WO2023145886A1 - Nanofibers - Google Patents

Nanofibers Download PDF

Info

Publication number
WO2023145886A1
WO2023145886A1 PCT/JP2023/002672 JP2023002672W WO2023145886A1 WO 2023145886 A1 WO2023145886 A1 WO 2023145886A1 JP 2023002672 W JP2023002672 W JP 2023002672W WO 2023145886 A1 WO2023145886 A1 WO 2023145886A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
based resin
nanofibers
polymer
pva
Prior art date
Application number
PCT/JP2023/002672
Other languages
French (fr)
Japanese (ja)
Inventor
耕平 田原
理帆 小川
文香 小林
延能 吉村
豊 谷口
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2023145886A1 publication Critical patent/WO2023145886A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/14Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated alcohols, e.g. polyvinyl alcohol, or of their acetals or ketals
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/50Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyalcohols, polyacetals or polyketals
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4309Polyvinyl alcohol
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning

Definitions

  • the present invention relates to nanofibers containing a polyvinyl alcohol-based resin (A) and a water-soluble pharmaceutical polymer (B), and a method for producing the same.
  • Patent Document 1 describes drug-containing ultrafine fibers.
  • Patent Document 2 discloses a method for improving the elution rate of a sparingly soluble drug by converting the sparingly soluble drug into nanofibers using a polyvinyl alcohol-based resin.
  • Low-molecular-weight drugs have stable chemical structures, but high-molecular-weight drugs such as protein drugs have complex and heterogeneous structures. They also behave differently.
  • high-molecular-weight drugs are less stable than low-molecular-weight drugs, and there is a concern that they may decompose in nanofiber formation processes such as electrospinning.
  • due to the properties of water-soluble high-molecular drugs they are rapidly released from the matrix even if sustained release is desired, making it difficult to achieve sustained release using existing techniques. Therefore, there has been a demand for a method of forming nanofibers from water-soluble pharmaceutical macromolecules and controlling their release behavior.
  • the object of the present invention is to provide nanofibers in which the elution of water-soluble pharmaceutical polymers is controlled to be released, and formulations made of the nanofibers.
  • a method for producing nanofibers containing a polyvinyl alcohol-based resin and a water-soluble medicinal polymer comprising electrospinning or melt blowing using a mixed solution containing the polyvinyl alcohol-based resin and the water-soluble medicinal polymer.
  • a method for producing nanofibers comprising a step of producing nanofibers by (8) The method for producing nanofibers according to (7) above, wherein the solvent of the mixture is water.
  • a formulation comprising the nanofibers according to any one of (1) to (6) above.
  • nanofiber preparation in which the water-soluble pharmaceutical polymer (B) is eluted in a controlled release can be obtained.
  • the nanofiber of the present invention contains a polyvinyl alcohol resin (A) and a water-soluble medicinal polymer (B).
  • a first form provides a nanofiber containing a water-soluble medicinal polymer (B) having a molecular weight of 1,000 or more and 50,000 or less.
  • a nanofiber containing a water-soluble drug polymer (B), which is a protein drug is provided.
  • PVA-based resin polyvinyl alcohol-based resin
  • the PVA-based resin of the present invention is a resin obtained by saponifying a polyvinyl ester-based polymer obtained by polymerizing a vinyl ester-based monomer. It is composed of vinyl ester structural units.
  • the saponification degree of the PVA-based resin used in the present invention is preferably 75 to 99.9 mol%, more preferably 80 to 95 mol%, still more preferably 83 to 93 mol%, particularly preferably 85 to 90 mol %. If the degree of saponification of the PVA-based resin is too high or too low, it tends to be difficult to obtain the effects of the present invention. In the present invention, the degree of saponification of the PVA-based resin is a value determined by a method conforming to JIS K 6726, and is an average degree of saponification determined as an average value.
  • the average degree of polymerization of the PVA-based resin used in the present invention is preferably 300 to 4000, more preferably 500 to 3500, still more preferably 1000 to 3000, particularly preferably 1300 to 2800, particularly preferably 1500 to 2600. If the average degree of polymerization of the PVA-based resin is too low, the strength of the nanofibers tends to be insufficient and the stability during use tends to decrease. Tend. In addition, in this invention, the average degree of polymerization calculated
  • a method for producing the PVA-based resin used in the present invention will be described in detail.
  • a PVA-based resin is obtained, for example, by saponifying a polyvinyl ester-based polymer obtained by polymerizing a vinyl ester-based monomer.
  • vinyl ester monomers include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, and vinyl benzoate. , vinyl versatate, etc., and vinyl acetate is practically preferred.
  • a monomer having copolymerizability with the vinyl ester monomer can be copolymerized to the extent that the effect of the present invention is not impaired.
  • copolymerizable monomers include olefins such as ethylene, propylene, isobutylene, ⁇ -octene, ⁇ -dodecene and ⁇ -octadecene; - hydroxy group-containing ⁇ -olefins such as hexen-1-ol and 3,4-dihydroxy-1-butene, and derivatives such as acylated products thereof; acrylic acid, methacrylic acid, crotonic acid, maleic acid, maleic anhydride, itacon acids, unsaturated acids such as undecylenic acid and salts thereof; nitriles such as monoesters or dialkyl esters, acrylonitrile and methacrylonitrile; amides such as diacetone acrylamide, acrylamide and methacrylamide; ethylenes
  • N-acrylamidotrimethylammonium chloride N-acrylamidoethyltrimethylammonium chloride, N-acrylamidopropyltrimethylammonium chloride, 2-acryloxyethyltrimethylammonium chloride, N-methyldimethylaminoacrylamide, allyltrimethylammonium chloride, methallyltrimethylammonium chloride, dimethylallylamine, dimethylmethacrylamine, dimethyldiallylammonium chloride, Examples thereof include compounds having a cationic group such as diethyldiallylammonium chloride, ethyldiallylamine, and methyldiallylamine.
  • the content of such copolymerizable monomers is preferably 10 mol % or less, more preferably 5 mol % or less, based on the total amount of the polymer.
  • PVA-based resins Two or more types can be used in combination.
  • PVA-based resins having different saponification degrees, average polymerization degrees and block properties, and modified PVA-based resins copolymerized with copolymerizable monomers can be used in combination.
  • the method of polymerizing the vinyl ester monomer and the copolymerizable monomer is not particularly limited, and known methods such as bulk polymerization, solution polymerization, suspension polymerization, dispersion polymerization, or emulsion polymerization can be employed. , solution polymerization is preferred.
  • Solvents used in such polymerization include aliphatic alcohols having 1 to 4 carbon atoms such as methanol, ethanol, isopropyl alcohol, n-propanol and butanol, and ketones such as acetone and methyl ethyl ketone. is preferably used.
  • the polymerization reaction is carried out using known radical polymerization catalysts such as azobisisobutyronitrile, acetyl peroxide, benzoyl peroxide, and lauroyl peroxide, and various known low temperature active catalysts.
  • the reaction temperature is selected from the range of about 35° C. to the boiling point.
  • the obtained polyvinyl ester polymer is then saponified in a continuous or batch manner.
  • Either alkali saponification or acid saponification can be employed for such saponification, but it is industrially preferable to dissolve the polymer in alcohol and perform the saponification in the presence of an alkali catalyst.
  • alcohols include methanol, ethanol, butanol, and the like.
  • concentration of polymer in alcohol is selected from the range of 20-60% by weight.
  • about 0.3 to 10% by mass of water may be added, and further, various esters such as methyl acetate, benzene, hexane, and various solvents such as DMSO (dimethyl sulfoxide) are added.
  • saponification catalysts include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, sodium methylate, sodium ethylate and potassium methylate, and alkali catalysts such as alcoholates.
  • the amount of such catalyst used is preferably 1 to 100 millimol equivalents relative to the monomer.
  • the saponification degree of the PVA-based resin can be adjusted by adjusting the saponification catalyst amount, saponification time, saponification solvent, and saponification temperature.
  • the cleaning liquid include alcohols such as methanol, ethanol, isopropyl alcohol, and butanol, and methanol is preferable from the viewpoint of cleaning efficiency and drying efficiency.
  • the washing method may be a continuous type (rotating cylinder type, countercurrent contact type, centrifugal sprinkle washing, etc.), but usually a batch type is adopted.
  • Examples of the stirring method (apparatus) for washing include a screw blade, a ribbon blender, and a kneader.
  • the bath ratio mass of cleaning solution/mass of polyvinyl ester polymer particles is preferably 1-30, more preferably 2-20. If the bath ratio is too large, a large washing apparatus is required, which tends to lead to an increase in cost.
  • the temperature during washing is preferably 10-80°C, particularly preferably 20-70°C. If the temperature is too high, the amount of volatilization of the cleaning liquid increases, and there is a tendency to require a reflux facility. If the temperature is too low, cleaning efficiency tends to decrease.
  • the washing time is preferably 5 minutes to 12 hours, particularly preferably 30 minutes to 4 hours. If the cleaning time is too long, the production efficiency tends to decrease, and if the cleaning time is too short, the cleaning tends to be insufficient. Also, the number of times of washing is preferably 1 to 10 times, particularly preferably 1 to 5 times. Too many washes tend to reduce productivity and increase costs.
  • the washed PVA-based resin particles are dried continuously or batchwise with hot air or the like to obtain the PVA-based resin used in the present invention in powder form.
  • the drying temperature is preferably 50 to 150°C, more preferably 60 to 130°C, still more preferably 70 to 110°C. If the drying temperature is too high, the PVA-based resin tends to be thermally deteriorated, and if the drying temperature is too low, drying tends to take a long time.
  • the drying time is preferably 1 to 48 hours, more preferably 2 to 36 hours. If the drying time is too long, the PVA-based resin tends to be thermally deteriorated.
  • the content of the solvent contained in the PVA-based resin after drying is preferably 0 to 10% by mass, more preferably 0.01 to 5% by mass, and still more preferably 0.1 to 1% by mass. .
  • the PVA-based resin usually contains an alkali metal salt of acetic acid derived from the alkali catalyst used for saponification.
  • the content of the alkali metal salt is preferably 0.001-2% by mass, more preferably 0.005-1% by mass, and still more preferably 0.01-0. It is 1% by mass.
  • Methods for adjusting the content of the alkali metal salt include, for example, adjusting the amount of alkali catalyst used in saponification and washing the PVA-based resin with an alcohol such as ethanol or methanol.
  • As a method for quantifying the alkali metal salt used in the present invention there is a method of dissolving PVA-based resin powder in water, using methyl orange as an indicator, and performing neutralization titration with hydrochloric acid.
  • the water solubility of the water-soluble medicinal polymer refers to a substance that is highly soluble in water. It means that the amount of water required for dissolution is usually less than 30 mL.
  • the amount of water required to dissolve 1 g of water-soluble pharmaceutical polymer is preferably less than 10 mL, more preferably less than 1 mL.
  • the molecular weight of the water-soluble medicinal polymer contained in the nanofibers of the first embodiment of the present invention is 1,000 or more and 50,000 or less, preferably 1,000 or more and 30,000 or less, and more preferably 1,000 or more and 20,000 or less. If the molecular weight is too low, entanglement with the molecular chains of the PVA-based resin is unlikely to occur, and the water-soluble pharmaceutical polymer tends not to be sustained release. On the other hand, if the molecular weight is too large, there is a tendency that the water-soluble medicinal polymer cannot be absorbed into the body, which is not preferable.
  • the water-soluble pharmaceutical polymer contained in the nanofiber of the second embodiment of the present invention is registered in Article 2, Paragraph 1 of the Pharmaceuticals and Medical Devices Law and the Japanese Pharmacopoeia 18th Edition, and is a protein drug. use.
  • a protein drug is a drug that is composed of amino acids and exhibits therapeutic or preventive effects on diseases through protein activity.
  • protein pharmaceuticals include peptides, proteins, fusion proteins, antigens, growth factors, growth factors, cytokines, interferons, hormones, blood coagulation fibrinolytic factors, enzymes, conjugate proteins, protein vaccines, antibody-like proteins, cells, tissues etc.
  • Protein pharmaceuticals also include biopharmaceuticals, which are pharmaceuticals containing proteins produced using biotechnology as active ingredients. Biopharmaceuticals include, for example, vaccines, antibody drugs, cellular drugs, and nucleic acid drugs.
  • the nanofiber of the present invention can release the water-soluble pharmaceutical polymer in a controlled manner.
  • the reason why sustained release is possible is not clear, but the base material has a gel-like property due to the entanglement of the molecular chains of the PVA-based resin or the formation of a network structure, and the PVA-based resin and the water-soluble pharmaceutical polymer interact with each other. It is thought that it is due to the action.
  • the nanofibers of the present invention are ultrafine fibers containing a polyvinyl alcohol-based resin and a water-soluble medicinal polymer, and are formed into fibers by spinning a forming material containing at least a PVA-based resin and a water-soluble medicinal polymer.
  • the nanofiber of the present invention preferably has a single fiber diameter (fiber diameter) of 1 nm to 10 ⁇ m, more preferably 1 to 2000 nm, particularly preferably 5 to 1000 nm, still more preferably 10 to 700 nm. If the fiber diameter is too large, the nanofibers will not be mixed uniformly when producing a formulation, and the nanofibers will tend to aggregate, which tends to reduce the production efficiency of the formulation. On the other hand, if the fiber diameter is too small, it becomes difficult to exhibit sufficient strength, and problems such as handling during use tend to occur, and production efficiency of the formulation tends to decrease.
  • the fiber diameter of nanofibers is measured using an electron microscope.
  • the average fiber length of the nanofibers is not particularly limited, but from the viewpoint of ease of handling, it is preferably 10 times or more, more preferably 100 times or more, and still more preferably 1000 times or more the diameter of the nanofibers (fiber diameter). .
  • the nanofibers are entangled with each other and the strength of the formulation increases, which is preferable, so the upper limit is not particularly limited. Further, it is more preferable that the nanofibers are continuous fibers.
  • the content ratio of the PVA-based resin and the water-soluble pharmaceutical polymer in the nanofiber varies depending on the physical properties of the water-soluble pharmaceutical polymer, but the PVA-based resin:water-soluble pharmaceutical polymer (mass ratio) is preferably 10:90 to 90. :10, more preferably 20:80 to 80:20, still more preferably 30:70 to 75:25, and particularly preferably 35:65 to 70:30.
  • the method for producing nanofibers of the present invention has a step of producing nanofibers by an electrospinning method or a meltblowing method using a mixed solution containing a PVA-based resin and a water-soluble medicinal polymer.
  • the nanofibers of the present invention are preferably formed in a sheet form, and it is preferable to form a nonwoven fabric from the nanofibers obtained by the above production method.
  • a method for forming nanofibers and a nonwoven fabric hereinafter also referred to as "nanofiber nonwoven fabric" will be described.
  • Nanofibers are obtained by applying a mixed liquid containing a PVA-based resin and a water-soluble medicinal polymer as a forming material to an electrospinning method (electrostatic spinning method) or a meltblowing method.
  • the PVA-based resin is preferably dissolved in a solvent and used as a PVA-based resin solution.
  • solvents for dissolving PVA-based resins include alcohols (methanol, ethanol, butanol, hexafluoro-2-propanol, etc.), esters (methyl acetate, ethyl acetate, etc.), and organic solvents such as DMSO (dimethyl sulfoxide). and water, and water is preferable from the viewpoint of reducing the environmental load.
  • the solvent containing water may contain other solvents (organic solvents exemplified above such as methanol, ethanol, methyl acetate, ethyl acetate and DMSO).
  • the concentration of the PVA-based resin in the PVA-based resin solution is preferably 1 to 40% by mass, more preferably 2 to 30% by mass, and even more preferably 5 to 20% by mass.
  • the PVA-based resin solution can contain a water-soluble resin or a water-dispersible resin different from the water-soluble pharmaceutical polymer.
  • water-soluble resins or water-dispersible resins that can be contained include starch derivatives such as starch, oxidized starch and cationic modified starch; natural proteins such as gelatin and casein; methylcellulose, ethylcellulose, hydroxyethylcellulose, carboxymethylcellulose (CMC ); Natural polymer polysaccharides such as sodium alginate and pectic acid; Water-soluble resins such as polyvinylpyrrolidone and poly(meth)acrylate; Styrene-butadiene rubber (SBR) latex, nitrile rubber (NBR) latex latexes; vinyl acetate resin emulsions, ethylene-vinyl acetate copolymer emulsions, (meth)acrylic ester resin emulsions, vinyl chloride resin emulsions, urethane resin e
  • the PVA-based resin solution can contain an alkali metal salt or an alkaline earth metal salt.
  • alkali metal salts include potassium salts and sodium salts of organic acids and inorganic acids.
  • organic acids include acetic acid, propionic acid, butyric acid, lauric acid, stearic acid, oleic acid, and behenic acid.
  • inorganic acids include sulfuric acid, sulfurous acid, carbonic acid, and phosphoric acid.
  • alkaline earth metal salts include calcium salts and magnesium salts of organic acids and inorganic acids.
  • organic acids include acetic acid, propionic acid, butyric acid, lauric acid, stearic acid, oleic acid, and behenin. acids, and examples of inorganic acids include sulfuric acid, sulfurous acid, carbonic acid, and phosphoric acid.
  • components other than the above include, for example, plasticizers, lubricants, pigment dispersants, thickeners, anti-adhesives, fluidity improvers, surfactants, antifoaming agents, release agents, Well-known additives such as mold agents, penetrants, dyes, pigments, fluorescent brighteners, ultraviolet absorbers, antioxidants, preservatives, antifungal agents, paper strength enhancers, cross-linking agents, etc. can be added as appropriate. .
  • the PVA-based resin solution preferably has a viscosity of 1 to 10,000 mPa ⁇ s at 25° C. in order to facilitate spinning of the nanofiber-forming material.
  • the viscosity of the PVA-based resin solution at 25° C. is more preferably 10 to 5000 mPa ⁇ s, particularly preferably 100 to 3000 mPa ⁇ s.
  • the viscosity of the PVA-based resin solution is measured with a Brookfield viscometer.
  • a liquid mixture that is a nanofiber-forming material is obtained by adding a water-soluble medicinal polymer to the above PVA-based resin solution and mixing them uniformly.
  • the water-soluble pharmaceutical polymer may be dissolved or dispersed in the PVA-based resin solution, but is preferably dissolved from the viewpoint of uniformity.
  • the mixing ratio of the PVA-based resin solution and the water-soluble medicinal polymer may be appropriately adjusted according to the physical properties of the water-soluble medicinal polymer. Mixing in the range of 10:90 to 90:10 is preferred.
  • the mass ratio of the PVA-based resin and the water-soluble medicinal polymer (PVA-based resin:water-soluble medicinal polymer) in the mixed solution is more preferably 20:80 to 80:20, more preferably 30:70 to 75:25. , particularly preferably 35:65 to 70:30.
  • the viscosity of the mixed liquid at 25°C is preferably in the range of 1 to 10,000 mPa ⁇ s, more preferably 10 to 5,000 mPa ⁇ s, and particularly preferably 100 to 3,000 mPa ⁇ s.
  • the mixed solution prepared as above is spun to obtain nanofibers.
  • the nanofiber spinning method of the present invention includes "(i) an electrospinning method using a spinning nozzle”, “(ii) an electrospinning method not using a spinning nozzle”, and “(iii) a melt blowing method”. . These methods will be described in sequence below.
  • Electrospinning method using a spinning nozzle In the electrospinning method using a spinning nozzle, a high voltage is applied to the spinning nozzle side when extruding the above-mentioned mixed solution, which is a forming material, from the spinning nozzle, and an electric field is applied to the mixed solution. is stretched to form nanofibers. Then, a nanofiber nonwoven fabric is obtained by depositing nanofibers on the counter electrode side. An electric field may be applied between the spinning nozzle and the counter electrode by applying a voltage to the counter electrode instead of the spinning nozzle.
  • the concentration of the PVA-based resin in the mixed solution is preferably 1 to 40% by weight, more preferably 2 to 30% by weight, and still more preferably 5 to 20% by weight, but is not particularly limited, and is arbitrary. can be set to
  • the direction in which the mixture is extruded is not particularly limited, it is preferable that the direction in which the mixture is extruded from the nozzle does not coincide with the direction in which gravity acts so that the mixture is less likely to drip. In particular, it is preferable to extrude the liquid mixture in a direction opposite to the direction of action of gravity or in a direction perpendicular to the direction of action of gravity.
  • the diameter (inner diameter) of the spinning nozzle for extruding this mixed solution varies depending on the fiber diameter, but when forming nanofibers with a fiber diameter of 1 to 1000 nm, for example, it is preferably 0.1 to 5 mm, particularly It is preferably 0.5 to 2 mm. If the diameter is too large, there will be a tendency for a large amount of liquid to drip and electrospinning will be difficult.
  • the spinning nozzle may be made of metal or non-metal. If the spinning nozzle is made of metal, the spinning nozzle can be used as one of the electrodes, and if the spinning nozzle is made of non-metal, an electric field can be applied to the mixed solution by installing an electrode inside the spinning nozzle. can work.
  • the extruded mixed liquid is stretched into fibers by applying an electric field.
  • This electric field is not particularly limited because it varies depending on the fiber diameter of the nanofiber, the distance between the spinning nozzle and the collecting body where the fibers are accumulated, the viscosity of the liquid mixture, and the like. It is preferably 2 to 10 kV/cm. If the applied electric field is large, the fiber diameter of nanofibers tends to decrease as the electric field value increases. If it is too much, it tends to be difficult to form a fibrous shape.
  • Such an electric field provides a potential difference between the spinning nozzle (the nozzle itself in the case of a metallic nozzle, or the electrode inside the nozzle in the case of a non-metallic nozzle such as glass or resin) and the collector.
  • the potential difference can be established by applying a voltage to the spinning nozzle and grounding the collector, or conversely, by applying a voltage to the collector and grounding the spinning nozzle.
  • the applied voltage is not particularly limited as long as the electric field intensity as described above can be obtained, but is preferably 1 to 30 kV, more preferably 5 to 20 kV, and still more preferably 10 to 20 kV. If the voltage is too high, sparks will occur and spinning will tend to be difficult. Conversely, if the voltage is too low, the power to electrically pull the solution will be insufficient and spinning will tend to be difficult. .
  • the voltage application device is not particularly limited, but a DC high voltage generator can be used, and a Van de Graaff generator can also be used.
  • the polarity of the applied voltage may be either positive or negative. However, it is preferable to set the spinning nozzle side to a positive potential so that the spreading of the fibers can be suppressed and the fibers can be aggregated with a small pore size and a narrow pore size distribution. In particular, in order to easily suppress corona discharge during voltage application, it is preferable to ground the counter electrode on the collector side, apply a positive voltage to the spinning nozzle side, and set the spinning nozzle side to a positive potential.
  • the collector for collecting and depositing the nanofibers is not particularly limited, and examples thereof include a drum, a nonwoven fabric, a flat plate, or a belt-shaped conductive material made of metal or carbon, or an organic polymer.
  • Non-conductive materials such as.
  • the collector does not need to be a conductive material as described above, and the counter electrode can be arranged behind the collector. In this case, the collector and the counter electrode may be in contact with each other or may be separated from each other.
  • the electrospinning method is preferably performed in an atmosphere with a relative humidity of 30 to 80%, more preferably in an atmosphere of 35 to 70%. If the relative humidity is too low, the mixed solution at the exit of the spinning nozzle dries quickly and tends to solidify and block the nozzle. tends to become weaker.
  • the spinning nozzle and collector are installed in a closed container, and humidified air is sent through a valve or the like so that the humidity in the closed container can be adjusted within the above range. is preferred.
  • an exhaust device is connected to the closed container so as not to increase the pressure in the closed container and to discharge the solvent volatilized from the mixed liquid.
  • Electrospinning method not using a spinning nozzle for example, a magnetic fluid is used as an electrode, and electrospinning is performed from the surface of the mixed solution that is the forming material (A L. Yarin, E. Zussman, "Polymer", 45 (2004), p.2977-2980).
  • a rotating roll is immersed in a bath filled with the above mixed solution, the mixed solution is adhered to the surface of the roll, and a high voltage is applied to this surface to perform electrospinning (http://www.
  • (iii) Melt blowing method In the melt blowing method, the mixed liquid is discharged from a spinning nozzle, and at the same time as the mixed liquid is discharged, heated air is blown from both sides of the spinning nozzle at high speed in the direction of discharging the mixed liquid, so that the mixed liquid is
  • the thread can be thinned by blowing out in the form of a thread.
  • the nozzle hole diameter generally used is about 0.2 mm, and the nozzles are arranged in a row at intervals of about 1 mm.
  • the ejection amount per minute is about 0.5 g per nozzle, and a low ejection amount is adopted in order to obtain finer fibers.
  • a nanofiber nonwoven fabric is formed by entangling and/or fusing the blown nanofibers.
  • the thickness of the nanofiber nonwoven fabric obtained by the above method is preferably 0.1 to 500 ⁇ m, more preferably 0.3 to 300 ⁇ m, still more preferably 0.5 to 100 ⁇ m.
  • the basis weight of the obtained nanofiber nonwoven fabric is appropriately set according to its application, preferably 0.1 to 40 g/m 2 , more preferably 0.5 to 20 g/m 2 , still more preferably 1 ⁇ 10 g/m 2 .
  • PVA 1 to 4 having saponification degrees and polymerization degrees shown in Table 1 were used as PVA-based resins.
  • Lysozyme (molecular weight 14300) was used as a model for water-soluble pharmaceutical macromolecules.
  • a previously prepared 8% by mass PVA aqueous solution (PVA1; 2.0 g, distilled water; 23 g, viscosity at 25° C. of about 2000 mPa s) and 4.7 g of lysozyme were added to a flask equipped with a stirring blade and stirred at 200 rpm for 10 minutes. By mixing, the mixture of Example 1 was prepared.
  • Mixtures of Examples 2 to 9 were prepared in the same manner as in Example 1, except that the type and amount of PVA used were changed to those shown in Table 2.
  • a lysozyme-containing nanofiber nonwoven fabric was prepared by an electrospinning method using a spinning nozzle using the mixtures of Examples 1 to 8 in Table 2. Specifically, the diameter of the needle used was 22 G, the voltage between the electrodes was 10 kV, the distance from the tip of the needle to the collection plate was 12 cm, and the ejection speed of the mixed solution was 0.5 ml/hour. Nanofibers were formed and nonwoven fabrics were formed on the collection plate to prepare nanofiber nonwoven fabrics of Examples 1 to 8. Also, using the water-soluble pharmaceutical polymer solution of Example 9, a nanofiber nonwoven fabric of Comparative Example 1 was prepared in the same manner as in Examples 1 to 8.
  • a glass vessel for a dissolution tester was charged with 900 ml of distilled water and immersed in a hot bath at 37°C. Subsequently, the nanofibers of Examples 1 to 8 and Comparative Example 1 were weighed in an amount containing 12 mg of lysozyme, added to distilled water, and stirred at a rotation speed of 50 rpm. After collecting the aqueous solution over time and sieving the collected solution with a 0.45 ⁇ m filter, the absorbance at 281 nm was measured with a UV-visible spectrophotometer (UV-1800, manufactured by Shimadzu Corporation).
  • UV-visible spectrophotometer UV-1800, manufactured by Shimadzu Corporation
  • the dissolved lysozyme was quantified to determine the dissolved concentration.
  • Table 3 shows the dissolution rate results.
  • the amount of lysozyme contained in the nanofibers was calculated by measuring the amount of lysozyme contained in 1 mg of the nanofibers by HPLC.
  • the present invention it is possible to release water-soluble pharmaceutical macromolecules such as protein drugs, and the nanofibers of the present invention can be applied to oral drugs, patches, and tapes.
  • water-soluble pharmaceutical macromolecules such as protein drugs
  • the nanofibers of the present invention can be applied to oral drugs, patches, and tapes.

