WO2023145488A1 - Composition de résine sensible à la lumière active ou au rayonnement, film de réserve, procédé de formation de motif et procédé de production de dispositif électronique - Google Patents

Composition de résine sensible à la lumière active ou au rayonnement, film de réserve, procédé de formation de motif et procédé de production de dispositif électronique Download PDF

Info

Publication number
WO2023145488A1
WO2023145488A1 PCT/JP2023/000792 JP2023000792W WO2023145488A1 WO 2023145488 A1 WO2023145488 A1 WO 2023145488A1 JP 2023000792 W JP2023000792 W JP 2023000792W WO 2023145488 A1 WO2023145488 A1 WO 2023145488A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
acid
sensitive
radiation
groups
Prior art date
Application number
PCT/JP2023/000792
Other languages
English (en)
Japanese (ja)
Inventor
修平 山口
英治 福▲崎▼
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023145488A1 publication Critical patent/WO2023145488A1/fr

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to an actinic ray-sensitive or radiation-sensitive resin composition, a resist film, a pattern forming method, and an electronic device manufacturing method. More specifically, the present invention provides an ultra-microlithography process applicable to ultra LSI (Large Scale Integration) and high-capacity microchip manufacturing processes, nanoimprint mold manufacturing processes, high-density information recording medium manufacturing processes, and the like.
  • the present invention relates to an actinic ray- or radiation-sensitive resin composition, an actinic ray- or radiation-sensitive film, a pattern forming method, and an electronic device manufacturing method that can be suitably used in other photofabrication processes.
  • immersion liquid a liquid with a high refractive index
  • Patent Document 1 and Patent Document 2 describe a resist composition containing a resin having an aromatic heterocyclic group containing a sulfur atom.
  • LWR performance refers to performance that can reduce the LWR of a pattern.
  • Ra 1 to Ra 3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, a halogen atom, a cyano group, or an alkoxycarbonyl group.
  • La 1 represents a divalent linking group containing an aromatic group.
  • Ra 3 and La 1 may combine to form a ring.
  • Ra 4 to Ra 6 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, a cycloalkyl group, an aryl group, an aromatic heterocyclic group, an aralkyl group, or an alkenyl group.
  • at least one of Ra 4 to Ra 6 represents an aromatic heterocyclic group containing a sulfur atom.
  • Two of Ra 4 to Ra 6 may combine with each other to form a ring.
  • Ra 1 to Ra 3 have the same meanings as Ra 1 to Ra 3 in the general formula (S1).
  • Ra 4 to Ra 6 have the same meanings as Ra 4 to Ra 6 in the general formula (S1).
  • La 2 represents a single bond or -COO-.
  • Ara 1 represents an arylene group. Ra 3 and Ara 1 may combine to form a ring.
  • the present invention can provide an actinic ray-sensitive or radiation-sensitive resin composition that is excellent in resolution, EL performance and LWR performance. Moreover, the present invention can provide a resist film, a pattern forming method, and an electronic device manufacturing method using the actinic ray-sensitive or radiation-sensitive resin composition.
  • actinic ray or “radiation” means, for example, the emission line spectrum of a mercury lamp, far ultraviolet rays represented by excimer lasers, extreme ultraviolet rays (EUV: Extreme Ultraviolet), X-rays, soft X-rays, and electron It means a line (EB: Electron Beam) or the like.
  • light means actinic rays or radiation.
  • exposure means, unless otherwise specified, not only exposure by the emission line spectrum of mercury lamps, far ultraviolet rays represented by excimer lasers, extreme ultraviolet rays, X-rays, and EUV, but also electron beams and ion beams. It also includes drawing with particle beams such as beams.
  • the term " ⁇ " is used to include the numerical values before and after it as lower and upper limits.
  • (meth)acrylate represents at least one of acrylate and methacrylate.
  • (Meth)acrylic acid represents at least one of acrylic acid and methacrylic acid.
  • the weight average molecular weight (Mw), number average molecular weight (Mn), and dispersity (also referred to as molecular weight distribution) (Mw/Mn) of the resin are measured by GPC (Gel Permeation Chromatography) equipment (HLC manufactured by Tosoh Corporation). -8120 GPC) by GPC measurement (solvent: tetrahydrofuran, flow rate (sample injection volume): 10 ⁇ L, column: TSK gel Multipore HXL-M manufactured by Tosoh Corporation, column temperature: 40 ° C., flow rate: 1.0 mL / min, detector: It is defined as a polystyrene conversion value by a differential refractive index detector (Refractive Index Detector).
  • GPC Gel Permeation Chromatography
  • the notation that does not describe substituted or unsubstituted includes groups containing substituents as well as groups that do not have substituents. do.
  • an "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • the term "organic group” as used herein refers to a group containing at least one carbon atom.
  • substituents include monovalent nonmetallic atomic groups excluding hydrogen atoms, and can be selected from the following substituents T, for example.
  • the substituent T includes halogen atoms such as fluorine, chlorine, bromine and iodine atoms; alkoxy groups such as methoxy, ethoxy and tert-butoxy; cycloalkyloxy; phenoxy and p-tolyloxy; alkoxycarbonyl groups such as methoxycarbonyl and butoxycarbonyl groups; cycloalkyloxycarbonyl groups; aryloxycarbonyl groups such as phenoxycarbonyl groups; acyloxy groups such as acetoxy groups, propionyloxy groups and benzoyloxy groups; benzoyl group, isobutyryl group, acryloyl group, methacryloyl group and methoxalyl group; sulfanyl group; alkylsulfanyl group such as methylsulfanyl group and tert-butylsulfanyl group; phenylsulfanyl group and p-to
  • the bonding direction of the divalent groups indicated is not limited unless otherwise specified.
  • Y when Y is -COO-, Y may be -CO-O- or -O-CO- good too.
  • the compound may be "X—CO—O—Z” or "X—O—CO—Z.”
  • the acid dissociation constant (pKa) represents the pKa in an aqueous solution. is a calculated value. All pKa values described herein are calculated using this software package.
  • Software Package 1 Advanced Chemistry Development (ACD/Labs) Software V8.14 for Solaris (1994-2007 ACD/Labs).
  • pKa can also be determined by molecular orbital calculation.
  • H + dissociation free energy can be calculated by, for example, DFT (density functional theory), but various other methods have been reported in literature, etc., and are not limited to this. .
  • DFT density functional theory
  • Gaussian16 is an example.
  • pKa refers to a value obtained by calculating a value based on Hammett's substituent constant and a database of known literature values using software package 1, as described above. If it cannot be calculated, a value obtained by Gaussian 16 based on DFT (density functional theory) is adopted.
  • pKa refers to "pKa in aqueous solution” as described above, but when pKa in aqueous solution cannot be calculated, “pKa in dimethyl sulfoxide (DMSO) solution” is adopted. and
  • solid content means a component that forms an actinic ray-sensitive or radiation-sensitive film, and does not include a solvent.
  • solid content it is regarded as a solid content even if the property is liquid.
  • the actinic ray-sensitive or radiation-sensitive resin composition of the present invention contains at least a resin (A) containing a group that is decomposed by the action of an acid to increase its polarity.
  • Ra 1 to Ra 3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, a halogen atom, a cyano group, or an alkoxycarbonyl group.
  • La 1 represents a divalent linking group containing an aromatic group.
  • Ra 3 and La 1 may combine to form a ring.
  • Ra 4 to Ra 6 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, a cycloalkyl group, an aryl group, an aromatic heterocyclic group, an aralkyl group, or an alkenyl group.
  • at least one of Ra 4 to Ra 6 represents an aromatic heterocyclic group containing a sulfur atom.
  • Two of Ra 4 to Ra 6 may combine with each other to form a ring.
  • an aromatic heterocyclic group containing a sulfur atom is an aromatic containing an acid-decomposable repeating unit (acid-decomposable repeating unit represented by general formula (S1)) bonded to the main chain via a divalent linking group containing a group group. Since the sulfur-containing aromatic heterocyclic group exhibits good reactivity, acid decomposition proceeds faster than acid diffusion.
  • the acid-decomposable repeating unit of the resin (A) in the present invention has a sulfur-containing aromatic heterocyclic group bonded to the main chain via a divalent linking group containing an aromatic group. Compared to repeating units in which a sulfur-containing aromatic heterocyclic group is bonded to the main chain without a group, it is less polar, and the effect of the sulfur-containing aromatic heterocyclic group is more pronounced, resulting in resolution. It is presumed to be excellent in performance, EL performance and LWR performance.
  • the composition of the present invention is typically a resist composition, and may be a positive resist composition or a negative resist composition.
  • the composition of the present invention may be a resist composition for alkali development or a resist composition for organic solvent development.
  • the composition of the present invention may be a chemically amplified resist composition or a non-chemically amplified resist composition.
  • the composition of the present invention is typically a chemically amplified resist composition.
  • Actinic ray-sensitive or radiation-sensitive films can be formed using the composition of the present invention.
  • the actinic ray-sensitive or radiation-sensitive film formed using the composition of the present invention is typically a resist film.
  • the resin (A) contained in the composition of the present invention is a resin containing a group that is decomposed by the action of an acid to increase its polarity (also referred to as "acid-decomposable group").
  • the resin (A) is an acid-decomposable resin, and in the pattern forming method using the composition of the present invention, typically, when an alkaline developer is employed as the developer, a positive pattern is preferably formed. When an organic developer is used as the developer, a negative pattern is preferably formed.
  • An acid-decomposable group is typically a group that is decomposed by the action of an acid to produce a polar group.
  • the acid-decomposable group preferably has a structure in which the polar group is protected with a group that is released by the action of an acid (leaving group).
  • Resin (A) has a group that is decomposed by the action of an acid to form a polar group.
  • the resin (A) becomes more polar under the action of an acid, increases its solubility in an alkaline developer, and decreases its solubility in an organic solvent.
  • the resin (A) contains an acid-decomposable repeating unit represented by the general formula (S1).
  • An acid-decomposable repeating unit is a repeating unit having an acid-decomposable group. That is, the repeating unit represented by general formula (S1) has an acid-decomposable group.
  • the acid-decomposable group of the repeating unit represented by formula (S1) preferably has a structure in which a carboxyl group or a phenolic hydroxyl group is protected with a leaving group.
  • Ra 1 to Ra 3 in general formula (S1) each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, a halogen atom, a cyano group, or an alkoxycarbonyl group.
  • the alkyl groups of Ra 1 to Ra 3 may be linear or branched. Although the number of carbon atoms in the alkyl group is not particularly limited, it is preferably 1-5, more preferably 1-3.
  • the number of carbon atoms in the cycloalkyl groups of Ra 1 to Ra 3 is not particularly limited, but is preferably 3-20, more preferably 5-15.
  • Cycloalkyl groups of Ra 1 to Ra 3 include monocyclic cycloalkyl groups such as cyclopentyl group and cyclohexyl group, and polycyclic groups such as norbornyl group, tetracyclodecanyl group, tetracyclododecanyl group and adamantyl group. is preferred.
  • the halogen atoms of Ra 1 to Ra 3 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a fluorine atom or an iodine atom.
  • the alkyl groups contained in the alkoxycarbonyl groups of Ra 1 to Ra 3 may be linear or branched. Although the number of carbon atoms in the alkyl group contained in the alkoxycarbonyl group is not particularly limited, it is preferably 1-5, more preferably 1-3.
  • La 1 in general formula (S1) represents a divalent linking group containing an aromatic group.
  • La 1 preferably contains an arylene group.
  • La 1 preferably represents an arylene group or a divalent linking group containing an arylene group and a divalent linking group other than an arylene group.
  • Divalent linking groups other than arylene groups include carbonyl group (-CO-), -O-, -S-, -SO-, -SO 2 -, amide group (-CONR-), sulfonamide group (- SO 2 NR-), an alkylene group, a cycloalkylene group, an alkenylene group, a linking group in which a plurality of these are linked, and the like.
  • Each of the above Rs represents a hydrogen atom or an organic group, and the organic group is preferably an alkyl group, a cycloalkyl group, an aryl group, or a combination thereof.
  • the divalent linking group other than the arylene group is preferably at least one of a carbonyl group and -O-, more preferably a carbonyl group.
  • La 1 particularly preferably represents an arylene group or a divalent linking group consisting of an arylene group and a carbonyl group.
  • the arylene group contained in La 1 is preferably an arylene group having 6 to 20 carbon atoms, more preferably an arylene group having 6 to 10 carbon atoms, and particularly preferably a phenylene group.
  • Ra 3 and La 1 in general formula (S1) may be linked to form a ring.
  • Ra 4 to Ra 6 in general formula (S1) each independently represent a hydrogen atom, an alkyl group, an alkoxy group, a cycloalkyl group, an aryl group, an aromatic heterocyclic group, an aralkyl group, or an alkenyl group.
  • Ra 4 to Ra 6 represents an aromatic heterocyclic group containing a sulfur atom.
  • the alkyl groups of Ra 4 to Ra 6 may be linear or branched. Although the number of carbon atoms in the alkyl group is not particularly limited, it is preferably 1-10, more preferably 1-6.
  • the methylene groups included in the alkyl groups of Ra 4 to Ra 6 may be replaced with at least one of -CO- and -O-.
  • the alkoxy groups of Ra 4 to Ra 6 may be linear or branched. Although the number of carbon atoms in the alkoxy group is not particularly limited, it is preferably 1-10, more preferably 1-6.
  • the number of carbon atoms in the cycloalkyl groups of Ra 4 to Ra 6 is not particularly limited, but is preferably 3-20, more preferably 5-15.
  • Cycloalkyl groups of Ra 4 to Ra 6 include monocyclic cycloalkyl groups such as cyclopentyl and cyclohexyl groups, and polycyclic groups such as norbornyl, tetracyclodecanyl, tetracyclododecanyl and adamantyl groups. is preferred.
  • the number of carbon atoms in the aryl group of Ra 4 to Ra 6 is not particularly limited, but is preferably 6-20, more preferably 6-10.
  • a phenyl group is most preferable as the aryl group for Ra 4 to Ra 6 .
  • the aralkyl group of Ra 4 to Ra 6 is preferably a group in which one hydrogen atom in the above alkyl group of Ra 4 to Ra 6 is substituted with an aryl group having 6 to 10 carbon atoms (preferably a phenyl group), For example, a benzyl group and the like can be mentioned.
  • the number of carbon atoms in the alkenyl groups of Ra 4 to Ra 6 is not particularly limited, it is preferably 2 to 5, more preferably 2 to 4.
  • a vinyl group is preferable as the alkenyl group for Ra 4 to Ra 6 .
