unit structure or a compound (polymer) containing a repeating unit structure.
 芳香族環を含有するポリマーは特に限定されないが、例えば、それぞれ芳香族環を含有するポリビニルアルコール、ポリアクリルアミド、(メタ)アクリル系樹脂、ポリアミド酸、ポリヒドロキシスチレン、ポリヒドロキシスチレン誘導体、ポリメタクリレートとマレイン酸無水物との共重合体、エポキシ樹脂、フェノール樹脂、ノボラック樹脂、レゾール樹脂、マレイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリエーテルスルホン樹脂、ポリケトン樹脂、ポリエステル樹脂、ポリエーテル樹脂、 ウレア樹脂、ポリアミド、ポリイミド、セルロース、セルロース誘導体、スターチ、キチン、キトサン、ゼラチン、ゼイン、糖骨格高分子化合物、ポリエチレンテレフタレート、ポリカーボネート、ポリウレタン及びポリシロキサンからなる群より選ばれる少なくとも1種とすることができる。これらの樹脂は、単独で、または2種類以上組み合わせて用いられる。 Polymers containing aromatic rings are not particularly limited, and examples include polyvinyl alcohol, polyacrylamide, (meth)acrylic resins, polyamic acids, polyhydroxystyrenes, polyhydroxystyrene derivatives, and polymethacrylates, each containing an aromatic ring. Copolymer with maleic anhydride, epoxy resin, phenolic resin, novolac resin, resole resin, maleimide resin, polyetheretherketone resin, polyetherketone resin, polyethersulfone resin, polyketone resin, polyester resin, polyether resin At least one selected from the group consisting of urea resin, polyamide, polyimide, cellulose, cellulose derivative, starch, chitin, chitosan, gelatin, zein, sugar skeleton polymer compound, polyethylene terephthalate, polycarbonate, polyurethane and polysiloxane can be done. These resins are used alone or in combination of two or more.
 好ましくは、芳香族環を含有するポリマーはノボラック樹脂である。より好ましくは、芳香族環を含有するポリマーは、ヘテロ原子を含む芳香族炭化水素に由来する単位構造を含むノボラック樹脂である。より好ましくは、芳香族環を含有するポリマーは、置換基を有してもよい芳香族炭化水素、又は芳香族環が縮合または縮環してもよく、置換基を有していてもよい4乃至12員の単環、二環、若しくは三環化合物に由来する単位構造を含むノボラック樹脂である。
 ここで前述した置換基を有していてもよい4乃至12員の単環、二環、若しくは三環化合物に由来する単位構造とは例えば下記に示す構造を例示することができる。
Figure JPOXMLDOC01-appb-C000021
Preferably, the polymer containing aromatic rings is a novolak resin. More preferably, the aromatic ring-containing polymer is a novolak resin containing unit structures derived from heteroatom-containing aromatic hydrocarbons. More preferably, the polymer containing an aromatic ring is an aromatic hydrocarbon that may have a substituent, or an aromatic ring that may be condensed or condensed, and may have a substituent. It is a novolak resin containing a unit structure derived from a 12- to 12-membered monocyclic, bicyclic, or tricyclic compound.
Here, the unit structure derived from the 4- to 12-membered monocyclic, bicyclic, or tricyclic compound optionally having substituent(s) described above can be exemplified by the structures shown below.
Figure JPOXMLDOC01-appb-C000021
 ヘテロ原子を含む芳香族炭化水素に由来する単位構造としては、好ましくは、複素環、少なくとも1つの含酸素置換基を有する芳香族炭化水素、又は少なくとも1つの-NH-によって連結された芳香族炭化水素に由来する単位構造である。 The unit structure derived from an aromatic hydrocarbon containing a heteroatom is preferably a heterocyclic ring, an aromatic hydrocarbon having at least one oxygen-containing substituent, or an aromatic hydrocarbon linked by at least one -NH- It is a unit structure derived from hydrogen.
 複素環としては、フラン、ピラン、チオフェン、ピロール、N-アルキルピロール、N-アリールピロール、イミダゾール、ピリジン、ピリミジン、ピラジン、ピロリジン、ピペリジン、ピペラジン、モルホリン、トリアジン、チアゾール、インドール、フェニルインドール、プリン、キノリン、イソキノリン、クロメン、チアントレン、フェノチアジン、フェノキサジン、キサンテン、アクリジン、フェナジン、カルバゾール、インドロカルバゾール等が挙げられ、より典型的には、フラン、チオフェン、ピロール、イミダゾール、ピラン、ピリジン、ピリミジン、ピラジン、ピロリジン、ピペリジン、ピペラジン、モルホリンが挙げられるが、これらに限定されるものではない。複素環は、ハロゲン原子、飽和又は不飽和の直鎖、分枝又は環状の炭化水素基、ヒドロキシル基、アミノ基、カルボキシル基、シアノ基、ニトロ基、アルコキシル基、エステル基、アミド基、スルホニル基、スルフィド基、エーテル基、アリール基等の置換基を有していてもよい。 Heterocycles include furan, pyran, thiophene, pyrrole, N-alkylpyrrole, N-arylpyrrole, imidazole, pyridine, pyrimidine, pyrazine, pyrrolidine, piperidine, piperazine, morpholine, triazine, thiazole, indole, phenylindole, purine, quinoline, isoquinoline, chromene, thianthrene, phenothiazine, phenoxazine, xanthene, acridine, phenazine, carbazole, indolocarbazole, etc. More typically, furan, thiophene, pyrrole, imidazole, pyran, pyridine, pyrimidine, pyrazine , pyrrolidine, piperidine, piperazine, morpholine. Heterocyclic rings are halogen atoms, saturated or unsaturated straight chain, branched or cyclic hydrocarbon groups, hydroxyl groups, amino groups, carboxyl groups, cyano groups, nitro groups, alkoxyl groups, ester groups, amide groups, sulfonyl groups. , a sulfide group, an ether group, and an aryl group.
 少なくとも1つの含酸素置換基を有する芳香族炭化水素は、より好ましくは、含酸素置換基を少なくとも2つ有する芳香族炭化水素であり、更に好ましくは、含酸素置換基を2つ有する芳香族炭化水素である。
 含酸素置換基は、水酸基;水素原子が飽和又は不飽和の直鎖、分枝又は環状の炭化水素基に置き換えられた水酸基;及び酸素原子により一回以上中断された飽和又は不飽和の直鎖、分枝又は環状の炭化水素基、芳香族化合物等を含む。上記含酸素置換基以外に、芳香族炭化水素は、ハロゲン原子、飽和又は不飽和の直鎖、分枝又は環状の炭化水素基、ヒドロキシル基、アミノ基、カルボキシル基、シアノ基、ニトロ基、アルコキシル基、エステル基、アミド基、スルホニル基、スルフィド基、エーテル基、アリール基等の置換基を有していてもよい。
 少なくとも1つの-NH-によって連結された芳香族炭化水素は、より好ましくは、1つの-NH-によって連結された芳香族炭化水素である。
 芳香族炭化水素としては、ベンゼン、インデン、ナフタレン、アズレン、スチレン、トルエン、キシレン、メシチレン、クメン、アントラセン、フェナントレン、トリフェニレン、ベンゾアントラセン、ピレン、クリセン、フルオレン、ビフェニル、コランヌレン、ペリレン、フルオランテン、ベンゾ[k]フルオランテン、ベンゾ[b]フルオランテン、ベンゾ[ghi]ペリレン、コロネン、ジベンゾ[g,p]クリセン、アセナフチレン、アセナフテン、ナフタセン、ペンタセン等が挙げられるが、これらに限定されるものではない。
 なお、由来する単位構造には、元の化合物分子の構成原子の一部が他の原子若しくは基に置き換えられたり、結合手に変えられたりして形成された単位構造が含まれる。
The aromatic hydrocarbon having at least one oxygen-containing substituent is more preferably an aromatic hydrocarbon having at least two oxygen-containing substituents, more preferably an aromatic hydrocarbon having two oxygen-containing substituents. is hydrogen.
Oxygen-containing substituents include hydroxyl groups; hydroxyl groups in which hydrogen atoms are replaced by saturated or unsaturated straight chain, branched or cyclic hydrocarbon groups; and saturated or unsaturated straight chains interrupted one or more times by oxygen atoms. , branched or cyclic hydrocarbon groups, aromatic compounds and the like. In addition to the above oxygen-containing substituents, aromatic hydrocarbons include halogen atoms, saturated or unsaturated linear, branched or cyclic hydrocarbon groups, hydroxyl groups, amino groups, carboxyl groups, cyano groups, nitro groups, alkoxyl groups, It may have substituents such as groups, ester groups, amide groups, sulfonyl groups, sulfide groups, ether groups, and aryl groups.
The aromatic hydrocarbon linked by at least one -NH- is more preferably an aromatic hydrocarbon linked by one -NH-.
Aromatic hydrocarbons include benzene, indene, naphthalene, azulene, styrene, toluene, xylene, mesitylene, cumene, anthracene, phenanthrene, triphenylene, benzanthracene, pyrene, chrysene, fluorene, biphenyl, corannulene, perylene, fluoranthene, benzo[ k]fluoranthene, benzo[b]fluoranthene, benzo[ghi]perylene, coronene, dibenzo[g,p]chrysene, acenaphthylene, acenaphthene, naphthacene, pentacene and the like, but are not limited thereto.
The derived unit structure includes a unit structure formed by replacing some of the constituent atoms of the original compound molecule with other atoms or groups, or by changing bonds.
[式(I)で表される繰り返し単位構造を含むノボラック樹脂]
 好ましくは、前記芳香族環を含有するポリマーは、下記式(I)で表される繰り返し単位構造を含むノボラック樹脂である。
Figure JPOXMLDOC01-appb-C000022

[式(I)中、nは1-5の数を表す。Aは、ヘテロ原子を含む芳香族炭化水素を有する有機基を表す。Bは下記式(II)、(III)又は(IV)で表される構造を含む有機基を表す。
Figure JPOXMLDOC01-appb-C000023

(式(II)中、R、及びR’はそれぞれ独立に水素原子、置換基を有していてもよい炭素原子数6乃至30の芳香族炭化水素基、置換基を有していてもよい炭素原子数3乃至30の複素環基、又は置換基を有していてもよい炭素原子数10以下の直鎖、分岐若しくは環状のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000024

(式(III)中、X及びYはそれぞれ独立に置換基を有していてもよい炭素原子数6乃至30の芳香族炭化水素基を表し、i及びjはそれぞれ独立に0又は1を表し、p、q、及びkは結合手の数を表し、p及びqはそれぞれ独立に0又は1を表し、p及びqが同時に0になることはなく、kは0乃至2の整数を表し、Zは、Cと共に、芳香族環が縮合していてもよく、置換基を有していてもよく、ヘテロ原子を含んでもよい4乃至12員の単環、二環、又は三環を形成する。)
Figure JPOXMLDOC01-appb-C000025

(式(IV)中、Arは置換基を有していてもよい炭素原子数6乃至30の芳香族炭化水素基を表し、J及びJはそれぞれ独立に直接結合又は2価の有機基を表す。)]
[Novolak Resin Containing Repeating Unit Structure Represented by Formula (I)]
Preferably, the aromatic ring-containing polymer is a novolak resin containing a repeating unit structure represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000022

[In formula (I), n represents a number from 1 to 5. A represents an organic group having an aromatic hydrocarbon containing heteroatoms. B represents an organic group having a structure represented by formula (II), (III) or (IV) below.
Figure JPOXMLDOC01-appb-C000023

(In formula (II), R and R′ are each independently a hydrogen atom, an optionally substituted aromatic hydrocarbon group having 6 to 30 carbon atoms, an optionally substituted represents a heterocyclic group having 3 to 30 carbon atoms, or an optionally substituted linear, branched or cyclic alkyl group having 10 or less carbon atoms.)
Figure JPOXMLDOC01-appb-C000024

(In formula (III), X and Y each independently represent an optionally substituted aromatic hydrocarbon group having 6 to 30 carbon atoms, and i and j each independently represent 0 or 1. , p, q, and k represent the number of bonds, p and q each independently represent 0 or 1, p and q are not 0 at the same time, k represents an integer from 0 to 2, Z, together with C, forms a 4- to 12-membered monocyclic, bicyclic, or tricyclic ring which may be condensed with an aromatic ring, may have a substituent, and may contain a heteroatom. .)
Figure JPOXMLDOC01-appb-C000025

(In formula (IV), Ar represents an optionally substituted aromatic hydrocarbon group having 6 to 30 carbon atoms, and J 1 and J 2 are each independently a direct bond or a divalent organic group represents.)]
 基Aにおける「芳香族炭化水素を有する有機基」とは、芳香族性を示す炭化水素を有する基をいう。例えば、ベンゼン、シクロオクタテトラエンのほか、任意の置換基を有するインデン、ナフタレン、アズレン、スチレン、トルエン、キシレン、メシチレン、クメン、アントラセン、フェナントレン、ナフタセン、トリフェニレン、ベンゾアントラセン、ピレン、クリセン、フルオレン、ビフェニル、コランヌレン、ペリレン、フルオランテン、ベンゾ[k]フルオランテン、ベンゾ[b]フルオランテン、ベンゾ[ghi]ペリレン、コロネン、ジベンゾ[g,p]クリセン、アセナフチレン、アセナフテン、ナフタセン、ペンタセン等に由来する基が挙げられる。更に、ベンゼンのような芳香族環とシクロブタン、シクロブテン、シクロペンタン、シクロペンテン、シクロヘキサン、シクロヘキセン、メチルシクロヘキサン、メチルシクロヘキセン、シクロヘプタン、シクロヘプテンのような脂肪族環との縮合環を有する有機基、ベンゼンのような芳香族環とフラン、チオフェン、ピロール、イミダゾール、ピラン、ピリジン、ピリミジン、ピラジン、ピロリジン、ピペリジン、ピペラジン、モルホリンのようなヘテロ環との縮合環を有する有機基も含まれる。 The "organic group having an aromatic hydrocarbon" in the group A refers to a group having a hydrocarbon exhibiting aromaticity. For example, in addition to benzene, cyclooctatetraene, indene, naphthalene, azulene, styrene, toluene, xylene, mesitylene, cumene, anthracene, phenanthrene, naphthacene, triphenylene, benzanthracene, pyrene, chrysene, fluorene, Groups derived from biphenyl, corannulene, perylene, fluoranthene, benzo[k]fluoranthene, benzo[b]fluoranthene, benzo[ghi]perylene, coronene, dibenzo[g,p]chrysene, acenaphthylene, acenaphthene, naphthacene, pentacene, etc. be done. Furthermore, an organic group having a condensed ring of an aromatic ring such as benzene and an aliphatic ring such as cyclobutane, cyclobutene, cyclopentane, cyclopentene, cyclohexane, cyclohexene, methylcyclohexane, methylcyclohexene, cycloheptane, and cycloheptene; and an aromatic ring such as furan, thiophene, pyrrole, imidazole, pyran, pyridine, pyrimidine, pyrazine, pyrrolidine, piperidine, piperazine and morpholine.
 好ましくは、基Aにおける「芳香族炭化水素を有する有機基」は、6乃至30、又は6乃至24の炭素原子数を有する。
 好ましくは、基Aにおける「芳香族炭化水素を有する有機基」は、1又は複数のベンゼン環、ナフタレン環、又はベンゼン環とヘテロ環若しくは脂肪族環との縮合環を有する有機基である。
 芳香族炭化水素は相互にアルキレン基、エーテル基、エステル基、アミド基、スルホニル基、スルフィド基、ケトン基などで連結されていてもよい。
Preferably, the "aromatic hydrocarbon-containing organic group" in group A has from 6 to 30, or from 6 to 24 carbon atoms.
Preferably, the “organic group having an aromatic hydrocarbon” for Group A is an organic group having one or more benzene rings, naphthalene rings, or condensed rings of benzene rings and heterocyclic or aliphatic rings.
Aromatic hydrocarbons may be linked to each other by an alkylene group, an ether group, an ester group, an amide group, a sulfonyl group, a sulfide group, a ketone group, or the like.
 基Aにおける「芳香族炭化水素を有する有機基」は、ヘテロ原子を含んでもよい。好ましくはヘテロ原子を含む。
 ヘテロ原子としては、例えば、酸素原子、窒素原子、イオウ原子等が挙げられる。
 好ましくは、基Aにおける「芳香族炭化水素を有する有機基」は、環上、環内、又は環間にN、S及びOから選択される少なくとも1つのヘテロ原子を含む炭素原子数6乃至30、又は6乃至24の有機基である。環上に含まれるヘテロ原子としては、例えば、アミノ基(例えば、プロパルギルアミノ基)、シアノ基に含まれる窒素原子、ホルミル基、ヒドロキシ基、カルボキシル基、 アルコキシ基(例えば、プロパルギルオキシ基)に含まれる酸素原子、ニトロ基に含まれる窒素原子と酸素原子が挙げられる。環内に含まれるヘテロ原子としては、例えば、キサンテンに含まれる酸素原子、カルバゾールに含まれる窒素原子が挙げられる。環間に含まれるヘテロ原子としては、-NH-結合、-NHCO-結合、-O-結合、-COO-結合、-CO-結合、-S-結合、-SS-結合、-SO-結合に含まれる窒素原子、酸素原子、硫黄原子が挙げられる。
The "organic group having an aromatic hydrocarbon" in group A may contain a heteroatom. It preferably contains a heteroatom.
Heteroatoms include, for example, oxygen atoms, nitrogen atoms, sulfur atoms, and the like.
Preferably, the "organic group having an aromatic hydrocarbon" in the group A has 6 to 30 carbon atoms containing at least one heteroatom selected from N, S and O on, in or between the rings. , or 6 to 24 organic groups. Examples of heteroatoms contained on the ring include amino groups (e.g., propargylamino groups), nitrogen atoms contained in cyano groups, formyl groups, hydroxy groups, carboxyl groups, and alkoxy groups (e.g., propargyloxy groups). oxygen atoms contained in the nitro group, and nitrogen and oxygen atoms contained in the nitro group. The heteroatom contained in the ring includes, for example, an oxygen atom contained in xanthene and a nitrogen atom contained in carbazole. Heteroatoms contained between rings include -NH-bond, -NHCO-bond, -O-bond, -COO-bond, -CO-bond, -S-bond, -SS-bond and -SO 2 -bond. nitrogen atoms, oxygen atoms, and sulfur atoms contained in
 好ましくは、基Aにおける「ヘテロ原子を含む芳香族炭化水素を有する有機基」は、上記した複素環、含酸素置換基を有する芳香族炭化水素、及び-NH-によって連結された芳香族炭化水素に由来する単位構造を含む。 Preferably, the "organic group having an aromatic hydrocarbon containing a heteroatom" in the group A is the above-described heterocyclic ring, an aromatic hydrocarbon having an oxygen-containing substituent, and an aromatic hydrocarbon linked by -NH- Including the unit structure derived from.
 置換基としては、ハロゲン原子、ヘテロ原子を含んでもよい飽和又は不飽和の直鎖、分枝又は環状の炭化水素基、ヒドロキシル基、アミノ基、カルボキシル基、シアノ基、ニトロ基、アルコキシル基、エステル基、アミド基、スルホニル基、スルフィド基、エーテル基、アリール基等が挙げられるが、本発明の効果を損なわない限り、これらに限定されるものではない。 Substituents include halogen atoms, saturated or unsaturated linear, branched or cyclic hydrocarbon groups which may contain heteroatoms, hydroxyl groups, amino groups, carboxyl groups, cyano groups, nitro groups, alkoxyl groups, esters. groups, amide groups, sulfonyl groups, sulfide groups, ether groups, aryl groups, etc., but are not limited to these as long as they do not impair the effects of the present invention.
 好ましくは、基Aは、下記から選択される少なくとも1種である。
 なお、以下に示す化合物は例示であり、これらに限定されるわけではない。また、それらの芳香環上の任意の位置に上述した置換基が結合していてもよい。
Preferably, group A is at least one selected from the following.
In addition, the compounds shown below are examples, and the present invention is not limited to these. Moreover, the above-described substituent may be bonded to any position on those aromatic rings.
(アミン骨格の例)



(Example of amine skeleton)



(フェノール骨格の例)


(Example of phenol skeleton)


 また、上記アミン骨格のNH、フェノール骨格のOHのHが下記に記載の置換基に置き換えられていてもよい。

Further, NH of the amine skeleton and H of OH of the phenol skeleton may be replaced with substituents described below.

 好ましくは、基Aは下記から選択される少なくとも1種である。 Group A is preferably at least one selected from the following.
(複素環に由来する単位構造の例)
(Example of unit structure derived from heterocycle)
(含酸素置換基を有する芳香族炭化水素に由来する単位構造の例)
Figure JPOXMLDOC01-appb-C000036

Figure JPOXMLDOC01-appb-C000037
(Examples of unit structures derived from aromatic hydrocarbons having oxygen-containing substituents)
Figure JPOXMLDOC01-appb-C000036

Figure JPOXMLDOC01-appb-C000037
(-NH-によって連結された芳香族炭化水素に由来する単位構造の例)
Figure JPOXMLDOC01-appb-C000038
(Example of unit structure derived from aromatic hydrocarbon linked by -NH-)
Figure JPOXMLDOC01-appb-C000038
 式(II)におけるR、及びR’の定義中、「置換基」、「芳香族炭化水素」、及び「複素環」については上記したとおりである。 In the definitions of R and R' in formula (II), the "substituent", "aromatic hydrocarbon", and "heterocyclic ring" are as described above.
 式(II)におけるR、及びR’の定義中、「アルキル基」としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、シクロプロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、シクロブチル基、1-メチル-シクロプロピル基、2-メチル-シクロプロピル基、n-ペンチル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、1,1-ジメチル-n-プロピル基、1,2-ジメチル-n-プロピル基、2,2-ジメチル-n-プロピル基、1-エチル-n-プロピル基、シクロペンチル基、1-メチル-シクロブチル基、2-メチル-シクロブチル基、3-メチル-シクロブチル基、1,2-ジメチル-シクロプロピル基、2,3-ジメチル-シクロプロピル基、1-エチル-シクロプロピル基、2-エチル-シクロプロピル基、n-ヘキシル基、1-メチル-n-ペンチル基、2-メチル-n-ペンチル基、3-メチル-n-ペンチル基、4-メチル-n-ペンチル基、1,1-ジメチル-n-ブチル基、1,2-ジメチル-n-ブチル基、1,3-ジメチル-n-ブチル基、2,2-ジメチル-n-ブチル基、2,3-ジメチル-n-ブチル基、3,3-ジメチル-n-ブチル基、1-エチル-n-ブチル基、2-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、1,2,2-トリメチル-n-プロピル基、1-エチル-1-メチル-n-プロピル基、1-エチル-2-メチル-n-プロピル基、シクロヘキシル基、1-メチル-シクロペンチル基、2-メチル-シクロペンチル基、3-メチル-シクロペンチル基、1-エチル-シクロブチル基、2-エチル-シクロブチル基、3-エチル-シクロブチル基、1,2-ジメチル-シクロブチル基、1,3-ジメチル-シクロブチル基、2,2-ジメチル-シクロブチル基、2,3-ジメチル-シクロブチル基、2,4-ジメチル-シクロブチル基、3,3-ジメチル-シクロブチル基、1-n-プロピル-シクロプロピル基、2-n-プロピル-シクロプロピル基、1-i-プロピル-シクロプロピル基、2-i-プロピル-シクロプロピル基、1,2,2-トリメチル-シクロプロピル基、1,2,3-トリメチル-シクロプロピル基、2,2,3-トリメチル-シクロプロピル基、1-エチル-2-メチル-シクロプロピル基、2-エチル-1-メチル-シクロプロピル基、2-エチル-2-メチル-シクロプロピル基、及び2-エチル-3-メチル-シクロプロピル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基が挙げられる。 In the definition of R and R′ in formula (II), the “alkyl group” includes, for example, methyl group, ethyl group, n-propyl group, i-propyl group, cyclopropyl group, n-butyl group, i- butyl group, s-butyl group, t-butyl group, cyclobutyl group, 1-methyl-cyclopropyl group, 2-methyl-cyclopropyl group, n-pentyl group, 1-methyl-n-butyl group, 2-methyl- n-butyl group, 3-methyl-n-butyl group, 1,1-dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl -n-propyl group, cyclopentyl group, 1-methyl-cyclobutyl group, 2-methyl-cyclobutyl group, 3-methyl-cyclobutyl group, 1,2-dimethyl-cyclopropyl group, 2,3-dimethyl-cyclopropyl group, 1-ethyl-cyclopropyl group, 2-ethyl-cyclopropyl group, n-hexyl group, 1-methyl-n-pentyl group, 2-methyl-n-pentyl group, 3-methyl-n-pentyl group, 4- methyl-n-pentyl group, 1,1-dimethyl-n-butyl group, 1,2-dimethyl-n-butyl group, 1,3-dimethyl-n-butyl group, 2,2-dimethyl-n-butyl group , 2,3-dimethyl-n-butyl group, 3,3-dimethyl-n-butyl group, 1-ethyl-n-butyl group, 2-ethyl-n-butyl group, 1,1,2-trimethyl-n -propyl group, 1,2,2-trimethyl-n-propyl group, 1-ethyl-1-methyl-n-propyl group, 1-ethyl-2-methyl-n-propyl group, cyclohexyl group, 1-methyl- cyclopentyl group, 2-methyl-cyclopentyl group, 3-methyl-cyclopentyl group, 1-ethyl-cyclobutyl group, 2-ethyl-cyclobutyl group, 3-ethyl-cyclobutyl group, 1,2-dimethyl-cyclobutyl group, 1,3 -dimethyl-cyclobutyl group, 2,2-dimethyl-cyclobutyl group, 2,3-dimethyl-cyclobutyl group, 2,4-dimethyl-cyclobutyl group, 3,3-dimethyl-cyclobutyl group, 1-n-propyl-cyclopropyl group, 2-n-propyl-cyclopropyl group, 1-i-propyl-cyclopropyl group, 2-i-propyl-cyclopropyl group, 1,2,2-trimethyl-cyclopropyl group, 1,2,3- trimethyl-cyclopropyl group, 2,2,3-trimethyl-cyclopropyl group, 1-ethyl-2-methyl-cyclopropyl group, 2-ethyl-1-methyl-cyclopropyl group, 2-ethyl-2-methyl- cyclopropyl, 2-ethyl-3-methyl-cyclopropyl, n-heptyl, n-octyl, n-nonyl and n-decyl.
 好ましくは、R、及びR’は、それぞれ独立にフェニル、ナフタレニル、アントラセニル、フェナントレニル、ナフタセニル、ピレニルである。 Preferably, R and R' are each independently phenyl, naphthalenyl, anthracenyl, phenanthrenyl, naphthacenyl, pyrenyl.
 式(II)で表される構造を含む有機基の具体例を若干挙げれば、下記のとおりである。*は基Aとの結合部位を示す。言うまでもなく、例示の構造を全体の一部に含んでいる構造でもよい。

Figure JPOXMLDOC01-appb-C000040
Some specific examples of the organic group containing the structure represented by formula (II) are as follows. * indicates the bonding site with the group A. Needless to say, a structure including the illustrated structure as a part of the whole may be used.