Abstract

The present invention provides nanofibers which control the elution behavior of a water-soluble medical polymer and make the water-soluble medical polymer sustained-release, and a production method for the nanofibers. The nanofibers according to the present invention are nanofibers including a polyvinyl alcohol resin and the water-soluble medical polymer, wherein the molecular weight of the water-soluble medical polymer is 1,000 to 50,000, or are nanofibers including a polyvinyl alcohol resin and the water-soluble medical polymer, wherein the water-soluble medical polymer is a protein pharmaceutical.

Description

ナノファイバーnanofiber
 本発明は、ポリビニルアルコール系樹脂(A)と、水溶性医薬高分子(B)を含有するナノファイバー、およびその製造方法に関する。 The present invention relates to nanofibers containing a polyvinyl alcohol-based resin (A) and a water-soluble pharmaceutical polymer (B), and a method for producing the same.
 経口投与や経粘膜投与用途などの各種製剤の設計において、薬物の生物学的利用能(Bioavailability)を十分高く設計することが、薬物の有効性、安全性の面から重要視されている。
 医薬品の生物学的利用能に影響を与える重要な因子の1つとして、薬物の溶解性が挙げられ、薬効成分を長時間に亘って溶出するようにコントロールした徐放性製剤は、薬物の効力保持に伴う服用回数の減少や副作用を軽減することができるため、盛んに研究開発されている。
 水溶性薬物はその生体内への溶解性の高さから、放出速度を制御するために、基剤に分散させる方法や、表面をコーティングする方法などが知られているが、近年はナノファイバー化した製剤が提案されている。
In the design of various formulations for oral administration, transmucosal administration, etc., designing sufficiently high bioavailability of a drug is emphasized from the viewpoint of efficacy and safety of the drug.
Drug solubility is one of the important factors that affect the bioavailability of drugs. It is actively researched and developed because it can reduce the frequency of administration and side effects associated with retention.
Since water-soluble drugs are highly soluble in the body, methods such as dispersing them in a base or coating the surface are known methods for controlling the release rate. formulations have been proposed.
 例えば、特許文献1には、薬物含有超極細ファイバーが記載されている。また、特許文献2にはポリビニルアルコール系樹脂によって難溶性薬物をナノファイバー化することで難溶性薬物の溶出率を向上させる方法が開示されている。 For example, Patent Document 1 describes drug-containing ultrafine fibers. Further, Patent Document 2 discloses a method for improving the elution rate of a sparingly soluble drug by converting the sparingly soluble drug into nanofibers using a polyvinyl alcohol-based resin.
日本国特開2014-55119号公報Japanese Patent Application Laid-Open No. 2014-55119 日本国特開2021-88552号公報Japanese Patent Application Laid-Open No. 2021-88552
 しかしながら、ナノファイバー化に使用されている薬物はいずれも難溶性の低分子薬物であった。低分子の薬物は安定した化学構造を有しているが、タンパク質医薬品に代表されるような高分子量の薬物は、構造が複雑で不均一であり、低分子薬物と体内動態が大きく異なり、溶解挙動も異なっている。
 また、高分子量の薬物は、低分子薬物と比較して安定性に劣り、エレクトロスピニング等のナノファイバー化工程において分解してしまう懸念があった。
 さらに、水溶性で高分子の薬物は、その性質上、徐放化させたくてもマトリクスから速やかに放出されてしまうために、既存の技術を用いた徐放化は困難であった。そのため、水溶性医薬高分子薬物をナノファイバー化し、放出挙動を制御する方法が求められていた。
However, all of the drugs used for nanofiber formation were sparingly soluble low-molecular-weight drugs. Low-molecular-weight drugs have stable chemical structures, but high-molecular-weight drugs such as protein drugs have complex and heterogeneous structures. They also behave differently.
In addition, high-molecular-weight drugs are less stable than low-molecular-weight drugs, and there is a concern that they may decompose in nanofiber formation processes such as electrospinning.
Furthermore, due to the properties of water-soluble high-molecular drugs, they are rapidly released from the matrix even if sustained release is desired, making it difficult to achieve sustained release using existing techniques. Therefore, there has been a demand for a method of forming nanofibers from water-soluble pharmaceutical macromolecules and controlling their release behavior.
 本発明は、上記課題に鑑み、水溶性医薬高分子の溶出を徐放化させたナノファイバー、及びそのナノファイバーからなる製剤の提供を目的とする。 In view of the above problems, the object of the present invention is to provide nanofibers in which the elution of water-soluble pharmaceutical polymers is controlled to be released, and formulations made of the nanofibers.
 しかるに本発明者らは、かかる事情に鑑み鋭意研究を重ねた結果、分子量1000以上50000以下の水溶性医薬高分子を含有する混合物をナノファイバー化することにより、意外にも前記水溶性医薬高分子の溶出を徐放化することが出来ることを見出した。 However, as a result of intensive research in view of such circumstances, the present inventors unexpectedly found that a mixture containing a water-soluble pharmaceutical polymer having a molecular weight of 1000 or more and 50000 or less was made into nanofibers. It was found that the elution of
 すなわち本発明の要旨は下記の通りである。
(1)ポリビニルアルコール系樹脂(A)と水溶性医薬高分子(B)を含むナノファイバーであり、前記水溶性医薬高分子(B)の分子量が1000以上50000以下であるナノファイバー。
(2)ポリビニルアルコール系樹脂(A)と水溶性医薬高分子(B)を含むナノファイバーであり、前記水溶性医薬高分子(B)がタンパク質医薬品であるナノファイバー。
(3)前記ポリビニルアルコール系樹脂(A)と前記水溶性医薬高分子(B)の含有比率が、質量比で、ポリビニルアルコール系樹脂(A):水溶性医薬高分子(B)=10:90~90:10である前記(1)または(2)に記載のナノファイバー。
(4)前記ポリビニルアルコール系樹脂(A)のケン化度が75~99.9モル%である前記(1)~(3)のいずれか1つに記載のナノファイバー。
(5)前記ポリビニルアルコール系樹脂(A)の平均重合度が300~4000である前記(1)~(4)のいずれか1つに記載のナノファイバー。
(6)ナノファイバーの単繊維の直径が1nm~10μmである前記(1)~(5)のいずれか1つに記載のナノファイバー。
(7)ポリビニルアルコール系樹脂と水溶性医薬高分子とを含有するナノファイバーを製造する方法であって、ポリビニルアルコール系樹脂と水溶性医薬高分子を含む混合液を用いてエレクトロスピニング法またはメルトブロー法によりナノファイバーを製造する工程を有するナノファイバーの製造方法。
(8)前記混合液の溶媒が水である前記(7)に記載のナノファイバーの製造方法。
(9)前記(1)~(6)のいずれか1つに記載のナノファイバーからなる製剤。
That is, the gist of the present invention is as follows.
(1) A nanofiber comprising a polyvinyl alcohol-based resin (A) and a water-soluble medicinal polymer (B), wherein the water-soluble medicinal polymer (B) has a molecular weight of 1,000 or more and 50,000 or less.
(2) A nanofiber comprising a polyvinyl alcohol-based resin (A) and a water-soluble pharmaceutical polymer (B), wherein the water-soluble pharmaceutical polymer (B) is a protein drug.
(3) The content ratio of the polyvinyl alcohol-based resin (A) and the water-soluble pharmaceutical polymer (B) is, by mass ratio, polyvinyl alcohol-based resin (A):water-soluble pharmaceutical polymer (B)=10:90. The nanofiber according to (1) or (2) above, which is ~90:10.
(4) The nanofiber according to any one of (1) to (3) above, wherein the polyvinyl alcohol resin (A) has a saponification degree of 75 to 99.9 mol%.
(5) The nanofiber according to any one of (1) to (4) above, wherein the polyvinyl alcohol resin (A) has an average degree of polymerization of 300 to 4,000.
(6) The nanofiber according to any one of (1) to (5) above, wherein the nanofiber has a single fiber diameter of 1 nm to 10 μm.
(7) A method for producing nanofibers containing a polyvinyl alcohol-based resin and a water-soluble medicinal polymer, comprising electrospinning or melt blowing using a mixed solution containing the polyvinyl alcohol-based resin and the water-soluble medicinal polymer. A method for producing nanofibers, comprising a step of producing nanofibers by
(8) The method for producing nanofibers according to (7) above, wherein the solvent of the mixture is water.
(9) A formulation comprising the nanofibers according to any one of (1) to (6) above.
 本発明のナノファイバーによれば、水溶性医薬高分子(B)の溶出を徐放化したナノファイバーの製剤が得られる。 According to the nanofiber of the present invention, a nanofiber preparation in which the water-soluble pharmaceutical polymer (B) is eluted in a controlled release can be obtained.
 以下、本発明を詳細に説明するが、これらは望ましい実施態様の一例を示すものである。
 尚、本明細書において、「質量」は「重量」と同義である。
The present invention will be described in detail below, but these show examples of preferred embodiments.
In this specification, "mass" is synonymous with "weight".
 本発明のナノファイバーは、ポリビニルアルコール系樹脂(A)と水溶性医薬高分子(B)を含む。第1の形態では、分子量が1000以上50000以下である水溶性医薬高分子(B)を含有するナノファイバーを提供する。また第2の形態では、タンパク質医薬品である水溶性医薬高分子(B)を含有するナノファイバーを提供する。 The nanofiber of the present invention contains a polyvinyl alcohol resin (A) and a water-soluble medicinal polymer (B). A first form provides a nanofiber containing a water-soluble medicinal polymer (B) having a molecular weight of 1,000 or more and 50,000 or less. In a second form, a nanofiber containing a water-soluble drug polymer (B), which is a protein drug, is provided.
 まず、ポリビニルアルコール系樹脂(以下「PVA系樹脂」ともいう。)について説明する。 First, the polyvinyl alcohol-based resin (hereinafter also referred to as "PVA-based resin") will be described.
 <PVA系樹脂>
 本発明のPVA系樹脂は、ビニルエステル系モノマーを重合して得られるポリビニルエステル系重合体をケン化して得られる樹脂であり、ケン化度相当のビニルアルコール構造単位とケン化されずに残ったビニルエステル構造単位から構成される。
<PVA-based resin>
The PVA-based resin of the present invention is a resin obtained by saponifying a polyvinyl ester-based polymer obtained by polymerizing a vinyl ester-based monomer. It is composed of vinyl ester structural units.
 本発明に使用されるPVA系樹脂のケン化度は、好ましくは75~99.9モル%であり、より好ましくは80~95モル%、更に好ましくは83~93モル%、特に好ましくは85~90モル%である。PVA系樹脂のケン化度が高すぎても低すぎても、本発明の効果が得られ難くなる傾向がある。
 なお、本発明において、PVA系樹脂のケン化度は、JIS K 6726に準拠する方法で求められた値であり、平均値として求められる平均ケン化度である。
The saponification degree of the PVA-based resin used in the present invention is preferably 75 to 99.9 mol%, more preferably 80 to 95 mol%, still more preferably 83 to 93 mol%, particularly preferably 85 to 90 mol %. If the degree of saponification of the PVA-based resin is too high or too low, it tends to be difficult to obtain the effects of the present invention.
In the present invention, the degree of saponification of the PVA-based resin is a value determined by a method conforming to JIS K 6726, and is an average degree of saponification determined as an average value.
 本発明に使用されるPVA系樹脂の平均重合度は、好ましくは300~4000であり、より好ましくは500~3500、更に好ましくは1000~3000、特に好ましくは1300~2800、殊に好ましくは1500~2600である。
 PVA系樹脂の平均重合度が低すぎると、ナノファイバーの強度が不足し使用時の安定性が低下する傾向があり、平均重合度が高すぎると、水溶液粘度が高くなりナノファイバーが形成し難い傾向がある。
 なお、本発明において、PVA系樹脂の平均重合度は、JIS K 6726に準拠する方法で求めた平均重合度を用いるものとする。
The average degree of polymerization of the PVA-based resin used in the present invention is preferably 300 to 4000, more preferably 500 to 3500, still more preferably 1000 to 3000, particularly preferably 1300 to 2800, particularly preferably 1500 to 2600.
If the average degree of polymerization of the PVA-based resin is too low, the strength of the nanofibers tends to be insufficient and the stability during use tends to decrease. Tend.
In addition, in this invention, the average degree of polymerization calculated|required by the method based on JISK6726 shall be used for the average degree of polymerization of PVA-type resin.
 本発明に使用されるPVA系樹脂の製造方法を詳しく説明する。
 PVA系樹脂は、例えば、ビニルエステル系モノマーを重合して得られたポリビニルエステル系重合体をケン化することにより得られる。
 かかるビニルエステル系モノマーとしては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、バーサチック酸ビニル等が挙げられ、実用的に酢酸ビニルが好適である。
A method for producing the PVA-based resin used in the present invention will be described in detail.
A PVA-based resin is obtained, for example, by saponifying a polyvinyl ester-based polymer obtained by polymerizing a vinyl ester-based monomer.
Examples of such vinyl ester monomers include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, and vinyl benzoate. , vinyl versatate, etc., and vinyl acetate is practically preferred.