  • the aromatic heterocyclic groups of Ra 4 to Ra 6 preferably contain at least one heteroatom selected from the group consisting of a sulfur atom, a nitrogen atom and an oxygen atom, more preferably a sulfur atom.
  • the number of heteroatoms contained in the aromatic heterocyclic group is preferably 1-5, more preferably 1-3. Although the number of carbon atoms in the aromatic heterocyclic group is not particularly limited, it is preferably 2-20, more preferably 3-15.
  • Aromatic heterocyclic groups may be monocyclic or polycyclic.
  • aromatic heterocyclic groups of Ra 4 to Ra 6 include thienyl, furanyl, benzothienyl, dibenzothienyl, benzofuranyl, pyrrole, oxazolyl, thiazolyl, pyridyl, isothiazolyl and thiadiazolyl. and the like.
  • the aromatic heterocyclic groups of Ra 4 to Ra 6 may have a substituent. Examples of the substituent include the substituent T described above, and an alkyl group, an aryl group, an aromatic heterocyclic group, and an alkoxy group are preferable. Also, two or more substituents may be bonded together to form a ring.
  • At least one of Ra 4 to Ra 6 represents an aromatic heterocyclic group containing a sulfur atom.
  • the aromatic heterocyclic group containing a sulfur atom includes aromatic heterocyclic groups containing at least one sulfur atom among the aromatic heterocyclic groups described above.
  • Preferred sulfur atom-containing aromatic heterocyclic groups are thienyl, benzothienyl, dibenzothienyl, thiazolyl, isothiazolyl, and thiadiazolyl groups.
  • An aromatic heterocyclic group containing a sulfur atom may have a substituent. Examples of the substituent include the substituent T described above, and an alkyl group, an aryl group, an aromatic heterocyclic group, and an alkoxy group are preferable.
  • two or more substituents may be bonded together to form a ring.
  • Specific examples of sulfur atom-containing aromatic heterocyclic groups are shown below, but are not limited thereto.
  • the following groups may further have substituents, and two or more substituents may combine with each other to form a ring. * represents a binding position.
  • Two of Ra 4 to Ra 6 may combine with each other to form a ring.
  • a preferred embodiment of the resin (A) is an embodiment in which any one of Ra 4 to Ra6 represents a hydrogen atom.
  • any one of Ra4 to Ra6 is a hydrogen atom, appropriate reactivity can be imparted, which is preferable.
  • the acid-decomposable repeating unit represented by general formula (S1) is preferably an acid-decomposable repeating unit represented by general formula (S1-1) or (S1-2) below.
  • Ra 1 to Ra 3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, a halogen atom, a cyano group, or an alkoxycarbonyl group.
  • La 2 represents a single bond or -COO-.
  • Ara 1 represents an arylene group. Ra 3 and Ara 1 may combine to form a ring.
  • Ra 4 to Ra 6 each independently represent a hydrogen atom, an alkyl group, an alkoxy group , a cycloalkyl group, an aryl group, an aromatic heterocyclic group, an aralkyl group, or an alkenyl group; At least one of them represents an aromatic heterocyclic group containing a sulfur atom.
  • Two of Ra 4 to Ra 6 may combine with each other to form a ring.
  • Ra 1 to Ra 3 in general formulas (S1-1) and (S1-2) have the same meanings as Ra 1 to Ra 3 in general formula (S1) above, and specific examples and preferred ranges are also the same.
  • Ra 4 to Ra 6 in general formulas (S1-1) and (S1-2) have the same meanings as Ra 4 to Ra 6 in general formula (S1) above, and specific examples and preferred ranges are also the same. be.
  • La 2 in general formulas (S1-1) and (S1-2) represents a single bond or -COO-, preferably a single bond.
  • Ara 1 in the general formulas (S1-1) and (S1-2) represents an arylene group, preferably an arylene group having 6 to 20 carbon atoms, more preferably an arylene group having 6 to 10 carbon atoms. More preferably, it is particularly preferably a phenylene group.
  • the number of acid-decomposable repeating units represented by the general formula (S1) contained in the resin (A) may be one, or two or more.
  • the content of the acid-decomposable repeating unit represented by the general formula (S1) is preferably 5 mol% or more, more preferably 10 mol% or more, and 20 mol% with respect to all repeating units in the resin (A). The above is more preferable.
  • the content of the acid-decomposable repeating unit represented by formula (S1) is preferably 90 mol% or less, more preferably 80 mol% or less, more preferably 70 mol% or less, relative to all repeating units in the resin (A). mol % or less is more preferable.
  • the resin (A) may contain other acid-decomposable repeating units (repeating units having an acid-decomposable group) in addition to the acid-decomposable repeating units represented by the general formula (S1).
  • the resin (A) may contain at least one repeating unit selected from the group consisting of Group A below and/or at least one repeating unit selected from the group consisting of Group B below. good.
  • Group A A group consisting of the following repeating units (20) to (25).
  • a repeating unit having an acid group which will be described later
  • (23) a repeating unit having a photoacid-generating group which will be described later
  • the repeating units represented by formulas (A) to (E), which will be described later, are (25) reducing the mobility of the main chain corresponds to a repeating unit for Group B: A group consisting of the following repeating units (30) to (32).
  • a preferable embodiment of the resin (A) is an embodiment in which the resin (A) contains at least one of a repeating unit having a phenolic hydroxyl group and a repeating unit having a lactone group. This improves the adhesion of the resist film formed from the composition of the present invention to the substrate.
  • the resin (A) preferably has an acid group, and preferably contains a repeating unit having an acid group, as described later.
  • the resin (A) has an acid group, the interaction between the resin (A) and the acid generated from the photoacid generator is more excellent. As a result, diffusion of acid is further suppressed, and the cross-sectional shape of the formed pattern can be made more rectangular.
  • the resin (A) may have at least one type of repeating unit selected from the group consisting of the A group.
  • the resin (A) has at least one repeating unit selected from the group consisting of Group A above. is preferred.
  • Resin (A) may contain at least one of a fluorine atom and an iodine atom.
  • the resin (A) preferably contains at least one of a fluorine atom and an iodine atom.
  • the resin (A) may have one repeating unit containing both a fluorine atom and an iodine atom, and the resin (A) It may contain two types of a repeating unit containing a fluorine atom and a repeating unit containing an iodine atom.
  • the resin (A) may have at least one type of repeating unit selected from the group consisting of Group B above.
  • the resin (A) may have at least one repeating unit selected from the group consisting of Group B above.
  • the resin (A) preferably contains neither fluorine atoms nor silicon atoms.
  • Resin (A) may have a repeating unit having an acid group.
  • an acid group having a pKa of 13 or less is preferable.
  • the acid dissociation constant of the acid group is preferably 13 or less, more preferably 3-13, even more preferably 5-10.
  • the content of the acid group in the resin (A) is not particularly limited, but is often 0.2 to 6.0 mmol/g. Among them, 0.8 to 6.0 mmol/g is preferable, 1.2 to 5.0 mmol/g is more preferable, and 1.6 to 4.0 mmol/g is even more preferable.
  • the acid group is preferably, for example, a carboxyl group, a phenolic hydroxyl group, a fluoroalcohol group (preferably a hexafluoroisopropanol group), a sulfonic acid group, a sulfonamide group, or an isopropanol group.
  • a fluoroalcohol group preferably a hexafluoroisopropanol group
  • a sulfonic acid group preferably a sulfonamide group
  • an isopropanol group preferably, for example, a carboxyl group, a phenolic hydroxyl group, a fluoroalcohol group (preferably a hexafluoroisopropanol group), a sulfonic acid group, a sulfonamide group, or an isopropanol group.
  • one or more (preferably 1 to 2) fluorine atoms may be substituted with a group other than a fluor
  • the acid group is -C(CF 3 )(OH)-CF 2 - thus formed.
  • one or more of the fluorine atoms may be substituted with a group other than a fluorine atom to form a ring containing -C(CF 3 )(OH)-CF 2 -.
  • the repeating unit having an acid group is different from the repeating unit having a structure in which the polar group is protected by a group that leaves under the action of an acid, and the repeating unit having a lactone group, a sultone group, or a carbonate group, which will be described later. It is preferably a repeating unit.
  • a repeating unit having an acid group may have a fluorine atom or an iodine atom.
  • repeating units having an acid group include the following repeating units.
  • repeating unit having an acid group a repeating unit represented by the following formula (1) is preferable.
  • A represents a hydrogen atom, an alkyl group, a cycloalkyl group, a halogen atom, or a cyano group.
  • R represents a halogen atom, an alkyl group, a cycloalkyl group, an aryl group, an alkenyl group, an aralkyl group, an alkoxy group, an alkylcarbonyloxy group, an alkylsulfonyloxy group, an alkyloxycarbonyl group, or an aryloxycarbonyl group; In some cases they may be the same or different. When it has a plurality of R, they may jointly form a ring.
  • a hydrogen atom is preferred as R.
  • a represents an integer of 1 to 3;
  • b represents an integer from 0 to (5-a).
  • repeating units having an acid group examples include a and a.
  • R represents a hydrogen atom or a methyl group
  • a represents an integer of 1-3.
  • the content of the repeating unit having an acid group is preferably 5 mol% or more, and 10 mol% or more, based on the total repeating units in the resin (A). is more preferred.
  • the upper limit thereof is preferably 70 mol % or less, more preferably 65 mol % or less, and still more preferably 60 mol % or less, based on all repeating units in the resin (A).
  • the resin (A) is a repeating unit having neither an acid-decomposable group nor an acid group and having a fluorine atom, a bromine atom, or an iodine atom, in addition to the above-described acid-decomposable repeating unit and repeating unit having an acid group. (hereinafter also referred to as unit X).
  • the ⁇ repeating unit having neither an acid-decomposable group nor an acid group and having a fluorine atom, a bromine atom, or an iodine atom> referred to here is a ⁇ repeating unit having a lactone group, a sultone group, or a carbonate group> described later.
  • ⁇ repeating unit having photoacid-generating group> is a ⁇ repeating unit having photoacid-generating group>.
  • a repeating unit represented by formula (C) is preferable.
  • L5 represents a single bond or an ester group.
  • R9 represents a hydrogen atom or an alkyl group optionally having a fluorine atom or an iodine atom.
  • R 10 may have a hydrogen atom, an alkyl group optionally having a fluorine atom or an iodine atom, a cycloalkyl group optionally having a fluorine atom or an iodine atom, a fluorine atom or an iodine atom represents an aryl group or a group combining these;
  • repeating units having a fluorine atom or an iodine atom are shown below.
  • the content of the unit X is preferably 0 mol% or more, more preferably 5 mol% or more, and still more preferably 10 mol% or more, relative to all repeating units in the resin (A). Moreover, the upper limit thereof is preferably 50 mol % or less, more preferably 45 mol % or less, and still more preferably 40 mol % or less, relative to all repeating units in the resin (A).
  • the total content of repeating units containing at least one of a fluorine atom, a bromine atom and an iodine atom is preferably 10 mol% or more with respect to all repeating units of the resin (A). , more preferably 20 mol % or more, still more preferably 30 mol % or more, and particularly preferably 40 mol % or more.
  • the upper limit is not particularly limited, it is, for example, 100 mol % or less with respect to all repeating units of the resin (A).
  • the repeating unit containing at least one of a fluorine atom, a bromine atom and an iodine atom includes, for example, a repeating unit having a fluorine atom, a bromine atom or an iodine atom and having an acid-decomposable group, a fluorine atom, a bromine repeating units having an acid group, and repeating units having a fluorine atom, a bromine atom, or an iodine atom.
  • Resin (A) may have a repeating unit (hereinafter also referred to as “unit Y”) having at least one selected from the group consisting of a lactone group, a sultone group and a carbonate group. It is also preferable that the unit Y does not have a hydroxyl group and an acid group such as a hexafluoropropanol group.
  • the lactone group or sultone group may have a lactone structure or sultone structure.
  • the lactone structure or sultone structure is preferably a 5- to 7-membered ring lactone structure or a 5- to 7-membered ring sultone structure.
  • the resin (A) has a lactone structure represented by any one of the following formulas (LC1-1) to (LC1-21), or any one of the following formulas (SL1-1) to (SL1-3). It preferably has a repeating unit having a lactone group or a sultone group obtained by removing one or more hydrogen atoms from a ring member atom of a sultone structure, and the lactone group or sultone group may be directly bonded to the main chain.
  • ring member atoms of a lactone group or a sultone group may constitute the main chain of resin (A).
  • the lactone structure or sultone structure may have a substituent (Rb 2 ).
  • Preferred substituents (Rb 2 ) include alkyl groups having 1 to 8 carbon atoms, cycloalkyl groups having 4 to 7 carbon atoms, alkoxy groups having 1 to 8 carbon atoms, alkoxycarbonyl groups having 1 to 8 carbon atoms, and carboxyl groups. , halogen atoms, cyano groups, and acid-labile groups.
  • n2 represents an integer of 0-4. When n2 is 2 or more, multiple Rb 2 may be different, and multiple Rb 2 may combine to form a ring.
  • Rb 0 represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms. Preferred substituents that the alkyl group of Rb 0 may have include a hydroxyl group and a halogen atom.
  • a halogen atom for Rb 0 includes a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Rb 0 is preferably a hydrogen atom or a methyl group.
  • Ab is a single bond, an alkylene group, a divalent linking group having a monocyclic or polycyclic alicyclic hydrocarbon structure, an ether group, an ester group, a carbonyl group, a carboxyl group, or a combination of these divalent linkages represents a group.
  • Ab is preferably a single bond or a linking group represented by -Ab 1 -CO 2 -.
  • Ab 1 is a linear or branched alkylene group or a monocyclic or polycyclic cycloalkylene group, preferably a methylene group, ethylene group, cyclohexylene group, adamantylene group or norbornylene group.
  • V is a group obtained by removing one hydrogen atom from a ring member atom of a lactone structure represented by any one of formulas (LC1-1) to (LC1-21), or formulas (SL1-1) to (SL1- 3) represents a group obtained by removing one hydrogen atom from a ring member atom of the sultone structure represented by any one of 3).
  • any optical isomer may be used. Moreover, one optical isomer may be used alone, or a plurality of optical isomers may be mixed and used. When one kind of optical isomer is mainly used, its optical purity (ee) is preferably 90 or more, more preferably 95 or more.
  • a cyclic carbonate group is preferred.
  • a repeating unit having a cyclic carbonate group a repeating unit represented by the following formula (A-1) is preferable.
  • R A 1 represents a hydrogen atom, a halogen atom, or a monovalent organic group (preferably a methyl group).
  • n represents an integer of 0 or more.