Figure JPOXMLDOC01-appb-C000040
 式(III)において、X及びYはそれぞれ独立に置換基を有していてもよい炭素原子数6乃至30の芳香族炭化水素基を表し、i、j及びkはそれぞれ独立に0又は1を表す。芳香族炭化水素基は2価である。「芳香族炭化水素」については上記したとおりである。
 式(III)において、ZがCと共に形成する4乃至12員の単環としては、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘキセン等が挙げられ、二環としては、ビシクロペンタン、ビシクロオクタン、ビシクロヘプテン等が挙げられ、三環としては、トリシクロオクタン、トリシクロノナン、トリシクロデカン等が挙げられる。
 単環、二環、又は三環に縮合していてもよい芳香族環としては、ベンゼン環、ナフタレン環、アントラセン環、ピレン環等が挙げられる。これらは、1つ又は2つ以上縮合していてもよい。
In formula (III), X and Y each independently represent an optionally substituted aromatic hydrocarbon group having 6 to 30 carbon atoms; i, j and k each independently represent 0 or 1; show. Aromatic hydrocarbon groups are divalent. "Aromatic hydrocarbon" is as described above.
In the formula (III), the 4- to 12-membered monocyclic ring formed by Z together with C includes cyclopropane, cyclobutane, cyclopentane, cyclohexane, cyclohexene and the like, and the bicyclic ring includes bicyclopentane, bicyclooctane and bicycloheptene. etc., and the tricyclic ring includes tricyclooctane, tricyclononane, tricyclodecane and the like.
Aromatic rings which may be condensed into monocyclic, bicyclic or tricyclic rings include benzene ring, naphthalene ring, anthracene ring, pyrene ring and the like. One or more of these may be condensed.
 式(III)で表される構造を含む有機基の具体例を若干挙げれば、下記のとおりである。基Aとの結合部位は特に限定されない。言うまでもなく、例示の構造を全体の一部に含んでいる構造でもよい。
Figure JPOXMLDOC01-appb-C000041

Figure JPOXMLDOC01-appb-C000042
Some specific examples of the organic group containing the structure represented by formula (III) are as follows. The bonding site with group A is not particularly limited. Needless to say, a structure including the illustrated structure as a part of the whole may be used.
Figure JPOXMLDOC01-appb-C000041

Figure JPOXMLDOC01-appb-C000042
 式(IV)におけるArの定義中、「芳香族炭化水素」については上記したとおりである。
 J及びJの定義中、「2価の有機基」は、好ましくは、置換基としてヒドロキシル基又はハロ基(例えば、フッ素)を有してもよい炭素原子数1~6の直鎖又は分岐のアルキレン基である。直鎖アルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基が挙げられる。
In the definition of Ar in formula (IV), "aromatic hydrocarbon" is as described above.
In the definitions of J 1 and J 2 , the “divalent organic group” is preferably a linear or It is a branched alkylene group. Examples of linear alkylene groups include methylene, ethylene, propylene, butylene, pentylene, and hexylene groups.
 式(IV)で表される構造を含む有機基の具体例を若干挙げれば、下記のとおりである。*は基Aとの結合部位を示す。言うまでもなく、例示の構造を全体の一部に含んでいる構造でもよい。

Some specific examples of the organic group containing the structure represented by formula (IV) are as follows. * indicates the bonding site with the group A. Needless to say, a structure including the illustrated structure as a part of the whole may be used.

 nは1-5、1-4、又は1-3の数であり、好ましくは、1、2、3、4、又は5、より好ましくは1、2、3、又は4、最も好ましくは1、2、又は3である。 n is a number from 1-5, 1-4, or 1-3, preferably 1, 2, 3, 4, or 5, more preferably 1, 2, 3, or 4, most preferably 1, 2 or 3.
[合成方法]
 式(I)で表される繰り返し単位構造を有するノボラック樹脂は、公知の方法によって調製することができる。例えば、H-A-Hで表される含環化合物とOHC-B、O=C-B、HO-B-OH、RO-B-OR、RO-CH-B-CH-OR等で表される含酸素化合物を縮合させることにより調製することができる(式中、A、Bは上記と同義である。Rはハロゲン、又は炭素原子数約1~3のアルキル基を表す)。含環化合物、含酸素化合物は共に1種を用いてもよく、2種以上を組み合わせて用いてもよい。この縮合反応においては、含環化合物1モルに対して、含酸素化合物を0.1乃至10モル、好ましくは0.1乃至2モルの割合で用いることができる。
[Synthesis method]
A novolac resin having a repeating unit structure represented by formula (I) can be prepared by a known method. For example, a ring-containing compound represented by HAH and OHC-B, O=C-B, HO-B-OH, RO-B-OR, RO-CH 2 -B-CH 2 -OR, etc. It can be prepared by condensing the represented oxygen-containing compound (wherein A and B are as defined above, and R represents a halogen or an alkyl group having about 1 to 3 carbon atoms). One kind of the ring-containing compound and the oxygen-containing compound may be used together, or two or more kinds thereof may be used in combination. In this condensation reaction, the oxygen-containing compound can be used in an amount of 0.1 to 10 mol, preferably 0.1 to 2 mol, per 1 mol of the ring-containing compound.
 縮合反応で用いられる触媒としては、例えば硫酸、リン酸、過塩素酸等の鉱酸類、p-トルエンスルホン酸、p-トルエンスルホン酸一水和物、メタンスルホン酸、トリフルオロメタンスルホン酸等の有機スルホン酸類、蟻酸、シュウ酸等のカルボン酸類を使用することができる。触媒の使用量は、使用する触媒の種類によって異なるが、含環化合物(複数種の場合はそれらの合計)100質量部に対して、通常0.001乃至10,000質量部、好ましくは0.01乃至1,000質量部、より好ましくは0.05乃至100質量部である。 Examples of catalysts used in the condensation reaction include mineral acids such as sulfuric acid, phosphoric acid and perchloric acid; Carboxylic acids such as sulfonic acids, formic acid and oxalic acid can be used. The amount of the catalyst used varies depending on the type of catalyst used, but is usually 0.001 to 10,000 parts by mass, preferably 0.001 to 10,000 parts by mass, per 100 parts by mass of the ring-containing compound (in the case of multiple types, the total of them). 01 to 1,000 parts by mass, more preferably 0.05 to 100 parts by mass.
 縮合反応は無溶剤でも行われるが、通常は溶剤を用いて行われる。溶剤としては反応基質を溶解することができ、反応を阻害しないものであれば特に限定されない。例えば、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、テトラヒドロフラン、ジオキサン、1,2-ジクロロメタン、1,2-ジクロロエタン、トルエン、N-メチルピロリドン、ジメチルホルムアミド等が挙げられる。縮合反応温度は通常40℃乃至200℃、好ましくは100℃乃至180℃である。反応時間は反応温度によって異なるが、通常5分乃至50時間、好ましくは5分乃至24時間である。 The condensation reaction can be carried out without a solvent, but it is usually carried out using a solvent. The solvent is not particularly limited as long as it can dissolve the reaction substrate and does not inhibit the reaction. For example, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, tetrahydrofuran, dioxane, 1,2-dichloromethane, 1,2-dichloroethane, toluene, N-methylpyrrolidone, dimethylformamide and the like. mentioned. The condensation reaction temperature is usually 40°C to 200°C, preferably 100°C to 180°C. Although the reaction time varies depending on the reaction temperature, it is usually 5 minutes to 50 hours, preferably 5 minutes to 24 hours.
 本発明に係るノボラック樹脂の重量平均分子量は、通常500-100,000、好ましくは600-50,000、700-10,000、又は800-8,000である。 The weight average molecular weight of the novolak resin according to the present invention is usually 500-100,000, preferably 600-50,000, 700-10,000, or 800-8,000.
(IIA)ノボラック樹脂
(IIA-2)
 ノボラック樹脂は、好ましくは、下記式(AB):
Figure JPOXMLDOC01-appb-C000045

で表わされる複合単位構造A-B’を含む。
(IIA) novolac resin (IIA-2)
The novolac resin preferably has the following formula (AB):
Figure JPOXMLDOC01-appb-C000045

It includes a composite unit structure AB' represented by.
 式(AB)中、nは複合単位構造A-B’の数を表し、単位構造Aは、前記式(I)における基Aと同じである。 In formula (AB), n represents the number of composite unit structures A-B', and unit structure A is the same as group A in formula (I) above.
(IIA-2-1) 単位構造B’
 単位構造B’は、単位構造A中の芳香族環と結合する連結炭素原子[前記(I-1)参照]を含む一種又は二種以上の単位構造であり、後記(IIA-2-2)~(IIA-2-4)で説明する式(B1)、(B2)又は(B3)で表される構造を含む。
(IIA-2-1) Unit structure B'
Unit structure B 'is one or two or more unit structures containing a connecting carbon atom [see (I-1) above] that bonds to an aromatic ring in unit structure A, and (IIA-2-2) described later. to (IIA-2-4), including structures represented by formulas (B1), (B2), or (B3).
 また、少なくとも1つの複合単位構造A-B’が、それに等価な1つの単位構造として、後記(IIA-2-2-3)、(IIA-2-3-2)、(IIA-2-4-3)でそれぞれ説明する式(C1)、(C2)及び(C3)で表される構造を含む一種又は二種以上の単位構造Cに置き換わってもよい。 In addition, at least one composite unit structure AB' is equivalent to one unit structure (IIA-2-2-3), (IIA-2-3-2), (IIA-2-4 -3) may be replaced with one or more unit structures C including structures represented by formulas (C1), (C2) and (C3) respectively.
(IIA-2-2) 式(B1)
Figure JPOXMLDOC01-appb-C000046

 式(B1)中、
 R、及びR’はそれぞれ独立に水素原子、置換基を有していてもよい炭素原子数6~30の芳香族環、置換基を有していてもよい炭素原子数3~30の複素環、又は置換基を有していてもよい炭素原子数10以下の直鎖、分岐若しくは環状のアルキル基を表す。
(IIA-2-2) Formula (B1)
Figure JPOXMLDOC01-appb-C000046

In formula (B1),
R and R' are each independently a hydrogen atom, an optionally substituted aromatic ring having 6 to 30 carbon atoms, and an optionally substituted heterocyclic ring having 3 to 30 carbon atoms. , or an optionally substituted linear, branched or cyclic alkyl group having 10 or less carbon atoms.
 また、式(B1)の2つの結合の手は、単位構造A中の芳香族環と共有結合することができる。 In addition, the two bonding hands of formula (B1) can be covalently bonded to the aromatic ring in unit structure A.
(IIA-2-2-1)
 式(B1)におけるR、及びR’の定義中、「芳香族環」及び「複素環」については、前記(I-3)及び(I-4)を参照できる。
(IIA-2-2-1)
In the definition of R and R′ in formula (B1), the above (I-3) and (I-4) can be referred to for the “aromatic ring” and “heterocyclic ring”.
 式(B1)におけるR、及びR’の定義中、「アルキル基」としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、シクロプロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、シクロブチル基、1-メチル-シクロプロピル基、2-メチル-シクロプロピル基、n-ペンチル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、1,1-ジメチル-n-プロピル基、1,2-ジメチル-n-プロピル基、2,2-ジメチル-n-プロピル基、1-エチル-n-プロピル基、シクロペンチル基、1-メチル-シクロブチル基、2-メチル-シクロブチル基、3-メチル-シクロブチル基、1,2-ジメチル-シクロプロピル基、2,3-ジメチル-シクロプロピル基、1-エチル-シクロプロピル基、2-エチル-シクロプロピル基、n-ヘキシル基、1-メチル-n-ペンチル基、2-メチル-n-ペンチル基、3-メチル-n-ペンチル基、4-メチル-n-ペンチル基、1,1-ジメチル-n-ブチル基、1,2-ジメチル-n-ブチル基、1,3-ジメチル-n-ブチル基、2,2-ジメチル-n-ブチル基、2,3-ジメチル-n-ブチル基、3,3-ジメチル-n-ブチル基、1-エチル-n-ブチル基、2-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、1,2,2-トリメチル-n-プロピル基、1-エチル-1-メチル-n-プロピル基、1-エチル-2-メチル-n-プロピル基、シクロヘキシル基、1-メチル-シクロペンチル基、2-メチル-シクロペンチル基、3-メチル-シクロペンチル基、1-エチル-シクロブチル基、2-エチル-シクロブチル基、3-エチル-シクロブチル基、1,2-ジメチル-シクロブチル基、1,3-ジメチル-シクロブチル基、2,2-ジメチル-シクロブチル基、2,3-ジメチル-シクロブチル基、2,4-ジメチル-シクロブチル基、3,3-ジメチル-シクロブチル基、1-n-プロピル-シクロプロピル基、2-n-プロピル-シクロプロピル基、1-i-プロピル-シクロプロピル基、2-i-プロピル-シクロプロピル基、1,2,2-トリメチル-シクロプロピル基、1,2,3-トリメチル-シクロプロピル基、2,2,3-トリメチル-シクロプロピル基、1-エチル-2-メチル-シクロプロピル基、2-エチル-1-メチル-シクロプロピル基、2-エチル-2-メチル-シクロプロピル基、及び2-エチル-3-メチル-シクロプロピル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基が挙げられる。 In the definition of R and R' in formula (B1), the "alkyl group" includes, for example, methyl group, ethyl group, n-propyl group, i-propyl group, cyclopropyl group, n-butyl group, i- butyl group, s-butyl group, t-butyl group, cyclobutyl group, 1-methyl-cyclopropyl group, 2-methyl-cyclopropyl group, n-pentyl group, 1-methyl-n-butyl group, 2-methyl- n-butyl group, 3-methyl-n-butyl group, 1,1-dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl -n-propyl group, cyclopentyl group, 1-methyl-cyclobutyl group, 2-methyl-cyclobutyl group, 3-methyl-cyclobutyl group, 1,2-dimethyl-cyclopropyl group, 2,3-dimethyl-cyclopropyl group, 1-ethyl-cyclopropyl group, 2-ethyl-cyclopropyl group, n-hexyl group, 1-methyl-n-pentyl group, 2-methyl-n-pentyl group, 3-methyl-n-pentyl group, 4- methyl-n-pentyl group, 1,1-dimethyl-n-butyl group, 1,2-dimethyl-n-butyl group, 1,3-dimethyl-n-butyl group, 2,2-dimethyl-n-butyl group , 2,3-dimethyl-n-butyl group, 3,3-dimethyl-n-butyl group, 1-ethyl-n-butyl group, 2-ethyl-n-butyl group, 1,1,2-trimethyl-n -propyl group, 1,2,2-trimethyl-n-propyl group, 1-ethyl-1-methyl-n-propyl group, 1-ethyl-2-methyl-n-propyl group, cyclohexyl group, 1-methyl- cyclopentyl group, 2-methyl-cyclopentyl group, 3-methyl-cyclopentyl group, 1-ethyl-cyclobutyl group, 2-ethyl-cyclobutyl group, 3-ethyl-cyclobutyl group, 1,2-dimethyl-cyclobutyl group, 1,3 -dimethyl-cyclobutyl group, 2,2-dimethyl-cyclobutyl group, 2,3-dimethyl-cyclobutyl group, 2,4-dimethyl-cyclobutyl group, 3,3-dimethyl-cyclobutyl group, 1-n-propyl-cyclopropyl group, 2-n-propyl-cyclopropyl group, 1-i-propyl-cyclopropyl group, 2-i-propyl-cyclopropyl group, 1,2,2-trimethyl-cyclopropyl group, 1,2,3- trimethyl-cyclopropyl group, 2,2,3-trimethyl-cyclopropyl group, 1-ethyl-2-methyl-cyclopropyl group, 2-ethyl-1-methyl-cyclopropyl group, 2-ethyl-2-methyl- cyclopropyl, 2-ethyl-3-methyl-cyclopropyl, n-heptyl, n-octyl, n-nonyl and n-decyl.
 好ましくは、R、及びR’は、それぞれ独立にフェニル、ナフタレニル、アントラセニル、フェナントレニル、ナフタセニル、ピレニルである。 Preferably, R and R' are each independently phenyl, naphthalenyl, anthracenyl, phenanthrenyl, naphthacenyl, pyrenyl.
(IIA-2-2-2)
 また、式(B1)で表される構造を含む単位構造には、たとえば、互いに同一又は異なる二つまたは三つの上記式(B1)の構造が、二価又は三価の連結基と結合して、二量体又は三量体構造になった構造を含んでいてもよい。この場合、それぞれの上記式(B1)の構造中の下記式(B11)に示すように、2つの結合の手のうちの一方が、前記連結基と結合する。
(IIA-2-2-2)
Further, in the unit structure containing the structure represented by formula (B1), for example, two or three structures of formula (B1) that are the same or different from each other are combined with a divalent or trivalent linking group, , dimeric or trimeric structures. In this case, one of the two bonding hands is bonded to the linking group as shown in the following formula (B11) in each structure of formula (B1).
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 かかる連結基としては例えば、二つ又は三つの芳香族環を有する連結基(単位構造Aに相当)を挙げることができる。具体的な二価又は三価の連結基の例としては、上記式(B11)で例示した下記の二価の連結基(L1):
Figure JPOXMLDOC01-appb-C000048

[Xは、単結合、メチレン基、酸素原子、硫黄原子、―N(R)-を表し、Rは水素原子または炭素数1~20の炭化水素基(鎖状炭化水素、環状炭化水素(芳香族でも非芳香族でもよい)を包含)を表す。]
以外にも、例えば、下記式(L2)、(L3)の二価又は三価の連結基を例示できる。
Examples of such a linking group include a linking group having two or three aromatic rings (corresponding to unit structure A). Specific examples of divalent or trivalent linking groups include the following divalent linking groups (L1) exemplified in formula (B11) above:
Figure JPOXMLDOC01-appb-C000048

[X 1 represents a single bond, a methylene group, an oxygen atom, a sulfur atom, -N(R 5 )-, and R 5 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms (chain hydrocarbon, cyclic hydrocarbon represents hydrogen (which may be aromatic or non-aromatic). ]
In addition, for example, divalent or trivalent linking groups of the following formulas (L2) and (L3) can be exemplified.
Figure JPOXMLDOC01-appb-C000049

[Xは、メチレン基、酸素原子、―N(R)-を表し、Rは水素原子または炭素数1~10の脂肪族炭化水素基、又は炭素数5~20の芳香族炭化水素基を表す。]
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000049

[X 2 represents a methylene group, an oxygen atom or -N(R 6 )-, and R 6 is a hydrogen atom, an aliphatic hydrocarbon group having 1 to 10 carbon atoms, or an aromatic hydrocarbon group having 5 to 20 carbon atoms represents a group. ]
Figure JPOXMLDOC01-appb-C000050
 アセチリドとケトンとの付加反応により、連結炭素原子との共有結合が形成できる下記式(L4)のような二価の連結基も例示できる。 A divalent linking group such as the following formula (L4), which can form a covalent bond with a linking carbon atom through an addition reaction between acetylide and a ketone, can also be exemplified.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
(IIA-2-2-3)
 なお、式(B1)のR及びR’の少なくとも一方が芳香族環である場合、該芳香族環[たとえば、下記式(B12)のAr参照]が追加的に他の単位構造B’と結合してもよい。
(IIA-2-2-3)
Note that when at least one of R and R' in formula (B1) is an aromatic ring, the aromatic ring [for example, see Ar in formula (B12) below] is additionally combined with another unit structure B' You may
Figure JPOXMLDOC01-appb-C000052

 この場合、下記式(C1):
Figure JPOXMLDOC01-appb-C000053

のように連結炭素原子の一方の結合の手が、ポリマー末端T(水素原子;水酸基、不飽和脂肪族炭化水素基などの各種官能基、末端単位構造A、他のポリマー鎖中の単位構造Aなど)と結合している場合、複合単位構造A-B’と等価な一つの単位構造Cとして、少なくとも1つの複合単位構造A-B’と置き換えることもできる。すなわち、式(C1)中の前記芳香族環[式(C1)中のAr]と他の単位構造B’とが結合すると共に、式(C1)に示される残りの連結炭素原子からの結合の手で単位構造Aの芳香族環と結合することによりポリマー鎖を延長していてもよい。
Figure JPOXMLDOC01-appb-C000052

In this case, the following formula (C1):
Figure JPOXMLDOC01-appb-C000053

One of the connecting carbon atoms is a polymer terminal T (hydrogen atom; hydroxyl group, various functional groups such as unsaturated aliphatic hydrocarbon groups, terminal unit structure A, unit structure A in other polymer chains etc.), it can be replaced with at least one composite unit structure AB' as one unit structure C equivalent to the composite unit structure AB'. That is, the aromatic ring [Ar in formula (C1)] in formula (C1) and another unit structure B' are bonded, and the bonds from the remaining connecting carbon atoms shown in formula (C1) The polymer chain may be extended by manually bonding to the aromatic ring of the unit structure A.
(IIA-2-2-4)
 式(B1)で表される構造を含む単位構造B’の具体例を若干挙げれば、下記のとおりである。*は基本的に単位構造Aとの結合部位を示す。言うまでもなく、例示の構造を全体の一部に含んでいる構造でもよい。
(IIA-2-2-4)
Some specific examples of the unit structure B' containing the structure represented by formula (B1) are as follows. * basically indicates a binding site with the unit structure A. Needless to say, a structure including the illustrated structure as a part of the whole may be used.