 また、本発明の効果を阻害しない程度に、上記ビニルエステル系モノマーと共重合性を有するモノマーを共重合させることもできる。このような共重合モノマーとしては、例えば、エチレンやプロピレン、イソブチレン、α-オクテン、α-ドデセン、α-オクタデセン等のオレフィン類;3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、3,4-ジヒドロキシ-1-ブテン等のヒドロキシ基含有α-オレフィン類及びそのアシル化物などの誘導体;アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタコン酸、ウンデシレン酸等の不飽和酸類及びその塩;モノエステル、あるいはジアルキルエステル、アクリロニトリル、メタアクリロニトリル等のニトリル類;ジアセトンアクリルアミド、アクリルアミド、メタクリルアミド等のアミド類;エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸類及びその塩;アルキルビニルエーテル類、ジメチルアリルビニルケトン、N-ビニルピロリドン、塩化ビニル、ビニルエチレンカーボネート、2,2-ジアルキル-4-ビニル-1,3-ジオキソラン、グリセリンモノアリルエーテル等のビニル化合物;酢酸イソプロペニル、1-メトキシビニルアセテート等の置換酢酸ビニル類;塩化ビニリデン、1,4-ジアセトキシ-2-ブテン、1,4-ジヒドロキシ-2-ブテン、ビニレンカーボネート、1,3-ジアセトキシ-2-メチレンプロパン、1,3-ジプロピオニルオキシ-2-メチレンプロパン、1,3-ジブチロニルオキシ-2-メチレンプロパン等のヒドロキシメチルビニリデンジアセテート等;3-クロロ-2-ヒドロキシプロピルトリメチルアンモニウムクロライド、3-クロロエチルトリメチルアンモニウムクロライド、3-クロロプロピルトリメチルアンモニウムクロライド等とポリビニルアルコール系樹脂を反応させたもの、またはN-アクリルアミドトリメチルアンモニウムクロライド、N-アクリルアミドエチルトリメチルアンモニウムクロライド、N-アクリルアミドプロピルトリメチルアンモニウムクロライド、2-アクリロキシエチルトリメチルアンモニウムクロライド、N-メチルジメチルアミノアクリルアミド、アリルトリメチルアンモニウムクロライド、メタアリルトリメチルアンモニウムクロライド、ジメチルアリルアミン、ジメチルメタアクリルアミン、ジメチルジアリルアンモニウムクロライド、ジエチルジアリルアンモニウムクロライド、エチルジアリルアミン、メチルジアリルアミン等のカチオン基を有する化合物等が挙げられる。
 かかる共重合モノマーの含有量は、重合体全量を基準として、好ましくは10モル%以下、より好ましくは5モル%以下である。
Further, a monomer having copolymerizability with the vinyl ester monomer can be copolymerized to the extent that the effect of the present invention is not impaired. Examples of such copolymerizable monomers include olefins such as ethylene, propylene, isobutylene, α-octene, α-dodecene and α-octadecene; - hydroxy group-containing α-olefins such as hexen-1-ol and 3,4-dihydroxy-1-butene, and derivatives such as acylated products thereof; acrylic acid, methacrylic acid, crotonic acid, maleic acid, maleic anhydride, itacon acids, unsaturated acids such as undecylenic acid and salts thereof; nitriles such as monoesters or dialkyl esters, acrylonitrile and methacrylonitrile; amides such as diacetone acrylamide, acrylamide and methacrylamide; ethylenesulfonic acid, allylsulfonic acid, Olefinsulfonic acids such as methallylsulfonic acid and salts thereof; vinyl compounds such as glycerin monoallyl ether; substituted vinyl acetates such as isopropenyl acetate and 1-methoxyvinyl acetate; vinylidene chloride, 1,4-diacetoxy-2-butene, 1,4-dihydroxy-2-butene, vinylene carbonate , 1,3-diacetoxy-2-methylenepropane, 1,3-dipropionyloxy-2-methylenepropane, hydroxymethylvinylidene diacetate such as 1,3-dibutyronyloxy-2-methylenepropane; 3-chloro - 2-Hydroxypropyltrimethylammonium chloride, 3-chloroethyltrimethylammonium chloride, 3-chloropropyltrimethylammonium chloride, etc. and polyvinyl alcohol resin, or N-acrylamidotrimethylammonium chloride, N-acrylamidoethyltrimethylammonium chloride, N-acrylamidopropyltrimethylammonium chloride, 2-acryloxyethyltrimethylammonium chloride, N-methyldimethylaminoacrylamide, allyltrimethylammonium chloride, methallyltrimethylammonium chloride, dimethylallylamine, dimethylmethacrylamine, dimethyldiallylammonium chloride, Examples thereof include compounds having a cationic group such as diethyldiallylammonium chloride, ethyldiallylamine, and methyldiallylamine.
The content of such copolymerizable monomers is preferably 10 mol % or less, more preferably 5 mol % or less, based on the total amount of the polymer.
 PVA系樹脂は、2種以上を併用することも可能である。併用する際には、ケン化度や平均重合度、ブロック性の異なるPVA系樹脂や、共重合モノマーと共重合した変性PVA系樹脂を併用することができる。 Two or more types of PVA-based resins can be used in combination. When used in combination, PVA-based resins having different saponification degrees, average polymerization degrees and block properties, and modified PVA-based resins copolymerized with copolymerizable monomers can be used in combination.
 上記ビニルエステル系モノマー及び共重合モノマーを重合する方法としては特に制限はなく、例えば、塊状重合、溶液重合、懸濁重合、分散重合、又は乳化重合などの公知の方法を採用することができるが、溶液重合が好ましい。 The method of polymerizing the vinyl ester monomer and the copolymerizable monomer is not particularly limited, and known methods such as bulk polymerization, solution polymerization, suspension polymerization, dispersion polymerization, or emulsion polymerization can be employed. , solution polymerization is preferred.
 かかる重合で用いられる溶媒としては、メタノール、エタノール、イソプロピルアルコール、n-プロパノール、ブタノール等の炭素数1~4の脂肪族アルコールやアセトン、メチルエチルケトン等のケトン類等が挙げられ、工業的にはメタノールが好適に使用される。 Solvents used in such polymerization include aliphatic alcohols having 1 to 4 carbon atoms such as methanol, ethanol, isopropyl alcohol, n-propanol and butanol, and ketones such as acetone and methyl ethyl ketone. is preferably used.
 また、重合反応は、例えば、アゾビスイソブチロニトリル、過酸化アセチル、過酸化ベンゾイル、過酸化ラウロイルなどの公知のラジカル重合触媒や公知の各種低温活性触媒を用いて行われる。また、反応温度は35℃~沸点程度の範囲から選択される。 In addition, the polymerization reaction is carried out using known radical polymerization catalysts such as azobisisobutyronitrile, acetyl peroxide, benzoyl peroxide, and lauroyl peroxide, and various known low temperature active catalysts. Also, the reaction temperature is selected from the range of about 35° C. to the boiling point.
 得られたポリビニルエステル系重合体は、次いで連続式又はバッチ式にてケン化される。かかるケン化にあたっては、アルカリケン化又は酸ケン化のいずれも採用できるが、工業的には重合体をアルコールに溶解してアルカリ触媒の存在下で行うことが好ましい。アルコールとしては、例えば、メタノール、エタノール、ブタノール等が挙げられる。アルコール中の重合体の濃度は20~60質量%の範囲から選ばれる。また、必要に応じて、0.3~10質量%程度の水を加えてもよく、更には、酢酸メチル等の各種エステル類やベンゼン、ヘキサン、DMSO(ジメチルスルホキシド)等の各種溶剤類を添加してもよい。 The obtained polyvinyl ester polymer is then saponified in a continuous or batch manner. Either alkali saponification or acid saponification can be employed for such saponification, but it is industrially preferable to dissolve the polymer in alcohol and perform the saponification in the presence of an alkali catalyst. Examples of alcohols include methanol, ethanol, butanol, and the like. The concentration of polymer in alcohol is selected from the range of 20-60% by weight. In addition, if necessary, about 0.3 to 10% by mass of water may be added, and further, various esters such as methyl acetate, benzene, hexane, and various solvents such as DMSO (dimethyl sulfoxide) are added. You may
 ケン化触媒としては、例えば、水酸化ナトリウム、水酸化カリウム、ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート等のアルカリ金属の水酸化物やアルコラートの如きアルカリ触媒を具体的に挙げることができる。かかる触媒の使用量はモノマーに対して1~100ミリモル当量にすることが好ましい。 Specific examples of saponification catalysts include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, sodium methylate, sodium ethylate and potassium methylate, and alkali catalysts such as alcoholates. The amount of such catalyst used is preferably 1 to 100 millimol equivalents relative to the monomer.
 PVA系樹脂のケン化度は、ケン化触媒量、ケン化時間、ケン化溶媒、ケン化温度により調整することができる。 The saponification degree of the PVA-based resin can be adjusted by adjusting the saponification catalyst amount, saponification time, saponification solvent, and saponification temperature.
 ケン化後、得られたPVA系樹脂を洗浄液で洗浄することが好ましい。洗浄液としては、例えば、メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール類が挙げられ、洗浄効率と乾燥効率の観点からメタノールが好ましい。 After saponification, it is preferable to wash the obtained PVA-based resin with a washing liquid. Examples of the cleaning liquid include alcohols such as methanol, ethanol, isopropyl alcohol, and butanol, and methanol is preferable from the viewpoint of cleaning efficiency and drying efficiency.
 洗浄方法としては、連続式(回転円筒型、向流接触型、遠心分離ふりかけ洗浄など)でもよいが、通常はバッチ式が採用される。洗浄時の撹拌方式(装置)としては、スクリュー翼、リボンブレンダー、ニーダー等が挙げられる。浴比(洗浄液の質量/ポリビニルエステル系重合体粒子の質量)は、1~30が好ましく、特に2~20が好ましい。浴比が大きすぎると、大きな洗浄装置が必要となり、コスト増につながる傾向があり、浴比が小さすぎると、洗浄効果が低下し、洗浄回数を増加させる傾向がある。 The washing method may be a continuous type (rotating cylinder type, countercurrent contact type, centrifugal sprinkle washing, etc.), but usually a batch type is adopted. Examples of the stirring method (apparatus) for washing include a screw blade, a ribbon blender, and a kneader. The bath ratio (mass of cleaning solution/mass of polyvinyl ester polymer particles) is preferably 1-30, more preferably 2-20. If the bath ratio is too large, a large washing apparatus is required, which tends to lead to an increase in cost.
 洗浄時の温度は、10~80℃が好ましく、特に20~70℃が好ましい。温度が高すぎると、洗浄液の揮発量が多くなり、還流設備を必要とする傾向がある。温度が低すぎると、洗浄効率が低下する傾向がある。洗浄時間は、5分~12時間が好ましく、特に30分~4時間が好ましい。洗浄時間が長すぎると、生産効率が低下する傾向があり、洗浄時間が短すぎると、洗浄が不十分となる傾向がある。また、洗浄回数は、1~10回が好ましく、特に1~5回が好ましい。洗浄回数が多すぎると、生産性が低下し、コストがかかる傾向がある。 The temperature during washing is preferably 10-80°C, particularly preferably 20-70°C. If the temperature is too high, the amount of volatilization of the cleaning liquid increases, and there is a tendency to require a reflux facility. If the temperature is too low, cleaning efficiency tends to decrease. The washing time is preferably 5 minutes to 12 hours, particularly preferably 30 minutes to 4 hours. If the cleaning time is too long, the production efficiency tends to decrease, and if the cleaning time is too short, the cleaning tends to be insufficient. Also, the number of times of washing is preferably 1 to 10 times, particularly preferably 1 to 5 times. Too many washes tend to reduce productivity and increase costs.
 洗浄されたPVA系樹脂の粒子を連続式又はバッチ式にて熱風などで乾燥し、本発明で用いられるPVA系樹脂を粉末状で得る。乾燥温度は、50~150℃が好ましく、より好ましくは60~130℃、さらに好ましくは70~110℃である。乾燥温度が高すぎると、PVA系樹脂が熱劣化する傾向があり、乾燥温度が低すぎると、乾燥に長時間を要する傾向がある。乾燥時間は、1~48時間が好ましく、より好ましくは2~36時間である。乾燥時間が長すぎると、PVA系樹脂が熱劣化する傾向があり、乾燥時間が短すぎると、乾燥が不十分となったり、高温乾燥を要したりする傾向がある。 The washed PVA-based resin particles are dried continuously or batchwise with hot air or the like to obtain the PVA-based resin used in the present invention in powder form. The drying temperature is preferably 50 to 150°C, more preferably 60 to 130°C, still more preferably 70 to 110°C. If the drying temperature is too high, the PVA-based resin tends to be thermally deteriorated, and if the drying temperature is too low, drying tends to take a long time. The drying time is preferably 1 to 48 hours, more preferably 2 to 36 hours. If the drying time is too long, the PVA-based resin tends to be thermally deteriorated.
 乾燥後のPVA系樹脂中に含まれる溶媒の含有量は、0~10質量%であるのが好ましく、より好ましくは0.01~5質量%、さらに好ましくは0.1~1質量%である。 The content of the solvent contained in the PVA-based resin after drying is preferably 0 to 10% by mass, more preferably 0.01 to 5% by mass, and still more preferably 0.1 to 1% by mass. .
 なお、PVA系樹脂には、ケン化時に用いるアルカリ触媒に由来する酢酸のアルカリ金属塩が通常は含まれている。アルカリ金属塩の含有量は、PVA系樹脂粉末に対して0.001~2質量%であるのが好ましく、より好ましくは0.005~1質量%であり、さらに好ましくは0.01~0.1質量%である。
 アルカリ金属塩の含有量の調整方法としては、例えば、ケン化で用いる時のアルカリ触媒の量を調節したり、エタノールやメタノールなどのアルコールでPVA系樹脂を洗浄する方法が挙げられる。
 本発明で用いるアルカリ金属塩の定量法としては、PVA系樹脂粉末を水に溶かして、メチルオレンジを指示薬とし、塩酸にて中和滴定を行い求める方法が挙げられる。
The PVA-based resin usually contains an alkali metal salt of acetic acid derived from the alkali catalyst used for saponification. The content of the alkali metal salt is preferably 0.001-2% by mass, more preferably 0.005-1% by mass, and still more preferably 0.01-0. It is 1% by mass.