  • R A 2 represents a substituent. When n is 2 or more, a plurality of R A 2 may be the same or different.
  • A represents a single bond or a divalent linking group.
  • the divalent linking group includes an alkylene group, a divalent linking group having a monocyclic or polycyclic alicyclic hydrocarbon structure, an ether group, an ester group, a carbonyl group, a carboxyl group, or a combination of these.
  • a valent linking group is preferred.
  • Z represents an atomic group forming a monocyclic or polycyclic ring together with the group represented by -O-CO-O- in the formula.
  • Rx represents a hydrogen atom, -CH 3 , -CH 2 OH, or -CF 3 .
  • the content of the unit Y is preferably 1 mol% or more, more preferably 10 mol% or more, relative to all repeating units in the resin (A).
  • the upper limit is preferably 85 mol% or less, more preferably 80 mol% or less, still more preferably 70 mol% or less, and particularly 60 mol% or less, relative to all repeating units in the resin (A). preferable.
  • the resin (A) has, as a repeating unit other than the above, a repeating unit having a group that generates an acid upon irradiation with an actinic ray or radiation (preferably an electron beam or extreme ultraviolet rays) (hereinafter also referred to as a "photoacid-generating group").
  • a preferable embodiment of the resin (A) is an embodiment in which the resin (A) contains a repeating unit having a group that is decomposed by irradiation with electron beams or extreme ultraviolet rays to generate an acid.
  • Repeating units having a photoacid-generating group include repeating units represented by formula (4).
  • R41 represents a hydrogen atom or a methyl group.
  • L41 represents a single bond or a divalent linking group.
  • L42 represents a divalent linking group.
  • R40 represents a structural site that is decomposed by exposure to actinic rays or radiation to generate an acid in the side chain. Examples of repeating units having a photoacid-generating group are shown below.
  • repeating unit represented by formula (4) includes, for example, repeating units described in paragraphs [0094] to [0105] of JP-A-2014-041327, and International Publication No. 2018/193954. Examples include repeating units described in paragraph [0094].
  • the content of the repeating unit having a photoacid-generating group is preferably 1 mol% or more with respect to all repeating units in the resin (A), 5 mol % or more is more preferable.
  • the upper limit thereof is preferably 40 mol % or less, more preferably 35 mol % or less, and still more preferably 30 mol % or less, based on all repeating units in the resin (A).
  • Resin (A) may have a repeating unit represented by the following formula (V-1) or the following formula (V-2).
  • Repeating units represented by the following formulas (V-1) and (V-2) below are preferably different repeating units from the repeating units described above.
  • R 6 and R 7 each independently represent a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, an acyloxy group, a cyano group, a nitro group, an amino group, a halogen atom, an ester group (-OCOR or -COOR: R is the number of carbon atoms; 1 to 6 alkyl groups or fluorinated alkyl groups), or a carboxyl group.
  • the alkyl group is preferably a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms.
  • n3 represents an integer of 0-6.
  • n4 represents an integer of 0-4.
  • X4 is a methylene group, an oxygen atom, or a sulfur atom.
  • the repeating units represented by formula (V-1) or (V-2) are exemplified below. Examples of the repeating unit represented by formula (V-1) or (V-2) include repeating units described in paragraph [0100] of WO 2018/193954.
  • the resin (A) preferably has a high glass transition temperature (Tg) from the viewpoint of suppressing excessive diffusion of generated acid or pattern collapse during development.
  • Tg is preferably greater than 90°C, more preferably greater than 100°C, even more preferably greater than 110°C, and particularly preferably greater than 125°C.
  • the Tg is preferably 400° C. or less, more preferably 350° C. or less, from the viewpoint of excellent dissolution rate in the developer.
  • Tg of repeating unit is calculated by the following method.
  • the Tg of a homopolymer consisting only of each repeating unit contained in the polymer is calculated by the Bicerano method.
  • the mass ratio (%) of each repeating unit to all repeating units in the polymer is calculated.
  • the Fox formula (described in Materials Letters 62 (2008) 3152, etc.) is used to calculate the Tg at each mass ratio, and these are totaled to obtain the Tg (°C) of the polymer.
  • the Bicerano method is described in Prediction of polymer properties, Marcel Dekker Inc, New York (1993). Calculation of Tg by the Bicerano method can be performed using a polymer physical property estimation software MDL Polymer (MDL Information Systems, Inc.).
  • Methods for reducing the mobility of the main chain of the resin (A) include the following methods (a) to (e).
  • (a) Introduction of bulky substituents into the main chain (b) Introduction of multiple substituents into the main chain (c) Introduction of substituents that induce interaction between the resin (A) in the vicinity of the main chain ( d) Main Chain Formation in Cyclic Structure (e) Linking of Cyclic Structure to Main Chain
  • the resin (A) preferably has a repeating unit exhibiting a homopolymer Tg of 130° C. or higher.
  • the type of repeating unit exhibiting a homopolymer Tg of 130° C. or higher is not particularly limited as long as it is a repeating unit having a homopolymer Tg of 130° C. or higher as calculated by the Bicerano method.
  • the homopolymers correspond to repeating units exhibiting a homopolymer Tg of 130° C. or higher.
  • a specific example of means for achieving the above (a) is a method of introducing a repeating unit represented by the formula (A) into the resin (A).
  • RA represents a group containing a polycyclic structure.
  • R x represents a hydrogen atom, a methyl group, or an ethyl group.
  • a group containing a polycyclic structure is a group containing multiple ring structures, and the multiple ring structures may or may not be condensed.
  • Specific examples of the repeating unit represented by formula (A) include those described in paragraphs [0107] to [0119] of WO2018/193954.
  • a specific example of means for achieving the above (b) is a method of introducing a repeating unit represented by the formula (B) into the resin (A).
  • R b1 to R b4 each independently represent a hydrogen atom or an organic group, and at least two or more of R b1 to R b4 represent an organic group.
  • the type of other organic group is not particularly limited.
  • at least two of the organic groups have three or more constituent atoms excluding hydrogen atoms. is a substituent.
  • Specific examples of the repeating unit represented by formula (B) include those described in paragraphs [0113] to [0115] of WO2018/193954.
  • a specific example of means for achieving the above (c) is a method of introducing a repeating unit represented by the formula (C) into the resin (A).
  • R c1 to R c4 each independently represent a hydrogen atom or an organic group, and at least one of R c1 to R c4 is hydrogen bonding hydrogen within 3 atoms from the main chain carbon It is a group containing atoms. Above all, it is preferable to have a hydrogen-bonding hydrogen atom within 2 atoms (closer to the main chain side) in order to induce interaction between the main chains of the resin (A).
  • Specific examples of the repeating unit represented by formula (C) include those described in paragraphs [0119] to [0121] of WO2018/193954.
  • a specific example of means for achieving (d) above is a method of introducing a repeating unit represented by the formula (D) into the resin (A).
  • Cyclic represents a group forming a main chain with a cyclic structure.
  • the number of constituent atoms of the ring is not particularly limited.
  • Specific examples of the repeating unit represented by formula (D) include those described in paragraphs [0126] to [0127] of WO2018/193954.
  • a specific example of means for achieving (e) above is a method of introducing a repeating unit represented by formula (E) into the resin (A).
  • each Re independently represents a hydrogen atom or an organic group.
  • organic groups include alkyl groups, cycloalkyl groups, aryl groups, aralkyl groups, and alkenyl groups, which may have substituents.
  • a "Cyclic” is a cyclic group containing carbon atoms in the main chain. The number of atoms contained in the cyclic group is not particularly limited. Specific examples of the repeating unit represented by formula (E) include those described in paragraphs [0131] to [0133] of WO2018/193954.
  • the resin (A) may have repeating units having at least one group selected from lactone groups, sultone groups, carbonate groups, hydroxyl groups, cyano groups, and alkali-soluble groups.
  • the repeating unit having a lactone group, a sultone group, or a carbonate group that the resin (A) has include the repeating units described in the above ⁇ Repeating unit having a lactone group, sultone group, or carbonate group>.
  • the preferable content is also as described in ⁇ Repeating unit having lactone group, sultone group, or carbonate group>.
  • Resin (A) may have a repeating unit having a hydroxyl group or a cyano group. This improves the adhesion to the substrate and the compatibility with the developer.
  • a repeating unit having a hydroxyl group or a cyano group is preferably a repeating unit having an alicyclic hydrocarbon structure substituted with a hydroxyl group or a cyano group.
  • a repeating unit having a hydroxyl group or a cyano group preferably does not have an acid-decomposable group. Examples of repeating units having a hydroxyl group or a cyano group include those described in paragraphs [0081] to [0084] of JP-A-2014-098921.
  • Resin (A) may have a repeating unit having an alkali-soluble group.
  • the alkali-soluble group includes a carboxyl group, a sulfonamide group, a sulfonylimide group, a bissulfonylimide group, and an aliphatic alcohol group substituted with an electron-withdrawing group at the ⁇ -position (e.g., hexafluoroisopropanol group). , is preferably a carboxyl group.
  • the resin (A) contains a repeating unit having an alkali-soluble group, the resolution for contact holes is increased. Repeating units having an alkali-soluble group include those described in paragraphs [0085] and [0086] of JP-A-2014-098921.
  • Resin (A) may have a repeating unit that has an alicyclic hydrocarbon structure and does not exhibit acid decomposability. This can reduce the elution of low-molecular-weight components from the resist film into the immersion liquid during immersion exposure.
  • Repeating units having an alicyclic hydrocarbon structure and not exhibiting acid decomposability include, for example, 1-adamantyl (meth)acrylate, diamantyl (meth)acrylate, tricyclodecanyl (meth)acrylate, or cyclohexyl (meth) Examples include repeating units derived from acrylates.
  • Resin (A) may have a repeating unit represented by formula (III) that has neither a hydroxyl group nor a cyano group.
  • R5 represents a hydrocarbon group having at least one cyclic structure and having neither a hydroxyl group nor a cyano group.
  • Ra represents a hydrogen atom, an alkyl group or a --CH 2 --O--Ra 2 group.
  • Ra2 represents a hydrogen atom, an alkyl group or an acyl group. Examples of the repeating unit represented by formula (III) having neither a hydroxyl group nor a cyano group include those described in paragraphs [0087] to [0094] of JP-A-2014-098921.
  • the resin (A) may have repeating units other than the repeating units described above.
  • the resin (A) has repeating units selected from the group consisting of repeating units having an oxathian ring group, repeating units having an oxazolone ring group, repeating units having a dioxane ring group, and repeating units having a hydantoin ring group. You may have Specific examples of repeating units other than the repeating units described above are shown below.
  • the resin (A) may contain various repeating structural units for the purpose of adjusting dry etching resistance, suitability for standard developer, substrate adhesion, resist profile, resolution, heat resistance, sensitivity, and the like. may have
  • all repeating units are derived from a compound having an ethylenically unsaturated bond. It is preferably composed of repeating units. In particular, it is also preferred that all of the repeating units are composed of (meth)acrylate repeating units. When all of the repeating units are composed of (meth)acrylate repeating units, all of the repeating units are methacrylate repeating units, all of the repeating units are acrylate repeating units, and all of the repeating units are methacrylates. It is possible to use either one based on repeating units and acrylate repeating units, and it is preferable that the acrylate repeating units be 50 mol % or less of the total repeating units.
  • Resin (A) can be synthesized according to a conventional method (for example, radical polymerization).
  • the weight average molecular weight (Mw) of the resin (A) is preferably 30,000 or less, more preferably 1,000 to 30,000, even more preferably 3,000 to 30,000, as a polystyrene equivalent value by GPC method, 5,000 to 15,000 are particularly preferred.
  • the dispersity (molecular weight distribution, Pd, Mw/Mn) of the resin (A) is preferably 1 to 5, more preferably 1 to 3, still more preferably 1.2 to 3.0, and 1.2 to 2.0. is particularly preferred. The smaller the degree of dispersion, the better the resolution and resist shape, the smoother the side walls of the resist pattern, and the better the roughness.
  • the resin (A) contained in the composition of the present invention may be one kind, or two or more kinds.
  • the content of the resin (A) is preferably 40.0 to 99.9% by mass, preferably 60.0 to 90.0% by mass, based on the total solid content of the composition of the present invention. is more preferred.
  • the resin (A) may be used singly or in combination.
  • the composition of the present invention preferably contains an acid salt, more preferably contains an acid salt with a pKa of -2.0 or more, and an acid salt with a pKa of -2.0 or more and 1.0 or less. More preferably, it contains
  • the acid salt is preferably a compound (photoacid generator) that generates an acid upon exposure to actinic rays or radiation.
  • the photoacid generator may be in the form of a low-molecular-weight compound, or may be in the form of being incorporated into a part of the polymer. Moreover, the form of a low-molecular-weight compound and the form of being incorporated into a part of a polymer may be used in combination.
  • the photoacid generator is in the form of a low molecular weight compound, the molecular weight of the photoacid generator is preferably 3,000 or less, more preferably 2,000 or less, and even more preferably 1,000 or less. Although the lower limit is not particularly limited, 100 or more is preferable.
  • the photoacid generator When the photoacid generator is in the form of being incorporated into part of the polymer, it may be incorporated into part of the resin (A), or may be incorporated into a resin different from the resin (A).
  • the photoacid generator is preferably in the form of a low molecular weight compound.
  • the photoacid generator is preferably a compound that generates an acid with a pKa of -2.0 or more by irradiation with actinic rays or radiation, and a compound that generates an acid with a pKa of -2.0 or more and 1.0 or less. is more preferable.
  • photoacid generators include compounds represented by “M + X ⁇ ” (onium salts), and compounds that generate organic acids upon exposure are preferred.
  • organic acid include sulfonic acid (aliphatic sulfonic acid, aromatic sulfonic acid, camphorsulfonic acid, etc.), carboxylic acid (aliphatic carboxylic acid, aromatic carboxylic acid, aralkylcarboxylic acid, etc.), carbonylsulfonylimide, acids, bis(alkylsulfonyl)imidic acids, and tris(alkylsulfonyl)methide acids.
