WO2023145408A1 - Multilayered polyester film - Google Patents

Multilayered polyester film Download PDF

Info

Publication number
WO2023145408A1
WO2023145408A1 PCT/JP2023/000208 JP2023000208W WO2023145408A1 WO 2023145408 A1 WO2023145408 A1 WO 2023145408A1 JP 2023000208 W JP2023000208 W JP 2023000208W WO 2023145408 A1 WO2023145408 A1 WO 2023145408A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
acid
mass
coating layer
contact angle
Prior art date
Application number
PCT/JP2023/000208
Other languages
French (fr)
Japanese (ja)
Inventor
博 多喜
洋平 山口
功 瀧井
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Publication of WO2023145408A1 publication Critical patent/WO2023145408A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Definitions

  • the present invention relates to laminated polyester films. More particularly, it relates to a laminated polyester film having an easily adhesive coating layer suitable for all fields such as optics, packaging and labels.
  • Thermoplastic resin films especially polyester films, have excellent properties such as mechanical properties, electrical properties, dimensional stability, transparency, and chemical resistance. It is widely used for optical films such as anti-reflection films, diffusion sheets, prism sheets, etc., and films for label printing.
  • polyester film since polyester film has a highly crystalline surface, it has the disadvantage of poor adhesion to various coating materials such as paints, resins, UV curable resins, inks, etc. in processing for these applications. are doing.
  • Patent Document 1 a method of providing a coating layer having easy-adhesion properties on the surface of a polyester film is well known (see Patent Document 1).
  • Patent Document 2 a method of providing a coating layer having easy-adhesion properties on the surface of a polyester film is well known (see Patent Document 1).
  • the state of the adhesion interface is important, and the effects of molecular entanglement, intermolecular interaction, and chemical bonding are said to be the main factors.
  • an intermediate layer composed of mutual resins is provided at the interface to improve adhesion (see Patent Document 2).
  • Patent Document 3 Various studies have been conducted to provide a similar composition (see Patent Document 3), and to include a reactive component with the coating material composition in the easy-adhesion layer from the viewpoint of chemical bonding (see Patent Document 4).
  • Patent Document 4 Various studies have been conducted to provide a similar composition (see Patent Document 3), and to include a reactive component with the coating material composition in the easy-adhesion layer from the viewpoint of chemical bonding (see Patent Document 4).
  • Patent Document 4 Various studies have been conducted to provide a similar composition.
  • an object of the present invention is to stably provide a laminated polyester film excellent in general-purpose adhesion to various coating materials.
  • the laminated polyester film of the present invention has good adhesion to various paints, resins, UV curable resins, inks, etc., and is particularly excellent in adhesion to UV curable resins that use organic solvents, and has a long life. It is excellent in maintaining high levels of adhesion over time.
  • the solubility of the resin forming the coating layer in the solvent of the coating material provided on the coating layer is important.
  • hydrocarbon solvents such as toluene and hexane
  • ketone solvents such as methyl ethyl ketone and cyclohexanone
  • ether solvents such as tetrahydrofuran and propylene glycol methyl ether
  • ester solvents such as ethyl acetate and butyl acetate. Therefore, it was difficult to adjust the solubility of the resin in each solvent.
  • the present inventors have made various studies and found that the contact angle of a specific solvent can solve the problems of the present invention, and have completed the present invention.
  • the present invention consists of the following configurations.
  • a laminated polyester film comprising a coating layer on at least one surface of a polyester film substrate, wherein the coating layer is formed from a composition containing a polyester resin, a polyurethane resin and/or an acrylic resin, and the coating layer
  • a laminated polyester film having a contact angle (A) of 13 to 25 degrees after 1 second of droplet deposition of 1-bromonaphthalene and a contact angle (B) of 9 to 20 degrees after 5 seconds of droplet deposition.
  • the difference (AB) between the contact angle (A) after 1 second of droplet deposition and the contact angle (B) of 5 seconds after droplet deposition of 1-bromonaphthalene on the coating layer is 4 to 7 degrees.
  • the laminated polyester film as described.
  • the laminated polyester film of the present invention is excellent in the transparency and adhesiveness of the coating film, especially the adhesiveness to solvent-based coating materials, it can be applied to UV-curable resins, UV-curable inks, or heat-treated hard coat films for optical use or construction materials. It is suitably used as a substrate film for curable resins, solvent-drying inks, and the like.
  • polyester film substrate The polyester resin constituting the polyester film substrate in the present invention includes polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polytrimethylene terephthalate, and the like, as well as the diol component or dicarboxylic acid component of the polyester resin as described above.
  • copolymerized polyester resin in which a part of is replaced with the following copolymerization components, for example, as copolymerization components, diol components such as diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, polyalkylene glycol , adipic acid, sebacic acid, phthalic acid, isophthalic acid, 5-sodium isophthalic acid, and dicarboxylic acid components such as 2,6-naphthalenedicarboxylic acid.
  • diol components such as diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, polyalkylene glycol , adipic acid, sebacic acid, phthalic acid, isophthalic acid, 5-sodium isophthalic acid, and dicarboxylic acid components such as 2,6-naphthalenedicarboxylic acid.
  • the polyester resin suitably used for the polyester film substrate in the present invention is mainly selected from polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate and polyethylene-2,6-naphthalate.
  • polyethylene terephthalate is most preferable from the viewpoint of balance between physical properties and cost.
  • the polyester film substrate composed of these polyester resins is preferably a biaxially oriented polyester film, which can improve chemical resistance, heat resistance, mechanical strength, and the like.
  • the catalyst for polycondensation used in the production of polyester resin is not particularly limited, but antimony trioxide is suitable because it is inexpensive and has excellent catalytic activity. It is also preferable to use a germanium compound or a titanium compound. Further preferred polycondensation catalysts include catalysts containing aluminum and/or compounds thereof and phenolic compounds, catalysts containing aluminum and/or compounds thereof and phosphorus compounds, and catalysts containing aluminum salts of phosphorus compounds.
  • the polyester film substrate in the present invention is not particularly limited in its layer structure, and may be a single-layer polyester film or a two-layer structure having mutually different components. It may be a polyester film substrate consisting of at least three layers.
  • the inventor of the present invention conducted various studies on solvent species for measuring the contact angle as described above. Especially for contact angle measurement, the generation of droplets at the tip of the syringe needle, the adhesion to the measurement surface, and the stability of the solvent during measurement are important. 48) Therefore, 1-bromonaphthalene, which can ignore vaporization during measurement, is selected because droplets are easily generated at the tip of the syringe and adhere to the measurement surface, and because it has a relatively high boiling point (282 ° C). bottom.
  • the laminated polyester film of the present invention contains a polyester resin, a polyurethane resin and/or an acrylic resin on at least one side in order to improve the transparency and adhesiveness of the coating film, particularly the adhesiveness to a solvent-based coating material. and the contact angle (A) of 1-bromonaphthalene on the coating layer after 1 second of droplet deposition is 13 to 25 degrees and the contact angle (B) of 5 seconds after droplet deposition is 9 to 20 degrees. is preferred.
  • the coating layer may be provided on both sides of the polyester film, or depending on the application, it may be provided only on one side of the polyester film and a different resin coating layer may be provided on the other side.
  • the contact angle of the 1-bromonaphthalene droplet on the coating layer and the change in the contact angle over time are important.
  • the contact angle (A) of a droplet of 1-bromonaphthalene after 1 second is in the range of 13 to 25 degrees, which gives the coated layer surface optimum affinity, solvent resistance or permeability to certain solvents. Since an intermediate layer composed of mutual resins is formed at the interface between the coating material and the coating layer, it is preferable from the viewpoint of adhesion, and the range of 14 to 21 degrees is more preferable.
  • the contact angle (B) of a droplet of 1-bromonaphthalene after 5 seconds of deposition indicates that the coating layer surface has optimal solvent resistance or permeability to a certain solvent, and the coating layer's excessiveness It is preferably in the range of 9 to 20 degrees, more preferably in the range of 10 to 17 degrees, from the viewpoint of adhesion from the point of suppressing the influence of adhesiveness on the interface between the coating layer and the substrate due to dissolution.
  • the difference (AB) between the contact angle (A) after 1 second of droplet deposition and the contact angle (B) after 5 seconds of droplet deposition is the difference (A - B) between the interface between the coating material and the coating layer. From the point that the optimum intermediate layer thickness is configured, it is preferably in the range of 4 to 7 degrees from the viewpoint of good adhesion and durability, and more preferably in the range of 4.5 to 6 degrees. .
  • the coating layer in the present invention is preferably formed containing a composition containing a polyester resin and a polyurethane resin and/or an acrylic resin.
  • the content of polyester resin, polyurethane resin and/or acrylic resin is preferably 70% by mass or more, more preferably 75% by mass or more, and still more preferably 80% by mass with respect to the entire coating layer. That's it. It is preferable that the aforementioned resin accounts for 70% by mass or more in the entire coating layer, because adhesion, adhesiveness, etc. can be effectively obtained.
  • resins other than the polyester resin, polyurethane resin, and acrylic resin described above may be used in combination, and it is particularly preferable to use a cross-linking agent in combination. By using a cross-linking agent in combination, it is possible to further improve the durability of the present invention.
  • the coating layer in the present invention preferably adjusts the contact angle of droplets of 1-bromonaphthalene to a specific range. / Or it can be adjusted by the compounding ratio of each resin.
  • the content of the polyester resin is preferably 50% by mass or more and 90% by mass or less from the viewpoint of adhesion, and 53% by mass or more and 70% by mass.
  • the content is more preferably 57% by mass or less and 67% by mass or less.
  • the content of the polyurethane resin is preferably 47% by mass or less, more preferably 45% by mass or less, and even more preferably 43% by mass or less.
  • the acrylic resin content is preferably less than 40% by mass, more preferably 37.5% by mass or less, and even more preferably 35% by mass or less.
  • these polyurethane resins and/or acrylic resins are not simply blended, but are indirectly blended by being absorbed by additives such as lubricants.
  • additives such as lubricants.
  • the same effect can be obtained even if the content is less than the above-mentioned content, so the upper limit of the content of the polyester resin can be 97% by mass.
  • the contact angle of 1-bromonaphthalene droplets tends to increase due to the presence of aromatic and hydrophilic components, and the contact angle tends to decrease due to the presence of aliphatic components. Further, among resin species, the acrylic resin skeleton generally tends to have a higher contact angle than the polyester resin skeleton and the polyurethane resin skeleton.
  • An example for adjusting the range of the contact angle of the droplet of 1-bromonaphthalene in the present invention is as follows. First, a polyester resin to be used for the coating layer is selected, and the contact angle is measured after one second when the polyester resin is used as the coating layer. If the numerical value is higher than specified, the numerical value is lowered by using polyurethane resin together.
  • the numerical value is low, the numerical value is increased by using acrylic resin together, and the contact angle after 1 second is adjusted within the specified range. Next, the contact angle of the adjusted composition after 5 seconds is confirmed. If the contact angle after 5 seconds is low, the amount of resin used is adjusted again so as to increase the contact angle after 1 second. Even if the contact angle after 1 second is adjusted to be high, if the contact angle after 5 seconds is low, a cross-linking agent is used in combination and adjustment is carried out again. Also, when using other resins and additives than the main resin and cross-linking agent, it is necessary to make final adjustments according to the above. However, in the present invention, it is important to define the contact angle of the droplet of 1-bromonaphthalene, and the above method is merely an example of adjusting the contact angle, and other adjusting methods are not denied.
  • polyester resin A polyester resin can usually be obtained from a dicarboxylic acid and a diol.
  • dicarboxylic acids include aliphatic dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, azelaic acid, sebacic acid, fumaric acid, maleic acid and itaconic acid.
  • naphthalenedicarboxylic acids such as 2,7-naphthalenedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,4- Alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid and 2,5-norbornanedicarboxylic acid, and trivalent or higher polycarboxylic acids include, for example, trimellitic acid, pyromellitic acid, adamantanetricarboxylic acid, and
  • diols examples include ethylene glycol, diethylene glycol, triethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, and the like.
  • the solvent for the polyester resin used when forming the coating layer in the present invention is not particularly limited. However, from the viewpoint of working environment, it is preferable to mainly use water as the solvent.
  • water When water is mainly used as the solvent for the polyester resin, it is preferably an aqueous dispersion from the viewpoint of the water resistance of the coating layer.
  • a hydrophilic surfactant In order to disperse the polyester resin in water, there are a method of using a hydrophilic surfactant and a method of introducing a hydrophilic group into the resin.
  • a surfactant When a surfactant is used, it can be prepared by previously dissolving the polyester resin in an organic solvent and dispersing it in water in the presence of the surfactant. The organic solvent used can be removed by vacuum distillation. If the amount of organic solvent used is small, it may be used as it remains in the system.
  • hydrophilic groups such as polyoxyalkyl groups such as polyethylene glycol, hydroxyl groups, carboxyl groups, sulfonic acid, phosphonic acid, and phosphinic acid groups can be used as hydrophilic groups.
  • polyoxyalkyl groups such as polyethylene glycol, hydroxyl groups, carboxyl groups, sulfonic acid, phosphonic acid, and phosphinic acid groups
  • hydrophilic groups polyethylene glycol groups, carboxyl groups, and sulfonic acid groups are preferably used.
  • a polyester resin having a polyethylene glycol group can be easily obtained by using a dicarboxylic acid or diol having a polyethylene glycol group.
  • a polyester-based resin having a carboxyl group can be easily obtained by including the above-mentioned dicarboxylic acid in excess. However, in that case, the carboxyl groups are introduced at the ends of the molecules, so simply increasing the amount of carboxyl groups introduced reduces the molecular weight. In order to avoid this, an appropriate amount of tri- or more functional polycarboxylic acid or polyol can be used to provide a branched structure. It is preferable to introduce a carboxyl group into the molecule by allowing the
  • the polyvalent carboxylic anhydride is a compound having at least trivalent or higher carboxyl groups, and these carboxyl groups have at least one carboxylic anhydride structure.
  • the carboxyl group in the polyester resin preferably has an acid value in the range of 10 to 60 mgKOH/g, more preferably 15 to 50 mgKOH/g.
  • An acid value of 10 mgKOH/g or more is preferable from the viewpoint of increasing the water dispersibility of the polyester resin and the contact angle in the present invention, and an acid value of 60 mgKOH/g or less is preferable from the viewpoint of moist heat resistance.
  • these carboxyl groups form a salt with a tertiary amine compound such as triethylamine.
  • a tertiary amine compound such as triethylamine.
  • a polyester resin having a sulfonic acid group can be easily obtained by using a sulfonic acid group-containing dicarboxylic acid as a dicarboxylic acid component.
  • sulfonic acid group-containing dicarboxylic acids include sulfoterephthalic acid, 5-sulfoisophthalic acid, and 5-sodium sulfoisophthalic acid.
  • the sulfonic acid group in the polyester resin is preferably used in an amount of 1 to 10 mol % in the dicarboxylic acid component.
  • a sulfonic acid group content of 1 mol % or more is preferable from the viewpoint of increasing the water dispersibility of the polyester resin and a contact angle in the present invention, and a sulfonic acid group content of 10 mol % or less is preferable from the viewpoint of moist heat resistance.
  • hydrophilic groups or other hydrophilic groups may be used in combination as long as they do not impair the effects of the present invention.
  • the contact angle of 1-bromonaphthalene can be increased by increasing the proportion of hydrophilic components such as polyethylene glycol groups, carboxyl groups, sulfonic acid groups, and hydroxyl groups.
  • the contact angle can be lowered by increasing the proportion of dicarboxylic acid or aliphatic diol.
  • the contact angle can be lowered.
  • the proportion of the hydrophilic component is increased, the glass transition point (Tg) of the resin or the molecular weight thereof will be lowered, which will adversely affect performance such as handleability and adhesion. ) is preferably 20° C.
  • the reduced viscosity as a measure of the molecular weight is preferably 0.30 dL/g, and the glass transition point (Tg) is preferably 30° C. or higher and the reduced viscosity is 0.40 dL/g.
  • polyurethane resin is a urethane resin derived from at least a polyol component and a polyisocyanate component, and optionally a chain extender.
  • Polyol components include polyether polyols such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol; aliphatic polyesters containing adipic acid as acid components; aromatic polyesters containing terephthalic acid, etc.; Polyester polyols typified by lactone-based polyesters obtained by ring-opening polymerization such as cyclic polyesters and ⁇ -caprolactone, carbonate polyols typified by polymers of 1,6-hexanediol and ethylene carbonate, acrylic copolymers Examples include acrylic polyols having hydroxyl groups introduced therein, butadiene having hydroxyl groups at the ends and polybutadiene polyols which are copolymers thereof. Among these, polyether polyols, polyester polyols, carbonate polyols and acrylic polyols are preferable, and carbonate polyols and acrylic polyols are particularly preferable from the viewpoint of durability.
  • the number average molecular weight of the polyol in the present invention is preferably 300-5000. More preferably 400-4000, most preferably 500-3000. When it is 300 or more, the adhesiveness can be improved, which is preferable. When it is 5000 or less, durability such as resistance to moist heat can be improved, which is preferable.
  • polyisocyanates used in polyurethane resins include aromatic-aliphatic diisocyanates such as xylylene diisocyanate, isophorone diisocyanate and alicyclic diisocyanates such as 4,4-dicyclohexylmethane diisocyanate and 1,3-bis(isocyanatomethyl)cyclohexane.
  • Aliphatic diisocyanates such as hexamethylene diisocyanate and 2,2,4-trimethylhexamethylene diisocyanate, or modified polyisocyanates containing isocyanurate bonds, biuret bonds or allophanate bonds produced from diisocyanates, diisocyanates Polyisocyanates previously added with trimethylolpropane or the like singly or in multiples can be mentioned.
  • aromatic-aliphatic diisocyanates, alicyclic diisocyanates, or aliphatic diisocyanates are used, there is no problem of yellowing, which is preferable.
  • chain extenders examples include diols such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol and 1,6-hexanediol, polyhydric alcohols such as glycerin, trimethylolpropane, and pentaerythritol, and ethylenediamine. , hexamethylenediamine, and piperazine, amino alcohols such as monoethanolamine and diethanolamine, thiodiglycols such as thiodiethylene glycol, and water.
  • polyols or polyamines such as glycerin, trimethylolpropane, pentaerythritol, etc. having three or more functional groups may be used in small amounts.
  • the polyester resin described above it is preferable to mainly use water as the solvent from the viewpoint of the working environment.
  • water is mainly used as the solvent
  • an aqueous dispersion is preferred from the viewpoint of the water resistance of the coating layer.
  • a surfactant it can be prepared in the same manner as the polyester resin described above.
  • hydrophilic groups such as polyoxyalkyl groups such as polyethylene glycol, hydroxyl groups, carboxyl groups, sulfonic acid, phosphonic acid, and phosphinic acid groups can be used as hydrophilic groups.
  • a polyethylene glycol group and a carboxyl group are preferably used as these hydrophilic groups.
  • polyethylene glycol groups In order to introduce polyethylene glycol groups into polyurethane resins, it is possible to easily introduce them into the main chain by using polyethylene glycol as the aforementioned polyol. Moreover, it is also possible to introduce it into a side chain by terminally blocking the isocyanate group with a monool such as polyethylene glycol monoalkyl ether instead of a polyol.
  • a polyurethane resin having a carboxyl group can be preferably obtained mainly by using a carboxyl group-containing polyol component as a urethane component.
  • carboxyl group-containing polyol components include the following. Relatively high molecular weight polyalkylene glycols, carboxyl group-containing acrylic polyols, carboxyl group-containing polyolefin polyols, and carboxyl group-containing polyester polyols can be used. In addition, relatively low molecular weight compounds such as 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, 2,2-dimethylolbutyric acid, 2,2-dimethylolvaleric acid and the like can be used. . For carboxyl group introduction, 2,2-dimethylolpropionic acid and 2,2-dimethylolbutanoic acid are particularly preferably used.
  • the polyurethane resin having a carboxyl group preferably has an acid value in the range of 10 to 60 mgKOH/g, more preferably 15 to 50 mgKOH/g.
  • An acid value of 10 mgKOH/g or more is preferable from the viewpoint of the stability of the aqueous dispersion of the polyurethane resin, and an acid value of 60 mgKOH/g or less is preferable from the viewpoint of moist heat resistance.
  • other hydrophilic groups such as hydroxyl group, ether, sulfonic acid, phosphonic acid, etc. may be introduced in order to supplement the water solubility or water dispersibility of the polyurethane resin within the range that does not impair the effects of the present invention. may
  • the carboxyl groups in these polyurethanes form a salt with an amine compound.
  • the carboxyl group forms a salt, the hydrophilicity of the polyurethane resin is improved, thereby improving the stability of the aqueous dispersion.
  • the polyurethane resin in the present invention may have a reactive group such as blocked isocyanate at the end or side chain for improving toughness.
  • the contact angle of 1-bromonaphthalene can be increased by increasing the proportion of hydrophilic components such as polyethylene glycol groups, carboxyl groups, sulfonic acid groups, and hydroxyl groups.