Methods for adjusting the content of the alkali metal salt include, for example, adjusting the amount of alkali catalyst used in saponification and washing the PVA-based resin with an alcohol such as ethanol or methanol.
As a method for quantifying the alkali metal salt used in the present invention, there is a method of dissolving PVA-based resin powder in water, using methyl orange as an indicator, and performing neutralization titration with hydrochloric acid.
<水溶性医薬高分子>
 本発明において、水溶性医薬高分子の水溶性とは、水への溶解度が高いものを指し、第十八改正日本薬局方に準じた方法により測定した際に、水溶性医薬高分子1gあたりを溶解させるために必要な水の量が、通常30mL未満であるもののことを意味する。水溶性医薬高分子1gあたりを溶解させるために必要な水の量は、好ましくは10mL未満、より好ましくは1mL未満である。
<Water-soluble pharmaceutical polymer>
In the present invention, the water solubility of the water-soluble medicinal polymer refers to a substance that is highly soluble in water. It means that the amount of water required for dissolution is usually less than 30 mL. The amount of water required to dissolve 1 g of water-soluble pharmaceutical polymer is preferably less than 10 mL, more preferably less than 1 mL.
 本発明の第1の形態のナノファイバーに含まれる水溶性医薬高分子の分子量は、1000以上50000以下であり、好ましくは1000以上30000以下、より好ましくは1000以上20000以下である。
 分子量が低すぎると、PVA系樹脂の分子鎖との絡み合いが起こりにくく、水溶性医薬高分子が徐放化しない傾向にある。
 また分子量が大きすぎると、体内へ水溶性医薬高分子の吸収ができない傾向にあり、好ましくない。
The molecular weight of the water-soluble medicinal polymer contained in the nanofibers of the first embodiment of the present invention is 1,000 or more and 50,000 or less, preferably 1,000 or more and 30,000 or less, and more preferably 1,000 or more and 20,000 or less.
If the molecular weight is too low, entanglement with the molecular chains of the PVA-based resin is unlikely to occur, and the water-soluble pharmaceutical polymer tends not to be sustained release.
On the other hand, if the molecular weight is too large, there is a tendency that the water-soluble medicinal polymer cannot be absorbed into the body, which is not preferable.
 本発明の第2の形態のナノファイバーに含まれる水溶性医薬高分子は、医薬品医療機器等法第2条第1項および第十八改正日本薬局方に登録されるものであり、タンパク質医薬品を用いる。
 タンパク質医薬品とは、アミノ酸で構成され、タンパク質の活性によって疾病の治療又は予防効果を示す薬物をいう。タンパク質医薬品としては、例えば、ペプチド、タンパク質、融合タンパク質、抗原、成長因子、増殖因子、サイトカイン、インターフェロン、ホルモン、血液凝固線溶系因子、酵素、コンジュゲートタンパク質、タンパクワクチン、抗体様タンパク質、細胞、組織などが挙げられる。また、タンパク質医薬品には、バイオテクノロジーを利用して生産されたタンパク質を有効成分とする医薬品であるバイオ医薬品も含まれる。バイオ医薬品には、例えば、ワクチン、抗体医薬品、細胞性医薬品、核酸性医薬品が含まれる。
The water-soluble pharmaceutical polymer contained in the nanofiber of the second embodiment of the present invention is registered in Article 2, Paragraph 1 of the Pharmaceuticals and Medical Devices Law and the Japanese Pharmacopoeia 18th Edition, and is a protein drug. use.
A protein drug is a drug that is composed of amino acids and exhibits therapeutic or preventive effects on diseases through protein activity. Examples of protein pharmaceuticals include peptides, proteins, fusion proteins, antigens, growth factors, growth factors, cytokines, interferons, hormones, blood coagulation fibrinolytic factors, enzymes, conjugate proteins, protein vaccines, antibody-like proteins, cells, tissues etc. Protein pharmaceuticals also include biopharmaceuticals, which are pharmaceuticals containing proteins produced using biotechnology as active ingredients. Biopharmaceuticals include, for example, vaccines, antibody drugs, cellular drugs, and nucleic acid drugs.
 本発明のナノファイバーは、水溶性のPVA系樹脂と水溶性医薬高分子を含むことで、水溶性医薬高分子を徐放化させることができる。徐放化できる理由は定かではないが、PVA系樹脂の分子鎖の絡み合い、もしくは網目構造を形成することで基材がゲル様の性質を有する、またPVA系樹脂と水溶性医薬高分子が相互作用することによるものであると考えられる。 By containing a water-soluble PVA-based resin and a water-soluble pharmaceutical polymer, the nanofiber of the present invention can release the water-soluble pharmaceutical polymer in a controlled manner. The reason why sustained release is possible is not clear, but the base material has a gel-like property due to the entanglement of the molecular chains of the PVA-based resin or the formation of a network structure, and the PVA-based resin and the water-soluble pharmaceutical polymer interact with each other. It is thought that it is due to the action.
 <ナノファイバー>
 本発明のナノファイバーは、ポリビニルアルコール系樹脂と水溶性医薬高分子を含む超極細ファイバーであり、PVA系樹脂と水溶性医薬高分子とを少なくとも含有する形成材料を紡糸して繊維状に成形される。
 本発明のナノファイバーは、単繊維の直径(繊維径)が好ましくは1nm~10μm、より好ましくは1~2000nm、特に好ましくは5~1000nmであり、更に好ましくは10~700nmである。繊維径が太すぎると、ナノファイバーを用いて製剤を製造する際に均一に混ざらず、ナノファイバーが凝集しやすくなるため製剤の生産効率が低下する傾向がある。また、繊維径が細すぎると、十分な強度が発揮され難くなり、使用時のハンドリング等の問題が生じたり、製剤の生産効率が低下したりする傾向がある。
 なお、ナノファイバーの繊維径は電子顕微鏡を用いて測定される。
<Nanofiber>
The nanofibers of the present invention are ultrafine fibers containing a polyvinyl alcohol-based resin and a water-soluble medicinal polymer, and are formed into fibers by spinning a forming material containing at least a PVA-based resin and a water-soluble medicinal polymer. be.
The nanofiber of the present invention preferably has a single fiber diameter (fiber diameter) of 1 nm to 10 μm, more preferably 1 to 2000 nm, particularly preferably 5 to 1000 nm, still more preferably 10 to 700 nm. If the fiber diameter is too large, the nanofibers will not be mixed uniformly when producing a formulation, and the nanofibers will tend to aggregate, which tends to reduce the production efficiency of the formulation. On the other hand, if the fiber diameter is too small, it becomes difficult to exhibit sufficient strength, and problems such as handling during use tend to occur, and production efficiency of the formulation tends to decrease.
The fiber diameter of nanofibers is measured using an electron microscope.
 ナノファイバーの平均繊維長は、特に限定されないが、取り扱い易さの点から、好ましくはナノファイバーの直径(繊維径)の10倍以上、より好ましくは100倍以上、さらに好ましくは1000倍以上である。ナノファイバーは、そのアスペクト比(繊維長/繊維径)が大きいほどナノファイバー同士の絡み合いが起こり製剤化した際の強度が高くなり好ましいため、上限は特に限定されない。またナノファイバーは連続繊維であることがより好ましい。 The average fiber length of the nanofibers is not particularly limited, but from the viewpoint of ease of handling, it is preferably 10 times or more, more preferably 100 times or more, and still more preferably 1000 times or more the diameter of the nanofibers (fiber diameter). . As the aspect ratio (fiber length/fiber diameter) of the nanofibers increases, the nanofibers are entangled with each other and the strength of the formulation increases, which is preferable, so the upper limit is not particularly limited. Further, it is more preferable that the nanofibers are continuous fibers.
 ナノファイバーにおけるPVA系樹脂と水溶性医薬高分子との含有比率は、水溶性医薬高分子の物性により異なるが、PVA系樹脂:水溶性医薬高分子(質量比)が好ましくは10:90~90:10であり、より好ましくは20:80~80:20、さらに好ましくは30:70~75:25、特に好ましくは35:65~70:30である。 The content ratio of the PVA-based resin and the water-soluble pharmaceutical polymer in the nanofiber varies depending on the physical properties of the water-soluble pharmaceutical polymer, but the PVA-based resin:water-soluble pharmaceutical polymer (mass ratio) is preferably 10:90 to 90. :10, more preferably 20:80 to 80:20, still more preferably 30:70 to 75:25, and particularly preferably 35:65 to 70:30.
 〔ナノファイバーの製造方法〕
 本発明のナノファイバーの製造方法は、PVA系樹脂と水溶性医薬高分子を含む混合液を用いてエレクトロスピニング法またはメルトブロー法によりナノファイバーを製造する工程を有する。
 本発明のナノファイバーは、取り扱い易さの点から、シート状に形成することが好ましく、上記製造方法により得られたナノファイバーから不織布を形成することが好ましい。以下、ナノファイバーの形成とともに不織布(以下「ナノファイバー不織布」ともいう。)を形成する方法について説明する。
[Manufacturing method of nanofiber]
The method for producing nanofibers of the present invention has a step of producing nanofibers by an electrospinning method or a meltblowing method using a mixed solution containing a PVA-based resin and a water-soluble medicinal polymer.
From the viewpoint of ease of handling, the nanofibers of the present invention are preferably formed in a sheet form, and it is preferable to form a nonwoven fabric from the nanofibers obtained by the above production method. Hereinafter, a method for forming nanofibers and a nonwoven fabric (hereinafter also referred to as "nanofiber nonwoven fabric") will be described.
 ナノファイバーは、PVA系樹脂と水溶性医薬高分子を含む混合液を形成材料として、この混合液をエレクトロスピニング法(静電紡糸法)またはメルトブロー法に適用することにより得られる。PVA系樹脂は、溶媒に溶解させてPVA系樹脂溶解液として用いるのが好ましい。 Nanofibers are obtained by applying a mixed liquid containing a PVA-based resin and a water-soluble medicinal polymer as a forming material to an electrospinning method (electrostatic spinning method) or a meltblowing method. The PVA-based resin is preferably dissolved in a solvent and used as a PVA-based resin solution.
 PVA系樹脂を溶解させる溶媒としては、例えば、アルコール類(メタノール、エタノール、ブタノール、ヘキサフルオロ-2-プロパノール等)やエステル類(酢酸メチル、酢酸エチル等)、DMSO(ジメチルスルホキシド)等の有機溶媒や水等が挙げられ、環境負荷の低減の観点から、水が好ましい。水を含む溶媒は、他の溶媒(メタノール、エタノール、酢酸メチル、酢酸エチル、DMSOなどの前記例示の有機溶媒)を含んでいてもよい。PVA系樹脂溶解液中のPVA系樹脂の濃度は、1~40質量%であるのが好ましく、2~30質量%がより好ましく、5~20質量%がさらに好ましい。 Examples of solvents for dissolving PVA-based resins include alcohols (methanol, ethanol, butanol, hexafluoro-2-propanol, etc.), esters (methyl acetate, ethyl acetate, etc.), and organic solvents such as DMSO (dimethyl sulfoxide). and water, and water is preferable from the viewpoint of reducing the environmental load. The solvent containing water may contain other solvents (organic solvents exemplified above such as methanol, ethanol, methyl acetate, ethyl acetate and DMSO). The concentration of the PVA-based resin in the PVA-based resin solution is preferably 1 to 40% by mass, more preferably 2 to 30% by mass, and even more preferably 5 to 20% by mass.
 PVA系樹脂溶解液には、水溶性医薬高分子とは異なる水溶性樹脂または水分散性樹脂を含有することができる。含有可能な水溶性樹脂または水分散性樹脂としては、例えば、デンプン、酸化デンプン、カチオン変性デンプン等のデンプン誘導体;ゼラチン、カゼイン等の天然系たんぱく質類;メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース(CMC)等のセルロース誘導体;アルギン酸ナトリウム、ペクチン酸等の天然高分子多糖類;ポリビニルピロリドン、ポリ(メタ)アクリル酸塩等の水溶性樹脂;スチレン・ブタジエンゴム(SBR)ラテックス、ニトリルゴム(NBR)ラテックスのラテックス類;酢酸ビニル樹脂系エマルジョン、エチレン-酢酸ビニル共重合体エマルジョン、(メタ)アクリルエステル樹脂系エマルジョン、塩化ビニル樹脂系エマルジョン、ウレタン樹脂系エマルジョン等のエマルジョン類などが挙げられる。なお、本明細書において(メタ)アクリルとは、アクリルまたはメタクリルを意味する。 The PVA-based resin solution can contain a water-soluble resin or a water-dispersible resin different from the water-soluble pharmaceutical polymer. Examples of water-soluble resins or water-dispersible resins that can be contained include starch derivatives such as starch, oxidized starch and cationic modified starch; natural proteins such as gelatin and casein; methylcellulose, ethylcellulose, hydroxyethylcellulose, carboxymethylcellulose (CMC ); Natural polymer polysaccharides such as sodium alginate and pectic acid; Water-soluble resins such as polyvinylpyrrolidone and poly(meth)acrylate; Styrene-butadiene rubber (SBR) latex, nitrile rubber (NBR) latex latexes; vinyl acetate resin emulsions, ethylene-vinyl acetate copolymer emulsions, (meth)acrylic ester resin emulsions, vinyl chloride resin emulsions, urethane resin emulsions, and the like. In this specification, (meth)acryl means acryl or methacryl.
