WO2023145380A1 - Lighting device, head-up display, and method for manufacturing lighting device - Google Patents

Lighting device, head-up display, and method for manufacturing lighting device Download PDF

Info

Publication number
WO2023145380A1
WO2023145380A1 PCT/JP2022/048481 JP2022048481W WO2023145380A1 WO 2023145380 A1 WO2023145380 A1 WO 2023145380A1 JP 2022048481 W JP2022048481 W JP 2022048481W WO 2023145380 A1 WO2023145380 A1 WO 2023145380A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser light
light source
lighting device
negative pressure
peltier module
Prior art date
Application number
PCT/JP2022/048481
Other languages
French (fr)
Japanese (ja)
Inventor
克彦 谷本
滋 小島
智子 佐々木
Original Assignee
日本精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精機株式会社 filed Critical 日本精機株式会社
Publication of WO2023145380A1 publication Critical patent/WO2023145380A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/54Cooling arrangements using thermoelectric means, e.g. Peltier elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V31/00Gas-tight or water-tight arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present disclosure relates to lighting devices, head-up displays, and methods of manufacturing lighting devices.
  • Patent Document 1 the manufacturing procedure and structure for moisture-proof sealing are not clarified, and there is room for improvement in the configuration for keeping the quality of the sealing structure constant.
  • an object of the present disclosure is to provide a lighting device, a head-up display, and a manufacturing method of the lighting device that can appropriately maintain the moisture-proof sealed state of the internal space.
  • a lighting device comprising: a laser light source that outputs a laser light; a Peltier module that cools the laser light source; and a case that seals the laser light source and the Peltier module inside against moisture, a cylindrical accommodating portion having an exit opening for emitting the laser light; a first lid portion that is in thermal contact with the Peltier module and closes one opening of the accommodating portion; and the other opening of the accommodating portion. and a second lid that closes the housing, and a negative pressure space is formed in the housing.
  • the second lid portion is formed with an inspection hole for inspecting airtightness of the accommodating portion.
  • the inspection hole is sealed with a sealing member after the inspection.
  • a translucent window cover is fixed to the outer wall of the housing to cover the exit port.
  • a head-up display comprising: a lighting device according to any one of claims 1 to 4; a lens for collimating illumination light output from the lighting device; and illumination light passing through the lens. and an illuminated liquid crystal panel.
  • a method for manufacturing a lighting device comprising: a housing step of housing a laser light source and a Peltier module in a housing portion of a case having an opening; a negative pressure step of making the housing portion into a negative pressure state; and a sealing step of sealing.
  • the negative pressure step is characterized in that the negative pressure state is created by setting the accommodating portion to a first temperature higher than room temperature.
  • FIG. 1 is a schematic configuration diagram of a head-up display
  • FIG. 2 is a schematic configuration diagram of an image display device
  • FIG. It is a perspective view of an illuminating device. It is a component structure perspective view of an illuminating device. It is a principal part perspective view of an illuminating device.
  • FIG. 11 is a perspective view of a main part of the lighting device viewed from another angle; 4 is a cross-sectional view of the lighting device (a cross-sectional view taken along the line AA in the XY plane of FIG. 3);
  • FIG. FIG. 4 is a cross-sectional view of the illumination device (cross-sectional view taken along the line BB in the YZ plane of FIG. 3);
  • FIG. 4 is a cross-sectional view of the lighting device (CC cross-sectional view in the XZ plane of FIG. 3); (a) is an enlarged cross-sectional view of an inspection hole, and (b) is a perspective view showing another example of the sealing structure of the inspection hole.
  • 1 is a schematic configuration diagram of an inspection device
  • the head-up display H is built in the instrument panel of the vehicle, and is an in-vehicle instrument that displays various vehicle information such as vehicle traveling speed, various warning information, and route guidance information to the occupant P of the vehicle.
  • the head-up display H includes an image display D, a reflector M, a control circuit board B, and a case C.
  • the head-up display H displays an image representing vehicle information on the image display device D, and projects display light DL output from this image toward the windshield WS of the vehicle.
  • a passenger P can visually recognize a virtual image V representing vehicle information in front of the windshield WS.
  • the image display D displays an image that expresses the vehicle information using numerical values, diagrams, and the like.
  • the image display device D incorporates the illumination device 1, and the detailed configuration thereof will be described later.
  • the reflector M is, for example, a concave mirror.
  • the reflecting mirror M can extend the optical path length of the display light DL by folding back the display light DL output from the image display device D within the case C. FIG.
  • the longer the optical path length the farther the virtual image V is formed from the windshield WS, and the farther the virtual image V can be displayed.
  • the distortion of the virtual image V can be suppressed by the reflecting mirror M having a curved surface shape that offsets the distortion of the virtual image V due to the curved shape of the windshield WS.
  • the reflecting mirror M is not limited to one concave mirror, and may be composed of a plurality of plane mirrors and concave mirrors to turn back light a plurality of times.
  • the control circuit board B is a circuit board having a control circuit for controlling various electronic components built into the image display device D.
  • the case C accommodates the image display D, reflector M, and control circuit board B.
  • Case C includes a lower case LC and an upper case UC.
  • the lower case LC is a metal container such as aluminum die-cast or magnesium die-cast, and the inner surface is painted black to suppress reflection.
  • the upper case UC is a lid made of resin, and is molded from a resin such as polycarbonate colored black to suppress reflection.
  • the upper case UC is formed with an emission port for emitting the display light DL.
  • the outlet is covered with a transparent dustproof cover UC1.
  • the dustproof cover UC1 is a transparent resin film such as acrylic resin with a thickness of 0.5 to 2 mm (millimeters).
  • a light shielding wall UC2 is formed on the inner surface to prevent external light (mainly sunlight) EL entering from the exit opening from directly entering the image display device D.
  • the image display device D includes a backlight unit (illumination device) 1 , a rotating diffusion plate 2 , a lens 3 and a liquid crystal panel 4 .
  • the backlight unit 1 is a lighting device that outputs coherent white laser light WL, and illuminates the liquid crystal panel 4 .
  • the control circuit board B adjusts and controls the white balance of the white laser light WL. This adjustment control controls the current value of each built-in light source according to the temperature of the built-in light source. A detailed configuration of the backlight unit 1 will be described later.
  • the rotating diffusion plate 2 is a speckle suppression unit for reducing speckle noise in a speckle pattern that occurs when illuminating an object with coherent laser light.
  • the rotating diffusion plate 2 includes a disk-shaped diffusion plate 21 and a drive unit 22 that rotates the diffusion plate 21 .
  • the rotary diffusion plate 2 is fixed to the backlight unit 1 and diffuses the white laser light WL output by the backlight unit 1 with the diffusion plate 21 .
  • the white laser light WL has various scattering patterns and speckle noise is reduced. Suppressed.
  • the rotating diffuser plate 2 is fixed to the housing of the backlight unit 1 so that the diffuser plate 21 faces the exit port of the backlight unit 1 . More specifically, the rotary diffusion plate 2 is fixed to the housing portion 181 with screws while being supported by a mounting portion 1812 formed outside the housing portion 181 of the outer case 18 to be described later.