  • the contact angle can be lowered by increasing the proportion of polyester polyol acid or aliphatic polycarbonate polyol.
  • the contact angle can be lowered by using a diol or the like having a branched structure as the chain extender.
  • the proportion of the hydrophilic component is increased, the blocking resistance or moist heat resistance of the coating layer tends to decrease as a polyurethane resin, so it is necessary to pay attention to the composition and amount of the polyester resin or cross-linking agent used in combination.
  • the acrylic resin in the present invention is a copolymer mainly formed from acrylic acid, methacrylic acid or their esters.
  • Various compounds can be used as acrylic acid or methacrylic acid esters.
  • water As with the polyurethane resin described above, it is preferable to mainly use water as the solvent from the viewpoint of the working environment.
  • water When water is mainly used as the solvent, an aqueous dispersion is preferred from the viewpoint of the water resistance of the coating layer.
  • hydrophilic groups such as polyoxyalkyl groups such as polyethylene glycol, hydroxyl groups, carboxyl groups, sulfonic acid, phosphonic acid, and phosphinic acid groups can be used as hydrophilic groups.
  • a polyethylene glycol group and a carboxyl group are preferably used as these hydrophilic groups.
  • Nitriles such as acrylic acid esters or methacrylic acid esters, acrylic acid or methacrylic acid amides, acrylonitrile or methacrylonitrile into which a hydroxyl group, an ether group, a sulfonic acid group, etc. are introduced, as long as they do not impair the effects of the present invention.
  • styrene and ⁇ -methylstyrene vinyls such as vinyl acetate and vinyl propionate
  • allyls such as allyl acetate and allyl propionate.
  • use of nitriles such as acrylic acid or methacrylic acid amide, acrylonitrile or methacrylonitrile is useful from the viewpoint of imparting hydrophilicity to the resin.
  • the acrylic resin having a carboxyl group of the present invention preferably has an acid value in the range of 10 to 60 mgKOH/g, more preferably in the range of 15 to 50 mgKOH/g.
  • the acid value is 10 mgKOH/g or more, it is preferable from the viewpoint of suppressing the occurrence of coating film defects or coating film unevenness, which is the effect of the present invention. preferable.
  • the carboxyl group of the acrylic resin can be imparted by using acrylic acid or methacrylic acid, but unsaturated carboxylic acids such as maleic acid and itaconic acid can also be used.
  • the carboxyl group of the acrylic resin also form a salt with an amine compound as described above.
  • the salt formation of the carboxyl group is preferable because the hydrophilicity as the acrylic resin is good and the stability of the aqueous dispersion is enhanced.
  • the contact angle of 1-bromonaphthalene can be increased by increasing the proportion of hydrophilic components such as polyethylene glycol groups, carboxyl groups, sulfonic acid groups, hydroxyl groups, amides, and nitriles.
  • hydrophilic components such as polyethylene glycol groups, carboxyl groups, sulfonic acid groups, hydroxyl groups, amides, and nitriles.
  • the proportion of the hydrophilic component is increased, the acrylic resin tends to lower the blocking resistance or moist heat resistance of the coating layer, so it is necessary to pay attention to the composition and amount of the polyester resin or cross-linking agent used in combination.
  • polyester resin polyurethane resin
  • acrylic resin examples include polyester resins, polyurethane resins, acrylic resins, vinyl acetate, polyvinyl alcohol, hydroxycellulose, etc. that do not have a carboxyl group other than those mentioned above.
  • solvent for the coating material in the present invention
  • the following can be used.
  • crosslinking agent In the present invention, it is desirable to use a cross-linking agent in combination with the aforementioned resin in the coating layer. By using a cross-linking agent together, it is possible to increase the contact angle of the coating layer. In addition, the contact angle can be further increased by incorporating the aforementioned hydrophilic component into the cross-linking agent.
  • the type of cross-linking agent is not particularly limited, and isocyanate-based, oxazoline-based, carbodiimide-based, epoxy-based, melamine-based, and the like can be used.
  • the amount of the cross-linking agent used is preferably less than 50% by mass based on the total amount of the resin and the cross-linking agent. Since the cross-linking agent has the effect of increasing the numerical value of the contact angle in the present invention, if the amount of the cross-linking agent is less than 50% by mass, the numerical value of the contact angle can easily be adjusted to the preferred range in the present invention, and from the viewpoint of adhesion etc. preferable.
  • the content of the cross-linking agent is more preferably 45% by mass or less, particularly preferably 40% by mass or less.
  • additives such as surfactants, antioxidants, heat stabilizers, weather stabilizers, ultraviolet absorbers, organic or inorganic lubricants, may be added to the coating layer in the present invention as long as they do not impair the effects of the present invention.
  • pigments, dyes, organic or inorganic particles, antistatic agents and the like may be added.
  • particles to be contained in the coating layer in the present invention include, for example, titanium oxide, barium sulfate, calcium carbonate, calcium sulfate, silica, alumina, talc, kaolin, clay, and mixtures thereof.
  • Inorganic particles such as calcium phosphate, mica, hectorite, zirconia, tungsten oxide, lithium fluoride, calcium fluoride, etc., and organic particles such as styrene, acrylic, melamine, benzoguanamine, and silicone Examples include polymer-based particles.
  • the present invention in order to prevent aggregation of the particles to be used, it is possible to treat the particles to be used in advance with a resin having a polar group such as a carboxyl group such as a polyester resin, a polyurethane resin, or an acrylic resin.
  • the resin to be used is not particularly limited, but in the present invention, it is preferable to treat it with polyurethane resin, acrylic resin, or the like. Due to this treatment, these resins are efficiently distributed in the coating layer mainly composed of polyester resin, and the effect of the present invention can be easily achieved with a smaller amount of these resins than described above.
  • the treatment method is not particularly limited, and includes a method of previously mixing particles and a resin in an organic solvent and then dispersing the mixture in water, a method of mixing resin with water-dispersed particles, and a method of previously mixing particles and a monomer and then polymerizing the mixture. mentioned
  • the average particle size of the particles in the coating layer is preferably 0.04 to 2.0 ⁇ m, more preferably 0.1 to 1.0 ⁇ m. is.
  • the average particle size of the inert particles is 0.04 ⁇ m or more, it becomes easy to form unevenness on the film surface, so that the handling properties such as the slipperiness and windability of the film are improved, and the film can be easily laminated. It is preferable because of its good workability.
  • the average particle size of the inert particles is 2.0 ⁇ m or less, the particles are less likely to fall off, which is preferable.
  • the particle concentration in the coating layer is preferably 1 to 20 mass % of the solid component.
  • the average particle diameter of the particles was measured by observing the particles in the cross section of the laminated polyester film with a scanning electron microscope, observing 30 particles, and taking the average value as the average particle diameter.
  • the shape of the particles is not particularly limited as long as it satisfies the object of the present invention, and spherical particles and irregularly shaped non-spherical particles can be used.
  • the particle diameter of amorphous particles can be calculated as the equivalent circle diameter.
  • the circle-equivalent diameter is a value obtained by dividing the observed particle area by ⁇ , calculating the square root, and doubling the result.
  • PET film base material a polyethylene terephthalate (hereinafter sometimes abbreviated as PET) film base material, but it is of course not limited to this.
  • the unstretched PET sheet may have a single-layer structure or a multi-layer structure obtained by a coextrusion method.
  • the obtained unstretched PET sheet is uniaxially stretched or biaxially stretched for crystal orientation.
  • biaxial stretching after stretching 2.5 to 5.0 times in the longitudinal direction with a roll heated to 80 to 120 ° C. to obtain a uniaxially stretched PET film, the end of the film is held with a clip. Then, it is led to a hot air zone heated to 80 to 180° C. and stretched 2.5 to 5.0 times in the width direction.
  • uniaxial stretching the film is stretched 2.5 to 5.0 times in a tenter. After stretching, the film is led to a heat treatment zone and heat treated to complete the crystal orientation.
  • the lower limit of the temperature of the heat treatment zone is preferably 170°C, more preferably 180°C.
  • the curing is sufficient, the anti-blocking property in a high-humidity environment is favorable, and it is preferable because the storage environment and the like can be easily adjusted.
  • the upper temperature limit of the heat treatment zone is preferably 260°C, more preferably 250°C. When the temperature of the heat treatment zone is 250° C. or less, it is preferable because the physical properties of the film do not deteriorate.
  • the coating layer can be provided after the film is manufactured or during the manufacturing process.
  • any known method can be used to apply this coating liquid to the PET film.
  • reverse roll coating method gravure coating method, kiss coating method, die coater method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, impregnation coating method, curtain coating method, etc. be done. These methods can be applied singly or in combination.
  • the thickness of the coating layer can be appropriately set in the range of 0.001 to 2.00 ⁇ m, but the range of 0.01 to 1.00 ⁇ m is preferable in order to achieve both workability and adhesiveness. It is more preferably 0.02 to 0.80 ⁇ m, still more preferably 0.05 to 0.50 ⁇ m. It is preferable that the thickness of the coating layer is 0.001 ⁇ m or more because the adhesiveness is good. When the thickness of the coating layer is 2.00 ⁇ m or less, blocking is less likely to occur, which is preferable.
  • the upper limit of haze of the laminated polyester film of the present invention is preferably 2.5%, more preferably 2.0%, even more preferably 1.5%, and particularly preferably 1.2%.
  • a haze of 2.5% or less is preferable in terms of transparency, and can be suitably used for optical films that require transparency. The smaller the haze, the better, but it is preferably 0.1% or more, and preferably 0.3% or more.
  • Acid value The acid value of the resin and cross-linking agent was measured by the titration method described in JIS K-1557-5. However, in the case of a carboxyl group neutralized with an amine or the like, the amine or the like was removed by high-temperature treatment, or the amine or the like was previously treated with hydrochloric acid or the like to liberate and remove the amine or the like before measurement. If the resin to be measured had poor solubility in the solvent isopropanol, N-methylpyrrolidone was used instead. In any of the above treatments, comparison measurements were sufficiently carried out.
  • the hard coat coating agent (HC-A) described below was applied using a #5 wire bar and dried at 80°C for 1 minute. . Then, the coated film was irradiated with ultraviolet rays of 100 mJ/cm 2 using a high-pressure mercury lamp to obtain a hard coat film (a). Next, using a cutter guide with a clearance of 2 mm, 100 grid-like cuts that penetrate the hard coat layer and reach the film substrate are made on the surface of the hard coat layer. Next, a cellophane adhesive tape (No. 405, 24 mm width, manufactured by Nichiban Co., Ltd.) is attached to the square-shaped cut surface and adhered firmly.
  • HC-A hard coat coating agent
  • Adhesion (A) (%) 100 - (number of peeled squares) Adhesion was judged according to the following criteria. ⁇ : 100%, ⁇ : 96 to 99%, ⁇ : 80 to 95%, ⁇ : less than 80%. As a standard, 0 or more was regarded as a pass.
  • each hard coat film (a) to (E) ) was made.
  • the adhesion of each of the hard coat films (a) to (d) was evaluated in the same manner as the hard coat film (a) and designated as each of the adhesions (a) to (d).
  • a hard coating agent (HC-d) was prepared from the hard coating agent (HC-a) in the same manner as described above, except that the type of solvent was changed.
  • Solvent a: toluene/methyl ethyl ketone 50/50 (mass ratio)
  • Solvent A: toluene/ethyl acetate 25/75 (mass ratio)
  • Solvent c: methyl ethyl ketone 100 (mass ratio)
  • the obtained copolymer polyester resin (PES-1) was a pale yellow transparent solid, and had a reduced viscosity of 0.60 dL/g, a glass transition point (Tg) of 61° C., and an acid value of 0.60 dL/g. 8 mg KOH/g.
  • Copolyester PES-2 to PES-5 having the following compositions were obtained in the same manner as the copolymer polyester resin PES-1.
  • Reduced viscosity 0.49 dL/g, glass transition point (Tg): 69°C, acid value: 1.0 mgKOH/g.
  • Reduced viscosity 0.53 dL/g, glass transition point (Tg): 37°C, acid value was 0.6 mgKOH/g.
  • This dispersion was then distilled under a reduced pressure of 2.5 kPa to remove tetrahydrofuran, and the liquid was cooled to room temperature while stirring. An appropriate amount of water was added to prepare an aqueous dispersion (PES-2WD) of a copolymer polyester resin PES-2 having a resin solid content of 30% by mass.
  • copolymer polyester resin PES-3 an aqueous dispersion (PES-3WD) was prepared in the same manner as for the copolymer polyester resin PES-2. Furthermore, the copolymer polyester resins PES-4 and PES-5 were prepared into water dispersions (PES-4WD) and water dispersions (PES-5WD) in the same manner as the copolymer polyester resin PES-1.
  • Polymerization of polyurethane resin PU-1) 58.0 parts by mass of dicyclohexylmethane 4,4′-diisocyanate and a polycarbonate diol having a number average molecular weight of 800 were placed in a four-necked flask equipped with a stirrer, a Dimroth condenser, a nitrogen inlet tube, a silica gel drying tube, and a thermometer. 90.8 parts by mass of (1,6-hexanediol type) and 244 parts by mass of ethyl methyl ketone as a solvent were charged, and stirred at 75° C. for 1 hour under a nitrogen atmosphere.
  • Polymerization of polyurethane resin PU-2) 54.06 parts by mass of dicyclohexylmethane 4,4'-diisocyanate and 20.0 parts of dimethylolpropionic acid were placed in a four-necked flask equipped with a stirrer, a Dimroth condenser, a nitrogen inlet tube, a silica gel drying tube, and a thermometer. Parts by mass, 126.0 parts by mass of a polycarbonate diol (1,6-hexanediol type) having a number average molecular weight of 2000, and 224 parts by mass of ethyl methyl ketone as a solvent are added, and stirred at 75° C.
  • Polyurethane resin (PU-6) was prepared from polyurethane resin (PU-3) having the following composition (mass ratio) and an acid value solid content of 45.0% by mass in the same manner as in the polymerization of polyurethane resin (PU-2) described above. polymerized.
  • Polyurethane resin (PU-3): (Cyclohexane-1,2-diylbismethylene) diisocyanate/polycarbonate diol having a number average molecular weight of 1000 (1,6-hexanediol type)/dimethylolpropionic acid/1,6-hexanediol 26.0/64.
  • Acid value 25.9mgKOH/g
  • PU-1WD aqueous dispersion of polyurethane resin (PU-1)
  • PU-1WD aqueous dispersion of polyurethane resin (PU-1)
  • PU-1WD aqueous dispersion of polyurethane resin (PU-1)
  • a predetermined amount of water is added to a reaction vessel equipped with a homodisper capable of high-speed stirring, the temperature is adjusted to 25° C., and the polyurethane resin (PU-2) is stirred and mixed at 2000 min ⁇ 1 .
  • a milky white dispersion was obtained by adding a neutralizing solution and dispersing in water. After that, ethyl methyl ketone as a solvent was removed under a reduced pressure of 2.5 kPa.
  • An aqueous dispersion (PU-2WD) of a polyurethane resin (PU-2) having a solid content of 35% by mass was prepared by adjusting the concentration with water.
  • aqueous dispersions (PU-3WD) to (PU-5WD) of polyurethane resins (PU-3) to (PU-5))
  • An aqueous dispersion was prepared in the same manner as the aqueous dispersion (PU-2WD) of the polyurethane resin (PU-2) described above.
  • triethylamine was used instead of triethanolamine, and the amount of triethylamine added was adjusted according to the acid value of each polyurethane resin.
  • aqueous dispersion (A-1WD) of acrylic resin (A-1) To a predetermined amount of the acrylic resin (A-1) solution described above, 1.5% by mass of sodium alkyldiphenyl ether disulfonate based on the acrylic resin (A-1) is added at room temperature, and the mixture is stirred for 30 minutes to obtain the acrylic resin (A-1). A mixed solution of -1) was prepared. Next, a predetermined amount of water is added to a reaction vessel equipped with a homodisper capable of high-speed stirring, the temperature is adjusted to 25° C., and the acrylic resin (A-1) described above is stirred and mixed at 2000 min ⁇ 1 . The mixed solution was added and dispersed in water. An aqueous dispersion (A-1WD) of acrylic resin (A-1) having a resin solid content of 30% by mass was prepared by adjusting the concentration with water.
  • aqueous dispersion (A-2WD) of acrylic resin (A-2) A predetermined amount of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring, the temperature was adjusted to 25° C., and the acrylic resin (A-2) solution described above was added in place while stirring and mixing at 2000 min ⁇ 1 . A fixed amount was added and dispersed in water.
  • An aqueous dispersion (A-2WD) of acrylic resin (A-2) having a resin solid content of 30% by mass was prepared by adjusting the concentration with water.
  • aqueous dispersion (A-3WD) of acrylic resin (A-3) To the acrylic resin (A-3) solution described above, 1.05 equivalents of triethylamine relative to the acid value of the resin was added at room temperature, and the mixture was stirred for 30 minutes to prepare a mixed solution of the acrylic resin (A-3). Then, a predetermined amount of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring, and the mixed solution of the acrylic resin (A-3) was added while stirring and mixing at 25° C. and 2000 min ⁇ 1 . and dispersed in water. An aqueous dispersion (A-3WD) of acrylic resin (A-3) having a solid content of 30% by mass was prepared by adjusting the concentration with water.
  • Solid content 70.0 which is a resin composition ratio of 41 mol% methyl methacrylate, 47 mol% ethyl acrylate, 8 mol% acrylonitrile, and 4 mol% N-methylolacrylamide, by the same process as for the acrylic resin (A-1).
  • a solution of acrylic resin (A-4) of % by mass was obtained.
  • the solid content acid value of this acrylic resin (A-4) solution was 0.2 mgKOH/g.
  • this reaction liquid was cooled to room temperature or lower, and 16.2 parts by mass of triethylamine was added dropwise to the mixture. Further, a predetermined amount of water was added to this mixture to prepare a blocked isocyanate-based cross-linking agent (C-1) solution having a solid content of 40.0% by mass.
  • C-1 blocked isocyanate-based cross-linking agent
  • a polymerization initiator solution consisting of 0 parts by mass of a monomer mixture, 5.0 parts by mass of 2,2'-azobis(2-amidinopropane) dihydrochloride and 50.0 parts by mass of water was added from a dropping funnel under a nitrogen atmosphere. Then, while maintaining the inside of the flask at 80° C., the solution was added dropwise over 2 hours. After completion of dropping, the mixture was stirred at 80°C for 5 hours and then cooled to room temperature. An appropriate amount of water was added to prepare a solution of oxazoline-based cross-linking agent (C-2) having a solid content of 40% by mass.
  • C-2 oxazoline-based cross-linking agent
  • particle P-1 colloidal silica (Snowtex O; manufactured by Nissan Chemical Industries, Ltd.) having a solid content concentration of 20% by mass and an average particle diameter of 10 to 15 nm was used as it was as a particle (P-1) solution.
  • colloidal silica Snowtex O; manufactured by Nissan Chemical Industries, Ltd.
  • P-2 As particles (P-2), colloidal silica (Seahoster KE-W50; Nippon Shokubai Co., Ltd.) having a solid content concentration of 20% by mass and an average particle diameter of 500 nm was used as it was as a particle (P-2) solution.
  • colloidal silica Seahoster KE-W50; Nippon Shokubai Co., Ltd.
  • P-3 As particles (P-3), zirconia oxide particles (ZSL00014; Daiichi Kigenso Kagaku Kogyo Co., Ltd.) with a solid content concentration of 20% by mass and an average particle size of 10 to 20 nm were used as they were as a particle (P-3) solution. .
  • polyester resin (E-2) for base material) (Preparation example of aluminum compound solution)
  • a flask was charged with an equal amount (volume ratio) of ethylene glycol to a 20 g/L aqueous solution of basic aluminum acetate (hydroxyaluminum diacetate; manufactured by Sigma-Aldrich Japan G.K.). Water was distilled off from the system while stirring at 70 to 90° C. for several hours under 133 Pa) to prepare an ethylene glycol solution of 20 g/L aluminum compound.
  • polyester resin (E-2) for base material
  • the antimony trioxide solution as the polycondensation catalyst
  • a mixture of the aluminum compound solution and the phosphorus compound solution described above was used to obtain 0.014 mol % and Polymerization was carried out in the same manner as polyester resin E-1, except that it was added in an amount of 0.028 mol %.
  • the polymerization time was set to 68 minutes, a polyester resin (E-2) having an intrinsic viscosity (IV) of 0.61 dL/g and containing substantially no particles was obtained.
  • Example 1 (1) Preparation of Coating Liquid (No. 1) A mixed solvent of water and isopropanol (80/20 parts by mass ratio) was mixed with the following coating agents to prepare a total of 100 parts by mass.
  • the solid content mass ratio of the water dispersion of polyester resin PES-1 (PES-1WD) and the water dispersion of polyurethane resin PU-1 (PU-1WD) was 65/35, and the total solid resin content was 4% by mass.
  • the solid content mass ratios of the particles (PA-1) and (PA-2) were set to 12.0 and 0.4, respectively, with respect to the total solid content of 100 of the above-mentioned resin and the like.
  • Table 1 shows the compounding ratio of the resin and the like in each coating liquid.
  • Table 2 shows the ratio of each resin in the total resin content of polyester resin and polyurethane resin and / or acrylic resin and the ratio of cross-linking agent in the coating film based on the compounding ratio of Table 1.
  • This unstretched PET sheet was heated to 100°C by a group of heated rolls and an infrared heater, and then stretched 3.5 times in the longitudinal direction by a group of rolls with a difference in circumferential speed to obtain a uniaxially stretched PET film.
  • the coating solution (No. 1) was applied to one side of the PET film so that the final coating amount (after biaxial stretching) after drying was 0.08 g/m 2 .
  • the coating was dried by heat treatment at 90° C. for 3 seconds and 40° C. for 3 seconds.
  • the film was stretched 4.0 times in the width direction at 110° C. and heated at 230° C. for 5 seconds while the width direction of the film was fixed. Further, a 3% relaxation treatment in the width direction was performed to obtain a laminated polyester film having a thickness of 100 ⁇ m.
  • the thickness of the coating layer was 70 nm. Table 3 shows the evaluation results of this film.
  • Examples 2 to 12 A laminated polyester film was obtained in the same manner as in Example 1, except that the coating solution No. described in each example in Table 3 was used as the coating solution of Example 1.
  • the types and compounding ratios of the resins and the like used in each coating liquid No. and the particles shown in Table 1 were used.
  • Table 2 also shows the ratio of each resin in the total resin content of the polyester resin, polyurethane resin and/or acrylic resin and the ratio of the cross-linking agent in the coating film.
  • the acrylic resin-treated particles (P-3-A) described above were used as the particles, the resin ratio and the like were calculated in consideration of the content of the acrylic resin adhering to the particles.
  • Example 13 A laminated polyester film was obtained in the same manner as in Example 1, except that E-2 was used instead of E-1 as the film material resin.
  • Table 3 shows the evaluation results of each example and comparative example.
  • the present invention has made it possible to provide a laminated polyester film having optimum easy-adhesiveness for all fields such as optical applications, packaging applications and label applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