 また、PVA系樹脂溶解液には、アルカリ金属塩やアルカリ土類金属塩を含有することができる。このアルカリ金属塩としては、例えば、有機酸や無機酸のカリウム塩やナトリウム塩などが挙げられ、有機酸としては、例えば、酢酸、プロピオン酸、酪酸、ラウリル酸、ステアリン酸、オレイン酸、ベヘニン酸などが挙げられ、無機酸としては、例えば、硫酸、亜硫酸、炭酸、リン酸などが挙げられる。またアルカリ土類金属塩としては、例えば、有機酸や無機酸のカルシウム塩やマグネシウムなどが挙げられ、有機酸としては、例えば、酢酸、プロピオン酸、酪酸、ラウリル酸、ステアリン酸、オレイン酸、ベヘニン酸などが挙げられ、無機酸としては、例えば、硫酸、亜硫酸、炭酸、リン酸などが挙げられる。 In addition, the PVA-based resin solution can contain an alkali metal salt or an alkaline earth metal salt. Examples of the alkali metal salts include potassium salts and sodium salts of organic acids and inorganic acids. Examples of organic acids include acetic acid, propionic acid, butyric acid, lauric acid, stearic acid, oleic acid, and behenic acid. Examples of inorganic acids include sulfuric acid, sulfurous acid, carbonic acid, and phosphoric acid. Examples of alkaline earth metal salts include calcium salts and magnesium salts of organic acids and inorganic acids. Examples of organic acids include acetic acid, propionic acid, butyric acid, lauric acid, stearic acid, oleic acid, and behenin. acids, and examples of inorganic acids include sulfuric acid, sulfurous acid, carbonic acid, and phosphoric acid.
 また、PVA系樹脂溶解液には、上記以外の成分としては、例えば、可塑剤、滑剤、顔料分散剤、増粘剤、膠着防止剤、流動性改良剤、界面活性剤、消泡剤、離型剤、浸透剤、染料、顔料、蛍光増白剤、紫外線吸収剤、酸化防止剤、防腐剤、防黴剤、紙力増強剤、架橋剤等の周知の添加剤を適宜配合することができる。 In the PVA-based resin solution, components other than the above include, for example, plasticizers, lubricants, pigment dispersants, thickeners, anti-adhesives, fluidity improvers, surfactants, antifoaming agents, release agents, Well-known additives such as mold agents, penetrants, dyes, pigments, fluorescent brighteners, ultraviolet absorbers, antioxidants, preservatives, antifungal agents, paper strength enhancers, cross-linking agents, etc. can be added as appropriate. .
 PVA系樹脂溶解液は、ナノファイバー形成材料を紡糸し易くするために、25℃における粘度を1~10000mPa・sに調整することが好ましい。PVA系樹脂溶解液の25℃における粘度は、より好ましくは10~5000mPa・s、特に好ましくは100~3000mPa・sである。
 なお、PVA系樹脂溶解液の粘度はブルックフィールド粘度計により測定される。
The PVA-based resin solution preferably has a viscosity of 1 to 10,000 mPa·s at 25° C. in order to facilitate spinning of the nanofiber-forming material. The viscosity of the PVA-based resin solution at 25° C. is more preferably 10 to 5000 mPa·s, particularly preferably 100 to 3000 mPa·s.
The viscosity of the PVA-based resin solution is measured with a Brookfield viscometer.
 上記PVA系樹脂溶解液に水溶性医薬高分子を加え、均一に混合することによりナノファイバー形成材料である混合液を得る。水溶性医薬高分子は、PVA系樹脂溶解液に溶解しても分散状態であってもよいが、均一性の観点から、溶解させるのが好ましい。 A liquid mixture that is a nanofiber-forming material is obtained by adding a water-soluble medicinal polymer to the above PVA-based resin solution and mixing them uniformly. The water-soluble pharmaceutical polymer may be dissolved or dispersed in the PVA-based resin solution, but is preferably dissolved from the viewpoint of uniformity.
 PVA系樹脂溶解液と水溶性医薬高分子の混合割合は、水溶性医薬高分子の物性により適宜調整すればよいが、混合液中にPVA系樹脂と水溶性医薬高分子が、質量比で、10:90~90:10となるような範囲で混合するのが好ましい。混合液中のPVA系樹脂と水溶性医薬高分子の質量比(PVA系樹脂:水溶性医薬高分子)は、より好ましくは20:80~80:20、さらに好ましくは30:70~75:25、特に好ましくは35:65~70:30である。 The mixing ratio of the PVA-based resin solution and the water-soluble medicinal polymer may be appropriately adjusted according to the physical properties of the water-soluble medicinal polymer. Mixing in the range of 10:90 to 90:10 is preferred. The mass ratio of the PVA-based resin and the water-soluble medicinal polymer (PVA-based resin:water-soluble medicinal polymer) in the mixed solution is more preferably 20:80 to 80:20, more preferably 30:70 to 75:25. , particularly preferably 35:65 to 70:30.
 混合液の25℃における粘度は、1~10000mPa・sの範囲であるのが好ましく、より好ましくは10~5000mPa・s、特に好ましくは100~3000mPa・sである。 The viscosity of the mixed liquid at 25°C is preferably in the range of 1 to 10,000 mPa·s, more preferably 10 to 5,000 mPa·s, and particularly preferably 100 to 3,000 mPa·s.
 上記のようにして調製された混合液を紡糸し、ナノファイバーを得る。 The mixed solution prepared as above is spun to obtain nanofibers.
 本発明のナノファイバーの紡糸方法としては、「(i)紡糸ノズルを使用するエレクトロスピニング法」と、「(ii)紡糸ノズルを使用しないエレクトロスピニング法」、「(iii)メルトブロー法」が挙げられる。以下に順次これらの方法を説明する。 The nanofiber spinning method of the present invention includes "(i) an electrospinning method using a spinning nozzle", "(ii) an electrospinning method not using a spinning nozzle", and "(iii) a melt blowing method". . These methods will be described in sequence below.
 (i)紡糸ノズルを使用するエレクトロスピニング法
 紡糸ノズルを使用するエレクトロスピニング法では、形成材料である上記混合液を紡糸ノズルから押し出す際に、紡糸ノズル側に高電圧を印加し、混合液に電界を作用させることにより延伸してナノファイバー化する。そして、対向電極側にナノファイバーを堆積させることによりナノファイバー不織布が得られる。なお、紡糸ノズル側ではなく対向電極側に電圧を印加し、紡糸ノズルとの間に電界を作用させてもよい。
(i) Electrospinning method using a spinning nozzle In the electrospinning method using a spinning nozzle, a high voltage is applied to the spinning nozzle side when extruding the above-mentioned mixed solution, which is a forming material, from the spinning nozzle, and an electric field is applied to the mixed solution. is stretched to form nanofibers. Then, a nanofiber nonwoven fabric is obtained by depositing nanofibers on the counter electrode side. An electric field may be applied between the spinning nozzle and the counter electrode by applying a voltage to the counter electrode instead of the spinning nozzle.
 上記混合液におけるPVA系樹脂の濃度は、1~40重量%が好ましく、2~30重量%がより好ましく、5~20重量%であることがさらに好ましいが、特に限定されるものではなく、任意に設定することができる。 The concentration of the PVA-based resin in the mixed solution is preferably 1 to 40% by weight, more preferably 2 to 30% by weight, and still more preferably 5 to 20% by weight, but is not particularly limited, and is arbitrary. can be set to
 この混合液の押し出し方向は、特に限定されないが、混合液の滴下が生じにくいように、ノズルからの押し出し方向と重力の作用方向とが一致しないことが好ましい。特には、重力の作用方向に対して反対方向または重力の作用方向に対して直角方向に混合液を押し出すことが好ましい。 Although the direction in which the mixture is extruded is not particularly limited, it is preferable that the direction in which the mixture is extruded from the nozzle does not coincide with the direction in which gravity acts so that the mixture is less likely to drip. In particular, it is preferable to extrude the liquid mixture in a direction opposite to the direction of action of gravity or in a direction perpendicular to the direction of action of gravity.
 この混合液を押し出す紡糸ノズルの直径(内径)は、繊維径によって変化するが、例えば繊維径1~1000nmのナノファイバーを形成する場合には、0.1~5mmであるのが好ましく、特には0.5~2mmであることが好ましい。直径が大きすぎると、液だれが多く、エレクトロスピニングが困難な傾向があり、逆に、直径が小さすぎると、混合液を押し出しにくく、生産性が低下する傾向がある。 The diameter (inner diameter) of the spinning nozzle for extruding this mixed solution varies depending on the fiber diameter, but when forming nanofibers with a fiber diameter of 1 to 1000 nm, for example, it is preferably 0.1 to 5 mm, particularly It is preferably 0.5 to 2 mm. If the diameter is too large, there will be a tendency for a large amount of liquid to drip and electrospinning will be difficult.
 また、紡糸ノズルは金属製であっても、非金属製であってもよい。紡糸ノズルが金属製であれば紡糸ノズルを一方の電極として使用することができ、紡糸ノズルが非金属製である場合には、紡糸ノズルの内部に電極を設置することにより、混合液に電界を作用させることができる。 Also, the spinning nozzle may be made of metal or non-metal. If the spinning nozzle is made of metal, the spinning nozzle can be used as one of the electrodes, and if the spinning nozzle is made of non-metal, an electric field can be applied to the mixed solution by installing an electrode inside the spinning nozzle. can work.
 このような紡糸ノズルから混合液を押し出した後、押し出した混合液に電界を作用させることにより延伸して繊維化する。この電界は、ナノファイバーの繊維径、紡糸ノズルとファイバーを集積する捕集体との距離、混合液の粘度などによって変化するので特に限定されないが、本発明に係るナノファイバーとするには、0.2~10kV/cmであることが好ましい。印加する電界が大きければ、その電界値の増加に応じてナノファイバーの繊維径が細くなる傾向があるが、電界値が大きすぎると、空気の絶縁破壊が生じやすい傾向があり、逆に、小さすぎると、繊維形状となりにくい傾向がある。 After extruding the mixed liquid from such a spinning nozzle, the extruded mixed liquid is stretched into fibers by applying an electric field. This electric field is not particularly limited because it varies depending on the fiber diameter of the nanofiber, the distance between the spinning nozzle and the collecting body where the fibers are accumulated, the viscosity of the liquid mixture, and the like. It is preferably 2 to 10 kV/cm. If the applied electric field is large, the fiber diameter of nanofibers tends to decrease as the electric field value increases. If it is too much, it tends to be difficult to form a fibrous shape.
 このように押し出した混合液に電界を作用させることにより、混合液に静電荷が蓄積され、捕集体側の電極によって電気的に引っ張られ、引き伸ばされて繊維化する。電気的に引き伸ばしているため、繊維が捕集体に近づくにしたがって、電界により繊維の速度が加速され、繊維径のより小さいPVA系樹脂繊維となる。また、溶媒の蒸発によって細くなり、静電気密度が高まり、その電気的反発力によって分裂し、更に繊維径の小さいPVA系樹脂繊維になると考えられる。 By applying an electric field to the mixed liquid extruded in this way, static charge is accumulated in the mixed liquid, and it is electrically pulled by the electrode on the collector side, stretched, and made into fibers. Since the fibers are stretched electrically, the speed of the fibers is accelerated by the electric field as the fibers approach the collector, resulting in PVA-based resin fibers having a smaller fiber diameter. In addition, it is thought that the evaporation of the solvent makes the fibers thinner, the static electricity density increases, and the electric repulsive force causes the fibers to split and become PVA-based resin fibers with a smaller fiber diameter.
 このような電界は、例えば、紡糸ノズル(金属製ノズルの場合にはノズル自体、ガラスや樹脂などの非金属製ノズルの場合にはノズルの内部の電極)と捕集体との間に電位差を設けることによって、作用させることができる。例えば、紡糸ノズルに電圧を印加するとともに捕集体をアースすることによって電位差を設けることができるし、逆に、捕集体に電圧を印加するとともに紡糸ノズルをアースすることによって電位差を設けることもできる。 Such an electric field, for example, provides a potential difference between the spinning nozzle (the nozzle itself in the case of a metallic nozzle, or the electrode inside the nozzle in the case of a non-metallic nozzle such as glass or resin) and the collector. can be made to work by For example, the potential difference can be established by applying a voltage to the spinning nozzle and grounding the collector, or conversely, by applying a voltage to the collector and grounding the spinning nozzle.
 上記印加電圧は、前述のような電界強度とすることができれば特に限定されないが、好ましくは1~30kV、より好ましくは5~20kV、さらに好ましくは10~20kVである。電圧が高すぎると、スパークが発生し、紡糸が困難になる傾向があり、逆に、電圧が低すぎても、溶解液を電気的に引っ張る力が不足し、紡糸が困難となる傾向がある。電圧印加装置としては、特に限定されないが、直流高電圧発生装置を使用できるほか、ヴァン・デ・グラフ起電機を用いることもできる。 The applied voltage is not particularly limited as long as the electric field intensity as described above can be obtained, but is preferably 1 to 30 kV, more preferably 5 to 20 kV, and still more preferably 10 to 20 kV. If the voltage is too high, sparks will occur and spinning will tend to be difficult. Conversely, if the voltage is too low, the power to electrically pull the solution will be insufficient and spinning will tend to be difficult. . The voltage application device is not particularly limited, but a DC high voltage generator can be used, and a Van de Graaff generator can also be used.