  • sulfonic acid aliphatic sulfonic acid, aromatic sulfonic acid, camphorsulfonic acid, etc.
  • carboxylic acid aliphatic carboxylic acid, aromatic carboxylic acid, aralkylcarboxylic acid, etc.
  • carbonylsulfonylimide acids, bis(alkylsulfonyl)
  • M + represents an organic cation.
  • the valence of the organic cation may be 1 or 2 or more.
  • a cation represented by the formula (ZaI) hereinafter also referred to as “cation (ZaI)
  • ZaII a cation represented by the formula (ZaII)
  • ZaII a cation represented by the formula (ZaII)
  • R 201 , R 202 and R 203 each independently represent an organic group.
  • the number of carbon atoms in the organic groups for R 201 , R 202 and R 203 is preferably 1-30, more preferably 1-20.
  • Two of R 201 to R 203 may combine to form a ring structure, and the ring may contain an oxygen atom, a sulfur atom, an ester group, an amide group, or a carbonyl group.
  • Examples of the group formed by combining two of R 201 to R 203 include an alkylene group (eg, a butylene group and a pentylene group) and —CH 2 —CH 2 —O—CH 2 —CH 2 —. mentioned.
  • Suitable embodiments of the organic cation in formula (ZaI) include cation (ZaI-1), cation (ZaI-2), cation (ZaI-3b), and cation (ZaI-4b), which will be described later.
  • Cation (ZaI-1) is an arylsulfonium cation in which at least one of R 201 to R 203 in formula (ZaI) above is an aryl group.
  • R 201 to R 203 may be aryl groups, or part of R 201 to R 203 may be aryl groups and the rest may be alkyl groups or cycloalkyl groups.
  • R 201 to R 203 is an aryl group, and the remaining two of R 201 to R 203 may combine to form a ring structure, in which an oxygen atom, a sulfur atom and an ester group , an amide group, or a carbonyl group.
  • the group formed by bonding two of R 201 to R 203 includes, for example, one or more methylene groups substituted with an oxygen atom, a sulfur atom, an ester group, an amide group and/or a carbonyl group. alkylene groups (eg, butylene group, pentylene group, and —CH 2 —CH 2 —O—CH 2 —CH 2 —).
  • Arylsulfonium cations include triarylsulfonium cations, diarylalkylsulfonium cations, aryldialkylsulfonium cations, diarylcycloalkylsulfonium cations, and aryldicycloalkylsulfonium cations.
  • the aryl group contained in the arylsulfonium cation is preferably a phenyl group or a naphthyl group, more preferably a phenyl group.
  • the aryl group may be an aryl group having a heterocyclic structure having an oxygen atom, a nitrogen atom, a sulfur atom, or the like. Heterocyclic structures include pyrrole, furan, thiophene, indole, benzofuran, and benzothiophene residues.
  • the arylsulfonium cation has two or more aryl groups, the two or more aryl groups may be the same or different.
  • the alkyl group or cycloalkyl group optionally possessed by the arylsulfonium cation is a linear alkyl group having 1 to 15 carbon atoms, a branched alkyl group having 3 to 15 carbon atoms, or 3 to 15 carbon atoms. is preferred, and a methyl group, ethyl group, propyl group, n-butyl group, sec-butyl group, t-butyl group, cyclopropyl group, cyclobutyl group or cyclohexyl group is more preferred.
  • substituents that the aryl group, alkyl group and cycloalkyl group of R 201 to R 203 may have include an alkyl group (eg, 1 to 15 carbon atoms), a cycloalkyl group (eg, 3 to 3 carbon atoms).
  • aryl groups eg, 6 to 14 carbon atoms
  • alkoxy groups eg, 1 to 15 carbon atoms
  • cycloalkylalkoxy groups eg, 1 to 15 carbon atoms
  • halogen atoms eg, fluorine and iodine
  • the substituent may further have a substituent
  • the alkyl group preferably has a halogen atom as a substituent to form a halogenated alkyl group such as a trifluoromethyl group.
  • the acid-decomposable group is intended to be a group that is decomposed by the action of an acid to generate a polar group, and preferably has a structure in which the polar group is protected by a group that is eliminated by the action of an acid.
  • the polar group and leaving group are as described above.
  • Cation (ZaI-2) is a cation in which R 201 to R 203 in formula (ZaI) each independently represents an organic group having no aromatic ring.
  • Aromatic rings also include aromatic rings containing heteroatoms.
  • the number of carbon atoms in the organic group having no aromatic ring as R 201 to R 203 is preferably 1-30, more preferably 1-20.
  • R 201 to R 203 are each independently preferably an alkyl group, a cycloalkyl group, an allyl group, or a vinyl group, and a linear or branched 2-oxoalkyl group, 2-oxocycloalkyl group, or An alkoxycarbonylmethyl group is more preferred, and a linear or branched 2-oxoalkyl group is even more preferred.
  • the alkyl groups and cycloalkyl groups of R 201 to R 203 are, for example, linear alkyl groups having 1 to 10 carbon atoms or branched alkyl groups having 3 to 10 carbon atoms (e.g., methyl group, ethyl group, propyl group, , butyl group, and pentyl group), and cycloalkyl groups having 3 to 10 carbon atoms (eg, cyclopentyl group, cyclohexyl group, and norbornyl group).
  • R 201 to R 203 may be further substituted with a halogen atom, an alkoxy group (eg, 1-5 carbon atoms), a hydroxyl group, a cyano group, or a nitro group. It is also preferred that the substituents of R 201 to R 203 each independently form an acid-decomposable group by any combination of substituents.
  • the cation (ZaI-3b) is a cation represented by the following formula (ZaI-3b).
  • R 1c to R 5c each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an alkoxy group, an aryloxy group, an alkoxycarbonyl group, an alkylcarbonyloxy group, a cycloalkyl represents a carbonyloxy group, a halogen atom, a hydroxyl group, a nitro group, an alkylthio group, or an arylthio group; R 6c and R 7c each independently represent a hydrogen atom, an alkyl group (eg, t-butyl group), a cycloalkyl group, a halogen atom, a cyano group, or an aryl group.
  • R 6c and R 7c each independently represent a hydrogen atom, an alkyl group (eg, t-butyl group), a cycloalkyl group, a halogen atom, a cyano group, or an ary
  • R x and R y each independently represent an alkyl group, a cycloalkyl group, a 2-oxoalkyl group, a 2-oxocycloalkyl group, an alkoxycarbonylalkyl group, an allyl group, or a vinyl group. It is also preferred that the substituents of R 1c to R 7c , R x and R y independently form an acid-decomposable group by any combination of substituents.
  • R 1c to R 5c , R 5c and R 6c , R 6c and R 7c , R 5c and R x , and R x and R y may combine with each other to form a ring.
  • the rings may each independently contain an oxygen atom, a sulfur atom, a ketone group, an ester bond, or an amide bond.
  • Examples of the ring include aromatic or non-aromatic hydrocarbon rings, aromatic or non-aromatic hetero rings, and polycyclic condensed rings in which two or more of these rings are combined.
  • the ring includes a 3- to 10-membered ring, preferably a 4- to 8-membered ring, more preferably a 5- or 6-membered ring.
  • Examples of groups formed by bonding two or more of R 1c to R 5c , R 6c and R 7c , and R x and R y include alkylene groups such as a butylene group and a pentylene group. A methylene group in this alkylene group may be substituted with a heteroatom such as an oxygen atom.
  • the group formed by combining R 5c and R 6c and R 5c and R x is preferably a single bond or an alkylene group.
  • Alkylene groups include methylene and ethylene groups.
  • R 1c to R 5c , R 6c , R 7c , R x , R y , and two or more of R 1c to R 5c , R 5c and R 6c , R 6c and R 7c , R 5c and R x , and the ring formed by combining each other with R x and R y may have a substituent.
  • the cation (ZaI-4b) is a cation represented by the following formula (ZaI-4b).
  • R 13 is a hydrogen atom, a halogen atom (e.g., fluorine atom, iodine atom, etc.), a hydroxyl group, an alkyl group, a halogenated alkyl group, an alkoxy group, a carboxyl group, an alkoxycarbonyl group, or a group containing a cycloalkyl group (cycloalkyl may be the group itself, or may be a group partially containing a cycloalkyl group). These groups may have a substituent.
  • a halogen atom e.g., fluorine atom, iodine atom, etc.
  • R 14 is a hydroxyl group, a halogen atom (e.g., a fluorine atom, an iodine atom, etc.), an alkyl group, a halogenated alkyl group, an alkoxy group, an alkoxycarbonyl group, an alkylcarbonyl group, an alkylsulfonyl group, a cycloalkylsulfonyl group, or a cycloalkyl represents a group containing a group (either a cycloalkyl group itself or a group partially containing a cycloalkyl group). These groups may have a substituent.
  • a halogen atom e.g., a fluorine atom, an iodine atom, etc.
  • each independently represents the above group such as a hydroxyl group.
  • Each R 15 independently represents an alkyl group, a cycloalkyl group, or a naphthyl group. Two R 15 may be joined together to form a ring. When two R 15 are combined to form a ring, the ring skeleton may contain a heteroatom such as an oxygen atom or a nitrogen atom.
  • two R 15 are alkylene groups, preferably joined together to form a ring structure. The ring formed by combining the alkyl group, the cycloalkyl group, the naphthyl group, and the two R 15 groups may have a substituent.
  • the alkyl groups of R 13 , R 14 and R 15 may be linear or branched.
  • the number of carbon atoms in the alkyl group is preferably 1-10.
  • the alkyl group is preferably a methyl group, an ethyl group, an n-butyl group, a t-butyl group, or the like. It is also preferred that each of the substituents of R 13 to R 15 , R x and R y independently forms an acid-decomposable group by any combination of substituents.
  • R 204 and R 205 each independently represent an aryl group, an alkyl group or a cycloalkyl group.
  • the aryl group for R 204 and R 205 is preferably a phenyl group or a naphthyl group, more preferably a phenyl group.
  • the aryl group for R 204 and R 205 may be an aryl group having a heterocyclic ring having an oxygen atom, a nitrogen atom, a sulfur atom, or the like.
  • Skeletons of heterocyclic aryl groups include, for example, pyrrole, furan, thiophene, indole, benzofuran, and benzothiophene.
  • the alkyl group and cycloalkyl group for R 204 and R 205 include a linear alkyl group having 1 to 10 carbon atoms or a branched alkyl group having 3 to 10 carbon atoms (e.g., methyl group, ethyl group, propyl group, butyl group, or pentyl group), or a cycloalkyl group having 3 to 10 carbon atoms (eg, cyclopentyl group, cyclohexyl group, or norbornyl group).
  • the aryl group, alkyl group and cycloalkyl group of R 204 and R 205 may each independently have a substituent.
  • substituents that the aryl group, alkyl group and cycloalkyl group of R 204 and R 205 may have include an alkyl group (eg, 1 to 15 carbon atoms) and a cycloalkyl group (eg, 3 to 15), aryl groups (eg, 6 to 15 carbon atoms), alkoxy groups (eg, 1 to 15 carbon atoms), halogen atoms, hydroxyl groups, and phenylthio groups. It is also preferred that the substituents of R 204 and R 205 each independently form an acid-decomposable group by any combination of substituents.
  • X ⁇ represents an organic anion.
  • the organic anion is not particularly limited, and includes organic anions having a valence of 1, 2 or more.
  • an anion having a significantly low ability to cause a nucleophilic reaction is preferred, and a non-nucleophilic anion is more preferred.
  • non-nucleophilic anions examples include sulfonate anions (aliphatic sulfonate anions, aromatic sulfonate anions, camphorsulfonate anions, etc.), carboxylate anions (aliphatic carboxylate anions, aromatic carboxylate anions, and aralkyl carboxylic acid anions), sulfonylimide anions, bis(alkylsulfonyl)imide anions, and tris(alkylsulfonyl)methide anions.
  • sulfonate anions aliphatic sulfonate anions, aromatic sulfonate anions, camphorsulfonate anions, etc.
  • carboxylate anions aliphatic carboxylate anions, aromatic carboxylate anions, and aralkyl carboxylic acid anions
  • sulfonylimide anions bis(alkylsulfonyl)imide anions
  • the aliphatic moiety in the aliphatic sulfonate anion and the aliphatic carboxylate anion may be a linear or branched alkyl group or a cycloalkyl group, and may be a straight chain having 1 to 30 carbon atoms. Alternatively, a branched alkyl group or a cycloalkyl group having 3 to 30 carbon atoms is preferred.
  • the alkyl group may be, for example, a fluoroalkyl group (which may have a substituent other than a fluorine atom, or may be a perfluoroalkyl group).
  • the aryl group in the aromatic sulfonate anion and the aromatic carboxylate anion is preferably an aryl group having 6 to 14 carbon atoms, such as a phenyl group, a tolyl group, and a naphthyl group.
  • the alkyl group, cycloalkyl group, and aryl group listed above may have a substituent.
  • the substituents are not particularly limited, but examples include nitro groups, halogen atoms such as fluorine atoms and chlorine atoms, carboxyl groups, hydroxyl groups, amino groups, cyano groups, alkoxy groups (preferably having 1 to 15 carbon atoms), alkyl groups ( preferably 1 to 10 carbon atoms), a cycloalkyl group (preferably 3 to 15 carbon atoms), an aryl group (preferably 6 to 14 carbon atoms), an alkoxycarbonyl group (preferably 2 to 7 carbon atoms), an acyl group ( preferably 2 to 12 carbon atoms), alkoxycarbonyloxy group (preferably 2 to 7 carbon atoms), alkylthio group (preferably 1 to 15 carbon atoms), alkylsulfonyl group (preferably 1 to 15 carbon atoms), alkylimino A sulfonyl group (preferably having 1
  • aralkyl group in the aralkylcarboxylate anion an aralkyl group having 7 to 14 carbon atoms is preferred.
  • Aralkyl groups having 7 to 14 carbon atoms include, for example, benzyl, phenethyl, naphthylmethyl, naphthylethyl and naphthylbutyl groups.
  • Sulfonylimide anions include, for example, saccharin anions.
  • alkyl group in the bis(alkylsulfonyl)imide anion and the tris(alkylsulfonyl)methide anion an alkyl group having 1 to 5 carbon atoms is preferable.
  • substituents of these alkyl groups include halogen atoms, halogen-substituted alkyl groups, alkoxy groups, alkylthio groups, alkyloxysulfonyl groups, aryloxysulfonyl groups, and cycloalkylaryloxysulfonyl groups.
  • a fluorine atom or an alkyl group substituted with a fluorine atom is preferred.
  • the alkyl groups in the bis(alkylsulfonyl)imide anion may combine with each other to form a ring structure. This increases the acid strength.
  • non-nucleophilic anions include, for example, phosphorous fluorides (eg, PF 6 ⁇ ), boron fluorides (eg, BF 4 ⁇ ), and antimony fluorides (eg, SbF 6 ⁇ ).
  • non-nucleophilic anions examples include aliphatic sulfonate anions in which at least the ⁇ -position of sulfonic acid is substituted with fluorine atoms, aromatic sulfonate anions in which fluorine atoms or groups having fluorine atoms are substituted, and alkyl groups in which fluorine atoms are present.
  • a bis(alkylsulfonyl)imide anion substituted with or a tris(alkylsulfonyl)methide anion in which an alkyl group is substituted with a fluorine atom is preferred.
  • perfluoroaliphatic sulfonate anions preferably having 4 to 8 carbon atoms
  • benzenesulfonate anions having a fluorine atom are more preferable, nonafluorobutanesulfonate anions, perfluorooctanesulfonate anions, pentafluoro A benzenesulfonate anion or a 3,5-bis(trifluoromethyl)benzenesulfonate anion is more preferred.
  • an anion represented by the following formula (AN1) is also preferable.
  • R 1 and R 2 each independently represent a hydrogen atom or a substituent.
  • the substituent is not particularly limited, but a group that is not an electron-withdrawing group is preferred.
  • groups that are not electron-withdrawing groups include hydrocarbon groups, hydroxyl groups, oxyhydrocarbon groups, oxycarbonyl hydrocarbon groups, amino groups, hydrocarbon-substituted amino groups, and hydrocarbon-substituted amide groups.
  • Groups that are not electron-withdrawing groups are preferably -R', -OH, -OR', -OCOR', -NH 2 , -NR' 2 , -NHR' or -NHCOR' each independently.
  • R' is a monovalent hydrocarbon group.