  • the lens 3 is a lens for collimating the light of the white laser light WL that has passed through the rotating diffusion plate 2 to uniformly illuminate the surface of the liquid crystal panel 4 .
  • Lens 3 includes at least a collimating lens and may also include a lens of a Koehler illumination system.
  • the liquid crystal panel 4 is a TFT (Thin Film Transistor) type liquid crystal panel.
  • the liquid crystal panel 4 displays figures and numbers representing vehicle information as images, and outputs display light DL from the displayed image by being illuminated with white laser light WL collimated by the lens 3 from the back.
  • the liquid crystal panel 4 is arranged at a first angle ⁇ 1 with respect to the optical axis of the white laser light WL.
  • the first angle ⁇ 1 is set so that the external light EL reflected by the reflecting mirror M is reflected by the liquid crystal panel 4 and then directed toward the inner wall of the case C (for example, the light shielding wall UC2). This prevents the external light EL from being reflected by the liquid crystal panel 4, reflected again by the reflecting mirror M, projected onto the windshield WS, and becoming stray light.
  • the first angle ⁇ 1 is, for example, an angle of 0 degrees or more and less than 30 degrees.
  • the backlight unit 1 includes a laser light source 11 , wiring 12 , collimator lens 13 , dichroic mirror 14 , heat sink 15 , inner case 16 , Peltier module 17 and outer case 18 .
  • the laser light source 11 includes a blue laser light source 11B, a green laser light source 11G, and a red laser light source 11R.
  • the blue laser light source 11B is a laser diode that outputs blue light with a center wavelength of approximately 632 nm (nanometers).
  • the green laser light source 11G is a laser diode that outputs green light with a center wavelength of approximately 532 nm (nanometers).
  • the red laser light source 11R is a laser diode that outputs red light with a central wavelength of approximately 488 nm (nanometers).
  • the wiring 12 is a flexible printed board on which circuit wiring for lighting the laser light source 11 and a thermistor for detecting temperature are mounted.
  • the wiring 12 includes a first wiring 12B and a second wiring 12GR.
  • the first wiring 12B is mounted with a circuit wiring for lighting the blue laser light source 11B and a first thermistor Th1 for detecting the temperature of the blue laser light source 11B.
  • the second wiring 12GR is mounted with a circuit wiring for lighting the green laser light source 11G, a circuit wiring for lighting the red laser light source 11R, and a second thermistor Th2 for detecting the temperatures of the green laser light source 11G and the red laser light source 11R.
  • the collimator lens 13 expands the beam spot diameter of the laser light source 11 .
  • the collimator lens 13 includes a first collimator lens 13B for collimating light from the blue laser light source 11B, a second collimator lens 13G for collimating light from the green laser light source 11G, a third collimator lens 13R for collimating light from the red laser light source 11R, Prepare.
  • the dichroic mirror 14 is a mirror that reflects light of a predetermined wavelength and transmits light of other wavelengths.
  • Dichroic mirror 14 is manufactured by applying a dielectric coating to a substrate such as, for example, borosilicate crown optical glass.
  • the dichroic mirror 14 includes a first dichroic mirror 141 that reflects green light and a second dichroic mirror 142 that reflects green light and blue light.
  • the heat sink 15 supports the laser light source 11 and wiring 12, and transfers the heat of the laser light source 11 to other members.
  • the heat sink 15 is made of a material with high thermal conductivity such as die-cast aluminum or die-cast magnesium.
  • the heat sink 15 has a first heat sink 151 and a second heat sink 152 .
  • the first heat sink 151 has a flat plate-shaped heat radiating portion 1511 and a flat plate-shaped support portion 1512 extending perpendicularly to the heat radiating portion 1511 .
  • the blue laser light source 11B and the first wiring 12B are fixed to the supporting portion 1512 .
  • the heat radiating portion 1511 is in thermal contact with a housing portion 181 of the outer case 18, which will be described later.
  • the first heat sink 151 does not come into contact with the Peltier module 17 and the upper lid portion 182 and the lower lid portion 183 of the outer case 18, which will be described later.
  • the heat radiating portion 1511 and the housing portion 181 are brought into thermal contact with each other, it is preferable that the heat radiating portion 1511 and the housing portion 181 are in thermal contact with each other via a thermally conductive medium such as thermal paste. good.
  • the second heat sink 152 has a flat plate-shaped heat radiating portion 1521 and a flat plate-shaped support portion 1522 extending perpendicularly to the heat radiating portion 1521 .
  • a green laser light source 11G, a red laser light source 11R, and a second wiring 12GR are fixed to the supporting portion 1522 .
  • the heat dissipation part 1521 is in thermal contact with the Peltier module 17, and the heat of the green laser light source 11G and the red laser light source 11R is transmitted to the Peltier module 17 and radiated.
  • the heat radiating part 1521 and the Peltier module 17 are thermally contacted via a thermal paste 17a, which will be described later, but they may be configured to be in direct contact with each other.
  • the inner case 16 is a case made of resin whose thermal conductivity is superior to that of the heat sink 15 and the outer case 18 .
  • the inner case 16 is, for example, PPS (polyphenylene sulfide) resin with a thermal conductivity of 0.29 W/(m ⁇ K), and the heat sink 15 and outer case 18 are made of ADC 12 (aluminum) with a thermal conductivity of 96 W/(m ⁇ K).
  • ADC 12 aluminum
  • the thermal conductivity is superiorly low compared to the case where it is selected.
  • the inner case 16 accommodates the laser light source 11, the collimator lens 13, and the dichroic mirror 14 so that the light of each color from the laser light source 11 is collimated by the collimator lens 13 and then synthesized into white laser light by the dichroic mirror 14. do.
  • the inner case 16 has a housing portion 161 .
  • a first inlet 162 , a second inlet 163 , a third inlet 164 , a first outlet 165 , a second outlet 166 , and a third outlet 167 are formed in the side wall of the accommodating portion 161 .
  • the first entrance 162 and the third exit 167 are formed to face each other.
  • the second entrance 163 and the second exit 166 are formed to face each other.
  • the third entrance 164 and the first exit 165 are formed to face each other.
  • a line connecting the second entrance 163 and the second exit 166 and a line connecting the third entrance 164 and the first exit 165 are substantially parallel to each other.
  • the line connecting the first inlet 162 and the third outlet 167 is the line connecting the second inlet 163 and the second outlet 166, and the line connecting the third inlet 164 and the first outlet 165. It is in a positional relationship that is substantially orthogonal to.
  • the first dichroic mirror 141 is fixed at a position of the housing portion 161 corresponding to the intersection of a line connecting the first entrance 162 and the third exit 167 and a line connecting the second entrance 163 and the second exit 166 . be.
  • the second dichroic mirror 142 is fixed at a position of the housing portion 161 corresponding to the intersection of a line connecting the first entrance 162 and the third exit 167 and a line connecting the third entrance 164 and the first exit 165 . be.
  • the blue laser light source 11B is fixed to the housing portion 161 in a state in which the blue laser light source 11B is inserted into the housing portion 161 from the first inlet 162.
  • the green laser light source 11G is fixed to the housing portion 161 in a state where the green laser light source 11G is inserted into the housing portion 161 from the second inlet 163 .
  • the red laser light source 11R is fixed to the housing portion 161 in a state where the red laser light source 11R is inserted into the housing portion 161 from the third entrance 164 .