[Problem] To stably provide a multilayered polyester film having excellent versatile adhesion properties onto various coated materials. [Solution] Provided is a multilayered polyester film comprising a polyester film base material and a coating layer provided on at least one surface of the base material, in which the coating layer is formed from a composition comprising a polyester resin, a polyurethane resin and/or an acrylic resin, the contact angle (A) of a droplet of 1-bromonaphthalene on the coating layer measured 1 second after the attachment of the droplet is 13 to 25 degrees, and the contact angle (B) of a droplet of 1-bromonaphthalene on the coating layer measured 5 seconds after the attachment of the droplet is 9 to 20 degrees.

Description

積層ポリエステルフィルムlaminated polyester film
 本発明は、積層ポリエステルフィルムに関する。更に詳しくは、光学用、包装用、ラベル用などあらゆる分野に最適な易接着性の塗布層を有する積層ポリエステルフィルムに関する。 The present invention relates to laminated polyester films. More particularly, it relates to a laminated polyester film having an easily adhesive coating layer suitable for all fields such as optics, packaging and labels.
 熱可塑性樹脂フィルム、中でもポリエステルフィルムは、機械的性質、電気的性質、寸法安定性、透明性、耐薬品性などに優れた性質を有することから磁気記録材料、包装材料、太陽電池用途、フラットディスプレイ等に用いられる反射防止フィルム、拡散シート、プリズムシート等の光学フィルム及び、ラベル印刷用フィルムなどに幅広く使用されている。しかし、ポリエステルフィルムは表面が高度に結晶配向しているため、これらの用途での加工において、各種塗材である塗料、樹脂、UV硬化性樹脂またはインク等との接着性に乏しいという欠点を有している。 Thermoplastic resin films, especially polyester films, have excellent properties such as mechanical properties, electrical properties, dimensional stability, transparency, and chemical resistance. It is widely used for optical films such as anti-reflection films, diffusion sheets, prism sheets, etc., and films for label printing. However, since polyester film has a highly crystalline surface, it has the disadvantage of poor adhesion to various coating materials such as paints, resins, UV curable resins, inks, etc. in processing for these applications. are doing.
 このため、従来から、ポリエステルフィルム表面に種々の方法で接着性を与えるための検討がなされてきた。その方法として、主に、ポリエステルフィルムの表面に、易接着性能を持つ塗布層を設ける方法がよく知られている(特許文献1参照)。接着性のメカニズムの観点からは接着の界面状態が重要であり、主に分子の絡み合い、分子間相互作用、化学的結合による効果が言われている。例えば、分子の絡み合いの観点から界面に相互の樹脂から構成された中間層を設けることで接着性を向上させること(特許文献2参照)、分子間相互作用の観点から易接着層に塗材に近い組成物を設けること(特許文献3参照)、化学的結合の観点から易接着層に塗材組成物との反応性成分を含有させること(特許文献4参照)などが種々検討されている。しかしながら、これらの方法では塗材の組成または加工条件が限定されるため、汎用性の観点からの課題がある。 For this reason, various methods have been conventionally studied for imparting adhesiveness to the polyester film surface. As a method for this, a method of providing a coating layer having easy-adhesion properties on the surface of a polyester film is well known (see Patent Document 1). From the point of view of the mechanism of adhesion, the state of the adhesion interface is important, and the effects of molecular entanglement, intermolecular interaction, and chemical bonding are said to be the main factors. For example, from the viewpoint of molecular entanglement, an intermediate layer composed of mutual resins is provided at the interface to improve adhesion (see Patent Document 2). Various studies have been conducted to provide a similar composition (see Patent Document 3), and to include a reactive component with the coating material composition in the easy-adhesion layer from the viewpoint of chemical bonding (see Patent Document 4). However, these methods have a problem from the viewpoint of versatility because the composition of the coating material or processing conditions are limited.
特開昭58-78761号公報JP-A-58-78761 特開2016-186558号公報JP 2016-186558 A 特開2012-183724号公報JP 2012-183724 A 特開2013-176973号公報JP 2013-176973 A
 積層ポリエステルフィルムとしては、各種用途に使用されて使用環境が多様になっていることから、近年、各種塗材に対する汎用な接着性がますます求められている。しかしながら、従来の積層ポリエステルフィルムでは汎用な接着において市場では満足されていない。 As laminated polyester films are used for various purposes, their use environments are diversifying, so in recent years there has been an increasing demand for general-purpose adhesion to various coating materials. However, conventional laminated polyester films are not satisfactory in the market for general-purpose adhesion.
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、各種塗材に対する汎用な接着性に優れた積層ポリエステルフィルムを安定して提供することにある。そして、本発明の積層ポリエステルフィルムの接着性は各種塗料、樹脂、UV硬化性樹脂またはインク等に対して良好であり、特に有機溶剤を使用するUV硬化性樹脂との接着性に優れ、かつ長期間にわたる高いレベルの接着性の維持に優れていることである。 The present invention was made against the background of such problems of the prior art. That is, an object of the present invention is to stably provide a laminated polyester film excellent in general-purpose adhesion to various coating materials. The laminated polyester film of the present invention has good adhesion to various paints, resins, UV curable resins, inks, etc., and is particularly excellent in adhesion to UV curable resins that use organic solvents, and has a long life. It is excellent in maintaining high levels of adhesion over time.
 本発明者は、上記課題について検討する過程において、塗布層上部に設ける塗材の溶剤による塗布層を構成する樹脂の溶解性が重要であることを着目した。しかしながら、塗材の溶剤はトルエン、ヘキサン等の炭化水素系、メチルエチルケトン、シクロヘキサノン等のケトン系、テトラヒドロフラン、プロピレングリコールメチルエーテル等のエーテル系、酢酸エチル、酢酸ブチル等のエステル系などがあり、また併用して使用されることが多いため、個々の溶剤での樹脂の溶解性を調整することは困難であった。この点において、本発明者らは、種々検討した結果、特定の溶剤の接触角により本発明の課題を解決できることを見出し、本発明の完成に至った。 In the process of studying the above problems, the inventors noticed that the solubility of the resin forming the coating layer in the solvent of the coating material provided on the coating layer is important. However, there are hydrocarbon solvents such as toluene and hexane, ketone solvents such as methyl ethyl ketone and cyclohexanone, ether solvents such as tetrahydrofuran and propylene glycol methyl ether, and ester solvents such as ethyl acetate and butyl acetate. Therefore, it was difficult to adjust the solubility of the resin in each solvent. In this respect, the present inventors have made various studies and found that the contact angle of a specific solvent can solve the problems of the present invention, and have completed the present invention.
 即ち、本発明は、以下の構成よりなる。
(1)ポリエステルフィルム基材の少なくとも1面に塗布層を備える積層ポリエステルフィルムであって、前記塗布層は、ポリエステル樹脂と、ポリウレタン樹脂及び/またはアクリル樹脂を含む組成物から形成され、前記塗布層の1-ブロモナフタレンの着滴1秒後の接触角(A)が13~25度、かつ着滴5秒後の接触角(B)が9~20度である積層ポリエステルフィルム。
(2)前記塗布層の1-ブロモナフタレンの着滴1秒後の接触角(A)と着滴5秒後の接触角(B)の差(A-B)が4~7度である上記(1)記載の積層ポリエステルフィルム。
That is, the present invention consists of the following configurations.
(1) A laminated polyester film comprising a coating layer on at least one surface of a polyester film substrate, wherein the coating layer is formed from a composition containing a polyester resin, a polyurethane resin and/or an acrylic resin, and the coating layer A laminated polyester film having a contact angle (A) of 13 to 25 degrees after 1 second of droplet deposition of 1-bromonaphthalene and a contact angle (B) of 9 to 20 degrees after 5 seconds of droplet deposition.
(2) The difference (AB) between the contact angle (A) after 1 second of droplet deposition and the contact angle (B) of 5 seconds after droplet deposition of 1-bromonaphthalene on the coating layer is 4 to 7 degrees. (1) The laminated polyester film as described.
 本発明の積層ポリエステルフィルムは、塗膜の透明性、接着性、特に溶剤型の塗材との接着性に優れるため、光学用または建材用ハードコートフィルム等のUV硬化樹脂、UV硬化インキまたは熱硬化型樹脂、溶剤乾燥型インキ等の基材用フィルムとして好適に用いられる。 Since the laminated polyester film of the present invention is excellent in the transparency and adhesiveness of the coating film, especially the adhesiveness to solvent-based coating materials, it can be applied to UV-curable resins, UV-curable inks, or heat-treated hard coat films for optical use or construction materials. It is suitably used as a substrate film for curable resins, solvent-drying inks, and the like.
(ポリエステルフィルム基材)
 本発明においてポリエステルフィルム基材を構成するポリエステル樹脂は、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリトリメチレンテレフタレートなどのほか、前記のようなポリエステル樹脂のジオール成分又はジカルボン酸成分の一部を以下のような共重合成分に置き換えた共重合ポリエステル樹脂であり、例えば、共重合成分として、ジエチレングリコール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、ポリアルキレングリコールなどのジオール成分や、アジピン酸、セバチン酸、フタル酸、イソフタル酸、5-ナトリウムイソフタル酸、2,6-ナフタレンジカルボン酸などのジカルボン酸成分などを挙げることができる。
(Polyester film substrate)
The polyester resin constituting the polyester film substrate in the present invention includes polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polytrimethylene terephthalate, and the like, as well as the diol component or dicarboxylic acid component of the polyester resin as described above. is a copolymerized polyester resin in which a part of is replaced with the following copolymerization components, for example, as copolymerization components, diol components such as diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, polyalkylene glycol , adipic acid, sebacic acid, phthalic acid, isophthalic acid, 5-sodium isophthalic acid, and dicarboxylic acid components such as 2,6-naphthalenedicarboxylic acid.
 本発明においてポリエステルフィルム基材のために好適に用いられるポリエステル樹脂は、主に、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレートから選ばれるものである。これらのポリエステル樹脂の中でも、物性とコストのバランスからポリエチレンテレフタレートが最も好ましい。また、これらのポリエステル樹脂から構成されたポリエステルフィルム基材は二軸延伸ポリエステルフィルムであることが好ましく、耐薬品性、耐熱性、機械的強度などを向上させることができる。 The polyester resin suitably used for the polyester film substrate in the present invention is mainly selected from polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate and polyethylene-2,6-naphthalate. Among these polyester resins, polyethylene terephthalate is most preferable from the viewpoint of balance between physical properties and cost. Moreover, the polyester film substrate composed of these polyester resins is preferably a biaxially oriented polyester film, which can improve chemical resistance, heat resistance, mechanical strength, and the like.
 ポリエステル樹脂の製造の際に用いられる重縮合のための触媒としては特に限定されないが、三酸化アンチモンが安価で、かつ優れた触媒活性をもつ触媒であるため好適である。また、ゲルマニウム化合物、又はチタン化合物を用いることも好ましい。さらに好ましい重縮合触媒としては、アルミニウム及び/又はその化合物とフェノール系化合物を含有する触媒、アルミニウム及び/又はその化合物とリン化合物を含有する触媒、リン化合物のアルミニウム塩を含有する触媒が挙げられる。 The catalyst for polycondensation used in the production of polyester resin is not particularly limited, but antimony trioxide is suitable because it is inexpensive and has excellent catalytic activity. It is also preferable to use a germanium compound or a titanium compound. Further preferred polycondensation catalysts include catalysts containing aluminum and/or compounds thereof and phenolic compounds, catalysts containing aluminum and/or compounds thereof and phosphorus compounds, and catalysts containing aluminum salts of phosphorus compounds.
 また、本発明におけるポリエステルフィルム基材は、その層構成について特に限定されるものではなく、単層のポリエステルフィルムであってもよいし、相互に成分が異なる2層構成でもよく、外層と内層を有する、少なくとも3層からなるポリエステルフィルム基材であってもよい。 In addition, the polyester film substrate in the present invention is not particularly limited in its layer structure, and may be a single-layer polyester film or a two-layer structure having mutually different components. It may be a polyester film substrate consisting of at least three layers.
(塗布層)
 本発明者は、前述の様に接触角を測定する溶剤種について、種々検討した。特に接触角測定には、シリンジ針先での液滴の生成、測定面への付着及び測定中の溶剤の安定性が重要であり、その点も考慮して、比較的比重が高い(1.48)ことから、シリンジ針先で液滴が生成及び測定面への付着が容易であり、かつ比較的沸点が高い(282℃)ことから、測定中の気化を無視できる1-ブロモナフタレンを選択した。
(Coating layer)
The inventor of the present invention conducted various studies on solvent species for measuring the contact angle as described above. Especially for contact angle measurement, the generation of droplets at the tip of the syringe needle, the adhesion to the measurement surface, and the stability of the solvent during measurement are important. 48) Therefore, 1-bromonaphthalene, which can ignore vaporization during measurement, is selected because droplets are easily generated at the tip of the syringe and adhere to the measurement surface, and because it has a relatively high boiling point (282 ° C). bottom.
 本発明の積層ポリエステルフィルムは、塗膜の透明性、接着性、特に溶剤型の塗材との接着性を向上させるために、その少なくとも片面に、ポリエステル樹脂と、ポリウレタン樹脂及び/またはアクリル樹脂を含む組成物から形成され、かつ前記塗布層の1-ブロモナフタレンの着滴1秒後の接触角(A)が13~25度かつ着滴5秒後の接触角(B)が9~20度であることが好ましい。塗布層は、ポリエステルフィルムの両面に設けてもよく、用途により、ポリエステルフィルムの片面のみに設け、他方の面には異種の樹脂被覆層を設けてもよい。 The laminated polyester film of the present invention contains a polyester resin, a polyurethane resin and/or an acrylic resin on at least one side in order to improve the transparency and adhesiveness of the coating film, particularly the adhesiveness to a solvent-based coating material. and the contact angle (A) of 1-bromonaphthalene on the coating layer after 1 second of droplet deposition is 13 to 25 degrees and the contact angle (B) of 5 seconds after droplet deposition is 9 to 20 degrees. is preferred. The coating layer may be provided on both sides of the polyester film, or depending on the application, it may be provided only on one side of the polyester film and a different resin coating layer may be provided on the other side.
 本発明においては、塗布層の1-ブロモナフタレンの液滴の接触角及びその接触角の時間変化が重要である。1-ブロモナフタレンの液滴の1秒後の接触角(A)が13~25度の範囲であることにより、塗布層表面がある種の溶剤に対して最適な親和性、溶剤性または浸透性を示しており、塗材と塗布層の界面に相互の樹脂から構成された中間層が構成されるため、接着性の点から好ましく、14~21度の範囲であることがより好ましい。次いで、1-ブロモナフタレンの液滴の着滴5秒後の接触角(B)が、塗布層表面がある種の溶剤に対して最適な溶剤性または浸透性を示しており、塗布層の過度な溶解による塗布層と基材界面への接着性の影響を抑制する点から着性の点から、9~20度の範囲であることが好ましく、10~17度の範囲であることがより好ましい。また、前記の着滴1秒後の接触角(A)と着滴5秒後の接触角(B)の差(A-B)が、塗材と塗布層の界面に相互の樹脂から構成された最適な中間層厚みが構成される点から、4~7度の範囲であることが、良好な接着性と耐久性の点から好ましく、4.5~6度の範囲であることがより好ましい。 In the present invention, the contact angle of the 1-bromonaphthalene droplet on the coating layer and the change in the contact angle over time are important. The contact angle (A) of a droplet of 1-bromonaphthalene after 1 second is in the range of 13 to 25 degrees, which gives the coated layer surface optimum affinity, solvent resistance or permeability to certain solvents. Since an intermediate layer composed of mutual resins is formed at the interface between the coating material and the coating layer, it is preferable from the viewpoint of adhesion, and the range of 14 to 21 degrees is more preferable. Next, the contact angle (B) of a droplet of 1-bromonaphthalene after 5 seconds of deposition indicates that the coating layer surface has optimal solvent resistance or permeability to a certain solvent, and the coating layer's excessiveness It is preferably in the range of 9 to 20 degrees, more preferably in the range of 10 to 17 degrees, from the viewpoint of adhesion from the point of suppressing the influence of adhesiveness on the interface between the coating layer and the substrate due to dissolution. . In addition, the difference (AB) between the contact angle (A) after 1 second of droplet deposition and the contact angle (B) after 5 seconds of droplet deposition is the difference (A - B) between the interface between the coating material and the coating layer. From the point that the optimum intermediate layer thickness is configured, it is preferably in the range of 4 to 7 degrees from the viewpoint of good adhesion and durability, and more preferably in the range of 4.5 to 6 degrees. .
 本発明における塗布層は、ポリエステル樹脂と、ポリウレタン樹脂及び/またはアクリル樹脂を含む組成物を含んで形成されていることが好ましい。本発明で主にとは、塗布層全体に対してポリエステル樹脂と、ポリウレタン樹脂及び/またはアクリル樹脂が70質量%以上であることが好ましく、より好ましくは75質量%以上、さらに好ましくは80質量%以上である。先述の樹脂が塗布層全体で70質量%以上であることにより、密着性、接着性等が効果的に得られて好ましい。本発明の塗布層には、前述のポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂以外の他の樹脂を併用してよく、特に架橋剤を併用することが好ましい。架橋剤を併用することにより、本発明の耐久性をさらに向上させることが可能となる。 The coating layer in the present invention is preferably formed containing a composition containing a polyester resin and a polyurethane resin and/or an acrylic resin. In the present invention, the content of polyester resin, polyurethane resin and/or acrylic resin is preferably 70% by mass or more, more preferably 75% by mass or more, and still more preferably 80% by mass with respect to the entire coating layer. That's it. It is preferable that the aforementioned resin accounts for 70% by mass or more in the entire coating layer, because adhesion, adhesiveness, etc. can be effectively obtained. In the coating layer of the present invention, resins other than the polyester resin, polyurethane resin, and acrylic resin described above may be used in combination, and it is particularly preferable to use a cross-linking agent in combination. By using a cross-linking agent in combination, it is possible to further improve the durability of the present invention.
 本発明における塗布層は、1-ブロモナフタレンの液滴の接触角を特定の範囲に調整することが好ましいが、このためには、ポリエステル樹脂と、ポリウレタン樹脂及び/またはアクリル樹脂の各樹脂組成及び/または各樹脂の配合比率により調節が可能である。塗布層中のポリエステル樹脂、ポリウレタン樹脂とアクリル樹脂を合計した樹脂分として、ポリエステル樹脂は50質量%以上90質量%以下の含有量であることが、密着性の観点から好ましく、53質量%以上70質量%以下の含有量であることがより好ましく、57質量%以上67質量%以下の含有量であることが更に好ましい。また、ポリウレタン樹脂は47質量%以下であることが好ましく、45質量%以下の含有量であることがより好ましく、43質量%以下の含有量であることが更に好ましい。アクリル樹脂は40質量%未満であることが好ましく、37.5質量%以下の含有量であることがより好ましく、35質量%以下の含有量であることが更に好ましい。また、これらのポリウレタン樹脂及び/またはアクリル樹脂を単に配合するではなく、滑材等の添加剤に吸着させて間接的に配合しても、特に問題はない。但し、これらの間接的に配合した場合は、先述の含有量よりも少なくても同様の効果が得られるため、ポリエステル樹脂の含有量として上限は97質量%とすることが可能となる。 The coating layer in the present invention preferably adjusts the contact angle of droplets of 1-bromonaphthalene to a specific range. / Or it can be adjusted by the compounding ratio of each resin. As the total resin content of the polyester resin, polyurethane resin and acrylic resin in the coating layer, the content of the polyester resin is preferably 50% by mass or more and 90% by mass or less from the viewpoint of adhesion, and 53% by mass or more and 70% by mass. The content is more preferably 57% by mass or less and 67% by mass or less. The content of the polyurethane resin is preferably 47% by mass or less, more preferably 45% by mass or less, and even more preferably 43% by mass or less. The acrylic resin content is preferably less than 40% by mass, more preferably 37.5% by mass or less, and even more preferably 35% by mass or less. In addition, there is no particular problem even if these polyurethane resins and/or acrylic resins are not simply blended, but are indirectly blended by being absorbed by additives such as lubricants. However, when these are indirectly blended, the same effect can be obtained even if the content is less than the above-mentioned content, so the upper limit of the content of the polyester resin can be 97% by mass.
 樹脂組成では芳香族成分、親水性成分の存在により1-ブロモナフタレンの液滴の接触角が高くなり、脂肪族成分の存在により接触角が低くなる傾向である。また、樹脂種ではアクリル樹脂骨格の方がポリエステル樹脂骨格及びポリウレタン樹脂骨格より接触角が一般に高くなる傾向である。本発明における1-ブロモナフタレンの液滴の接触角の範囲に調整するため一例としては、下記の様である。まず、塗布層に使用するポリエステル樹脂を選定し、このポリエステル樹脂を塗布層とした場合の1秒後の接触角を測定する。その数値が規定より高ければ、ポリウレタン樹脂を併用することで数値を低下させる。また、その数値が低くければ、アクリル樹脂を併用することで数値を高めて、1秒後の接触角の規定範囲内に調整する。次に、調整した組成の5秒後の接触角を確認する。もし、この5秒後の接触角が低い場合には、1秒後の接触角から高くするように再度樹脂の併用量の調整を実施する。もし、1秒後の接触角を高く調整しても、5秒後の接触角が低い場合は架橋剤を併用して、再度調整を実施する。また、主な樹脂及び架橋剤以外の他の樹脂、添加剤を使用する場合は、前述に準じて最終調整することが必要である。但し、本発明では1-ブロモナフタレンの液滴の接触角の規定が重要であり、前述の方法は接触角の調整の一例に過ぎず、他の調整方法等を否定するものではない。 In the resin composition, the contact angle of 1-bromonaphthalene droplets tends to increase due to the presence of aromatic and hydrophilic components, and the contact angle tends to decrease due to the presence of aliphatic components. Further, among resin species, the acrylic resin skeleton generally tends to have a higher contact angle than the polyester resin skeleton and the polyurethane resin skeleton. An example for adjusting the range of the contact angle of the droplet of 1-bromonaphthalene in the present invention is as follows. First, a polyester resin to be used for the coating layer is selected, and the contact angle is measured after one second when the polyester resin is used as the coating layer. If the numerical value is higher than specified, the numerical value is lowered by using polyurethane resin together. If the numerical value is low, the numerical value is increased by using acrylic resin together, and the contact angle after 1 second is adjusted within the specified range. Next, the contact angle of the adjusted composition after 5 seconds is confirmed. If the contact angle after 5 seconds is low, the amount of resin used is adjusted again so as to increase the contact angle after 1 second. Even if the contact angle after 1 second is adjusted to be high, if the contact angle after 5 seconds is low, a cross-linking agent is used in combination and adjustment is carried out again. Also, when using other resins and additives than the main resin and cross-linking agent, it is necessary to make final adjustments according to the above. However, in the present invention, it is important to define the contact angle of the droplet of 1-bromonaphthalene, and the above method is merely an example of adjusting the contact angle, and other adjusting methods are not denied.
 次に本発明で使用する樹脂等の詳細ついて述べる。 Next, the details of the resin etc. used in the present invention will be described.
(ポリエステル系樹脂)
 ポリエステル系樹脂は、通常、ジカルボン酸とジオールから得ることができる。ジカルボン酸としては、例えば、コハク酸、グルタル酸、アジピン酸、トリメチルアジピン酸、ピメリン酸、2,2-ジメチルグルタル酸、アゼライン酸、セバシン酸、フマル酸、マレイン酸、イタコン酸等の脂肪族ジカルボン酸、フタル酸、テレフタル酸、イソフタル酸、ベンジルマロン酸、ジフェン酸、4,4’-オキシジ安息香酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸等のナフタレンジカルボン酸等の芳香族ジカルボン酸、1,3-シクロペンタンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、2,5-ノルボルナンジカルボン酸等の脂環族ジカルボン酸等が、三価以上のポリカルボン酸としては、例えば、トリメリット酸、ピロメリット酸、アダマンタントリカルボン酸、トリメシン酸等が挙げられる。これらは、単独または2種以上併せて用いることができる。
(polyester resin)
A polyester resin can usually be obtained from a dicarboxylic acid and a diol. Examples of dicarboxylic acids include aliphatic dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, azelaic acid, sebacic acid, fumaric acid, maleic acid and itaconic acid. acid, phthalic acid, terephthalic acid, isophthalic acid, benzylmalonic acid, diphenic acid, 4,4'-oxydibenzoic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid , aromatic dicarboxylic acids such as naphthalenedicarboxylic acids such as 2,7-naphthalenedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,4- Alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid and 2,5-norbornanedicarboxylic acid, and trivalent or higher polycarboxylic acids include, for example, trimellitic acid, pyromellitic acid, adamantanetricarboxylic acid, and trimesic acid. be done. These can be used singly or in combination of two or more.