(IIA-2-3)
Figure JPOXMLDOC01-appb-C000056

 式(B2)中、
 Zは置換基を有していてもよい炭素原子数6~30の芳香族環残基若しくは脂肪族環残基、又は前記芳香族環残基及び前記脂肪族環残基からなる群より選択される2つの基が単結合で連結された有機基を表す。前記芳香族環残基及び前記脂肪族環残基からなる群より選択される2つの基が単結合で連結された有機基としては、ビフェニル、シクロへキシルフェニル、ビシクロへキシル等の二価の残基を挙げることができる。
(IIA-2-3)
Figure JPOXMLDOC01-appb-C000056

In formula (B2),
Z 0 is selected from the group consisting of an optionally substituted aromatic ring residue or aliphatic ring residue having 6 to 30 carbon atoms, or the aromatic ring residue and the aliphatic ring residue represents an organic group in which two groups are linked by a single bond. The organic group in which two groups selected from the group consisting of the aromatic ring residue and the aliphatic ring residue are linked by a single bond includes bivalent divalent groups such as biphenyl, cyclohexylphenyl, and bicyclohexyl. residues can be mentioned.
 J及びJはそれぞれ独立に直接結合、又は置換基を有していてもよい二価の有機基を表す。該二価の有機基としては、好ましくは、置換基としてヒドロキシル基、アリール基(フェニル基、置換フェニル基など)又はハロ基(例えば、フッ素)で置換されていてもよい炭素原子数1~6の直鎖又は分岐のアルキレン基である。直鎖アルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基が挙げられる。 J 1 and J 2 each independently represent a direct bond or a divalent organic group which may have a substituent. The divalent organic group preferably has 1 to 6 carbon atoms optionally substituted by a hydroxyl group, an aryl group (phenyl group, substituted phenyl group, etc.) or a halo group (eg, fluorine) as a substituent. is a linear or branched alkylene group. Examples of linear alkylene groups include methylene, ethylene, propylene, butylene, pentylene, and hexylene groups.
(IIA-2-3-1)
 また、式(B2)で表される構造を含む単位構造には、式(B1)についての前記(IIA-2-2-2)と同様、互いに同一又は異なる二つまたは三つの上記式(B2)の構造が、二価又は三価の連結基と結合して、二量体又は三量体構造になった構造を含んでいてもよい。
(IIA-2-3-1)
Further, in the unit structure containing the structure represented by formula (B2), two or three of the above formulas (B2 ) may include a structure that is bound to a divalent or trivalent linking group to form a dimer or trimer structure.
(IIA-2-3-2)
 なお、式(B2)には芳香族環が含まれる態様[式(B2)のZ]を包含しているため、前記式(B1)の(IIA-2-2-3)と同様、該芳香族環[たとえば、下記式(B21)のZ Ar中の芳香族環]が追加的に他の単位構造B’と結合してもよい[式(B21)中の縦の結合の手]。
(IIA-2-3-2)
Since formula (B2) includes an embodiment containing an aromatic ring [Z 0 of formula (B2)], the same as (IIA-2-2-3) of formula (B1) above, An aromatic ring [for example, an aromatic ring in Z 0 Ar in formula (B21) below] may additionally bond to another unit structure B' [longitudinal bond in formula (B21)] .
Figure JPOXMLDOC01-appb-C000057

[式(B21)中、
 Z Arは、置換基を有していてもよい炭素原子数6~30の芳香族環残基又は、前記芳香族環残基及び脂肪族環残基からなる群より選択される2つの基が単結合で連結された有機基であって、少なくとも1つの芳香族環を有する有機基であって、Z Arから下に延びる結合の手はZ Ar中の芳香族環から延びており、
 J及びJは式(B2)の定義と同じである。]
 この場合、下記式(C2):
Figure JPOXMLDOC01-appb-C000058

[式(C2)中、
 Z Ar,J及びJは、式(B21)の定義と同じであり、
 Tはポリマー末端を表す。]
のように連結炭素原子の一方の結合の手が、ポリマー末端T(水素原子;水酸基、不飽和脂肪族炭化水素基などの各種官能基、末端単位構造A、他のポリマー鎖中の単位構造Aなど)と結合している場合、複合単位構造A-B’と等価な一つの単位構造Cとして、少なくとも1つの複合単位構造A-B’と置き換えることもできる。すなわち、式(C2)中の前記芳香族環[式(C2)中のZ Ar中の芳香族環]と他の単位構造B’とが結合すると共に、式(C2)に示される残りの連結炭素原子からの結合の手で単位構造Aの芳香族環と結合することによりポリマー鎖を延長していてもよい。
Figure JPOXMLDOC01-appb-C000057

[In formula (B21),
Z 0 Ar is an optionally substituted aromatic ring residue having 6 to 30 carbon atoms, or two groups selected from the group consisting of the aromatic ring residue and the aliphatic ring residue is an organic group having at least one aromatic ring linked by a single bond, wherein the bond extending downward from Z 0 Ar extends from the aromatic ring in Z 0 Ar ,
J 1 and J 2 are the same as defined in formula (B2). ]
In this case, the following formula (C2):
Figure JPOXMLDOC01-appb-C000058

[In formula (C2),
Z 0 Ar , J 1 and J 2 are the same as defined in formula (B21),
T represents a polymer terminal. ]
One of the connecting carbon atoms is a polymer terminal T (hydrogen atom; hydroxyl group, various functional groups such as unsaturated aliphatic hydrocarbon groups, terminal unit structure A, unit structure A in other polymer chains etc.), it can be replaced with at least one composite unit structure AB' as one unit structure C equivalent to the composite unit structure AB'. That is, the aromatic ring in formula (C2) [the aromatic ring in Z 0 Ar in formula (C2)] and another unit structure B' are bonded, and the remaining The polymer chain may be extended by bonding with the aromatic ring of the unit structure A with the bond from the linking carbon atom.
(IIA-2-3-3)
 式(B2)で表される構造を含む単位構造の具体例を若干挙げれば、下記のとおりである。*は単位構造Aとの結合部位を示す。言うまでもなく、例示の構造を全体の一部に含んでいる単位構造でもよい。
(IIA-2-3-3)
Some specific examples of the unit structure containing the structure represented by formula (B2) are as follows. * indicates a binding site with the unit structure A. Needless to say, it may be a unit structure that partially includes the illustrated structure.

(IIA-2-4) 式(B3)
Figure JPOXMLDOC01-appb-C000061
(IIA-2-4) Formula (B3)
Figure JPOXMLDOC01-appb-C000061
 式(B3)中、
 Zは、置換基を有していてもよい炭素数4~25の単環、又は二環、三環若しくは四環式の縮合環である。そして、ここにいう炭素数は、置換基を除いた単環、又は二環、三環若しくは四環式の縮合環の環骨格を構成する炭素原子のみの数を意味し、前記単環又は縮合環が複素環である場合の複素環を構成するヘテロ原子の数は含めない。
In formula (B3),
Z is a monocyclic ring having 4 to 25 carbon atoms which may have a substituent, or a condensed bicyclic, tricyclic or tetracyclic ring. The number of carbon atoms referred to herein means only the number of carbon atoms constituting the ring skeleton of a monocyclic, bicyclic, tricyclic or tetracyclic condensed ring excluding substituents, and the monocyclic or condensed ring When the ring is heterocyclic, the number of heteroatoms that make up the heterocyclic ring is not included.
 前記単環は非芳香族単環であり;前記二環、三環及び四環を構成する単環の少なくとも1つは非芳香族単環であり、残りの単環は芳香族単環でも非芳香族単環でもよい。 The monocyclic ring is a non-aromatic monocyclic ring; at least one of the monocyclic rings constituting the bicyclic, tricyclic and tetracyclic rings is a nonaromatic monocyclic ring, and the remaining monocyclic rings are aromatic monocyclic or non-aromatic monocyclic rings. It may be an aromatic monocyclic ring.
 前記単環、又は二環、三環若しくは四環式の縮合環が、1又は複数の芳香族環と更に縮合環を形成して、五環式以上の縮合環となっていてもよく、該五環式以上の縮合環の炭素数は好ましくは40以下であり、ここにいう炭素数は、置換基を除いた前記五環式以上の縮合環の環骨格を構成する炭素原子のみの数を意味し、前記五環式以上の縮合環が複素環である場合の複素環を構成するヘテロ原子の数は含めない。 The monocyclic, bicyclic, tricyclic or tetracyclic condensed ring may further form a condensed ring with one or more aromatic rings to form a pentacyclic or more condensed ring, The carbon number of the pentacyclic or higher condensed ring is preferably 40 or less. excluding the number of heteroatoms constituting the heterocyclic ring when the condensed ring of five or more rings is a heterocyclic ring.
 X、Yは同一又は異なって、-CR3132-基を表し、R31及びR32はそれぞれ同一又は異なって、水素原子、又は炭素原子数1~6の炭化水素基を表す。 X and Y are the same or different and represent a -CR 31 R 32 - group, and R 31 and R 32 are the same or different and represent a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
 x、yはそれぞれ、X、Yの数を表し、それぞれ独立に0又は1を表す。 x and y represent the numbers of X and Y, respectively, and each independently represents 0 or 1.
Figure JPOXMLDOC01-appb-C000062

は、Zの前記非芳香族単環を構成するいずれかの炭素原子(「炭素原子1」と呼ぶ)と結合(x=1の場合)又は炭素原子1から延びており(x=0の場合)、
Figure JPOXMLDOC01-appb-C000063

は、Zの前記非芳香族単環を構成するいずれかの炭素原子(「炭素原子2」と呼ぶ)と結合(y=1の場合)又は炭素原子2から延びており(y=0の場合)、炭素原子1と炭素原子2は同一でも異なっていてもよく、異なっている場合、同一の非芳香族単環に属していてもよいし、異なる非芳香族単環に属していてもよい。
Figure JPOXMLDOC01-appb-C000062

is bonded to any carbon atom (referred to as “carbon atom 1”) constituting said non-aromatic monocyclic ring of Z (when x=1) or extends from carbon atom 1 (when x=0 ),
Figure JPOXMLDOC01-appb-C000063

is bonded to any carbon atom (referred to as “carbon atom 2”) constituting said non-aromatic monocyclic ring of Z (when y=1) or extends from carbon atom 2 (when y=0 ), carbon atom 1 and carbon atom 2 may be the same or different, and if different, they may belong to the same non-aromatic monocyclic ring or to different non-aromatic monocyclic rings. .
 また、式(B3)において、任意選択的に、炭素原子1及び炭素原子2以外の連結炭素原子を含んでいてもよい[後記(IIA-2-4-2)参照]
 なお、Zが三環式以上の縮合環である場合、式(B3)中の炭素原子1及び2がそれぞれ属する一つ又は二つの非芳香族単環と残りの単環との縮合環中における順列位置関係は任意であり、炭素原子1と炭素原子2がそれぞれ異なる非芳香族単環(それぞれ「非芳香族単環1」及び「非芳香族単環2」と呼ぶ)に属する場合、該非芳香族単環1及び非芳香族単環2の、縮合環中における順列位置関係も任意である。
Further, in formula (B3), it may optionally contain a linking carbon atom other than carbon atoms 1 and 2 [see (IIA-2-4-2) below]
When Z is a tricyclic or higher condensed ring, in the condensed ring of one or two non-aromatic monocyclic rings to which carbon atoms 1 and 2 in formula (B3) belong respectively and the remaining monocyclic ring The permutation positional relationship is arbitrary, and when carbon atom 1 and carbon atom 2 belong to different non-aromatic monocyclic rings (referred to as “non-aromatic monocyclic ring 1” and “non-aromatic monocyclic ring 2” respectively), the non-aromatic monocyclic ring The permutation positional relationship in the condensed ring of the aromatic single ring 1 and the non-aromatic single ring 2 is also arbitrary.
(IIA-2-4-1)
 式(B1)についての前記(IIA-2-2-2)と同様、互いに同一又は異なる二つまたは三つの、上記式(B3)の構造が、二価又は三価の連結基と結合して、二量体又は三量体構造になっていてもよい。
(IIA-2-4-1)
Similar to (IIA-2-2-2) above for formula (B1), two or three identical or different structures of formula (B3) above are bound to a divalent or trivalent linking group. , may be in a dimeric or trimeric structure.
(IIA-2-4-2)
 式(B3)で表される構造を含む有機基の具体例を若干挙げれば、下記のとおりである。単位構造Aとの結合部位は特に限定されない。言うまでもなく、例示の構造を全体の一部に含んでいる構造でもよい。
(IIA-2-4-2)
Some specific examples of the organic group containing the structure represented by formula (B3) are as follows. The binding site with the unit structure A is not particularly limited. Needless to say, a structure including the illustrated structure as a part of the whole may be used.
 なお、結合の手(*)の数が2を超える例示も含まれているが、この余剰の結合の手は、別のポリマー鎖中の芳香族環との結合、架橋などに用いることができる。 In addition, although examples in which the number of bonding hands (*) exceeds 2 are also included, this surplus bonding hand can be used for bonding with an aromatic ring in another polymer chain, cross-linking, etc. .

(IIA-2-4-3)
 なお、式(B3)のZが芳香族環を含む場合、該芳香族環[たとえば、下記式(B32)のAr参照]が追加的に他の単位構造B’と結合していてもよい。
(IIA-2-4-3)
In addition, when Z in formula (B3) contains an aromatic ring, the aromatic ring [see, for example, Ar 1 in formula (B32) below] may be additionally bonded to another unit structure B'. .
Figure JPOXMLDOC01-appb-C000066

 式(B32)中、
 Zは少なくとも1つの非芳香族単環、ArはZの非芳香族単環と縮合環を形成している少なくとも1つの芳香族単環を表し、Z及びAr全体として、置換基を有していてもよい,炭素数8~25の二環、三環、四環又は五環式の縮合環を構成する。そして、ここにいう炭素数は、置換基を除いた二環、三環又は四環式の縮合環の環骨格を構成する炭素原子のみの数を意味し、前記二環、三環又は四環式の縮合環が複素環である場合の複素環を構成するヘテロ原子の数は含めない。
Figure JPOXMLDOC01-appb-C000066

In formula (B32),
Z 1 represents at least one non-aromatic monocyclic ring, Ar 1 represents at least one aromatic monocyclic ring forming a condensed ring with the non-aromatic monocyclic ring of Z 1 , and Z and Ar 1 together represent a substituent constitutes a bicyclic, tricyclic, tetracyclic or pentacyclic condensed ring having 8 to 25 carbon atoms. The number of carbon atoms referred to herein means only the number of carbon atoms constituting the ring skeleton of a bicyclic, tricyclic or tetracyclic condensed ring excluding substituents. When a fused ring in a formula is a heterocyclic ring, the number of heteroatoms that make up the heterocyclic ring is not included.
 前記二環、三環、四環若しくは五環式有機基に更に、1又は複数の芳香族環と縮合環を形成して、六環式以上となっていてもよく、該六環式以上の縮合環の炭素数は好ましくは40以下であり、ここにいう炭素数は、置換基を除いた前記五環式以上の縮合環の環骨格を構成する炭素原子のみの数を意味し、前記六環式以上の縮合環が複素環である場合の複素環を構成するヘテロ原子の数は含めない。 The bicyclic, tricyclic, tetracyclic or pentacyclic organic group may further form a condensed ring with one or more aromatic rings to form a hexacyclic or higher ring, and the hexacyclic or higher The number of carbon atoms in the condensed ring is preferably 40 or less. The number of heteroatoms constituting the heterocyclic ring is not included when the condensed ring above the cyclic ring is a heterocyclic ring.
 また、当該環状有機基における、Zに属する1又は2以上の非芳香族単環及びArに属する1又は2以上の芳香族単環の順序位置関係は任意のものを包含する。たとえば、Zに属する非芳香族単環が2つ以上、Arに属する芳香族単環が2つ以上ある場合に、Zに属する非芳香族単環とArに属する芳香族単環とが、交互に配列して縮合環を形成していてもよい。 Moreover, in the cyclic organic group, one or more non-aromatic monocyclic rings belonging to Z 1 and one or more aromatic monocyclic rings belonging to Ar 1 may have any order positional relationship. For example, when there are two or more non-aromatic monocyclic rings belonging to Z1 and two or more aromatic monocyclic rings belonging to Ar1 , the non-aromatic monocyclic ring belonging to Z1 and the aromatic monocyclic ring belonging to Ar1 are may be arranged alternately to form a condensed ring.
 また、X、Y、x、yは、式(B3)中の定義と同一である。 Also, X, Y, x, and y are the same as defined in formula (B3).
 この場合、下記式(C3):
Figure JPOXMLDOC01-appb-C000067

[式(C3)中、
 Z、Ar、X、Y、x及びyは、式(B32)中の定義と同一であり、
 Tはポリマー末端を表す。]
のように連結炭素原子の一方の結合の手が、ポリマー末端T(水素原子;水酸基、不飽和脂肪族炭化水素基などの各種官能基、末端単位構造A、他のポリマー鎖中の単位構造Aなど)と結合している場合、複合単位構造A-B’と等価な一つの単位構造Cとして、少なくとも1つの複合単位構造A-B’と置き換えることもできる。すなわち、式(C3)中の前記芳香族環[式(C3)中のAr]と他の単位構造B’とが結合すると共に、式(C3)に示される残りの連結炭素原子からの結合の手で単位構造Aの芳香族環と結合することによりポリマー鎖を延長していてもよい。
In this case, the following formula (C3):
Figure JPOXMLDOC01-appb-C000067

[In formula (C3),
Z 1 , Ar 1 , X, Y, x and y are the same as defined in formula (B32),
T represents a polymer terminal. ]
One of the connecting carbon atoms is a polymer terminal T (hydrogen atom; hydroxyl group, various functional groups such as unsaturated aliphatic hydrocarbon groups, terminal unit structure A, unit structure A in other polymer chains etc.), it can be replaced with at least one composite unit structure AB' as one unit structure C equivalent to the composite unit structure AB'. That is, the aromatic ring [Ar 1 in formula (C3)] in formula (C3) and another unit structure B′ are bonded, and the bonds from the remaining connecting carbon atoms shown in formula (C3) The polymer chain may be extended by bonding to the aromatic ring of the unit structure A with the hand of .
(IIA-2-4-4)
 式(C3)のより具体的な構造として、たとえば、下記式(C31)では、式(C3)のTが末端基である水素原子であり、結合の手となりうるp、k及びkのうち、pとk,又はpとkにより、複合単位構造A-B’に等価な1つの単位構造Cとなりうる。
(IIA-2-4-4)
As a more specific structure of formula (C3), for example, in the following formula (C31), T in formula (C3) is a hydrogen atom that is a terminal group, and p, k 1 and k 2 that can serve as a bond Of these, p and k 1 or p and k 2 can form one unit structure C equivalent to the composite unit structure AB'.
 なお、kとkにより単位構造Aとしても機能できる。 Note that it can also function as the unit structure A by k1 and k2 .
Figure JPOXMLDOC01-appb-C000068

 また、下記の式(C32)では、式(C3)のTがフェニル基の例を示している。この例では、結合の手となりうるp、k、k及びmのうち、pとk、pとk,又はpとmにより、複合単位構造A-B’に等価な1つの単位構造Cとなりうる。
Figure JPOXMLDOC01-appb-C000068

Further, in the following formula (C32), T in formula (C3) is an example of a phenyl group. In this example, p and k 1 , p and k 2 , or p and m among p, k 1 , k 2 and m that can be a bond, make one unit equivalent to the composite unit structure AB′ Structure C can be obtained.
 なお、kとk,kとm、又はkとmにより単位構造Aとしても機能できる。 Note that it can also function as the unit structure A by k 1 and k 2 , k 1 and m, or k 2 and m.
Figure JPOXMLDOC01-appb-C000069

 式(C3)の単位構造C(複合単位構造A-B’に等価な1つの単位構造)のより具体的な種々の例を若干挙げれば、下記のとおりである。*は単位構造Aとの結合部位を示す。
Figure JPOXMLDOC01-appb-C000069

Some more specific examples of the unit structure C (one unit structure equivalent to the composite unit structure AB') of formula (C3) are as follows. * indicates a binding site with the unit structure A.
 単位構造Cでは、別途、これら構造中の芳香族環から単位構造B’と結合する結合の手が延びているが、下記の具体例では、かかる結合の手は省略している。言うまでもなく、例示の構造を全体の一部に含んでいる単位構造でもよい。 In the unit structure C, a bond connecting to the unit structure B' extends from the aromatic ring in these structures, but such a bond is omitted in the specific examples below. Needless to say, it may be a unit structure that partially includes the illustrated structure.