  • the first collimator lens 13B is fixed to the housing portion 161 so as to be positioned between the blue laser light source 11B and the first dichroic mirror 141.
  • the second collimator lens 13G is fixed to the housing portion 161 so as to be positioned between the green laser light source 11G and the first dichroic mirror 141.
  • the third collimator lens 13R is fixed to the housing portion 161 so as to be positioned between the red laser light source 11R and the second dichroic mirror 142.
  • the laser light source 11, the collimator lens 13, and the dichroic mirror 14 housed in the housing portion 161 of the inner case 16 synthesize the white laser light WL as follows.
  • the blue light emitted by the blue laser light source 11 B is transmitted through the first dichroic mirror 141 and then reflected by the second dichroic mirror 142 toward the first exit port 165 .
  • the green light emitted by the green laser light source 11G is reflected by the first dichroic mirror 142 and the second dichroic mirror 142 and travels toward the first exit port 165 .
  • the red light emitted by the red laser light source 11 ⁇ /b>R passes through the second dichroic mirror 142 and travels toward the first exit 165 .
  • the blue light, green light, and red light are synthesized as white laser light WL in the process of passing through the accommodation portion 161 of the inner case 16 and heading toward the first emission port 165 .
  • the inner case 16 made of resin may melt, adversely affecting the function of the lighting device 1.
  • have a nature This is because, for example, a laser beam with a different wavelength than expected is emitted from the laser light source 11 to the dichroic mirror 14 due to an incorrect assembly such as reverse assembly of the blue laser light source 11B and the red laser light source 11R, or a defect or failure of the laser light source 11. occurs when Alternatively, it may occur due to misassembly or failure of the dichroic mirror 14 .
  • the inner case 16 is formed with a second outlet 166 and a third outlet 167 .
  • the laser light travels along an unexpected optical path in a direction other than the first emission port 165, the laser light is directed to the second emission port 166 of the inner case 16 or The light passes through the third outlet 167 and irradiates the inner wall of the outer metallic outer case 18 (more specifically, the inner wall of the accommodating portion 181 of the outer case 18 to be described later). Therefore, melting of the inner case 16 made of resin can be prevented.
  • the Peltier module 17 has a thermoelectric element that has the function of transferring heat from one surface to the other by the Peltier effect.
  • One surface of the Peltier module 17 is in thermal contact with the second heat sink 152, and the other surface is in thermal contact with the lower lid portion 183 of the outer case 18, which will be described later.
  • the Peltier module 17 has one surface coated with thermal paste 17a and the other surface coated with thermal paste 17b. That is, the Peltier module 17 and the second heat sink 152 are in thermal contact with each other through the thermal paste 17a.
  • the Peltier module 17 and the lower lid portion 183 are in thermal contact with each other via the thermal paste 17b.
  • the inventor of the present disclosure believes that when the lighting device 1 is mounted on an on-vehicle instrument like the head-up display H of the present embodiment, the surrounding environment of the on-vehicle instrument (specifically, inside the instrument panel) was assumed to be hot and humid. If the surrounding environment has high humidity, the Peltier module 17 may be exposed to high humidity air and may condense, and the condensation may adversely affect the function of the lighting device 1. The inventor has recognized.
  • the outer case 18 is a case that accommodates the laser light source 11, the wiring 12, the collimator lens 13, the dichroic mirror 14, the heat sink 15, the inner case 16, and the Peltier module 17.
  • the internal space S of the outer case 18 is hermetically sealed in a state where humidity is controlled during manufacturing. That is, the internal space S is a moisture-proof sealed space. Due to this internal space S, the aforementioned Peltier module 17 is not exposed to high-humidity air and no dew condensation occurs.
  • the outer case 18 has a housing portion 181 , an upper lid portion 182 (second lid portion), a lower lid portion 183 (first lid portion), a seal portion 184 and a window cover portion 185 .
  • the housing portion 181 is a cylindrical case with openings formed on the upper and lower surfaces.
  • the accommodating portion 181 is formed with an exit port 1811 .
  • a recessed mounting portion 1812 is formed around the exit port 1811 on the outer wall of the housing portion 181 .
  • a first inclined portion 1813 and a second inclined portion 1814 are formed on the inner wall of the housing portion 181 .
  • the first inclined portion 1813 is formed at a position facing the second outlet 166 of the inner case 16 .
  • the second inclined portion 1814 is formed at a position facing the third outlet 167 of the inner case 16 .
  • the first inclined portion 1813 is inclined so that unintended laser light emitted from the second emission port 166 is not reflected by the inner wall of the housing portion 181 and returned to the first dichroic mirror 141 along the same optical path.
  • Second inclined portion 1814 is inclined so that unintended laser light emitted from third outlet 167 does not reflect on the inner wall of housing portion 181 and return to second dichroic mirror 142 along the same optical path.
  • the surfaces of the first inclined portion 1813 and the second inclined portion 1814 have fine uneven shapes (so-called embossed shapes). As a result, unintended laser light is diffused, and melting due to convergence is less likely to occur.
  • the housing portion 181 supports and houses the inner case 16 so that the first exit port 165 of the inner case 16 faces the exit port 1811 . Further, the accommodation portion 181 accommodates the Peltier module 17 below the inner case 16 so that the second heat sink 152 and the Peltier module 17 are in thermal contact with each other.
  • the upper lid portion 182 is adhesively fixed (sealed and fixed) to the housing portion 181 so as to cover the opening on the upper surface side of the housing portion 181 from the outside.
  • the lower lid portion 183 is adhesively fixed (sealed and fixed) to the housing portion 181 with a seal portion 184 interposed therebetween so as to cover the opening on the lower surface side of the housing portion 181 from the outside.
  • the window cover part 185 covers the emission port 1811 from the outside, and is inclined at a second angle ⁇ 2 with respect to the optical axis of the white laser light WL emitted from the first emission port 165 of the inner case 16 . As shown in FIG.
  • the second angle ⁇ 2 is, for example, 1 to 5 degrees.
  • the housing portion 181, the upper lid portion 182, and the lower lid portion 183 are molded from a material with high thermal conductivity such as aluminum die-cast or magnesium die-cast.
  • the sealing portion 184 is a sealing material interposed between the accommodating portion 181 and the lower lid portion 183 for the purpose of inhibiting heat transfer between the accommodating portion 181 and the lower lid portion 183 .
  • the sealing portion 184 is a sealing member made of a material having a significantly lower thermal conductivity than the housing portion 181 and the upper lid portion 182 .
  • the seal part 184 is, for example, a rubber packing made of PTFE (polytetrafluoroethylene) resin with a thermal conductivity of 0.23 W/(m ⁇ K), and is attached to the heat sink 15 and the outer case 18 with a thermal conductivity of 96 W/(m ⁇ K). Compared to the case where ADC12 (an example of aluminum die-casting) is selected, the thermal conductivity is superiorly low.
  • the sealing portion 184 may be a thermosetting adhesive or a UV curing adhesive made of a material with low thermal conductivity.
  • the window cover part 185 is a transparent plate such as borosilicate crown optical glass.