 ジオールとしては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール等の直鎖脂肪族ジオール、
 プロピレングリコール、ジプロピレングリコール、2,4-ジメチル-2-エチルヘキサン-1,3-ジオール、2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、1,3-ブタンジオール、3-メチル-1,5-ペンタンジオール、2,2,4-トリメチル-1,6-ヘキサンジオール等の分岐脂肪族ジオール、
 1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、スピログリコール、トリシクロデカンジメタノール等の脂環族ジオール;
 4,4’-メチレンジフェノール、ビスフェノールS,ビスフェノールA、ビスフェノールフルオレン、4,4’-ジヒドロキシビフェニル、2,5-ナフタレンジオール、p-キシレンジオール等の芳香族ジオールまたはこれらのエチレンオキサイド、プロピレンオキサイド付加体等が、三価以上のポリオールとしては、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グリセリン、トリメチロールプロパン、トリメチロールエタン等が挙げられる。これらは、単独または2種以上併せて用いることができる。
Examples of diols include ethylene glycol, diethylene glycol, triethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, and the like. linear aliphatic diols of
Propylene glycol, dipropylene glycol, 2,4-dimethyl-2-ethylhexane-1,3-diol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), branched aliphatic diols such as 1,3-butanediol, 3-methyl-1,5-pentanediol, 2,2,4-trimethyl-1,6-hexanediol,
Alicyclic diols such as 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, spiroglycol, and tricyclodecanedimethanol;
Aromatic diols such as 4,4'-methylenediphenol, bisphenol S, bisphenol A, bisphenol fluorene, 4,4'-dihydroxybiphenyl, 2,5-naphthalene diol, p-xylene diol, or their ethylene oxide and propylene oxide Examples of polyols having trivalent or higher adducts include pentaerythritol, dipentaerythritol, tripentaerythritol, glycerin, trimethylolpropane, and trimethylolethane. These can be used singly or in combination of two or more.
 本発明で塗布層を設ける時に使用するポリエステル樹脂の溶剤は特に限定されない。但し、作業環境の観点からは溶剤に水を主に使用することが好ましい。 The solvent for the polyester resin used when forming the coating layer in the present invention is not particularly limited. However, from the viewpoint of working environment, it is preferable to mainly use water as the solvent.
 ポリエステル樹脂の溶剤として主に水を使用する場合には、塗布層の耐水性の点から水分散体であることが好ましい。ポリエステル樹脂を水分散するためには、親水性の界面活性剤を使用する方法と樹脂中に親水性基を導入する方法が存在する。界面活性剤を使用する場合は、ポリエステル樹脂を予めに有機溶剤に溶解して界面活性剤存在下で水分散することにより調製することが可能である。使用した有機溶剤は減圧蒸留により除去することが可能である。使用した有機溶剤が少量の場合には、系中に残留したまま使用してよい。 When water is mainly used as the solvent for the polyester resin, it is preferably an aqueous dispersion from the viewpoint of the water resistance of the coating layer. In order to disperse the polyester resin in water, there are a method of using a hydrophilic surfactant and a method of introducing a hydrophilic group into the resin. When a surfactant is used, it can be prepared by previously dissolving the polyester resin in an organic solvent and dispersing it in water in the presence of the surfactant. The organic solvent used can be removed by vacuum distillation. If the amount of organic solvent used is small, it may be used as it remains in the system.
 樹脂中に親水性を導入する場合は、親水性基として、ポリエチレングリコール等のポリオキシアルキル基、水酸基、カルボキシル基、スルホン酸、ホスホン酸、ホスフィン酸基等の親水性基が使用可能である。これらの親水性基としては、ポリエチレングリコール基、カルボキシル基、スルホン酸基を使用することが好ましい。 When introducing hydrophilicity into the resin, hydrophilic groups such as polyoxyalkyl groups such as polyethylene glycol, hydroxyl groups, carboxyl groups, sulfonic acid, phosphonic acid, and phosphinic acid groups can be used as hydrophilic groups. As these hydrophilic groups, polyethylene glycol groups, carboxyl groups, and sulfonic acid groups are preferably used.
 ポリエチレングリコール基を有するポリエステル系樹脂は、ポリエチレングリコール基を有するジカルボン酸またはジオールを用いることにより容易に得ることが可能である。 A polyester resin having a polyethylene glycol group can be easily obtained by using a dicarboxylic acid or diol having a polyethylene glycol group.
 カルボキシル基を有するポリエステル系樹脂は前述のジカルボン酸を過剰に含ませることにより、容易に得ることが可能である。しかしながら、その場合には、カルボキシル基は分子末端に導入されるため、単にカルボキシル基の導入量を多くすると、分子量が小さくなる。これを避けるためには、3官能以上の多価カルボン酸またはポリオールを適量使用して分岐構造を設けることもできるが、本発明においては、ポリエステル分子中の水酸基と多価カルボン酸無水物を反応させて、カルボキシル基を分子中に導入することが好ましい。 A polyester-based resin having a carboxyl group can be easily obtained by including the above-mentioned dicarboxylic acid in excess. However, in that case, the carboxyl groups are introduced at the ends of the molecules, so simply increasing the amount of carboxyl groups introduced reduces the molecular weight. In order to avoid this, an appropriate amount of tri- or more functional polycarboxylic acid or polyol can be used to provide a branched structure. It is preferable to introduce a carboxyl group into the molecule by allowing the
 上記多価カルボン酸無水物は、カルボキシル基を導入する目的から、少なくとも3価以上カルボキシル基を有し、これらのカルボキシル基が少なくとも1つのカルボン酸無水物構造を有する化合物である。例えば、無水トリメリット酸、シクロヘキサン-1,2,4-トリカルボン酸1,2-無水物、無水ピロメリット酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4-オキシジフタル酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、エチレンテトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物等が挙げられる。これらは、単独または2種以上併せて用いることができる。 For the purpose of introducing carboxyl groups, the polyvalent carboxylic anhydride is a compound having at least trivalent or higher carboxyl groups, and these carboxyl groups have at least one carboxylic anhydride structure. For example, trimellitic anhydride, cyclohexane-1,2,4-tricarboxylic acid 1,2-anhydride, pyromellitic anhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 4,4 -oxydiphthalic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, ethylenetetracarboxylic dianhydride, 1,2,3,4-butanetetra Carboxylic acid dianhydride etc. are mentioned. These can be used singly or in combination of two or more.
 ポリエステル樹脂中のカルボキシル基は、酸価として10~60mgKOH/gの範囲であることが好ましく、酸価が15~50mgKOH/gの範囲であることがより好ましい。酸価が10mgKOH/g以上であると、ポリエステル樹脂の水分散性及び本発明における接触角を高める点から好ましく、酸価が60mgKOH/g以下であると、耐湿熱性の点から好ましい。 The carboxyl group in the polyester resin preferably has an acid value in the range of 10 to 60 mgKOH/g, more preferably 15 to 50 mgKOH/g. An acid value of 10 mgKOH/g or more is preferable from the viewpoint of increasing the water dispersibility of the polyester resin and the contact angle in the present invention, and an acid value of 60 mgKOH/g or less is preferable from the viewpoint of moist heat resistance.
 また、これらのカルボキシル基量は、トリエチルアミン等の3級アミン化合物により塩を形成していることが好ましい。アミン塩を形成することにより、ポリエステル樹脂の親水性が向上し、水分散体の安定性が良好となる。 In addition, it is preferable that these carboxyl groups form a salt with a tertiary amine compound such as triethylamine. By forming an amine salt, the hydrophilicity of the polyester resin is improved, and the stability of the aqueous dispersion is improved.
 スルホン酸基を有するポリエステル樹脂は、スルホン酸基含有ジカルボン酸をジカルボン酸成分として使用することで容易に得ることが可能である。スルホン酸基含有ジカルボン酸としては、スルホテレフタル酸、5-スルホイソフタル酸、5-ナトリウムスルホイソフタル酸等を挙げることができる。ポリエステル樹脂中のスルホン酸基はジカルボン酸成分中に1~10モル%の範囲で使用することが好ましい。スルホン酸基が1モル%以上であると、ポリエステル樹脂の水分散性及び本発明における接触角を高める点から好ましく、スルホン酸基が10モル%以下であると、耐湿熱性の点から好ましい。 A polyester resin having a sulfonic acid group can be easily obtained by using a sulfonic acid group-containing dicarboxylic acid as a dicarboxylic acid component. Examples of sulfonic acid group-containing dicarboxylic acids include sulfoterephthalic acid, 5-sulfoisophthalic acid, and 5-sodium sulfoisophthalic acid. The sulfonic acid group in the polyester resin is preferably used in an amount of 1 to 10 mol % in the dicarboxylic acid component. A sulfonic acid group content of 1 mol % or more is preferable from the viewpoint of increasing the water dispersibility of the polyester resin and a contact angle in the present invention, and a sulfonic acid group content of 10 mol % or less is preferable from the viewpoint of moist heat resistance.
 また、本発明における効果を阻害しない範囲内であれば、前述の親水性基は2種以上または他の親水性基を併用してもよい。 In addition, two or more kinds of the above-mentioned hydrophilic groups or other hydrophilic groups may be used in combination as long as they do not impair the effects of the present invention.
 ポリエステル樹脂の組成では、ポリエチレングリコール基、カルボキシル基、スルホン酸基、水酸基等の親水性成分の割合を高めることにより1-ブロモナフタレンの接触角を高くすることができ、脂肪族成分である脂肪族ジカルボン酸または脂肪族ジオールの割合を高めることにより、接触角を低くすることができる。また、骨格に分岐構造を導入することにより、接触角が低くすることができる。但し、親水性成分の割合を高くすると、樹脂のガラス転移点(Tg)の低下または分子量の低下を招いて、ハンドリング性及び密着性等の性能への悪影響が起るため、ガラス転移点(Tg)は20℃以上、分子量の目安としての還元粘度は0.30dL/gであることが好ましく、ガラス転移点(Tg)は30℃以上、還元粘度は0.40dL/gがより好ましい。 In the composition of the polyester resin, the contact angle of 1-bromonaphthalene can be increased by increasing the proportion of hydrophilic components such as polyethylene glycol groups, carboxyl groups, sulfonic acid groups, and hydroxyl groups. The contact angle can be lowered by increasing the proportion of dicarboxylic acid or aliphatic diol. Also, by introducing a branched structure into the skeleton, the contact angle can be lowered. However, if the proportion of the hydrophilic component is increased, the glass transition point (Tg) of the resin or the molecular weight thereof will be lowered, which will adversely affect performance such as handleability and adhesion. ) is preferably 20° C. or higher, the reduced viscosity as a measure of the molecular weight is preferably 0.30 dL/g, and the glass transition point (Tg) is preferably 30° C. or higher and the reduced viscosity is 0.40 dL/g.
 還元粘度は、ポリエステル樹脂0.05gを25mLの混合溶媒(フェノール/テトラクロロエタン=60/40(質量比))に溶かし、オストワルド粘度計を用いて30℃で測定して算出した。また、ポリエステル樹脂のガラス転移点(Tg)はDSCの測定結果を用いた。 The reduced viscosity was calculated by dissolving 0.05 g of polyester resin in 25 mL of mixed solvent (phenol/tetrachloroethane = 60/40 (mass ratio)) and measuring at 30°C using an Ostwald viscometer. Moreover, the glass transition point (Tg) of the polyester resin used the measurement result of DSC.
(ポリウレタン樹脂)
 ポリウレタン樹脂とは、少なくともポリオール成分とポリイソシアネート成分、さらに必要に応じて鎖延長剤に由来するウレタン樹脂である。
(polyurethane resin)
A polyurethane resin is a urethane resin derived from at least a polyol component and a polyisocyanate component, and optionally a chain extender.
 ポリオール成分とは、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオール類、酸成分としてアジピン酸等を有する脂肪族ポリエステル、テレフタル酸等を有する芳香族ポリエステル、シクロヘキサンジカルボン酸等を有する脂環族ポリエステル、εーカプロラクトン等の開環重合によるラクトン系ポリエステル等に代表されるポリエステルポリオール類、1,6-ヘキサンジオールとエチレンカーボネートとの重合体に代表されるカーボネートポリオール類、アクリル共重合体中に水酸基を導入したアクリルポリオール類、末端に水酸基を有するブタジエンまたはその共重合体であるポリブタジエンポリオ-ル類等が挙げられる。これらの中では、ポリエーテルポリオール類、ポリエステルポリオール類、カーボネートポリオール類、アクリルポリオール類が好ましく、耐久性の点からカーボネートポリオール類とアクリルポリオール類が特に好ましい。 Polyol components include polyether polyols such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol; aliphatic polyesters containing adipic acid as acid components; aromatic polyesters containing terephthalic acid, etc.; Polyester polyols typified by lactone-based polyesters obtained by ring-opening polymerization such as cyclic polyesters and ε-caprolactone, carbonate polyols typified by polymers of 1,6-hexanediol and ethylene carbonate, acrylic copolymers Examples include acrylic polyols having hydroxyl groups introduced therein, butadiene having hydroxyl groups at the ends and polybutadiene polyols which are copolymers thereof. Among these, polyether polyols, polyester polyols, carbonate polyols and acrylic polyols are preferable, and carbonate polyols and acrylic polyols are particularly preferable from the viewpoint of durability.
 本発明における前記のポリオールの数平均分子量としては、好ましくは300~5000である。より好ましくは400~4000、最も好ましくは500~3000である。300以上であると、密着性を向上でき好ましい。5000以下であると、耐湿熱性等の耐久性を向上でき好ましい。 The number average molecular weight of the polyol in the present invention is preferably 300-5000. More preferably 400-4000, most preferably 500-3000. When it is 300 or more, the adhesiveness can be improved, which is preferable. When it is 5000 or less, durability such as resistance to moist heat can be improved, which is preferable.
 ポリウレタン樹脂に用いるポリイソシアネートとしては、例えば、キシリレンジイソシアネート等の芳香族脂肪族ジイソシアネート類、イソホロンジイソシアネート及び4,4-ジシクロヘキシルメタンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン等の脂環式ジイソシアネート類、ヘキサメチレンジイソシアネート、および2,2,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート類、あるいは、ジイソシアネート類から製造されたイソシアヌレート結合、ビユレット結合またはアロファネート結合含有変性ポリイソシアネート類、ジイソシアネート類を単一あるいは複数でトリメチロールプロパン等とあらかじめ付加させたポリイソシアネート類が挙げられる。前記の芳香族脂肪族ジイソシアネート類、脂環式ジイソシアネート類、または、脂肪族ジイソシアネート類等を使用した場合、黄変の問題がなく好ましい。 Examples of polyisocyanates used in polyurethane resins include aromatic-aliphatic diisocyanates such as xylylene diisocyanate, isophorone diisocyanate and alicyclic diisocyanates such as 4,4-dicyclohexylmethane diisocyanate and 1,3-bis(isocyanatomethyl)cyclohexane. Aliphatic diisocyanates such as hexamethylene diisocyanate and 2,2,4-trimethylhexamethylene diisocyanate, or modified polyisocyanates containing isocyanurate bonds, biuret bonds or allophanate bonds produced from diisocyanates, diisocyanates Polyisocyanates previously added with trimethylolpropane or the like singly or in multiples can be mentioned. When the above aromatic-aliphatic diisocyanates, alicyclic diisocyanates, or aliphatic diisocyanates are used, there is no problem of yellowing, which is preferable.
 鎖延長剤としては、エチレングリコール、ジエチレングリコール、1,4-ブタンジオール、ネオペンチルグリコール及び1,6-ヘキサンジオール等のジオール類、グリセリン、トリメチロールプロパン、およびペンタエリスリトール等の多価アルコール類、エチレンジアミン、ヘキサメチレンジアミン、およびピペラジン等のジアミン類、モノエタノールアミンおよびジエタノールアミン等のアミノアルコール類、チオジエチレングルコール等のチオジグリコール類、あるいは水が挙げられる。また、少量であれば、3官能基以上のグリセリン、トリメチロールプロパン、およびペンタエリスリトール等のポリオールまたはポリアミン等を使用してもよい。 Examples of chain extenders include diols such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol and 1,6-hexanediol, polyhydric alcohols such as glycerin, trimethylolpropane, and pentaerythritol, and ethylenediamine. , hexamethylenediamine, and piperazine, amino alcohols such as monoethanolamine and diethanolamine, thiodiglycols such as thiodiethylene glycol, and water. In addition, polyols or polyamines such as glycerin, trimethylolpropane, pentaerythritol, etc. having three or more functional groups may be used in small amounts.
 前述のポリエステル樹脂と同様に、作業環境の観点からは溶剤に水を主に使用することが好ましい。溶剤として主に水を使用する場合には、塗布層の耐水性の点から水分散体であることが好ましい。ポリウレタン樹脂を水分散するには、ポリエステル樹脂と同様に、親水性の界面活性剤を使用する方法と樹脂中に親水性基を導入する方法が存在する。界面活性剤を使用する場合は、前述のポリエステル樹脂と同様にして調製することができる。 As with the polyester resin described above, it is preferable to mainly use water as the solvent from the viewpoint of the working environment. When water is mainly used as the solvent, an aqueous dispersion is preferred from the viewpoint of the water resistance of the coating layer. In order to disperse the polyurethane resin in water, there are a method of using a hydrophilic surfactant and a method of introducing a hydrophilic group into the resin, as in the case of the polyester resin. When a surfactant is used, it can be prepared in the same manner as the polyester resin described above.
 また、ポリウレタン樹脂中に親水性を導入する場合は、親水性基として、ポリエチレングリコール等のポリオキシアルキル基、水酸基、カルボキシル基、スルホン酸、ホスホン酸、ホスフィン酸基等の親水性基が使用可能である。これらの親水性基としては、ポリエチレングリコール基、カルボキシル基を使用することが好ましい。 In addition, when introducing hydrophilicity into the polyurethane resin, hydrophilic groups such as polyoxyalkyl groups such as polyethylene glycol, hydroxyl groups, carboxyl groups, sulfonic acid, phosphonic acid, and phosphinic acid groups can be used as hydrophilic groups. is. A polyethylene glycol group and a carboxyl group are preferably used as these hydrophilic groups.
 ポリウレタン樹脂中にポリエチレングリコール基を導入するには、前述のポリオールとしてポリエチレングリコールを使用することで主鎖中に容易に可能である。また、ポリオールではなく、ポリエチレングリコールモノアルキルエーテル等のモノオールでイソシアネート基の末端封鎖することで側鎖に導入することも可能である。 In order to introduce polyethylene glycol groups into polyurethane resins, it is possible to easily introduce them into the main chain by using polyethylene glycol as the aforementioned polyol. Moreover, it is also possible to introduce it into a side chain by terminally blocking the isocyanate group with a monool such as polyethylene glycol monoalkyl ether instead of a polyol.
 カルボキシル基を有するポリウレタン樹脂は、主にウレタンの成分としてカルボキシル基含有ポリオール成分を使用することで好ましく得ることができる。 A polyurethane resin having a carboxyl group can be preferably obtained mainly by using a carboxyl group-containing polyol component as a urethane component.
 かかる、カルボキシル基含有ポリオール成分としては下記のようなものが挙げられる。
比較的高分子量なもの、例えば、カルボキシル基含有ポリアルキレングリコール、カルボキシル基含有アクリルポリオール、カルボキシル基含有ポリオレフィンポリオール、カルボキシル基含有ポリエステルポリオール等が使用することができる。また、比較的低分子量なもの、例えば、2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸、2,2-ジメチロール酪酸、2,2-ジメチロール吉草酸等を使用することができる。カルボキシル基導入には、特に、2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸が好適に使用される。
Examples of such carboxyl group-containing polyol components include the following.
Relatively high molecular weight polyalkylene glycols, carboxyl group-containing acrylic polyols, carboxyl group-containing polyolefin polyols, and carboxyl group-containing polyester polyols can be used. In addition, relatively low molecular weight compounds such as 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, 2,2-dimethylolbutyric acid, 2,2-dimethylolvaleric acid and the like can be used. . For carboxyl group introduction, 2,2-dimethylolpropionic acid and 2,2-dimethylolbutanoic acid are particularly preferably used.
 カルボキシル基を有するポリウレタン樹脂は、酸価として10~60mgKOH/gの範囲であることが好ましく、酸価が15~50mgKOH/gの範囲であることがより好ましい。酸価が10mgKOH/g以上であると、ポリウレタン樹脂の水分散体の安定性の点から好ましく、酸価が60mgKOH/g以下であると、耐湿熱性の点から好ましい。但し、本発明における効果を阻害しない範囲内であれば、ポリウレタン樹脂の水溶性あるいは水分散性を補填するために他の親水性基、例えば、水酸基、エーテル、スルホン酸、ホスホン酸等を導入してもよい。 The polyurethane resin having a carboxyl group preferably has an acid value in the range of 10 to 60 mgKOH/g, more preferably 15 to 50 mgKOH/g. An acid value of 10 mgKOH/g or more is preferable from the viewpoint of the stability of the aqueous dispersion of the polyurethane resin, and an acid value of 60 mgKOH/g or less is preferable from the viewpoint of moist heat resistance. However, other hydrophilic groups such as hydroxyl group, ether, sulfonic acid, phosphonic acid, etc. may be introduced in order to supplement the water solubility or water dispersibility of the polyurethane resin within the range that does not impair the effects of the present invention. may
 また、これらのポリウレタン中のカルボキシル基がアミン化合物により塩を形成していることが好ましい。カルボキシル基が塩を形成していると、ポリウレタン樹脂の親水性が向上することにより水分散体の安定性が良好となる。 In addition, it is preferable that the carboxyl groups in these polyurethanes form a salt with an amine compound. When the carboxyl group forms a salt, the hydrophilicity of the polyurethane resin is improved, thereby improving the stability of the aqueous dispersion.
 本発明におけるポリウレタン樹脂は、強硬性向上のため末端または側鎖にブロックイソシアネート等の反応性基を有していてもよい。 The polyurethane resin in the present invention may have a reactive group such as blocked isocyanate at the end or side chain for improving toughness.
 ポリウレタン樹脂の組成では、ポリエチレングリコール基、カルボキシル基、スルホン酸基、水酸基等の親水性成分の割合を高めることにより1-ブロモナフタレンの接触角を高くすることができ、脂肪族成分である脂肪族ポリエステルポリオール酸または脂肪族ポリカボネートポリオールの割合を高めることにより、接触角を低くすることができる。また、鎖延長剤に分岐構造を有するジオール等を使用することにより、接触角が低くすることができる。但し、親水性成分の割合を高くすると、ポリウレタン樹脂として塗布層の耐ブロッキング性または耐湿熱性を低下させる傾向のため、併用するポリエステル樹脂または架橋剤の組成、配合量に注意が必要である。 In the composition of the polyurethane resin, the contact angle of 1-bromonaphthalene can be increased by increasing the proportion of hydrophilic components such as polyethylene glycol groups, carboxyl groups, sulfonic acid groups, and hydroxyl groups. The contact angle can be lowered by increasing the proportion of polyester polyol acid or aliphatic polycarbonate polyol. Moreover, the contact angle can be lowered by using a diol or the like having a branched structure as the chain extender. However, if the proportion of the hydrophilic component is increased, the blocking resistance or moist heat resistance of the coating layer tends to decrease as a polyurethane resin, so it is necessary to pay attention to the composition and amount of the polyester resin or cross-linking agent used in combination.
(アクリル樹脂)
 本発明におけるアクリル樹脂とは、アクリル酸、メタクリル酸またはそれらのエステルから主に形成された共重合体である。アクリル酸またはメタクリル酸エステルとしては種々の化合物を使用することができる。例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、イソブチルアクリレート、n-アミルアクリレート、n-ヘキシルアクリレート、2-エチルヘキシルアクリレート、n-オクチルアクリレート、デシルアクリレート、ドデシルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、ステアリルアクリレート等のアクリル酸エステル類が、メタクリル酸エステルとして前述のアクリル酸をメタクリル酸に置き換えたものが挙げられる。
(acrylic resin)
The acrylic resin in the present invention is a copolymer mainly formed from acrylic acid, methacrylic acid or their esters. Various compounds can be used as acrylic acid or methacrylic acid esters. For example, methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, n-amyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, decyl acrylate, dodecyl acrylate, cyclohexyl acrylate, isobol Acrylic acid esters such as nil acrylate and stearyl acrylate, and methacrylic acid esters in which the above acrylic acid is replaced with methacrylic acid can be mentioned.
 前述のポリウレタン樹脂と同様に、作業環境の観点からは溶剤に水を主に使用することが好ましい。溶剤として主に水を使用する場合には、塗布層の耐水性の点から水分散体であることが好ましい。アクリル樹脂を水分散するには、先述と同様に、親水性の界面活性剤を使用する方法と樹脂中に親水性基を導入する方法が存在する。 As with the polyurethane resin described above, it is preferable to mainly use water as the solvent from the viewpoint of the working environment. When water is mainly used as the solvent, an aqueous dispersion is preferred from the viewpoint of the water resistance of the coating layer. In order to disperse the acrylic resin in water, as described above, there are a method of using a hydrophilic surfactant and a method of introducing a hydrophilic group into the resin.
 また、アクリル樹脂中に親水性を導入する場合は、親水性基として、ポリエチレングリコール等のポリオキシアルキル基、水酸基、カルボキシル基、スルホン酸、ホスホン酸、ホスフィン酸基等の親水性基が使用可能である。これらの親水性基としては、ポリエチレングリコール基、カルボキシル基を使用することが好ましい。 In addition, when introducing hydrophilicity into acrylic resin, hydrophilic groups such as polyoxyalkyl groups such as polyethylene glycol, hydroxyl groups, carboxyl groups, sulfonic acid, phosphonic acid, and phosphinic acid groups can be used as hydrophilic groups. is. A polyethylene glycol group and a carboxyl group are preferably used as these hydrophilic groups.
 また、本発明の効果を阻害しない範囲であれば、水酸基、エーテル基、スルホン酸基等を導入したアクリル酸エステルまたはメタクリル酸エステル、アクリル酸またはメタクリル酸アミド、アクリロニトリルまたはメタクリロニトリル等のニトリル類、スチレン、α-メチルスチレン等のスチレン類、酢酸ビニル、プロピオン酸ビニル等のビニル類、酢酸アリル、プロピオン酸アリル等のアリル類が挙げられる。特に、アクリル酸またはメタクリル酸アミド、アクリロニトリルまたはメタクリロニトリル等のニトリル類の使用は、樹脂への親水性付与の観点から有用である。 Nitriles such as acrylic acid esters or methacrylic acid esters, acrylic acid or methacrylic acid amides, acrylonitrile or methacrylonitrile into which a hydroxyl group, an ether group, a sulfonic acid group, etc. are introduced, as long as they do not impair the effects of the present invention. , styrene and α-methylstyrene; vinyls such as vinyl acetate and vinyl propionate; and allyls such as allyl acetate and allyl propionate. In particular, use of nitriles such as acrylic acid or methacrylic acid amide, acrylonitrile or methacrylonitrile is useful from the viewpoint of imparting hydrophilicity to the resin.