  • Examples of the monovalent hydrocarbon group represented by R' include alkyl groups such as methyl, ethyl, propyl, and butyl; alkenyl groups such as ethenyl, propenyl, and butenyl; ethynyl monovalent linear or branched hydrocarbon groups such as alkynyl groups such as groups, propynyl groups, and butynyl groups; cyclopropyl groups, cyclobutyl groups, cyclopentyl groups, cyclohexyl groups, norbornyl groups, and adamantyl groups Cycloalkyl group; monovalent alicyclic hydrocarbon group such as cycloalkenyl group such as cyclopropenyl group, cyclobutenyl group, cyclopentenyl group, and norbornenyl group; phenyl group, tolyl group, xylyl group, mesityl group, naphthyl group, methyl aryl groups such as
  • L represents a divalent linking group.
  • divalent linking groups include -O-CO-O-, -COO-, -CONH-, -CO-, -O-, -S-, -SO-, -SO 2 -, alkylene groups ( preferably 1 to 6 carbon atoms), a cycloalkylene group (preferably 3 to 15 carbon atoms), an alkenylene group (preferably 2 to 6 carbon atoms), and a divalent linking group combining a plurality of these.
  • the divalent linking group includes -O-CO-O-, -COO-, -CONH-, -CO-, -O-, -SO 2 -, and -O-CO-O-alkylene group- , -COO-alkylene group-, or -CONH-alkylene group- is preferred, and -O-CO-O-, -O-CO-O-alkylene group-, -COO-, -CONH-, -SO 2 - , or -COO-alkylene group- is more preferable.
  • a group represented by the following formula (AN1-1) is preferable. * a - (CR 2a 2 ) X - Q- (CR 2b 2 ) Y - * b (AN1-1)
  • * a represents the bonding position with R3 in formula (AN1).
  • * b represents the bonding position with -C(R 1 )(R 2 )- in formula (AN1).
  • X and Y each independently represent an integer of 0-10, preferably an integer of 0-3.
  • R 2a and R 2b each independently represent a hydrogen atom or a substituent. When multiple R 2a and R 2b are present, the multiple R 2a and R 2b may be the same or different. However, when Y is 1 or more, R 2b in CR 2b 2 directly bonded to —C(R 1 )(R 2 )— in formula (AN1) is other than a fluorine atom.
  • Q is * A -O-CO-O-* B , * A -CO-* B , * A -CO-O-* B , * A -O-CO-* B , * A -O-* B , * A -S-* B or * A - SO2- * B .
  • R3 represents an organic group.
  • the organic group is not particularly limited as long as it has 1 or more carbon atoms. branched chain alkyl group) or a cyclic group.
  • the organic group may or may not have a substituent.
  • the organic group may or may not have a heteroatom (oxygen atom, sulfur atom, and/or nitrogen atom, etc.).
  • R 3 is preferably an organic group having a cyclic structure.
  • the cyclic structure may be monocyclic or polycyclic, and may have a substituent.
  • the ring in the organic group containing a cyclic structure is preferably directly bonded to L in formula (AN1).
  • the organic group having a cyclic structure may or may not have a heteroatom (oxygen atom, sulfur atom, and/or nitrogen atom, etc.), for example. Heteroatoms may replace one or more of the carbon atoms that form the ring structure.
  • the organic group having a cyclic structure is preferably, for example, a hydrocarbon group having a cyclic structure, a lactone ring group, or a sultone ring group.
  • the organic group having a cyclic structure is preferably a hydrocarbon group having a cyclic structure.
  • the above hydrocarbon group having a cyclic structure is preferably a monocyclic or polycyclic cycloalkyl group. These groups may have a substituent.
  • the cycloalkyl group may be monocyclic (such as cyclohexyl group) or polycyclic (such as adamantyl group), and preferably has 5 to 12 carbon atoms.
  • Examples of the lactone group and sultone group include structures represented by the above formulas (LC1-1) to (LC1-21) and structures represented by formulas (SL1-1) to (SL1-3). , preferably a group obtained by removing one hydrogen atom from a ring member atom constituting a lactone structure or a sultone structure.
  • the non-nucleophilic anion may be a benzenesulfonate anion, preferably a benzenesulfonate anion substituted with a branched alkyl group or cycloalkyl group.
  • an anion represented by the following formula (AN2) is also preferable.
  • o represents an integer of 1-3.
  • p represents an integer from 0 to 10;
  • q represents an integer from 0 to 10;
  • Xf represents a hydrogen atom, a fluorine atom, an alkyl group substituted with at least one fluorine atom, or an organic group having no fluorine atom.
  • the number of carbon atoms in this alkyl group is preferably 1-10, more preferably 1-4.
  • a perfluoroalkyl group is preferred as the alkyl group substituted with at least one fluorine atom.
  • Xf is preferably a fluorine atom or a perfluoroalkyl group having 1 to 4 carbon atoms, more preferably a fluorine atom or CF 3 , and even more preferably both Xf are fluorine atoms.
  • R4 and R5 each independently represent a hydrogen atom, a fluorine atom, an alkyl group, or an alkyl group substituted with at least one fluorine atom. When multiple R 4 and R 5 are present, each of R 4 and R 5 may be the same or different.
  • the alkyl groups represented by R 4 and R 5 preferably have 1 to 4 carbon atoms. The above alkyl group may have a substituent. Hydrogen atoms are preferred as R 4 and R 5 .
  • L represents a divalent linking group.
  • the definition of L is synonymous with L in formula (AN1).
  • W represents an organic group containing a cyclic structure.
  • a cyclic organic group is preferable.
  • Cyclic organic groups include, for example, alicyclic groups, aryl groups, and heterocyclic groups.
  • the alicyclic group may be monocyclic or polycyclic.
  • Monocyclic alicyclic groups include, for example, monocyclic cycloalkyl groups such as a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group.
  • the polycyclic alicyclic group includes, for example, a norbornyl group, a tricyclodecanyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, and a polycyclic cycloalkyl group such as an adamantyl group.
  • alicyclic groups having a bulky structure with 7 or more carbon atoms such as norbornyl, tricyclodecanyl, tetracyclodecanyl, tetracyclododecanyl, and adamantyl groups, are preferred.
  • Aryl groups may be monocyclic or polycyclic. Examples of the aryl group include phenyl group, naphthyl group, phenanthryl group, and anthryl group.
  • a heterocyclic group may be monocyclic or polycyclic. Especially, when it is a polycyclic heterocyclic group, diffusion of acid can be further suppressed.
  • a heterocyclic group may or may not have an aromatic character. Heterocyclic rings having aromaticity include, for example, furan ring, thiophene ring, benzofuran ring, benzothiophene ring, dibenzofuran ring, dibenzothiophene ring, and pyridine ring.
  • Non-aromatic heterocycles include, for example, a tetrahydropyran ring, a lactone ring, a sultone ring, and a decahydroisoquinoline ring.
  • the heterocyclic ring in the heterocyclic group is preferably a furan ring, a thiophene ring, a pyridine ring, or a decahydroisoquinoline ring.
  • the cyclic organic group may have a substituent.
  • substituents include alkyl groups (either linear or branched, preferably having 1 to 12 carbon atoms), cycloalkyl groups (monocyclic, polycyclic, and spirocyclic). any group, preferably having 3 to 20 carbon atoms), aryl group (preferably having 6 to 14 carbon atoms), hydroxyl group, alkoxy group, ester group, amide group, urethane group, ureido group, thioether group, sulfonamide and sulfonate ester groups.
  • carbonyl carbon may be sufficient as carbon (carbon which contributes to ring formation) which comprises a cyclic
  • Examples of anions represented by formula (AN2) include SO 3 ⁇ —CF 2 —CH 2 —OCO-(L) q′ —W, SO 3 ⁇ —CF 2 —CHF—CH 2 —OCO-(L) q ' -W, SO 3 - -CF 2 -COO-(L) q' -W, SO 3 - -CF 2 -CF 2 -CH 2 -CH 2 -(L) q -W, or SO 3 - - CF 2 —CH(CF 3 )—OCO—(L) q′ —W is preferred.
  • L, q and W are the same as in formula (AN2).
  • q' represents an integer from 0 to 10;
  • an aromatic sulfonate anion represented by the following formula (AN3) is also preferable.
  • Ar represents an aryl group (such as a phenyl group) and may further have a substituent other than the sulfonate anion and -(D-B) group.
  • Substituents which may be further included include, for example, a fluorine atom and a hydroxyl group.
  • n represents an integer of 0 or more. n is preferably 1 to 4, more preferably 2 to 3, and still more preferably 3.
  • D represents a single bond or a divalent linking group.
  • Divalent linking groups include ether groups, thioether groups, carbonyl groups, sulfoxide groups, sulfone groups, sulfonate ester groups, ester groups, and groups consisting of combinations of two or more thereof.
  • B represents a hydrocarbon group.
  • B is preferably an aliphatic hydrocarbon group, more preferably an isopropyl group, a cyclohexyl group, or an optionally substituted aryl group (such as a tricyclohexylphenyl group).
  • Disulfonamide anions are also preferred as non-nucleophilic anions.
  • a disulfonamide anion is, for example, an anion represented by N ⁇ (SO 2 —R q ) 2 .
  • R q represents an optionally substituted alkyl group, preferably a fluoroalkyl group, more preferably a perfluoroalkyl group.
  • Two R q may combine with each other to form a ring.
  • the group formed by bonding two R q together is preferably an optionally substituted alkylene group, more preferably a fluoroalkylene group, and even more preferably a perfluoroalkylene group.
  • the alkylene group preferably has 2 to 4 carbon atoms.
  • Non-nucleophilic anions also include anions represented by the following formulas (d1-1) to (d1-4).
  • R 51 represents a hydrocarbon group (eg, an aryl group such as a phenyl group) optionally having a substituent (eg, hydroxyl group).
  • Z 2c represents an optionally substituted hydrocarbon group having 1 to 30 carbon atoms (provided that the carbon atom adjacent to S is not substituted with a fluorine atom).
  • the above hydrocarbon group for Z 2c may be linear or branched, and may have a cyclic structure.
  • the carbon atom in the hydrocarbon group (preferably the carbon atom that is a ring member atom when the hydrocarbon group has a cyclic structure) may be carbonyl carbon (--CO-).
  • Examples of the hydrocarbon group include a group having an optionally substituted norbornyl group.
  • a carbon atom forming the norbornyl group may be a carbonyl carbon.
  • Z 2c —SO 3 ⁇ in formula (d1-2) is preferably different from the anions represented by formulas (AN1) to (AN3) above.
  • Z 2c is preferably other than an aryl group.
  • the ⁇ -position and ⁇ -position atoms with respect to —SO 3 — in Z 2c are preferably atoms other than carbon atoms having a fluorine atom as a substituent.
  • the ⁇ -position atom and/or the ⁇ -position atom with respect to —SO 3 — is preferably a ring member atom in a cyclic group.
  • R 52 represents an organic group (preferably a hydrocarbon group having a fluorine atom)
  • Y 3 represents a linear, branched or cyclic alkylene group, an arylene group, or represents a carbonyl group
  • Rf represents a hydrocarbon group
  • R 53 and R 54 each independently represent an organic group (preferably a hydrocarbon group having a fluorine atom). R 53 and R 54 may combine with each other to form a ring.
  • the organic anions may be used singly or in combination of two or more.
  • the photoacid generator is also preferably at least one selected from the group consisting of compounds (I) to (II).
  • Compound (I) is a compound having one or more structural moieties X shown below and one or more structural moieties Y shown below, wherein the first acidic It is a compound that generates an acid containing a site and a second acidic site described below derived from the structural site Y described below.
  • Structural site X Structural site consisting of an anionic site A 1 ⁇ and a cation site M 1 + and forming a first acidic site represented by HA 1 upon exposure to actinic rays or radiation
  • Structural site Y anionic site A structural site consisting of A 2 - and a cationic site M 2 + and forming a second acidic site represented by HA 2 upon exposure to actinic rays or radiation.
  • the compound (I) satisfies the following condition I. .
  • Condition I A compound PI obtained by replacing the cation site M 1 + in the structural site X and the cation site M 2 + in the structural site Y in the compound (I) with H + in the structural site X and an acid dissociation constant a1 derived from the acidic site represented by HA 1 obtained by replacing the cation site M 1 + with H + , and replacing the cation site M 2 + in the structural site Y with H + It has an acid dissociation constant a2 derived from the acidic site represented by HA2 , and the acid dissociation constant a2 is greater than the acid dissociation constant a1.
  • compound PI corresponds to "a compound having HA 1 and HA 2 ".
  • the acid dissociation constant a1 and the acid dissociation constant a2 of compound PI are defined as "a compound having A 1 - and HA 2 " when the acid dissociation constant of compound PI is determined. is the acid dissociation constant a1, and the pKa when the "compound having A 1 - and HA 2 " becomes the "compound having A 1 - and A 2 - " is the acid dissociation constant a2 be.
  • compound (I) is, for example, an acid-generating compound having two first acidic sites derived from the structural site X and one second acidic site derived from the structural site Y
  • compound PI corresponds to "a compound having two HA 1 and one HA 2 ".
  • the acid dissociation constant of compound PI is obtained, the acid dissociation constant when compound PI becomes "a compound having one A 1 - , one HA 1 and one HA 2 " and "one A 1 - and one HA 1 and one HA 2 ” becomes a “compound having two A 1 - and one HA 2 ” corresponds to the acid dissociation constant a1 described above. .
  • the acid dissociation constant when "a compound having two A 1 - and one HA 2 - " becomes "a compound having two A 1 - and A 2 - " corresponds to the acid dissociation constant a2. That is, in the case of the compound PI, when it has a plurality of acid dissociation constants derived from the acidic site represented by HA 1 obtained by replacing the cation site M 1 + in the structural site X with H + , a plurality of acid dissociation constants The value of the acid dissociation constant a2 is larger than the largest value of a1.
  • the acid dissociation constant when the compound PI becomes "a compound having one A 1 - , one HA 1 and one HA 2 " is aa, and "one A 1 - and one HA 1 and 1
  • the relationship between aa and ab satisfies aa ⁇ ab, where ab is the acid dissociation constant when a compound having two HA2 's becomes a compound having two A1- and one HA2 . .
  • the acid dissociation constant a1 and the acid dissociation constant a2 are determined by the method for measuring the acid dissociation constant described above.
  • the above compound PI corresponds to an acid generated when compound (I) is irradiated with actinic rays or radiation.
  • the structural moieties X may be the same or different.
  • Two or more of A 1 ⁇ and two or more of M 1 + may be the same or different.
  • a 1 - and A 2 - , and M 1 + and M 2 + may be the same or different, but A 1 - and A 2 - are preferably different.
  • the difference (absolute value) between the acid dissociation constant a1 (the maximum value when there are multiple acid dissociation constants a1) and the acid dissociation constant a2 is preferably 0.1 or more, and preferably 0.5 or more. More preferably, 1.0 or more is even more preferable.
  • the upper limit of the difference (absolute value) between the acid dissociation constant a1 (the maximum value if there are a plurality of acid dissociation constants a1) and the acid dissociation constant a2 is not particularly limited, but is, for example, 16 or less.
  • the acid dissociation constant a2 is preferably 20 or less, more preferably 15 or less.
  • the lower limit of the acid dissociation constant a2 is preferably -4.0 or more.
  • the acid dissociation constant a1 is preferably 2.0 or less, more preferably 0 or less.
