WO2023145739A1 - Map information system, in-vehicle device, and management server - Google Patents

Map information system, in-vehicle device, and management server Download PDF

Info

Publication number
WO2023145739A1
WO2023145739A1 PCT/JP2023/002144 JP2023002144W WO2023145739A1 WO 2023145739 A1 WO2023145739 A1 WO 2023145739A1 JP 2023002144 W JP2023002144 W JP 2023002144W WO 2023145739 A1 WO2023145739 A1 WO 2023145739A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
vehicle
map
map information
surrounding
Prior art date
Application number
PCT/JP2023/002144
Other languages
French (fr)
Japanese (ja)
Inventor
智 堀畑
真也 阿部
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023145739A1 publication Critical patent/WO2023145739A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • G01C21/32Structuring or formatting of map data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/123Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
    • G08G1/127Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station
    • G08G1/13Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station the indicator being in the form of a map
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram

Definitions

  • the disclosure in this specification relates to a map information system that manages map information, an in-vehicle device, and a management server.
  • the device described in Patent Document 1 compares the position, shape, etc. of features detected by an external sensor mounted on a vehicle with feature information stored in a storage unit as map data. Then, when it is determined that there is a change in the feature detected by the external sensor, the difference information is transmitted to the server. The server updates the advanced map database based on the difference information.
  • Patent Document 1 when the feature information contained in the advanced map database is different from the position and shape of the map detected by the sensor mounted on the vehicle that actually traveled on the site, the difference Send information or measurement data detected by the sensor to the server.
  • the difference information uses flags, there is the problem that it is not possible to grasp the degree of change in features from the difference information.
  • the change identification flag described in Patent Document 1 indicates a change in the position of a feature
  • uploading measurement data there is a problem that the amount of data is too large and the communication load increases.
  • the object of the disclosure is made in view of the above-mentioned problems, and a map information system, an in-vehicle device, and a management server that can collect detailed difference information while suppressing an increase in the amount of data. intended to provide
  • the present disclosure employs the following technical means to achieve the aforementioned objectives.
  • the map information system disclosed herein is a map information system that manages map information stored in a storage unit located in a vehicle, and includes surrounding information detected by a surrounding detection sensor mounted on the vehicle and map information. is different from the above, includes an information generation unit that generates processed information by processing the surrounding information, the processed information has a smaller amount of information than the surrounding information, and at least the difference between the surrounding information and the map information in a portion different from the map information. Contains quantitative information that quantifies the difference.
  • the processed information when the surrounding information detected by the surrounding detection sensor mounted on the vehicle is different from the map information, the processed information obtained by processing the surrounding information is generated by the information generation unit. .
  • the processed information has a smaller amount of information than the peripheral information, and includes at least quantitative information that quantifies the difference between the peripheral information and the map information in a portion different from the map information.
  • the amount of data is smaller than that of the peripheral information, but it is possible to collect detailed information on different parts rather than simple flags.
  • the disclosed in-vehicle device is an in-vehicle device that is mounted on a vehicle and used, and includes a storage unit that stores map information, surrounding information detected by a surrounding detection sensor mounted on the vehicle, and map information. are different, an information generation unit that generates processed information obtained by processing the peripheral information, and a vehicle communication unit that communicates with the management server, which transmits the processed information or the peripheral information to the management server, and receives new information from the management server. a vehicle communication unit that receives map information; and a map update unit that updates the map information in the storage unit when new map information is received from the management server.
  • Quantitative information that quantifies the difference between the map information and the surrounding information of the part different from the map information is included, and the information generation unit generates the processed information when the difference between the surrounding information and the map information is within the allowable range. If it is out of the allowable range, the vehicle communication unit stops generating the processing information. If it is in the allowable range, the vehicle communication unit transmits the processing information to the management server. Send peripheral information to the management server.
  • the processed information obtained by processing the surrounding information is generated by the information generation unit.
  • the processed information has a smaller amount of information than the peripheral information, and includes at least quantitative information that quantifies the difference between the peripheral information and the map information in a portion different from the map information.
  • the amount of data is smaller than that of the peripheral information, but it is possible to collect detailed information on different parts rather than simple flags. Since such processing information is transmitted to the management server, the management server can use the processing information to determine whether or not the map has been updated.
  • the disclosed management server is a management server that communicates with in-vehicle devices installed in a plurality of vehicles and manages map information stored in a storage unit of the in-vehicle devices, and performs server communication that communicates with the in-vehicle devices.
  • a reliability calculation unit that receives processed information from a plurality of in-vehicle devices and statistically processes the plurality of processed information to calculate a reliability indicating the accuracy of the map information; and a control unit for controlling the server communication unit to transmit the updated map information to the in-vehicle device when updating the map information, and processing information is generated when the amount of information is less than the surrounding information detected by the surrounding detection sensor mounted on the vehicle, and the surrounding information and the map information are different.
  • a management server when the surrounding information detected by the surrounding detection sensor mounted on the vehicle is different from the map information, processed information obtained by processing the surrounding information is received.
  • the processed information has a smaller amount of information than the peripheral information, and includes at least quantitative information that quantifies the difference between the peripheral information and the map information in a portion different from the map information.
  • the amount of data is smaller than that of the peripheral information, but it is possible to collect detailed information on different parts rather than simple flags.
  • the management server receives such processed information, and the reliability calculation unit calculates the reliability indicating the certainty of the map information using a plurality of pieces of processed information. Therefore, when the reliability of the processed information is high, the update determination unit can determine whether or not the map has been updated using the highly reliable processed information.
  • FIG. 4 is a flowchart showing processing of the in-vehicle device 60;
  • FIG. 4 is a diagram showing the configuration of a management server 80;
  • 8 is a flowchart showing processing of a server control unit 83;
  • 4 is a flowchart showing another process of the in-vehicle device 60;
  • 8 is a flowchart showing another process of the server control unit 83;
  • FIG. 1 is a diagram showing the overall configuration of a map information system 100 of this embodiment.
  • the map information system 100 updates map information stored in the vehicle storage unit 30 located in the vehicle 200 .
  • the map information system 100 includes an in-vehicle system 10 mounted on a vehicle 200 and a management server 80 installed at an arbitrary position outside the vehicle 200 .
  • In-vehicle system 10 and management server 80 can communicate via communication network 300 .
  • the in-vehicle system 10 includes an in-vehicle sensor 20 , a vehicle storage section 30 , a vehicle communication section 40 , a vehicle control section 50 and an in-vehicle device 60 . These are connected to the in-vehicle LAN 11 and communicate with each other via the in-vehicle LAN 11 .
  • Vehicle communication unit 40 is a communication unit that performs wireless communication, and communicates with another device such as management server 80 via communication network 300 .
  • the vehicle-mounted sensor 20 is a sensor mounted on the vehicle 200 to detect various information used for vehicle control.
  • the in-vehicle sensor 20 includes a surrounding detection sensor 21 , a GNSS receiver 24 , an inertial sensor 25 and a driver operation detection sensor 26 .
  • other sensors such as a sensor for detecting the state of the driver may be provided.
  • the surrounding detection sensor 21 is a sensor that is mounted on the vehicle 200 and detects various objects existing around the vehicle 200 . Objects also include planar objects such as pavement markings and lane markings.
  • FIG. 2 shows a camera 22 and a lidar 23 as the peripheral detection sensor 21 .
  • Camera 22 captures an image in front of vehicle 200 .
  • the camera 22 may be configured to photograph the sides and rear of the vehicle 200 .
  • the lidar 23 detects the positions of objects existing around the vehicle 200 by projecting and receiving light.
  • Periphery detection sensor 21 may include, in addition to or instead of these, other sensors that detect objects existing in the vicinity of vehicle 200, such as millimeter wave radar.
  • the periphery detection sensor 21 stores the periphery information, which is the raw information detected by the sensor, in the vehicle storage unit 30 .
  • the GNSS receiver 24 receives navigation signals transmitted by navigation satellites of the GNSS (Global Navigation Satellite System), which is a satellite navigation system, and sequentially calculates the current position based on the received navigation signals.
  • Inertial sensor 25 is a sensor that detects inertia occurring in vehicle 200, and includes one or both of an acceleration sensor and an angular velocity sensor.
  • the GNSS receiver 24 and the inertial sensor 25 are sensors for successively detecting the current position of the vehicle 200 . Since a change in the current position indicates the behavior of vehicle 200 , GNSS receiver 24 and inertial sensor 25 are sensors that detect information indicating the behavior of vehicle 200 .
  • the driver operation detection sensor 26 is a sensor that detects an input operation performed by the driver to change or maintain the behavior of the vehicle 200 .
  • the driver operation detection sensor 26 is an accelerator sensor, a brake sensor, a steering sensor, a shift position sensor, and the like.
  • the vehicle storage unit 30 is writable and stores various information.
  • the vehicle storage unit 30 does not always have to be mounted on the vehicle 200 and may be detachable from the vehicle 200 .
  • the vehicle storage unit 30 may be detached and used by being connected to another information terminal at another location, for example, at a company.
  • a flash memory can be used for the vehicle storage unit 30.
  • a map database (hereinafter referred to as a map DB) is stored in the vehicle storage unit 30 .
  • the map DB contains map information.
  • the map information includes sign information specifying the types of road signs, road markings, and lane markings. Road signs, pavement markings and lane markings are mandated by law and are provided to ensure the safe and smooth movement of traffic on roads. Road signs are, for example, information signs, warning signs, regulatory signs and instruction signs.
  • the label information is information for specifying these types and contents. Map information is realized by map information called a high-precision map, for example.
  • a high-definition map is a three-dimensional map that contains information about features that exist around roads.
  • Features include traffic lights, road signs, billboards and buildings.
  • the signboard displays the store name and the like.
  • the information about the traffic light is traffic light information specifying the traffic light, such as the coordinates of the traffic light, the shape of the signal, the size and the direction of the traffic light.
  • a high-definition map includes not only three-dimensional information but also two-dimensional information existing on the road surface.
  • the two-dimensional information is, for example, the type of road marking, the position of the road marking, the position of the marking line, and the type of the marking line.
  • the vehicle control unit 50 acquires behavior information indicating the behavior of the vehicle 200 and peripheral information indicating objects existing around the vehicle 200 from the in-vehicle sensor 20 .
  • the vehicle control unit 50 also acquires map information from the map DB stored in the vehicle storage unit 30 .
  • the vehicle control unit 50 uses the acquired information to perform vehicle control for controlling the behavior of the vehicle 200 .
  • Vehicle control unit 50 can be realized by a configuration including at least one processor.
  • Signal stop control is control to stop at a stop line when the light of the target traffic light is red and the vehicle is not traveling in the lane indicated by the arrow light.
  • a plurality of traffic signals can be detected by the surrounding detection sensor 21 , which one is the target traffic signal is determined from the position and orientation of the traffic signal with respect to the vehicle 200 .
  • the signal information stored in the map information is used to identify the target signal from the signals detected by the surrounding detection sensor 21 . Then, the lights that are on at the specified target signal are determined.
  • Lane keeping control is control for automatically traveling in the same lane while successively detecting the positions of the lane markings and the vehicle 200 in the vehicle width direction. Lane keeping control is executed using the position and shape of the lane markings recognized using the periphery detection sensor 21 and the position and shape of the lane markings included in the map information.
  • the in-vehicle device 60 is mounted on the vehicle 200 and used.
  • the in-vehicle device 60 can be realized by a configuration including at least one processor.
  • the in-vehicle device 60 can be implemented by a computer including a processor, nonvolatile memory, RAM, I/O, bus lines connecting these components, and the like.
  • a program for operating a general-purpose computer as the in-vehicle device 60 is stored in the non-volatile memory.
  • a processor executes a program stored in non-volatile memory while using the temporary storage function of RAM.
  • the in-vehicle device 60 has an information generation unit 61, an accuracy calculation unit 62, a map update unit 63, and a setting unit 64 as functional blocks. Execution by these functional blocks means that the method corresponding to the program is executed.
  • accuracy calculation unit 62 calculates the detection accuracy of surrounding information of surrounding detection sensor 21.
  • the position of vehicle 200 also includes the reception accuracy of GNSS receiver 24 that determines the position of vehicle 200 . For example, when the reception condition of the GNSS receiver 24 is poor, specifically when the reliability of the GNSS received signal is low or the number of positioning satellites is small, even if the position of the vehicle 200 is determined, the positional accuracy is low. Therefore, in order to calculate the detection accuracy, the position of the vehicle 200 is used in consideration of the GNSS reception accuracy.
  • the detection accuracy of the surrounding detection sensor 21 changes depending on various external factors.
  • the vehicle 200 when the vehicle 200 is traveling through a group of tall buildings, there are many shadows of the tall buildings on the road surface, and the contrast between the shadows and the sunlight reduces the detection accuracy.
  • parking on the street reduces the detection accuracy of lane markings, because many vehicles are parked on the street in the downtown area.
  • the brightness in the vicinity of the entrance/exit of the tunnel rapidly changes between inside and outside of the tunnel, which lowers the detection accuracy. Therefore, detection accuracy differs depending on the position of vehicle 200 .
  • the reception accuracy of the GNSS receiver 24 differs depending on the position of the vehicle 200 .
  • the reception accuracy of such a GNSS receiver 24 is also included in the detection accuracy.
  • detection accuracy varies depending on the weather at the position of vehicle 200 . For example, whether or not it is raining may be determined based on the operation status of wipers, or weather information may be obtained from another device through vehicle communication unit 40 . Also, during the detection time of the afternoon sun or the morning sun, the position of the sun may be low and it may be difficult for the camera 22 to photograph. Therefore, depending on the detection time, the detection accuracy is lowered.
  • the accuracy calculation unit 62 calculates the detection accuracy of peripheral information in consideration of the factors that affect the detection accuracy as described above. As described above, for example, when the vehicle 200 is located in a downtown area, the lane marking detection accuracy may be low, so the lane marking detection accuracy is set low. Based on the position of vehicle 200, the weather at the position of vehicle 200, the road surface condition around vehicle 200, and the detection time of the surrounding information, the detection accuracy is set low when there is a risk that the detection accuracy will decrease.
  • Such detection accuracy is calculated using a preset control map and a formula set based on the correlation.
  • Accuracy calculator 62 calculates the detection accuracy periodically, for example, every few seconds.
  • the accuracy calculation unit 62 stores the calculated accuracy in the vehicle storage unit 30 as accuracy information together with the calculation time and the calculation position.
  • the information generation unit 61 When the surrounding information detected by the surrounding detection sensor 21 and the map information are different, the information generation unit 61 generates processed information by processing the surrounding information.
  • the processed information has a smaller amount of information than the peripheral information, and includes at least quantitative information that quantifies the difference between the peripheral information and the map information in a portion different from the map information.
  • the peripheral information is also called measurement data, for example, and the measurement data of the camera 22 is image data.
  • the quantitative information is, for example, a recognition result obtained by subjecting the image data of the camera 22 to image recognition processing and obtaining the image recognition processing.
  • image recognition processing for example, information about feature points is quantified and extracted as numerical values.
  • a feature point is a type such as a center of a lane marking, an edge of a lane marking, or a signboard.
  • the information generation unit 61 also includes coordinate conversion processing as processing of peripheral information.
  • the coordinate conversion processing includes, for example, conversion from absolute coordinates to the host vehicle coordinate system, conversion from the World Geodetic System 1984 (WGS84) to the Cartesian coordinate system, and the like.
  • An absolute coordinate system is a coordinate system in which the coordinates of data points are represented by latitude, longitude, and elevation.
  • the host vehicle position coordinate system is a coordinate system in which coordinates from the host vehicle position to data points are expressed in the vehicle width direction, vehicle length direction, and vehicle height direction.
  • the information generation unit 61 also calculates the height of the feature and extracts the color of the feature as processing of the surrounding information.
  • the extraction of the color of the feature for example, in the case of road surface paint, is compressed into either white, yellow, or unknown information.
  • color information such as road paint is quantified into values corresponding to simplified colors.
  • the information generator 61 also extracts the type of difference information, the magnitude of the difference, the number of feature points, and the like from the peripheral information. As a result, the processed information is quantified and the amount of data is smaller than that of the peripheral information.
  • the information generation unit 61 uses the amount of change in the position of the feature as quantitative information. Differences between the surrounding information and the map information include, for example, differences in the positions of features, differences in the positions of road markings, and differences in the line type of lane markings.
  • the quantitative information includes information including the amount of change of 100 mm.
  • the quantitative information may also include the coordinates of the position of the feature in the surrounding information.
  • the coordinates of the position of the feature are the coordinates of a reference point set in advance on the feature, such as the center point of the feature.
  • the amount of change is the amount of change in the reference point.
  • the amount of change may also include the direction in which the position of the feature changed, that is, vector information.
  • the information generation unit 61 If there is a difference between the sign information of the surrounding information and the sign information of the map information, the information generation unit 61 generates processed information that includes both the sign information of the surrounding information and the sign information of the map information. For example, if the peripheral information has dashed lane markings and the map information has solid lane markings, the processing information includes information that the peripheral information has dashed lane markings and map information has solid lane markings. including information. In other words, the processed information includes both peripheral information and map information.
  • the information generation unit 61 When the difference between the surrounding information and the map information is the difference in the presence or absence of the target feature, the information generation unit 61 generates processed information including presence information indicating the presence or absence of the feature, in addition to the quantitative information. . For example, if there are road signs in the surrounding information but no road signs in the map information, there is a difference in the presence or absence of road signs. In this case, the information generation unit 61 generates processed information so that the surrounding information includes existence information indicating that there is a road sign. Conversely, for example, if there are no road signs in the surrounding information but there are road signs in the map information, there is a difference in the presence or absence of road signs.
  • the information generation unit 61 generates processed information so that the surrounding information includes presence information indicating that there is no road sign.
  • the presence information may include information specifying a feature that has a difference in presence or absence.
  • the plurality of features included in the surrounding information may include information specifying one of the plurality of features included in the map information, for example, if there is no road sign, the road sign. .