 本発明のカルボキシル基を有するアクリル樹脂は、酸価として10~60mgKOH/gの範囲であることが好ましく、酸価が15~50mgKOH/gの範囲であることがより好ましい。酸価が10mgKOH/g以上であると、本発明の効果である塗膜欠点または塗膜むらの発生が抑制される点から好ましく、酸価が60mgKOH/g以下であると、耐湿熱性の点から好ましい。 The acrylic resin having a carboxyl group of the present invention preferably has an acid value in the range of 10 to 60 mgKOH/g, more preferably in the range of 15 to 50 mgKOH/g. When the acid value is 10 mgKOH/g or more, it is preferable from the viewpoint of suppressing the occurrence of coating film defects or coating film unevenness, which is the effect of the present invention. preferable.
 アクリル樹脂のカルボキシル基はアクリル酸またはメタクリル酸の使用することにより、付与できるが、マレイン酸、イタコン酸等の不飽和カルボン酸も同様に用いることができる。 The carboxyl group of the acrylic resin can be imparted by using acrylic acid or methacrylic acid, but unsaturated carboxylic acids such as maleic acid and itaconic acid can also be used.
 アクリル樹脂のカルボキシル基も前述と同様にアミン化合物により塩を形成していることが好ましい。カルボキシル基が塩形成することにより、アクリル樹脂としての親水性が良好であり、水分散体の安定性が高まるため好ましい。 It is preferable that the carboxyl group of the acrylic resin also form a salt with an amine compound as described above. The salt formation of the carboxyl group is preferable because the hydrophilicity as the acrylic resin is good and the stability of the aqueous dispersion is enhanced.
 アクリル樹脂の組成では、ポリエチレングリコール基、カルボキシル基、スルホン酸基、水酸基、アミド、ニトリル等の親水性成分の割合を高めることにより1-ブロモナフタレンの接触角を高くすることができる。但し、親水性成分の割合を高くすると、アクリル樹脂として塗布層の耐ブロッキング性または耐湿熱性を低下させる傾向のため、併用するポリエステル樹脂または架橋剤の組成、配合量に注意が必要である。 In the composition of the acrylic resin, the contact angle of 1-bromonaphthalene can be increased by increasing the proportion of hydrophilic components such as polyethylene glycol groups, carboxyl groups, sulfonic acid groups, hydroxyl groups, amides, and nitriles. However, if the proportion of the hydrophilic component is increased, the acrylic resin tends to lower the blocking resistance or moist heat resistance of the coating layer, so it is necessary to pay attention to the composition and amount of the polyester resin or cross-linking agent used in combination.
 本発明における塗布層には前述のポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂以外に他の樹脂を併用してもよい。他の樹脂としては、前述以外のカルボキシル基を有しないポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、または酢酸ビニル、ポリビニルアルコール、ヒドロキシセルロース等が挙げられる。 In addition to the polyester resin, polyurethane resin, and acrylic resin described above, other resins may be used in combination for the coating layer in the present invention. Other resins include polyester resins, polyurethane resins, acrylic resins, vinyl acetate, polyvinyl alcohol, hydroxycellulose, etc. that do not have a carboxyl group other than those mentioned above.
(溶剤)
 本発明における塗材用の溶剤として下記の様なものが使用可能である。
 例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、tert-ブタノール、n-アミルアルコール、イソアミルアルコール、sec-アミルアルコール、tert-アミルアルコール、1-エチル-1-プロパノール、2-メチル-1-ブタノール、n-ヘキサノール、シクロヘキサノールなどのアルコール類;メチルエチルケトン、メチルイソブチルケトン、エチルブチルケトン、シクロヘキサノン、イソホロンなどのケトン類;テトラヒドロフラン、ジオキサンなどのエーテル類;酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸-n-ブチル、酢酸イソブチル、酢酸-sec-ブチル、酢酸-3-メトキシブチル、プロピオン酸メチル、プロピオン酸エチル、炭酸ジエチル、炭酸ジメチルなどのエステル類;エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールエチルエーテルアセテート、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールメチルエーテルアセテートなどのグリコール誘導体;トルエン、キシレンなどの芳香族炭化水素類、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、1,2-ジオキサン、1,3-ジオキサン、1,4-ジオキサン、1,4-ジオキセン、アニソールなどのエーテル類、さらには、3-メトキシ-3-メチルブタノール、3-メトキシブタノール、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、ジアセトンアルコール、アセト酢酸エチル、シクロヘキサンが挙げられ、必要に応じて、これらの有機溶剤を混合して用いてもよい。
 本発明においては、ケトン類、エステル類、グリコール誘導体の使用が特に好ましい。
(solvent)
As the solvent for the coating material in the present invention, the following can be used.
For example, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol, n-amyl alcohol, isoamyl alcohol, sec-amyl alcohol, tert-amyl alcohol, 1-ethyl-1 -Alcohols such as propanol, 2-methyl-1-butanol, n-hexanol and cyclohexanol; Ketones such as methyl ethyl ketone, methyl isobutyl ketone, ethyl butyl ketone, cyclohexanone and isophorone; Ethers such as tetrahydrofuran and dioxane; Ethyl acetate , esters such as n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, sec-butyl acetate, 3-methoxybutyl acetate, methyl propionate, ethyl propionate, diethyl carbonate, dimethyl carbonate; Ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol ethyl ether acetate, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol ethyl ether acetate , propylene glycol, propylene glycol monomethyl ether, propylene glycol monobutyl ether, glycol derivatives such as propylene glycol methyl ether acetate; toluene, aromatic hydrocarbons such as xylene, tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,2- Ethers such as dioxane, 1,3-dioxane, 1,4-dioxane, 1,4-dioxene, anisole, and 3-methoxy-3-methylbutanol, 3-methoxybutanol, acetonitrile, dimethylformamide, dimethylacetamide , N-methylpyrrolidone, diacetone alcohol, ethyl acetoacetate, and cyclohexane, and if necessary, these organic solvents may be mixed and used.
In the present invention, the use of ketones, esters and glycol derivatives is particularly preferred.
(架橋剤)
 本発明においては、塗布層には前述の樹脂に架橋剤を併用することが望ましい。架橋剤を併用することにより、塗布層の接触角を高めることが可能となる。また、架橋剤中に先述の親水性成分を含有させることで、さらに接触角を高めることが可能である。架橋剤の種類としては特に制限はなく、イソシアネート系、オキサゾリン系、カルボジイミド系、エポキシ系、メラミン系等が使用可能である。
(crosslinking agent)
In the present invention, it is desirable to use a cross-linking agent in combination with the aforementioned resin in the coating layer. By using a cross-linking agent together, it is possible to increase the contact angle of the coating layer. In addition, the contact angle can be further increased by incorporating the aforementioned hydrophilic component into the cross-linking agent. The type of cross-linking agent is not particularly limited, and isocyanate-based, oxazoline-based, carbodiimide-based, epoxy-based, melamine-based, and the like can be used.
 架橋剤の使用量は前述の樹脂と架橋剤の合計量に対して、50質量%未満が好ましい。
架橋剤には本発明における接触角の数値を高める効果があるため、架橋剤が50質量%未満であると、接触角の数値が本発明における好ましい範囲に調整が容易となり密着性等の観点で好ましい。架橋剤は45質量%以下であることがより好ましく、40質量%以下であることが特に好ましい。
The amount of the cross-linking agent used is preferably less than 50% by mass based on the total amount of the resin and the cross-linking agent.
Since the cross-linking agent has the effect of increasing the numerical value of the contact angle in the present invention, if the amount of the cross-linking agent is less than 50% by mass, the numerical value of the contact angle can easily be adjusted to the preferred range in the present invention, and from the viewpoint of adhesion etc. preferable. The content of the cross-linking agent is more preferably 45% by mass or less, particularly preferably 40% by mass or less.
(添加剤)
 本発明における塗布層中には、本発明の効果を阻害しない範囲において公知の添加剤、例えば界面活性剤、酸化防止剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、有機または無機の易滑剤、顔料、染料、有機または無機の粒子、帯電防止剤等を添加しても良い。
(Additive)
Known additives, such as surfactants, antioxidants, heat stabilizers, weather stabilizers, ultraviolet absorbers, organic or inorganic lubricants, may be added to the coating layer in the present invention as long as they do not impair the effects of the present invention. , pigments, dyes, organic or inorganic particles, antistatic agents and the like may be added.
 本発明においては、塗布層の耐ブロッキング性をより向上させるために、塗布層に粒子を添加することも好ましい態様である。本発明において塗布層中に含有させる粒子としては、例えば、酸化チタン、硫酸バリウム、炭酸カルシウム、硫酸カルシウム、シリカ、アルミナ、タルク、カオリン、クレーなど或いはこれらの混合物であり、更に、他の一般的無機粒子、例えばリン酸カルシウム、雲母、ヘクトライト、ジルコニア、酸化タングステン、フッ化リチウム、フッ化カルシウムその他と併用、等の無機粒子や、スチレン系、アクリル系、メラミン系、ベンゾグアナミン系、シリコーン系等の有機ポリマー系粒子等が挙げられる。 In the present invention, it is also a preferred embodiment to add particles to the coating layer in order to further improve the blocking resistance of the coating layer. Particles to be contained in the coating layer in the present invention include, for example, titanium oxide, barium sulfate, calcium carbonate, calcium sulfate, silica, alumina, talc, kaolin, clay, and mixtures thereof. Inorganic particles such as calcium phosphate, mica, hectorite, zirconia, tungsten oxide, lithium fluoride, calcium fluoride, etc., and organic particles such as styrene, acrylic, melamine, benzoguanamine, and silicone Examples include polymer-based particles.
 また、本発明においては使用する粒子の凝集防止の点から、使用する粒子を前もってポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂等のカルボキシル基等の極性基を有する樹脂で処理しておくことも可能である。使用する樹脂は特に制限はないが、特に本発明においては、ポリウレタン樹脂、アクリル樹脂等で処理しておくことが好ましい。この処理により、これらの樹脂がポリエステル樹脂を主体とする塗布層内に効率よく分布するためか、これらの樹脂の使用量が上述の記載より少量で本発明における効果の達成を容易にできる。処理方法としては特に制限はなく、有機溶剤下で粒子と樹脂を予め混合したのち水分散する方法、水分散粒子に樹脂を混合する方法、粒子とモノマーを予め混合したのち、重合する方法等が挙げられる Further, in the present invention, in order to prevent aggregation of the particles to be used, it is possible to treat the particles to be used in advance with a resin having a polar group such as a carboxyl group such as a polyester resin, a polyurethane resin, or an acrylic resin. . The resin to be used is not particularly limited, but in the present invention, it is preferable to treat it with polyurethane resin, acrylic resin, or the like. Due to this treatment, these resins are efficiently distributed in the coating layer mainly composed of polyester resin, and the effect of the present invention can be easily achieved with a smaller amount of these resins than described above. The treatment method is not particularly limited, and includes a method of previously mixing particles and a resin in an organic solvent and then dispersing the mixture in water, a method of mixing resin with water-dispersed particles, and a method of previously mixing particles and a monomer and then polymerizing the mixture. mentioned
 塗布層中の粒子の平均粒径(走査型電子顕微鏡(SEM)による個数基準の平均粒径。以下同じ)は、0.04~2.0μmが好ましく、さらに好ましくは0.1~1.0μmである。不活性粒子の平均粒径が0.04μm以上であると、フィルム表面への凹凸の形成が容易となるため、フィルムの滑り性や巻き取り性などのハンドリング性が向上し、貼り合せの際の加工性が良好であって好ましい。一方、不活性粒子の平均粒径が2.0μm以下であると、粒子の脱落が生じ難く好ましい。塗布層中の粒子濃度は、固形成分中1~20質量%であることが好ましい。 The average particle size of the particles in the coating layer (the number-based average particle size as measured by a scanning electron microscope (SEM); the same shall apply hereinafter) is preferably 0.04 to 2.0 μm, more preferably 0.1 to 1.0 μm. is. When the average particle size of the inert particles is 0.04 μm or more, it becomes easy to form unevenness on the film surface, so that the handling properties such as the slipperiness and windability of the film are improved, and the film can be easily laminated. It is preferable because of its good workability. On the other hand, when the average particle size of the inert particles is 2.0 μm or less, the particles are less likely to fall off, which is preferable. The particle concentration in the coating layer is preferably 1 to 20 mass % of the solid component.
 粒子の平均粒径の測定方法は、積層ポリエステルフィルムの断面の粒子を走査型電子顕微鏡で観察を行い、粒子30個を観察し、その平均値をもって平均粒径とする方法で行った。 The average particle diameter of the particles was measured by observing the particles in the cross section of the laminated polyester film with a scanning electron microscope, observing 30 particles, and taking the average value as the average particle diameter.
 本発明の目的を満たすものであれば、粒子の形状は特に限定されるものでなく、球状粒子、不定形の球状でない粒子を使用できる。不定形の粒子の粒径は円相当径として計算することができる。円相当径は、観察された粒子の面積をπで除し、平方根を算出し2倍した値である。 The shape of the particles is not particularly limited as long as it satisfies the object of the present invention, and spherical particles and irregularly shaped non-spherical particles can be used. The particle diameter of amorphous particles can be calculated as the equivalent circle diameter. The circle-equivalent diameter is a value obtained by dividing the observed particle area by π, calculating the square root, and doubling the result.
(積層ポリエステルフィルムの製造)
 本発明の積層ポリエステルフィルムの製造方法について、ポリエチレンテレフタレート(以下、PETと略記する場合がある)フィルム基材を用いた例を挙げて説明するが、当然これに限定されるものではない。
(Manufacture of laminated polyester film)
The method for producing the laminated polyester film of the present invention will be described with an example using a polyethylene terephthalate (hereinafter sometimes abbreviated as PET) film base material, but it is of course not limited to this.
 PET樹脂を十分に真空乾燥した後、押出し機に供給し、Tダイから約280℃の溶融PET樹脂を回転冷却ロールにシート状に溶融押出しし、静電印加法により冷却固化して未延伸PETシートを得る。前記未延伸PETシートは、単層構成でもよいし、共押出し法による複層構成であってもよい。 After sufficiently vacuum-drying the PET resin, it is supplied to an extruder, and the melted PET resin at about 280° C. is melt-extruded into a sheet from a T-die onto a rotating cooling roll, and cooled and solidified by an electrostatic application method to form unstretched PET. get a sheet. The unstretched PET sheet may have a single-layer structure or a multi-layer structure obtained by a coextrusion method.
 得られた未延伸PETシートを一軸延伸、もしくは二軸延伸を施すことで結晶配向化させる。例えば二軸延伸の場合は、80~120℃に加熱したロールで長手方向に2.5~5.0倍に延伸して、一軸延伸PETフィルムを得たのち、フィルムの端部をクリップで把持して、80~180℃に加熱された熱風ゾーンに導き、幅方向に2.5~5.0倍に延伸する。また、一軸延伸の場合は、テンター内で2.5~5.0倍に延伸する。延伸後引き続き、熱処理ゾーンに導き、熱処理を行ない、結晶配向を完了させる。  The obtained unstretched PET sheet is uniaxially stretched or biaxially stretched for crystal orientation. For example, in the case of biaxial stretching, after stretching 2.5 to 5.0 times in the longitudinal direction with a roll heated to 80 to 120 ° C. to obtain a uniaxially stretched PET film, the end of the film is held with a clip. Then, it is led to a hot air zone heated to 80 to 180° C. and stretched 2.5 to 5.0 times in the width direction. In the case of uniaxial stretching, the film is stretched 2.5 to 5.0 times in a tenter. After stretching, the film is led to a heat treatment zone and heat treated to complete the crystal orientation. 
 熱処理ゾーンの温度の下限は好ましくは170℃であり、より好ましくは180℃である。熱処理ゾーンの温度が170℃以上であると硬化が十分となり、高湿度環境下での耐ブロッキング性が良好となり好ましく、保管環境等の調整が容易となり好ましい。一方、熱処理ゾーンの温度の上限は好ましくは260℃であり、より好ましくは250℃である。熱処理ゾーンの温度が250℃以下であると、フィルムの物性が低下するおそれがなく好ましい。 The lower limit of the temperature of the heat treatment zone is preferably 170°C, more preferably 180°C. When the temperature of the heat treatment zone is 170° C. or higher, the curing is sufficient, the anti-blocking property in a high-humidity environment is favorable, and it is preferable because the storage environment and the like can be easily adjusted. On the other hand, the upper temperature limit of the heat treatment zone is preferably 260°C, more preferably 250°C. When the temperature of the heat treatment zone is 250° C. or less, it is preferable because the physical properties of the film do not deteriorate.
 塗布層はフィルムの製造後、もしくは製造工程において設けることができる。特に、生産性の点からフィルム製造工程の任意の段階、すなわち未延伸あるいは一軸延伸後のPETフィルムの少なくとも片面に、塗布液を塗布し、塗布層を形成することが好ましい。 The coating layer can be provided after the film is manufactured or during the manufacturing process. In particular, from the viewpoint of productivity, it is preferable to form a coating layer by applying a coating liquid to at least one side of an unstretched or uniaxially stretched PET film at any stage of the film production process.
 この塗布液をPETフィルムに塗布するための方法は、公知の任意の方法を用いることができる。例えば、リバースロールコート法、グラビアコート法、キスコート法、ダイコーター法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーコート法、パイプドクター法、含浸コート法、カーテンコート法、などが挙げられる。これらの方法を単独で、あるいは組み合わせて塗工することができる。 Any known method can be used to apply this coating liquid to the PET film. For example, reverse roll coating method, gravure coating method, kiss coating method, die coater method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, impregnation coating method, curtain coating method, etc. be done. These methods can be applied singly or in combination.
 本発明において塗布層の厚みは、0.001~2.00μmの範囲で適宜設定することができるが、加工性と接着性とを両立させるには0.01~1.00μmの範囲が好ましく、より好ましくは0.02~0.80μm、さらに好ましくは0.05~0.50μmである。塗布層の厚みが0.001μm以上であると、接着性が良好であり好ましい。塗布層の厚みが2.00μm以下であると、ブロッキングを生じ難く好ましい。 In the present invention, the thickness of the coating layer can be appropriately set in the range of 0.001 to 2.00 μm, but the range of 0.01 to 1.00 μm is preferable in order to achieve both workability and adhesiveness. It is more preferably 0.02 to 0.80 μm, still more preferably 0.05 to 0.50 μm. It is preferable that the thickness of the coating layer is 0.001 μm or more because the adhesiveness is good. When the thickness of the coating layer is 2.00 μm or less, blocking is less likely to occur, which is preferable.
 本発明の積層ポリエステルフィルムのヘイズの上限は好ましくは2.5%であり、より好ましくは2.0%であり、さらに好ましくは1.5%であり、特に好ましくは1.2%である。ヘイズが2.5%以下であると、透明性の点で好ましく、透明性が求められる光学フィルムへも好適に用いることができる。ヘイズは小さいほど良いが、0.1%以上であっても好ましく、0.3%以上であっても好ましい。 The upper limit of haze of the laminated polyester film of the present invention is preferably 2.5%, more preferably 2.0%, even more preferably 1.5%, and particularly preferably 1.2%. A haze of 2.5% or less is preferable in terms of transparency, and can be suitably used for optical films that require transparency. The smaller the haze, the better, but it is preferably 0.1% or more, and preferably 0.3% or more.
 次に、実施例および比較例を用いて本発明を詳細に説明するが、本発明は以下の実施例に限定されるものではない。まず、以下に本発明で用いた評価方法について説明する。 Next, the present invention will be described in detail using examples and comparative examples, but the present invention is not limited to the following examples. First, the evaluation method used in the present invention will be described below.
(1)ヘイズ
 得られた積層ポリエステルフィルムのヘイズはJIS K 7136:2000に準拠し、濁度計(日本電色製、NDH5000)を用いて測定した。
(1) Haze The haze of the obtained laminated polyester film was measured according to JIS K 7136:2000 using a turbidity meter (NDH5000 manufactured by Nippon Denshoku).
(2)接触角
 25℃、50%RHの条件下で接触角計(協和界面科学株式会社製: 全自動接触角計(DM-701)を用いてフィルムの樹脂層面に、22Gのシリンジ針を用いて1-ブロモナフタレンの液滴を作製し、その接触角を自動測定した。接触角は、液を樹脂層面に滴下後、1000ms(1秒)、5000ms(5秒)後の接触角を採用した。接触角は、場所を変えて計7点測定し、これらの測定値中の最大値と最小値を除く計5点の平均値とした。また、本測定は下記ソフトおよび下記設定で実施した
ソフト 界面測定/解析総合システムFAMAS(Ver3.7.2)
液滴安定待ち:500ms
着滴認識ライン:50dot
液量制御:0.9μL
手法:液滴法、方法:θ/2法
(2) Contact angle Under conditions of 25 ° C. and 50% RH, a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd.: fully automatic contact angle meter (DM-701) is used to apply a 22G syringe needle to the resin layer surface of the film. A droplet of 1-bromonaphthalene was prepared using this method, and the contact angle was automatically measured.The contact angle adopts the contact angle after 1000 ms (1 second) and 5000 ms (5 seconds) after dropping the liquid on the resin layer surface. The contact angle was measured at a total of 7 points at different locations, and the average value of the 5 points excluding the maximum and minimum values of these measurements was taken.This measurement was performed using the following software and settings. Interface measurement/analysis integrated system FAMAS (Ver3.7.2)
Droplet stabilization wait: 500 ms
Drip recognition line: 50 dots
Liquid volume control: 0.9 μL
Method: droplet method, method: θ/2 method
(3)酸価
 樹脂及び架橋剤の酸価はJIS K-1557-5記載の滴定滴定法により測定した。
但し、アミン等で中和処理されたカルボキシル基の場合は、高温処理によりアミン等を除去するか、予め塩酸等で処理してアミン等を遊離、除去させてから測定した。測定する樹脂が溶剤であるイソプロパノールへの溶解性が悪い場合には、代わりにN-メチルピロリドンを使用した。上記等のいずれの処理でも、対比用の測定は十分に実施した。
(3) Acid value The acid value of the resin and cross-linking agent was measured by the titration method described in JIS K-1557-5.
However, in the case of a carboxyl group neutralized with an amine or the like, the amine or the like was removed by high-temperature treatment, or the amine or the like was previously treated with hydrochloric acid or the like to liberate and remove the amine or the like before measurement. If the resin to be measured had poor solubility in the solvent isopropanol, N-methylpyrrolidone was used instead. In any of the above treatments, comparison measurements were sufficiently carried out.
(4)耐ブロッキング性
 2枚のフィルム試料を塗布層面同士が対向するように重ね合わせ、98kPaの荷重を掛け、これを50℃の雰囲気下で24時間密着させ、放置した。その後、フィルムを剥離し、その剥離状態を下記の基準で判定した。
   ◎:塗布層の転移がなく軽く剥離できる。
   ○:塗布層の転移がないが、剥離時に少し抵抗がある。
   △:塗布層は維持されているが、部分的に塗布層の表層が相手面に転移している。
   ×:2枚のフィルムが固着し剥離できないもの、あるいは剥離できてもフィルム基材が劈開している。
基準として〇以上を合格とした。
(4) Blocking resistance Two film samples were superimposed so that the coated layer surfaces face each other, a load of 98 kPa was applied, and the two were brought into close contact with each other in an atmosphere of 50°C for 24 hours and left to stand. After that, the film was peeled off, and the peeled state was evaluated according to the following criteria.
⊚: The coating layer is not transferred and can be peeled off easily.
◯: There is no transfer of the coating layer, but there is some resistance during peeling.
Δ: The coating layer is maintained, but the surface layer of the coating layer is partially transferred to the other surface.
x: The two films adhered to each other and could not be separated, or even if they could be separated, the film substrate was cleaved.
As a standard, 0 or more was regarded as a pass.
(5)ハードコート層との密着性
 積層ポリエステルフィルムの塗布層上に、下記に記載したハードコート塗剤(HC-ア)を#5ワイヤーバーを用いて塗布し、80℃で1分間乾燥した。次いで、塗布したフィルムに高圧水銀灯を用いて100mJ/cmの紫外線を照射し、ハードコートフィルム(ア)を得た。次いで、隙間間隔2mmのカッターガイドを用いて、ハードコート層を貫通してフィルム基材に達する100個のマス目状の切り傷をハードコート層面につける。次いで、セロハン粘着テープ(ニチバン製、405番;24mm幅)をマス目状の切り傷面に貼り付け、しっかり付着させる。その後、垂直にセロハン粘着テープをハードコートフィルム(ア)のハードコート層面から引き剥がした。粘着テープ付着剥離操作を同一ヵ所で計5回行った後、ハードコートフィルム(ア)のハードコート層面から剥がれたマス目の数を目視で数え、下記の式からハードコート層とフィルム基材との密着性を求める。なお、マス目の中で部分的に剥離しているものも剥がれたマス目として数えて、下記式の様にハードコートフィルム(ア)の密着性(ア)を求めた。
 密着性(A)(%)=100-(剥がれたマス目の数)
  密着性を下記の基準で判定した。
  ◎:100%、○:96~99%、△:80~95%、×:80%未満。
  基準として〇以上を合格とした。