  • the window cover part 185 is arranged so that the window cover part 185 is inclined at the second angle ⁇ 2 with respect to the optical axis of the white laser light WL. Accordingly, even if light enters the window cover portion 185 from the outside, the light reflected by the window cover portion 185 does not become stray light.
  • the heat of the blue laser light source 11B of the backlight unit 1 is transmitted to the housing portion 181 of the outer case 18 and radiated.
  • the heat of the red laser light source 11R and the green laser light source 11G of the backlight unit 1 is transferred from the lower lid portion 183 to the lower case LC by the Peltier module 17 and radiated.
  • the power of the laser light output from the blue laser light source 11B is smaller than the power of the other laser light sources (the red laser light source 11R and the green laser light source 11G). Therefore, there is no need to cool the blue laser light source 11B with the Peltier module 17, and the operation can be sufficiently ensured with the configuration in which the heat is dissipated from the accommodating portion 181 of the outer case 18 to the air inside the case C. In other words, the above configuration can reduce the number of light sources to be cooled by the Peltier module 17, resulting in an inexpensive configuration.
  • the heat transfer between the accommodation portion 181 and the lower lid portion 183 of the outer case 18 is inhibited by the sealing portion 184 .
  • the heat generated when the Peltier module 17 adjusts the temperature of the red laser light source 11R and the green laser light source 11G does not adversely affect the temperature of the blue laser light source 11B.
  • the heat generated when the temperature of the red laser light source 11R and the green laser light source 11G is adjusted by the Peltier module 17 flows into the blue laser light source 11B, which adversely affects the temperature adjustment control of the red laser light source 11R and the green laser light source 11G. never comes out. Overall, this contributes to increasing the accuracy of temperature adjustment control of the laser light source 11 by the Peltier module 17 . It also contributes to increasing the accuracy of brightness adjustment control of the laser light source 11 that requires temperature adjustment control.
  • the internal space S of the outer case 18 is a negative pressure space. That is, the air pressure inside the outer case 18 is lower than the air pressure outside the outer case 18 .
  • an external pressure acts on the upper lid portion 182, the lower lid portion 183, and the window cover portion 185 sealed and fixed from the outside. This external pressure makes it difficult for these lids (the upper lid portion 182, the lower lid portion 183, and the window cover portion 185) to come off, so that the moisture-proof sealed state of the backlight unit 1 can be maintained satisfactorily.
  • a method of making the internal space S of the outer case 18 into a negative pressure state will be described later.
  • an inspection hole 1821 for inspecting the airtightness of the internal space S is formed in the upper lid portion 182 .
  • the inspection hole 1821 is a hole that communicates the internal space S and the external space of the outer case 18, and enables an airtightness inspection of the internal space S using an inspection device 500 (see FIG. 11) or the like in the manufacturing process. A method of airtightness inspection of the internal space S will be described later.
  • the inspection hole 1821 is sealed after the airtightness inspection of the internal space S is performed.
  • a photocurable resin 1822 and a thermosetting resin 1823 are used as sealing materials.
  • temporary sealing is performed with a photocurable resin 1822 to prevent the thermosetting resin 1823 from coming off, and then permanent sealing is performed with the thermosetting resin 1823 .
  • the sealing structure of the inspection hole 1821 may use a screw 1824 and a resin O-ring 1825 as shown in FIG. 10(b). In this case, the inspection hole 1821 is closed with the screw 1824 through the resin O-ring 1825 .
  • the formation position of the inspection hole 1821 in the upper lid portion 182 is desirably a position away from the optical path of the laser light output from the laser light source 11, as shown in FIG. Further, the upper lid portion 182 of this embodiment includes a space in which the inspection hole 1821 is formed and a partition wall portion 1826 that blocks the optical path space of the laser beam. This can prevent the inspection hole 1821 from adversely affecting the optical path space of the laser beam.
  • the manufacturing method of the backlight unit 1 includes steps 1 to 7, but it is possible to add other steps, omit some steps, or change the order of the steps.
  • step 1 the window cover part 185 is mounted from the outside on the mounting part 1812 on the outer wall of the exit port 1811 of the outer case 18, and sealed and fixed with a thermosetting resin (not shown).
  • step 2 the lower lid portion 183 is placed so as to cover the opening on the lower surface side of the outer case 18 from the outside, and is sealed and fixed with a thermosetting resin (not shown).
  • the inner machine members (laser light source 11, wiring 12, collimator lens 13, dichroic mirror 14, heat sink 15, inner case 16, Peltier module 17) are accommodated in the accommodating portion 181 of the outer case 18.
  • thermosetting moisture absorbent (not shown) is applied to the inner wall of the upper lid portion 182 and cured by heating to fix the thermosetting moisture absorbent to the upper lid portion 182 . Since the thermosetting desiccant begins to absorb moisture immediately after curing is completed, it is preferable to fix the thermosetting desiccant to the parts to be assembled as soon as possible before the final sealing process of the outer case 18 . In that respect, the upper lid part 182 is the last part to be assembled, so it is suitable for fixing the thermosetting moisture absorbent, and suppresses the decrease in the moisture absorption capacity (total amount of moisture absorption) after fixing the thermosetting moisture absorbent. be able to. Conversely, a component such as the housing portion 181 that appears in the assembly from the beginning is not suitable for fixing the thermosetting moisture absorbent because the moisture absorbing ability deteriorates with time until the sealing is completed.
  • step 5 the upper lid portion 182 is placed so as to cover the opening on the upper surface side of the outer case 18 from the outside, and is fixed with a thermosetting resin (not shown). After this step 5, the inspection hole 1821 formed in the upper lid portion 182 becomes the only ventilation hole.
  • step 6 degassing is performed through the inspection hole 1821 formed in the upper lid portion 182, and the internal space S of the outer case 18 is brought into a negative pressure state.
  • an inspection device 500 (see FIG. 11) that inspects the airtightness of the outer case 18 through the inspection hole 1821 is used to put the internal space S of the housing portion 181 into a negative pressure state.
  • the inspection apparatus 500 is provided with a work setting section 501 on which a work W (backlight unit 1) can be set, and on the work setting section 501 so as to be able to move up and down.
  • the inspection device 500 includes a tubular inspection portion 502 , a vacuum pump 504 , a valve 505 , a regulator 506 , a barometer 507 and a power supply 508 .
  • the inspection unit 502 can be airtightly connected to the inspection hole 1821 of the set work W.
  • a vacuum pump 504 is connected to the inspection section 502 via an air flow path 503 .
  • a valve 505 is interposed in the air flow path 503 to open and close the air flow path 503 .
  • a regulator 506 is interposed in the air flow path 503 between the valve 505 and the vacuum pump 504 to adjust the vacuum pressure.
  • a barometer 507 is connected to the air flow path 503 between the inspection unit 502 and the valve 505 to measure the air pressure inside the workpiece W.
  • a power supply 508 is a power supply for the barometer 507 .
  • the space VS surrounding the workpiece W, the inspection unit 502, the valve 505, and the barometer 507 can be maintained in a vacuum or negative pressure state by degassing.
  • the space VS is brought into a negative pressure state so that the internal space S of the outer case 18 is brought into a negative pressure state, and the subsequent step 7 is also performed in the negative pressure space V.