  • the information generation unit 61 determines that construction is being performed on the road on which the vehicle is traveling using the surrounding information, it stops generating processing information.
  • the presence or absence of road construction is determined from signboards indicating construction work, workers on the road, guidance staff, lane guidance displays, lane regulations, and construction schedule information distributed in advance.
  • the vehicle communication unit 40 may be controlled to transmit peripheral information instead of processing information.
  • information indicating that construction work is being carried out may be transmitted to the management server 80 .
  • the information generation unit 61 also generates processed information when the difference between the surrounding information and the map information is within the allowable range, and stops generating processed information when the difference is outside the allowable range. If the difference is large, it is necessary to identify the cause of the large difference. Therefore, when the difference is out of the allowable range, the vehicle communication unit 40 is controlled so as to transmit peripheral information instead of processing information.
  • the processing information also includes information on detection accuracy.
  • the processing information includes detection accuracy information calculated by the accuracy calculation unit 62 .
  • the information generation unit 61 stops generating processing information using peripheral information with low detection accuracy.
  • the predetermined detection accuracy is an index for determining whether or not the surrounding information should be trusted. If the peripheral information is detected with low accuracy, the reliability of the peripheral information is low, so the reliability of the processed information is also low. Control is performed so as not to generate such low-reliability processing information.
  • the detection accuracy of peripheral information varies depending on the sensor.
  • the reception accuracy of the GNSS receiver 24 may be low, but the detection accuracy of the camera 22 may be high. In such a case, the generation of processed information using the GNSS receiver 24 is stopped, but the processed information using the camera 22 is generated.
  • the in-vehicle device 60 When transmitting the processed information, the in-vehicle device 60 compresses or reduces the processed information so that it is equal to or less than a predetermined communication limit. The vehicle communication unit 40 then transmits the compressed or reduced processed information to the management server 80 .
  • the in-vehicle device 60 may transmit the peripheral information as it is without processing.
  • the in-vehicle device 60 may generate the processed information every 100 ms, for example, and stop generating when the processed information reaches a predetermined threshold value or more, for example, 600 bytes or more. Then, the in-vehicle device 60 may collect and transmit a plurality of pieces of generated processing information.
  • the in-vehicle device 60 divides the peripheral information so that the amount of traffic is less than or equal to the communication limit.
  • the vehicle communication unit 40 then transmits the divided processing information to the management server 80 .
  • the in-vehicle device 60 may control the vehicle communication unit 40 to transmit the processed information to the management server 80 at an arbitrarily set upload timing.
  • the upload timing is, for example, each time vehicle control ends. Also, the upload timing may be when the vehicle 200 is started, that is, when the ignition switch is turned on. Also, the upload timing may be periodic. After uploading the stored information from the vehicle communication unit 40 to the management server 80 , the in-vehicle device 60 may delete the uploaded information from the vehicle storage unit 30 .
  • the setting unit 64 sets whether or not to transmit the processing information and peripheral information to the management server 80 .
  • the setting unit 64 sets whether or not transmission is permitted, for example, by being set by the driver.
  • the processing information and peripheral information set by the driver that is, when the driver agrees, are transmitted to the management server 80 .
  • the screen "Can you send it? YES, NO" is displayed, and the driver selects whether or not to send it. It may also be possible to request disclosure of personal information.
  • the crew may be notified that information is being sent and received, for example, by voice output and screen display. Further, during transmission/reception, the passenger may be allowed to stop or cancel the transmission/reception.
  • the map update unit 63 updates the map information in the map DB when new map information is given. Further, when the vehicle communication unit 40 receives new map information from the management server 80, the map update unit 63 updates the map information in the map DB.
  • the flowchart shown in FIG. 3 is repeatedly executed by the in-vehicle device 60 in a short period of time.
  • step S1 the surrounding information and the map information are compared, and the process proceeds to step S2.
  • step S2 it is determined whether or not there is a difference between the surrounding information and the map information. If there is a difference, the process proceeds to step S3.
  • step S3 since there is a difference, it is determined whether or not the difference is within the allowable range.
  • step S4 since it is within the allowable range, it is determined whether or not the detection accuracy of the peripheral information is higher than the predetermined detection accuracy. finish.
  • step S5 since the detection accuracy is high, processing information is generated, and the process moves to step S6.
  • the processing information also includes accuracy information regarding detection accuracy.
  • step S6 the processing information is controlled to be transmitted from the vehicle communication unit 40 to the management server 80, and this flow ends.
  • step S7 since it is out of the allowable range, control is performed so that the surrounding information and accuracy information are transmitted from the vehicle communication unit 40 to the management server 80, and this flow ends.
  • the processed information is sent to the management server 80. Also, if the difference is out of the allowable range, the peripheral information is sent to the management server 80 .
  • the management server 80 communicates with the in-vehicle devices 60 installed in the plurality of vehicles 200 and manages the map information stored in the vehicle storage unit 30 of the in-vehicle devices 60 .
  • the management server 80 includes a server communication section 81, a server storage section 82, and a server control section 83, as shown in FIG.
  • Server communication unit 81 is a communication unit that communicates with vehicle communication unit 40 via communication network 300 .
  • the server communication unit 81 may be connected to the communication network 300 by wire, or may be connected to the communication network 300 wirelessly.
  • the server storage unit 82 stores a distribution map DB.
  • the distribution map DB is a database storing map information to be distributed to the vehicle 200 in order to update part or all of the map DB stored in the vehicle storage unit 30 . Therefore, the latest map information is stored in the distribution map DB.
  • the server control unit 83 can be realized by a configuration including at least one processor.
  • the server control unit 83 can be realized by a computer including a processor, nonvolatile memory, RAM, I/O, bus lines connecting these components, and the like.
  • a program for operating a general-purpose computer as the server control unit 83 is stored in the nonvolatile memory.
  • a processor executes a program stored in non-volatile memory while using the temporary storage function of RAM.
  • the server control unit 83 controls the server storage unit 82 to store the received information together with the time of reception. Further, when the map information in the distribution map DB is updated, server control unit 83 controls server communication unit 81 to transmit the updated map information to vehicle 200 .
  • the server control unit 83 can grasp, for example, changes in the processing information in chronological order. For example, if the positional deviation in the processing information of a certain feature was initially several millimeters, but after a few days it has become several tens of millimeters, the position of the feature has changed due to factors such as construction work. It can be predicted that Therefore, it is possible to grasp the cause of the generation of the processing information at an earlier stage.
  • the server control unit 83 has a reliability calculation unit 84, a detection accuracy determination unit 85, and an update determination unit 86 as functional blocks. Execution by these functional blocks means that the method corresponding to the program is executed.
  • the detection accuracy determination unit 85 uses at least one of the position of the vehicle 200, the weather at the position of the vehicle 200, the road surface condition around the vehicle 200, and the detection time of the surrounding information to detect the surrounding information of the surrounding detection sensor 21. Determine precision.
  • the detection accuracy determination unit 85 also takes into account the accuracy information transmitted from the in-vehicle device 60 to determine the detection accuracy. For example, when the accuracy information of in-vehicle device 60 does not include weather information, detection accuracy determination unit 85 acquires weather information from another device and uses it to determine detection accuracy. In other words, the final detection accuracy is determined using information that is not included in the accuracy information of the in-vehicle device 60 but that can be obtained by the detection accuracy determination unit 85 .
  • the detection accuracy determination unit 85 when the detection accuracy determination unit 85 receives accuracy information from a plurality of in-vehicle devices 60, it statistically processes the plurality of accuracy information to determine detection accuracy. For example, when the detection accuracy varies in the same time period or the same weather, the detection accuracy is determined using the variance, standard deviation, median value, average value, and the like of the detection accuracy. In other words, if accuracy information is received indicating that a certain vehicle-mounted device 60 has extremely low detection accuracy, but a plurality of other vehicle-mounted devices 60 have high detection accuracy, the information that the detection accuracy is low is erroneous. There is a risk. Therefore, by statistical processing, information with low detection accuracy is handled lightly, and information detected by other multiple in-vehicle devices 60 is handled heavily to determine the detection accuracy.
  • the reliability calculation unit 84 uses the processed information to calculate the reliability indicating the certainty of the map information. Further, when the processed information is acquired from a plurality of vehicles 200, the reliability calculation unit 84 statistically processes the plurality of processed information to calculate the reliability. Also, the reliability calculation unit 84 calculates the reliability using the detection accuracy determined by the detection accuracy determination unit 85 . The reliability calculation unit 84 acquires traffic volume or average traffic volume via the server communication unit 81 . Then, when a plurality of pieces of processed information are received in a certain time period, the reliability calculation unit 84 compares the number of received processed information with the traffic volume or average traffic volume of the same road in the same time period, and calculates the processed information. Calculate confidence. The reliability calculation unit 84 calculates, for example, a ratio obtained by dividing the number of receptions of processed information by the traffic volume.
  • the reliability calculation unit 84 determines that the processed information is correct and calculates a high degree of reliability when similar processed information is acquired at a certain ratio or more.
  • the reliability is evaluated in a plurality of stages, for example, 5 stages, and when the reliability is 5, it is assumed that the reliability is the highest. As described above, the reliability is calculated as 5 when the processed information is obtained at a certain rate or more. Conversely, if the amount of processed information is small even though there is a certain amount of traffic, the reliability of the received processed information is low.
  • the reliability calculation unit 84 calculates so that the reliability of the processed information with high detection accuracy is high. Further, when the detection accuracy is not low but not high, and similar processing information is received from a plurality of vehicles 200, the reliability calculation unit 84 calculates the reliability of the processing information so as to be high.
  • the reliability calculation unit 84 may calculate the reliability for each type of vehicle, for each time period, and for each type of information. For example, different vehicle models may have different detection accuracy of peripheral information. Therefore, obtaining the reliability for each vehicle model enables the reliability to be calculated with higher accuracy. Also, since the reliability may differ depending on the time of day, for example, if the reliability differs between daytime and nighttime, there is a high possibility that the different factors are the brightness of the surroundings. Therefore, the cause of different reliability can be pursued. Further, the reliability may be calculated for each type of information, for example, the reliability of the processed information on the lane markings, the reliability of the positional information on the position of the feature, and the like. The respective reliability levels may have different detection accuracies because the peripheral information to be compared is different. Therefore, by obtaining the reliability level for each type, it is possible to calculate the reliability level with higher accuracy.
  • the update determination unit 86 uses the reliability to determine whether to update the map information. If the reliability indicating that the map DB is correct is smaller than the threshold, the update determination unit 86 determines that the map DB needs to be updated.
  • the update determination unit 86 controls the server communication unit 81 to transmit the updated map information to the in-vehicle device 60 .
  • the update determination unit 86 determines that it is necessary to update the map information, it creates update map data. Then, the created update map data is transmitted to the in-vehicle system 10 .
  • the map update unit 63 updates the map DB.
  • the update map data may be transmitted by specifying the receiving party, or may be transmitted in a broadcast manner without specifying the receiving party.
  • the receiving side determines whether or not to update the update map data based on the version of the update map data.
  • the flowchart shown in FIG. 5 is repeatedly executed by the management server 80 in a short period of time.
  • step S11 processing information is acquired via the server communication unit 81, and the process proceeds to step S12.
  • step S12 the reliability calculation unit 84 calculates the reliability using the processing information and the detection accuracy, and the process proceeds to step S13.
  • step S13 the update determination unit 86 determines whether or not the map information needs to be updated. If the update is required, the process proceeds to step S14, and if the update is not required, the flow ends. In step S13, the update determination unit 86 uses the threshold value and reliability to determine whether or not update is necessary. For example, if the reliability is 3 or less, it is determined that updating is necessary.
  • step S14 it is determined whether or not the map information can be updated, and if so, the process moves to step S15, and if the information is insufficient and cannot be updated, the process moves to step S17.
  • step S17 since the information is insufficient, a request is sent to the vehicle 200 to upload the processed information, and this flow ends.
  • step S15 since updating is necessary, the map information in the distribution map DB is updated, and the process moves to step S15.
  • the server communication unit 81 is controlled to transmit the updated map information to the in-vehicle device 60, and this flow ends.
  • step S21 it is determined whether or not an upload request has been received. If an upload request has been received, the process proceeds to step S22, and if an upload request has not been received, this flow ends.
  • step S22 since the upload request has been received, the corresponding processing information is generated, and the process moves to step S23.
  • the upload request includes information necessary for updating the map information, such as predetermined information of a predetermined point, such as lane marking information.
  • the information generator 61 generates processed information when passing through the point. Further, when the surrounding information corresponding to the vehicle storage unit 30 is stored, the information generation unit 61 generates the processed information from the stored surrounding information.
  • step S23 the vehicle communication unit 40 is controlled to transmit the processing information to the management server 80, and this flow ends. Information necessary for updating the map information is thereby transmitted to the management server 80 . Since the upload request is transmitted to a plurality of vehicles 200 all at once, the vehicles 200 traveling near the relevant point respond to the upload request.
  • peripheral information When sending processed information in response to an upload request, peripheral information may be sent instead of processed information.
  • the information can be sent at a place and time when the communication load is less affected, such as after the vehicle 200 has parked in a predetermined place such as a home parking lot. preferable.
  • step S31 it is determined whether or not the processing information corresponding to the upload request has been received. If the processing information has been received, the process proceeds to step S32.
  • step S32 since the processing information necessary for updating the map information has been received, the map information is reconstructed using the received processing information, and this flow ends.
  • the processed information obtained by processing the surrounding information is generated by the information generation unit 61. be done.
  • the processed information has a smaller amount of information than the peripheral information, and includes at least information obtained by extracting from the peripheral information a portion different from the map information.
  • the information extracted from the surrounding information is quantified by numerical values and becomes quantitative information. As a result, the amount of data is smaller than that of the peripheral information, but it is possible to collect detailed information on different parts rather than simple flags.
  • the information generation unit 61 when the difference between the surrounding information and the map information is the difference in the position of the target feature, the information generation unit 61 generates processed information including quantitative information indicating the amount of change in the position of the feature. to generate As a result, the amount of change in the position of the feature can be known, so it is possible to grasp whether the change in position is slight or not. Therefore, it is possible to collect detailed information such as the amount of change rather than a mere flag. Accordingly, the update determination unit 86 can determine that the map should not be updated when the change in position is minor, and can suppress updating of map information that is not essential.
  • the information generation unit 61 when the difference between the surrounding information and the map information is the difference in the presence or absence of the target feature, the information generation unit 61 generates the processed information including the existence information indicating the presence or absence of the feature. .
  • Existence information makes it possible to grasp in more detail how the existence of features differs.
  • the processing information includes detection accuracy. Detection accuracy is determined by the position of vehicle 200 and the like. The detection accuracy of peripheral information varies depending on the detection conditions due to the advantages and disadvantages of each sensor used. Using such detection accuracy, the reliability of the processing information can be determined. Therefore, it is possible to determine whether there is an update or the like using processed information with high detection accuracy without using processed information with low detection accuracy, in other words, with detection errors or large noise.
  • the information generation unit 61 stops generating processing information using peripheral information with low detection accuracy when the detection accuracy is lower than a predetermined detection accuracy. As a result, it is possible to suppress transmission of processing information with low detection accuracy to the management server 80 or the like.
  • the information generation unit 61 stops generating processing information when it determines that construction is being performed on the road on which the vehicle is traveling using the surrounding information.
  • the surrounding information On a road under construction, there is a high possibility that the surrounding information is different from the map information, and the need to update the map information using the surrounding information under construction is low. Therefore, on a road under construction, by stopping the generation of processed information, the processing load can be reduced and transmission of unnecessary information to the management server 80 can be suppressed.
  • the information generation unit 61 generates the processing information when the difference between the surrounding information and the map information is within the allowable range, and stops generating the processing information when the difference is outside the allowable range. do. If the difference is large, it is necessary to identify the cause of the large difference. Therefore, if the difference is out of the allowable range, the cause of the large difference can be investigated by stopping the generation of the processing information and transmitting the peripheral information.
  • the processed information when transmitting processed information, the processed information is compressed or reduced to a predetermined communication limit or less and transmitted to the management server 80 . As a result, an increase in communication load can be suppressed.
  • the peripheral information when transmitting the peripheral information, the peripheral information is divided so that the amount of traffic is less than or equal to the communication limit and is transmitted to the management server 80 . As a result, it is possible to reduce the communication load at one time and suppress the occurrence of communication failure due to the transmission of a large amount of data at one time.
  • the setting unit 64 can set whether or not to transmit the processing information and the peripheral information to the management server 80 . As a result, it is possible to prevent personal information of the occupant generated by the travel of the occupant from being arbitrarily transmitted to a third party.
  • the management server 80 is configured outside the vehicle 200, but the configuration is not limited to this. Management server 80 may be mounted on vehicle 200 . Therefore, the in-vehicle device 60 may have the functions of the server control unit 83 such as the update determination unit 86 .
  • the map update unit 63 of the in-vehicle device 60 updates the map DB online based on the update map data distributed from the management server 80, but the configuration is limited to this. not a thing Updating of the map DB may be performed offline.
  • the functions realized by the in-vehicle device 60 and the server control unit 83 in the first embodiment described above may be realized by hardware and software different from those described above, or a combination thereof.
  • In-vehicle device 60 and server control unit 83 may communicate with, for example, another control device, and the other control device may perform part or all of the processing.
  • the in-vehicle device 60 and the server control unit 83 are realized by electronic circuits, they can be realized by digital circuits including many logic circuits or analog circuits.
  • the in-vehicle device 60 is used in the vehicle 200, but it is not limited to being mounted in the vehicle 200, and at least part of it may not be mounted in the vehicle 200. .