(5) Adhesion to hard coat layer On the coated layer of the laminated polyester film, the hard coat coating agent (HC-A) described below was applied using a #5 wire bar and dried at 80°C for 1 minute. . Then, the coated film was irradiated with ultraviolet rays of 100 mJ/cm 2 using a high-pressure mercury lamp to obtain a hard coat film (a). Next, using a cutter guide with a clearance of 2 mm, 100 grid-like cuts that penetrate the hard coat layer and reach the film substrate are made on the surface of the hard coat layer. Next, a cellophane adhesive tape (No. 405, 24 mm width, manufactured by Nichiban Co., Ltd.) is attached to the square-shaped cut surface and adhered firmly. Thereafter, the adhesive cellophane tape was vertically peeled off from the hard coat layer surface of the hard coat film (a). After performing the adhesive tape adhesion and peeling operation at the same place a total of 5 times, the number of squares peeled from the hard coat layer surface of the hard coat film (A) was visually counted, and the hard coat layer and the film substrate were separated from the following formula. Requires close contact. Partially peeled squares among the squares were also counted as peeled squares, and the adhesion (a) of the hard coat film (a) was determined according to the following formula.
Adhesion (A) (%) = 100 - (number of peeled squares)
Adhesion was judged according to the following criteria.
◎: 100%, ○: 96 to 99%, △: 80 to 95%, ×: less than 80%.
As a standard, 0 or more was regarded as a pass.
 ハードコート塗剤(HC-イ)、(HC-ウ)及び(HC-エ)に対しても、ハードコート塗剤(HC-ア)と同様にして、各ハードコートフィルム(イ)~(エ)を作製した。各ハードコートフィルム(イ)~(エ)の密着性はハードコートフィルム(ア)と同様に評価して各密着性(イ)~(エ)とした。 For the hard coat coating agents (HC-a), (HC-c) and (HC-d), each hard coat film (a) to (E) ) was made. The adhesion of each of the hard coat films (a) to (d) was evaluated in the same manner as the hard coat film (a) and designated as each of the adhesions (a) to (d).
(ハードコート塗剤(HC)の調製)              
ジペンタエリスリトールポリアクリレート( 新中村化学(株)製A - 9950)67質量部、トリメチロールプロパントリアクリレート( 新中村化学(株)製A - TMPT)15質量部、
ポリプロピレングリコール#400ジアクリレート( 新中村化学(株)製APGー400)15質量部と光重合開始剤(IGM Resins B.V.社製 Omnirad184)3質量部からなるハードコート剤をトルエン/メチルエチルケトン=50/50(質量比)(溶剤ア)に溶解して、固形分濃度50質量%のハードコート塗剤(HC-ア)を調製した。
溶剤の種類を変更した以外は、上記と同様にしてハードコート塗剤(HC-イ)からハードコート塗剤(HC-エ)を調製した。
溶剤ア:トルエン/メチルエチルケトン=50/50(質量比)
溶剤イ:トルエン/酢酸エチル=25/75(質量比)
溶剤ウ:メチルエチルケトン=100(質量比)
溶剤エ:プロピレングリコールモノメチルエーテル/メチルエチルケトン=40/60(質量比)
(Preparation of hard coating agent (HC))
Dipentaerythritol polyacrylate (A-9950, manufactured by Shin-Nakamura Chemical Co., Ltd.) 67 parts by mass, trimethylolpropane triacrylate (A-TMPT, manufactured by Shin-Nakamura Chemical Co., Ltd.) 15 parts by mass,
Polypropylene glycol #400 diacrylate (APG-400 manufactured by Shin-Nakamura Chemical Co., Ltd.) 15 parts by mass and a photopolymerization initiator (Omnirad 184 manufactured by IGM Resins B.V.) 3 parts by mass A hard coating agent was mixed with toluene/methyl ethyl ketone = It was dissolved in 50/50 (mass ratio) (solvent a) to prepare a hard coating agent (HC-a) having a solid content concentration of 50% by mass.
A hard coating agent (HC-d) was prepared from the hard coating agent (HC-a) in the same manner as described above, except that the type of solvent was changed.
Solvent a: toluene/methyl ethyl ketone = 50/50 (mass ratio)
Solvent A: toluene/ethyl acetate = 25/75 (mass ratio)
Solvent c: methyl ethyl ketone = 100 (mass ratio)
Solvent D: propylene glycol monomethyl ether/methyl ethyl ketone = 40/60 (mass ratio)
(6)耐湿熱性
 上記(5)と同様に作製したハードコートフィルム(ア)及び(イ)を80℃、80%RHの環境下で塗布面を垂直にし、かつ塗布面に他のフィルム等の接触がない状態で500時間放置した。処理後、23℃、65%RHの環境下に、塗布面に他のフィルム等の接触がない状態で10分間放置した。時間経過直後に塗布面の密着性を先述と同様に評価して、耐湿熱性(ア)及び(イ)とした。
(6) Humidity and heat resistance The hard coat films (a) and (b) prepared in the same manner as in (5) above are placed in an environment of 80 ° C. and 80% RH with the coating surface vertical, and another film etc. on the coating surface. It was left untouched for 500 hours. After the treatment, the coated surface was allowed to stand for 10 minutes in an environment of 23° C. and 65% RH without contact with other film or the like. Immediately after the passage of time, the adhesiveness of the coated surface was evaluated in the same manner as described above, and the wet heat resistance (a) and (b) were obtained.
(共重合ポリエステル樹脂PES-1の重合)
 攪拌機、温度計、および部分還流式冷却器を具備するステンレススチール製オートクレーブに、ジメチルテレフタレート471質量部、ジメチルイソフタレート471質量部、ジメチル-5-ナトリウムスルホイソフタレート44.4質量部、エチレングリコール444質量部、ネオペンチルグリコール882質量部およびテトラ-n-ブチルチタネート0.4質量部を仕込み、160℃から220℃の温度で4時間かけてエステル交換反応を行なった。次いで255℃まで昇温し、反応系を徐々に減圧した後、30Paの減圧下で1時間30分反応させ、共重合ポリエステル樹脂(PES-1)を得た。得られた共重合ポリエステル樹脂(PES-1)は、淡黄色透明の固体であり、樹脂の還元粘度は0.60dL/g、ガラス転移点(Tg)は61℃であり、酸価は0.8mgKOH/gであった。共重合ポリエステル樹脂(PES-1)の組成はテレフタル酸/イソフタル酸/5-ナトリウムスルホイソフタル酸//エチレングリコール/ネオペンチルグリコール=48.5/48.5/3//48/52(モル比)であった。
(Polymerization of Copolyester Resin PES-1)
471 parts by weight dimethyl terephthalate, 471 parts by weight dimethyl isophthalate, 44.4 parts by weight dimethyl-5-sodiumsulfoisophthalate, 444 parts by weight ethylene glycol were added to a stainless steel autoclave equipped with an agitator, thermometer, and partial reflux condenser. Parts by mass, 882 parts by mass of neopentyl glycol and 0.4 parts by mass of tetra-n-butyl titanate were charged, and transesterification was carried out at a temperature of 160° C. to 220° C. over 4 hours. Then, the temperature was raised to 255° C., the pressure of the reaction system was gradually reduced, and the reaction was allowed to proceed under a reduced pressure of 30 Pa for 1 hour and 30 minutes to obtain a copolymerized polyester resin (PES-1). The obtained copolymer polyester resin (PES-1) was a pale yellow transparent solid, and had a reduced viscosity of 0.60 dL/g, a glass transition point (Tg) of 61° C., and an acid value of 0.60 dL/g. 8 mg KOH/g. The composition of the copolymer polyester resin (PES-1) is terephthalic acid/isophthalic acid/5-sodium sulfoisophthalic acid//ethylene glycol/neopentyl glycol = 48.5/48.5/3//48/52 (molar ratio )Met.
 共重合ポリエステル樹脂PES-1と同様にして、下記の組成の共重合ポリエステルPES-2からPES―5を得た。
共重合ポリエステル樹脂PES-2:テレフタル酸/5-ナトリウムスルホイソフタル酸//エチレングリコール/ジエチレングリコール/ビスフェノールAのEO付加物(n=2)=97/3//70/5/25(モル比)。還元粘度:0.49dL/g、ガラス転移点(Tg):69℃、酸価:1.0mgKOH/gであった。
共重合ポリエステル樹脂PES-3:テレフタル酸/セバシン酸/5-ナトリウムスルホイソフタル酸//エチレングリコール/ジエチレングリコール/ビスフェノールAのEO付加物(n=2)=60/38.5/1.5//30/55/15(モル比)。還元粘度:0.55dL/g、ガラス転移点(Tg):44℃、酸価は0.8mgKOH/gであった。
共重合ポリエステル樹脂PES-4:2,6-ナフタレンジカルボン酸/テレフタル酸/セバシン酸/5-ナトリウムスルホイソフタル酸//エチレングリコール/ジエチレングリコール/1,6-ヘキサンジオール=70/9/15/6//45/5/50(モル比)。
還元粘度:0.53dL/g、ガラス転移点(Tg):37℃、酸価は0.6mgKOH/gであった。
共重合ポリエステル樹脂PES-5:テレフタル酸/イソフタル酸//エチレングリコール/1,4-ブタンジオール/ジエチレングリコール/ポリエチレングリコール(600)=85/15//57/40/2/1(モル比)、還元粘度:0.51dL/g、ガラス転移点(Tg):47℃、酸価は0.4mgKOH/gであった。
Copolyester PES-2 to PES-5 having the following compositions were obtained in the same manner as the copolymer polyester resin PES-1.
Copolyester resin PES-2: Terephthalic acid/5-sodium sulfoisophthalic acid//EO adduct of ethylene glycol/diethylene glycol/bisphenol A (n=2) = 97/3//70/5/25 (molar ratio) . Reduced viscosity: 0.49 dL/g, glass transition point (Tg): 69°C, acid value: 1.0 mgKOH/g.
Copolyester resin PES-3: EO adduct of terephthalic acid/sebacic acid/5-sodium sulfoisophthalic acid//ethylene glycol/diethylene glycol/bisphenol A (n=2)=60/38.5/1.5// 30/55/15 (molar ratio). Reduced viscosity: 0.55 dL/g, glass transition point (Tg): 44°C, acid value was 0.8 mgKOH/g.
Copolyester resin PES-4: 2,6-naphthalenedicarboxylic acid/terephthalic acid/sebacic acid/5-sodium sulfoisophthalic acid//ethylene glycol/diethylene glycol/1,6-hexanediol = 70/9/15/6/ /45/5/50 (molar ratio).
Reduced viscosity: 0.53 dL/g, glass transition point (Tg): 37°C, acid value was 0.6 mgKOH/g.
Copolyester resin PES-5: terephthalic acid/isophthalic acid//ethylene glycol/1,4-butanediol/diethylene glycol/polyethylene glycol (600) = 85/15//57/40/2/1 (molar ratio), Reduced viscosity: 0.51 dL/g, glass transition point (Tg): 47°C, acid value was 0.4 mgKOH/g.
(共重合ポリエステル樹脂PES-1の水分散体(PES-1WD)の調製)
 攪拌機、温度計と還流装置を備えた反応器に、共重合ポリエステル樹脂(PES-1)と、エチレングリコール-n-ブチルエーテルを同質量部入れ、110℃で加熱、攪拌し樹脂を溶解した。樹脂が完全に溶解した後、所定量の水をこのポリエステル溶液に攪拌しつつ徐々に添加し、添加終了後、液を攪拌しつつ室温まで冷却した。水を適量添加して、固形分30質量%の共重合ポリエステル樹脂PES-1の水分散体(PES-1WD)を調製した。
(Preparation of aqueous dispersion (PES-1WD) of copolymer polyester resin PES-1)
Copolyester resin (PES-1) and ethylene glycol-n-butyl ether were placed in equal parts by mass in a reactor equipped with a stirrer, thermometer and reflux device, heated at 110° C. and stirred to dissolve the resin. After the resin was completely dissolved, a predetermined amount of water was gradually added to the polyester solution while stirring, and after the addition was completed, the liquid was cooled to room temperature while stirring. An appropriate amount of water was added to prepare an aqueous dispersion (PES-1WD) of a copolyester resin PES-1 having a solid content of 30% by mass.
(共重合ポリエステル樹脂PES-2の水分散体(PES-2WD)の調製)
 攪拌機、温度計と減圧蒸留装置を備えた反応器に、共重合ポリエステル樹脂(PES-2)と、樹脂の3倍質量部のテトラヒドロフランを入れて溶解させた。樹脂の10%質量部のポリ(オキシエチレン)アルキルエーテル (アルキル基C12~15、エチレンオキシド付加モル数11~19モル)を添加した。得られた溶液を攪拌しつつ樹脂の3倍質量部の水を滴下して乳白色の分散体を得た。次いでこの分散体を2.5kPaの減圧下で蒸留して、テトラヒドロフランを留去し、液を攪拌しつつ室温まで冷却した。水を適量添加して、樹脂固形分30質量%の共重合ポリエステル樹脂PES-2の水分散体(PES-2WD)を調製した。
(Preparation of aqueous dispersion (PES-2WD) of copolymer polyester resin PES-2)
Copolyester resin (PES-2) and tetrahydrofuran in an amount three times the weight of the resin were placed in a reactor equipped with a stirrer, a thermometer and a vacuum distillation apparatus and dissolved. A poly(oxyethylene) alkyl ether (alkyl group C12-15, ethylene oxide addition mole number 11-19 mol) was added in an amount of 10% by mass of the resin. While the resulting solution was stirred, water was added dropwise in an amount three times the weight of the resin to obtain a milky white dispersion. This dispersion was then distilled under a reduced pressure of 2.5 kPa to remove tetrahydrofuran, and the liquid was cooled to room temperature while stirring. An appropriate amount of water was added to prepare an aqueous dispersion (PES-2WD) of a copolymer polyester resin PES-2 having a resin solid content of 30% by mass.
 共重合ポリエステル樹脂PES-3は共重合ポリエステル樹脂PES-2と同様にして水分散体(PES-3WD)を調製した。さらに、共重合ポリエステル樹脂PES-4及びPES-5は共重合ポリエステル樹脂PES-1と同様にして、水分散体(PES-4WD)及び水分散体(PES-5WD)を調製した For the copolymer polyester resin PES-3, an aqueous dispersion (PES-3WD) was prepared in the same manner as for the copolymer polyester resin PES-2. Furthermore, the copolymer polyester resins PES-4 and PES-5 were prepared into water dispersions (PES-4WD) and water dispersions (PES-5WD) in the same manner as the copolymer polyester resin PES-1.
(ポリウレタン樹脂PU-1の重合)
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、ジシクロヘキシルメタン4,4‘-ジイソシアナート58.0質量部、数平均分子量800のポリカーボネートジオール(1,6-ヘキサンジオールタイプ)90.8質量部、及び溶剤としてエチルメチルケトン244質量部を投入し、窒素雰囲気下、75℃において1時間撹拌した。次いで、この反応液に、数平均分子量800のポリエチレングリコールモノメチルエーテル44質量部とネオペンチルグリコール7.2質量部を加えて、さらに2時間攪拌して、反応液が所定のアミン当量に達したことを確認した。この反応液を室温以下に降温することにより、固形分45.0質量%のポリウレタン樹脂(PU-1溶液を得た。このポリウレタン樹脂(PU-1)溶液の固形分酸価は0.2mgKOH/gであった。
(Polymerization of polyurethane resin PU-1)
58.0 parts by mass of dicyclohexylmethane 4,4′-diisocyanate and a polycarbonate diol having a number average molecular weight of 800 were placed in a four-necked flask equipped with a stirrer, a Dimroth condenser, a nitrogen inlet tube, a silica gel drying tube, and a thermometer. 90.8 parts by mass of (1,6-hexanediol type) and 244 parts by mass of ethyl methyl ketone as a solvent were charged, and stirred at 75° C. for 1 hour under a nitrogen atmosphere. Next, 44 parts by mass of polyethylene glycol monomethyl ether having a number average molecular weight of 800 and 7.2 parts by mass of neopentyl glycol were added to the reaction solution, and the reaction solution was further stirred for 2 hours until the reaction solution reached a predetermined amine equivalent weight. It was confirmed. By cooling the reaction solution to room temperature or lower, a polyurethane resin (PU-1) solution having a solid content of 45.0% by mass was obtained. The solid content acid value of this polyurethane resin (PU-1) solution was 0.2 mg KOH/ was g.
(ポリウレタン樹脂PU-2の重合)
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、ジシクロヘキシルメタン4,4‘-ジイソシアナート54.06質量部、ジメチロールプロピオン酸20.0質量部、数平均分子量2000のポリカーボネートジオール(1,6-ヘキサンジオールタイプ)126.0質量部、及び溶剤としてエチルメチルケトン224質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。この反応液を室温以下に降温することにより、固形分45.0質量%のポリウレタン樹脂(PU-2)溶液を得た。このポリウレタン樹脂(PU-2)溶液の固形分酸価は41.8mgKOH/gであった。
(Polymerization of polyurethane resin PU-2)
54.06 parts by mass of dicyclohexylmethane 4,4'-diisocyanate and 20.0 parts of dimethylolpropionic acid were placed in a four-necked flask equipped with a stirrer, a Dimroth condenser, a nitrogen inlet tube, a silica gel drying tube, and a thermometer. Parts by mass, 126.0 parts by mass of a polycarbonate diol (1,6-hexanediol type) having a number average molecular weight of 2000, and 224 parts by mass of ethyl methyl ketone as a solvent are added, and stirred at 75° C. for 3 hours under a nitrogen atmosphere, It was confirmed that the reaction liquid reached the predetermined amine equivalent weight. By lowering the temperature of this reaction solution to room temperature or lower, a polyurethane resin (PU-2) solution having a solid content of 45.0% by mass was obtained. The solid content acid value of this polyurethane resin (PU-2) solution was 41.8 mgKOH/g.
(ポリウレタン樹脂PU-3~PU-6の重合)
 前述のポリウレタン樹脂(PU-2)の重合と同様にして下記の組成(質量比)及び酸価の固形分45.0質量%のポリウレタン樹脂(PU-3)からポリウレタン樹脂(PU-6)を重合した。
ポリウレタン樹脂(PU-3):
(シクロヘキサン-1,2-ジイルビスメチレン)ジイソシアナート/数平均分子量1000のポリカーボネートジオール(1,6-ヘキサンジオールタイプ)/ジメチロールプロピオン酸/1,6-ヘキサンジオール=26.0/64.8/6.2/3.0(質量比)
酸価:25.9mgKOH/g
ポリウレタン樹脂(PU-4):
ジシクロヘキシルメタン4,4‘-ジイソシアナート/数平均分子量2000のポリカーボネートジオール(1,6-ヘキサンジオール/1,5-ペンタンオールタイプ=50/50(モル比)タイプ)/ジメチロールプロピオン酸=20.5/73.5/6.0(質量比)
酸価:25.1mgKOH/g
ポリウレタン樹脂(PU-5):
ジシクロヘキシルメタン4,4‘-ジイソシアナート/数平均分子量2000のポリエステルジオール(テレフタル酸/イソフタル酸//エチレングリコール/ネオペンチルグリコール=50/50//50/50(モル比))/ジメチロールプロピオン酸/ネオペンチルグリコール=36.0/49.5/11.8/2.7(質量比)
酸価:49.4mgKOH/g
ポリウレタン樹脂(PU-6):
ジシクロヘキシルメタン4,4‘-ジイソシアナート/数平均分子量2000のポリエステルジオール(セバシン酸//3-メチル-1,5-ペンタンジオール=100//100(モル比))/ジメチロールプロピオン酸/ネオペンチルグリコール=36.0/49.5/11.8/2.7(質量比)、
酸価:49.4mgKOH/g
(Polymerization of polyurethane resins PU-3 to PU-6)
Polyurethane resin (PU-6) was prepared from polyurethane resin (PU-3) having the following composition (mass ratio) and an acid value solid content of 45.0% by mass in the same manner as in the polymerization of polyurethane resin (PU-2) described above. polymerized.
Polyurethane resin (PU-3):
(Cyclohexane-1,2-diylbismethylene) diisocyanate/polycarbonate diol having a number average molecular weight of 1000 (1,6-hexanediol type)/dimethylolpropionic acid/1,6-hexanediol=26.0/64. 8/6.2/3.0 (mass ratio)
Acid value: 25.9mgKOH/g
Polyurethane resin (PU-4):
Dicyclohexylmethane 4,4′-diisocyanate/polycarbonate diol with a number average molecular weight of 2000 (1,6-hexanediol/1,5-pentaneol type=50/50 (molar ratio) type)/dimethylolpropionic acid=20 .5/73.5/6.0 (mass ratio)
Acid value: 25.1mgKOH/g
Polyurethane resin (PU-5):
Dicyclohexylmethane 4,4′-diisocyanate/polyester diol with a number average molecular weight of 2000 (terephthalic acid/isophthalic acid//ethylene glycol/neopentyl glycol=50/50//50/50 (molar ratio))/dimethylolpropion Acid/neopentyl glycol = 36.0/49.5/11.8/2.7 (mass ratio)
Acid value: 49.4mgKOH/g
Polyurethane resin (PU-6):
Dicyclohexylmethane 4,4′-diisocyanate/polyester diol with a number average molecular weight of 2000 (sebacic acid//3-methyl-1,5-pentanediol=100//100 (molar ratio))/dimethylolpropionic acid/neo Pentyl glycol = 36.0/49.5/11.8/2.7 (mass ratio),
Acid value: 49.4mgKOH/g
(ポリウレタン樹脂(PU-1)の水分散体(PU-1WD)の調製)
 高速攪拌可能なホモディスパーを備えた反応容器に、所定量の水を添加して、25℃に調整して、2000min-1で攪拌混合しながら、前述のポリウレタン樹脂(PU-1)溶液を添加して水分散することにより乳白色の分散体を得た。次いでこの分散体を2.5kPaの減圧下で蒸留して、エチルメチルケトンを除去した。水で濃度調整することにより、固形分35質量%のポリウレタン樹脂(PU-1の水分散体(PU-1WD)を調製した。
(Preparation of aqueous dispersion (PU-1WD) of polyurethane resin (PU-1))
A predetermined amount of water is added to a reaction vessel equipped with a homodisper capable of high-speed stirring, the temperature is adjusted to 25° C., and the polyurethane resin (PU-1) solution is added while stirring and mixing at 2000 min −1 . and dispersed in water to obtain a milky white dispersion. The dispersion was then distilled under a reduced pressure of 2.5 kPa to remove ethyl methyl ketone. A water dispersion (PU-1WD) of polyurethane resin (PU-1) having a solid content of 35% by mass was prepared by adjusting the concentration with water.
(ポリウレタン樹脂(PU-2)の水分散体(PU-2WD)の調製)
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、所定量のポリウレタン樹脂(PU-2)溶液の入れ、この溶液に室温で、ポリウレタン樹脂(PU-2)の酸価と所定量に対応する当量の1.05倍のトリエタノールアミンを添加し、そのまま30分間攪拌した。次に、高速攪拌可能なホモディスパーを備えた反応容器に、所定量の水を添加して、25℃に調整して、2000min-1で攪拌混合しながら先述のポリウレタン樹脂(PU-2)の中和溶液を添加して水分散することにより乳白色の分散体を得た。その後、2.5kPaの減圧下で、溶剤であるエチルメチルケトンを除去した。水で濃度調整することにより、固形分35質量%のポリウレタン樹脂(PU-2)の水分散体(PU-2WD)を調製した。
(Preparation of aqueous dispersion (PU-2WD) of polyurethane resin (PU-2))
A predetermined amount of polyurethane resin (PU-2) solution is placed in a four-necked flask equipped with a stirrer, a Dimroth condenser, a nitrogen inlet tube, a silica gel drying tube, and a thermometer. Triethanolamine was added in an amount 1.05 times the equivalent corresponding to the acid value of PU-2) and the predetermined amount, and the mixture was stirred for 30 minutes. Next, a predetermined amount of water is added to a reaction vessel equipped with a homodisper capable of high-speed stirring, the temperature is adjusted to 25° C., and the polyurethane resin (PU-2) is stirred and mixed at 2000 min −1 . A milky white dispersion was obtained by adding a neutralizing solution and dispersing in water. After that, ethyl methyl ketone as a solvent was removed under a reduced pressure of 2.5 kPa. An aqueous dispersion (PU-2WD) of a polyurethane resin (PU-2) having a solid content of 35% by mass was prepared by adjusting the concentration with water.
(ポリウレタン樹脂(PU-3)~(PU-5)の水分散体(PU-3WD)~(PU-5WD)の調製)
 前述のポリウレタン樹脂(PU-2)の水分散体(PU-2WD)の調製と同様にして水分散体を調製した。但し、トリエタノールアミンに代わりにトリエチルアミンを使用し、添加するトリエチルアミンの量は各々のポリウレタン樹脂の酸価に合せて調整した。
(Preparation of aqueous dispersions (PU-3WD) to (PU-5WD) of polyurethane resins (PU-3) to (PU-5))
An aqueous dispersion was prepared in the same manner as the aqueous dispersion (PU-2WD) of the polyurethane resin (PU-2) described above. However, triethylamine was used instead of triethanolamine, and the amount of triethylamine added was adjusted according to the acid value of each polyurethane resin.
(アクリル樹脂(A-1)の重合)
 撹拌機、温度計、還流冷却管を備えたフラスコに溶媒としてプロピレングリコールモノメチルエーテル129.6質量部を入れ、100℃に加熱保持して、メタクリル酸メチル195.2質量部(64モル%)、アクリル酸エチル84.1質量部(28モル%)、2-ヒドロキシエチルメタクリレート7.8質量部(2モル%)、Nーメチロールアクリルアミド15.2質量部(5モル%)及びアゾビスイソブチロニトリル5質量部(1モル%)の混合物を3時間かけて滴下した。滴下後、同温度で2時間熟成させた。この反応液を室温以下に降温することにより、固形分70.0質量%のアクリル樹脂(A-1)溶液を得た。このアクリル樹脂(A―1)溶液の固形分酸価は0.4mgKOH/gであった。
(Polymerization of acrylic resin (A-1))
A flask equipped with a stirrer, a thermometer and a reflux condenser was charged with 129.6 parts by mass of propylene glycol monomethyl ether as a solvent and heated to 100°C to obtain 195.2 parts by mass (64 mol%) of methyl methacrylate. Ethyl acrylate 84.1 parts by mass (28 mol%), 2-hydroxyethyl methacrylate 7.8 parts by mass (2 mol%), N-methylolacrylamide 15.2 parts by mass (5 mol%) and azobisisobutyro A mixture of 5 parts by mass (1 mol %) of nitrile was added dropwise over 3 hours. After dropping, the mixture was aged at the same temperature for 2 hours. By lowering the temperature of this reaction solution to room temperature or lower, an acrylic resin (A-1) solution having a solid content of 70.0% by mass was obtained. The solid content acid value of this acrylic resin (A-1) solution was 0.4 mgKOH/g.
(アクリル樹脂(A-1)の水分散体(A-1WD)の調製)
 前述のアクリル樹脂(A-1)溶液の所定量に、室温でアクリル樹脂(A-1)の1.5質量%のアルキルジフェニルエーテルジスルホン酸ナトリウムを添加し、そのまま30分間攪拌してアクリル樹脂(A-1)の混合溶液を作製した。次に、高速攪拌可能なホモディスパーを備えた反応容器に、所定量の水を添加して、25℃に調整して、2000min-1で攪拌混合しながら、前述のアクリル樹脂(A-1)混合溶液を添加して水分散した。水で濃度調整することにより、樹脂固形分30質量%のアクリル樹脂(A-1)の水分散体(A-1WD)を調製した。
(Preparation of aqueous dispersion (A-1WD) of acrylic resin (A-1))
To a predetermined amount of the acrylic resin (A-1) solution described above, 1.5% by mass of sodium alkyldiphenyl ether disulfonate based on the acrylic resin (A-1) is added at room temperature, and the mixture is stirred for 30 minutes to obtain the acrylic resin (A-1). A mixed solution of -1) was prepared. Next, a predetermined amount of water is added to a reaction vessel equipped with a homodisper capable of high-speed stirring, the temperature is adjusted to 25° C., and the acrylic resin (A-1) described above is stirred and mixed at 2000 min −1 . The mixed solution was added and dispersed in water. An aqueous dispersion (A-1WD) of acrylic resin (A-1) having a resin solid content of 30% by mass was prepared by adjusting the concentration with water.
(アクリル樹脂(A-2)の重合)
 アクリル樹脂(A-1)と同様の工程により、メタクリル酸メチル70モル%、アクリル酸エチル20モル%、メトキシ-ポリエチレングリコール(n=9)アクリレート5モル%、N-メチロールアクリルアミド5モル%の樹脂組成比である固形分70.0質量%のアクリル樹脂(A-2)溶液を得た。このアクリル樹脂(A―2)溶液の固形分酸価は0.2mgKOH/gであった。
(Polymerization of acrylic resin (A-2))
Resin of 70 mol% methyl methacrylate, 20 mol% ethyl acrylate, 5 mol% methoxy-polyethylene glycol (n = 9) acrylate, and 5 mol% N-methylolacrylamide by the same process as acrylic resin (A-1) An acrylic resin (A-2) solution having a solid content of 70.0% by mass, which is the compositional ratio, was obtained. The solid content acid value of this acrylic resin (A-2) solution was 0.2 mgKOH/g.
(アクリル樹脂(A-2)の水分散体(A-2WD)の調製)
 高速攪拌可能なホモディスパーを備えた反応容器に、所定量の水を添加して、25℃に調整して、2000min-1で攪拌混合しながら、前述のアクリル樹脂(A-2)溶液を所定量添加して水分散した。水で濃度調整することにより、樹脂固形分30質量%のアクリル樹脂(A-2)の水分散体(A-2WD)を調製した。
(Preparation of aqueous dispersion (A-2WD) of acrylic resin (A-2))
A predetermined amount of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring, the temperature was adjusted to 25° C., and the acrylic resin (A-2) solution described above was added in place while stirring and mixing at 2000 min −1 . A fixed amount was added and dispersed in water. An aqueous dispersion (A-2WD) of acrylic resin (A-2) having a resin solid content of 30% by mass was prepared by adjusting the concentration with water.
(アクリル樹脂(A-3)の重合)