 なお、上記具体例において、芳香族環からの結合の手がない場合、ポリマー末端の具体例となりうる。

In the above specific example, when there is no bond from the aromatic ring, it can be a specific example of the terminal of the polymer.
(IIA-3)
 式(AB)で表される構造を有するノボラック樹脂は、公知の方法によって調製することができる。例えば、H-A-Hで表される含環化合物とOHC-B’、O=C-B’、HOB’-OH、RO-B’-OR、RO-CH-B’-CH-OR等で表される含酸素化合物を縮合させることにより調製することができる。ここで、式中、A、B’は上記と同義である。Rはハロゲン、又は炭素原子数約1~3のアルキル基を表す。
(IIA-3)
A novolak resin having a structure represented by formula (AB) can be prepared by a known method. For example, a ring-containing compound represented by HAH and OHC-B', O=C-B', HOB'-OH, RO-B'-OR, RO-CH 2 -B'-CH 2 - It can be prepared by condensing an oxygen-containing compound represented by OR or the like. Here, in the formula, A and B' have the same meanings as above. R represents a halogen or an alkyl group having about 1 to 3 carbon atoms.
 含環化合物、含酸素化合物は共に1種を用いてもよく、2種以上を組み合わせて用いてもよい。この縮合反応においては、含環化合物1モルに対して、含酸素化合物を0.1~10モル、好ましくは0.1~2モルの割合で用いることができる。 The ring-containing compound and the oxygen-containing compound may be used either singly or in combination of two or more. In this condensation reaction, the oxygen-containing compound can be used in an amount of 0.1 to 10 mol, preferably 0.1 to 2 mol, per 1 mol of the ring-containing compound.
 縮合反応で用いられる触媒としては、例えば硫酸、リン酸、過塩素酸等の鉱酸類、p-トルエンスルホン酸、p-トルエンスルホン酸一水和物、メタンスルホン酸、トリフルオロメタンスルホン酸等の有機スルホン酸類、蟻酸、シュウ酸等のカルボン酸類を使用することができる。触媒の使用量は、使用する触媒の種類によって異なるが、含環化合物(複数種の場合はそれらの合計)100質量部に対して、通常0.001~10,000質量部、好ましくは0.01~1,000質量部、より好ましくは0.05~100質量部である。 Examples of catalysts used in the condensation reaction include mineral acids such as sulfuric acid, phosphoric acid and perchloric acid; Carboxylic acids such as sulfonic acids, formic acid and oxalic acid can be used. The amount of the catalyst to be used varies depending on the type of catalyst used, but it is usually 0.001 to 10,000 parts by mass, preferably 0.000 parts by mass, per 100 parts by mass of the ring-containing compound (in the case of multiple types, the total of them). 01 to 1,000 parts by mass, more preferably 0.05 to 100 parts by mass.
 縮合反応は無溶剤でも行われるが、通常は溶剤を用いて行われる。溶剤としては反応基質を溶解することができ、反応を阻害しないものであれば特に限定されない。例えば、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、テトラヒドロフラン、ジオキサン、1,2-ジクロロメタン、1,2-ジクロロエタン、トルエン、N-メチルピロリドン、ジメチルホルムアミド等が挙げられる。縮合反応温度は通常40℃~200℃、好ましくは100℃~180℃である。反応時間は反応温度によって異なるが、通常5分~50時間、好ましくは5分~24時間である。 The condensation reaction can be carried out without a solvent, but it is usually carried out using a solvent. The solvent is not particularly limited as long as it can dissolve the reaction substrate and does not inhibit the reaction. For example, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, tetrahydrofuran, dioxane, 1,2-dichloromethane, 1,2-dichloroethane, toluene, N-methylpyrrolidone, dimethylformamide and the like. mentioned. The condensation reaction temperature is usually 40°C to 200°C, preferably 100°C to 180°C. Although the reaction time varies depending on the reaction temperature, it is usually 5 minutes to 50 hours, preferably 5 minutes to 24 hours.
 本発明の一態様に係るノボラック樹脂の重量平均分子量は、通常500~100,000、好ましくは600~50,000、700~10,000、又は800~8,000である。 The weight average molecular weight of the novolac resin according to one aspect of the present invention is usually 500-100,000, preferably 600-50,000, 700-10,000, or 800-8,000.
(IID)その他の任意成分
 本発明の一態様であるレジスト下層膜形成組成物は、上記以外に必要に応じて、架橋剤、界面活性剤、吸光剤、レオロジー調整剤、接着補助剤などを含むことができる。
(IID) Other Optional Components The resist underlayer film-forming composition of one embodiment of the present invention optionally contains a cross-linking agent, a surfactant, a light absorber, a rheology modifier, an adhesion aid, etc., in addition to the above. be able to.
[溶剤]
 本発明に係るナノインプリント用レジスト下層膜形成組成物は、溶剤を含む。当該溶剤は、芳香族環を含有する化合物と、必要に応じて添加される任意成分とを溶解することができるものであれば特に限定されない。特に、本発明に係るナノインプリント用レジスト下層膜形成組成物は均一な溶液状態で用いられるものであるため、その塗布性能を考慮すると、リソグラフィー工程に一般的に使用される溶剤を併用することが推奨される。
[solvent]
The composition for forming a resist underlayer film for nanoimprints according to the present invention contains a solvent. The solvent is not particularly limited as long as it can dissolve the compound containing an aromatic ring and optional components added as necessary. In particular, since the composition for forming a resist underlayer film for nanoimprinting according to the present invention is used in the form of a uniform solution, it is recommended to use a solvent that is commonly used in the lithography process together, considering its coating performance. be done.
 そのような溶剤としては、例えば、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、メチルイソブチルカルビノール、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエテルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジプロピルエーテル、プロピレングリコールジブチルエーテル、乳酸エチル、乳酸プロピル、乳酸イソプロピル、乳酸ブチル、乳酸イソブチル、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸イソプロピル、ギ酸ブチル、ギ酸イソブチル、ギ酸アミル、ギ酸イソアミル、酢酸メチル、酢酸エチル、酢酸アミル、酢酸イソアミル、酢酸ヘキシル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸イソプロピル、プロピオン酸ブチル、プロピオン酸イソブチル、酪酸メチル、酪酸エチル、酪酸プロピル、酪酸イソプロピル、酪酸ブチル、酪酸イソブチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、3-メトキシ-2-メチルプロピオン酸メチル、2-ヒドロキシ-3-メチル酪酸メチル、メトキシ酢酸エチル、エトキシ酢酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシブチルアセテート、3-メトキシプロピルアセテート、3-メチル-3-メトキシブチルアセテート、3-メチル-3-メトキシブチルプロピオネート、3-メチル-3-メトキシブチルブチレート、アセト酢酸メチル、トルエン、キシレン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロヘキサノン、N、N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、4-メチル-2-ペンタノール、及びγ-ブチロラクトン等を挙げることができる。これらの溶剤は単独で、または二種以上の組み合わせで使用することができる。 Such solvents include, for example, methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, methyl isobutyl carbinol, propylene glycol monobutyl ether, propylene glycol monomethyl Ether acetate, propylene glycol monoether ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethyl 2-hydroxypropionate, 2-hydroxy-2-methylpropion Ethyl Acetate, Ethyl Ethoxyacetate, Ethyl Hydroxyacetate, Methyl 2-hydroxy-3-methylbutanoate, Methyl 3-methoxypropionate, Ethyl 3-methoxypropionate, Ethyl 3-ethoxypropionate, Methyl 3-ethoxypropionate, Pyruvine Methyl acid, ethyl pyruvate, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monopropyl ether acetate, ethylene Glycol monobutyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dipropyl ether, propylene glycol dibutyl ether, ethyl lactate, lactic acid Propyl, isopropyl lactate, butyl lactate, isobutyl lactate, methyl formate, ethyl formate, propyl formate, isopropyl formate, butyl formate, isobutyl formate, amyl formate, isoamyl formate, methyl acetate, ethyl acetate, amyl acetate, isoamyl acetate, hexyl acetate, Methyl propionate, ethyl propionate, propyl propionate, isopropyl propionate, butyl propionate, isobutyl propionate, methyl butyrate, ethyl butyrate, propyl butyrate, isopropyl butyrate, butyl butyrate, isobutyl butyrate, ethyl hydroxyacetate, 2-hydroxy- ethyl 2-methylpropionate, methyl 3-methoxy-2-methylpropionate, methyl 2-hydroxy-3-methylbutyrate, ethyl methoxyacetate, ethyl ethoxyacetate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, Ethyl 3-Methoxypropionate, 3-Methoxybutyl Acetate, 3-Methoxypropyl Acetate, 3-Methyl-3-Methoxybutyl Acetate, 3-Methyl-3-Methoxybutyl Propionate, 3-Methyl-3-Methoxybutyl Butyrate rate, methyl acetoacetate, toluene, xylene, methyl ethyl ketone, methyl propyl ketone, methyl butyl ketone, 2-heptanone, 3-heptanone, 4-heptanone, cyclohexanone, N,N-dimethylformamide, N-methylacetamide, N,N- Dimethylacetamide, N-methylpyrrolidone, 4-methyl-2-pentanol, γ-butyrolactone and the like can be mentioned. These solvents can be used alone or in combination of two or more.
 これらの中でも、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテートがより好ましく、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートが更に好ましい。 Among these, more preferred are propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, and propylene glycol monopropyl ether acetate, and propylene glycol monomethyl ether and propylene. Glycol monomethyl ether acetate is more preferred.
 また、沸点が160℃以上である溶剤を含むことができる。例えば、WO2018/131562A1に記載された下記の化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000071

(式(i)中のR、R及びRは各々水素原子、酸素原子、硫黄原子又はアミド結合で中断されていてもよい炭素原子数1~20のアルキル基を表し、互いに同一であっても異なっても良く、互いに結合して環構造を形成しても良い。)
Also, a solvent having a boiling point of 160° C. or higher can be included. For example, the following compounds described in WO2018/131562A1 can be used.
Figure JPOXMLDOC01-appb-C000071

(R 1 , R 2 and R 3 in formula (i) each represent a hydrogen atom, an oxygen atom, a sulfur atom or an alkyl group having 1 to 20 carbon atoms which may be interrupted by an amide bond, and are the same They may be present or different, and may be combined with each other to form a ring structure.)
 あるいは、特開2021-84974号記載の、1,6- ジアセトキシヘキサン(沸点260℃)、トリプロピレングリコールモノメチルエーテル(沸点242℃ )、その他、当該公開公報の段落0082に記載の種々の高沸点溶媒を好ましく用いることができる。 Alternatively, 1,6-diacetoxyhexane (boiling point 260° C.), tripropylene glycol monomethyl ether (boiling point 242° C.), and other various high boiling points described in paragraph 0082 of JP-A-2021-84974. A solvent can preferably be used.
 あるいは、特開2019-20701号記載の、ジプロピレングリコールモノメチルエーテルアセテート(沸点213℃)、ジエチレングリコールモノエチルエーテルアセテート(沸点217℃)、ジエチレングリコールモノブチルエーテルアセテート(沸点247℃)、ジプロピレングリコールジメチルエーテル(沸点171℃)、ジプロピレングリコールモノメチルエーテル(沸点187℃)、ジプロピレングリコールモノブチルエーテル(沸点231℃)、トリプロピレングリコールモノメチルエーテル(沸点242℃)、γ-ブチロラクトン(沸点204℃)、ベンジルアルコール(沸点205℃)、プロピレンカーボネート(沸点242℃)、テトラエチレングリコールジメチルエーテル(沸点275℃ )、1,6 - ジアセトキシヘキサン(沸点260℃)、ジプロピレングリコール(沸点230℃)、1, 3-ブチレングリコールジアセテート(沸点232℃)、その他、当該公開公報の段落0023~0031に記載の種々の高沸点溶媒を好ましく用いることができる。 Alternatively, dipropylene glycol monomethyl ether acetate (boiling point 213° C.), diethylene glycol monoethyl ether acetate (boiling point 217° C.), diethylene glycol monobutyl ether acetate (boiling point 247° C.), dipropylene glycol dimethyl ether (boiling point 171°C), dipropylene glycol monomethyl ether (boiling point 187°C), dipropylene glycol monobutyl ether (boiling point 231°C), tripropylene glycol monomethyl ether (boiling point 242°C), γ-butyrolactone (boiling point 204°C), benzyl alcohol (boiling point 205°C), propylene carbonate (boiling point 242°C), tetraethylene glycol dimethyl ether (boiling point 275°C), 1,6-diacetoxyhexane (boiling point 260°C), dipropylene glycol (boiling point 230°C), 1,3-butylene glycol Diacetate (boiling point: 232° C.) and other various high boiling point solvents described in paragraphs 0023 to 0031 of the publication can be preferably used.
 本発明に係るナノインプリント用レジスト下層膜形成組成物は、上記以外の任意成分を含有していてもよい。以下各成分について説明する。 The composition for forming a resist underlayer film for nanoimprinting according to the present invention may contain optional components other than the above. Each component will be described below.
[架橋剤]
 本発明に係るナノインプリント用レジスト下層膜形成組成物は、架橋剤を含むことができる。その架橋剤としては、メラミン系、置換尿素系、またはそれらのポリマー系等が挙げられる。好ましくは、少なくとも2個の架橋形成置換基を有する架橋剤であり、メトキシメチル化グリコールウリル(例えば、テトラメトキシメチルグリコールウリル)、ブトキシメチル化グリコールウリル、メトキシメチル化メラミン、ブトキシメチル化メラミン、メトキシメチル化ベンゾグワナミン、ブトキシメチル化ベンゾグワナミン、メトキシメチル化尿素、ブトキシメチル化尿素、またはメトキシメチル化チオ尿素等の化合物である。また、これらの化合物の縮合体も使用することができる。
[Crosslinking agent]
The composition for forming a resist underlayer film for nanoimprints according to the present invention can contain a cross-linking agent. Examples of the cross-linking agent include melamine-based, substituted urea-based, or polymer-based thereof. Preferred are crosslinkers having at least two crosslink-forming substituents, methoxymethylated glycoluril (e.g., tetramethoxymethylglycoluril), butoxymethylated glycoluril, methoxymethylated melamine, butoxymethylated melamine, methoxy Compounds such as methylated benzogwanamine, butoxymethylated benzogwanamine, methoxymethylated urea, butoxymethylated urea, or methoxymethylated thiourea. Condensates of these compounds can also be used.
 また、上記架橋剤としては耐熱性の高い架橋剤を用いることができる。耐熱性の高い架橋剤としては分子内に芳香族環(例えば、ベンゼン環、ナフタレン環)を有する架橋形成置換基を含有する化合物を好ましく用いることができる。 Also, a cross-linking agent with high heat resistance can be used as the cross-linking agent. As a highly heat-resistant cross-linking agent, a compound containing a cross-linking substituent having an aromatic ring (eg, benzene ring, naphthalene ring) in the molecule can be preferably used.
 この化合物は下記式(4)の部分構造を有する化合物や、下記式(5)の繰り返し単位を有するポリマー又はオリゴマーが挙げられる。

上記R11、R12、R13、及びR14は水素原子又は炭素数1乃至10のアルキル基であり、これらのアルキル基は上述の例示を用いることができる。n1は1~4の整数であり、n2は1~(5-n1)の整数であり、(n1+n2)は2~5の整数を示す。n3は1~4の整数であり、n4は0~(4-n3)であり、(n3+n4)は1~4の整数を示す。オリゴマー及びポリマーは繰り返し単位構造の数が2~100、又は2~50の範囲で用いることができる。
Examples of this compound include compounds having a partial structure of the following formula (4), and polymers or oligomers having repeating units of the following formula (5).

The above R 11 , R 12 , R 13 and R 14 are hydrogen atoms or alkyl groups having 1 to 10 carbon atoms, and the above examples can be used for these alkyl groups. n1 is an integer of 1-4, n2 is an integer of 1-(5-n1), and (n1+n2) is an integer of 2-5. n3 is an integer of 1-4, n4 is 0-(4-n3), and (n3+n4) is an integer of 1-4. Oligomers and polymers can be used in the range of 2 to 100 or 2 to 50 repeating unit structures.
 式(4)及び式(5)の化合物、ポリマー、オリゴマーは以下に例示される。


Compounds, polymers and oligomers of formulas (4) and (5) are exemplified below.