Abstract

In a map information system (100), when periphery information detected by a periphery detection sensor (21) is different from the map information, an information generating part (61) generates processed information obtained by processing the periphery information. The processed information has a smaller amount of information than the periphery information, and includes at least information obtained by extracting, from the peripheral information, a portion different from the map information. The information extracted from the periphery information is quantitative information quantified by numerical values. As a result, the amount of data is smaller than that of the periphery information, but it is possible to collect detailed information on different portions rather than simple flags.

Description

地図情報システム、車載装置および管理サーバMap information system, in-vehicle device and management server 関連出願の相互参照Cross-reference to related applications
 この出願は、2022年1月26日に日本に出願された特許出願第2022-010351号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。 This application is based on Patent Application No. 2022-010351 filed in Japan on January 26, 2022, and the content of the underlying application is incorporated by reference in its entirety.
 この明細書における開示は、地図情報を管理する地図情報システム、車載装置および管理サーバに関する。 The disclosure in this specification relates to a map information system that manages map information, an in-vehicle device, and a management server.
 特許文献1に記載されている装置は、車両に搭載された外界センサで検出した地物の位置および形状等と、地図データとして記憶部に記憶されている地物情報とを比較する。そして、外界センサで検出した地物に変化があると判断した場合には、差異情報をサーバへ送信する。サーバは、その差異情報をもとに高度化地図データベースを更新する。 The device described in Patent Document 1 compares the position, shape, etc. of features detected by an external sensor mounted on a vehicle with feature information stored in a storage unit as map data. Then, when it is determined that there is a change in the feature detected by the external sensor, the difference information is transmitted to the server. The server updates the advanced map database based on the difference information.
国際公開第2017/212639号WO2017/212639
 特許文献1では、高度化地図データベースに含まれている地物情報が、実際に現地を走行した車両に搭載されたセンサで検出した地図の位置および形状等と相違している場合に、その差異情報またはセンサが検出した計測データをサーバへ送信する。 In Patent Document 1, when the feature information contained in the advanced map database is different from the position and shape of the map detected by the sensor mounted on the vehicle that actually traveled on the site, the difference Send information or measurement data detected by the sensor to the server.
 差異情報はフラグを用いているので、差異情報では地物の変化の度合いを把握することができないという問題がある。たとえば、特許文献1に記載の変化特定フラグが地物の位置変化を表す場合、変化特定フラグとなりえるギリギリの変化量だったのか、それとも大幅に位置が変化したのか不明という問題がある。また計測データをアップロードする場合、データ量が大きすぎ、通信負荷が大きくなるという問題がある。 Since the difference information uses flags, there is the problem that it is not possible to grasp the degree of change in features from the difference information. For example, when the change identification flag described in Patent Document 1 indicates a change in the position of a feature, there is a problem that it is unclear whether the amount of change was just barely enough to be the change identification flag, or whether the position has changed significantly. Also, when uploading measurement data, there is a problem that the amount of data is too large and the communication load increases.
 そこで、開示される目的は前述の問題点を鑑みてなされたものであり、データ量が大きくなるのを抑制しつつ、詳細な差異情報を収集することができる地図情報システム、車載装置および管理サーバを提供することを目的とする。 Therefore, the object of the disclosure is made in view of the above-mentioned problems, and a map information system, an in-vehicle device, and a management server that can collect detailed difference information while suppressing an increase in the amount of data. intended to provide
 本開示は前述の目的を達成するために以下の技術的手段を採用する。 The present disclosure employs the following technical means to achieve the aforementioned objectives.
 ここに開示された地図情報システムは、車両に位置する記憶部に記憶される地図情報を管理する地図情報システムであって、車両に搭載された周辺検出センサにより検出された周辺情報と、地図情報とが異なる場合には、周辺情報を加工した加工情報を生成する情報生成部を含み、加工情報は、周辺情報よりも情報量が少なく、少なくとも地図情報と異なる部分の周辺情報と地図情報との差異を定量化した定量情報を含む。 The map information system disclosed herein is a map information system that manages map information stored in a storage unit located in a vehicle, and includes surrounding information detected by a surrounding detection sensor mounted on the vehicle and map information. is different from the above, includes an information generation unit that generates processed information by processing the surrounding information, the processed information has a smaller amount of information than the surrounding information, and at least the difference between the surrounding information and the map information in a portion different from the map information. Contains quantitative information that quantifies the difference.
 このような地図情報システムに従えば、車両に搭載された周辺検出センサにより検出された周辺情報と、地図情報とが異なる場合には、周辺情報を加工した加工情報が情報生成部によって生成される。加工情報は、周辺情報よりも情報量が少なく、少なくとも地図情報と異なる部分の周辺情報と地図情報との差異を定量化した定量情報を含む。これによってデータ量は周辺情報よりも少ないが、単なるフラグよりも、異なる部分の詳細な情報を収集することができる。 According to such a map information system, when the surrounding information detected by the surrounding detection sensor mounted on the vehicle is different from the map information, the processed information obtained by processing the surrounding information is generated by the information generation unit. . The processed information has a smaller amount of information than the peripheral information, and includes at least quantitative information that quantifies the difference between the peripheral information and the map information in a portion different from the map information. As a result, the amount of data is smaller than that of the peripheral information, but it is possible to collect detailed information on different parts rather than simple flags.
 また開示された車載装置は、車両に搭載されて用いられる車載装置であって、地図情報が記憶される記憶部と、車両に搭載された周辺検出センサにより検出された周辺情報と、地図情報とが異なる場合には、周辺情報を加工した加工情報を生成する情報生成部と、管理サーバと通信する車両通信部であって、加工情報または周辺情報を管理サーバに送信するとともに、管理サーバから新しい地図情報を受信する車両通信部と、管理サーバから新しい地図情報を受信すると、記憶部の地図情報を更新する地図更新部と、を含み、加工情報は、周辺情報よりも情報量が少なく、少なくとも地図情報と異なる部分の周辺情報と地図情報との差異を定量化した定量情報を含み、情報生成部は、周辺情報と地図情報との差異が許容範囲内である場合には、加工情報を生成し、許容範囲外である場合には加工情報を生成の停止し、車両通信部は、許容範囲内である場合には、加工情報を管理サーバに送信し、許容範囲外である場合には、周辺情報を管理サーバに送信する。 Further, the disclosed in-vehicle device is an in-vehicle device that is mounted on a vehicle and used, and includes a storage unit that stores map information, surrounding information detected by a surrounding detection sensor mounted on the vehicle, and map information. are different, an information generation unit that generates processed information obtained by processing the peripheral information, and a vehicle communication unit that communicates with the management server, which transmits the processed information or the peripheral information to the management server, and receives new information from the management server. a vehicle communication unit that receives map information; and a map update unit that updates the map information in the storage unit when new map information is received from the management server. Quantitative information that quantifies the difference between the map information and the surrounding information of the part different from the map information is included, and the information generation unit generates the processed information when the difference between the surrounding information and the map information is within the allowable range. If it is out of the allowable range, the vehicle communication unit stops generating the processing information. If it is in the allowable range, the vehicle communication unit transmits the processing information to the management server. Send peripheral information to the management server.
 このような車載装置に従えば、車両に搭載された周辺検出センサにより検出された周辺情報と、地図情報とが異なる場合には、周辺情報を加工した加工情報が情報生成部によって生成される。加工情報は、周辺情報よりも情報量が少なく、少なくとも地図情報と異なる部分の周辺情報と地図情報との差異を定量化した定量情報を含む。これによってデータ量は周辺情報よりも少ないが、単なるフラグよりも、異なる部分の詳細な情報を収集することができる。このような加工情報を管理サーバに送信するので、管理サーバは加工情報を用いて地図の更新の有無を判断することができる。 According to such an in-vehicle device, when the surrounding information detected by the surrounding detection sensor mounted on the vehicle is different from the map information, the processed information obtained by processing the surrounding information is generated by the information generation unit. The processed information has a smaller amount of information than the peripheral information, and includes at least quantitative information that quantifies the difference between the peripheral information and the map information in a portion different from the map information. As a result, the amount of data is smaller than that of the peripheral information, but it is possible to collect detailed information on different parts rather than simple flags. Since such processing information is transmitted to the management server, the management server can use the processing information to determine whether or not the map has been updated.
 さら開示された管理サーバは、複数の車両に搭載されている車載装置と通信し、車載装置の記憶部に記憶されている地図情報を管理する管理サーバであって、車載装置と通信するサーバ通信部と、複数の車載装置から加工情報を受信すると、複数の加工情報を統計処理して、地図情報の確かさを示す信頼度を算出する信頼度算出部と、信頼度を用いて、地図情報を更新するか否かを判断する更新判断部と、地図情報を更新する場合には、更新した地図情報を車載装置に送信するようにサーバ通信部を制御する制御部と、を含み、加工情報は、車両に搭載された周辺検出センサにより検出された周辺情報よりも情報量が少なく、周辺情報と地図情報とが異なる場合に生成され、少なくとも地図情報と異なる部分の周辺情報と地図情報との差異を定量化した定量情報を含む。 Furthermore, the disclosed management server is a management server that communicates with in-vehicle devices installed in a plurality of vehicles and manages map information stored in a storage unit of the in-vehicle devices, and performs server communication that communicates with the in-vehicle devices. a reliability calculation unit that receives processed information from a plurality of in-vehicle devices and statistically processes the plurality of processed information to calculate a reliability indicating the accuracy of the map information; and a control unit for controlling the server communication unit to transmit the updated map information to the in-vehicle device when updating the map information, and processing information is generated when the amount of information is less than the surrounding information detected by the surrounding detection sensor mounted on the vehicle, and the surrounding information and the map information are different. Contains quantitative information that quantifies the difference.
 このような管理サーバに従えば、車両に搭載された周辺検出センサにより検出された周辺情報と、地図情報とが異なる場合には、周辺情報を加工した加工情報を受信する。加工情報は、周辺情報よりも情報量が少なく、少なくとも地図情報と異なる部分の周辺情報と地図情報との差異を定量化した定量情報を含む。これによってデータ量は周辺情報よりも少ないが、単なるフラグよりも、異なる部分の詳細な情報を収集することができる。このような加工情報を管理サーバは受信し、信頼度算出部は、複数の加工情報を用いて地図情報の確かさを示す信頼度を算出する。したがって更新判断部は加工情報の信頼度が高い場合には、信頼度の高い加工情報を用いて地図の更新の有無を判断することができる。 According to such a management server, when the surrounding information detected by the surrounding detection sensor mounted on the vehicle is different from the map information, processed information obtained by processing the surrounding information is received. The processed information has a smaller amount of information than the peripheral information, and includes at least quantitative information that quantifies the difference between the peripheral information and the map information in a portion different from the map information. As a result, the amount of data is smaller than that of the peripheral information, but it is possible to collect detailed information on different parts rather than simple flags. The management server receives such processed information, and the reliability calculation unit calculates the reliability indicating the certainty of the map information using a plurality of pieces of processed information. Therefore, when the reliability of the processed information is high, the update determination unit can determine whether or not the map has been updated using the highly reliable processed information.
第1実施形態の地図更新システムの全体構成を示す図。The figure which shows the whole structure of the map update system of 1st Embodiment. 車載システム10の構成を示す図。The figure which shows the structure of the vehicle-mounted system 10. FIG. 車載装置60の処理を示すフローチャート。4 is a flowchart showing processing of the in-vehicle device 60; 管理サーバ80の構成を示す図。FIG. 4 is a diagram showing the configuration of a management server 80; サーバ制御部83の処理を示すフローチャート。8 is a flowchart showing processing of a server control unit 83; 車載装置60の他の処理を示すフローチャート。4 is a flowchart showing another process of the in-vehicle device 60; サーバ制御部83の他の処理を示すフローチャート。8 is a flowchart showing another process of the server control unit 83;
 (第1実施形態)
 本開示の第1実施形態に関して、図1~図7を用いて説明する。図1は、本実施形態の地図情報システム100の全体構成を示す図である。地図情報システム100は、車両200に位置する車両記憶部30に記憶される地図情報を更新する。地図情報システム100は、車両200に搭載された車載システム10と、車両200の外の任意の位置に設置された管理サーバ80とを備えている。車載システム10と管理サーバ80とは通信回線網300を介して通信できる。
(First embodiment)
A first embodiment of the present disclosure will be described with reference to FIGS. 1 to 7. FIG. FIG. 1 is a diagram showing the overall configuration of a map information system 100 of this embodiment. The map information system 100 updates map information stored in the vehicle storage unit 30 located in the vehicle 200 . The map information system 100 includes an in-vehicle system 10 mounted on a vehicle 200 and a management server 80 installed at an arbitrary position outside the vehicle 200 . In-vehicle system 10 and management server 80 can communicate via communication network 300 .
 まず、車載システム10の構成に関して、図2を用いて説明する。車載システム10は、車載センサ20、車両記憶部30、車両通信部40、車両制御部50、および車載装置60を備えている。これらは、車内LAN11に接続されており、車内LAN11を介して互いに通信する。車両通信部40は、無線通信する通信部であり、通信回線網300を介して他の装置、たとえば管理サーバ80との間で通信する。 First, the configuration of the in-vehicle system 10 will be explained using FIG. The in-vehicle system 10 includes an in-vehicle sensor 20 , a vehicle storage section 30 , a vehicle communication section 40 , a vehicle control section 50 and an in-vehicle device 60 . These are connected to the in-vehicle LAN 11 and communicate with each other via the in-vehicle LAN 11 . Vehicle communication unit 40 is a communication unit that performs wireless communication, and communicates with another device such as management server 80 via communication network 300 .
 車載センサ20は、車両制御に使う種々の情報を検出するために車両200に搭載されるセンサである。車載センサ20は、周辺検出センサ21と、GNSS受信機24と、慣性センサ25と、ドライバ操作検出センサ26とを備えている。この他に、車載センサ20として、ドライバの状態を検出するセンサなど、他のセンサを備えてもよい。 The vehicle-mounted sensor 20 is a sensor mounted on the vehicle 200 to detect various information used for vehicle control. The in-vehicle sensor 20 includes a surrounding detection sensor 21 , a GNSS receiver 24 , an inertial sensor 25 and a driver operation detection sensor 26 . In addition, as the in-vehicle sensor 20, other sensors such as a sensor for detecting the state of the driver may be provided.
 周辺検出センサ21は、車両200に搭載され、車両200の周辺に存在する種々の物体を検出するセンサである。物体には、路面標示および区画線などの平面的な物体も含まれる。図2には、周辺検出センサ21としてカメラ22とLidar23を示している。カメラ22は、車両200の前方の画像を撮影する。また、カメラ22は、車両200の側方および後方を撮影するようになっていてもよい。Lidar23は、光の投光と受光により、車両200の周辺に存在する物体の位置などを検出する。周辺検出センサ21は、これらに加えて、あるいは、これらに代えて、ミリ波レーダなど、車両200の周辺に存在する物体を検出する他のセンサを備えていてもよい。周辺検出センサ21は、検出したセンサの生情報である周辺情報を車両記憶部30に記憶する。 The surrounding detection sensor 21 is a sensor that is mounted on the vehicle 200 and detects various objects existing around the vehicle 200 . Objects also include planar objects such as pavement markings and lane markings. FIG. 2 shows a camera 22 and a lidar 23 as the peripheral detection sensor 21 . Camera 22 captures an image in front of vehicle 200 . Moreover, the camera 22 may be configured to photograph the sides and rear of the vehicle 200 . The lidar 23 detects the positions of objects existing around the vehicle 200 by projecting and receiving light. Periphery detection sensor 21 may include, in addition to or instead of these, other sensors that detect objects existing in the vicinity of vehicle 200, such as millimeter wave radar. The periphery detection sensor 21 stores the periphery information, which is the raw information detected by the sensor, in the vehicle storage unit 30 .
 GNSS受信機24は、衛星航法システムであるGNSS(Global Navigation Satellite System)が備える航法衛星が送信する航法信号を受信し、受信した航法信号に基づいて現在位置を逐次算出する。慣性センサ25は、車両200に生じる慣性を検出するセンサであり、加速度センサおよび角速度センサの一方または両方を含む。GNSS受信機24と慣性センサ25は、車両200の現在位置を逐次検出するためのセンサである。現在位置の変化は車両200の挙動を示すので、GNSS受信機24と慣性センサ25は、車両200の挙動を示す情報を検出するセンサである。 The GNSS receiver 24 receives navigation signals transmitted by navigation satellites of the GNSS (Global Navigation Satellite System), which is a satellite navigation system, and sequentially calculates the current position based on the received navigation signals. Inertial sensor 25 is a sensor that detects inertia occurring in vehicle 200, and includes one or both of an acceleration sensor and an angular velocity sensor. The GNSS receiver 24 and the inertial sensor 25 are sensors for successively detecting the current position of the vehicle 200 . Since a change in the current position indicates the behavior of vehicle 200 , GNSS receiver 24 and inertial sensor 25 are sensors that detect information indicating the behavior of vehicle 200 .
 ドライバ操作検出センサ26は、ドライバが車両200の挙動を変化または維持するためにする入力操作を検出するセンサである。ドライバ操作検出センサ26は、アクセルセンサ、ブレーキセンサ、ステアリングセンサ、シフトポジションセンサなどである。 The driver operation detection sensor 26 is a sensor that detects an input operation performed by the driver to change or maintain the behavior of the vehicle 200 . The driver operation detection sensor 26 is an accelerator sensor, a brake sensor, a steering sensor, a shift position sensor, and the like.
 車両記憶部30は、書き込み可能であり、種々の情報を記憶している。車両記憶部30は、常に車両200に搭載されている必要はなく、車両200と着脱可能であってもよい。車両記憶部30は、たとえばユーザが車両200を停止した後は、取り外して、他の場所、たとえば会社にある他の情報端末と接続して使用可能であってもよい。 The vehicle storage unit 30 is writable and stores various information. The vehicle storage unit 30 does not always have to be mounted on the vehicle 200 and may be detachable from the vehicle 200 . For example, after the user stops the vehicle 200, the vehicle storage unit 30 may be detached and used by being connected to another information terminal at another location, for example, at a company.
 車両記憶部30には、フラッシュメモリを用いることができる。車両記憶部30には、地図データベース(以下、地図DB)が記憶されている。地図DBは、地図情報を含む。地図情報には、道路の標識、路面標示および区画線に関し、これらの種別を特定する標識情報を含む。道路の標識、路面標示および区画線は、法律で定められ、道路上の交通が安全かつ円滑に移動できるようにするために設けられる。道路の標識は、たとえば案内標識、警戒標識、規制標識および指示標識である。標識情報は、これらの種類および内容を特定するための情報である。地図情報は、たとえば高精度地図と呼ばれる地図情報によって実現される。 A flash memory can be used for the vehicle storage unit 30. A map database (hereinafter referred to as a map DB) is stored in the vehicle storage unit 30 . The map DB contains map information. The map information includes sign information specifying the types of road signs, road markings, and lane markings. Road signs, pavement markings and lane markings are mandated by law and are provided to ensure the safe and smooth movement of traffic on roads. Road signs are, for example, information signs, warning signs, regulatory signs and instruction signs. The label information is information for specifying these types and contents. Map information is realized by map information called a high-precision map, for example.