アクリル樹脂(A-1)と同様の工程により、アクリル酸エチル34モル%、アクリル酸ブチル15モル%、2-ヒドロキシエチルメタクリレート5モル%、メタクリル酸メチル38モル%、メタクリル酸8モル%の樹脂組成比である固形分70.0質量%のアクリル樹脂(A-3)溶液を得た。このアクリル樹脂(A-3)液の固形分酸価は36.7mgKOH/gであった。
(Polymerization of acrylic resin (A-3))
Resin of 34 mol% ethyl acrylate, 15 mol% butyl acrylate, 5 mol% 2-hydroxyethyl methacrylate, 38 mol% methyl methacrylate, and 8 mol% methacrylic acid by the same process as the acrylic resin (A-1) An acrylic resin (A-3) solution having a solid content of 70.0% by mass, which is the compositional ratio, was obtained. The solid content acid value of this acrylic resin (A-3) liquid was 36.7 mgKOH/g.
(アクリル樹脂(A-3)の水分散体(A-3WD)の調製)
 前述のアクリル樹脂(A-3)溶液に、室温で樹脂酸価に対して1.05当量のトリエチルアミンを添加し、そのまま30分間攪拌してアクリル樹脂(A-3)の混合溶液を作製した。次いで、高速攪拌可能なホモディスパーを備えた反応容器に、所定量の水を加え、25℃で、2000min-1で攪拌混合しながら、前述のアクリル樹脂(A-3)の混合溶液を添加して水分散した。水で濃度調整することにより、固形分30質量%のアクリル樹脂(A-3)の水分散体(A-3WD)を調製した。
(Preparation of aqueous dispersion (A-3WD) of acrylic resin (A-3))
To the acrylic resin (A-3) solution described above, 1.05 equivalents of triethylamine relative to the acid value of the resin was added at room temperature, and the mixture was stirred for 30 minutes to prepare a mixed solution of the acrylic resin (A-3). Then, a predetermined amount of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring, and the mixed solution of the acrylic resin (A-3) was added while stirring and mixing at 25° C. and 2000 min −1 . and dispersed in water. An aqueous dispersion (A-3WD) of acrylic resin (A-3) having a solid content of 30% by mass was prepared by adjusting the concentration with water.
(アクリル樹脂(A-4)の重合)
 アクリル樹脂(A-1)と同様の工程により、メタクリル酸メチル41モル%、アクリル酸エチル47モル%、アクリロニトリル8モル%、N-メチロールアクリルアミド4モル%の樹脂組成比である固形分70.0質量%のアクリル樹脂(A-4)溶液を得た。このアクリル樹脂(A―4)溶液の固形分酸価は0.2mgKOH/gであった。
(Polymerization of acrylic resin (A-4))
Solid content 70.0, which is a resin composition ratio of 41 mol% methyl methacrylate, 47 mol% ethyl acrylate, 8 mol% acrylonitrile, and 4 mol% N-methylolacrylamide, by the same process as for the acrylic resin (A-1). A solution of acrylic resin (A-4) of % by mass was obtained. The solid content acid value of this acrylic resin (A-4) solution was 0.2 mgKOH/g.
(アクリル樹脂(A-4)の水分散体(A-4WD)の調製)
 前述のアクリル樹脂(A-4)溶液の所定量に、室温でアクリル樹脂(A-4)固形分の1.0質量%のポリオキシエチレン(n=13)オレイルエーテルを添加し、そのまま30分間攪拌してアクリル樹脂(A-4)の混合溶液を作製した。次に、高速攪拌可能なホモディスパーを備えた反応容器に、所定量の水を添加して、25℃に調整して、2000min-1で攪拌混合しながら、前述のアクリル樹脂(A-4)混合溶液を添加して水分散した。水で濃度調整することにより、樹脂固形分30質量%のアクリル樹脂(A-4)の水分散体(A-4WD)を調製した。
(Preparation of aqueous dispersion (A-4WD) of acrylic resin (A-4))
To a predetermined amount of the acrylic resin (A-4) solution described above, polyoxyethylene (n = 13) oleyl ether of 1.0% by mass based on the solid content of the acrylic resin (A-4) was added at room temperature, and the mixture was left for 30 minutes. A mixed solution of the acrylic resin (A-4) was prepared by stirring. Next, a predetermined amount of water is added to a reaction vessel equipped with a homodisper capable of high-speed stirring, the temperature is adjusted to 25 ° C., and the acrylic resin (A-4) described above is stirred and mixed at 2000 min -1 . The mixed solution was added and dispersed in water. An aqueous dispersion (A-4WD) of acrylic resin (A-4) having a resin solid content of 30% by mass was prepared by adjusting the concentration with water.
(ブロックイソシアネート系架橋剤(C-1)溶液の調製)
 撹拌機、温度計、還流冷却管を備えたフラスコにヘキサメチレンジイソシアネート51.5質量部、ジメチロールプロピオン酸20.5質量部、ジプロピレングリコールジメチルエーテル150.0質量部を加えて、窒素雰囲気下、70℃で2時間保持した。その後、メチルエチルケトンオキシム28.0質量部を滴下した。反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認した。次いで、この反応液を室温以下に冷却し、トリエチルアミン16.2質量部を滴下混合した。さらに所定量の水をこの混合液に加えて、固形分40.0質量%のブロックイソシアネート系架橋剤(C-1)溶液を調製した。
(Preparation of blocked isocyanate-based cross-linking agent (C-1) solution)
51.5 parts by mass of hexamethylene diisocyanate, 20.5 parts by mass of dimethylolpropionic acid, and 150.0 parts by mass of dipropylene glycol dimethyl ether were added to a flask equipped with a stirrer, a thermometer, and a reflux condenser. It was held at 70°C for 2 hours. After that, 28.0 parts by mass of methyl ethyl ketone oxime was added dropwise. By measuring the infrared spectrum of the reaction solution, it was confirmed that the absorption of the isocyanate group had disappeared. Next, this reaction liquid was cooled to room temperature or lower, and 16.2 parts by mass of triethylamine was added dropwise to the mixture. Further, a predetermined amount of water was added to this mixture to prepare a blocked isocyanate-based cross-linking agent (C-1) solution having a solid content of 40.0% by mass.
(オキサゾリン系架橋剤(C-2)溶液の調製)    
 撹拌機、温度計、還流冷却管を備えたフラスコに、水50.0質量部とメトキシプロピルアルコール50.0質量部を仕込み、窒素雰囲気下、80℃に加熱した。その後、メタクリル酸メチル45.0質量部、2-イソプロペニル-2-オキサゾリン30.0質量部、2-ヒドロキシエチルメタクリレート10.0質量部およびn=10のポリエチレングリコールとメタクリル酸のエステル化合物15.0質量部からなる単量体混合物と2,2’-アゾビス(2-アミジノプロパン)二塩酸塩5.0質量部および水50.0質量部からなる重合開始剤溶液をそれぞれ滴下ロートから窒素雰囲気下、フラスコ内を80℃に保持しつつ2時間かけて滴下した。滴下終了後、80℃、5時間攪拌した後、室温まで冷却した。水を適量添加して、固形分40質量%のオキサゾリン系架橋剤(C-2)溶液を調製した。
(Preparation of oxazoline-based cross-linking agent (C-2) solution)
A flask equipped with a stirrer, a thermometer and a reflux condenser was charged with 50.0 parts by mass of water and 50.0 parts by mass of methoxypropyl alcohol and heated to 80° C. under a nitrogen atmosphere. Then, 45.0 parts by weight of methyl methacrylate, 30.0 parts by weight of 2-isopropenyl-2-oxazoline, 10.0 parts by weight of 2-hydroxyethyl methacrylate and 15. parts by weight of an ester compound of polyethylene glycol and methacrylic acid with n=10. A polymerization initiator solution consisting of 0 parts by mass of a monomer mixture, 5.0 parts by mass of 2,2'-azobis(2-amidinopropane) dihydrochloride and 50.0 parts by mass of water was added from a dropping funnel under a nitrogen atmosphere. Then, while maintaining the inside of the flask at 80° C., the solution was added dropwise over 2 hours. After completion of dropping, the mixture was stirred at 80°C for 5 hours and then cooled to room temperature. An appropriate amount of water was added to prepare a solution of oxazoline-based cross-linking agent (C-2) having a solid content of 40% by mass.
(ブロックイソシアネート系架橋剤(C-3)溶液の調製)
 撹拌機、温度計、還流冷却管を備えたフラスコにヘキサメチレンジイソシアネートを原料としたイソシアヌレート構造を有するポリイソシアネート化合物(旭化成ケミカルズ製、デュラネートTPA-100)55.5質量部、ジプロピレングリコールジメチルエーテル30.0質量部と数平均分子量500のポリエチレングリコール23.2質量部を加えて、窒素雰囲気下、70℃で2時間保持した。その後、3,5-ジメチルピラゾール21.3質量部とジプロピレングリコールジメチルエーテル20質量部からなる溶液を滴下した。反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認後、攪拌しつつ、水を適量添加し、固形分40.0質量%のブロックイソシアネート系架橋剤(C-3)溶液を調製した。
(Preparation of blocked isocyanate-based cross-linking agent (C-3) solution)
55.5 parts by mass of a polyisocyanate compound having an isocyanurate structure made from hexamethylene diisocyanate (Duranate TPA-100, manufactured by Asahi Kasei Chemicals) and 30 parts of dipropylene glycol dimethyl ether are placed in a flask equipped with a stirrer, thermometer, and reflux condenser. 0 parts by weight and 23.2 parts by weight of polyethylene glycol having a number average molecular weight of 500 were added, and the mixture was held at 70°C for 2 hours in a nitrogen atmosphere. After that, a solution consisting of 21.3 parts by mass of 3,5-dimethylpyrazole and 20 parts by mass of dipropylene glycol dimethyl ether was added dropwise. After measuring the infrared spectrum of the reaction solution and confirming that the absorption of the isocyanate group has disappeared, an appropriate amount of water is added while stirring, and a blocked isocyanate-based cross-linking agent (C-3) having a solid content of 40.0% by mass is added. A solution was prepared.
(ブロックイソシアネート系架橋剤(C-4)溶液の調製)
 撹拌機、温度計、還流冷却管を備えたフラスコにヘキサメチレンジイソシアネートを原料としたイソシアヌレート構造を有するポリイソシアネート化合物(旭化成ケミカルズ製、デュラネートTPA-100)62.8質量部、ジプロピレングリコールジメチルエーテル30.0質量部とジメチロールプロピオン酸7.2質量部を加えて、窒素雰囲気下、70℃で2時間保持した。その後、3,5-ジメチルピラゾール24.3質量部とジプロピレングリコールジメチルエーテル20質量部からなる溶液を滴下した。反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認後、トリエチルアミン5.7質量部を添加後、攪拌しつつ、水を適量添加し、固形分40.0質量%のブロックイソシアネート系架橋剤(C-4)溶液を調製した。
(Preparation of blocked isocyanate-based cross-linking agent (C-4) solution)
62.8 parts by mass of a polyisocyanate compound having an isocyanurate structure made from hexamethylene diisocyanate (Duranate TPA-100, manufactured by Asahi Kasei Chemicals) and 30 parts of dipropylene glycol dimethyl ether are placed in a flask equipped with a stirrer, a thermometer, and a reflux condenser. 0 parts by mass and 7.2 parts by mass of dimethylolpropionic acid were added, and the mixture was held at 70°C for 2 hours in a nitrogen atmosphere. After that, a solution consisting of 24.3 parts by mass of 3,5-dimethylpyrazole and 20 parts by mass of dipropylene glycol dimethyl ether was added dropwise. After measuring the infrared spectrum of the reaction solution and confirming that the absorption of the isocyanate group has disappeared, 5.7 parts by mass of triethylamine is added, and an appropriate amount of water is added while stirring to obtain a solid content of 40.0% by mass. A blocked isocyanate cross-linking agent (C-4) solution was prepared.
(粒子)
(粒子P-1)
 粒子(P-1)として固形分濃度20質量%である平均粒径10~15nmのコロイダルシリカ(スノーテックスO;日産化学(株)製)を粒子(P-1)溶液としてそのまま用いた。
(particle)
(Particle P-1)
As particles (P-1), colloidal silica (Snowtex O; manufactured by Nissan Chemical Industries, Ltd.) having a solid content concentration of 20% by mass and an average particle diameter of 10 to 15 nm was used as it was as a particle (P-1) solution.
(粒子P-2)
 粒子(P-2)として固形分濃度20質量%である平均粒径500nmのコロイダルシリカ(シーホスターKE-W50;(株)日本触媒)を粒子(P-2)溶液としてそのまま用いた。
(Particle P-2)
As particles (P-2), colloidal silica (Seahoster KE-W50; Nippon Shokubai Co., Ltd.) having a solid content concentration of 20% by mass and an average particle diameter of 500 nm was used as it was as a particle (P-2) solution.
(粒子P-3)
 粒子(P-3)として固形分濃度20質量%である平均粒径10~20nmの酸化ジルコニア粒子(ZSL00014;第一稀元素化学工業(株))を粒子(P-3)溶液としてそのまま用いた。
(Particle P-3)
As particles (P-3), zirconia oxide particles (ZSL00014; Daiichi Kigenso Kagaku Kogyo Co., Ltd.) with a solid content concentration of 20% by mass and an average particle size of 10 to 20 nm were used as they were as a particle (P-3) solution. .
(アクリル樹脂処理粒子(P-3-A)の調製)
 撹拌機と温度計を備えたフラスコに、前述の粒子(P-3)溶液50質量部に、攪拌しつつ前述のアクリル樹脂(A-3)溶液5質量部を徐々に添加した。添加完了後、室温で1時間攪拌した後、所定量の水を加えて、固形分濃度20質量%のアクリル樹脂処理粒子(P-3-A)を調製した。この粒子の固形分は酸化ジルコニア粒子分が74.1質量%、アクリル樹脂が25.9質量%であった。
(Preparation of acrylic resin-treated particles (P-3-A))
In a flask equipped with a stirrer and a thermometer, 5 parts by mass of the acrylic resin (A-3) solution was gradually added to 50 parts by mass of the particle (P-3) solution while stirring. After the addition was completed, the mixture was stirred at room temperature for 1 hour, and then a predetermined amount of water was added to prepare acrylic resin-treated particles (P-3-A) having a solid content concentration of 20% by mass. The solid content of the particles was 74.1% by mass of zirconia oxide particles and 25.9% by mass of acrylic resin.
(基材用ポリエステル樹脂(E-1)の製造)
(三酸化アンチモン溶液の調製)
 三酸化アンチモン(シグマ アルドリッチ ジャパン合同会社製)をエチレングリコールとともにフラスコに仕込み、150℃で4時間攪拌して溶解後、室温まで冷却して、20g/Lの三酸化アンチモンのエチレングリコール溶液を調製した。
(Manufacturing of base material polyester resin (E-1))
(Preparation of antimony trioxide solution)
Antimony trioxide (manufactured by Sigma-Aldrich Japan G.K.) was placed in a flask together with ethylene glycol, stirred at 150° C. for 4 hours to dissolve, and then cooled to room temperature to prepare a 20 g/L ethylene glycol solution of antimony trioxide. .
(基材用ポリエステル樹脂(E-1)の重合)
 攪拌機付き2リッターステンレス製オートクレーブに高純度テレフタル酸とその2倍モル量のエチレングリコールを仕込み、トリエチルアミンを酸成分に対して0.3モル%加え、0.25MPaの加圧下250℃にて水を系外に留去しながらエステル化反応を行いエステル化率が約95%のビス(2-ヒドロキシエチル)テレフタレートおよびオリゴマーの混合物(以下BHET混合物という)を得た。このBHET混合物に重縮合触媒として、上記三酸化アンチモン溶液を用い、ポリエステル中の酸成分に対してアンチモン原子として0.04モル%になるように加え、次いで、窒素雰囲気下、常圧にて250℃で10分間攪拌した。その後、60分間かけて280℃まで昇温しつつ反応系の圧力を徐々に下げて13.3Pa(0.1Torr)として、さらに280℃、13.3Paで68分間重縮合反応を実施して、固有粘度(IV)(溶媒:フェノール/テトラクロロエタン=60/40)が0.61dL/gであり、粒子を実質上含有していないポリエステル樹脂(E-1)を得た。
(Polymerization of polyester resin (E-1) for base material)
A 2-liter stainless steel autoclave equipped with a stirrer was charged with high-purity terephthalic acid and ethylene glycol in an amount two times its molar amount. Esterification reaction was carried out while distilling out of the system to obtain a mixture of bis(2-hydroxyethyl)terephthalate and an oligomer (hereinafter referred to as BHET mixture) having an esterification rate of about 95%. Using the above antimony trioxide solution as a polycondensation catalyst, the antimony trioxide solution was added to the BHET mixture in an amount of 0.04 mol % as an antimony atom relative to the acid component in the polyester. °C for 10 minutes. After that, the pressure of the reaction system was gradually lowered to 13.3 Pa (0.1 Torr) while the temperature was raised to 280°C over 60 minutes, and the polycondensation reaction was further carried out at 280°C and 13.3 Pa for 68 minutes. A polyester resin (E-1) having a viscosity (IV) (solvent: phenol/tetrachloroethane=60/40) of 0.61 dL/g and containing substantially no particles was obtained.
(基材用ポリエステル樹脂(E-2)の製造)
(アルミニウム化合物溶液の調製例)
 塩基性酢酸アルミニウム(ヒドロキシアルミニウムジアセテート;シグマ アルドリッチ ジャパン合同会社製)の20g/L水溶液に対して等量(容量比)のエチレングリコールをともにフラスコに仕込み、室温で6時間攪拌した後、減圧(133Pa)下、70~90℃で数時間攪拌しながら系から水を留去し、20g/Lのアルミニウム化合物のエチレングリコール溶液を調製した。
(Production of polyester resin (E-2) for base material)
(Preparation example of aluminum compound solution)
A flask was charged with an equal amount (volume ratio) of ethylene glycol to a 20 g/L aqueous solution of basic aluminum acetate (hydroxyaluminum diacetate; manufactured by Sigma-Aldrich Japan G.K.). Water was distilled off from the system while stirring at 70 to 90° C. for several hours under 133 Pa) to prepare an ethylene glycol solution of 20 g/L aluminum compound.
(リン化合物溶液の調製例)
 リン化合物として3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸 ジエチル(Irganox1222(BASF社製))をエチレングリコールとともにフラスコに仕込み、窒素置換下攪拌しながら液温160℃で25時間加熱し、50g/Lのリン化合物のエチレングリコール溶液を調製した。
(Preparation example of phosphorus compound solution)
Diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate (Irganox 1222 (manufactured by BASF)) as a phosphorus compound was charged into a flask together with ethylene glycol, and heated at a liquid temperature of 160°C for 25 hours while stirring under nitrogen substitution. to prepare an ethylene glycol solution of a 50 g/L phosphorus compound.
(アルミニウム化合物の溶液とリン化合物の溶液の混合物の調製)
 上記アルミニウム化合物の調製例および上記リン化合物の調製例で得られたそれぞれのエチレングリコール溶液をフラスコに仕込み、アルミニウム原子とリン原子がモル比で1:2となるように室温で混合し、1日間攪拌して触媒溶液を調製した。
(Preparation of mixture of aluminum compound solution and phosphorus compound solution)
Each of the ethylene glycol solutions obtained in the aluminum compound preparation example and the phosphorus compound preparation example was charged in a flask and mixed at room temperature so that the molar ratio of aluminum atoms and phosphorus atoms was 1:2. A catalyst solution was prepared by stirring.
(基材用ポリエステル樹脂(E-2)の重合)
 重縮合触媒として三酸化アンチモン溶液の代わりに、前述のアルミニウム化合物の溶液とリン化合物の溶液の混合物を用いて、ポリエステル中の酸成分に対してアルミニウム原子およびリン原子としてそれぞれ0.014モル%および0.028モル%になるように
加えた以外は、ポリエステル樹脂E-1と同様に重合した。但し、重合時間は68分間とすることで、固有粘度(IV)が0.61dL/gであり、粒子を実質上含有していないポリエステル樹脂(E-2)を得た。
(Polymerization of polyester resin (E-2) for base material)
Instead of the antimony trioxide solution as the polycondensation catalyst, a mixture of the aluminum compound solution and the phosphorus compound solution described above was used to obtain 0.014 mol % and Polymerization was carried out in the same manner as polyester resin E-1, except that it was added in an amount of 0.028 mol %. However, by setting the polymerization time to 68 minutes, a polyester resin (E-2) having an intrinsic viscosity (IV) of 0.61 dL/g and containing substantially no particles was obtained.
(実施例1)
(1)塗布液(No.1)の調製
 水とイソプロパノールの混合溶媒(80/20質量部比)に、下記の塗剤を混合して計100質量部に調整した。ポリエステル樹脂PES-1の水分散体(PES-1WD)とポリウレタン樹脂PU-1の水分散体(PU-1WD)の固形分質量比が65/35、総固形樹脂分濃度4質量%とした。次に、粒子(PA-1)と粒子(PA-2)が前述の樹脂等の総固形分100に対してそれぞれの固形分質量比が12.0及び0.4とした。さらに、この塗布液にシリコーン系界面活性剤の10%水溶液を1質量%添加して塗布液(No.1)を調製した。各塗布液の樹脂等の配合比については表1に示す。また、表1の配合比に基づく、ポリエステル樹脂とポリウレタン樹脂及び/またはアクリル樹脂の全樹脂分中の各樹脂比率及び塗膜中の架橋剤比率を表2に示す
(Example 1)
(1) Preparation of Coating Liquid (No. 1) A mixed solvent of water and isopropanol (80/20 parts by mass ratio) was mixed with the following coating agents to prepare a total of 100 parts by mass. The solid content mass ratio of the water dispersion of polyester resin PES-1 (PES-1WD) and the water dispersion of polyurethane resin PU-1 (PU-1WD) was 65/35, and the total solid resin content was 4% by mass. Next, the solid content mass ratios of the particles (PA-1) and (PA-2) were set to 12.0 and 0.4, respectively, with respect to the total solid content of 100 of the above-mentioned resin and the like. Furthermore, 1% by mass of a 10% aqueous solution of a silicone-based surfactant was added to this coating liquid to prepare a coating liquid (No. 1). Table 1 shows the compounding ratio of the resin and the like in each coating liquid. In addition, Table 2 shows the ratio of each resin in the total resin content of polyester resin and polyurethane resin and / or acrylic resin and the ratio of cross-linking agent in the coating film based on the compounding ratio of Table 1.
塗布液No.1の調製例
混合溶剤(水/イソプロパノール)       83.85質量部
ポリエステル樹脂(PES-1)の水分散体(PES-1WD)
                        8.67質量部
ポリウレタン樹脂(PU-1)の水分散体(PU-1WD)
                        4.00質量部
粒子(P-1)溶液               2.40質量部
粒子(P-2)溶液               0.08質量部
界面活性剤水溶液                1.00質量部
                     計100.00質量部
Coating liquid no. Preparation Example 1 Mixed solvent (water / isopropanol) 83.85 parts by mass Aqueous dispersion (PES-1WD) of polyester resin (PES-1)
8.67 parts by mass Polyurethane resin (PU-1) aqueous dispersion (PU-1WD)
4.00 parts by mass Particle (P-1) solution 2.40 parts by mass Particles (P-2) solution 0.08 parts by mass Surfactant aqueous solution 1.00 parts by mass Total 100.00 parts by mass
(2)積層ポリエステルフィルムの製造
 フィルム原料樹脂として、ポリエステル樹脂(E-1)の樹脂ペレットを、133Paの減圧下、135℃で6時間乾燥した。その後、押し出し機に供給し、約280℃でシート状に溶融押し出しして、表面温度20℃に保った回転冷却金属ロール上で急冷密着固化させ、未延伸PETシートを得た。
(2) Production of Laminated Polyester Film Resin pellets of polyester resin (E-1) as a film material resin were dried at 135° C. for 6 hours under a reduced pressure of 133 Pa. After that, it was supplied to an extruder, melt-extruded into a sheet at about 280° C., and rapidly cooled and solidified on a rotating cooling metal roll whose surface temperature was maintained at 20° C. to obtain an unstretched PET sheet.
 この未延伸PETシートを加熱されたロール群及び赤外線ヒーターで100℃に加熱し、その後周速差のあるロール群で長手方向に3.5倍延伸して、一軸延伸PETフィルムを得た。 This unstretched PET sheet was heated to 100°C by a group of heated rolls and an infrared heater, and then stretched 3.5 times in the longitudinal direction by a group of rolls with a difference in circumferential speed to obtain a uniaxially stretched PET film.
 次いで、前記塗布液(No.1)をPETフィルムの片面に、最終(二軸延伸後)の乾燥後の塗布量が0.08g/mになるように塗布した。塗布後、90℃で3秒、40℃で3秒熱処理して乾燥させた。ついで、フィルムを110℃で幅方向に4.0倍に延伸し、フィルムの幅方向を固定した状態で、230℃で5秒間加熱した。さらに3%の幅方向の弛緩処理を行ない、厚み100μmの積層ポリエステルフィルムを得た。塗布層の厚みは70nmであった。このフィルムの評価結果を表3に示す。 Next, the coating solution (No. 1) was applied to one side of the PET film so that the final coating amount (after biaxial stretching) after drying was 0.08 g/m 2 . After coating, the coating was dried by heat treatment at 90° C. for 3 seconds and 40° C. for 3 seconds. Then, the film was stretched 4.0 times in the width direction at 110° C. and heated at 230° C. for 5 seconds while the width direction of the film was fixed. Further, a 3% relaxation treatment in the width direction was performed to obtain a laminated polyester film having a thickness of 100 µm. The thickness of the coating layer was 70 nm. Table 3 shows the evaluation results of this film.
(実施例2~12)
 実施例1の塗布液を、表3の各実施例記載の塗布液Noを使用した以外は、実施例1と同様にして、積層ポリエステルフィルムを得た。各塗布液Noに使用した樹脂等の種類と配合量比及び粒子は表1に記載したものを使用した。また、また、ポリエステル樹脂とポリウレタン樹脂及び/またはアクリル樹脂の全樹脂分中の各樹脂比率及び塗膜中の架橋剤比率を表2に示す。特に実施例11では粒子に前述のアクリル樹脂処理粒子(P-3-A)を使用することから、粒子に付着したアクリル樹脂分も含有量に考慮して、樹脂比率等を算出した。
(Examples 2 to 12)
A laminated polyester film was obtained in the same manner as in Example 1, except that the coating solution No. described in each example in Table 3 was used as the coating solution of Example 1. The types and compounding ratios of the resins and the like used in each coating liquid No. and the particles shown in Table 1 were used. Table 2 also shows the ratio of each resin in the total resin content of the polyester resin, polyurethane resin and/or acrylic resin and the ratio of the cross-linking agent in the coating film. In particular, in Example 11, since the acrylic resin-treated particles (P-3-A) described above were used as the particles, the resin ratio and the like were calculated in consideration of the content of the acrylic resin adhering to the particles.
(実施例13)
 フィルム原料樹脂としてE-1の代わりにE-2を使用した以外は、実施例1と同様にして積層ポリエステルフィルムを得た。
(Example 13)
A laminated polyester film was obtained in the same manner as in Example 1, except that E-2 was used instead of E-1 as the film material resin.
(比較例1~9)
 実施例1の塗布液を、表3の各比較例記載の塗布液Noを使用した以外は、実施例1と同様にして、積層ポリエステルフィルムを得た。
(Comparative Examples 1 to 9)
A laminated polyester film was obtained in the same manner as in Example 1, except that the coating solution No. described in each comparative example in Table 3 was used as the coating solution of Example 1.
 表3に各実施例、比較例の評価結果を示す。 Table 3 shows the evaluation results of each example and comparative example.
 表3に示すように、各実施例1~13においては、ヘイズ、耐ブロッキング性、ハードコート層との密着性及び耐湿熱性において満足できる評価結果が得られた。一方、比較例1~9は、評価結果において満足できるものではなかった。 As shown in Table 3, in each of Examples 1 to 13, satisfactory evaluation results were obtained in terms of haze, blocking resistance, adhesion to the hard coat layer, and resistance to moist heat. On the other hand, the evaluation results of Comparative Examples 1 to 9 were not satisfactory.
 本発明によって、光学用途、包装用途、ラベル用途などあらゆる分野に最適な易接着性を有する積層ポリエステルフィルムの提供が可能となった。
 