  • the inspection unit 502 is airtightly connected to the inspection hole 1821 of the workpiece W set in the workpiece setting unit 501, and then the valve 505 is opened and the vacuum pump is operated. 504 is driven to evacuate the inside of the air flow path 503 and the internal space S of the workpiece W.
  • the numerical value of the barometer 507 is monitored with the valve 505 closed to determine the airtightness. In determining the airtightness, if the numerical value of the barometer 507 does not change, or if the number changes to the first decimal place, the airtightness is determined to be OK. In determining the airtightness, if the numerical value of the barometer 507 changes, the airtightness is NG.
  • the degree of negative pressure in the internal space S in step 6 is the upper lid portion 182, the lower lid portion 183, and the window cover portion 185 in any temperature range of the temperature range of actual use (-40 to 105 ° C. for in-vehicle use). It is preferable to maintain a negative pressure state (a state in which pressure is applied from the outside to the inside) even at the highest possible temperature so as not to come off. For example, it is preferable to create a negative pressure state even at a temperature (for example, 50° C.) higher than normal temperature (maximum 35° C.).
  • the room temperature can be defined as, for example, 20°C ⁇ 15°C (5 to 35°C) based on Japanese Industrial Standards (JIS Z 8703).
  • a negative pressure state at a temperature (for example, 80°C) higher than 70°C, the intermediate value between normal temperature (maximum 35°C) and maximum use temperature (here, 105°C).
  • the maximum operating temperature can be defined as 105°C, which is the maximum temperature of -40°C to 105°C, assuming that the temperature range assumed for onboard instruments is -40°C to 105°C. More preferably, it is most preferable to have a negative pressure state at the maximum operating temperature (here, 105° C.).
  • step 7 the inspection hole 1821 is closed in the negative pressure space V.
  • closing the inspection hole 1821 first, temporary sealing is performed with a photocurable resin 1822 to prevent the thermosetting resin 1823 from falling off, and then permanent sealing is performed with the thermosetting resin 1823 (see (a) in FIG. 10). )reference).
  • a sealing material such as a resin O-ring (torus-shaped rubber gasket) 1825 may be screwed into the inspection hole 1821 (see FIG. 10(b)). .
  • the internal space S of the outer case 18 is a negative pressure space by performing the step 7 in the negative pressure space V.
  • the internal space S of the outer case 18 may be a negative pressure space during actual use by performing Step 7 in a state of a high temperature (for example, 50 to 105° C.).
  • the upper lid portion 182 has the inspection hole 1821, and the step of sealing the inspection hole 1821 (step 7) is the final step for sealing the internal space S of the outer case 18.
  • the sealing and fixing of the upper lid portion 182 is performed.
  • H...Head-up display D...Image display S...Internal space V...Space W...Work 1...Backlight unit (illumination device) 11...
  • Laser light source 11B Blue laser light source (first laser light source) 11G ... green laser light source (second laser light source) 11R ...
  • red laser light source (third laser light source) REFERENCE SIGNS LIST 12 wiring 12B first wiring 12GR second wiring 13 collimator lens 13B first collimator lens 13G second collimator lens 13R third collimator lens 14 dichroic mirror 141 first dichroic mirror 142 second dichroic Mirror 15 Heat sink 151 First heat sink 1511 Heat radiation part 1512 Support part 152 Second heat sink 1521 Heat radiation part 1522 Support part 16 Inner case 161 Accommodating part 162 First entrance 163 Second entrance DESCRIPTION OF SYMBOLS 164... 3rd inlet 165... 1st outlet 166... 2nd outlet 167... 3rd outlet 17... Peltier module 18... Outer case 181... Accommodating part 1811... Outlet 1812... Mounting part 182...

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided are a lighting device, a head-up display, and a method for manufacturing lighting device, capable of appropriately maintaining a moisture-proof sealed state of an internal space. A back-light unit 1 comprises a laser light source 11 for outputting laser light, a Peltier module 17 for cooling the laser light source 11, and an outer case 18 for internally sealing the laser light source 11 and the Peltier module 17 against moisture, wherein: the outer case 18 comprises a tubular accommodating portion 181 having an emission opening 1811 for emitting the laser light formed therein, a lower lid portion 183 which is in thermal contact with the Peltier module 17 and which blocks one opening of the accommodating portion 181, and an upper lid portion 182 which blocks another opening of the accommodating portion 181; and an internal space S in a negative pressure state is formed in the accommodating portion 181.

Description

照明装置、ヘッドアップディスプレイ、照明装置の製造方法LIGHTING DEVICE, HEAD-UP DISPLAY, AND LIGHTING DEVICE MANUFACTURING METHOD
 本開示は、照明装置、ヘッドアップディスプレイ、照明装置の製造方法に関する。 The present disclosure relates to lighting devices, head-up displays, and methods of manufacturing lighting devices.
 レーザ光源をペルチェ素子で冷却する照明装置において、ペルチェ素子で冷却する箇所が高湿な空気に晒されていると、結露が生じて電気回路の故障の原因となることを懸念して、ペルチェ素子を収容するケースを防湿可能に封止することが提案されている(特許文献1参照)。 In a lighting device that cools a laser light source with a Peltier element, if the area cooled by the Peltier element is exposed to high-humidity air, condensation will occur and cause electrical circuit failure. It has been proposed to seal a case containing the in a moisture-proof manner (see Patent Document 1).
国際公開第2017/104018号WO2017/104018
 しかしながら、特許文献1では、防湿封止するための製造手順や構造が明らかにされておらず、上記の封止構造の品質を一定に保つための構成について改善の余地がある。 However, in Patent Document 1, the manufacturing procedure and structure for moisture-proof sealing are not clarified, and there is room for improvement in the configuration for keeping the quality of the sealing structure constant.
 そこで、本開示は、内部空間の防湿封止状態を適切に維持できる照明装置、ヘッドアップディスプレイ、照明装置の製造方法を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a lighting device, a head-up display, and a manufacturing method of the lighting device that can appropriately maintain the moisture-proof sealed state of the internal space.
 1つの側面では、以下のような解決手段を提供する。
 (1)レーザ光を出力するレーザ光源と、前記レーザ光源を冷却するペルチェモジュールと、前記レーザ光源及び前記ペルチェモジュールを内部に防湿封止するケースと、を備える照明装置であって、前記ケースは、前記レーザ光を出射する出射口が形成された筒状の収容部と、前記ペルチェモジュールと熱接触し、前記収容部の一方の開口を塞ぐ第1蓋部と、前記収容部の他方の開口を塞ぐ第2蓋部と、を有し、前記収容部には、負圧空間が形成されることを特徴とする。
 (2)上記(1)の構成において、前記第2蓋部には、前記収容部の気密度を検査するための検査孔が形成されていることを特徴とする。
 (3)上記(2)の構成において、前記検査孔は、前記検査後に封止部材によって封止されることを特徴とする。
 (4)上記(1)~(3)のいずれか構成において、前記収容部の外壁に、前記出射口を覆う透光性の窓カバー部が固定される。
 (5)ヘッドアップディスプレイであって、請求項1~4のいずれか1項に記載の照明装置と、前記照明装置から出力された照明光をコリメートするレンズと、前記レンズを通過した照明光によって照明される液晶パネルと、を備えることを特徴とする。
 (6)照明装置の製造方法であって、開口部を有するケースの収容部にレーザ光源とペルチェモジュールを収容する収容工程と、前記収容部を負圧状態にする負圧工程と、前記ケースを封止する封止工程と、を有することを特徴とする。
 (7)上記(6)の方法において、前記負圧工程は、前記収容部を常温よりも高い第1温度にすることで前記負圧状態とすることを特徴とする。
One aspect provides the following solutions.