 高精度地図は、3次元地図であり、道路の周辺に存在する地物についての情報を含んでいる。地物には、信号機、道路標識、看板および建物が含まれる。看板は、店舗名などを表示する。信号機に関する情報は、たとえば信号機の座標、信号形状、サイズおよび向きなど、信号機を特定する信号機情報である。高精度地図には、立体的な情報だけでなく、道路の表面に存在する平面的な情報も含む。平面的な情報は、たとえば路面標示の種類、路面標示の位置、区画線の位置、および区画線の種類である。 A high-definition map is a three-dimensional map that contains information about features that exist around roads. Features include traffic lights, road signs, billboards and buildings. The signboard displays the store name and the like. The information about the traffic light is traffic light information specifying the traffic light, such as the coordinates of the traffic light, the shape of the signal, the size and the direction of the traffic light. A high-definition map includes not only three-dimensional information but also two-dimensional information existing on the road surface. The two-dimensional information is, for example, the type of road marking, the position of the road marking, the position of the marking line, and the type of the marking line.
 車両制御部50は、車載センサ20から、車両200の挙動を示す挙動情報、および車両200の周辺に存在する物体を示す周辺情報を取得する。また車両制御部50は、車両記憶部30に記憶されている地図DBから地図情報を取得する。車両制御部50は、これら取得した情報を使い、車両200の挙動を制御する車両制御を実行する。車両制御部50は、少なくとも1つのプロセッサを備えた構成により実現できる。 The vehicle control unit 50 acquires behavior information indicating the behavior of the vehicle 200 and peripheral information indicating objects existing around the vehicle 200 from the in-vehicle sensor 20 . The vehicle control unit 50 also acquires map information from the map DB stored in the vehicle storage unit 30 . The vehicle control unit 50 uses the acquired information to perform vehicle control for controlling the behavior of the vehicle 200 . Vehicle control unit 50 can be realized by a configuration including at least one processor.
 車両制御の一例は、信号停止制御である。信号停止制御は、対象信号機の灯火が赤であって、矢印灯火が示す方向に走行する走行レーンを走行中でない場合には、停止線で停止する制御である。対象信号機は、周辺検出センサ21で複数の信号機が検出できた場合、どれが対象信号機であるかは、車両200に対する信号機の位置と向きなどから判断する。信号停止制御では、地図情報に記憶されている信号機情報を用いて、周辺検出センサ21が検出した信号機から対象信号機を特定する。そして、特定した対象信号機において点灯している灯火を判断する。 An example of vehicle control is signal stop control. Signal stop control is control to stop at a stop line when the light of the target traffic light is red and the vehicle is not traveling in the lane indicated by the arrow light. When a plurality of traffic signals can be detected by the surrounding detection sensor 21 , which one is the target traffic signal is determined from the position and orientation of the traffic signal with respect to the vehicle 200 . In the signal stop control, the signal information stored in the map information is used to identify the target signal from the signals detected by the surrounding detection sensor 21 . Then, the lights that are on at the specified target signal are determined.
 車両制御の他の例は、車線維持制御である。車線維持制御は、区画線と車両200との車幅方向の位置を逐次検出しつつ、同じ車線を自動で走行する制御である。車線維持制御は、周辺検出センサ21を使って認識した区画線の位置および形状と、地図情報に含まれている区画線の位置および形状とを用いて実行する。 Another example of vehicle control is lane keeping control. Lane keeping control is control for automatically traveling in the same lane while successively detecting the positions of the lane markings and the vehicle 200 in the vehicle width direction. Lane keeping control is executed using the position and shape of the lane markings recognized using the periphery detection sensor 21 and the position and shape of the lane markings included in the map information.
 車載装置60は、車両200に搭載されて用いられる。車載装置60は、少なくとも1つのプロセッサを備えた構成により実現できる。たとえば、車載装置60は、プロセッサ、不揮発性メモリ、RAM、I/O、およびこれらの構成を接続するバスラインなどを備えたコンピュータにより実現できる。不揮発性メモリには、汎用的なコンピュータを車載装置60として作動させるためのプログラムが格納されている。プロセッサが、RAMの一時記憶機能を利用しつつ、不揮発性メモリに記憶されたプログラムを実行する。車載装置60は、図2に示すように、機能ブロックとして、情報生成部61、精度算出部62、地図更新部63および設定部64を有する。これらの機能ブロックによって実行されることは、プログラムに対応する方法が実行されることを意味する。 The in-vehicle device 60 is mounted on the vehicle 200 and used. The in-vehicle device 60 can be realized by a configuration including at least one processor. For example, the in-vehicle device 60 can be implemented by a computer including a processor, nonvolatile memory, RAM, I/O, bus lines connecting these components, and the like. A program for operating a general-purpose computer as the in-vehicle device 60 is stored in the non-volatile memory. A processor executes a program stored in non-volatile memory while using the temporary storage function of RAM. As shown in FIG. 2, the in-vehicle device 60 has an information generation unit 61, an accuracy calculation unit 62, a map update unit 63, and a setting unit 64 as functional blocks. Execution by these functional blocks means that the method corresponding to the program is executed.
 精度算出部62は、車両200の位置、車両200の位置における天候、車両200の周辺の路面状況、および周辺情報の検出時間の少なくとも1つを用いて、周辺検出センサ21の周辺情報の検出精度を算出する。車両200の位置には、車両200の位置を決定するGNSS受信機24の受信精度も含まれる。たとえばGNSS受信機24の受信状況が悪い場合、具体的にはGNSS受信信号の信頼度が低い、または測位衛星数が少ない場合、車両200の位置が決定してもその位置精度は低い。したがって検出精度を算出するためには、GNSSの受信精度も考慮した車両200の位置を用いる。周辺検出センサ21の検出精度は、様々な外的要因によって変化する。たとえば車両200が高層ビル群を走行中の場合、高層ビルの影が路面に多数あり、影と日向とのコントラストによって検出精度が低下する。また車両200の位置が繁華街である場合には、繁華街は路上駐車が多いので、路上駐車によって区画線の検出精度が低下する。またトンネルを走行中の場合、トンネルの出入り口付近では、トンネルの内と外で明るさが急激に変化するので、検出精度が低下する。したがって車両200の位置によって、検出精度が異なる。 Using at least one of the position of vehicle 200, the weather at the position of vehicle 200, the road surface condition around vehicle 200, and the detection time of the surrounding information, accuracy calculation unit 62 calculates the detection accuracy of surrounding information of surrounding detection sensor 21. Calculate The position of vehicle 200 also includes the reception accuracy of GNSS receiver 24 that determines the position of vehicle 200 . For example, when the reception condition of the GNSS receiver 24 is poor, specifically when the reliability of the GNSS received signal is low or the number of positioning satellites is small, even if the position of the vehicle 200 is determined, the positional accuracy is low. Therefore, in order to calculate the detection accuracy, the position of the vehicle 200 is used in consideration of the GNSS reception accuracy. The detection accuracy of the surrounding detection sensor 21 changes depending on various external factors. For example, when the vehicle 200 is traveling through a group of tall buildings, there are many shadows of the tall buildings on the road surface, and the contrast between the shadows and the sunlight reduces the detection accuracy. In addition, when the vehicle 200 is located in a downtown area, parking on the street reduces the detection accuracy of lane markings, because many vehicles are parked on the street in the downtown area. Further, when the vehicle is traveling through a tunnel, the brightness in the vicinity of the entrance/exit of the tunnel rapidly changes between inside and outside of the tunnel, which lowers the detection accuracy. Therefore, detection accuracy differs depending on the position of vehicle 200 .
 またトンネル内などでは、GNSS受信機24の受信精度も低下するおそれがある。したがって車両200の位置によって、GNSS受信機24の受信精度が異なる。このようなGNSS受信機24の受信精度も検出精度に含まれる。 In addition, there is a risk that the reception accuracy of the GNSS receiver 24 will also deteriorate in tunnels. Therefore, the reception accuracy of the GNSS receiver 24 differs depending on the position of the vehicle 200 . The reception accuracy of such a GNSS receiver 24 is also included in the detection accuracy.
 また雨および雪などによって路面状況が悪化している場合には、路面標示の検出精度が低下する。したがって車両200の位置における天候によって検出精度が異なる。たとえば雨が降っているか否かは、ワイパーの作動状況によって判断してもよく、車両通信部40から他の装置から天候情報を取得してもよい。また西日、朝日などの検出時間には、太陽の位置が低くカメラ22の撮影がしにくいことがある。したがって検出時間によっては、検出精度が低下する。 Also, when road conditions deteriorate due to rain, snow, etc., the detection accuracy of road markings decreases. Therefore, detection accuracy varies depending on the weather at the position of vehicle 200 . For example, whether or not it is raining may be determined based on the operation status of wipers, or weather information may be obtained from another device through vehicle communication unit 40 . Also, during the detection time of the afternoon sun or the morning sun, the position of the sun may be low and it may be difficult for the camera 22 to photograph. Therefore, depending on the detection time, the detection accuracy is lowered.
 精度算出部62は、前述のような検出精度に影響を与える因子を考慮して、周辺情報の検出精度を算出する。前述のように、たとえば車両200の位置が繁華街である場合には、区画線の検出精度が低い可能性があるので、区画線の検出精度を低く設定する。車両200の位置、車両200の位置における天候、車両200の周辺の路面状況、および周辺情報の検出時間に基づいて、検出精度が低下するおそれがある場合には、検出精度を低く設定する。 The accuracy calculation unit 62 calculates the detection accuracy of peripheral information in consideration of the factors that affect the detection accuracy as described above. As described above, for example, when the vehicle 200 is located in a downtown area, the lane marking detection accuracy may be low, so the lane marking detection accuracy is set low. Based on the position of vehicle 200, the weather at the position of vehicle 200, the road surface condition around vehicle 200, and the detection time of the surrounding information, the detection accuracy is set low when there is a risk that the detection accuracy will decrease.
 このような検出精度は、予め設定される制御マップ、および相関関係に基づいて設定される計算式などを用いて算出される。精度算出部62は、定期的、たとえば数秒毎に検出精度を算出する。精度算出部62は、算出した精度を、算出時刻および算出位置とともに精度情報として、車両記憶部30に記憶する。 Such detection accuracy is calculated using a preset control map and a formula set based on the correlation. Accuracy calculator 62 calculates the detection accuracy periodically, for example, every few seconds. The accuracy calculation unit 62 stores the calculated accuracy in the vehicle storage unit 30 as accuracy information together with the calculation time and the calculation position.
 情報生成部61は、周辺検出センサ21により検出された周辺情報と、地図情報とが異なる場合には、周辺情報を加工した加工情報を生成する。加工情報は、周辺情報よりも情報量が少なく、少なくとも地図情報と異なる部分の周辺情報と地図情報との差異を定量化した定量情報を含む。周辺情報は、たとえば計測データともいい、カメラ22の計測データは、画像データである。定量情報は、たとえばカメラ22の画像データを画像認識処理し、画像認識処理によって得られた認識結果である。画像認識処理によって、たとえば特徴点に関する情報が数値として定量化して抽出される。特徴点とは、たとえば区画線の中心、区画線のエッジ、看板であることなどの種別である。 When the surrounding information detected by the surrounding detection sensor 21 and the map information are different, the information generation unit 61 generates processed information by processing the surrounding information. The processed information has a smaller amount of information than the peripheral information, and includes at least quantitative information that quantifies the difference between the peripheral information and the map information in a portion different from the map information. The peripheral information is also called measurement data, for example, and the measurement data of the camera 22 is image data. The quantitative information is, for example, a recognition result obtained by subjecting the image data of the camera 22 to image recognition processing and obtaining the image recognition processing. By image recognition processing, for example, information about feature points is quantified and extracted as numerical values. A feature point is a type such as a center of a lane marking, an edge of a lane marking, or a signboard.
 情報生成部61は、周辺情報の加工として、座標変換処理も含む。座標変換処理は、たとえば絶対座標から自車座標系への変換、世界測地系1984(WGS84)から直行座標系への変換などである。絶対座標系は、データ点の座標が緯度、経度、標高で表される座標系である。自車位置座標系は、自車位置からデータ点までの座標が車幅方向、車長方向および車高方向で表される座標系である。 The information generation unit 61 also includes coordinate conversion processing as processing of peripheral information. The coordinate conversion processing includes, for example, conversion from absolute coordinates to the host vehicle coordinate system, conversion from the World Geodetic System 1984 (WGS84) to the Cartesian coordinate system, and the like. An absolute coordinate system is a coordinate system in which the coordinates of data points are represented by latitude, longitude, and elevation. The host vehicle position coordinate system is a coordinate system in which coordinates from the host vehicle position to data points are expressed in the vehicle width direction, vehicle length direction, and vehicle height direction.
 情報生成部61は、周辺情報の加工として、地物の高さを算出、地物の色の抽出も含む。地物の色の抽出は、たとえば路面ペイントの場合は、白、黄および不明のいずれか情報に圧縮する。換言すると、路面ペイントなどの色の情報は、単純化された色に対応する値に数値化される。また情報生成部61は、周辺情報から、差異の情報の種類、差異の大きさ、特徴点の数などを抽出する。これによって加工情報は、定量化されて、周辺情報よりデータ量が少なくなる。 The information generation unit 61 also calculates the height of the feature and extracts the color of the feature as processing of the surrounding information. The extraction of the color of the feature, for example, in the case of road surface paint, is compressed into either white, yellow, or unknown information. In other words, color information such as road paint is quantified into values corresponding to simplified colors. The information generator 61 also extracts the type of difference information, the magnitude of the difference, the number of feature points, and the like from the peripheral information. As a result, the processed information is quantified and the amount of data is smaller than that of the peripheral information.
 情報生成部61は、周辺情報と地図情報の差異が対象となる地物の位置の差異である場合には、定量情報として地物の位置の変化量を用いる。周辺情報と地図情報との差異は、たとえば地物の位置の差異、路面標示の位置の差異、区画線の線種の差異などである。 When the difference between the surrounding information and the map information is the difference in the position of the target feature, the information generation unit 61 uses the amount of change in the position of the feature as quantitative information. Differences between the surrounding information and the map information include, for example, differences in the positions of features, differences in the positions of road markings, and differences in the line type of lane markings.
 周辺情報と地図情報とにおいて、地物の位置が、たとえば100mmの差異がある場合には、定量情報には、100mmの変化量を含む情報が含まれる。また定量情報には、周辺情報における地物の位置の座標を含んでもよい。地物の位置の座標は、たとえば地物の中心点など予め地物に設定されている基準点の座標である。また変化量は、基準点の変化量である。また変化量には、地物の位置が変化した方向、すなわちベクトル情報を含んでも良い。 If there is a difference of, for example, 100 mm in the position of the feature between the surrounding information and the map information, the quantitative information includes information including the amount of change of 100 mm. The quantitative information may also include the coordinates of the position of the feature in the surrounding information. The coordinates of the position of the feature are the coordinates of a reference point set in advance on the feature, such as the center point of the feature. The amount of change is the amount of change in the reference point. The amount of change may also include the direction in which the position of the feature changed, that is, vector information.
 情報生成部61は、周辺情報の標識情報および地図情報の標識情報に差異がある場合には、周辺情報の標識情報および地図情報の標識情報の両方の情報を含む加工情報を生成する。たとえば周辺情報では区画線が破線であり、地図情報では区画線が実線である場合には、加工情報には、周辺情報では区画線が破線である情報と、地図情報では区画線が実線である情報とを含む。換言すると、加工情報には、周辺情報と地図情報との両方の情報が含まれる。 If there is a difference between the sign information of the surrounding information and the sign information of the map information, the information generation unit 61 generates processed information that includes both the sign information of the surrounding information and the sign information of the map information. For example, if the peripheral information has dashed lane markings and the map information has solid lane markings, the processing information includes information that the peripheral information has dashed lane markings and map information has solid lane markings. including information. In other words, the processed information includes both peripheral information and map information.
 情報生成部61は、周辺情報と地図情報の差異が対象となる地物の有無の差異である場合には、定量情報とは別に、地物の有無を示す存在情報を含む加工情報を生成する。たとえば周辺情報では、道路標識があるが、地図情報には道路標識がない場合には、道路標識の有無の差異があることになる。この場合は、情報生成部61は、周辺情報には道路標識が在ることを示す存在情報を含むように加工情報を生成する。逆に、たとえば周辺情報では、道路標識がないが、地図情報には道路標識がある場合には、同様に道路標識の有無の差異があることになる。この場合は、情報生成部61は、周辺情報には道路標識が無いことを示す存在情報を含むように加工情報を生成する。存在情報には、有無の差異がある地物を特定する情報を含んでもよい。たとえば周辺情報に含まれる複数の地物に、地図情報には含まれる複数の地物のうちの1つの地物、たとえば道路標識がない場合には、その道路標識を特定する情報を含んでもよい。 When the difference between the surrounding information and the map information is the difference in the presence or absence of the target feature, the information generation unit 61 generates processed information including presence information indicating the presence or absence of the feature, in addition to the quantitative information. . For example, if there are road signs in the surrounding information but no road signs in the map information, there is a difference in the presence or absence of road signs. In this case, the information generation unit 61 generates processed information so that the surrounding information includes existence information indicating that there is a road sign. Conversely, for example, if there are no road signs in the surrounding information but there are road signs in the map information, there is a difference in the presence or absence of road signs. In this case, the information generation unit 61 generates processed information so that the surrounding information includes presence information indicating that there is no road sign. The presence information may include information specifying a feature that has a difference in presence or absence. For example, the plurality of features included in the surrounding information may include information specifying one of the plurality of features included in the map information, for example, if there is no road sign, the road sign. .
 また情報生成部61は、周辺情報を用いて走行中の道路で工事が行われていると判断した場合には、加工情報の生成を停止する。道路工事の有無は、工事を示す看板、道路上に位置する作業員、誘導員、車線誘導の表示、車線規制、および事前に配信される工事予定の情報などから判断する。工事の場合は、加工情報でなく、周辺情報を送信するように車両通信部40を制御してもよい。また工事によって地図情報を更新する必要がある可能性があるので、工事をしていることを示す情報を管理サーバ80に送信してもよい。 Also, when the information generation unit 61 determines that construction is being performed on the road on which the vehicle is traveling using the surrounding information, it stops generating processing information. The presence or absence of road construction is determined from signboards indicating construction work, workers on the road, guidance staff, lane guidance displays, lane regulations, and construction schedule information distributed in advance. In the case of construction work, the vehicle communication unit 40 may be controlled to transmit peripheral information instead of processing information. Further, since there is a possibility that the map information needs to be updated due to construction work, information indicating that construction work is being carried out may be transmitted to the management server 80 .