 上記化合物は旭有機材工業株式会社、本州化学工業株式会社の製品として入手することができる。例えば、上記架橋剤の中で、式(4-23)の化合物は本州化学工業株式会社、商品名TMOM-BPとして、式(4-20)の化合物は旭有機材工業株式会社、商品名TM-BIP-Aとして入手することができる。 The above compounds are available as products of Asahi Organic Chemical Industry Co., Ltd. and Honshu Chemical Industry Co., Ltd. For example, among the above crosslinking agents, the compound of formula (4-23) is Honshu Chemical Industry Co., Ltd., trade name TMOM-BP, and the compound of formula (4-20) is Asahi Organic Chemical Industry Co., Ltd., trade name TM. - BIP-A.
 架橋剤の添加量は、使用する塗布溶媒、使用する基板、要求される溶液粘度、要求される膜形状などにより変動するが、全固形分に対して0.001質量%以上、0.01質量%以上、0.05質量%以上、0.5質量%以上、又は1.0質量%以上であり、80質量%以下、50質量%以下、40質量%以下、20質量%以下、又は10質量%以下である。これら架橋剤は自己縮合による架橋反応を起こすこともあるが、本発明の上記芳香族環を含有する化合物中に架橋性置換基が存在する場合は、それらの架橋性置換基と架橋反応を起こすことができる。 The amount of the cross-linking agent added varies depending on the coating solvent used, the substrate used, the required solution viscosity, the required film shape, etc., but it is 0.001% by mass or more and 0.01% by mass based on the total solid content. % or more, 0.05% by mass or more, 0.5% by mass or more, or 1.0% by mass or more, and 80% by mass or less, 50% by mass or less, 40% by mass or less, 20% by mass or less, or 10% by mass % or less. These cross-linking agents may cause a cross-linking reaction due to self-condensation, but when cross-linkable substituents are present in the above aromatic ring-containing compound of the present invention, they cause a cross-linking reaction with those cross-linkable substituents. be able to.
[酸及び/又はその塩及び/又は酸発生剤]
 本発明に係るナノインプリント用レジスト下層膜形成組成物は、酸及び/又はその塩及び/又は酸発生剤を含むことができる。
[Acid and/or its salt and/or acid generator]
The composition for forming a resist underlayer film for nanoimprints according to the present invention can contain an acid and/or a salt thereof and/or an acid generator.
 酸としては例えば、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、サリチル酸、5-スルホサリチル酸、4-フェノールスルホン酸、カンファースルホン酸、4-クロロベンゼンスルホン酸、ベンゼンジスルホン酸、1-ナフタレンスルホン酸、クエン酸、安息香酸、ヒドロキシ安息香酸、ナフタレンカルボン酸等が挙げられる。 Examples of acids include p-toluenesulfonic acid, trifluoromethanesulfonic acid, salicylic acid, 5-sulfosalicylic acid, 4-phenolsulfonic acid, camphorsulfonic acid, 4-chlorobenzenesulfonic acid, benzenedisulfonic acid, 1-naphthalenesulfonic acid, citric acid, acid, benzoic acid, hydroxybenzoic acid, naphthalenecarboxylic acid and the like.
 塩としては前述の酸の塩を用いることもできる。塩としては限定されるものではないがトリメチルアミン塩、トリエチルアミン塩等のアンモニア誘導体塩やピリジン誘導体塩、モルホリン誘導体塩等を好適に用いることができる。 As the salt, the salt of the acid described above can also be used. Although the salt is not limited, ammonium derivative salts such as trimethylamine salt and triethylamine salt, pyridine derivative salts, morpholine derivative salts and the like can be preferably used.
 酸及び/又はその塩は一種のみを使用することができ、または二種以上を組み合わせて使用することができる。配合量は全固形分に対して、通常0.0001乃至20質量%、好ましくは0.0005乃至10質量%、さらに好ましくは0.01乃至5質量%である。 Only one type of acid and/or its salt can be used, or two or more types can be used in combination. The blending amount is generally 0.0001 to 20% by mass, preferably 0.0005 to 10% by mass, more preferably 0.01 to 5% by mass, based on the total solid content.
 酸発生剤としては、熱酸発生剤や光酸発生剤が挙げられる。 Examples of acid generators include thermal acid generators and photoacid generators.
 熱酸発生剤としては、2,4,4,6-テトラブロモシクロヘキサジエノン、ベンゾイントシレート、2-ニトロベンジルトシレート、K-PURE〔登録商標〕CXC-1612、同CXC-1614、同TAG-2172、同TAG-2179、同TAG-2678、同TAG2689、同TAG2700(King Industries社製)、及びSI-45、SI-60、SI-80、SI-100、SI-110、SI-150(三新化学工業(株)製)その他有機スルホン酸アルキルエステル等が挙げられる。 Thermal acid generators include 2,4,4,6-tetrabromocyclohexadienone, benzoin tosylate, 2-nitrobenzyl tosylate, K-PURE (registered trademark) CXC-1612, CXC-1614, and TAG. -2172, TAG-2179, TAG-2678, TAG2689, TAG2700 (manufactured by King Industries), and SI-45, SI-60, SI-80, SI-100, SI-110, SI-150 ( manufactured by Sanshin Chemical Industry Co., Ltd.) and other organic sulfonic acid alkyl esters.
 光酸発生剤は、レジストの露光時に酸を生ずる。そのため、下層膜の酸性度の調整ができる。これは、下層膜の酸性度を上層のレジストとの酸性度に合わせるための一方法である。また、下層膜の酸性度の調整によって、上層に形成されるレジストのパターン形状の調整ができる。 The photoacid generator produces acid when the resist is exposed to light. Therefore, the acidity of the underlayer film can be adjusted. This is one way to match the acidity of the underlayer film to that of the overlying resist. Also, the pattern shape of the resist formed on the upper layer can be adjusted by adjusting the acidity of the lower layer film.
 本発明のナノインプリント用レジスト下層膜形成組成物に含まれる光酸発生剤としては、オニウム塩化合物、スルホンイミド化合物、及びジスルホニルジアゾメタン化合物等が挙げられる。 Examples of the photoacid generator contained in the resist underlayer film-forming composition for nanoimprints of the present invention include onium salt compounds, sulfonimide compounds, and disulfonyldiazomethane compounds.
 オニウム塩化合物としてはジフェニルヨードニウムヘキサフルオロホスフエート、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロノルマルブタンスルホネート、ジフェニルヨードニウムパーフルオロノルマルオクタンスルホネート、ジフェニルヨードニウムカンファースルホネート、ビス(4-tert-ブチルフェニル)ヨードニウムカンファースルホネート及びビス(4-tert-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート等のヨードニウム塩化合物、及びトリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムノナフルオロノルマルブタンスルホネート、トリフェニルスルホニウムカンファースルホネート及びトリフェニルスルホニウムトリフルオロメタンスルホネート等のスルホニウム塩化合物等が挙げられる。 Onium salt compounds include diphenyliodonium hexafluorophosphate, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-normal butanesulfonate, diphenyliodonium perfluoro-normal octane sulfonate, diphenyliodonium camphorsulfonate, bis(4-tert-butylphenyl)iodonium camphor. iodonium salt compounds such as sulfonates and bis(4-tert-butylphenyl)iodonium trifluoromethanesulfonate, and triphenylsulfonium hexafluoroantimonate, triphenylsulfonium nonafluoro-normal butanesulfonate, triphenylsulfonium camphorsulfonate and triphenylsulfonium trifluoromethane Examples include sulfonium salt compounds such as sulfonate.
 スルホンイミド化合物としては、例えばN-(トリフルオロメタンスルホニルオキシ)スクシンイミド、N-(ノナフルオロノルマルブタンスルホニルオキシ)スクシンイミド、N-(カンファースルホニルオキシ)スクシンイミド及びN-(トリフルオロメタンスルホニルオキシ)ナフタルイミド等が挙げられる。 Examples of sulfonimide compounds include N-(trifluoromethanesulfonyloxy)succinimide, N-(nonafluoro-normalbutanesulfonyloxy)succinimide, N-(camphorsulfonyloxy)succinimide and N-(trifluoromethanesulfonyloxy)naphthalimide. mentioned.
 ジスルホニルジアゾメタン化合物としては、例えば、ビス(トリフルオロメチルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(フェニルスルホニル)ジアゾメタン、ビス(p-トルエンスルホニル)ジアゾメタン、ビス(2,4-ジメチルベンゼンスルホニル)ジアゾメタン、及びメチルスルホニル-p-トルエンスルホニルジアゾメタン等が挙げられる。 Examples of disulfonyldiazomethane compounds include bis(trifluoromethylsulfonyl)diazomethane, bis(cyclohexylsulfonyl)diazomethane, bis(phenylsulfonyl)diazomethane, bis(p-toluenesulfonyl)diazomethane, and bis(2,4-dimethylbenzenesulfonyl). ) diazomethane, and methylsulfonyl-p-toluenesulfonyl diazomethane.
 酸発生剤は一種のみを使用することができ、または二種以上を組み合わせて使用することができる。 Only one type of acid generator can be used, or two or more types can be used in combination.
 酸発生剤が使用される場合、その割合としては、ナノインプリント用レジスト下層膜形成組成物の固形分100質量部に対して、0.01乃至10質量部、または0.1乃至8質量部、または0.5乃至5質量部である。 When an acid generator is used, its proportion is 0.01 to 10 parts by weight, or 0.1 to 8 parts by weight, or It is 0.5 to 5 parts by mass.
[その他の成分]
 本発明のナノインプリント用レジスト下層膜形成組成物には、ピンホールやストリエーション等の発生がなく、表面むらに対する塗布性をさらに向上させるために、界面活性剤を配合することができる。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノールエーテル等のポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、エフトップEF301、EF303、EF352(株式会社トーケムプロダクツ製、商品名)、メガファックF171、F173、R-40、R-40N、R-40LM(DIC株式会社製、商品名)、フロラードFC430、FC431(住友スリーエム株式会社製、商品名)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子株式会社製、商品名)等のフッ素系界面活性剤、オルガノシロキサンポリマーKP341(信越化学工業株式会社製)等を挙げることができる。これらの界面活性剤の配合量は、レジスト下層膜形成組成物の全固形分に対して通常2.0質量%以下、好ましくは1.0質量%以下である。これらの界面活性剤は単独で使用してもよいし、また二種以上の組み合わせで使用することもできる。界面活性剤が使用される場合、その割合としては、ナノインプリント用レジスト下層膜形成組成物の固形分100質量部に対して0.0001乃至5質量部、または0.001乃至1質量部、または0.01乃至0.5質量部である。
[Other ingredients]
The composition for forming a resist underlayer film for nanoimprints of the present invention can be blended with a surfactant in order to prevent pinholes, striations, etc. from occurring and to further improve coatability against surface unevenness. Examples of surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, and polyoxyethylene nonylphenol ether. Polyoxyethylene alkyl allyl ethers such as polyoxyethylene/polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate, etc. sorbitan fatty acid esters, polyoxyethylene sorbitan such as polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate Nonionic surfactants such as fatty acid esters, Ftop EF301, EF303, EF352 (manufactured by Tochem Products Co., Ltd., trade names), Megaface F171, F173, R-40, R-40N, R-40LM (DIC stock company, product name), Florard FC430, FC431 (manufactured by Sumitomo 3M Co., Ltd., product name), Asahiguard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd., product name) ), organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), and the like. The blending amount of these surfactants is usually 2.0% by mass or less, preferably 1.0% by mass or less, based on the total solid content of the resist underlayer film-forming composition. These surfactants may be used alone or in combination of two or more. When a surfactant is used, its proportion is 0.0001 to 5 parts by weight, or 0.001 to 1 part by weight, or 0 parts by weight with respect to 100 parts by weight of the solid content of the nanoimprint resist underlayer film-forming composition. 0.01 to 0.5 parts by mass.
 本発明のナノインプリント用レジスト下層膜形成組成物には、吸光剤、レオロジー調整剤、接着補助剤などを添加することができる。レオロジー調整剤は、下層膜形成組成物の流動性を向上させるのに有効である。接着補助剤は、半導体基板またはレジストと下層膜の密着性を向上させるのに有効である。 A light absorber, a rheology modifier, an adhesion aid, and the like can be added to the composition for forming a resist underlayer film for nanoimprints of the present invention. Rheology modifiers are effective in improving the fluidity of the Underlayer film-forming composition. Adhesion aids are effective in improving the adhesion between the semiconductor substrate or resist and the underlying film.
 吸光剤としては例えば、「工業用色素の技術と市場」(CMC出版)や「染料便覧」(有機合成化学協会編)に記載の市販の吸光剤、例えば、C.I.Disperse Yellow 1,3,4,5,7,8,13,23,31,49,50,51,54,60,64,66,68,79,82,88,90,93,102,114及び124;C.I.Disperse Orange1,5,13,25,29,30,31,44,57,72及び73;C.I.Disperse Red 1,5,7,13,17,19,43,50,54,58,65,72,73,88,117,137,143,199及び210;C.I.Disperse Violet 43;C.I.Disperse Blue 96;C.I.Fluorescent Brightening Agent 112,135及び163;C.I.Solvent Orange2及び45;C.I.Solvent Red 1,3,8,23,24,25,27及び49;C.I.Pigment Green 10;C.I.Pigment Brown 2等を好適に用いることができる。上記吸光剤は通常、ナノインプリント用レジスト下層膜形成組成物の全固形分に対して10質量%以下、好ましくは5質量%以下の割合で配合される。 Examples of light absorbing agents include commercially available light absorbing agents described in "Industrial Dye Technology and Market" (CMC Publishing) and "Handbook of Dyes" (edited by the Society of Organic Synthetic Chemistry), such as C.I. I. Disperse Yellow 1, 3, 4, 5, 7, 8, 13, 23, 31, 49, 50, 51, 54, 60, 64, 66, 68, 79, 82, 88, 90, 93, 102, 114 and 124; C.I. I. Disperse Orange 1, 5, 13, 25, 29, 30, 31, 44, 57, 72 and 73; C.I. I. Disperse Red 1, 5, 7, 13, 17, 19, 43, 50, 54, 58, 65, 72, 73, 88, 117, 137, 143, 199 and 210; I. Disperse Violet 43; C.I. I. Disperse Blue 96; C.I. I. Fluorescent Brightening Agents 112, 135 and 163; C.I. I. Solvent Orange 2 and 45; C.I. I. Solvent Red 1, 3, 8, 23, 24, 25, 27 and 49; I. Pigment Green 10; C.I. I. Pigment Brown 2 and the like can be preferably used. The light absorbing agent is usually blended in a proportion of 10% by mass or less, preferably 5% by mass or less, based on the total solid content of the resist underlayer film-forming composition for nanoimprinting.
 レオロジー調整剤は、主にナノインプリント用レジスト下層膜形成組成物の流動性を向上させ、特にベーキング工程において、レジスト下層膜の膜厚均一性の向上やホール内部へのナノインプリント用レジスト下層膜形成組成物の充填性を高める目的で添加される。具体例としては、ジメチルフタレート、ジエチルフタレート、ジイソブチルフタレート、ジヘキシルフタレート、ブチルイソデシルフタレート等のフタル酸誘導体、ジノルマルブチルアジペート、ジイソブチルアジペート、ジイソオクチルアジペート、オクチルデシルアジペート等のアジピン酸誘導体、ジノルマルブチルマレート、ジエチルマレート、ジノニルマレート等のマレイン酸誘導体、メチルオレート、ブチルオレート、テトラヒドロフルフリルオレート等のオレイン酸誘導体、またはノルマルブチルステアレート、グリセリルステアレート等のステアリン酸誘導体を挙げることができる。これらのレオロジー調整剤は、ナノインプリント用レジスト下層膜形成組成物の全固形分に対して通常30質量%未満の割合で配合される。 The rheology modifier mainly improves the fluidity of the resist underlayer film-forming composition for nanoimprinting, and particularly in the baking process, improves the uniformity of the film thickness of the resist underlayer film and the inside of the holes. It is added for the purpose of increasing the fillability of the Specific examples include phthalic acid derivatives such as dimethyl phthalate, diethyl phthalate, diisobutyl phthalate, dihexyl phthalate, and butyl isodecyl phthalate; Maleic acid derivatives such as normal butyl maleate, diethyl maleate and dinonyl maleate; oleic acid derivatives such as methyl oleate, butyl oleate and tetrahydrofurfuryl oleate; and stearic acid derivatives such as normal butyl stearate and glyceryl stearate. can. These rheology modifiers are usually blended in a ratio of less than 30% by mass based on the total solid content of the resist underlayer film-forming composition for nanoimprints.
 接着補助剤は、主に基板あるいはレジストとナノインプリント用レジスト下層膜形成組成物の密着性を向上させ、特に現像においてレジストが剥離しないようにするための目的で添加される。具体例としては、トリメチルクロロシラン、ジメチルメチロールクロロシラン、メチルジフエニルクロロシラン、クロロメチルジメチルクロロシラン等のクロロシラン類、トリメチルメトキシシラン、ジメチルジエトキシシラン、メチルジメトキシシラン、ジメチルメチロールエトキシシラン、ジフエニルジメトキシシラン、フエニルトリエトキシシラン等のアルコキシシラン類、ヘキサメチルジシラザン、N,N’-ビス(トリメチルシリル)ウレア、ジメチルトリメチルシリルアミン、トリメチルシリルイミダゾール等のシラザン類、メチロールトリクロロシラン、γ-クロロプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン等のシラン類、ベンゾトリアゾール、ベンズイミダゾール、インダゾール、イミダゾール、2-メルカプトベンズイミダゾール、2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール、ウラゾール、チオウラシル、メルカプトイミダゾール、メルカプトピリミジン等の複素環式化合物や、1,1-ジメチルウレア、1,3-ジメチルウレア等の尿素、またはチオ尿素化合物を挙げることができる。これらの接着補助剤は、ナノインプリント用レジスト下層膜形成組成物の全固形分に対して通常5質量%未満、好ましくは2質量%未満の割合で配合される。 The adhesion aid is mainly added for the purpose of improving the adhesion between the substrate or the resist and the resist underlayer film-forming composition for nanoimprinting, and especially for the purpose of preventing the resist from peeling off during development. Specific examples include chlorosilanes such as trimethylchlorosilane, dimethylmethylolchlorosilane, methyldiphenylchlorosilane, chloromethyldimethylchlorosilane, trimethylmethoxysilane, dimethyldiethoxysilane, methyldimethoxysilane, dimethylmethylolethoxysilane, diphenyldimethoxysilane, Alkoxysilanes such as enyltriethoxysilane, silazanes such as hexamethyldisilazane, N,N'-bis(trimethylsilyl)urea, dimethyltrimethylsilylamine, trimethylsilylimidazole, methyloltrichlorosilane, γ-chloropropyltrimethoxysilane, γ -Aminopropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane and other silanes, benzotriazole, benzimidazole, indazole, imidazole, 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, urazole , thiouracil, mercaptoimidazole, and mercaptopyrimidine; ureas such as 1,1-dimethylurea and 1,3-dimethylurea; and thiourea compounds. These adhesion aids are added at a ratio of usually less than 5% by mass, preferably less than 2% by mass, based on the total solid content of the resist underlayer film-forming composition for nanoimprints.
 本発明に係るナノインプリント用レジスト下層膜形成組成物の固形分は通常0.1乃至70質量%、好ましくは0.1乃至60質量%とする。固形分はナノインプリント用レジスト下層膜形成組成物から溶剤を除いた全成分の含有割合である。固形分中における上記芳香族環を含有する化合物の割合は、1乃至100質量%、1乃至99.9質量%、50乃至99.9質量%、50乃至95質量%、50乃至90質量%の順で好ましい。 The solid content of the resist underlayer film-forming composition for nanoimprinting according to the present invention is usually 0.1 to 70% by mass, preferably 0.1 to 60% by mass. The solid content is the content ratio of all components except for the solvent in the resist underlayer film-forming composition for nanoimprinting. The ratio of the compound containing the aromatic ring in the solid content is 1 to 100% by mass, 1 to 99.9% by mass, 50 to 99.9% by mass, 50 to 95% by mass, 50 to 90% by mass. preferred in order.
 ナノインプリント用レジスト下層膜形成組成物が均一な溶液状態であるかどうかを評価する尺度の一つは、特定のマイクロフィルターの通過性を観察することであるが、本発明に係るナノインプリント用レジスト下層膜形成組成物は、孔径0.1μmのマイクロフィルターを通過し、均一な溶液状態を呈する。 One measure for evaluating whether the composition for forming a resist underlayer film for nanoimprints is in a uniform solution state is to observe the permeability of a specific microfilter. The forming composition passes through a microfilter with a pore size of 0.1 μm and presents a uniform solution state.
 上記マイクロフィルター材質としては、PTFE(ポリテトラフルオロエチレン)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)などのフッ素系樹脂、PE(ポリエチレン)、UPE(超高分子量ポリエチレン)、PP(ポリプロピレン)、PSF(ポリスルフォン)、PES(ポリエーテルスルホン)、ナイロンが挙げられるが、PTFE(ポリテトラフルオロエチレン)製であることが好ましい。 Examples of the microfilter material include fluorine-based resins such as PTFE (polytetrafluoroethylene) and PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer), PE (polyethylene), UPE (ultra-high molecular weight polyethylene), PP ( polypropylene), PSF (polysulfone), PES (polyethersulfone), and nylon, but PTFE (polytetrafluoroethylene) is preferred.
 本発明に係る芳香族環を含有する化合物は、溶剤その他の任意成分を配合してナノインプリント用レジスト下層膜形成組成物とし、基板(シリコンウェハー)上に塗布し、所定の温度で焼成して膜を形成する。当該膜は、同一温度にて大気中で焼成したときの純水に対する接触角と、窒素雰囲気下に焼成したときの純水に対する接触角との差が26度以内である点に特徴を有する。 The compound containing an aromatic ring according to the present invention is mixed with a solvent and other optional components to form a resist underlayer film-forming composition for nanoimprinting, applied onto a substrate (silicon wafer), and baked at a predetermined temperature to form a film. to form The film is characterized in that the difference between the contact angle to pure water when baked in the air at the same temperature and the contact angle to pure water when baked in a nitrogen atmosphere is within 26 degrees.
 以下、本発明に係るナノインプリント用レジスト下層膜形成組成物を用いたレジスト下層膜の製造方法、パターン形成方法及び半導体装置の製造方法について説明する。 A method for producing a resist underlayer film, a pattern forming method, and a method for producing a semiconductor device using the composition for forming a resist underlayer film for nanoimprinting according to the present invention will be described below.
[ナノインプリント用レジスト下層膜の製造方法]
 半導体装置の製造に使用される基板(例えば、シリコンウエハー基板、二酸化ケイ素被覆基板(SiO基板)、シリコンナイトライド基板(SiN基板)、窒化酸化珪素基板(SiON基板)、チタンナイトライド基板(TiN基板)、タングステン基板(W基板)、ガラス基板、ITO基板、ポリイミド基板、及び低誘電率材料(low-k材料)被覆基板等)の上に、スピナー、コーター等の適当な塗布方法により本発明のナノインプリント用レジスト下層膜形成組成物を塗布し、その後、焼成することによりレジスト下層膜が形成される。焼成時の雰囲気気体としては空気を用いてもよく、窒素、アルゴン等の不活性ガスを用いることもできる。一態様においては特に酸素濃度が1%以下であることが好ましい。焼成する条件としては、焼成温度80℃乃至800℃、焼成時間0.3乃至60分間の中から適宜選択される。好ましくは、焼成温度150℃乃至400℃、焼成時間0.5乃至2分間である。ここで、形成される下層膜の膜厚としては、例えば、10乃至1000nmであり、又は20乃至500nmであり、又は30乃至400nmであり、又は50乃至300nmである。また、基板として石英基板を用いれば、石英インプリントモールドのレプリカ(モールドレプリカ)を作製することができる。
[Manufacturing method of resist underlayer film for nanoimprint]
Substrates used in the manufacture of semiconductor devices (e.g., silicon wafer substrates, silicon dioxide coated substrates ( SiO2 substrates), silicon nitride substrates (SiN substrates), silicon oxynitride substrates (SiON substrates), titanium nitride substrates (TiN substrates) substrate), a tungsten substrate (W substrate), a glass substrate, an ITO substrate, a polyimide substrate, and a low dielectric constant material (low-k material) coated substrate, etc.), the present invention is applied by an appropriate coating method such as a spinner or a coater. A resist underlayer film is formed by applying the resist underlayer film-forming composition for nanoimprinting and then baking the resist underlayer film. Air may be used as the atmosphere gas during firing, or an inert gas such as nitrogen or argon may be used. In one aspect, it is particularly preferred that the oxygen concentration is 1% or less. The firing conditions are appropriately selected from a firing temperature of 80° C. to 800° C. and a firing time of 0.3 to 60 minutes. Preferably, the firing temperature is 150° C. to 400° C. and the firing time is 0.5 to 2 minutes. Here, the film thickness of the lower layer film to be formed is, for example, 10 to 1000 nm, 20 to 500 nm, 30 to 400 nm, or 50 to 300 nm. Also, if a quartz substrate is used as the substrate, a replica of a quartz imprint mold (mold replica) can be produced.
 また、本発明に係るナノインプリント用レジスト下層膜形成組成物を、段差を有する部分と段差を有しない部分とを有する半導体基板(いわゆる段差基板)上に塗布し、焼成することにより、当該段差を有する部分と段差を有しない部分との段差を小さくすることができる。段差に上限はないが、好ましくは、10nm未満、30nm、50nm、70nm、80nm、90nm、又は100nm以下である。 Further, the composition for forming a resist underlayer film for nanoimprinting according to the present invention is applied onto a semiconductor substrate having a portion having a step and a portion having no step (a so-called stepped substrate), and baked to obtain a substrate having the step. The step between the portion and the portion without the step can be reduced. There is no upper limit to the step, but it is preferably less than 10 nm, 30 nm, 50 nm, 70 nm, 80 nm, 90 nm, or 100 nm or less.
 また、本発明に係るナノインプリント用レジスト下層膜上に、任意選択的にハードマスク(シリコーン)層を塗布又は蒸着により形成し、前記レジスト下層膜上又は(存在する場合)前記ハードマスク(シリコーン)層上に、密着層を塗布又は蒸着により形成することができる。ハードマスク(シリコーン)層は、99質量%以下、又は50質量%以下のSiを含むことが好ましい。例えば、特開2013-202982号公報や特許第5827180号公報に記載の密着層、WO2009/104552A1に記載のシリコン含有レジスト下層膜(無機レジスト下層膜)形成組成物をスピンコートで形成する方法の他、Si系の無機材料膜をCVD法などで形成することができる。 In addition, a hard mask (silicone) layer is optionally formed by coating or vapor deposition on the resist underlayer film for nanoimprinting according to the present invention, and the hard mask (silicone) layer is formed on the resist underlayer film or (if present) the hard mask (silicone) layer. An adhesion layer can be formed thereon by coating or vapor deposition. The hard mask (silicone) layer preferably contains 99 wt% or less, or 50 wt% or less of Si. For example, the adhesive layer described in JP-A-2013-202982 and Japanese Patent No. 5827180, the method of forming a silicon-containing resist underlayer film (inorganic resist underlayer film) composition described in WO2009/104552A1 by spin coating. , a Si-based inorganic material film can be formed by a CVD method or the like.
[パターン形成方法]
 本発明に係るパターン形成方法は、
 本発明に係るナノインプリント用レジスト下層膜形成組成物からレジスト下層膜を形成する工程、
前記レジスト下層膜上に硬化性組成物を適用する工程、
前記硬化性組成物とモールドとを接触させる工程、
前記硬化性組成物に光又は電子線を照射して硬化膜とする工程、及び
前記硬化膜と前記モールドとを引き離す工程、
を含む。
[Pattern formation method]
The pattern forming method according to the present invention comprises:
a step of forming a resist underlayer film from the composition for forming a resist underlayer film for nanoimprinting according to the present invention;
applying a curable composition onto the resist underlayer film;
contacting the curable composition with a mold;
A step of irradiating the curable composition with light or an electron beam to form a cured film, and a step of separating the cured film and the mold;
including.
[硬化性組成物]
 レジスト下層膜の上に形成されるフォトレジストとしては露光に使用される光に感光するものであれば特に限定はない。ネガ型フォトレジスト及びポジ型フォトレジストのいずれも使用できる。例えば、シプレー社製商品名APEX-E、住友化学工業株式会社製商品名PAR710、及び信越化学工業株式会社製商品名SEPR430等が挙げられる。また、例えば、Proc.SPIE,Vol.3999,330-334(2000)、Proc.SPIE,Vol.3999,357-364(2000)、やProc.SPIE,Vol.3999,365-374(2000)に記載されているような、含フッ素原子ポリマー系フォトレジストを挙げることができる。
[Curable composition]
The photoresist to be formed on the resist underlayer film is not particularly limited as long as it is sensitive to the light used for exposure. Both negative and positive photoresists can be used. Examples include APEX-E (trade name) manufactured by Shipley, PAR710 (trade name) manufactured by Sumitomo Chemical Co., Ltd., SEPR430 (trade name) manufactured by Shin-Etsu Chemical Co., Ltd., and the like. Also, for example, Proc. SPIE, Vol. 3999, 330-334 (2000), Proc. SPIE, Vol. 3999, 357-364 (2000), and Proc. SPIE, Vol. 3999, 365-374 (2000).
[硬化性組成物を適用する工程]
 本工程は、本発明に係るレジスト下層膜の製造方法によって形成されたレジスト下層膜上に硬化性組成物を適用する工程である。硬化性組成物を適用する方法としては、例えば、インクジェット法、ディップコート法、エアーナイフコート法、カーテンコート法、ワイヤーバーコート法、グラビアコート法、エクストルージョンコート法、スピンコート法、スリットスキャン法等を用いることができる。硬化性組成物を液滴として適用するためにはインクジェット法が適しており、硬化性組成物を塗布するためにはスピンコート法が適している。本工程において、レジスト下層膜上に密着層を塗布又は蒸着により形成し、その上に硬化性組成物を適用することもでき、レジスト下層膜上にハードマスク(シリコーン)層及び密着層を順に塗布又は蒸着により形成し、その上に硬化性組成物を適用することもできる。
[Step of applying curable composition]
This step is a step of applying a curable composition onto the resist underlayer film formed by the method for producing a resist underlayer film according to the present invention. Examples of methods for applying the curable composition include an inkjet method, a dip coating method, an air knife coating method, a curtain coating method, a wire bar coating method, a gravure coating method, an extrusion coating method, a spin coating method, and a slit scanning method. etc. can be used. An inkjet method is suitable for applying the curable composition as droplets, and a spin coating method is suitable for applying the curable composition. In this step, an adhesion layer may be formed by coating or vapor deposition on the resist underlayer film, and the curable composition may be applied thereon, and a hard mask (silicone) layer and an adhesion layer may be sequentially applied on the resist underlayer film. Alternatively, it can be formed by vapor deposition and the curable composition applied thereon.
[硬化性組成物とモールドとを接触させる工程]
 本工程では、硬化性組成物とモールドとを接触させる。例えば、液体である硬化性組成物と、パターン形状を転写するための原型パターンを有するモールドとを接触させれば、硬化性組成物がモールド表面の微細パターンの凹部に充填された液膜が形成される。
[Step of Contacting Curable Composition with Mold]
In this step, the curable composition and the mold are brought into contact. For example, when a liquid curable composition is brought into contact with a mold having a master pattern for transferring the pattern shape, a liquid film is formed in which the curable composition fills the recesses of the fine pattern on the mold surface. be done.
 後述する光又は電子線を照射する工程を考慮して、光透過性材料を基材とするモールドを用いることが推奨される。モールド基材は、具体的には、ガラス、石英、PMMA、ポリカーボネート樹脂等の光透明性樹脂、透明金属蒸着膜、ポリジメチルシロキサン等の柔軟膜、光硬化膜、金属膜等が好ましい。熱膨張係数が小さくパターン歪みが小さいことから、モールド基材はより好ましくは石英である。 Considering the process of irradiating light or electron beams, which will be described later, it is recommended to use a mold with a light-transmitting material as a base material. Specifically, the mold base material is preferably glass, quartz, PMMA, optically transparent resin such as polycarbonate resin, transparent metal deposition film, flexible film such as polydimethylsiloxane, photocured film, metal film, and the like. The mold base material is more preferably quartz because it has a small coefficient of thermal expansion and a small pattern distortion.
 モールドが表面に有する微細パターンは、4nm以上、200nm以下のパターン高さを有することが好ましい。基板の加工精度を上げるためには或る程度のパターン高さが必要であるが、パターン高さが低い方が、後述の硬化膜とモールドとを引き離す工程においてモールドを硬化膜から引き剥がす力が低く、また、レジストパターンが引きちぎられてマスク側に残存する欠陥数が少ない。これらを勘案して適切なバランスのパターン高さを選択、採用することが推奨される。 The fine pattern on the surface of the mold preferably has a pattern height of 4 nm or more and 200 nm or less. A certain degree of pattern height is necessary to improve the processing accuracy of the substrate, but the lower the pattern height, the stronger the force to separate the mold from the cured film in the later-described step of separating the cured film and the mold. Also, the number of defects remaining on the mask side due to the resist pattern being torn off is small. It is recommended to select and adopt an appropriately balanced pattern height in consideration of these factors.
 また、モールドを引き剥がす際の衝撃によるレジストパターンの弾性変形で隣接レジストパターン同士が接触し、レジストパターンが癒着あるいは破損する場合もある。これは、パターン幅に対してパターン高さが2倍程度以下(アスペクト比2以下)とすることにより回避できることがある。 In addition, due to the elastic deformation of the resist pattern due to the impact when the mold is peeled off, adjacent resist patterns may come into contact with each other and the resist patterns may adhere or be damaged. This can sometimes be avoided by setting the pattern height to about twice or less than the pattern width (aspect ratio of 2 or less).
 硬化性組成物とモールドの表面との剥離性を向上させるために、予めモールドに表面処理を行うこともできる。表面処理の方法としては、モールドの表面に離型剤を塗布して離型剤層を形成する方法が挙げられる。離型剤としては、シリコーン系離型剤、フッ素系離型剤、炭化水素系離型剤、ポリエチレン系離型剤、ポリプロピレン系離型剤、パラフィン系離型剤、モンタン系離型剤、カルナバ系離型剤等が挙げられる。好ましくは、フッ素系および炭化水素系の離型剤である。市販品としては、例えば、ダイキン工業(株)製のオプツール(登録商標)DSX等がある。離型剤は一種を単独で使用してもよく、二種以上を併用してもよい。 In order to improve the releasability between the curable composition and the surface of the mold, the mold can be surface-treated in advance. Examples of the surface treatment method include a method of applying a release agent to the surface of the mold to form a release agent layer. Release agents include silicone release agents, fluorine release agents, hydrocarbon release agents, polyethylene release agents, polypropylene release agents, paraffin release agents, montan release agents, carnauba and a release agent. Preferred are fluorine-based and hydrocarbon-based release agents. Commercially available products include OPTOOL (registered trademark) DSX manufactured by Daikin Industries, Ltd., for example. The releasing agents may be used singly or in combination of two or more.
 本工程において、モールドと硬化性組成物とを接触させる際に、硬化性組成物に加える圧力は特に限定されない。0MPa以上、100MPa以下の圧力が推奨される。圧力は、好ましくは0MPa以上であり、50MPa以下、30MPa以下、又は20MPa以下である。 In this step, the pressure applied to the curable composition when bringing the mold and the curable composition into contact is not particularly limited. A pressure of 0 MPa or more and 100 MPa or less is recommended. The pressure is preferably 0 MPa or higher and 50 MPa or lower, 30 MPa or lower, or 20 MPa or lower.