  • the lower limit of the acid dissociation constant a1 is preferably ⁇ 20.0 or more.
  • the anion site A 1 - and the anion site A 2 - are structural sites containing negatively charged atoms or atomic groups, for example, formulas (AA-1) to (AA-3) and formula (BB -1) to (BB-6).
  • the anion site A 1 - is preferably one capable of forming an acidic site with a small acid dissociation constant, and more preferably one of the formulas (AA-1) to (AA-3). AA-1) and (AA-3) are more preferable.
  • the anion site A 2 - is preferably one capable of forming an acidic site with a larger acid dissociation constant than the anion site A 1 - , and is any of the formulas (BB-1) to (BB-6).
  • RA represents a monovalent organic group.
  • the monovalent organic group represented by RA is not particularly limited, examples thereof include a cyano group, a trifluoromethyl group and a methanesulfonyl group.
  • the cation site M 1 + and the cation site M 2 + are structural sites containing positively charged atoms or atomic groups, such as monovalent organic cations.
  • Examples of organic cations include organic cations represented by M + described above.
  • Compound (II) is a compound having two or more of the above structural moieties X and one or more of the following structural moieties Z, wherein the first acidic It is a compound that generates an acid containing two or more sites and the structural site Z described above.
  • Structural site Z nonionic site capable of neutralizing acid
  • the preferred range of the acid dissociation constant a1 derived from the acidic site represented by is the same as the acid dissociation constant a1 in the above compound PI.
  • the compound (II) is a compound that generates an acid having two of the first acidic sites derived from the structural site X and the structural site Z
  • the compound PII is "two HA 1 It corresponds to "a compound having When the acid dissociation constant of this compound PII is determined, the acid dissociation constant when the compound PII is "a compound having one A 1 - and one HA 1 " and "one A 1 - and one HA
  • the acid dissociation constant when the "compound having 1 " becomes "the compound having two A 1 - " corresponds to the acid dissociation constant a1.
  • the acid dissociation constant a1 is obtained by the method for measuring the acid dissociation constant described above.
  • the above compound PII corresponds to an acid generated when compound (II) is irradiated with actinic rays or radiation.
  • the two or more structural sites X may be the same or different.
  • Two or more of A 1 ⁇ and two or more of M 1 + may be the same or different.
  • the nonionic site capable of neutralizing the acid in the structural site Z is not particularly limited.
  • a site containing a group capable of electrostatically interacting with protons or a functional group having electrons is preferred.
  • a group capable of electrostatically interacting with protons or a functional group having electrons is a functional group having a macrocyclic structure such as a cyclic polyether, or a lone pair of electrons that does not contribute to ⁇ conjugation.
  • a functional group having a nitrogen atom is included.
  • a nitrogen atom having a lone pair of electrons that does not contribute to ⁇ -conjugation is, for example, a nitrogen atom having a partial structure represented by the following formula.
  • Partial structures of functional groups having electrons or groups capable of electrostatically interacting with protons include, for example, a crown ether structure, an azacrown ether structure, a primary to tertiary amine structure, a pyridine structure, an imidazole structure, and a pyrazine structure. Among them, primary to tertiary amine structures are preferred.
  • the content of the photoacid generator is not particularly limited, it is preferably 0.5% by mass or more based on the total solid content of the composition of the present invention in that the cross-sectional shape of the formed pattern becomes more rectangular. 1.0% by mass or more is more preferable.
  • the above content is preferably 50.0% by mass or less, more preferably 30.0% by mass or less, and even more preferably 25.0% by mass or less, relative to the total solid content of the composition of the present invention.
  • the photoacid generator may be used singly or in combination of two or more.
  • the composition of the present invention may contain an acid diffusion control agent.
  • the acid diffusion control agent traps the acid generated from the photoacid generator or the like during exposure, and acts as a quencher that suppresses the reaction of the acid-decomposable resin in the unexposed area due to excess generated acid.
  • the type of acid diffusion controller is not particularly limited, and examples include basic compounds (CA), low-molecular-weight compounds (CB) having nitrogen atoms and groups that leave under the action of acids, and actinic rays or radiation. and a compound (CC) whose ability to control acid diffusion decreases or disappears upon irradiation.
  • a basic compound (CA) include, for example, those described in paragraphs [0132] to [0136] of WO2020/066824, and the basicity is reduced or reduced by exposure to actinic rays or radiation.
  • Specific examples of the disappearing basic compound (CE) include those described in paragraphs [0137] to [0155] of WO 2020/066824, and paragraph [0164] of WO 2020/066824.
  • CB low-molecular compound having a nitrogen atom and a group that leaves under the action of an acid
  • CD onium salt compound
  • paragraphs [0627] to [0664] of US Patent Application Publication No. 2016/0070167A1 paragraphs [0095] to [0187] of US Patent Application Publication No. 2015/0004544A1
  • paragraphs [0237190A1 and paragraphs [0259] to [0328] of US Patent Application Publication No. 2016/0274458A1 can be suitably used as acid diffusion control agents.
  • the content of the acid diffusion control agent (the total when multiple types are present) is 0.1 based on the total solid content of the composition of the present invention. ⁇ 15.0% by mass is preferable, and 1.0 to 15.0% by mass is more preferable. In the composition of the present invention, one type of acid diffusion control agent may be used alone, or two or more types may be used in combination.
  • the composition of the present invention may further contain a hydrophobic resin (also referred to as “hydrophobic resin (D)”) different from resin (A).
  • the hydrophobic resin (D) is preferably designed so as to be unevenly distributed on the surface of the resist film. It does not have to contribute to uniform mixing.
  • the effects of adding the hydrophobic resin (D) include control of the static and dynamic contact angles of the resist film surface with respect to water, and suppression of outgassing.
  • Hydrophobic resin (D) preferably has one or more of fluorine atoms, silicon atoms, and CH3 partial structures contained in the side chain portion of the resin, from the viewpoint of uneven distribution on the film surface layer. , more preferably two or more.
  • the hydrophobic resin preferably has a hydrocarbon group with 5 or more carbon atoms. These groups may be present in the main chain of the resin or may be substituted on the side chain.
  • the hydrophobic resin (D) includes compounds described in paragraphs [0275] to [0279] of WO2020/004306.
  • the content of the hydrophobic resin (D) is 0.01 to 20.0% by mass with respect to the total solid content of the composition of the present invention.
  • 0.1 to 15.0% by mass is more preferable.
  • the composition of the invention may contain a surfactant.
  • a surfactant When a surfactant is contained, it is possible to form a pattern with excellent adhesion and fewer development defects.
  • the surfactant is preferably a fluorine-based and/or silicon-based surfactant.
  • Fluorinated and/or silicon-based surfactants include surfactants disclosed in paragraphs [0218] and [0219] of WO2018/193954.
  • One type of surfactant may be used alone, or two or more types may be used.
  • the content of the surfactant is preferably 0.0001 to 2.0% by mass, based on the total solid content of the composition of the present invention, and 0.0005 to 1.0% by mass is more preferable, and 0.1 to 1.0% by mass is even more preferable.
  • the composition of the invention preferably contains a solvent.
  • Solvent consists of (M1) propylene glycol monoalkyl ether carboxylate and (M2) propylene glycol monoalkyl ether, lactate, acetate, alkoxypropionate, linear ketone, cyclic ketone, lactone, and alkylene carbonate. It is preferable to include at least one selected from the group.
  • the solvent may further contain components other than components (M1) and (M2).
  • a combination of the above-described solvent and the above-described resin is preferable from the viewpoint of improving the coatability of the composition of the present invention and reducing the number of pattern development defects. Since the solvent described above has a good balance of solubility, boiling point, and viscosity of the resin described above, it is possible to suppress unevenness in the thickness of the resist film and generation of deposits during spin coating. Details of component (M1) and component (M2) are described in paragraphs [0218] to [0226] of WO2020/004306, the contents of which are incorporated herein.
  • the content of components other than components (M1) and (M2) is preferably 5 to 30% by mass relative to the total amount of the solvent.
  • the content of the solvent in the composition of the present invention is preferably determined so that the solid content concentration is 0.5 to 30% by mass, more preferably 1 to 20% by mass. By doing so, the coatability of the composition of the present invention can be further improved.
  • the composition of the present invention contains a dissolution-inhibiting compound, a dye, a plasticizer, a photosensitizer, a light-absorbing agent, and/or a compound that promotes solubility in a developer (for example, a phenolic compound having a molecular weight of 1000 or less, or An alicyclic or aliphatic compound containing a carboxyl group) may further be included.
  • a dissolution-inhibiting compound for example, a phenolic compound having a molecular weight of 1000 or less, or An alicyclic or aliphatic compound containing a carboxyl group
  • the “dissolution-inhibiting compound” is a compound with a molecular weight of 3000 or less, which is decomposed by the action of an acid to reduce its solubility in an organic developer.
  • the composition of the present invention is suitably used as a photosensitive composition for EUV exposure.
  • EUV light has a wavelength of 13.5 nm, which is shorter than ArF (wavelength 193 nm) light and the like, so the number of incident photons is smaller when exposed with the same sensitivity. Therefore, the influence of "photon shot noise", in which the number of photons stochastically varies, is large, leading to deterioration of line edge roughness (LER) and bridge defects.
  • LER line edge roughness
  • To reduce the photon shot noise there is a method of increasing the number of incident photons by increasing the amount of exposure, but this is a trade-off with the demand for higher sensitivity.
  • the EUV light and electron beam absorption efficiency of the resist film formed from the resist composition increases, which is effective in reducing photon shot noise.
  • the A value represents the absorption efficiency of the EUV light and the electron beam relative to the mass ratio of the resist film.
  • A ([H] x 0.04 + [C] x 1.0 + [N] x 2.1 + [O] x 3.6 + [F] x 5.6 + [S] x 1.5 + [I] ⁇ 39.5) / ([H] ⁇ 1 + [C] ⁇ 12 + [N] ⁇ 14 + [O] ⁇ 16 + [F] ⁇ 19 + [S] ⁇ 32 + [I] ⁇ 127)
  • the A value is preferably 0.120 or more.
  • the upper limit is not particularly limited, but if the A value is too large, the EUV light and electron beam transmittance of the resist film will decrease, the optical image profile in the resist film will deteriorate, and as a result, it will be difficult to obtain a good pattern shape. Therefore, 0.240 or less is preferable, and 0.220 or less is more preferable.
  • [H] represents the molar ratio of hydrogen atoms derived from the total solid content to the total atoms of the total solid content in the actinic ray-sensitive or radiation-sensitive resin composition
  • [C] represents the molar ratio of carbon atoms derived from the total solid content to the total atoms of the total solid content in the actinic ray-sensitive or radiation-sensitive resin composition
  • [N] is the actinic ray-sensitive or radiation-sensitive resin
  • [O] is the total atoms of the total solid content in the actinic ray-sensitive or radiation-sensitive resin composition
  • [F] represents the molar ratio of fluorine atoms derived from the total solid content to the total atoms of the total solid content in the actinic ray-sensitive or radiation-sensitive resin
  • [S] represents the molar ratio of sulfur atoms derived from the total solid content to the total atoms of the total solid content in the actinic ray-sensitive or radiation-sensitive resin composition
  • [I] is the actinic ray-sensitive represents the molar ratio of iodine atoms derived from the total solid content to the total atoms of the total solid content in the curable or radiation-sensitive resin composition.
  • the resist composition contains an acid-decomposable resin, a photoacid generator, an acid diffusion controller, and a solvent
  • the acid-decomposable resin, the photoacid generator, and the acid diffusion controller correspond to the solid content. do.
  • the total atoms of the total solid content correspond to the sum of all atoms derived from the resin, all atoms derived from the photoacid generator, and all atoms derived from the acid diffusion control agent.
  • [H] represents the molar ratio of hydrogen atoms derived from the total solid content to the total atoms of the total solid content.
  • hydrogen atoms derived from the acid-decomposable resin, hydrogen atoms derived from the photoacid generator, and the acid with respect to the sum of all atoms derived from the photoacid generator and all atoms derived from the acid diffusion control agent It represents the total molar ratio of hydrogen atoms derived from the diffusion control agent.
  • the A value can be calculated by calculating the contained atomic ratio when the structure and content of the constituent components of the total solid content in the resist composition are known. Further, even if the constituent components are unknown, the constituent atomic number ratio can be calculated by analytical methods such as elemental analysis for the resist film obtained by evaporating the solvent component of the resist composition. .
  • the present invention also relates to actinic or radiation sensitive films formed from the compositions of the present invention.
  • the actinic ray-sensitive or radiation-sensitive film of the present invention is preferably a resist film.
  • the procedure of the pattern forming method using the composition of the present invention is not particularly limited, it preferably includes the following steps.
  • Step 1 Using the composition of the present invention, a step of forming a resist film on a substrate
  • Step 2 A step of exposing the resist film
  • Step 3 A step of developing the exposed resist film using a developer
  • Step 1 is a step of forming a resist film on a substrate using the composition of the present invention.
  • Examples of the method of forming a resist film on a substrate using the composition of the present invention include a method of applying the composition of the present invention onto a substrate.
  • the pore size of the filter is preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less, and even more preferably 0.03 ⁇ m or less.
  • Filters are preferably made of polytetrafluoroethylene, polyethylene, or nylon.
  • compositions of the present invention can be applied onto substrates such as those used in the manufacture of integrated circuit devices (eg, silicon, silicon dioxide coatings) by any suitable coating method such as a spinner or coater.