 なお、印加電圧の極性は、プラスとマイナスのいずれであってもよい。しかしながら、繊維の広がりを抑制し、孔径が小さく、しかも孔径分布の狭い状態で集合できるように、紡糸ノズル側をプラス電位にすることが好ましい。特に、電圧印加時のコロナ放電を抑制しやすいように、捕集体側の対向電極をアースし、紡糸ノズル側をプラスに印加して、紡糸ノズル側をプラス電位にすることが好ましい。 The polarity of the applied voltage may be either positive or negative. However, it is preferable to set the spinning nozzle side to a positive potential so that the spreading of the fibers can be suppressed and the fibers can be aggregated with a small pore size and a narrow pore size distribution. In particular, in order to easily suppress corona discharge during voltage application, it is preferable to ground the counter electrode on the collector side, apply a positive voltage to the spinning nozzle side, and set the spinning nozzle side to a positive potential.
 ナノファイバーを補集し、堆積させるための捕集体としては、特に限定されず、例えば、ドラム、不織布、平板、またはベルト形状を有し、金属製や炭素などからなる導電性材料、有機高分子などからなる非導電性材料などが挙げられる。
 捕集体は、上記のように導電性材料である必要はなく、捕集体よりも後方に対向電極を配置することができる。この場合、捕集体と対向電極とは接触していてもよいし、離間していてもよい。
The collector for collecting and depositing the nanofibers is not particularly limited, and examples thereof include a drum, a nonwoven fabric, a flat plate, or a belt-shaped conductive material made of metal or carbon, or an organic polymer. Non-conductive materials such as.
The collector does not need to be a conductive material as described above, and the counter electrode can be arranged behind the collector. In this case, the collector and the counter electrode may be in contact with each other or may be separated from each other.
 なお、このエレクトロスピニング法は、相対湿度が30~80%の雰囲気下で実施することが好ましく、35~70%の雰囲気下で実施することがより好ましい。相対湿度が低すぎると、紡糸ノズル出口での混合液の乾燥が速く、固化してノズルを閉塞してしまう傾向があり、相対湿度が高すぎると、逆に乾燥しにくくなり、繊維を形成しにくくなる傾向がある。 The electrospinning method is preferably performed in an atmosphere with a relative humidity of 30 to 80%, more preferably in an atmosphere of 35 to 70%. If the relative humidity is too low, the mixed solution at the exit of the spinning nozzle dries quickly and tends to solidify and block the nozzle. tends to become weaker.
 上記相対湿度を保つため、紡糸ノズル及び捕集体を密閉容器の中に設置するとともに、バルブ等を介して、調湿した空気を送り込み、密閉容器内の湿度を前記範囲内に調節できるようにすることが好ましい。また、密閉容器内の圧力を上昇させないように、また混合液から揮発した溶媒を排出できるように、排気装置が密閉容器に接続されていることが好ましい。 In order to maintain the above relative humidity, the spinning nozzle and collector are installed in a closed container, and humidified air is sent through a valve or the like so that the humidity in the closed container can be adjusted within the above range. is preferred. In addition, it is preferable that an exhaust device is connected to the closed container so as not to increase the pressure in the closed container and to discharge the solvent volatilized from the mixed liquid.
 (ii)紡糸ノズルを使用しないエレクトロスピニング法
 紡糸ノズルを使用しないエレクトロスピニング法としては、例えば、磁性流体を電極として使用し、形成材料である上記混合液の表面から静電紡糸を行う方法(A.L.Yarin,E.Zussman,“Polymer”,45(2004),p.2977-2980参照)が挙げられる。また、エレクトロスピニング法としては、回転ロールを、上記混合液を満たした浴に浸漬し、ロール表面上に混合液を付着させ、この表面に高電圧を印加し、静電紡糸を行う方法(http://www.elmarco.com参照)が挙げられ、さらに、混合液に連続的に発生した泡に高電圧を印加することにより静電紡糸を行う方法等が挙げられる(“NONWOVENS REVIEW”,Vol.18,No.2(2007),p.17-20、日本国特開2008-25057号公報、参照)。
(ii) Electrospinning method not using a spinning nozzle As an electrospinning method not using a spinning nozzle, for example, a magnetic fluid is used as an electrode, and electrospinning is performed from the surface of the mixed solution that is the forming material (A L. Yarin, E. Zussman, "Polymer", 45 (2004), p.2977-2980). In addition, as the electrospinning method, a rotating roll is immersed in a bath filled with the above mixed solution, the mixed solution is adhered to the surface of the roll, and a high voltage is applied to this surface to perform electrospinning (http://www. http://www.elmarco.com), and furthermore, a method of performing electrostatic spinning by applying a high voltage to bubbles continuously generated in the mixed solution, etc. (“NONWOVENS REVIEW”, Vol. .18, No. 2 (2007), p.17-20, Japanese Patent Laid-Open No. 2008-25057, see).
 (iii)メルトブロー法
 メルトブロー法では、上記混合液を紡糸ノズルより吐出し、混合液の吐出と同時に、加熱された空気を紡糸ノズルの両サイドから混合液の吐出方向に高速で吹き出し、混合液が糸状になって吹き出すことにより、糸を細化することができる。
 なお、一般に用いられるノズル孔径は0.2mm程度であり、1mm位の間隔で一列に配列されている。1ノズルあたり、1分間の吐出量は0.5g程度であり、より細い繊維を得るためには低い吐出量が採用される。
 吹き出されたナノファイバーが繊維同士で絡み合い及び/又は融着することにより、ナノファイバー不織布が形成される。
(iii) Melt blowing method In the melt blowing method, the mixed liquid is discharged from a spinning nozzle, and at the same time as the mixed liquid is discharged, heated air is blown from both sides of the spinning nozzle at high speed in the direction of discharging the mixed liquid, so that the mixed liquid is The thread can be thinned by blowing out in the form of a thread.
It should be noted that the nozzle hole diameter generally used is about 0.2 mm, and the nozzles are arranged in a row at intervals of about 1 mm. The ejection amount per minute is about 0.5 g per nozzle, and a low ejection amount is adopted in order to obtain finer fibers.
A nanofiber nonwoven fabric is formed by entangling and/or fusing the blown nanofibers.
 以上の方法により得られたナノファイバー不織布の厚みは、好ましくは0.1~500μm、より好ましくは0.3~300μm、さらに好ましくは0.5~100μmである。また、得られたナノファイバー不織布の目付けは、その用途に応じて適宜設定されるが、好ましくは0.1~40g/m、より好ましくは0.5~20g/m、さらに好ましくは1~10g/mである。 The thickness of the nanofiber nonwoven fabric obtained by the above method is preferably 0.1 to 500 μm, more preferably 0.3 to 300 μm, still more preferably 0.5 to 100 μm. The basis weight of the obtained nanofiber nonwoven fabric is appropriately set according to its application, preferably 0.1 to 40 g/m 2 , more preferably 0.5 to 20 g/m 2 , still more preferably 1 ˜10 g/m 2 .
 以下、実施例および比較例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to the following examples as long as it does not exceed the gist thereof.
 PVA系樹脂として、表1に示すケン化度および重合度を有するPVA1~4を用いた。 PVA 1 to 4 having saponification degrees and polymerization degrees shown in Table 1 were used as PVA-based resins.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 〔PVA系樹脂と水溶性医薬高分子とを含有する混合液の調製〕
 水溶性医薬高分子のモデルとしてリゾチーム(分子量14300)を使用した。撹拌翼を備えたフラスコに、予め調製した8質量%PVA水溶液(PVA1;2.0g、蒸留水;23g、25℃における粘度約2000mPa・s)とリゾチーム4.7gを加え、200rpm×10分間撹拌混合して、例1の混合液を調製した。
 使用するPVAの種類、配合量を表2に示す組成に変更した以外は例1と同様にして、例2~9の混合液を調製した。
[Preparation of mixed liquid containing PVA-based resin and water-soluble pharmaceutical polymer]
Lysozyme (molecular weight 14300) was used as a model for water-soluble pharmaceutical macromolecules. A previously prepared 8% by mass PVA aqueous solution (PVA1; 2.0 g, distilled water; 23 g, viscosity at 25° C. of about 2000 mPa s) and 4.7 g of lysozyme were added to a flask equipped with a stirring blade and stirred at 200 rpm for 10 minutes. By mixing, the mixture of Example 1 was prepared.
Mixtures of Examples 2 to 9 were prepared in the same manner as in Example 1, except that the type and amount of PVA used were changed to those shown in Table 2.
 〔リゾチーム含有ナノファイバーの調製〕
 表2の例1~8の混合液を用いて、紡糸ノズルを使用するエレクトロスピニング法によりリゾチーム含有ナノファイバー不織布を調製した。具体的には、使用したニードルの直径を22G、電極間の電圧を10kV、ニードル先端から捕集板までの距離を12cm、混合液の吐出速度を0.5ml/時とし、2時間の超極細ナノファイバー化を行い、捕集板上に不織布を形成して、実施例1~8のナノファイバー不織布を調製した。
 また、例9の水溶性医薬高分子溶解液を用いて、実施例1~8と同様にして比較例1のナノファイバー不織布を調製した。
[Preparation of lysozyme-containing nanofibers]
A lysozyme-containing nanofiber nonwoven fabric was prepared by an electrospinning method using a spinning nozzle using the mixtures of Examples 1 to 8 in Table 2. Specifically, the diameter of the needle used was 22 G, the voltage between the electrodes was 10 kV, the distance from the tip of the needle to the collection plate was 12 cm, and the ejection speed of the mixed solution was 0.5 ml/hour. Nanofibers were formed and nonwoven fabrics were formed on the collection plate to prepare nanofiber nonwoven fabrics of Examples 1 to 8.
Also, using the water-soluble pharmaceutical polymer solution of Example 9, a nanofiber nonwoven fabric of Comparative Example 1 was prepared in the same manner as in Examples 1 to 8.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 〔溶出率の評価〕
 実施例1~8および比較例1のリゾチーム含有ナノファイバー不織布について、下記のとおり、溶出率を測定した。
[Evaluation of elution rate]
The elution rates of the lysozyme-containing nanofiber nonwoven fabrics of Examples 1 to 8 and Comparative Example 1 were measured as follows.
 第十八改正日本薬局方の溶出試験パドル法に準じ、蒸留水900mlを溶出試験器用ガラスベッセルに仕込み37℃の温浴に浸した。続いて実施例1~8、および比較例1のナノファイバーを、リゾチームが12mg相当含まれる量で量り取り、蒸留水に加え、回転速度50rpmで撹拌を開始させた。経時的に水溶液を採取し、採取した溶液を0.45μmのフィルターで篩過した後、紫外可視分光光度計(UV-1800、株式会社島津製作所製)により281nmの吸光度を測定することで蒸留水中に溶解したリゾチームを定量し、溶解濃度を求めた。溶出率の結果を表3に示す。
 なお、ナノファイバーに含まれるリゾチーム量は、ナノファイバー1mg辺りに含まれるリゾチーム量をHPLC測定することにより求めて算出した。
According to the dissolution test paddle method of the 18th revision of the Japanese Pharmacopoeia, a glass vessel for a dissolution tester was charged with 900 ml of distilled water and immersed in a hot bath at 37°C. Subsequently, the nanofibers of Examples 1 to 8 and Comparative Example 1 were weighed in an amount containing 12 mg of lysozyme, added to distilled water, and stirred at a rotation speed of 50 rpm. After collecting the aqueous solution over time and sieving the collected solution with a 0.45 μm filter, the absorbance at 281 nm was measured with a UV-visible spectrophotometer (UV-1800, manufactured by Shimadzu Corporation). The dissolved lysozyme was quantified to determine the dissolved concentration. Table 3 shows the dissolution rate results.
The amount of lysozyme contained in the nanofibers was calculated by measuring the amount of lysozyme contained in 1 mg of the nanofibers by HPLC.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3より、PVA系樹脂と水溶性医薬高分子を含むナノファイバーとすることで、水溶性医薬高分子の放出挙動を徐放化させることができた。
 また、PVA系樹脂と水溶性医薬高分子の含有比率について、PVA系樹脂が多い方がより水溶性医薬高分子が徐放化する傾向がみられた。
From Table 3, by using nanofibers containing a PVA-based resin and a water-soluble medicinal polymer, the release behavior of the water-soluble medicinal polymer could be controlled.
In addition, regarding the content ratio of the PVA-based resin and the water-soluble medicinal polymer, there was a tendency that the more the PVA-based resin, the more the water-soluble medicinal polymer was released in a sustained manner.
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2022年1月31日出願の日本特許出願(特願2022-012541)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application (Japanese Patent Application No. 2022-012541) filed on January 31, 2022, the contents of which are incorporated herein by reference.
 本発明によれば、タンパク質医薬品などの水溶性医薬高分子を徐放化することが可能となり、本発明のナノファイバーは経口剤や、貼付剤、テープ剤に適用することができる。これにより、これまで治療薬のなかった病気や、従来の医薬品では十分な治療を行うことができなかった病気への効果が期待される。 According to the present invention, it is possible to release water-soluble pharmaceutical macromolecules such as protein drugs, and the nanofibers of the present invention can be applied to oral drugs, patches, and tapes. As a result, it is expected to be effective for diseases for which no therapeutic drugs have been available so far, and diseases for which conventional pharmaceuticals have not been able to sufficiently treat.