 前工程(硬化性組成物を適用する工程)において硬化性組成物の液滴のプレスプレッドが進行している場合は、本工程における硬化性組成物のスプレッドは速やかに完了する。その結果、モールドと硬化性組成物とを接触させる時間を短縮することができる。接触させる時間は、特に限定はされないが、好ましくは、0.1秒以上であり、600秒以下、3秒以下、又は1秒以下である。接触時間が短すぎると、スプレッド及びフィルが不十分となり、未充填欠陥と呼ばれる欠陥が発生するおそれがある。 When the pre-spreading of droplets of the curable composition is in progress in the previous step (the step of applying the curable composition), the spreading of the curable composition in this step is quickly completed. As a result, the contact time between the mold and the curable composition can be shortened. The contact time is not particularly limited, but is preferably 0.1 seconds or more, 600 seconds or less, 3 seconds or less, or 1 second or less. If the contact time is too short, the spread and fill may be insufficient, resulting in defects called unfilled defects.
 本工程は、大気雰囲気下、減圧雰囲気下、不活性ガス雰囲気下のいずれの条件下でも行うことができるが、好ましくは、0.0001気圧以上、10気圧以下の圧力下で行う。酸素や水分による硬化反応への影響を防ぐため、減圧雰囲気下、又は不活性ガス雰囲気で行うことが推奨される。不活性ガス雰囲気をつくるために使用することができる不活性ガスの具体例としては、窒素、アルゴン、ヘリウム、二酸化炭素、CFC、HCFC、HFC、又はこれらの混合ガスが挙げられる。好ましくは、窒素、アルゴン、ヘリウム、及び二酸化炭素からなる群より選択される少なくとも1種のガスである。 This step can be performed under any of an atmospheric atmosphere, a reduced pressure atmosphere, and an inert gas atmosphere, but is preferably performed under a pressure of 0.0001 atmosphere or more and 10 atmospheres or less. In order to prevent the curing reaction from being affected by oxygen and moisture, it is recommended to perform the curing under a reduced pressure atmosphere or an inert gas atmosphere. Specific examples of inert gases that can be used to create the inert gas atmosphere include nitrogen, argon, helium, carbon dioxide, CFCs, HCFCs, HFCs, or mixtures thereof. At least one gas selected from the group consisting of nitrogen, argon, helium, and carbon dioxide is preferred.
 本工程は、凝縮性ガスを含む雰囲気(以下、「凝縮性ガス雰囲気」と称する)下で行ってもよい。本明細書において凝縮性ガスとは、モールド上に形成された微細パターンの凹部及びモールドと基板との間隙に、硬化性組成物と一緒に充填された時、充填時に発生する毛細管圧力で凝縮して液化するガスのことをいう。なお、凝縮性ガスは、本工程で硬化性組成物とモールドとが接触する前は雰囲気中に気体として存在する。凝縮性ガス雰囲気下で本工程を行うと、微細パターンの凹部に充填されたガスが硬化性組成物により発生する毛細管圧力により液化することで気泡が消滅するため、充填性が優れる。凝縮性ガスは、硬化性組成物に溶解してもよい。 This step may be performed in an atmosphere containing condensable gas (hereinafter referred to as "condensable gas atmosphere"). In this specification, the condensable gas is condensed by the capillary pressure generated at the time of filling the concave portion of the fine pattern formed on the mold and the gap between the mold and the substrate together with the curable composition. It is a gas that liquefies. Note that the condensable gas exists as a gas in the atmosphere before the curable composition and the mold come into contact with each other in this step. When this step is performed in a condensable gas atmosphere, the gas filled in the recesses of the fine pattern is liquefied by the capillary pressure generated by the curable composition, and the bubbles disappear, resulting in excellent filling properties. The condensable gas may dissolve in the curable composition.
 凝縮性ガスの沸点は、本工程の雰囲気温度以下であれば限定されないが、好ましくは-10℃以上、又は+10℃以上、+23℃以下である。 The boiling point of the condensable gas is not limited as long as it is equal to or lower than the atmospheric temperature in this step, but is preferably -10°C or higher, or +10°C or higher and +23°C or lower.
 本工程の雰囲気温度における凝縮性ガスの蒸気圧は、モールド圧力以下であれば特に限定されない。好ましくは0.1MPa乃至0.4MPaの範囲である。 The vapor pressure of the condensable gas at the atmospheric temperature in this process is not particularly limited as long as it is equal to or lower than the mold pressure. It is preferably in the range of 0.1 MPa to 0.4 MPa.
 凝縮性ガスとして、具体的には、トリクロロフルオロメタン等のクロロフルオロカーボン(CFC)、フルオロカーボン(FC)、ハイドロクロロフルオロカーボン(HCFC)、1,1,1,3,3-ペンタフルオロプロパン(CHFCHCF、HFC-245fa、PFP)等のハイドロフルオロカーボン(HFC)、ペンタフルオロエチルメチルエーテル(CFCFOCH、HFE-245mc)等のハイドロフルオロエーテル(HFE)等が挙げられる。 Specific examples of condensable gases include chlorofluorocarbons (CFCs) such as trichlorofluoromethane, fluorocarbons (FCs), hydrochlorofluorocarbons (HCFCs), 1,1,1,3,3-pentafluoropropane (CHF 2 CH 2 CF 3 , HFC-245fa, PFP), hydrofluoroethers (HFE) such as pentafluoroethyl methyl ether (CF 3 CF 2 OCH 3 , HFE-245mc), and the like.
 凝縮性ガスは、一種を単独で用いてもよく、二種以上を混合して用いてもよい。またこれら凝縮性ガスは、空気、窒素、二酸化炭素、ヘリウム、アルゴン等の非凝縮性ガスと混合して用いてもよい。凝縮性ガスと混合する非凝縮性ガスとしては、空気、ヘリウムが好ましい。 The condensable gas may be used singly or in combination of two or more. These condensable gases may also be mixed with non-condensable gases such as air, nitrogen, carbon dioxide, helium and argon. Air and helium are preferable as the non-condensable gas to be mixed with the condensable gas.
[硬化性組成物に光又は電子線を照射して硬化膜とする工程]
 本工程では、硬化性組成物に光又は電子線を照射して硬化膜とする。すなわち、モールドの微細パターンに充填された硬化性組成物にモールドを介して光又は電子線を照射し、モールドの微細パターンに充填された硬化性組成物をその状態のまま硬化させることによって、パターン形状を有する硬化膜とする。
[Step of irradiating the curable composition with light or an electron beam to form a cured film]
In this step, the curable composition is irradiated with light or an electron beam to form a cured film. That is, the curable composition filled in the fine pattern of the mold is irradiated with light or an electron beam through the mold, and the curable composition filled in the fine pattern of the mold is cured as it is, thereby forming a pattern. A cured film having a shape is obtained.
 光又は電子線は、硬化性組成物の感度波長に応じて選択される。具体的には、13.5nm以上400nm以下の波長の極端紫外光、紫外光、X線、電子線等を適宜選択して使用することができる。光又は電子線の光源としては、例えば、高圧水銀灯、超高圧水銀灯、低圧水銀灯、Deep-UVランプ、炭素アーク灯、ケミカルランプ、メタルハライドランプ、キセノンランプ、KrFエキシマレーザ、ArFエキシマレーザ、F2エキシマレーザ、CO2レーザ等が挙げられる。光源数は1つでもよく、複数でもよい。照射は、モールドの微細パターンに充填された硬化性組成物の全体に対して行ってもよく、一部領域のみに対して行ってもよい。光照射は、基板上の全領域に断続的に複数回行ってもよく、全領域に連続照射してもよい。また、基板上の一部領域に対して第一回の照射を行い、当該領域とは異なる領域に対して第二回の照射を行うこともできる。その後、公知の方法により現像を行うことができる。 The light or electron beam is selected according to the sensitivity wavelength of the curable composition. Specifically, extreme ultraviolet light with a wavelength of 13.5 nm or more and 400 nm or less, ultraviolet light, X-rays, electron beams, or the like can be appropriately selected and used. Light or electron beam light sources include, for example, high-pressure mercury lamps, ultra-high pressure mercury lamps, low-pressure mercury lamps, deep-UV lamps, carbon arc lamps, chemical lamps, metal halide lamps, xenon lamps, KrF excimer lasers, ArF excimer lasers, and F2 excimer lasers. , CO2 laser, and the like. The number of light sources may be one or plural. Irradiation may be performed on the entire curable composition filled in the fine pattern of the mold, or may be performed only on a partial region. The light irradiation may be performed intermittently a plurality of times over the entire region on the substrate, or may be continuously irradiated over the entire region. It is also possible to irradiate a part of the substrate for the first time and irradiate a different area for the second time. After that, development can be carried out by a known method.
 このようにして得られる硬化膜は、好ましくは、1nm以上、又は10nm以上、10mm以下、又は100μm以下のサイズのパターンを有する。 The cured film thus obtained preferably has a pattern with a size of 1 nm or more, or 10 nm or more, 10 mm or less, or 100 μm or less.
[硬化膜とモールドとを引き離す工程]
 本工程では、硬化膜とモールドとを引き離す。パターン形状を有する硬化膜とモールドとを引き離し、モールド上に形成された微細パターンの反転パターンとなるパターン形状を有する硬化膜が自立した状態で得られる。
[Step of separating cured film and mold]
In this step, the cured film and the mold are separated. By separating the cured film having the pattern shape from the mold, the cured film having the pattern shape which is the reverse pattern of the fine pattern formed on the mold can be obtained in a self-supporting state.
 パターン形状を有する硬化膜とモールドとを引き離す方法としては、硬化膜とモールドとを相対的に離れる方向に移動させる手段であれば、パターン形状を有する硬化膜の一部が物理的に破損しない限り特に限定されず、各種条件等も特に限定されない。例えば、基板を固定してモールドを基板から遠ざかるように移動させて剥離してもよく、モールドを固定して基板をモールドから遠ざかるように移動させて剥離してもよい。或いは、基板とモールドを反対の方向へ引っ張って移動させて剥離してもよい。 As a method for separating the cured film having a pattern shape from the mold, any means for moving the cured film and the mold in a relatively separating direction can be used as long as a part of the cured film having a pattern shape is not physically damaged. It is not particularly limited, and various conditions are not particularly limited. For example, the substrate may be fixed and the mold may be moved away from the substrate for peeling, or the mold may be fixed and the substrate is moved away from the mold for peeling. Alternatively, the substrate and the mold may be pulled and moved in opposite directions for separation.
 なお、前述の硬化性組成物とモールドとを接触させる工程を凝縮性ガス雰囲気下で行った場合、本工程で硬化膜とモールドとを引き離す際に、硬化膜とモールドとが接触する界面の圧力が低下することに伴って凝縮性ガスが気化する。これにより、硬化膜とモールドとを引き離すために必要な力である離型力を低減させることができる。 In addition, when the step of contacting the curable composition and the mold described above is performed in a condensable gas atmosphere, when separating the cured film and the mold in this step, the pressure at the interface where the cured film and the mold come into contact The condensable gas evaporates as the . As a result, the release force, which is the force required to separate the cured film and the mold, can be reduced.
 以上の工程により、モールドの凹凸形状に由来する所望の凹凸パターン形状を、所望の位置に有する硬化膜を調製することができる。 Through the above steps, it is possible to prepare a cured film having a desired concave-convex pattern shape derived from the concave-convex shape of the mold at a desired position.
[半導体装置の製造方法]
 本発明のパターン形成方法で形成されたフォトレジスト(上層)のパターンを保護膜として無機下層膜(中間層)の加工が行われ、次いでパターン化された無機下層膜からなる膜を保護膜として、レジスト下層膜(下層)の加工が行われる。最後に、レジスト下層膜を保護膜として、半導体基板の加工が行なわれる。なお、レジスト下層膜あるいは無機下層膜の上層には、密着層が適用される場合があるが、これも上記と同様に加工される。
[Method for manufacturing a semiconductor device]
The pattern of the photoresist (upper layer) formed by the pattern forming method of the present invention is used as a protective film to process the inorganic lower layer film (intermediate layer), and then the patterned inorganic lower layer film is used as a protective film, Processing of the resist underlayer film (lower layer) is performed. Finally, the semiconductor substrate is processed using the resist underlayer film as a protective film. An adhesion layer may be applied to the upper layer of the resist underlayer film or the inorganic underlayer film, and this is also processed in the same manner as described above.
(IVA)
(i)
 本発明の一態様である半導体装置の製造方法は、
 本発明の一態様であるナノインプリント用レジスト下層膜形成組成物により、半導体基板上にレジスト下層膜を形成する工程、
 レジスト下層膜の上に、硬化性組成物を適用する工程、
 前記硬化性組成物とモールドとを接触させる工程、
 前記硬化性組成物に光又は電子線の照射により硬化膜とする工程、
及び
前記硬化膜と前記モールドとを引き離す工程、を含む。
(IVA)
(i)
A method for manufacturing a semiconductor device, which is one embodiment of the present invention, comprises:
a step of forming a resist underlayer film on a semiconductor substrate using the composition for forming a resist underlayer film for nanoimprinting, which is one aspect of the present invention;
applying a curable composition onto the resist underlayer film;
contacting the curable composition with a mold;
A step of forming a cured film by irradiating the curable composition with light or an electron beam;
and separating the cured film and the mold.
(ii)
前記レジスト下層膜上に硬化性組成物を適用する工程が、
任意選択的に前記レジスト下層膜上にハードマスク層を塗布又は蒸着により形成し、
前記レジスト下層膜上又は前記ハードマスク層上に、密着層を塗布又は蒸着により形成し、
前記密着層上又は前記ハードマスク上に硬化性組成物を適用することを含む。
(ii)
The step of applying a curable composition onto the resist underlayer film comprises
Optionally forming a hard mask layer on the resist underlayer film by coating or vapor deposition,
forming an adhesion layer by coating or vapor deposition on the resist underlayer film or the hard mask layer;
applying a curable composition on the cling layer or on the hard mask.
(iii)
 また、本発明の一態様である半導体装置の製造方法は、
 本発明の一態様であるナノインプリント用レジスト下層膜形成組成物により、半導体基板上にレジスト下層膜を形成する工程、
 任意選択的にレジスト下層膜の上に、ハードマスク層を塗布又は蒸着により形成し、
 前記レジスト下層膜上又は前記ハードマスク層上に、密着層を塗布又は蒸着により形成し、
 更に前記ハードマスク層上又は密着層上に、硬化組成物を適用する工程、
 光又は電子線の照射により、硬化組成物によるレジスト膜に対してレジストパターンを形成する工程、
 形成されたレジストパターンによりレジスト下層膜をエッチングする工程、及び
パターン化された下層膜により半導体基板を加工する工程
を含む。
(iii)
Further, a method for manufacturing a semiconductor device according to one aspect of the present invention includes:
a step of forming a resist underlayer film on a semiconductor substrate using the composition for forming a resist underlayer film for nanoimprinting, which is one aspect of the present invention;
Optionally forming a hard mask layer on the resist underlayer film by coating or vapor deposition,
forming an adhesion layer by coating or vapor deposition on the resist underlayer film or the hard mask layer;
further applying a curing composition onto the hard mask layer or onto the adhesion layer;
A step of forming a resist pattern on the resist film of the curable composition by irradiation with light or an electron beam;
A step of etching a resist underlayer film using the formed resist pattern and a step of processing a semiconductor substrate using the patterned underlayer film are included.
 (iv)
 また、本発明の一態様である半導体装置の製造方法は、
 本発明の一態様であるナノインプリント用レジスト下層膜形成組成物により、半導体基板上にレジスト下層膜を形成する工程、
 任意選択的にレジスト下層膜の上に、ハードマスク層を塗布又は蒸着により形成し、前記レジスト下層膜上又は前記ハードマスク層上に、密着層を塗布又は蒸着により形成し、更に前記ハードマスク層上又は密着層上に、硬化組成物を適用する工程、
 光又は電子線の照射より、レジスト膜に対してレジストパターンを形成する工程、
 レジストパターンを介して、ハードマスク層をエッチングし、パターン化する工程、
 エッチングされたハードマスク層を介して、前記レジスト下層膜をエッチングし、パターン化する工程、
 ハードマスクを除去する工程、
 ハードマスク層除去後のレジスト下層膜に、蒸着膜(スペーサー)を形成する工程、
 蒸着膜(スペーサー)をエッチングにより加工する工程、
 パターン化されたレジスト下層膜を除去して、パターン化された蒸着膜(スペーサー)を残す工程、及び
 パターン化された蒸着膜(スペーサー)を介して、半導体基板を加工する工程、を含む。
(iv)
Further, a method for manufacturing a semiconductor device according to one aspect of the present invention includes:
a step of forming a resist underlayer film on a semiconductor substrate using the composition for forming a resist underlayer film for nanoimprinting, which is one aspect of the present invention;
Optionally, a hard mask layer is formed on the resist underlayer film by coating or vapor deposition, an adhesion layer is formed on the resist underlayer film or the hard mask layer by coating or vapor deposition, and further the hard mask layer. applying a curing composition on top or onto the cling layer;
forming a resist pattern on the resist film by irradiation with light or an electron beam;
etching and patterning the hard mask layer through the resist pattern;
etching and patterning the resist underlayer film through the etched hard mask layer;
removing the hard mask;
A step of forming a deposited film (spacer) on the resist underlayer film after removing the hard mask layer,
A step of processing the deposited film (spacer) by etching,
A step of removing the patterned resist underlayer film to leave a patterned deposited film (spacer), and a step of processing the semiconductor substrate through the patterned deposited film (spacer).
 前記(i)~(iv)の製造方法を用いて、半導体基板を加工することができる。なお(i)~(iv)の製造方法において、形成されたレジストパターンによりレジスト下層膜をエッチングする工程においては、任意選択的に形成されたハードマスク層、密着層またはその両方を介してレジスト下層膜をエッチングする場合も含むものとする。 A semiconductor substrate can be processed using the above manufacturing methods (i) to (iv). In the manufacturing methods (i) to (iv), in the step of etching the resist underlayer film using the formed resist pattern, the resist underlayer is formed through an optionally formed hard mask layer, adhesion layer, or both. The case of etching a film is also included.
 ナノインプリント法において、レジスト膜となる硬化性組成物を適用する前に、レジスト下層膜上に、任意選択的にシリコン含有層(ハードマスク層)を塗布又は蒸着により形成し、更にレジスト下層膜上又はシリコン含有層(ハードマスク層)上に、密着層を塗布又は蒸着により形成し、該密着層上に、レジスト膜となる硬化性組成物を適用してもよい。 In the nanoimprint method, before applying the curable composition that becomes a resist film, optionally a silicon-containing layer (hard mask layer) is formed on the resist underlayer film by coating or vapor deposition, and further on the resist underlayer film or An adhesion layer may be formed by coating or vapor deposition on the silicon-containing layer (hard mask layer), and a curable composition that will form a resist film may be applied onto the adhesion layer.
(IVB)
 本発明の一態様であるナノインプリント用レジスト下層膜形成組成物を用いてレジスト下層膜を形成する工程は、前記[ナノインプリント用レジスト下層膜の製造方法]で説明したとおりである。
(IVB)
The step of forming a resist underlayer film using the resist underlayer film-forming composition for nanoimprinting, which is one aspect of the present invention, is as described in the above [Method for producing a resist underlayer film for nanoimprinting].
 前記工程により形成したレジスト下層膜上に、シリコン含有膜等のハードマスク層を第2のレジスト下層膜として形成し、その上にレジストパターンを形成してもよい[前記(IVA)(ii)~(iv)]。 A hard mask layer such as a silicon-containing film may be formed as a second resist underlayer film on the resist underlayer film formed by the above steps, and a resist pattern may be formed thereon [above (IVA) (ii) to (iv)].
 ハードマスク層は、無機物等の塗布膜でもよいし、CVD、PVDなどの蒸着法で形成される無機物等の蒸着膜でもよく、SiON膜、SiN膜又はSiO膜が例示できる。 The hard mask layer may be a coating film of an inorganic substance or the like, or a deposited film of an inorganic substance or the like formed by a vapor deposition method such as CVD or PVD, and examples thereof include a SiON film, a SiN film and a SiO2 film.
 さらにこのハードマスク層上に、反射防止膜(BARC)を形成してもよいし、反射防止能を有しないレジスト形状補正膜を形成してもよい。 Furthermore, an antireflection film (BARC) may be formed on this hard mask layer, or a resist shape correction film having no antireflection ability may be formed.
 前記レジストパターンを形成する工程において、露光は所定のパターンを形成するためのマスク(レチクル)を通して又は直接描画により行なわれる。露光源には、例えば、g線、i線、KrFエキシマレーザー、ArFエキシマレーザー、EUV、電子線を使用することができる。露光後、必要に応じて露光後加熱(Post Exposure Bake)が行なわれる。その後、必要に応じて任意で現像液(例えば2.38質量%水酸化テトラメチルアンモニウム水溶液、酢酸ブチル)により現像し、さらにリンス液又は純水ですすぎ、使用した現像液を除去してもよい。その後、レジストパターンの乾燥及び下地との密着性を高めるためポストベークを行ってもよい。 In the process of forming the resist pattern, exposure is performed through a mask (reticle) for forming a predetermined pattern or by direct writing. For example, g-rays, i-rays, KrF excimer lasers, ArF excimer lasers, EUV, and electron beams can be used as exposure sources. After exposure, post-exposure baking is performed as necessary. After that, if necessary, it may be optionally developed with a developing solution (e.g., 2.38% by mass aqueous tetramethylammonium hydroxide solution, butyl acetate), and further rinsed with a rinsing solution or pure water to remove the used developing solution. . After that, post-baking may be performed in order to dry the resist pattern and improve adhesion to the base.
 前記レジストパターン形成後に行われるエッチング工程は、ドライエッチングにより行われる。 The etching process performed after forming the resist pattern is performed by dry etching.
 なお、ハードマスク・レジスト下層膜・基板の加工には下記のガス、すなわち、CF、CHF、CH,CHF、C、C、O、NO、NO、H、Heを使用できる。これらのガスは単独でも2種以上のガスを混合して使用しても良い。さらに、これらのガスにアルゴン、窒素、二酸化炭素、硫化カルボニル、二酸化硫黄、ネオン、又は三フッ化窒素を混合して使用することができる。 The following gases, namely CF 4 , CHF 3 , CH 2 F 2 , CH 3 F, C 4 F 6 , C 4 F 8 , O 2 , N 2 , are used for the processing of hard masks, resist underlayer films, and substrates. O, NO2 , H2 , He can be used. These gases may be used alone or in combination of two or more. Furthermore, these gases can be mixed with argon, nitrogen, carbon dioxide, carbonyl sulfide, sulfur dioxide, neon, or nitrogen trifluoride.
(IVD)
 なお、プロセス工程の簡略化や加工基板へのダメージ低減を目的として、ウェットエッチング処理が行われる場合もある。これにより加工寸法の変動やパターンラフネスの低減を抑制することに繋がり、歩留まり良く基板を加工することが可能となる。このため、前記(IVA)(iii)~(iv)において、ハードマスクの除去を、エッチングまたはアルカリ薬液のいずれかで行うことも可能である。特にアルカリ薬液を用いる場合、成分に制約はないがアルカリ成分としては下記を含むものが好ましい。
(IVD)
Wet etching may be performed for the purpose of simplifying the process steps and reducing damage to the processed substrate. This leads to suppression of fluctuations in processing dimensions and reduction in pattern roughness, making it possible to process substrates with high yield. Therefore, in (IVA) (iii) to (iv), the hard mask can be removed by either etching or alkaline chemicals. In particular, when an alkaline chemical solution is used, there are no restrictions on the components, but the alkaline component preferably contains the following.
 アルカリ成分として例えば、テトラメチルアンモニウム水酸化物、テトラエチルアンモニウム水酸化物、テトラプロピルアンモニウム水酸化物、テトラブチルアンモニウム水酸化物、メチルトリプロピルアンモニウム水酸化物、メチルトリブチルアンモニウム水酸化物、エチルトリメチルアンモニウム水酸化物、ジメチルジエチルアンモニウム水酸化物、ベンジルトリメチルアンモニウム水酸化物、ヘキサデシルトリメチルアンモニウム水酸化物、及び(2-ヒドロキシエチル)トリメチルアンモニウム水酸化物、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、2-(2-アミノエトキシ)エタノール、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、N,N-ジブチルエタノールアミン、N-メチルエタノールアミン、N-エチルエタノールアミン、N-ブチルエタノールアミン、N-メチルジエタノールアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、テトラヒドロフルフリルアミン、N-(2-アミノエチル)ピペラジン、1,8-ジアザビシクロ[5.4.0]ウンデセン-7、1,4-ジアザビシクロ[2.2.2]オクタン、ヒドロキシエチルピペラジン、ピペラジン、2-メチルピペラジン、トランス-2,5-ジメチルピペラジン、シス-2,6-ジメチルピペラジン、2-ピペリジンメタノール、シクロヘキシルアミン、1,5-ジアザビシクロ[4,3,0]ノネン-5等が挙げられる。また、特に取り扱いの観点から、テトラメチルアンモニウム水酸化物及びテトラエチルアンモニウム水酸化物が特に好ましく、無機塩基を第4級アンモニウム水酸化物と併用してもよい。無機塩基としては、水酸化カリウム、水酸化ナトリウム、水酸化ルビジウム等のアルカリ金属の水酸化物が好ましく、水酸化カリウムがより好ましい。 Examples of alkali components include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, methyltripropylammonium hydroxide, methyltributylammonium hydroxide, and ethyltrimethylammonium. hydroxide, dimethyldiethylammonium hydroxide, benzyltrimethylammonium hydroxide, hexadecyltrimethylammonium hydroxide, and (2-hydroxyethyl)trimethylammonium hydroxide, monoethanolamine, diethanolamine, triethanolamine, 2 -(2-aminoethoxy)ethanol, N,N-dimethylethanolamine, N,N-diethylethanolamine, N,N-dibutylethanolamine, N-methylethanolamine, N-ethylethanolamine, N-butylethanolamine , N-methyldiethanolamine, monoisopropanolamine, diisopropanolamine, triisopropanolamine, tetrahydrofurfurylamine, N-(2-aminoethyl)piperazine, 1,8-diazabicyclo[5.4.0]undecene-7, 1, 4-diazabicyclo[2.2.2]octane, hydroxyethylpiperazine, piperazine, 2-methylpiperazine, trans-2,5-dimethylpiperazine, cis-2,6-dimethylpiperazine, 2-piperidinemethanol, cyclohexylamine, 1 ,5-diazabicyclo[4,3,0]nonene-5 and the like. Tetramethylammonium hydroxide and tetraethylammonium hydroxide are particularly preferred from the viewpoint of handling, and an inorganic base may be used in combination with the quaternary ammonium hydroxide. As the inorganic base, alkali metal hydroxides such as potassium hydroxide, sodium hydroxide and rubidium hydroxide are preferable, and potassium hydroxide is more preferable.
 また、レジスト下層膜の上層には、フォトレジストの形成前に有機系の反射防止膜を形成することができる。そこで使用される反射防止膜組成物としては特に制限はなく、これまでリソグラフィープロセスにおいて慣用されているものの中から任意に選択して使用することができ、また、慣用されている方法、例えば、スピナー、コーターによる塗布及び焼成によって反射防止膜の形成を行なうことができる。 In addition, an organic antireflection film can be formed on the upper layer of the resist underlayer film before forming the photoresist. The antireflection coating composition used there is not particularly limited, and can be used by arbitrarily selecting from those commonly used in the lithography process. The antireflection film can be formed by coating with a coater and baking.
 また、レジスト下層膜形成組成物より形成される下層膜は、前工程あるいは後工程でラインアンドスペースパターンやビアホールパターン、ピラーパターンが形成された基板に適用され、スペースやホールを隙間なく充填することができる埋め込み材として使用できる。また、凹凸のある半導体基板の表面を平坦化するための平坦化材として使用することもできる。 The underlayer film formed from the composition for forming a resist underlayer film is applied to a substrate on which a line-and-space pattern, a via-hole pattern, or a pillar pattern has been formed in a pre-process or a post-process, and fills spaces and holes without gaps. Can be used as an embedding material. It can also be used as a planarizing material for planarizing the uneven surface of a semiconductor substrate.
 ナノインプリント用レジスト下層膜を大気下で焼成した場合、レジスト下層膜表面が酸素によって酸化され、親水化することが一般的に知られている。一方、レジスト下層膜内部は酸化の影響を受けていないため、表面は親水化し、内部は疎水化する傾向がある。従って、膜表面の評価だけでは、真のガス透過性を理解するには不十分である。
 ガス透過性は一般的に溶解度係数と拡散係数の積で示される。表面を疎水化することでガスに対する溶解度係数を向上させることが可能である。一方、ガス透過性を向上させるには、レジスト下層膜の均一性が重要と考えられる。表面が親水性を示し、内部が疎水性を示すレジスト下層膜では、細かく見るとレジスト下層膜が2層構造(親水層/疎水層)となる。従って、ガスがレジスト下層膜中を透過するためには、親水層/疎水層の境目で再度溶解と拡散の工程を繰り返すことになる。もし、表面と内部が同じ状態、つまり均一性の高い状態にすることができれば溶解と拡散の工程を1度で行うことができるため、効率的にガスの透過が起きると考えられる。従って、レジスト下層膜表面の疎水化と均一性を確保することでナノインプリントプロセスのスループットが劇的に向上する。
 下記の実施例の項におけるように、レジスト下層膜内部の接触角を再現するために、窒素下(酸素濃度1%未満)で焼成することにより酸素の影響を極力排除した評価を行い、大気下での焼成と窒素下での焼成でレジスト下層膜の純水に対する接触角差を求める。その接触角差の小さいレジスト下層膜ほど、酸素の影響を受けにくく、ガス透過性が良好になる、と合理的に予測することができる。
It is generally known that when a resist underlayer film for nanoimprinting is baked in the atmosphere, the surface of the resist underlayer film is oxidized by oxygen and becomes hydrophilic. On the other hand, since the inside of the resist underlayer film is not affected by oxidation, the surface tends to be hydrophilic and the inside tends to be hydrophobic. Therefore, membrane surface evaluation alone is insufficient to understand true gas permeability.
Gas permeability is generally expressed as the product of solubility coefficient and diffusion coefficient. By making the surface hydrophobic, it is possible to improve the solubility coefficient for gases. On the other hand, uniformity of the resist underlayer film is considered important for improving gas permeability. A resist underlayer film having a hydrophilic surface and a hydrophobic interior has a two-layer structure (hydrophilic layer/hydrophobic layer) when viewed in detail. Therefore, in order for the gas to pass through the resist underlayer film, the process of dissolution and diffusion is repeated at the boundary between the hydrophilic layer and the hydrophobic layer. If the surface and the inside can be in the same state, that is, in a highly uniform state, the dissolution and diffusion steps can be performed in one step, so it is thought that gas permeation will occur efficiently. Therefore, by making the surface of the resist underlayer film hydrophobic and ensuring uniformity, the throughput of the nanoimprint process is dramatically improved.
As in the Examples section below, in order to reproduce the contact angle inside the resist underlayer film, baking was performed under nitrogen (oxygen concentration less than 1%) to eliminate the influence of oxygen as much as possible. The difference in the contact angle of the resist underlayer film to pure water is obtained by baking at 100°C and baking under nitrogen. It can be reasonably predicted that a resist underlayer film having a smaller contact angle difference is less likely to be affected by oxygen and has better gas permeability.
 以下、合成例、実施例及び比較例を挙げて、本発明をより具体的に説明するが、本発明は下記実施例のみに限定されるものではない。 The present invention will be described in more detail below with reference to Synthesis Examples, Examples and Comparative Examples, but the present invention is not limited only to the following Examples.
[ポリマーの合成]
 レジスト下層膜に用いるポリマーとして構造式(S1)~(S29)の合成、比較例として構造式(S’1)の合成は、下記に示す化合物群A、化合物群B、化合物群C、触媒群D、溶媒群E、再沈殿溶媒群Fを用いた。
[Synthesis of polymer]
Synthesis of structural formulas (S1) to (S29) as polymers used for the resist underlayer film, and synthesis of structural formula (S'1) as a comparative example are performed by the following compound group A, compound group B, compound group C, and catalyst group. D, solvent group E, and reprecipitation solvent group F were used.
(化合物群A~C) (Compound Groups A to C)
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
(触媒群D)
メタンスルホン酸:D1
p-トルエンスルホン酸一水和物:D2
テトラブチルアンモニウムヨージド:D3
(Catalyst group D)
Methanesulfonic acid: D1
p-toluenesulfonic acid monohydrate: D2
Tetrabutylammonium iodide: D3
(溶媒群E)
プロピレングリコールモノメチルエーテルアセテート(=PGMEA):E1
プロピレングリコールモノメチルエーテル(=PGME):E2
トルエン:E3
1,4-ジオキサン:E4
テトラヒドロフラン:E5
水酸化ナトリウム水溶液:E6
(Solvent group E)
Propylene glycol monomethyl ether acetate (= PGMEA): E1
Propylene glycol monomethyl ether (= PGME): E2
Toluene: E3
1,4-dioxane: E4
Tetrahydrofuran: E5
Sodium hydroxide aqueous solution: E6
(再沈殿溶媒群F)
メタノール:F1
メタノール/水:F2
(Reprecipitation solvent group F)
Methanol: F1
Methanol/water: F2
(分液溶媒群G)
メチルイソブチルケトン/水:G1
(Separating solvent group G)
Methyl isobutyl ketone/water: G1
合成例1
 フラスコにフェニルナフチルアミン 10.0g、9-フルオレノン 8.2g、メタンスルホン酸 1.3g、プロピレングリコールモノメチルエーテルアセテート 19.5gを入れた。その後、窒素下で還流まで加熱し、約14時間反応させた。反応停止後、メタノールで再沈殿させ、乾燥させることで樹脂(S1)を得た。GPCによりポリスチレン換算で測定される重量平均分子量Mwは約1,900であった。得られた樹脂をシクロヘキサノンに溶解させ、陽イオン交換樹脂と陰イオン交換樹脂を用いてイオン交換を4時間実施することで、目的の化合物溶液を得た。
Synthesis example 1
A flask was charged with 10.0 g of phenylnaphthylamine, 8.2 g of 9-fluorenone, 1.3 g of methanesulfonic acid, and 19.5 g of propylene glycol monomethyl ether acetate. It was then heated to reflux under nitrogen and allowed to react for about 14 hours. After stopping the reaction, the precipitate was reprecipitated with methanol and dried to obtain a resin (S1). The weight average molecular weight Mw measured by GPC in terms of polystyrene was about 1,900. The resulting resin was dissolved in cyclohexanone, and ion exchange was performed using a cation exchange resin and an anion exchange resin for 4 hours to obtain a target compound solution.
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
 なお、ポリマーの重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下、GPCと略称する)による測定結果である。測定には東ソー(株)製GPC装置を用い、測定条件等は次のとおりである。
装置:東ソー株式会社製HLC-8320GPC
GPCカラム:TSKgel Super-MultiporeHZ-N (2本)
カラム温度:40℃
流量:0.35mL/分
溶離液:THF 
標準試料:ポリスチレン
The weight average molecular weight of the polymer is the result of measurement by gel permeation chromatography (hereinafter abbreviated as GPC). A GPC apparatus manufactured by Tosoh Corporation was used for the measurement, and the measurement conditions and the like are as follows.
Apparatus: HLC-8320GPC manufactured by Tosoh Corporation
GPC column: TSKgel Super-MultiporeHZ-N (2 columns)
Column temperature: 40°C
Flow rate: 0.35 mL/min Eluent: THF
Standard sample: Polystyrene
合成例2~24,比較合成例1
 化合物群A、化合物群B、化合物群C、触媒群D、溶媒群E、再沈殿溶媒群Fを変更し、レジスト下層膜に用いるポリマーを合成した。なお、実験操作は合成例1と同様である。下記の条件で合成し、実施例ポリマー(S2)~(S24)、比較例ポリマー(S’1)を得た。
Synthesis Examples 2 to 24, Comparative Synthesis Example 1
Compound group A, compound group B, compound group C, catalyst group D, solvent group E, and reprecipitation solvent group F were changed to synthesize polymers used for the resist underlayer film. The experimental procedure is the same as in Synthesis Example 1. Synthesis was performed under the following conditions to obtain Example Polymers (S2) to (S24) and Comparative Example Polymer (S'1).
Figure JPOXMLDOC01-appb-T000078