(1) A lighting device comprising: a laser light source that outputs a laser light; a Peltier module that cools the laser light source; and a case that seals the laser light source and the Peltier module inside against moisture, a cylindrical accommodating portion having an exit opening for emitting the laser light; a first lid portion that is in thermal contact with the Peltier module and closes one opening of the accommodating portion; and the other opening of the accommodating portion. and a second lid that closes the housing, and a negative pressure space is formed in the housing.
(2) In the configuration of (1) above, the second lid portion is formed with an inspection hole for inspecting airtightness of the accommodating portion.
(3) In the configuration of (2) above, the inspection hole is sealed with a sealing member after the inspection.
(4) In any one of the configurations (1) to (3) above, a translucent window cover is fixed to the outer wall of the housing to cover the exit port.
(5) A head-up display, comprising: a lighting device according to any one of claims 1 to 4; a lens for collimating illumination light output from the lighting device; and illumination light passing through the lens. and an illuminated liquid crystal panel.
(6) A method for manufacturing a lighting device, comprising: a housing step of housing a laser light source and a Peltier module in a housing portion of a case having an opening; a negative pressure step of making the housing portion into a negative pressure state; and a sealing step of sealing.
(7) In the method of (6) above, the negative pressure step is characterized in that the negative pressure state is created by setting the accommodating portion to a first temperature higher than room temperature.
 本開示によれば、内部空間の防湿封止状態を適切に維持することが可能となる。 According to the present disclosure, it is possible to appropriately maintain the moisture-proof sealed state of the internal space.
ヘッドアップディスプレイの構成概略図である。1 is a schematic configuration diagram of a head-up display; FIG. 画像表示器の構成概略図である。2 is a schematic configuration diagram of an image display device; FIG. 照明装置の斜視図である。It is a perspective view of an illuminating device. 照明装置の部品構成斜視図である。It is a component structure perspective view of an illuminating device. 照明装置の要部斜視図である。It is a principal part perspective view of an illuminating device. 別角度から視た照明装置の要部斜視図である。FIG. 11 is a perspective view of a main part of the lighting device viewed from another angle; 照明装置の断面図(図3のXY平面におけるA-A断面図)である。4 is a cross-sectional view of the lighting device (a cross-sectional view taken along the line AA in the XY plane of FIG. 3); FIG. 照明装置の断面図(図3のYZ平面におけるB-B断面図)である。FIG. 4 is a cross-sectional view of the illumination device (cross-sectional view taken along the line BB in the YZ plane of FIG. 3); 照明装置の断面図(図3のXZ平面におけるC-C断面図)である。FIG. 4 is a cross-sectional view of the lighting device (CC cross-sectional view in the XZ plane of FIG. 3); (a)は検査孔の拡大断面図、(b)は検査孔の封止構造の他例を示す斜視図である。(a) is an enlarged cross-sectional view of an inspection hole, and (b) is a perspective view showing another example of the sealing structure of the inspection hole. 検査装置の構成概略図である。1 is a schematic configuration diagram of an inspection device; FIG.
 以下、添付図面を参照しながら各実施例について詳細に説明する。 Each embodiment will be described in detail below with reference to the accompanying drawings.
(ヘッドアップディスプレイHの構成)
 ヘッドアップディスプレイHは、車両のインストルメントパネルに内蔵されており、車両の搭乗者Pに車両の走行速度や各種警告情報、経路案内情報などの各種車両情報を表示する車載計器である。
(Structure of head-up display H)
The head-up display H is built in the instrument panel of the vehicle, and is an in-vehicle instrument that displays various vehicle information such as vehicle traveling speed, various warning information, and route guidance information to the occupant P of the vehicle.
 図1を参照する。ヘッドアップディスプレイHは、画像表示器D、反射鏡M、制御回路基板B、ケースCを備える。ヘッドアップディスプレイHは、画像表示器Dに車両情報を表す画像を表示し、この画像から出力される表示光DLを車両のウインドシールドWSに向けて投射する。搭乗者Pは、ウインドシールドWSの前方に車両情報を表す画像の虚像Vを視認することができる。 See Figure 1. The head-up display H includes an image display D, a reflector M, a control circuit board B, and a case C. The head-up display H displays an image representing vehicle information on the image display device D, and projects display light DL output from this image toward the windshield WS of the vehicle. A passenger P can visually recognize a virtual image V representing vehicle information in front of the windshield WS.
 画像表示器Dは、車両情報を数値や図などによって表した画像を表示する。画像表示器Dは、照明装置1を内蔵するものであり、詳細構成については後述する。 The image display D displays an image that expresses the vehicle information using numerical values, diagrams, and the like. The image display device D incorporates the illumination device 1, and the detailed configuration thereof will be described later.
 反射鏡Mは、例えば、凹面鏡である。反射鏡Mは、画像表示器Dが出力する表示光DLをケースC内で折り返すことにより表示光DLの光路長を長くすることができる。光路長が長くなるほど、ウインドシールドWSからより遠くの位置に虚像Vが結像し、より遠方に虚像Vを表示することができる。また、ウインドシールドWSの湾曲形状による虚像Vの歪みを相殺する曲面形状を反射鏡Mが有することで、虚像Vの歪みを抑制することができる。なお、反射鏡Mは、1つの凹面鏡に限らず、複数の平面鏡と凹面鏡で構成して、複数回の光の折り返しをしてもよい。 The reflector M is, for example, a concave mirror. The reflecting mirror M can extend the optical path length of the display light DL by folding back the display light DL output from the image display device D within the case C. FIG. The longer the optical path length, the farther the virtual image V is formed from the windshield WS, and the farther the virtual image V can be displayed. Moreover, the distortion of the virtual image V can be suppressed by the reflecting mirror M having a curved surface shape that offsets the distortion of the virtual image V due to the curved shape of the windshield WS. In addition, the reflecting mirror M is not limited to one concave mirror, and may be composed of a plurality of plane mirrors and concave mirrors to turn back light a plurality of times.
 制御回路基板Bは、画像表示器Dに内蔵された各種電子部品を制御する制御回路を有する回路基板である。 The control circuit board B is a circuit board having a control circuit for controlling various electronic components built into the image display device D.
 ケースCは、画像表示器D、反射鏡M、制御回路基板B、を収容する。ケースCは、ロアケースLC、アッパーケースUCを備える。 The case C accommodates the image display D, reflector M, and control circuit board B. Case C includes a lower case LC and an upper case UC.
 ロアケースLCは、アルミダイキャストやマグネシウムダイキャストなどの金属製の容器であり、内面が反射抑制のための黒色塗装が施されている。 The lower case LC is a metal container such as aluminum die-cast or magnesium die-cast, and the inner surface is painted black to suppress reflection.