Claims (9)

  1.  ポリビニルアルコール系樹脂(A)と水溶性医薬高分子(B)を含むナノファイバーであり、前記水溶性医薬高分子(B)の分子量が1000以上50000以下であるナノファイバー。 A nanofiber containing a polyvinyl alcohol-based resin (A) and a water-soluble pharmaceutical polymer (B), wherein the water-soluble pharmaceutical polymer (B) has a molecular weight of 1000 or more and 50000 or less.
  2.  ポリビニルアルコール系樹脂(A)と水溶性医薬高分子(B)を含むナノファイバーであり、前記水溶性医薬高分子(B)がタンパク質医薬品であるナノファイバー。 A nanofiber comprising a polyvinyl alcohol-based resin (A) and a water-soluble pharmaceutical polymer (B), wherein the water-soluble pharmaceutical polymer (B) is a protein drug.
  3.  前記ポリビニルアルコール系樹脂(A)と前記水溶性医薬高分子(B)の含有比率が、質量比で、ポリビニルアルコール系樹脂(A):水溶性医薬高分子(B)=10:90~90:10である請求項1または2に記載のナノファイバー。 The content ratio of the polyvinyl alcohol-based resin (A) and the water-soluble pharmaceutical polymer (B) is, by mass ratio, polyvinyl alcohol-based resin (A):water-soluble pharmaceutical polymer (B)=10:90 to 90: 3. The nanofiber according to claim 1 or 2, which is 10.
  4.  前記ポリビニルアルコール系樹脂(A)のケン化度が75~99.9モル%である請求項1~3のいずれか1項に記載のナノファイバー。 The nanofiber according to any one of claims 1 to 3, wherein the polyvinyl alcohol resin (A) has a saponification degree of 75 to 99.9 mol%.
  5.  前記ポリビニルアルコール系樹脂(A)の平均重合度が300~4000である請求項1~4のいずれか1項に記載のナノファイバー。 The nanofiber according to any one of claims 1 to 4, wherein the polyvinyl alcohol resin (A) has an average degree of polymerization of 300 to 4000.
  6.  ナノファイバーの単繊維の直径が1nm~10μmである請求項1~5のいずれか1項に記載のナノファイバー。 The nanofiber according to any one of claims 1 to 5, wherein the nanofiber single fiber has a diameter of 1 nm to 10 μm.
  7.  ポリビニルアルコール系樹脂と水溶性医薬高分子とを含有するナノファイバーを製造する方法であって、ポリビニルアルコール系樹脂と水溶性医薬高分子を含む混合液を用いてエレクトロスピニング法またはメルトブロー法によりナノファイバーを製造する工程を有するナノファイバーの製造方法。 A method for producing nanofibers containing a polyvinyl alcohol-based resin and a water-soluble medicinal polymer, wherein the nanofibers are produced by an electrospinning method or a meltblowing method using a mixed solution containing the polyvinyl alcohol-based resin and the water-soluble medicinal polymer. A method for producing nanofibers, comprising the step of producing
  8.  前記混合液の溶媒が水である請求項7に記載のナノファイバーの製造方法。 The method for producing nanofibers according to claim 7, wherein the solvent of the mixed solution is water.
  9.  請求項1~6のいずれか1項に記載のナノファイバーからなる製剤。 A formulation comprising the nanofibers according to any one of claims 1 to 6.
PCT/JP2023/002672 2022-01-31 2023-01-27 Nanofibers WO2023145886A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-012541 2022-01-31
JP2022012541 2022-01-31