Figure JPOXMLDOC01-appb-I000079
Figure JPOXMLDOC01-appb-T000078

Figure JPOXMLDOC01-appb-I000079
合成例25
 フラスコに再沈殿処理後の樹脂(S18)15.0g、プロパルギルブロミド10.5g、テトラブチルアンモニウムヨージド4.9g、テトラヒドロフラン34.2g、25%水酸化ナトリウム水溶液11.4gを入れた。その後、窒素下で55℃まで加熱し、約15時間反応させた。反応停止後、メチルイソブチルケトンと水で分液操作を繰り返し、有機層を濃縮、PGMEAに再溶解、メタノールを用いて再沈殿させ、乾燥することで樹脂(S25)を得た。得られた樹脂をPGMEAに溶解させ、陽イオン交換樹脂と陰イオン交換樹脂を用いてイオン交換を4時間実施することで、目的の化合物溶液を得た。
Synthesis example 25
A flask was charged with 15.0 g of reprecipitated resin (S18), 10.5 g of propargyl bromide, 4.9 g of tetrabutylammonium iodide, 34.2 g of tetrahydrofuran, and 11.4 g of a 25% aqueous sodium hydroxide solution. It was then heated to 55° C. under nitrogen and allowed to react for about 15 hours. After stopping the reaction, the liquid separation operation was repeated with methyl isobutyl ketone and water, and the organic layer was concentrated, redissolved in PGMEA, reprecipitated with methanol, and dried to obtain a resin (S25). The resulting resin was dissolved in PGMEA, and ion exchange was performed using a cation exchange resin and an anion exchange resin for 4 hours to obtain a target compound solution.
合成例26~29
 化合物群A、化合物群B、化合物群C、触媒群D、溶媒群E、再沈殿溶媒群F、分液溶媒群Gを種々変更し、レジスト下層膜に用いるポリマーを合成した。なお、実験操作は合成例25と同様である。下記の条件で合成し、ポリマー(S24)~(S29)を得た。
Synthesis Examples 26-29
Compound group A, compound group B, compound group C, catalyst group D, solvent group E, reprecipitation solvent group F, and liquid separation solvent group G were variously changed to synthesize polymers used for resist underlayer films. The experimental procedure is the same as in Synthesis Example 25. Polymers (S24) to (S29) were obtained by synthesizing under the following conditions.
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
[レジスト下層膜形成組成物の調製]
 ポリマー(S1)~(S29)及び(S’1)、架橋剤(CR1~CR3)、酸発生剤(Ad1~Ad2)、溶媒(プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、シクロヘキサノン(CYH))、界面活性剤としてメガファックR-40(DIC株式会社製、G1)を下記表の割合(質量部)で混合、0.1μmのポリテトラフルオロエチレン製マイクロフィルターにて濾過することで、レジスト下層膜形成組成物(M1~M30、比較M1)を調製した。
[Preparation of resist underlayer film-forming composition]
Polymers (S1) to (S29) and (S'1), crosslinkers (CR1 to CR3), acid generators (Ad1 to Ad2), solvents (propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME) , Cyclohexanone (CYH)) and Megafac R-40 (manufactured by DIC Corporation, G1) as a surfactant in the proportions (mass parts) shown in the table below, and filtered through a 0.1 μm polytetrafluoroethylene microfilter. By doing so, resist underlayer film-forming compositions (M1 to M30, comparative M1) were prepared.
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-T000083

Figure JPOXMLDOC01-appb-I000084
Figure JPOXMLDOC01-appb-T000083

Figure JPOXMLDOC01-appb-I000084
[レジスト溶剤への溶出試験]
 比較例1-2、実施例1-31のレジスト下層膜形成組成物を、それぞれスピンコーターを用いてシリコンウエハー上に塗布し、ホットプレート上で表中に記載の所定温度・所定時間焼成し、膜厚約200nmとなるようにレジスト下層膜を形成した。形成したレジスト下層膜を汎用的なシンナーであるPGME/PGMEA=7/3に60秒間浸漬し、溶剤への耐性を確認した。シンナー浸漬前後で膜厚の減少率が1%以下の場合を良好(〇)、1%以上の場合を不良(×)と判断した(表1)。
[Elution test into resist solvent]
Each of the resist underlayer film-forming compositions of Comparative Example 1-2 and Example 1-31 was coated on a silicon wafer using a spin coater, and baked on a hot plate at a predetermined temperature and for a predetermined time shown in the table, A resist underlayer film was formed so as to have a film thickness of about 200 nm. The formed resist underlayer film was immersed in a general-purpose thinner, PGME/PGMEA=7/3, for 60 seconds to confirm the resistance to the solvent. A film thickness reduction rate of 1% or less before and after immersion in thinner was judged to be good (o), and a film thickness of 1% or more was judged to be bad (x) (Table 1).
[接触角測定]
 比較例1-2、実施例1-31のレジスト下層膜形成組成物を、東京エレクトロン株式会社製 ACT-8を用いてシリコンウエハー上に塗布し、大気下で表中に記載の所定温度・所定時間焼成し、200nmのレジスト下層膜を形成した。その後、協和界面科学株式会社製の接触角計(DM701)を使用し、純水に対する接触角を測定した。なお、純水滴下量は3.0μmとし、滴下3秒後に5点測定、滴下5秒後に5点測定、滴下7秒後に5点測定し、計15点の平均値を接触角とした。また、別のシリコンウエハーを用意し、上記と同様の操作を窒素雰囲気下で行った。窒素雰囲気下で焼成することにより、大気中で焼成されたレジスト下層膜の内部(酸素の影響を受けない部分)の状態を再現している。大気下と窒素下で焼成した同一の材料の接触角差を比較することで評価した(表1)。
[Contact angle measurement]
The resist underlayer film-forming compositions of Comparative Example 1-2 and Example 1-31 were applied onto a silicon wafer using ACT-8 manufactured by Tokyo Electron Co., Ltd., and heated in the atmosphere at a predetermined temperature described in the table. It was baked for a period of time to form a resist underlayer film of 200 nm. Thereafter, a contact angle meter (DM701) manufactured by Kyowa Interface Science Co., Ltd. was used to measure the contact angle to pure water. The amount of pure water dropped was 3.0 μm, and 5 points were measured 3 seconds after dropping, 5 points were measured 5 seconds after dropping, and 5 points were measured 7 seconds after dropping, and the average value of 15 points in total was taken as the contact angle. Another silicon wafer was prepared and the same operation as above was performed under a nitrogen atmosphere. Baking in a nitrogen atmosphere reproduces the state of the inside of the resist underlayer film baked in the air (the portion not affected by oxygen). It was evaluated by comparing the contact angle difference of the same material sintered under air and under nitrogen (Table 1).
Figure JPOXMLDOC01-appb-T000085

Figure JPOXMLDOC01-appb-I000086
Figure JPOXMLDOC01-appb-T000085

Figure JPOXMLDOC01-appb-I000086
[エッチング速度の測定]
 エッチング測定に用いたエッチャー及びエッチングガスは以下のものである。
RIE-200NL(サムコ製):CF4      50sccm
RIE-200NL(サムコ製):O/N    10sccm/200sccm
[Measurement of etching rate]
The etcher and etching gas used for the etching measurement are as follows.
RIE-200NL (manufactured by Samco): CF 4 50 sccm
RIE-200NL (manufactured by Samco): O 2 /N 2 10 sccm/200 sccm
 比較例1-2、実施例1-31のレジスト下層膜形成組成物それぞれスピンコーターを用いてシリコンウエハー上に塗布した。ホットプレート上で表中に記載の所定温度・所定時間焼成し、200nmのレジスト下層膜を形成した。エッチングガスとして、O/NガスまたはCFガスを使用してドライエッチング速度を測定した(表2)。比較例に対して、エッチング速度が遅い場合を良好(〇)、速い場合を不良(×)と判断した。 Each of the resist underlayer film-forming compositions of Comparative Example 1-2 and Example 1-31 was applied onto a silicon wafer using a spin coater. It was baked on a hot plate at a predetermined temperature and for a predetermined period of time shown in the table to form a resist underlayer film of 200 nm. The dry etching rate was measured using O 2 /N 2 gas or CF 4 gas as etching gas (Table 2). Compared to the comparative example, the case where the etching rate was slow was judged to be good (o), and the case where it was fast was judged to be bad (x).
[塗布性評価]
 比較例1-2、実施例31のレジスト下層膜形成組成物を、東京エレクトロン株式会社製 ACT-8を用いてシリコンウエハー上に塗布し、大気下で表中に記載の所定温度・所定時間焼成し、200nmのレジスト下層膜を形成した。その後、光学顕微鏡を用いて膜表面(ウエハーセンター及びエッジ)を観察し、塗布性に問題が生じていないかを確認した。ここでの「問題」とは、膜表面にハジキ、ピンホールが生じる場合や、塗膜表面に通常は観察されない凹凸が形成されることを意味する(表2)。塗布性に問題ない場合を良好(〇)と判断した。
[Applicability evaluation]
The resist underlayer film-forming compositions of Comparative Example 1-2 and Example 31 were coated on a silicon wafer using ACT-8 manufactured by Tokyo Electron Co., Ltd., and baked in the air at a predetermined temperature and for a predetermined time shown in the table. Then, a resist underlayer film of 200 nm was formed. After that, the film surface (wafer center and edge) was observed using an optical microscope to confirm that there was no problem in coatability. The term "problem" as used herein means the occurrence of cissing or pinholes on the film surface, or the formation of irregularities that are not normally observed on the coating film surface (Table 2). A case where there was no problem in coating property was judged to be good (◯).
Figure JPOXMLDOC01-appb-T000087

Figure JPOXMLDOC01-appb-I000088
Figure JPOXMLDOC01-appb-T000087

Figure JPOXMLDOC01-appb-I000088
 以上のように、実施例に示す材料は空気中と窒素中の接触格差が比較例よりも小さいため、レジスト下層膜表面とレジスト下層膜内部の材料の変質差が小さい。これに伴い、気体の拡散係数を支配する溶解度係数と拡散係数の変動がレジスト下層膜中で発生しにくくなるため、レジスト下層膜表面とレジスト下層膜内部のガス透過性の差が生じにくい。結果、レジスト下層膜全体として、ガス透過性が向上する。また、実施例は比較例同様にウエハー内で良好な塗布性能を示し、更にF系ガスまたはO系ガスの両方に対して優れたエッチング耐性を示す。 As described above, the difference in contact between the materials shown in the examples in air and in nitrogen is smaller than that in the comparative example, so the difference in quality change between the surface of the resist underlayer film and the inside of the resist underlayer film is small. As a result, fluctuations in the solubility coefficient and the diffusion coefficient that govern the gas diffusion coefficient are less likely to occur in the resist underlayer film, so that a difference in gas permeability between the surface of the resist underlayer film and the inside of the resist underlayer film is less likely to occur. As a result, the gas permeability of the entire resist underlayer film is improved. In addition, the examples show good coating performance in the wafer like the comparative examples, and also show excellent etching resistance to both F-based gases and O-based gases.
 本発明に係るナノインプリント用レジスト下層膜形成組成物は、同一温度にて大気中で焼成したときと窒素雰囲気下に焼成したときの純水に対する接触角の差が26度以内である膜を形成する組成物であり、低温から高温に及ぶ広い焼成温度範囲において、高い純水接触角(=疎水性)とガス透過性を示す膜を形成することができる。これにより、疎水性の上層膜との密着性を高めることが可能であり、また疎水性ガスに対して良好な透過性を示すことが期待できる。 The composition for forming a resist underlayer film for nanoimprinting according to the present invention forms a film having a contact angle difference of 26 degrees or less with respect to pure water when baked in the air at the same temperature and when baked in a nitrogen atmosphere. It is a composition that can form a film that exhibits a high pure water contact angle (=hydrophobicity) and gas permeability over a wide firing temperature range from low to high temperatures. As a result, it is possible to improve the adhesion with the hydrophobic upper layer film, and it is expected that the film exhibits good permeability to the hydrophobic gas.