 アッパーケースUCは、樹脂製の蓋であり、反射抑制のために黒色に着色されたポリカーボネートなどの樹脂で成形される。アッパーケースUCは表示光DLを出射するための出射口が形成されている。この出射口から塵がケースC内に侵入しないように、出射口は透明な防塵カバーUC1で覆われる。防塵カバーUC1は、厚さ0.5~2mm(ミリメートル)のアクリル樹脂などの透明な樹脂フィルムである。また、アッパーケースUCの出射口の近傍には、出射口から入射した外光(主に太陽光)ELが直接的に画像表示器Dに入射することを防ぐ遮光壁UC2が内面に形成されている。 The upper case UC is a lid made of resin, and is molded from a resin such as polycarbonate colored black to suppress reflection. The upper case UC is formed with an emission port for emitting the display light DL. To prevent dust from entering the case C through this outlet, the outlet is covered with a transparent dustproof cover UC1. The dustproof cover UC1 is a transparent resin film such as acrylic resin with a thickness of 0.5 to 2 mm (millimeters). Further, in the vicinity of the exit opening of the upper case UC, a light shielding wall UC2 is formed on the inner surface to prevent external light (mainly sunlight) EL entering from the exit opening from directly entering the image display device D. there is
(画像表示器Dの構成)
 図2を参照する。画像表示器Dは、バックライトユニット(照明装置)1、回転拡散板2、レンズ3、液晶パネル4、を備える。
(Configuration of image display device D)
Please refer to FIG. The image display device D includes a backlight unit (illumination device) 1 , a rotating diffusion plate 2 , a lens 3 and a liquid crystal panel 4 .
 バックライトユニット1は、コヒーレントな白色レーザ光WLを出力する照明装置であり、液晶パネル4を照明する。制御回路基板Bは、白色レーザ光WLのホワイトバランスの調整制御をする。この調整制御は、内蔵された光源の温度に応じて内蔵された各光源の電流値を制御するものである。バックライトユニット1の詳細構成については、後述する。 The backlight unit 1 is a lighting device that outputs coherent white laser light WL, and illuminates the liquid crystal panel 4 . The control circuit board B adjusts and controls the white balance of the white laser light WL. This adjustment control controls the current value of each built-in light source according to the temperature of the built-in light source. A detailed configuration of the backlight unit 1 will be described later.
 回転拡散板2は、コヒーレントなレーザ光で物体を照明する場合に生じる斑点模様のスペックルノイズ(Speckle Noise)を低減するためのスペックル抑制部である。回転拡散板2は、円盤上の拡散板21と、拡散板21を回転させる駆動部22を備える。回転拡散板2は、図3に示すように、バックライトユニット1に固定され、バックライトユニット1が出力する白色レーザ光WLを拡散板21で拡散する。回転拡散板2を回転させて、バックライトユニット1から出射される白色レーザ光WLが拡散板21の異なる箇所で拡散されることにより、多様な散乱パターンの白色レーザ光WLとなり、スペックルノイズが抑制される。 The rotating diffusion plate 2 is a speckle suppression unit for reducing speckle noise in a speckle pattern that occurs when illuminating an object with coherent laser light. The rotating diffusion plate 2 includes a disk-shaped diffusion plate 21 and a drive unit 22 that rotates the diffusion plate 21 . As shown in FIG. 3 , the rotary diffusion plate 2 is fixed to the backlight unit 1 and diffuses the white laser light WL output by the backlight unit 1 with the diffusion plate 21 . By rotating the rotary diffuser plate 2 and diffusing the white laser light WL emitted from the backlight unit 1 at different locations on the diffuser plate 21, the white laser light WL has various scattering patterns and speckle noise is reduced. Suppressed.
 回転拡散板2は、バックライトユニット1の出射口に拡散板21が対向するように、バックライトユニット1の筐体に固定される。より具体的には、回転拡散板2は、後述するアウターケース18の収容部181の外側に形成された載置部1812に支持された状態で、収容部181にネジで固定される。 The rotating diffuser plate 2 is fixed to the housing of the backlight unit 1 so that the diffuser plate 21 faces the exit port of the backlight unit 1 . More specifically, the rotary diffusion plate 2 is fixed to the housing portion 181 with screws while being supported by a mounting portion 1812 formed outside the housing portion 181 of the outer case 18 to be described later.
 レンズ3は、回転拡散板2を通過した白色レーザ光WLの光をコリメートして、液晶パネル4の面を均一に照明するためのレンズである。レンズ3は、少なくともコリメートレンズを含み、さらに、ケーラー照明系のレンズを含んでもよい。 The lens 3 is a lens for collimating the light of the white laser light WL that has passed through the rotating diffusion plate 2 to uniformly illuminate the surface of the liquid crystal panel 4 . Lens 3 includes at least a collimating lens and may also include a lens of a Koehler illumination system.
 液晶パネル4は、TFT(Thin Film Transistor)型の液晶パネルである。液晶パネル4は、車両情報を表す図形や数字を画像として表示し、背面からレンズ3によってコリメートされた白色レーザ光WLで照明されることにより、表示した画像から表示光DLを出力する。 The liquid crystal panel 4 is a TFT (Thin Film Transistor) type liquid crystal panel. The liquid crystal panel 4 displays figures and numbers representing vehicle information as images, and outputs display light DL from the displayed image by being illuminated with white laser light WL collimated by the lens 3 from the back.
 液晶パネル4は、白色レーザ光WLの光軸に対し第1角度θ1傾いて配置される。第1角度θ1は、反射鏡Mに反射された外光ELが液晶パネル4で反射した後にケースCの内壁(例えば、遮光壁UC2)に向かうように設定されている。これにより、外光ELが液晶パネル4で反射した後に、再び反射鏡Mに反射されてウインドシールドWSに投射されて迷光となることを防ぐ。第1角度θ1は、例えば、0度以上30度未満の角度である。 The liquid crystal panel 4 is arranged at a first angle θ1 with respect to the optical axis of the white laser light WL. The first angle θ1 is set so that the external light EL reflected by the reflecting mirror M is reflected by the liquid crystal panel 4 and then directed toward the inner wall of the case C (for example, the light shielding wall UC2). This prevents the external light EL from being reflected by the liquid crystal panel 4, reflected again by the reflecting mirror M, projected onto the windshield WS, and becoming stray light. The first angle θ1 is, for example, an angle of 0 degrees or more and less than 30 degrees.
(バックライトユニット1の構成)
 図4~図9を参照する。バックライトユニット1は、レーザ光源11、配線12、コリメータレンズ13、ダイクロイックミラー14、ヒートシンク15、インナーケース16、ペルチェモジュール17、アウターケース18、を備える。
(Configuration of backlight unit 1)
Please refer to FIGS. 4-9. The backlight unit 1 includes a laser light source 11 , wiring 12 , collimator lens 13 , dichroic mirror 14 , heat sink 15 , inner case 16 , Peltier module 17 and outer case 18 .
 レーザ光源11は、青色レーザ光源11B、緑色レーザ光源11G、赤色レーザ光源11R、を備える。 The laser light source 11 includes a blue laser light source 11B, a green laser light source 11G, and a red laser light source 11R.
 青色レーザ光源11Bは、中心波長が約632nm(ナノメートル)の青色光を出力するレーザダイオードである。 The blue laser light source 11B is a laser diode that outputs blue light with a center wavelength of approximately 632 nm (nanometers).