  • the coating method is preferably spin coating using a spinner.
  • the number of rotations for spin coating using a spinner is preferably 1000 to 3000 rpm (rotations per minute).
  • the substrate may be dried to form a resist film. If necessary, various base films (inorganic film, organic film, antireflection film) may be formed under the resist film.
  • Heating can be carried out by a means provided in a normal exposure machine and/or a developing machine, and may be carried out using a hot plate or the like.
  • the heating temperature is preferably 80 to 150°C, more preferably 80 to 140°C, even more preferably 80 to 130°C.
  • the heating time is preferably 30 to 1000 seconds, more preferably 60 to 800 seconds, even more preferably 60 to 600 seconds.
  • the film thickness of the resist film is not particularly limited, it is preferably 10 to 120 nm from the viewpoint of forming fine patterns with higher precision.
  • the film thickness of the resist film is more preferably 10 to 65 nm, and even more preferably 15 to 50 nm.
  • the film thickness of the resist film is more preferably 10 to 120 nm, still more preferably 15 to 90 nm.
  • a topcoat composition may be used to form a topcoat on the upper layer of the resist film. It is preferable that the topcoat composition does not mix with the resist film and can be uniformly coated on the upper layer of the resist film.
  • the topcoat is not particularly limited, and a conventionally known topcoat can be formed by a conventionally known method. can be formed. For example, it is preferable to form a topcoat containing a basic compound as described in JP-A-2013-61648 on the resist film. Specific examples of basic compounds that the topcoat may contain include basic compounds that the composition of the present invention may contain.
  • the topcoat also preferably contains a compound containing at least one group or bond selected from the group consisting of an ether bond, a thioether bond, a hydroxyl group, a thiol group, a carbonyl bond, and an ester bond.
  • Step 2 is a step of exposing the resist film.
  • the exposure method include a method of irradiating the formed resist film with actinic rays or radiation through a predetermined mask.
  • Actinic rays or radiation include infrared light, visible light, ultraviolet light, far ultraviolet light, extreme ultraviolet light, X-rays, and electron beams, preferably 250 nm or less, more preferably 220 nm or less, 1 to 200 nm
  • Particularly preferred are wavelengths of deep UV light, specifically KrF excimer lasers (248 nm), ArF excimer lasers (193 nm), F2 excimer lasers (157 nm), EUV (13.5 nm), X-rays, and electron beams.
  • baking is preferably performed before development. Baking accelerates the reaction in the exposed area, resulting in better sensitivity and pattern shape.
  • the heating temperature is preferably 80 to 150°C, more preferably 80 to 140°C, even more preferably 80 to 130°C.
  • the heating time is preferably 10 to 1000 seconds, more preferably 10 to 180 seconds, even more preferably 30 to 120 seconds. Heating can be carried out by a means provided in a normal exposing machine and/or developing machine, and may be carried out using a hot plate or the like. This step is also called a post-exposure bake.
  • Step 3 is a step of developing the exposed resist film using a developer to form a pattern.
  • the developer may be an alkaline developer or a developer containing an organic solvent (hereinafter also referred to as an organic developer).
  • Examples of the developing method include a method of immersing the substrate in a tank filled with a developer for a certain period of time (dip method), and a method of developing by standing the developer on the surface of the substrate for a certain period of time by raising the developer by surface tension (puddle method). method), a method of spraying the developer onto the substrate surface (spray method), and a method of continuously discharging the developer while scanning the developer discharge nozzle at a constant speed onto the substrate rotating at a constant speed (dynamic dispensing method). ). Further, after the step of developing, a step of stopping development may be performed while replacing the solvent with another solvent.
  • the development time is not particularly limited as long as the resin in the unexposed area is sufficiently dissolved, and is preferably 10 to 300 seconds, more preferably 20 to 120 seconds.
  • the temperature of the developer is preferably 0 to 50°C, more preferably 15 to 35°C.
  • alkaline aqueous solution containing alkali is not particularly limited, for example, quaternary ammonium salts represented by tetramethylammonium hydroxide, inorganic alkalis, primary amines, secondary amines, tertiary amines, alcohol amines, or cyclic amines. and an alkaline aqueous solution containing Among them, the alkaline developer is preferably an aqueous solution of a quaternary ammonium salt represented by tetramethylammonium hydroxide (TMAH). Suitable amounts of alcohols, surfactants and the like may be added to the alkaline developer.
  • the alkali concentration of the alkali developer is usually preferably 0.1 to 20% by mass.
  • the pH of the alkaline developer is preferably 10.0 to 15.0.
  • the organic developer is a developer containing at least one organic solvent selected from the group consisting of ketone solvents, ester solvents, alcohol solvents, amide solvents, ether solvents, and hydrocarbon solvents. Preferably.
  • a plurality of the above solvents may be mixed, or may be mixed with a solvent other than the above or water.
  • the water content of the developer as a whole is preferably less than 50% by mass, more preferably less than 20% by mass, even more preferably less than 10% by mass, and particularly preferably substantially free of water.
  • the content of the organic solvent in the organic developer is preferably 50% by mass or more and 100% by mass or less, more preferably 80% by mass or more and 100% by mass or less, and 90% by mass or more and 100% by mass with respect to the total amount of the developer. The following are more preferable, and 95% by mass or more and 100% by mass or less are particularly preferable.
  • the pattern forming method preferably includes a step of washing with a rinse after step 3.
  • Pure water is an example of the rinse solution used in the rinse step after the step of developing with an alkaline developer.
  • An appropriate amount of surfactant may be added to pure water.
  • An appropriate amount of surfactant may be added to the rinse solution.
  • the rinse solution used in the rinse step after the development step using the organic developer is not particularly limited as long as it does not dissolve the pattern, and a solution containing a general organic solvent can be used.
  • the rinse solution should contain at least one organic solvent selected from the group consisting of hydrocarbon solvents, ketone solvents, ester solvents, alcohol solvents, amide solvents, and ether solvents. is preferred.
  • the method of the rinsing step is not particularly limited. For example, a method of continuously discharging the rinsing liquid onto the substrate rotating at a constant speed (rotation coating method), or a method of immersing the substrate in a tank filled with the rinsing liquid for a certain period of time. a method (dip method) and a method of spraying a rinse liquid onto the substrate surface (spray method).
  • the pattern forming method may include a heating step (Post Bake) after the rinsing step. In this step, the developing solution and the rinse solution remaining between the patterns and inside the patterns due to baking are removed. In addition, this process smoothes the resist pattern, and has the effect of improving the roughness of the surface of the pattern.
  • the heating step after the rinsing step is usually carried out at 40 to 250° C. (preferably 90 to 200° C.) for 10 seconds to 3 minutes (preferably 30 seconds to 120 seconds).
  • the substrate may be etched using the formed pattern as a mask. That is, the pattern formed in step 3 may be used as a mask to process the substrate (or the underlying film and substrate) to form a pattern on the substrate.
  • the method for processing the substrate (or the underlying film and the substrate) is not particularly limited, but the substrate (or the underlying film and the substrate) is dry-etched using the pattern formed in step 3 as a mask.
  • a method of forming a pattern is preferred. Dry etching is preferably oxygen plasma etching.
  • the composition of the present invention and various materials used in the pattern forming method contain impurities such as metals. preferably not included.
  • the content of impurities contained in these materials is preferably 1 mass ppm (parts per million) or less, more preferably 10 mass ppb (parts per billion) or less, still more preferably 100 mass ppt or less, particularly 10 mass ppt or less.
  • 1 mass ppt or less is most preferred.
  • the lower limit is not particularly limited, and is preferably 0 mass ppt or more.
  • examples of metal impurities include Na, K, Ca, Fe, Cu, Mg, Al, Li, Cr, Ni, Sn, Ag, As, Au, Ba, Cd, Co, Pb, Ti, V, W, and Zn.
  • Methods for reducing impurities such as metals contained in various materials include, for example, a method of selecting raw materials with a low metal content as raw materials constituting various materials, and a method of filtering raw materials constituting various materials with a filter. and a method of performing distillation under conditions in which contamination is suppressed as much as possible by, for example, lining the inside of the apparatus with Teflon (registered trademark).
  • impurities may be removed with an adsorbent, or filter filtration and adsorbent may be used in combination.
  • adsorbent known adsorbents can be used.
  • inorganic adsorbents such as silica gel and zeolite, and organic adsorbents such as activated carbon can be used.
  • metal impurities such as metals contained in the various materials described above, it is necessary to prevent metal impurities from entering during the manufacturing process. Whether the metal impurities are sufficiently removed from the manufacturing equipment can be confirmed by measuring the content of the metal component contained in the cleaning liquid used for cleaning the manufacturing equipment.
  • the content of the metal component contained in the cleaning liquid after use is preferably 100 mass ppt (parts per trillion) or less, more preferably 10 mass ppt or less, and even more preferably 1 mass ppt or less.
  • the lower limit is not particularly limited, and is preferably 0 mass ppt or more.
  • Organic processing liquids such as rinsing liquids should contain conductive compounds to prevent damage to chemical piping and various parts (filters, O-rings, tubes, etc.) due to electrostatic charging and subsequent electrostatic discharge.
  • the conductive compound is not particularly limited, and examples thereof include methanol.
  • the amount added is not particularly limited, but is preferably 10% by mass or less, more preferably 5% by mass or less, from the viewpoint of maintaining preferable developing properties or rinsing properties.
  • the lower limit is not particularly limited, and is preferably 0.01% by mass or more.
  • chemical liquid pipe for example, SUS (stainless steel), antistatic treated polyethylene, polypropylene, or various pipes coated with fluororesin (polytetrafluoroethylene, perfluoroalkoxy resin, etc.) can be used.
  • Antistatic treated polyethylene, polypropylene, or fluororesin (polytetrafluoroethylene, perfluoroalkoxy resin, etc.) can also be used for filters and O-rings.
  • the present specification also relates to an electronic device manufacturing method, including the pattern forming method described above, and an electronic device manufactured by this manufacturing method.
  • a preferred embodiment of the electronic device of the present specification includes a mode in which it is installed in electric/electronic equipment (household appliances, OA (Office Automation), media-related equipment, optical equipment, communication equipment, etc.).
  • AP-1 to AP-13 were used as the resin (A).
  • AX-1 to AX-3 were used as resins other than the resin (A).
  • AX-1 to AX-3 are also listed in the column of Resin (A) in Table 1 below.
  • the structures of AP-1 to AP-13 and AX-1 to AX-3 are shown below.
  • the following repeating unit content ratio (content relative to all repeating units in the resin) is a molar ratio.
  • the content of repeating units was measured by 13 C-NMR (nuclear magnetic resonance).
  • reaction solution was allowed to cool, reprecipitated with 4000 g of ethyl acetate/heptane (mass ratio of 1:9), filtered, and the obtained solid was vacuum-dried to obtain AP-1 (79 g). Obtained.
  • B-1 to B-6 were used as acid salts.
  • B-1 to B-6 are photoacid generators.
  • the structures of B-1 to B-6 and the pKa of acids generated from B-1 to B-6 are shown below.
  • the pKa value of the acid generated from B-6 is an approximation calculated using the partial structure.
  • D-1 to D-4 were used as acid diffusion control agents.
  • W-1 Megafac F176 (manufactured by Dainippon Ink and Chemicals Co., Ltd.; fluorine-based)
  • W-2 Megafac R08 (manufactured by Dainippon Ink and Chemicals Co., Ltd.; fluorine and silicon type)
  • W-3 Polysiloxane polymer KP-341 (manufactured by Shin-Etsu Chemical Co., Ltd.; silicone-based)
  • W-4 Troisol S-366 (manufactured by Troy Chemical Co., Ltd.)
  • W-5 KH-20 (manufactured by AGC Co., Ltd.)
  • W-6 PolyFox PF-6320 (manufactured by OMNOVA Solutions Inc.; fluorine-based)
  • SL-1 Propylene glycol monomethyl ether acetate (PGMEA)
  • SL-2 propylene glycol monomethyl ether propionate
  • SL-3 2-heptanone
  • SL-4 ethyl lactate
  • SL-5 propylene glycol monomethyl ether
  • SL-6 cyclohexanone
  • SL-7 ⁇ -butyrolactone
  • SL-8 propylene carbonate
  • ⁇ Coating of resist composition The prepared resist composition is coated on a 6-inch Si (silicon) wafer that has been previously treated with hexamethyldisilazane (HMDS) using a Tokyo Electron spin coater Mark 8, and dried on a hot plate at 130° C. for 300 seconds. Then, a resist film having a film thickness of 100 nm was obtained. Here, 1 inch is 0.0254 m. Similar results can be obtained by replacing the Si wafer with a chromium substrate.
  • HMDS hexamethyldisilazane
  • TMAH tetramethylammonium hydroxide
  • the wafer coated with the resist film obtained above is exposed to an EUV exposure apparatus (Exitech Micro Exposure Tool, NA (numerical aperture) 0.3, Quadrupole, outer sigma 0.68, inner sigma 0.36).
  • the film was heated on a hot plate at 100° C. for 90 seconds, immersed in a 2.38% by mass tetramethylammonium hydroxide (TMAH) aqueous solution for 60 seconds, and then rinsed with water for 30 seconds. After that, the wafer was rotated at a rotation speed of 4000 rpm for 30 seconds, and then dried by baking at 95° C. for 60 seconds.
  • TMAH tetramethylammonium hydroxide
  • ⁇ Pattern Forming Method (3) EUV Exposure, Organic Solvent Development (Negative)>
  • the wafer coated with the resist film obtained above is exposed to an EUV exposure apparatus (Exitech Micro Exposure Tool, NA (numerical aperture) 0.3, Quadrupole, outer sigma 0.68, inner sigma 0.36).
  • the film was heated on a hot plate at 100° C. for 90 seconds, developed with n-butyl acetate for 30 seconds, and spin-dried to obtain a negative pattern.
  • the present invention can provide an actinic ray-sensitive or radiation-sensitive resin composition that is excellent in resolution, EL performance and LWR performance. Moreover, the present invention can provide a resist film, a pattern forming method, and an electronic device manufacturing method using the actinic ray-sensitive or radiation-sensitive resin composition.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)