 また情報生成部61は、周辺情報と地図情報との差異が許容範囲内である場合には、加工情報を生成し、許容範囲外である場合には加工情報の生成を停止する。差異が大きい場合は、差異が大きい原因を特定する必要がある。そこで差異が許容範囲外の場合には、加工情報ではなく周辺情報を送信するように車両通信部40を制御する。 The information generation unit 61 also generates processed information when the difference between the surrounding information and the map information is within the allowable range, and stops generating processed information when the difference is outside the allowable range. If the difference is large, it is necessary to identify the cause of the large difference. Therefore, when the difference is out of the allowable range, the vehicle communication unit 40 is controlled so as to transmit peripheral information instead of processing information.
 また加工情報には、検出精度に関する情報も含まれる。具体的には、加工情報には、精度算出部62が算出した検出精度の情報が含まれる。また情報生成部61は、検出精度が所定の検出精度よりも低い場合には、検出精度が低い周辺情報を用いた加工情報の生成を停止する。所定の検出精度は、周辺情報を信頼すべき情報か否かを判断する指標である。検出精度が低い周辺情報であると、周辺情報の信頼度が低くなるので、加工情報も信頼度が低くなる。このような信頼度が低い加工情報を生成しないように制御される。 The processing information also includes information on detection accuracy. Specifically, the processing information includes detection accuracy information calculated by the accuracy calculation unit 62 . When the detection accuracy is lower than a predetermined detection accuracy, the information generation unit 61 stops generating processing information using peripheral information with low detection accuracy. The predetermined detection accuracy is an index for determining whether or not the surrounding information should be trusted. If the peripheral information is detected with low accuracy, the reliability of the peripheral information is low, so the reliability of the processed information is also low. Control is performed so as not to generate such low-reliability processing information.
 また周辺情報の検出精度は、センサによって異なる。たとえばGNSS受信機24の受信精度は低いが、カメラ22の検出精度が高い場合はある。このような場合は、GNSS受信機24を用いた加工情報の生成は停止するが、カメラ22を用いた加工情報は生成する。 Also, the detection accuracy of peripheral information varies depending on the sensor. For example, the reception accuracy of the GNSS receiver 24 may be low, but the detection accuracy of the camera 22 may be high. In such a case, the generation of processed information using the GNSS receiver 24 is stopped, but the processed information using the camera 22 is generated.
 車載装置60は、加工情報を送信する場合、加工情報を所定の制限通信量以下となるように圧縮または削減する。そし車両通信部40は、圧縮または削減された加工情報を管理サーバ80に送信する。 When transmitting the processed information, the in-vehicle device 60 compresses or reduces the processed information so that it is equal to or less than a predetermined communication limit. The vehicle communication unit 40 then transmits the compressed or reduced processed information to the management server 80 .
 また車載装置60は、周辺情報のデータサイズが閾値以下であれば、周辺情報を加工せずにそのまま送信してもよい。車載装置60は、たとえば100ms毎に加工情報を生成し、加工情報が所定の閾値以上、たとえば600byte以上になると生成を停止してもよい。そして車載装置60は、生成した複数の加工情報を集めて送信してもよい。 Also, if the data size of the peripheral information is equal to or smaller than the threshold, the in-vehicle device 60 may transmit the peripheral information as it is without processing. The in-vehicle device 60 may generate the processed information every 100 ms, for example, and stop generating when the processed information reaches a predetermined threshold value or more, for example, 600 bytes or more. Then, the in-vehicle device 60 may collect and transmit a plurality of pieces of generated processing information.
 また車載装置60は、周辺情報を送信する場合、周辺情報を制限通信量以下となるように分割する。そして車両通信部40は、分割した加工情報を管理サーバ80に送信する。車載装置60は、任意に設定されたアップロードタイミングで、加工情報を管理サーバ80に送信するように車両通信部40を制御してもよい。アップロードタイミングは、たとえば、車両制御が終了する毎である。また、アップロードタイミングは、車両200の起動時、すなわち、イグニッションスイッチがオンになるときでもよい。また、アップロードタイミングは、定期的でもよい。車載装置60は、記憶されている情報を車両通信部40から管理サーバ80にアップロードさせた後は、アップロードした情報を車両記憶部30から消去してもよい。 In addition, when transmitting peripheral information, the in-vehicle device 60 divides the peripheral information so that the amount of traffic is less than or equal to the communication limit. The vehicle communication unit 40 then transmits the divided processing information to the management server 80 . The in-vehicle device 60 may control the vehicle communication unit 40 to transmit the processed information to the management server 80 at an arbitrarily set upload timing. The upload timing is, for example, each time vehicle control ends. Also, the upload timing may be when the vehicle 200 is started, that is, when the ignition switch is turned on. Also, the upload timing may be periodic. After uploading the stored information from the vehicle communication unit 40 to the management server 80 , the in-vehicle device 60 may delete the uploaded information from the vehicle storage unit 30 .
 設定部64は、加工情報および周辺情報の管理サーバ80への送信可否を設定する。設定部64は、たとえば運転者によって設定されることで、送信可否が設定される。これによって運手者が設定した、すなわち運転者が合意した場合に、加工情報および周辺情報が管理サーバ80に送信される。 The setting unit 64 sets whether or not to transmit the processing information and peripheral information to the management server 80 . The setting unit 64 sets whether or not transmission is permitted, for example, by being set by the driver. The processing information and peripheral information set by the driver, that is, when the driver agrees, are transmitted to the management server 80 .
 たとえばナビゲーション装置の表示画面に、「送信してもよいですか? YES、NO」の画面を表示して、運転者が選択することで、送信可否が設定される。また個人情報の情報開示請求ができるようにしてもよい。 For example, on the display screen of the navigation device, the screen "Can you send it? YES, NO" is displayed, and the driver selects whether or not to send it. It may also be possible to request disclosure of personal information.
 また情報を送受信するときに、送受信中であることを乗員に通知、たとえば音声出力および画面表示してもよい。また送受信中に、乗員によって、送受信を停止または送受信のキャンセルする操作が可能にしてもよい。 Also, when information is sent and received, the crew may be notified that information is being sent and received, for example, by voice output and screen display. Further, during transmission/reception, the passenger may be allowed to stop or cancel the transmission/reception.
 地図更新部63は、新しい地図情報が与えられると、地図DBの地図情報を更新する。また地図更新部63は、車両通信部40が新しい地図情報を管理サーバ80から受信すると、地図DBの地図情報を更新する。 The map update unit 63 updates the map information in the map DB when new map information is given. Further, when the vehicle communication unit 40 receives new map information from the management server 80, the map update unit 63 updates the map information in the map DB.
 次に、情報生成部61および精度算出部62の制御に関して、図3のフローチャートを用いて説明する。図3に示すフローチャートは、車載装置60によって短時間に繰り返し実行される。 Next, the control of the information generation unit 61 and the accuracy calculation unit 62 will be explained using the flowchart of FIG. The flowchart shown in FIG. 3 is repeatedly executed by the in-vehicle device 60 in a short period of time.
 ステップS1では、周辺情報と地図情報とを比較し、ステップS2に移る。ステップS2では、周辺情報と地図情報とに差異があるか否かを判断し、差異がある場合には、ステップS3に移り、差異がない場合には、本フローを終了する。 In step S1, the surrounding information and the map information are compared, and the process proceeds to step S2. In step S2, it is determined whether or not there is a difference between the surrounding information and the map information. If there is a difference, the process proceeds to step S3.
 ステップS3では、差異があるので、差異が許容範囲内であるか否かを判断し、許容範囲内である場合には、ステップS4に移り、許容範囲内でない場合には、ステップS7に移る。 In step S3, since there is a difference, it is determined whether or not the difference is within the allowable range.
 ステップS4では、許容範囲内であるので、周辺情報の検出精度が所定の検出精度よりも高いか否かを判断し、高い場合には、ステップS5に移り、高くない場合には、本フローを終了する。 In step S4, since it is within the allowable range, it is determined whether or not the detection accuracy of the peripheral information is higher than the predetermined detection accuracy. finish.
 ステップS5では、検出精度が高いので、加工情報を生成し、ステップS6に移る。加工情報には、検出精度に関する精度情報も含まれる。ステップS6では、加工情報を車両通信部40から管理サーバ80に送信するように制御し、本フローを終了する。 In step S5, since the detection accuracy is high, processing information is generated, and the process moves to step S6. The processing information also includes accuracy information regarding detection accuracy. In step S6, the processing information is controlled to be transmitted from the vehicle communication unit 40 to the management server 80, and this flow ends.
 ステップS7では、許容範囲外であるので、周辺情報と精度情報を車両通信部40から管理サーバ80に送信するように制御し、本フローを終了する。 In step S7, since it is out of the allowable range, control is performed so that the surrounding information and accuracy information are transmitted from the vehicle communication unit 40 to the management server 80, and this flow ends.
 これによって周辺情報と地図情報とに差異がある場合には、加工情報が管理サーバ80に送信される。また差異が許容範囲外である場合には、周辺情報が管理サーバ80に送信される。 As a result, if there is a difference between the surrounding information and the map information, the processed information is sent to the management server 80. Also, if the difference is out of the allowable range, the peripheral information is sent to the management server 80 .
 次に、管理サーバ80の構成に関して、図4を用いて説明する。管理サーバ80は、複数の車両200に搭載されている車載装置60と通信し、車載装置60の車両記憶部30に記憶されている地図情報を管理する。管理サーバ80は、図4に示すように、サーバ通信部81、サーバ記憶部82、サーバ制御部83を備えている。サーバ通信部81は、通信回線網300を介して車両通信部40と通信する通信部である。サーバ通信部81は、通信回線網300に有線接続してもよいし、通信回線網300に無線接続してもよい。 Next, the configuration of the management server 80 will be explained using FIG. The management server 80 communicates with the in-vehicle devices 60 installed in the plurality of vehicles 200 and manages the map information stored in the vehicle storage unit 30 of the in-vehicle devices 60 . The management server 80 includes a server communication section 81, a server storage section 82, and a server control section 83, as shown in FIG. Server communication unit 81 is a communication unit that communicates with vehicle communication unit 40 via communication network 300 . The server communication unit 81 may be connected to the communication network 300 by wire, or may be connected to the communication network 300 wirelessly.
 サーバ記憶部82には、配信地図DBが記憶されている。配信地図DBは、車両記憶部30に記憶されている地図DBの一部または全部を更新するために、車両200に配信する地図情報を格納したデータベースである。したがって配信地図DBは、最新の地図情報が記憶されている。 The server storage unit 82 stores a distribution map DB. The distribution map DB is a database storing map information to be distributed to the vehicle 200 in order to update part or all of the map DB stored in the vehicle storage unit 30 . Therefore, the latest map information is stored in the distribution map DB.
 サーバ制御部83は、少なくとも1つのプロセッサを備えた構成により実現できる。たとえば、サーバ制御部83は、プロセッサ、不揮発性メモリ、RAM、I/O、およびこれらの構成を接続するバスラインなどを備えたコンピュータにより実現できる。不揮発性メモリには、汎用的なコンピュータをサーバ制御部83として作動させるためのプログラムが格納されている。プロセッサが、RAMの一時記憶機能を利用しつつ、不揮発性メモリに記憶されたプログラムを実行する。 The server control unit 83 can be realized by a configuration including at least one processor. For example, the server control unit 83 can be realized by a computer including a processor, nonvolatile memory, RAM, I/O, bus lines connecting these components, and the like. A program for operating a general-purpose computer as the server control unit 83 is stored in the nonvolatile memory. A processor executes a program stored in non-volatile memory while using the temporary storage function of RAM.
 サーバ制御部83は、サーバ通信部81が加工情報または周辺情報および精度情報を受信すると、受信した情報を受信した時刻とともに、サーバ記憶部82に記憶するように制御する。またサーバ制御部83は、配信地図DBの地図情報を更新した場合には、更新された地図情報を車両200に送信するようにサーバ通信部81を制御する。 When the server communication unit 81 receives the processing information or the peripheral information and the accuracy information, the server control unit 83 controls the server storage unit 82 to store the received information together with the time of reception. Further, when the map information in the distribution map DB is updated, server control unit 83 controls server communication unit 81 to transmit the updated map information to vehicle 200 .
 サーバ制御部83は、車載装置60からの情報を蓄積することで、たとえば加工情報の変化を時系列で把握することができる。たとえば、ある地物の加工情報における位置ずれが、最初は数mmであったが、数日後には、数十mmになっている場合には、工事などの要因によって地物の位置が変化していると予測することができる。したがって加工情報が発生している要因を、より早い段階で把握することができる。 By accumulating information from the in-vehicle device 60, the server control unit 83 can grasp, for example, changes in the processing information in chronological order. For example, if the positional deviation in the processing information of a certain feature was initially several millimeters, but after a few days it has become several tens of millimeters, the position of the feature has changed due to factors such as construction work. It can be predicted that Therefore, it is possible to grasp the cause of the generation of the processing information at an earlier stage.
 またサーバ制御部83は、図4に示すように、機能ブロックとして、信頼度算出部84、検出精度決定部85および更新判断部86を有する。これらの機能ブロックによって実行されることは、プログラムに対応する方法が実行されることを意味する。 Also, as shown in FIG. 4, the server control unit 83 has a reliability calculation unit 84, a detection accuracy determination unit 85, and an update determination unit 86 as functional blocks. Execution by these functional blocks means that the method corresponding to the program is executed.
 検出精度決定部85は、車両200の位置、車両200の位置における天候、車両200の周辺の路面状況、および周辺情報の検出時間の少なくとも1つを用いて、周辺検出センサ21の周辺情報の検出精度を決定する。検出精度決定部85は、車載装置60から送信された精度情報も加味して、検出精度を決定する。たとえば検出精度決定部85は、車載装置60の精度情報に天候に関する情報が含まれていない場合には、天候に関する情報を他の装置から取得して、検出精度の決定に用いる。換言すると、車載装置60の精度情報には含まれていないが、検出精度決定部85が取得可能な情報を用いて、最終的な検出精度を決定する。 The detection accuracy determination unit 85 uses at least one of the position of the vehicle 200, the weather at the position of the vehicle 200, the road surface condition around the vehicle 200, and the detection time of the surrounding information to detect the surrounding information of the surrounding detection sensor 21. Determine precision. The detection accuracy determination unit 85 also takes into account the accuracy information transmitted from the in-vehicle device 60 to determine the detection accuracy. For example, when the accuracy information of in-vehicle device 60 does not include weather information, detection accuracy determination unit 85 acquires weather information from another device and uses it to determine detection accuracy. In other words, the final detection accuracy is determined using information that is not included in the accuracy information of the in-vehicle device 60 but that can be obtained by the detection accuracy determination unit 85 .
 また検出精度決定部85は、複数の車載装置60から精度情報を受信すると、複数の精度情報を統計処理して、検出精度を決定する。たとえば同じ時間帯、または同じ天候などで、検出精度にばらつきがある場合には、検出精度の分散、標準偏差、中央値および平均値などを用いて、検出精度を決定する。換言すると、ある車載装置60では極端に検出精度が低いが、他の複数の車載装置60では検出精度が高いことを示す精度情報を受信した場合には、検出精度が低いという情報が誤りであるおそれがある。したがって統計処理によって、検出精度が低い情報を軽く扱い、他の複数の車載装置60の検出情報を重く扱って検出精度を決定する。 Also, when the detection accuracy determination unit 85 receives accuracy information from a plurality of in-vehicle devices 60, it statistically processes the plurality of accuracy information to determine detection accuracy. For example, when the detection accuracy varies in the same time period or the same weather, the detection accuracy is determined using the variance, standard deviation, median value, average value, and the like of the detection accuracy. In other words, if accuracy information is received indicating that a certain vehicle-mounted device 60 has extremely low detection accuracy, but a plurality of other vehicle-mounted devices 60 have high detection accuracy, the information that the detection accuracy is low is erroneous. There is a risk. Therefore, by statistical processing, information with low detection accuracy is handled lightly, and information detected by other multiple in-vehicle devices 60 is handled heavily to determine the detection accuracy.
 信頼度算出部84は、加工情報を用いて地図情報の確かさを示す信頼度を算出する。また信頼度算出部84は、複数の車両200から加工情報を取得した場合に、複数の加工情報を統計処理して、信頼度を算出する。また信頼度算出部84は、検出精度決定部85が決定した検出精度を用いて信頼度を算出する。信頼度算出部84は、サーバ通信部81を介して、交通量または平均交通量を取得する。そして信頼度算出部84は、複数の加工情報をある時間帯で受信した場合、加工情報の受信数と、同時間帯の同じ道路の交通量または平均交通量とを比較して、加工情報の信頼度を算出する。信頼度算出部84は、たとえば加工情報の受信数を交通量で除した比率を算出する。 The reliability calculation unit 84 uses the processed information to calculate the reliability indicating the certainty of the map information. Further, when the processed information is acquired from a plurality of vehicles 200, the reliability calculation unit 84 statistically processes the plurality of processed information to calculate the reliability. Also, the reliability calculation unit 84 calculates the reliability using the detection accuracy determined by the detection accuracy determination unit 85 . The reliability calculation unit 84 acquires traffic volume or average traffic volume via the server communication unit 81 . Then, when a plurality of pieces of processed information are received in a certain time period, the reliability calculation unit 84 compares the number of received processed information with the traffic volume or average traffic volume of the same road in the same time period, and calculates the processed information. Calculate confidence. The reliability calculation unit 84 calculates, for example, a ratio obtained by dividing the number of receptions of processed information by the traffic volume.
 一例としては、信頼度算出部84は、同様の加工情報を一定比率以上取得した場合に、加工情報は正しいと判断し、信頼度を高く算出する。信頼度は、複数段階、たとえば5段階で評価し、信頼度が5の場合は最も信頼度が高いとする。前述のように加工情報を一定比率以上取得した場合には、信頼度5として算出する。逆に、交通量が一定数あるにもかかわらず、加工情報が少ない場合には、受信した加工情報の信頼度が低く、たとえば信頼度1として算出する。 As an example, the reliability calculation unit 84 determines that the processed information is correct and calculates a high degree of reliability when similar processed information is acquired at a certain ratio or more. The reliability is evaluated in a plurality of stages, for example, 5 stages, and when the reliability is 5, it is assumed that the reliability is the highest. As described above, the reliability is calculated as 5 when the processed information is obtained at a certain rate or more. Conversely, if the amount of processed information is small even though there is a certain amount of traffic, the reliability of the received processed information is low.
 また信頼度算出部84は、検出精度が高い加工情報は信頼度が高くなるように算出する。また信頼度算出部84は、検出精度が低くはないが高くもない場合、複数の車両200から同様の加工情報を受信したときは、その加工情報の信頼度が高くなるように算出する。 Also, the reliability calculation unit 84 calculates so that the reliability of the processed information with high detection accuracy is high. Further, when the detection accuracy is not low but not high, and similar processing information is received from a plurality of vehicles 200, the reliability calculation unit 84 calculates the reliability of the processing information so as to be high.