Claims (23)

  1.  芳香族環を含有する化合物、及び有機溶剤を含むナノインプリント用レジスト下層膜形成組成物であって、該組成物が同一温度にて大気中で焼成したときと窒素雰囲気下に焼成したときの純水に対する接触角の差が26度以内である膜を形成するナノインプリント用レジスト下層膜形成組成物。 A composition for forming a resist underlayer film for nanoimprinting containing an aromatic ring-containing compound and an organic solvent, wherein the composition is fired in the air at the same temperature and pure water when fired in a nitrogen atmosphere. A composition for forming a resist underlayer film for nanoimprints, which forms a film having a contact angle difference of 26 degrees or less.
  2.  前記芳香族環を含有する化合物が芳香族環を含有するポリマーである請求項1記載のナノインプリント用レジスト下層膜形成組成物。 The composition for forming a resist underlayer film for nanoimprinting according to claim 1, wherein the compound containing an aromatic ring is a polymer containing an aromatic ring.
  3.  前記芳香族環を含有するポリマーがノボラック樹脂である請求項2記載のナノインプリント用レジスト下層膜形成組成物。 The composition for forming a resist underlayer film for nanoimprinting according to claim 2, wherein the polymer containing an aromatic ring is a novolac resin.
  4.  前記芳香族環を含有するポリマーが、ヘテロ原子を含む芳香族炭化水素に由来する単位構造を含むノボラック樹脂である請求項3記載のナノインプリント用レジスト下層膜形成組成物。 The composition for forming a resist underlayer film for nanoimprinting according to claim 3, wherein the polymer containing an aromatic ring is a novolak resin containing a unit structure derived from an aromatic hydrocarbon containing a heteroatom.
  5.  前記ヘテロ原子を含む芳香族炭化水素に由来する単位構造が、複素環、少なくとも1つの含酸素置換基を有する芳香族炭化水素、又は少なくとも1つの-NH-によって連結された芳香族炭化水素に由来する単位構造である請求項4記載のナノインプリント用レジスト下層膜形成組成物。 The unit structure derived from the heteroatom-containing aromatic hydrocarbon is derived from a heterocyclic ring, an aromatic hydrocarbon having at least one oxygen-containing substituent, or an aromatic hydrocarbon linked by at least one -NH- 5. The composition for forming a resist underlayer film for nanoimprinting according to claim 4, which has a unit structure that
  6.  前記芳香族環を含有するポリマーが、置換基を有してもよい芳香族炭化水素、又は芳香族環が縮合または縮環してもよく、置換基を有していてもよい4乃至12員の単環、二環、若しくは三環化合物に由来する単位構造を含むノボラック樹脂である請求項4記載のナノインプリント用レジスト下層膜形成組成物。 The aromatic ring-containing polymer is an optionally substituted aromatic hydrocarbon, or an aromatic ring may be condensed or condensed, and may have a substituent 4 to 12-membered 5. The composition for forming a resist underlayer film for nanoimprinting according to claim 4, which is a novolac resin containing a unit structure derived from a monocyclic, bicyclic, or tricyclic compound of .
  7.  前記ポリマーが下記式(I)で表される繰り返し単位構造を含むノボラック樹脂である、請求項1記載のナノインプリント用レジスト下層膜形成組成物。
    Figure JPOXMLDOC01-appb-C000001

    [式(I)中、nは1-5の数を表す。Aは、ヘテロ原子を含む芳香族炭化水素を有する有機基を表す。Bは下記式(II)、(III)又は(IV)で表される構造を含む有機基を表す。
    Figure JPOXMLDOC01-appb-C000002

    (式(II)中、R、及びR’はそれぞれ独立に水素原子、置換基を有していてもよい炭素原子数6乃至30の芳香族炭化水素基、置換基を有していてもよい炭素原子数3乃至30の複素環基、又は置換基を有していてもよい炭素原子数10以下の直鎖、分岐若しくは環状のアルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000003

    (式(III)中、X及びYはそれぞれ独立に置換基を有していてもよい炭素原子数6乃至30の芳香族炭化水素基を表し、i及びjはそれぞれ独立に0又は1を表し、p、q、及びkは結合手の数を表し、p及びqはそれぞれ独立に0又は1を表し、p及びqが同時に0になることはなく、kは0乃至2の整数を表し、Zは、Cと共に、芳香族環が縮合していてもよく、置換基を有していてもよく、ヘテロ原子を含んでもよい4乃至12員の単環、二環、又は三環を形成する。)
    Figure JPOXMLDOC01-appb-C000004

    (式(IV)中、Arは置換基を有していてもよい炭素原子数6乃至30の芳香族炭化水素基を表し、J及びJはそれぞれ独立に直接結合又は置換基を有していてもよい2価の有機基を表す。)]
    2. The composition for forming a resist underlayer film for nanoimprinting according to claim 1, wherein the polymer is a novolac resin containing a repeating unit structure represented by the following formula (I).
    Figure JPOXMLDOC01-appb-C000001

    [In formula (I), n represents a number from 1 to 5. A represents an organic group having an aromatic hydrocarbon containing heteroatoms. B represents an organic group having a structure represented by formula (II), (III) or (IV) below.
    Figure JPOXMLDOC01-appb-C000002

    (In formula (II), R and R′ are each independently a hydrogen atom, an optionally substituted aromatic hydrocarbon group having 6 to 30 carbon atoms, an optionally substituted represents a heterocyclic group having 3 to 30 carbon atoms, or an optionally substituted linear, branched or cyclic alkyl group having 10 or less carbon atoms.)
    Figure JPOXMLDOC01-appb-C000003

    (In formula (III), X and Y each independently represent an optionally substituted aromatic hydrocarbon group having 6 to 30 carbon atoms, and i and j each independently represent 0 or 1. , p, q, and k represent the number of bonds, p and q each independently represent 0 or 1, p and q are not 0 at the same time, k represents an integer from 0 to 2, Z, together with C, forms a 4- to 12-membered monocyclic, bicyclic, or tricyclic ring which may be condensed with an aromatic ring, may have a substituent, and may contain a heteroatom. .)
    Figure JPOXMLDOC01-appb-C000004

    (In formula (IV), Ar represents an optionally substituted aromatic hydrocarbon group having 6 to 30 carbon atoms, and J 1 and J 2 each independently have a direct bond or a substituent, represents a divalent organic group that may be
  8.  前記ノボラック樹脂が、下記式(AB)で表わされる複合単位構造A-B’を含む、請求項1に記載のレジスト下層膜形成組成物。
    Figure JPOXMLDOC01-appb-C000005

    前記式(AB)中、
     nは複合単位構造A-B’の数を表し、
     Aは、ヘテロ原子を含む芳香族炭化水素を有する有機基を表し、
     B’は、下記式(B1)、(B2)又は(B3)で表される構造を含む一種又は二種以上の単位構造を表し、
     *は結合の手であることを示す。
    Figure JPOXMLDOC01-appb-C000006

    [式(B1)中、
     R及びR’はそれぞれ独立に水素原子、置換基を有していてもよい炭素原子数6~30の芳香族環残基、置換基を有していてもよい炭素原子数3~30の複素環残基、又は置換基を有していてもよい炭素原子数10以下の直鎖、分岐若しくは環状のアルキル基を表し、
     *は結合の手であることを示す。]
    Figure JPOXMLDOC01-appb-C000007

    [式(B2)中、
     Zは置換基を有していてもよい炭素原子数6~30の芳香族環残基若しくは脂肪族環残基、又は前記芳香族環残基及び前記脂肪族環残基からなる群より選択される2つの基が単結合で連結された有機基を表し、
     J及びJはそれぞれ独立に直接結合、又は置換基を有していてもよい二価の有機基を表し、
     *は結合の手であることを示す。]
    Figure JPOXMLDOC01-appb-C000008

    [式(B3)中、
     Zは、置換基を有していてもよい炭素数4~25の単環、二環、三環又は四環式の縮合環であり、前記単環は非芳香族単環であり;前記二環、三環及び四環を構成する単環の少なくとも1つは非芳香族単環であり、残りの単環は芳香族単環でも非芳香族単環でもよく、前記単環、二環、三環若しくは四環式の縮合環が、1又は複数の芳香族環と更に縮合環を形成して、五環式以上の縮合環となっていてもよく、
     X、Yは同一又は異なって、-CR3132-基を表し、R31及びR32はそれぞれ同一又は異なって、水素原子、又は炭素原子数1~6の炭化水素基を表し、
     x、yはそれぞれ、X、Yの数を表し、それぞれ独立に0又は1を表し、
    Figure JPOXMLDOC01-appb-C000009

    は、xが1の場合、Zの前記非芳香族単環を構成するいずれかの炭素原子1と結合し、xが0の場合、炭素原子1から延びており、
    Figure JPOXMLDOC01-appb-C000010

    は、yが1の場合、Zの前記非芳香族単環を構成するいずれかの炭素原子2と結合し、yが0の場合、炭素原子2から延びており、
     前記炭素原子1と炭素原子2は同一でも異なっていてもよく、異なっている場合、同一の非芳香族単環に属していてもよいし、異なる非芳香族単環に属していてもよく、
     *は結合の手であることを示す。]
    2. The resist underlayer film-forming composition according to claim 1, wherein the novolac resin comprises a composite unit structure AB' represented by the following formula (AB).
    Figure JPOXMLDOC01-appb-C000005

    In the formula (AB),
    n represents the number of composite unit structures AB',
    A represents an organic group having an aromatic hydrocarbon containing heteroatoms,
    B' represents one or more unit structures containing a structure represented by the following formula (B1), (B2) or (B3),
    * indicates a binding hand.
    Figure JPOXMLDOC01-appb-C000006

    [In formula (B1),
    R and R' are each independently a hydrogen atom, an optionally substituted aromatic ring residue having 6 to 30 carbon atoms, an optionally substituted heterocyclic group having 3 to 30 carbon atoms Represents a cyclic residue or a linear, branched or cyclic alkyl group having 10 or less carbon atoms which may have a substituent,
    * indicates a binding hand. ]
    Figure JPOXMLDOC01-appb-C000007

    [In formula (B2),
    Z 0 is selected from the group consisting of an optionally substituted aromatic ring residue or aliphatic ring residue having 6 to 30 carbon atoms, or the aromatic ring residue and the aliphatic ring residue represents an organic group in which the two groups are connected by a single bond,
    J 1 and J 2 each independently represent a direct bond or a divalent organic group optionally having a substituent,
    * indicates a binding hand. ]
    Figure JPOXMLDOC01-appb-C000008

    [In formula (B3),
    Z is an optionally substituted monocyclic, bicyclic, tricyclic or tetracyclic condensed ring having 4 to 25 carbon atoms, said monocyclic ring being a non-aromatic monocyclic ring; At least one of the monocyclic rings constituting the ring, tricyclic ring and tetracyclic ring is a non-aromatic monocyclic ring, and the remaining monocyclic rings may be aromatic monocyclic or non-aromatic monocyclic rings, and the monocyclic, bicyclic, A tricyclic or tetracyclic condensed ring may further form a condensed ring with one or more aromatic rings to form a pentacyclic or more condensed ring,
    X and Y are the same or different and represent a -CR 31 R 32 - group, R 31 and R 32 are the same or different and represent a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms,
    x and y each represent the number of X and Y, each independently representing 0 or 1;
    Figure JPOXMLDOC01-appb-C000009

    is bonded to any carbon atom 1 constituting the non-aromatic monocyclic ring of Z when x is 1, and extends from carbon atom 1 when x is 0;
    Figure JPOXMLDOC01-appb-C000010

    is bonded to any carbon atom 2 constituting the non-aromatic monocyclic ring of Z when y is 1, and extends from carbon atom 2 when y is 0;
    The carbon atom 1 and the carbon atom 2 may be the same or different, and when different, may belong to the same non-aromatic monocyclic ring or different non-aromatic monocyclic rings,
    * indicates a binding hand. ]
  9.  界面活性剤を更に含む請求項1に記載のナノインプリント用レジスト下層膜形成組成物。 The composition for forming a resist underlayer film for nanoimprinting according to claim 1, further comprising a surfactant.
  10.  架橋剤を更に含む請求項1に記載のナノインプリント用レジスト下層膜形成組成物。 The composition for forming a resist underlayer film for nanoimprinting according to claim 1, further comprising a cross-linking agent.
  11.  酸、その塩及び酸発生剤からなる群より選択される少なくとも一種を更に含む請求項1に記載のナノインプリント用レジスト下層膜形成組成物。 The composition for forming a resist underlayer film for nanoimprinting according to claim 1, further comprising at least one selected from the group consisting of acids, salts thereof and acid generators.
  12.  上記溶剤の沸点が160℃以上である請求項1に記載のナノインプリント用レジスト下層膜形成組成物。 The composition for forming a resist underlayer film for nanoimprinting according to claim 1, wherein the solvent has a boiling point of 160°C or higher.
  13.  請求項1乃至12のいずれか一項に記載のナノインプリント用レジスト下層膜形成組成物からなる塗布膜の硬化物であるレジスト下層膜。 A resist underlayer film that is a cured product of a coating film made of the composition for forming a resist underlayer film for nanoimprints according to any one of claims 1 to 12.
  14.  請求項1乃至12のいずれか一項に記載のナノインプリント用レジスト下層膜形成組成物を半導体基板上に塗布し焼成することを含むレジスト下層膜の製造方法。 A method for producing a resist underlayer film, comprising applying the resist underlayer film-forming composition for nanoimprinting according to any one of claims 1 to 12 onto a semiconductor substrate and baking the composition.
  15.  半導体基板上に請求項1乃至12のいずれか一項に記載のナノインプリント用レジスト下層膜形成組成物からレジスト下層膜を形成する工程、
    前記レジスト下層膜上に硬化性組成物を適用する工程、
    前記硬化性組成物とモールドとを接触させる工程、
    前記硬化性組成物に光又は電子線を照射して硬化膜とする工程、及び
    前記硬化膜と前記モールドとを引き離す工程、
    を含むパターン形成方法。
    forming a resist underlayer film on a semiconductor substrate from the composition for forming a resist underlayer film for nanoimprinting according to any one of claims 1 to 12;
    applying a curable composition onto the resist underlayer film;
    contacting the curable composition with a mold;
    A step of irradiating the curable composition with light or an electron beam to form a cured film, and a step of separating the cured film and the mold;
    A patterning method comprising:
  16.  前記レジスト下層膜上に硬化性組成物を適用する工程が、
    任意選択的に前記レジスト下層膜上にハードマスク層を塗布又は蒸着により形成し、
    前記レジスト下層膜上又は前記ハードマスク層上に、密着層を塗布又は蒸着により形成し、
    前記密着層上又は前記ハードマスク上に硬化性組成物を適用することを含む
    請求項15に記載のパターン形成方法。
    The step of applying a curable composition onto the resist underlayer film comprises
    Optionally forming a hard mask layer on the resist underlayer film by coating or vapor deposition,
    forming an adhesion layer by coating or vapor deposition on the resist underlayer film or the hard mask layer;
    16. The patterning method of claim 15, comprising applying a curable composition over the adhesion layer or over the hard mask.
  17.  半導体基板上に請求項1乃至12のいずれか一項に記載のナノインプリント用レジスト下層膜形成組成物からレジスト下層膜を形成する工程、
    任意選択的に前記レジスト下層膜上にハードマスク層を塗布又は蒸着により形成する工程、
    前記レジスト下層膜上又は前記ハードマスク層上に密着層を塗布又は蒸着により形成する工程、
    前記密着層上又は前記ハードマスク上に硬化組成物を適用する工程、
    光又は電子線の照射によりレジストパターンを形成する工程、
    形成されたレジストパターンによりレジスト下層膜をエッチングする工程、及び
    パターン化された下層膜により半導体基板を加工する工程
    を含む半導体装置の製造方法。
    forming a resist underlayer film on a semiconductor substrate from the composition for forming a resist underlayer film for nanoimprinting according to any one of claims 1 to 12;
    optionally forming a hard mask layer on the resist underlayer film by coating or vapor deposition;
    forming an adhesion layer on the resist underlayer film or the hard mask layer by coating or vapor deposition;
    applying a curable composition onto the adhesion layer or onto the hard mask;
    forming a resist pattern by irradiation with light or an electron beam;
    A method of manufacturing a semiconductor device, comprising the steps of etching a resist underlayer film with a formed resist pattern and processing a semiconductor substrate with the patterned underlayer film.
  18.  半導体基板上に請求項1乃至12のいずれか一項に記載のナノインプリント用レジスト下層膜形成組成物からレジスト下層膜を形成する工程、
    任意選択的にレジスト下層膜の上に、ハードマスク層を塗布又は蒸着により形成し、前記レジスト下層膜上又は前記ハードマスク層上に、密着層を塗布又は蒸着により形成し、更に前記ハードマスク層上又は密着層上に、硬化組成物を適用する工程、
    光又は電子線の照射により、レジスト膜に対してレジストパターンを形成する工程、
    レジストパターンを介して、ハードマスク層をエッチングし、パターン化する工程、
    エッチングされたハードマスク層を介して、前記レジスト下層膜をエッチングし、パターン化する工程、
    ハードマスク層を除去する工程、
    ハードマスク層除去後のレジスト下層膜に、蒸着膜(スペーサー)を形成する工程、
    蒸着膜(スペーサー)をエッチングにより加工する工程、
    パターン化されたレジスト下層膜を除去して、パターン化された蒸着膜(スペーサー)を残す工程、及び
    パターン化された蒸着膜(スペーサー)を介して、半導体基板を加工する工程、
    を含む半導体装置の製造方法。
    forming a resist underlayer film on a semiconductor substrate from the composition for forming a resist underlayer film for nanoimprinting according to any one of claims 1 to 12;
    Optionally, a hard mask layer is formed on the resist underlayer film by coating or vapor deposition, an adhesion layer is formed on the resist underlayer film or the hard mask layer by coating or vapor deposition, and further the hard mask layer. applying a curing composition on top or onto the cling layer;
    forming a resist pattern on the resist film by irradiation with light or an electron beam;
    etching and patterning the hard mask layer through the resist pattern;
    etching and patterning the resist underlayer film through the etched hard mask layer;
    removing the hard mask layer;
    A step of forming a deposited film (spacer) on the resist underlayer film after removing the hard mask layer,
    A step of processing the deposited film (spacer) by etching,
    A step of removing the patterned resist underlayer film to leave a patterned deposited film (spacer), and a step of processing the semiconductor substrate through the patterned deposited film (spacer),
    A method of manufacturing a semiconductor device comprising:
  19.  空気、酸素、窒素、アルゴン、ヘリウム、及び二酸化炭素からなる群より選択される少なくとも1種のガスを含む雰囲気下でナノインプリントを行う、請求項15に記載のパターン形成方法。 The pattern forming method according to claim 15, wherein nanoimprinting is performed in an atmosphere containing at least one gas selected from the group consisting of air, oxygen, nitrogen, argon, helium, and carbon dioxide.
  20.  空気、酸素、窒素、アルゴン、ヘリウム、及び二酸化炭素からなる群より選択される少なくとも1種のガスを含む雰囲気下でナノインプリントを行う、請求項16に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 16, wherein nanoimprinting is performed in an atmosphere containing at least one gas selected from the group consisting of air, oxygen, nitrogen, argon, helium, and carbon dioxide.
  21.  空気、酸素、窒素、アルゴン、ヘリウム、及び二酸化炭素からなる群より選択される少なくとも1種のガスを含む雰囲気下でナノインプリントを行う、請求項17に記載のパターン形成方法。 The pattern forming method according to claim 17, wherein nanoimprinting is performed in an atmosphere containing at least one gas selected from the group consisting of air, oxygen, nitrogen, argon, helium, and carbon dioxide.
  22.  空気、酸素、窒素、アルゴン、ヘリウム、及び二酸化炭素からなる群より選択される少なくとも1種のガスを含む雰囲気下でナノインプリントを行う、請求項18に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 18, wherein nanoimprinting is performed in an atmosphere containing at least one gas selected from the group consisting of air, oxygen, nitrogen, argon, helium, and carbon dioxide.
  23.  ハードマスクの除去を、エッチングまたはアルカリ薬液のいずれかで行う、請求項18に記載の半導体装置の製造方法。 19. The method of manufacturing a semiconductor device according to claim 18, wherein the hard mask is removed by either etching or an alkaline chemical.
PCT/JP2023/002799 2022-01-31 2023-01-30 Resist underlayer film forming composition for nanoimprinting WO2023145923A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022012675 2022-01-31
JP2022-012675 2022-01-31

Publications (1)

Publication Number Publication Date
WO2023145923A1 true WO2023145923A1 (en) 2023-08-03

Family

ID=87471711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002799 WO2023145923A1 (en) 2022-01-31 2023-01-30 Resist underlayer film forming composition for nanoimprinting

Country Status (2)

Country Link
TW (1) TW202346390A (en)
WO (1) WO2023145923A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016206676A (en) * 2015-04-24 2016-12-08 Jsr株式会社 Method for forming resist underlay film and pattern forming method
JP2017021337A (en) * 2015-07-14 2017-01-26 信越化学工業株式会社 Material for resist underlay film, pattern forming method, and compound
WO2020162183A1 (en) * 2019-02-07 2020-08-13 三井化学株式会社 Material for underlayer film formation use, resist underlayer film, and laminate
JP2020166043A (en) * 2019-03-28 2020-10-08 Jsr株式会社 Composition for forming resist underlayer film, resist underlayer film, method for forming resist underlayer film, and method for producing patterned substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016206676A (en) * 2015-04-24 2016-12-08 Jsr株式会社 Method for forming resist underlay film and pattern forming method
JP2017021337A (en) * 2015-07-14 2017-01-26 信越化学工業株式会社 Material for resist underlay film, pattern forming method, and compound
WO2020162183A1 (en) * 2019-02-07 2020-08-13 三井化学株式会社 Material for underlayer film formation use, resist underlayer film, and laminate
JP2020166043A (en) * 2019-03-28 2020-10-08 Jsr株式会社 Composition for forming resist underlayer film, resist underlayer film, method for forming resist underlayer film, and method for producing patterned substrate

Also Published As

Publication number Publication date
TW202346390A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
JP6124025B2 (en) Resist underlayer film forming composition containing novolak resin having polynuclear phenols
TWI687771B (en) Resist underlayer film forming composition containing polymer having arylene group
EP2650729A1 (en) Composition for forming resist underlayer film containing hydroxyl group-containing carbazole novolac resin
CN106715619B (en) Coating liquid for coating resist pattern
TW201605914A (en) Resist underlayer film forming composition containing novolac resin to which aromatic vinyl compound is added
TW202346391A (en) Composition for forming resist underlayer film having increased film density
KR20150095693A (en) Resist underlayer film-forming composition comprising carbonyl-containing polyhydroxy aromatic ring novolac resin
US20230393479A1 (en) Resist underlayer film-forming composition having benzylidenecyanoacetate group
CN115136074A (en) Composition for forming resist underlayer film
KR20190006944A (en) Method for manufacturing a semiconductor substrate having a Group III nitride compound layer
WO2023100506A1 (en) Resist underlayer film formation composition including hydroxycinnamic acid derivative
WO2023145923A1 (en) Resist underlayer film forming composition for nanoimprinting
TW202238275A (en) Resist underlayer film formation composition
WO2024075733A1 (en) Resist underlayer film-forming composition
WO2021125036A1 (en) Composition for forming resist underlayer film for nanoimprinting
WO2023243426A1 (en) Resist underlayer film-forming composition
WO2022244710A1 (en) Composition for forming resist underlayer film
WO2024029445A1 (en) Resist underlayer film forming composition, and resist pattern formation method and semiconductor device manufacturing method using said composition
WO2023162653A1 (en) Resist underlayer film formation composition
WO2024018957A1 (en) Composition for forming resist underlayer film
WO2023189799A1 (en) Self cross-linkable polymer and resist underlayer film-forming composition
WO2023189803A1 (en) Resist underlayer film forming composition
TW202406971A (en) Self-crosslinking polymer and resist lower layer film forming composition
TW202302695A (en) Composition for forming resist underlayer film
US20230203299A1 (en) Resist underlayer film- forming composition using diarylmethane derivative

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23747133

Country of ref document: EP

Kind code of ref document: A1