Abstract

La présente invention concerne : une composition de résine sensible à la lumière active ou au rayonnement qui contient une résine (A) contenant un groupe qui est décomposé par l'action d'un acide, augmentant ainsi la polarité, la résine (A) contenant un motif constitutif décomposable par un acide qui a une structure spécifique contenant un groupe hétérocyclique aromatique qui contient un atome de soufre ; un film de réserve qui utilise cette composition de résine sensible à la lumière active ou au rayonnement ; un procédé de formation de motif ; et un procédé de production de dispositif électronique.
PCT/JP2023/000792 2022-01-28 2023-01-13 Composition de résine sensible à la lumière active ou au rayonnement, film de réserve, procédé de formation de motif et procédé de production de dispositif électronique WO2023145488A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022011974 2022-01-28
JP2022-011974 2022-01-28

Publications (1)

Publication Number Publication Date
WO2023145488A1 true WO2023145488A1 (fr) 2023-08-03

Family

ID=87471308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000792 WO2023145488A1 (fr) 2022-01-28 2023-01-13 Composition de résine sensible à la lumière active ou au rayonnement, film de réserve, procédé de formation de motif et procédé de production de dispositif électronique

Country Status (2)

Country Link
TW (1) TW202340276A (fr)
WO (1) WO2023145488A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004802A1 (fr) * 2022-07-01 2024-01-04 富士フイルム株式会社 Composition de résine sensible aux rayons actifs ou au rayonnement, film sensible aux rayons actifs ou au rayonnement, procédé de formation de motif et procédé de fabrication de dispositif électronique

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251466A (ja) * 2005-03-11 2006-09-21 Fuji Photo Film Co Ltd 感光性組成物及び該感光性組成物を用いたパターン形成方法
JP2008065114A (ja) * 2006-09-08 2008-03-21 Fujifilm Corp ポジ型レジスト組成物及びそれを用いたパターン形成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251466A (ja) * 2005-03-11 2006-09-21 Fuji Photo Film Co Ltd 感光性組成物及び該感光性組成物を用いたパターン形成方法
JP2008065114A (ja) * 2006-09-08 2008-03-21 Fujifilm Corp ポジ型レジスト組成物及びそれを用いたパターン形成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004802A1 (fr) * 2022-07-01 2024-01-04 富士フイルム株式会社 Composition de résine sensible aux rayons actifs ou au rayonnement, film sensible aux rayons actifs ou au rayonnement, procédé de formation de motif et procédé de fabrication de dispositif électronique

Also Published As

Publication number Publication date
TW202340276A (zh) 2023-10-16

Similar Documents

Publication Publication Date Title
WO2020066824A1 (fr) Composition de résine sensible à la lumière actinique ou au rayonnement, film de réserve, procédé de formation de motif, et procédé de production de dispositif électronique
WO2022209733A1 (fr) Composition de résine sensible à une lumière active ou sensible à un rayonnement, film de réserve, procédé permettant de former un motif, et procédé permettant de produire un dispositif électronique
WO2019167737A1 (fr) Composition de résine sensible aux rayons actifs ou au rayonnement, film de réserve, procédé de formation de motif et procédé de fabrication d'un dispositif électronique
JPWO2018180070A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
WO2022172689A1 (fr) Composition de résine sensible aux rayons actifs ou sensible aux rayonnements, film de réserve, procédé de formation de motif et procédé de fabrication de dispositif électronique
WO2023145488A1 (fr) Composition de résine sensible à la lumière active ou au rayonnement, film de réserve, procédé de formation de motif et procédé de production de dispositif électronique
WO2023145564A1 (fr) Composition de résine sensible à la lumière active ou au rayonnement, film sensible à la lumière active ou au rayonnement, procédé de formation de motif et procédé de production de dispositif électronique
WO2023054127A1 (fr) Composition de résine sensible aux rayons actiniques ou sensible aux rayonnements, film de réserve, procédé de formation de motif et procédé de fabrication de dispositif électronique
WO2023162837A1 (fr) Composition de résine positive sensible aux rayons actifs ou aux radiations, film sensible aux rayons actifs ou aux radiations, procédé de formation de motifs, procédé de fabrication de dispositifs électroniques et composé
WO2023032794A1 (fr) Composition de résine sensible aux rayons actiniques ou au rayonnement, film sensible aux rayons actiniques ou au rayonnement, procédé de formation de motif, procédé de fabrication de dispositif électronique et composé
JP7434592B2 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
WO2023002869A1 (fr) Composition de résine sensible aux rayons actiniques ou au rayonnement, procédé de production d'une composition de résine sensible aux rayons actiniques ou au rayonnement, film sensible aux rayons actiniques ou au rayonnement, procédé de formation de motif, procédé de fabrication de dispositif électronique, résine et procédé de production de résine
WO2022158323A1 (fr) Procédé de formation de motif et procédé de production de dispositif électronique
KR102503368B1 (ko) 감활성광선성 또는 감방사선성 수지 조성물, 레지스트막, 패턴 형성 방법, 전자 디바이스의 제조 방법
WO2024024669A1 (fr) Composition de résine sensible aux rayons actiniques ou à un rayonnement, film sensible aux rayons actiniques ou à un rayonnement, procédé de formation de motif, et procédé de fabrication de dispositif électronique
WO2024024691A1 (fr) Composition de résine sensible aux rayons actiniques ou à un rayonnement, film sensible aux rayons actiniques ou à un rayonnement, procédé de formation de motif, et procédé de fabrication de dispositif électronique
WO2022190922A1 (fr) Composition de résine sensible aux rayons actiniques ou sensible aux rayonnements, film de photorésine, procédé de formation de motif et procédé de fabrication de dispositif électronique
WO2023162836A1 (fr) Composition de résine sensible aux rayons actifs ou sensible au rayonnement, film sensible aux rayons actifs ou sensible au rayonnement, procédé de formation de motif, procédé de fabrication de dispositif électronique et composé
WO2023047992A1 (fr) Composition de résine sensible à la lumière active ou au rayonnement, film sensible à la lumière active ou au rayonnement, procédé de formation de motif et procédé de production de dispositif électronique
WO2023162762A1 (fr) Composition de résine sensible aux rayons actiniques ou au rayonnement, film de réserve, procédé de formation de motif et procédé de fabrication de dispositif électronique
WO2023106171A1 (fr) Composition de résine sensible à la lumière active ou sensible au rayonnement, film de réserve, procédé de formation de motif, et procédé de fabrication de dispositif électronique
WO2024111511A1 (fr) Composition de résine sensible aux rayons actiniques ou au rayonnement, film sensible aux rayons actiniques ou au rayonnement, procédé de formation de motif et procédé de production de dispositif électronique
WO2023140191A1 (fr) Composition de résine sensible aux rayons actifs ou au rayonnement, film sensible aux rayons actifs ou au rayonnement, procédé de formation de motif et procédé de fabrication de dispositif électronique
WO2023008127A1 (fr) Composition de résine sensible aux rayons actiniques ou à un rayonnement, film sensible aux rayons actiniques ou à un rayonnement, procédé de formation de motif, et procédé de fabrication de dispositif électronique
WO2023162565A1 (fr) Composition de résine sensible aux rayons actiniques ou au rayonnement, film de réserve, procédé de formation de motif et procédé de fabrication de dispositif électronique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746702

Country of ref document: EP

Kind code of ref document: A1