 信頼度算出部84は、統計処理によって信頼度を求める場合には、車種毎、時間毎、情報種別毎に信頼度を算出してもよい。たとえば車種が異なると周辺情報の検出精度が異なる場合があるので、車種毎に信頼度を求めることで、より精度よく信頼度を算出することができる。また時間帯によって信頼度が異なる場合があるので、たとえば昼の時間と夜の時間で信頼度が異なる場合には、異なる要因を周辺の明るさにある可能性が高い。したがって信頼度が異なる原因を追求することができる。また信頼度を情報種別毎、たとえば区画線の加工情報の信頼度、および地物の位置の位置情報の信頼度などを、それぞれ計算してもよい。それぞれの信頼度は、比較する周辺情報が異なるので、検出精度が異なる場合があるので、種別毎に信頼度を求めることで、より精度良く信頼度を算出することができる。 When the reliability is calculated by statistical processing, the reliability calculation unit 84 may calculate the reliability for each type of vehicle, for each time period, and for each type of information. For example, different vehicle models may have different detection accuracy of peripheral information. Therefore, obtaining the reliability for each vehicle model enables the reliability to be calculated with higher accuracy. Also, since the reliability may differ depending on the time of day, for example, if the reliability differs between daytime and nighttime, there is a high possibility that the different factors are the brightness of the surroundings. Therefore, the cause of different reliability can be pursued. Further, the reliability may be calculated for each type of information, for example, the reliability of the processed information on the lane markings, the reliability of the positional information on the position of the feature, and the like. The respective reliability levels may have different detection accuracies because the peripheral information to be compared is different. Therefore, by obtaining the reliability level for each type, it is possible to calculate the reliability level with higher accuracy.
 更新判断部86は、信頼度を用いて、地図情報を更新するか否かを判断する。地図DBが正しいことを示している信頼度が閾値よりも小さい場合には、更新判断部86は、地図DBを更新する必要があると判断する。 The update determination unit 86 uses the reliability to determine whether to update the map information. If the reliability indicating that the map DB is correct is smaller than the threshold, the update determination unit 86 determines that the map DB needs to be updated.
 更新判断部86は、地図情報を更新する場合には、更新した地図情報を車載装置60に送信するようにサーバ通信部81を制御する。更新判断部86は、地図情報を更新する必要があると判断した場合には、更新用地図データを作成する。そして、作成した更新用地図データを車載システム10に送信する。更新用地図データを車両通信部40が受信した場合、地図更新部63が地図DBを更新する。なお、更新用地図データを、受信相手を特定して送信してもよく、受信相手を特定せずに放送的に送信してもよい。更新用地図データを放送的に送信する場合、受信側にて、更新用の地図データのバージョンなどから、更新用の地図データを更新するかどうかを決定する。 When updating the map information, the update determination unit 86 controls the server communication unit 81 to transmit the updated map information to the in-vehicle device 60 . When the update determination unit 86 determines that it is necessary to update the map information, it creates update map data. Then, the created update map data is transmitted to the in-vehicle system 10 . When the vehicle communication unit 40 receives the update map data, the map update unit 63 updates the map DB. Note that the update map data may be transmitted by specifying the receiving party, or may be transmitted in a broadcast manner without specifying the receiving party. When the update map data is transmitted by broadcasting, the receiving side determines whether or not to update the update map data based on the version of the update map data.
 次に、サーバ制御部83の制御に関して、図5のフローチャートを用いて説明する。図5に示すフローチャートは、管理サーバ80によって短時間に繰り返し実行される。 Next, the control of the server control unit 83 will be explained using the flowchart of FIG. The flowchart shown in FIG. 5 is repeatedly executed by the management server 80 in a short period of time.
 ステップS11では、サーバ通信部81を介して、加工情報を取得し、ステップS12に移る。ステップS12では、信頼度算出部84によって、加工情報および検出精度を用いて信頼度を算出し、ステップS13に移る。 In step S11, processing information is acquired via the server communication unit 81, and the process proceeds to step S12. In step S12, the reliability calculation unit 84 calculates the reliability using the processing information and the detection accuracy, and the process proceeds to step S13.
 ステップS13では、更新判断部86によって、地図情報の更新の要否を判断し、更新が必要の場合にはステップS14に移り、更新の必要が無い場合には本フローを終了する。ステップS13では、更新判断部86は閾値と信頼度を用いて、更新の要否を判断する。たとえば信頼度3以下の場合には、更新が必要と判断する。 In step S13, the update determination unit 86 determines whether or not the map information needs to be updated. If the update is required, the process proceeds to step S14, and if the update is not required, the flow ends. In step S13, the update determination unit 86 uses the threshold value and reliability to determine whether or not update is necessary. For example, if the reliability is 3 or less, it is determined that updating is necessary.
 ステップS14では、地図情報の更新が可能か否かを判断し、可能な場合は、ステップS15に移り、情報が不足しており更新ができない場合には、ステップS17に移る。ステップS17では、情報が不足しているので、加工情報をアップロードするように車両200に要求を送信し、本フローを終了する。 In step S14, it is determined whether or not the map information can be updated, and if so, the process moves to step S15, and if the information is insufficient and cannot be updated, the process moves to step S17. In step S17, since the information is insufficient, a request is sent to the vehicle 200 to upload the processed information, and this flow ends.
 ステップS15では、更新が必要であるので、配信地図DBの地図情報を更新し、ステップS15に移る。ステップS15では、更新した地図情報を車載装置60に送信するようにサーバ通信部81を制御し、本フローを終了する。 In step S15, since updating is necessary, the map information in the distribution map DB is updated, and the process moves to step S15. In step S15, the server communication unit 81 is controlled to transmit the updated map information to the in-vehicle device 60, and this flow ends.
 次に、アップロードの要求に関して、図6および図7のフローチャートを用いて説明する。図5にて説明したように、地図情報を更新が情報不足によってできない場合は、さらに加工情報を車両200から送信してもらう必要がある。 Next, the upload request will be explained using the flowcharts of FIGS. 6 and 7. As described with reference to FIG. 5, if map information cannot be updated due to lack of information, it is necessary to have the vehicle 200 transmit processing information.
 そこで、車載装置60は、図6に示すフローチャートを短時間に繰り返し実行する。ステップS21では、アップロード要求を受信したか否かを判断し、アップロード要求を受信した場合には、ステップS22に移り、アップロード要求を受信していない場合には、本フローを終了する。 Therefore, the in-vehicle device 60 repeatedly executes the flowchart shown in FIG. 6 in a short period of time. In step S21, it is determined whether or not an upload request has been received. If an upload request has been received, the process proceeds to step S22, and if an upload request has not been received, this flow ends.
 ステップS22では、アップロード要求を受信したので、対応する加工情報を生成し、ステップS23に移る。アップロード要求には、地図情報の更新に必要な情報、たとえば所定の地点の所定の情報、たとえば区画線の情報などが含まれる。情報生成部61は、その地点を通過した場合には、加工情報を生成する。また情報生成部61は、車両記憶部30に該当する周辺情報が記憶されている場合には、記憶されている周辺情報から加工情報を生成する。 In step S22, since the upload request has been received, the corresponding processing information is generated, and the process moves to step S23. The upload request includes information necessary for updating the map information, such as predetermined information of a predetermined point, such as lane marking information. The information generator 61 generates processed information when passing through the point. Further, when the surrounding information corresponding to the vehicle storage unit 30 is stored, the information generation unit 61 generates the processed information from the stored surrounding information.
 ステップS23では、加工情報を管理サーバ80に送信するように車両通信部40を制御し、本フローを終了する。これによって地図情報の更新に必要な情報が、管理サーバ80に送信される。アップロード要求は、複数の車両200に一斉に送信されるので、該当する地点の付近に走行する車両200がアップロード要求に応じる。 In step S23, the vehicle communication unit 40 is controlled to transmit the processing information to the management server 80, and this flow ends. Information necessary for updating the map information is thereby transmitted to the management server 80 . Since the upload request is transmitted to a plurality of vehicles 200 all at once, the vehicles 200 traveling near the relevant point respond to the upload request.
 アップロード要求に応じて加工情報を送信する場合は、加工情報でなく周辺情報を送信してもよい。また周辺情報を送る場合には、データ通信量が多くなるので、車両200が自宅駐車場など所定の場所に駐車後などの、通信負荷の影響が少ない場所および時間で、情報を送信することが好ましい。 When sending processed information in response to an upload request, peripheral information may be sent instead of processed information. In addition, since the amount of data communication increases when the surrounding information is sent, the information can be sent at a place and time when the communication load is less affected, such as after the vehicle 200 has parked in a predetermined place such as a home parking lot. preferable.
 同様に、管理サーバ80は、図7に示すフローチャートを短時間に繰り返し実行する。ステップS31では、アップロード要求に応じた加工情報を受信したか否かを判断し、受信した場合には、ステップS32に移り、受信していない場合には、本フローを終了する。 Similarly, the management server 80 repeatedly executes the flowchart shown in FIG. 7 in a short period of time. In step S31, it is determined whether or not the processing information corresponding to the upload request has been received. If the processing information has been received, the process proceeds to step S32.
 ステップS32では、地図情報の更新に必要な加工情報を受信したので、受信した加工情報を用いて地図情報を再構築し、本フローを終了する。 In step S32, since the processing information necessary for updating the map information has been received, the map information is reconstructed using the received processing information, and this flow ends.
 以上説明したように本実施形態の地図情報システム100は、周辺検出センサ21により検出された周辺情報と、地図情報とが異なる場合には、周辺情報を加工した加工情報が情報生成部61によって生成される。加工情報は、周辺情報よりも情報量が少なく、少なくとも地図情報と異なる部分を周辺情報から抽出した情報を含む。周辺情報から抽出した情報は、数値によって定量化され定量情報となる。これによってデータ量は周辺情報よりも少ないが、単なるフラグよりも、異なる部分の詳細な情報を収集することができる。 As described above, in the map information system 100 of the present embodiment, when the surrounding information detected by the surrounding detection sensor 21 is different from the map information, the processed information obtained by processing the surrounding information is generated by the information generation unit 61. be done. The processed information has a smaller amount of information than the peripheral information, and includes at least information obtained by extracting from the peripheral information a portion different from the map information. The information extracted from the surrounding information is quantified by numerical values and becomes quantitative information. As a result, the amount of data is smaller than that of the peripheral information, but it is possible to collect detailed information on different parts rather than simple flags.
 また本実施形態では、情報生成部61は、周辺情報と地図情報の差異が対象となる地物の位置の差異である場合には、地物の位置の変化量を示す定量情報を含む加工情報を生成する。これによって地物の位置の変化量がわかるので、位置の変化が軽微であるか否かを把握することができる。したがって単なるフラグよりも、変化量という詳細な情報を収集することができる。これによって更新判断部86は、位置の変化が軽微の場合には、地図を更新しないと判断することができ、必須でない地図情報の更新を抑制することができる。 Further, in this embodiment, when the difference between the surrounding information and the map information is the difference in the position of the target feature, the information generation unit 61 generates processed information including quantitative information indicating the amount of change in the position of the feature. to generate As a result, the amount of change in the position of the feature can be known, so it is possible to grasp whether the change in position is slight or not. Therefore, it is possible to collect detailed information such as the amount of change rather than a mere flag. Accordingly, the update determination unit 86 can determine that the map should not be updated when the change in position is minor, and can suppress updating of map information that is not essential.
 さらに本実施形態では、情報生成部61は、周辺情報と地図情報の差異が対象となる地物の有無の差異である場合には、地物の有無を示す存在情報を含む加工情報を生成する。存在情報によって、どのように地物の存在が異なるかをより詳細に把握することができる。 Furthermore, in this embodiment, when the difference between the surrounding information and the map information is the difference in the presence or absence of the target feature, the information generation unit 61 generates the processed information including the existence information indicating the presence or absence of the feature. . Existence information makes it possible to grasp in more detail how the existence of features differs.
 また本実施形態では、加工情報には、検出精度が含まれる。検出精度は、車両200の位置などによって決定される。周辺情報の検出精度は、用いるセンサによって長所および短所などに起因して、検出条件によって変化する。このような検出精度を用いて、加工情報の信頼度を判断することができる。したがって検出精度が低い、換言すると検出に誤りや大きいノイズがある加工情報を用いることなく、検出精度が高い加工情報を用いて更新の有無などを判断することができる。 Also, in this embodiment, the processing information includes detection accuracy. Detection accuracy is determined by the position of vehicle 200 and the like. The detection accuracy of peripheral information varies depending on the detection conditions due to the advantages and disadvantages of each sensor used. Using such detection accuracy, the reliability of the processing information can be determined. Therefore, it is possible to determine whether there is an update or the like using processed information with high detection accuracy without using processed information with low detection accuracy, in other words, with detection errors or large noise.
 さらに本実施形態では、情報生成部61は、検出精度が所定の検出精度よりも低い場合には、検出精度が低い周辺情報を用いた加工情報の生成を停止する。これによって検出精度が低い加工情報が管理サーバ80などに送信されることを抑制することができる。 Furthermore, in the present embodiment, the information generation unit 61 stops generating processing information using peripheral information with low detection accuracy when the detection accuracy is lower than a predetermined detection accuracy. As a result, it is possible to suppress transmission of processing information with low detection accuracy to the management server 80 or the like.
 また本実施形態では、情報生成部61は、周辺情報を用いて走行中の道路で工事が行われていると判断した場合には、加工情報の生成を停止する。工事が行われている道路では、周辺情報と地図情報とが異なる可能性が高く、工事中の周辺情報を用いて地図情報を更新する必要性が低い。したがって工事中の道路では、加工情報の生成を停止することで、処理負荷を低減し、不要な情報が管理サーバ80に送信されることを抑制することができる。 In addition, in this embodiment, the information generation unit 61 stops generating processing information when it determines that construction is being performed on the road on which the vehicle is traveling using the surrounding information. On a road under construction, there is a high possibility that the surrounding information is different from the map information, and the need to update the map information using the surrounding information under construction is low. Therefore, on a road under construction, by stopping the generation of processed information, the processing load can be reduced and transmission of unnecessary information to the management server 80 can be suppressed.
 さらに本実施形態では、情報生成部61は、周辺情報と地図情報との差異が許容範囲内である場合には、加工情報を生成し、許容範囲外である場合には加工情報の生成を停止する。差異が大きい場合は、差異が大きい原因を特定する必要がある。そこで差異が許容範囲外の場合には、加工情報の生成を停止して、周辺情報を送信することで、差異が大きい原因を究明することができる。 Furthermore, in the present embodiment, the information generation unit 61 generates the processing information when the difference between the surrounding information and the map information is within the allowable range, and stops generating the processing information when the difference is outside the allowable range. do. If the difference is large, it is necessary to identify the cause of the large difference. Therefore, if the difference is out of the allowable range, the cause of the large difference can be investigated by stopping the generation of the processing information and transmitting the peripheral information.
 また本実施形態では、加工情報を送信する場合、加工情報を所定の制限通信量以下となるように圧縮または削減して管理サーバ80に送信する。これによって通信負荷が増大することを抑制することができる。また周辺情報を送信する場合、周辺情報を制限通信量以下となるように分割して管理サーバ80に送信する。これによって一度の通信負荷を低減し、大容量を一度に送信することによる通信不良の発生を抑制することができる。 Also, in the present embodiment, when transmitting processed information, the processed information is compressed or reduced to a predetermined communication limit or less and transmitted to the management server 80 . As a result, an increase in communication load can be suppressed. In addition, when transmitting the peripheral information, the peripheral information is divided so that the amount of traffic is less than or equal to the communication limit and is transmitted to the management server 80 . As a result, it is possible to reduce the communication load at one time and suppress the occurrence of communication failure due to the transmission of a large amount of data at one time.
 さらに本実施形態では、加工情報および周辺情報の管理サーバ80への送信可否を設定部64によって設定することができる。これによって乗員の走行によって生成される乗員の個人情報が勝手に第三者に送信されることを防ぐことができる。 Furthermore, in this embodiment, the setting unit 64 can set whether or not to transmit the processing information and the peripheral information to the management server 80 . As a result, it is possible to prevent personal information of the occupant generated by the travel of the occupant from being arbitrarily transmitted to a third party.
 (その他の実施形態)
 以上、本開示の好ましい実施形態について説明したが、本開示は前述した実施形態に何ら制限されることなく、本開示の主旨を逸脱しない範囲において種々変形して実施することが可能である。
(Other embodiments)
Although the preferred embodiments of the present disclosure have been described above, the present disclosure is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present disclosure.
 前述の実施形態の構造は、あくまで例示であって、本開示の範囲はこれらの記載の範囲に限定されるものではない。本開示の範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものである。 The structures of the above-described embodiments are merely examples, and the scope of the present disclosure is not limited to the scope of these descriptions. The scope of the present disclosure is indicated by the description of the claims, and further includes all changes within the meaning and range of equivalents to the description of the claims.
 前述の第1実施形態では、管理サーバ80は、車両200の外にある構成であったが、このような構成に限るものではない。管理サーバ80は、車両200に搭載されていてもよい。よって、更新判断部86など、サーバ制御部83の機能を車載装置60が備えていてもよい。 In the first embodiment described above, the management server 80 is configured outside the vehicle 200, but the configuration is not limited to this. Management server 80 may be mounted on vehicle 200 . Therefore, the in-vehicle device 60 may have the functions of the server control unit 83 such as the update determination unit 86 .
 前述の第1実施形態では、管理サーバ80から配信される更新用地図データをもとに、車載装置60の地図更新部63が地図DBをオンラインで更新しているが、このような構成に限るものではない。地図DBの更新は、オフラインで行われてもよい。 In the first embodiment described above, the map update unit 63 of the in-vehicle device 60 updates the map DB online based on the update map data distributed from the management server 80, but the configuration is limited to this. not a thing Updating of the map DB may be performed offline.
 前述の第1実施形態において、車載装置60およびサーバ制御部83によって実現されていた機能は、前述のものとは異なるハードウェアおよびソフトウェア、またはこれらの組み合わせによって実現してもよい。車載装置60およびサーバ制御部83は、たとえば他の制御装置と通信し、他の制御装置が処理の一部または全部を実行してもよい。車載装置60およびサーバ制御部83が電子回路によって実現される場合、それは多数の論理回路を含むデジタル回路、またはアナログ回路によって実現することができる。 The functions realized by the in-vehicle device 60 and the server control unit 83 in the first embodiment described above may be realized by hardware and software different from those described above, or a combination thereof. In-vehicle device 60 and server control unit 83 may communicate with, for example, another control device, and the other control device may perform part or all of the processing. When the in-vehicle device 60 and the server control unit 83 are realized by electronic circuits, they can be realized by digital circuits including many logic circuits or analog circuits.
 前述の第1実施形態では、車載装置60は車両200で用いられているが、車両200に搭載された状態に限定されるものではなく、少なくとも一部が車両200に搭載されていなくてもよい。 In the above-described first embodiment, the in-vehicle device 60 is used in the vehicle 200, but it is not limited to being mounted in the vehicle 200, and at least part of it may not be mounted in the vehicle 200. .