The present invention has made it possible to provide a laminated polyester film having optimum easy-adhesiveness for all fields such as optical applications, packaging applications and label applications.

Claims (2)

  1.  ポリエステルフィルム基材の少なくとも1面に塗布層を備える積層ポリエステルフィルムであって、前記塗布層は、ポリエステル樹脂と、ポリウレタン樹脂及び/またはアクリル樹脂を含む組成物から形成され、前記塗布層の1-ブロモナフタレンの着滴1秒後の接触角(A)が13~25度、かつ着滴5秒後の接触角(B)が9~20度である積層ポリエステルフィルム。 A laminated polyester film comprising a coating layer on at least one surface of a polyester film substrate, wherein the coating layer is formed from a composition containing a polyester resin and a polyurethane resin and / or an acrylic resin, and the coating layer 1- A laminated polyester film having a contact angle (A) of 13 to 25 degrees after 1 second of droplet deposition of bromonaphthalene and a contact angle (B) of 9 to 20 degrees after 5 seconds of droplet deposition.
  2.  前記塗布層の1-ブロモナフタレンの着滴1秒後の接触角(A)と着滴5秒後の接触角(B)の差(A-B)が4~7度である請求項1記載の積層ポリエステルフィルム。 Claim 1, wherein the difference (AB) between the contact angle (A) after 1 second of droplet deposition and the contact angle (B) of 5 seconds after droplet deposition of 1-bromonaphthalene on the coating layer is 4 to 7 degrees. laminated polyester film.
PCT/JP2023/000208 2022-01-25 2023-01-06 Multilayered polyester film WO2023145408A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022009438 2022-01-25
JP2022-009438 2022-01-25

Publications (1)

Publication Number Publication Date
WO2023145408A1 true WO2023145408A1 (en) 2023-08-03

Family

ID=87471213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000208 WO2023145408A1 (en) 2022-01-25 2023-01-06 Multilayered polyester film

Country Status (2)

Country Link
TW (1) TW202335855A (en)
WO (1) WO2023145408A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004202701A (en) * 2002-12-24 2004-07-22 Mitsubishi Polyester Film Copp Polyester film
JP2007182487A (en) * 2006-01-06 2007-07-19 Mitsubishi Polyester Film Copp Thin polyester film
WO2016031817A1 (en) * 2014-08-29 2016-03-03 富士フイルム株式会社 Inkjet recording medium and manufacturing method thereof, printed matter and manufacturing method thereof, decorative glass and roll
JP2020063457A (en) * 2017-09-22 2020-04-23 東洋紡株式会社 Method of producing easily adhesive polyester film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004202701A (en) * 2002-12-24 2004-07-22 Mitsubishi Polyester Film Copp Polyester film
JP2007182487A (en) * 2006-01-06 2007-07-19 Mitsubishi Polyester Film Copp Thin polyester film
WO2016031817A1 (en) * 2014-08-29 2016-03-03 富士フイルム株式会社 Inkjet recording medium and manufacturing method thereof, printed matter and manufacturing method thereof, decorative glass and roll
JP2020063457A (en) * 2017-09-22 2020-04-23 東洋紡株式会社 Method of producing easily adhesive polyester film

Also Published As

Publication number Publication date
TW202335855A (en) 2023-09-16

Similar Documents

Publication Publication Date Title
JP5568992B2 (en) Easy-adhesive polyester film for optics
CN102905899A (en) Layered polyester film
JP5692225B2 (en) Easy-adhesive polyester film
CN103796831B (en) Coated film
CN102905898A (en) Layered polyester film
TWI573688B (en) Laminated polyester film
JP2014125599A (en) Aqueous adhesive for forming easily adhesive layer
CN113423574B (en) Laminated polyester film
WO2012108449A1 (en) Highly adhesive polyester film
JP7207589B2 (en) laminated polyester film
JP2011110874A (en) Polyester film
JP6408761B2 (en) Water-based adhesive for easy adhesion layer formation
JP2005263853A (en) High transparency optical laminated polyester film
JP6194617B2 (en) Laminated film and method for producing the same
WO2023145408A1 (en) Multilayered polyester film
JP6176270B2 (en) Release film
WO2022004249A1 (en) Multilayered polyester film
JP2023049612A (en) laminated polyester film
WO2021261174A1 (en) Laminated polyester film for optical use
WO2022220043A1 (en) Antistatic polyester film
JP2017128093A (en) Laminated film
JP2024009589A (en) laminated polyester film
JP2017110032A (en) Laminate polyester film
KR20230047076A (en) laminated polyester film
JP5840250B2 (en) Laminated polyester film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746625

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023576741

Country of ref document: JP