Publications (1)

Publication Number Publication Date
WO2023145886A1 true WO2023145886A1 (en) 2023-08-03

Family

ID=87471672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002672 WO2023145886A1 (en) 2022-01-31 2023-01-27 Nanofibers

Country Status (1)

Country Link
WO (1) WO2023145886A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521493A (en) * 2000-01-28 2003-07-15 スミスクライン・ビーチャム・コーポレイション Electrospun pharmaceutical composition
JP2005534716A (en) * 2002-08-07 2005-11-17 スミスクライン・ビーチャム・コーポレイション Electrospun amorphous pharmaceutical composition
WO2009031620A1 (en) * 2007-09-05 2009-03-12 Taiyokagaku Co., Ltd. Water-soluble electrospun sheet
JP2014055119A (en) * 2012-09-13 2014-03-27 Teika Seiyaku Kk Drug-containing ultrafine fiber and utilization thereof
JP2021088552A (en) * 2019-11-22 2021-06-10 三菱ケミカル株式会社 Drug-containing fiber, method for producing the same, and oral preparation composed of the fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521493A (en) * 2000-01-28 2003-07-15 スミスクライン・ビーチャム・コーポレイション Electrospun pharmaceutical composition
JP2005534716A (en) * 2002-08-07 2005-11-17 スミスクライン・ビーチャム・コーポレイション Electrospun amorphous pharmaceutical composition
WO2009031620A1 (en) * 2007-09-05 2009-03-12 Taiyokagaku Co., Ltd. Water-soluble electrospun sheet
JP2014055119A (en) * 2012-09-13 2014-03-27 Teika Seiyaku Kk Drug-containing ultrafine fiber and utilization thereof
JP2021088552A (en) * 2019-11-22 2021-06-10 三菱ケミカル株式会社 Drug-containing fiber, method for producing the same, and oral preparation composed of the fiber

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SANDEEP KUMAR TIWARI, VENKATRAMAN SUBBU: "Electrospinning pure protein solutions in core-shell fibers", POLYMER INTERNATIONAL, PUBLISHED FOR SCI BY ELSEVIER APPLIED SCIENCE, vol. 61, no. 10, 1 October 2012 (2012-10-01), pages 1549 - 1555, XP055038285, ISSN: 09598103, DOI: 10.1002/pi.4246 *
SEIF SALEM, PLANZ VIKTORIA, WINDBERGS MAIKE: "Controlling the Release of Proteins from Therapeutic Nanofibers: The Effect of Fabrication Modalities on Biocompatibility and Antimicrobial Activity of Lysozyme", PLANTA MEDICA, THIEME VERLAG, DE, vol. 83, no. 05, DE , pages 445 - 452, XP093080836, ISSN: 0032-0943, DOI: 10.1055/s-0042-109715 *
WANG, Y. HSIEH, Y.L.: "Immobilization of lipase enzyme in polyvinyl alcohol (PVA) nanofibrous membranes", JOURNAL OF MEMBRANE SCIENCE, ELSEVIER BV, NL, vol. 309, no. 1-2, 11 October 2007 (2007-10-11), NL , pages 73 - 81, XP022400958, ISSN: 0376-7388 *

Similar Documents

Publication Publication Date Title
Meechaisue et al. Electrospun mat of tyrosine-derived polycarbonate fibers for potential use as tissue scaffolding material
Garg et al. Development and characterization of nano-fiber patch for the treatment of glaucoma
Huang et al. Electrospinning and mechanical characterization of gelatin nanofibers
Pérez-Masiá et al. Surfactant-aided electrospraying of low molecular weight carbohydrate polymers from aqueous solutions
Bizarria et al. Non-woven nanofiber chitosan/PEO membranes obtained by electrospinning
US20050136253A1 (en) Rotary spinning processes for forming hydroxyl polymer-containing fibers
CN102178640B (en) Method for loading hydrophobic medicament uniformly on hydrophilic polymer electrospinning nanofiber
EP1195394B1 (en) (Co-)Polymers of hydroxyalkyl(meth)acrylates, process for their preparation and their use in pharmaceutical dosage forms
US20220282401A1 (en) Apparatus and a method of drawing a fibre
Kalluri et al. Effect of electrospinning parameters on the fiber diameter and morphology of PLGA nanofibers
WO2023145886A1 (en) Nanofibers
Olaru et al. Electrospinning of cellulose acetate phthalate from different solvent systems
Xiang et al. Electrospinning using a Teflon-coated spinneret
JP2021088552A (en) Drug-containing fiber, method for producing the same, and oral preparation composed of the fiber
DE112006000043T5 (en) Process and apparatus for the production of polyvinyl alcohol with a high degree of polymerization
JP3322918B2 (en) Aqueous dispersion of polyvinyl alcohol resin
CN105327357B (en) A kind of drug-loading system of hyaluronic acid and preparation method thereof of catechol modification
Yan et al. Dual drug-loaded core-shell nanofibers membranes via emulsion electrospinning and their controllable sustained release property
KR20060086055A (en) Acrylic copolymer composition and manufacturing method of spinning solution thereof
JP2022081718A (en) Agent-containing fiber, method for producing the same, and oral formulation composed of fiber
Chinatangkul et al. Development of electrospun shellac and hydroxypropyl cellulose blended nanofibers for drug carrier application
JP2024030725A (en) Drug-containing fibers and oral preparations made from the fibers
CN112121650B (en) Nano-fiber chitosan membrane and preparation method thereof
CN106075532A (en) A kind of chitosan non-woven fabrics and preparation method and application
CN113493941A (en) Biological friendly slow-release nano fiber and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23747096

Country of ref document: EP

Kind code of ref document: A1