Claims (11)

  1.  車両(200)に位置する記憶部(30)に記憶される地図情報を管理する地図情報システムであって、
     前記車両に搭載された周辺検出センサ(21)により検出された周辺情報と、前記地図情報とが異なる場合には、前記周辺情報を加工した加工情報を生成する情報生成部(61)を含み、
     前記加工情報は、前記周辺情報よりも情報量が少なく、少なくとも前記地図情報と異なる部分の前記周辺情報と前記地図情報との差異を定量化した定量情報を含む地図情報システム。
    A map information system for managing map information stored in a storage unit (30) located in a vehicle (200),
    an information generating unit (61) for generating processed information by processing the peripheral information when the peripheral information detected by the peripheral detection sensor (21) mounted on the vehicle is different from the map information,
    The map information system, wherein the processed information has a smaller amount of information than the peripheral information, and includes quantitative information obtained by quantifying a difference between the peripheral information and the map information at least in a portion different from the map information.
  2.  前記情報生成部は、前記周辺情報と前記地図情報の差異が対象となる地物の位置の差異である場合には、前記定量情報として前記地物の位置の変化量を用いる請求項1に記載の地図情報システム。 2. The information generating unit according to claim 1, wherein, when the difference between the surrounding information and the map information is the difference in the position of the target feature, the amount of change in the position of the feature is used as the quantitative information. map information system.
  3.  前記情報生成部は、前記周辺情報と前記地図情報の差異が対象となる地物の有無の差異である場合には、前記定量情報と、前記地物の有無を示す存在情報とを含む前記加工情報を生成する請求項1または2に記載の地図情報システム。 When the difference between the surrounding information and the map information is the difference between the presence or absence of a target feature, the information generation unit performs the processing including the quantitative information and the existence information indicating the presence or absence of the feature. 3. The map information system according to claim 1, which generates information.
  4.  前記車両の位置、前記車両の位置における天候、前記車両の周辺の路面状況、および前記周辺情報の検出時間の少なくとも1つを用いて、前記周辺検出センサの前記周辺情報の検出精度を決定する検出精度決定部(85)をさらに含み、
     前記加工情報には、前記検出精度が含まれる請求項1~3のいずれか1つに記載の地図情報システム。
    Detection that determines detection accuracy of the surrounding information by the surrounding detection sensor using at least one of the position of the vehicle, the weather at the position of the vehicle, the road surface condition around the vehicle, and the detection time of the surrounding information. further comprising an accuracy determination unit (85);
    4. The map information system according to claim 1, wherein said processed information includes said detection accuracy.
  5.  前記車両の位置、前記車両の位置における天候、前記車両の周辺の路面状況、および前記周辺情報の検出時間の少なくとも1つを用いて、前記周辺検出センサの前記周辺情報の検出精度を決定する検出精度決定部(85)をさらに含み、
     前記情報生成部は、前記検出精度が所定の検出精度よりも低い場合には、前記検出精度が低い前記周辺情報を用いた前記加工情報の生成を停止する請求項1~3のいずれか1つに記載の地図情報システム。
    Detection that determines detection accuracy of the surrounding information by the surrounding detection sensor using at least one of the position of the vehicle, the weather at the position of the vehicle, the road surface condition around the vehicle, and the detection time of the surrounding information. further comprising an accuracy determination unit (85);
    4. The information generation unit according to claim 1, wherein, when the detection accuracy is lower than a predetermined detection accuracy, the information generation unit stops generating the processed information using the peripheral information with the low detection accuracy. The map information system described in .
  6.  前記情報生成部は、前記周辺情報を用いて、走行中の道路で工事が行われていると判断した場合には、前記加工情報の生成を停止する請求項1~5のいずれか1つに記載の地図情報システム。 6. The vehicle according to any one of claims 1 to 5, wherein the information generation unit stops generating the processing information when it is determined that construction is being performed on the road on which the vehicle is traveling using the surrounding information. The described map information system.
  7.  前記情報生成部は、前記周辺情報と前記地図情報との差異が許容範囲内である場合には、前記加工情報を生成し、前記許容範囲外である場合には前記加工情報の生成を停止する請求項1~6のいずれか1つに記載の地図情報システム。 The information generating unit generates the processed information when the difference between the surrounding information and the map information is within the allowable range, and stops generating the processed information when the difference is outside the allowable range. A map information system according to any one of claims 1 to 6.
  8.  車両(200)に搭載されて用いられる車載装置であって、
     地図情報が記憶される記憶部(30)と、
     前記車両に搭載された周辺検出センサ(21)により検出された周辺情報と、前記地図情報とが異なる場合には、前記周辺情報を加工した加工情報を生成する情報生成部(61)と、
     管理サーバ(80)と通信する車両通信部であって、前記加工情報または前記周辺情報を前記管理サーバに送信するとともに、前記管理サーバから新しい前記地図情報を受信する車両通信部(40)と、
     前記管理サーバから新しい前記地図情報を受信すると、前記記憶部の前記地図情報を更新する地図更新部(63)と、を含み、
     前記加工情報は、前記周辺情報よりも情報量が少なく、少なくとも前記地図情報と異なる部分の前記周辺情報と前記地図情報との差異を定量化した定量情報を含み、
     前記情報生成部は、前記周辺情報と前記地図情報との差異が許容範囲内である場合には、前記加工情報を生成し、前記許容範囲外である場合には前記加工情報を生成の停止し、
     前記車両通信部は、前記許容範囲内である場合には、前記加工情報を前記管理サーバに送信し、前記許容範囲外である場合には、前記周辺情報を前記管理サーバに送信する車載装置。
    An in-vehicle device mounted and used in a vehicle (200),
    a storage unit (30) in which map information is stored;
    an information generation unit (61) for generating processed information by processing the surrounding information when the surrounding information detected by the surrounding detection sensor (21) mounted on the vehicle is different from the map information;
    a vehicle communication unit (40) that communicates with a management server (80), the vehicle communication unit (40) transmitting the processed information or the peripheral information to the management server and receiving new map information from the management server;
    a map update unit (63) for updating the map information in the storage unit when new map information is received from the management server;
    The processed information has a smaller amount of information than the peripheral information, and includes quantitative information that quantifies a difference between the peripheral information and the map information at least in a portion different from the map information,
    The information generating unit generates the processed information when the difference between the surrounding information and the map information is within the allowable range, and stops generating the processed information when the difference is outside the allowable range. ,
    The in-vehicle device, wherein the vehicle communication unit transmits the processing information to the management server when within the allowable range, and transmits the peripheral information to the management server when outside the allowable range.
  9.  前記車両通信部は、
      前記加工情報を送信する場合、前記加工情報を所定の制限通信量以下となるように圧縮または削減して前記管理サーバに送信し、
      前記周辺情報を送信する場合、前記周辺情報を前記制限通信量以下となるように分割して前記管理サーバに送信する請求項8に記載の車載装置。
    The vehicle communication unit
    when transmitting the processed information, compressing or reducing the processed information so that it is equal to or less than a predetermined communication limit and transmitting the processed information to the management server;
    9. The in-vehicle device according to claim 8, wherein when transmitting the peripheral information, the peripheral information is divided so as to be equal to or less than the communication limit and is transmitted to the management server.
  10.  前記加工情報および前記周辺情報の前記管理サーバへの送信可否を設定する設定部(64)をさらに含む請求項8または9に記載の車載装置。 10. The in-vehicle device according to claim 8 or 9, further comprising a setting unit (64) for setting whether the processing information and the peripheral information can be transmitted to the management server.
  11.  複数の車両(200)に搭載されている車載装置(60)と通信し、前記車載装置の記憶部(30)に記憶されている地図情報を管理する管理サーバであって、
     前記車載装置と通信するサーバ通信部(81)と、
     複数の前記車載装置から加工情報を受信すると、複数の前記加工情報を統計処理して、前記地図情報の確かさを示す信頼度を算出する信頼度算出部(84)と、
     前記信頼度を用いて、前記地図情報を更新するか否かを判断する更新判断部(86)と、
     前記地図情報を更新する場合には、更新した前記地図情報を前記車載装置に送信するように前記サーバ通信部を制御する制御部(83)と、を含み、
     前記加工情報は、前記車両に搭載された周辺検出センサ(21)により検出された周辺情報よりも情報量が少なく、前記周辺情報と前記地図情報とが異なる場合に生成され、少なくとも前記地図情報と異なる部分の前記周辺情報と前記地図情報との差異を定量化した定量情報を含む管理サーバ。
    A management server that communicates with in-vehicle devices (60) mounted in a plurality of vehicles (200) and manages map information stored in a storage unit (30) of the in-vehicle devices,
    a server communication unit (81) that communicates with the in-vehicle device;
    a reliability calculation unit (84) that receives processed information from a plurality of the on-vehicle devices, statistically processes the plurality of processed information, and calculates a reliability indicating the accuracy of the map information;
    an update determination unit (86) that determines whether or not to update the map information using the reliability;
    a control unit (83) for controlling the server communication unit to transmit the updated map information to the in-vehicle device when updating the map information;
    The processed information has a smaller amount of information than the peripheral information detected by the peripheral detection sensor (21) mounted on the vehicle, is generated when the peripheral information and the map information are different, and is at least the map information. A management server containing quantitative information that quantifies differences between the peripheral information and the map information of different parts.
PCT/JP2023/002144 2022-01-26 2023-01-24 Map information system, in-vehicle device, and management server WO2023145739A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022010351 2022-01-26
JP2022-010351 2022-01-26

Publications (1)

Publication Number Publication Date
WO2023145739A1 true WO2023145739A1 (en) 2023-08-03

Family

ID=87471968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002144 WO2023145739A1 (en) 2022-01-26 2023-01-24 Map information system, in-vehicle device, and management server

Country Status (1)

Country Link
WO (1) WO2023145739A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017041070A (en) * 2015-08-19 2017-02-23 ソニー株式会社 Vehicle control apparatus, vehicle control method, information processing apparatus, and traffic information providing system
JP2018206024A (en) * 2017-06-02 2018-12-27 本田技研工業株式会社 Automatic travel control system and server device
JP2020177065A (en) * 2019-04-16 2020-10-29 アルパイン株式会社 Map data update system, travel probe information collection device, travel probe information provision device, and travel probe information collection method
JP2021051349A (en) * 2019-09-20 2021-04-01 本田技研工業株式会社 Vehicle control device, map information management system, vehicle control method, and program
JP2021073547A (en) * 2020-12-17 2021-05-13 パイオニア株式会社 Information processing device, measurement device, and control method
JP2021113979A (en) * 2017-06-07 2021-08-05 パイオニア株式会社 Information processing device
JP2021140309A (en) * 2020-03-03 2021-09-16 株式会社デンソー On-vehicle unit, server, automatic driving possibility determination system and automatic driving possibility determination program
JP2021156845A (en) * 2020-03-30 2021-10-07 株式会社アイシン Map information management system and map information management program
JP2022002055A (en) * 2020-06-22 2022-01-06 株式会社Soken Vehicle travel assist system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017041070A (en) * 2015-08-19 2017-02-23 ソニー株式会社 Vehicle control apparatus, vehicle control method, information processing apparatus, and traffic information providing system
JP2018206024A (en) * 2017-06-02 2018-12-27 本田技研工業株式会社 Automatic travel control system and server device
JP2021113979A (en) * 2017-06-07 2021-08-05 パイオニア株式会社 Information processing device
JP2020177065A (en) * 2019-04-16 2020-10-29 アルパイン株式会社 Map data update system, travel probe information collection device, travel probe information provision device, and travel probe information collection method
JP2021051349A (en) * 2019-09-20 2021-04-01 本田技研工業株式会社 Vehicle control device, map information management system, vehicle control method, and program
JP2021140309A (en) * 2020-03-03 2021-09-16 株式会社デンソー On-vehicle unit, server, automatic driving possibility determination system and automatic driving possibility determination program
JP2021156845A (en) * 2020-03-30 2021-10-07 株式会社アイシン Map information management system and map information management program
JP2022002055A (en) * 2020-06-22 2022-01-06 株式会社Soken Vehicle travel assist system
JP2021073547A (en) * 2020-12-17 2021-05-13 パイオニア株式会社 Information processing device, measurement device, and control method

Similar Documents

Publication Publication Date Title
JP6424761B2 (en) Driving support system and center
US11248925B2 (en) Augmented road line detection and display system
CN105793669B (en) Vehicle position estimation system, device, method, and camera device
US20180073879A1 (en) Water depth detection for vehicle navigation
US9373255B2 (en) Method and system for producing an up-to-date situation depiction
CN111200796A (en) System and method for evaluating operation of an environmental sensing system of a vehicle
EP2460337B1 (en) Method and device for the communication with another vehicle or with an infrastructure device
US9652982B2 (en) Method and system for learning traffic events, and use of the system
US10705207B2 (en) Control device, server system and vehicle
JP2017007572A (en) Vehicle control device and vehicle control method
CN111959499B (en) Vehicle control method and device
US10697780B2 (en) Position correction apparatus, navigation system and automatic driving system
CN111508276B (en) High-precision map-based V2X reverse overtaking early warning method, system and medium
US11869251B2 (en) Driving support method and driving support device
US20120123640A1 (en) Vehicular control apparatus
US20230175863A1 (en) Traffic signal recognition device, traffic signal recognition method and vehicle control device
US20220042804A1 (en) Localization device for visually determining the location of a vehicle
WO2022009900A1 (en) Automated driving device and vehicle control method
US20210003419A1 (en) System for Generating Confidence Values in Digital Road Maps
KR100976964B1 (en) Navigation system and road lane recognition method thereof
JP2020193954A (en) Position correction server, position management device, moving object position management system and method, position information correction method, computer program, onboard device, and vehicle
US20230148097A1 (en) Adverse environment determination device and adverse environment determination method
US11963066B2 (en) Method for indicating parking position and vehicle-mounted device
JP7315101B2 (en) Obstacle information management device, obstacle information management method, vehicle device
US20200018608A1 (en) Method and device for operating a vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746950

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023576925

Country of ref document: JP