 緑色レーザ光源11Gは、中心波長が約532nm(ナノメートル)の緑色光を出力するレーザダイオードである。 The green laser light source 11G is a laser diode that outputs green light with a center wavelength of approximately 532 nm (nanometers).
 赤色レーザ光源11Rは、中心波長が約488nm(ナノメートル)の赤色光を出力するレーザダイオードである。 The red laser light source 11R is a laser diode that outputs red light with a central wavelength of approximately 488 nm (nanometers).
 配線12は、レーザ光源11を点灯させる回路配線、及び、温度を検出するサーミスタが実装されたフレキシブルプリント基板である。配線12は、第1配線12B、第2配線12GRを備える。 The wiring 12 is a flexible printed board on which circuit wiring for lighting the laser light source 11 and a thermistor for detecting temperature are mounted. The wiring 12 includes a first wiring 12B and a second wiring 12GR.
 第1配線12Bは、青色レーザ光源11Bを点灯させる回路配線、及び、青色レーザ光源11Bの温度を検出する第1サーミスタTh1が実装されている。 The first wiring 12B is mounted with a circuit wiring for lighting the blue laser light source 11B and a first thermistor Th1 for detecting the temperature of the blue laser light source 11B.
 第2配線12GRは、緑色レーザ光源11Gを点灯させる回路配線、赤色レーザ光源11Rを点灯させる回路配線、及び、緑色レーザ光源11Gと赤色レーザ光源11Rの温度を検出する第2サーミスタTh2が実装されている。 The second wiring 12GR is mounted with a circuit wiring for lighting the green laser light source 11G, a circuit wiring for lighting the red laser light source 11R, and a second thermistor Th2 for detecting the temperatures of the green laser light source 11G and the red laser light source 11R. there is
 コリメータレンズ13は、レーザ光源11のビームスポット径を拡大する。コリメータレンズ13は、青色レーザ光源11Bの光をコリメートする第1コリメータレンズ13B、緑色レーザ光源11Gの光をコリメートする第2コリメータレンズ13G、赤色レーザ光源11Rの光をコリメートする第3コリメータレンズ13R、を備える。 The collimator lens 13 expands the beam spot diameter of the laser light source 11 . The collimator lens 13 includes a first collimator lens 13B for collimating light from the blue laser light source 11B, a second collimator lens 13G for collimating light from the green laser light source 11G, a third collimator lens 13R for collimating light from the red laser light source 11R, Prepare.
 ダイクロイックミラー14は、所定の波長を反射し、その他の波長の光を透過するミラーである。ダイクロイックミラー14は、例えば、ホウケイ酸塩クラウン光学ガラスなどの基材に、誘電体コーティングを施すことにより製造される。ダイクロイックミラー14は、緑色光を反射する第1ダイクロイックミラー141、緑色光及び青色光を反射する第2ダイクロイックミラー142、を備える。 The dichroic mirror 14 is a mirror that reflects light of a predetermined wavelength and transmits light of other wavelengths. Dichroic mirror 14 is manufactured by applying a dielectric coating to a substrate such as, for example, borosilicate crown optical glass. The dichroic mirror 14 includes a first dichroic mirror 141 that reflects green light and a second dichroic mirror 142 that reflects green light and blue light.
 ヒートシンク15は、レーザ光源11及び配線12を支持し、レーザ光源11の熱を他の部材に伝達する。ヒートシンク15は、アルミダイキャストやマグネシウムダイキャストなどの熱伝導率が高い材料で成形される。ヒートシンク15は、第1ヒートシンク151、第2ヒートシンク152、を備える。 The heat sink 15 supports the laser light source 11 and wiring 12, and transfers the heat of the laser light source 11 to other members. The heat sink 15 is made of a material with high thermal conductivity such as die-cast aluminum or die-cast magnesium. The heat sink 15 has a first heat sink 151 and a second heat sink 152 .
 第1ヒートシンク151は、平板状の放熱部1511と、放熱部1511と直交して延びる平板状の支持部1512を有する。支持部1512には、青色レーザ光源11B及び第1配線12Bが固定される。放熱部1511は、図7に示すように、後述するアウターケース18の収容部181に熱接触し、青色レーザ光源11Bの熱が収容部181に伝わって放熱する。第1ヒートシンク151は、ペルチェモジュール17、後述するアウターケース18の上蓋部182及び下蓋部183には接触しない。なお、放熱部1511と収容部181とが熱接触するにあたって、互いにサーマルペーストなどの熱伝導媒体を介して熱接触することが好ましいが、放熱部1511と収容部181とが直接接触する構成としてもよい。 The first heat sink 151 has a flat plate-shaped heat radiating portion 1511 and a flat plate-shaped support portion 1512 extending perpendicularly to the heat radiating portion 1511 . The blue laser light source 11B and the first wiring 12B are fixed to the supporting portion 1512 . As shown in FIG. 7, the heat radiating portion 1511 is in thermal contact with a housing portion 181 of the outer case 18, which will be described later. The first heat sink 151 does not come into contact with the Peltier module 17 and the upper lid portion 182 and the lower lid portion 183 of the outer case 18, which will be described later. When the heat radiating portion 1511 and the housing portion 181 are brought into thermal contact with each other, it is preferable that the heat radiating portion 1511 and the housing portion 181 are in thermal contact with each other via a thermally conductive medium such as thermal paste. good.
 第2ヒートシンク152は、平板状の放熱部1521と、放熱部1521と直交して延びる平板状の支持部1522を有する。支持部1522には、緑色レーザ光源11G、赤色レーザ光源11R、及び第2配線12GRが固定される。放熱部1521は、図8に示すように、ペルチェモジュール17と熱接触し、緑色レーザ光源11G及び赤色レーザ光源11Rの熱がペルチェモジュール17に伝わって放熱する。なお、熱接触するにあたって、放熱部1521とペルチェモジュール17は後述するサーマルペースト17aを介して熱接触するが、互いに直接接触する構成としてもよい。 The second heat sink 152 has a flat plate-shaped heat radiating portion 1521 and a flat plate-shaped support portion 1522 extending perpendicularly to the heat radiating portion 1521 . A green laser light source 11G, a red laser light source 11R, and a second wiring 12GR are fixed to the supporting portion 1522 . As shown in FIG. 8, the heat dissipation part 1521 is in thermal contact with the Peltier module 17, and the heat of the green laser light source 11G and the red laser light source 11R is transmitted to the Peltier module 17 and radiated. In the thermal contact, the heat radiating part 1521 and the Peltier module 17 are thermally contacted via a thermal paste 17a, which will be described later, but they may be configured to be in direct contact with each other.
 インナーケース16は、ヒートシンク15やアウターケース18に比べて熱伝導率が優位的に低い樹脂製のケースである。インナーケース16は、例えば、熱伝導率0.29W/(m・K)のPPS(Polyphenylene sulfide)樹脂であり、ヒートシンク15やアウターケース18に熱伝導率96W/(m・K)のADC12(アルミダイキャストの一例)を選定した場合に比べ、熱伝導率が優位的に低い。インナーケース16は、レーザ光源11の各色の光をコリメータレンズ13でコリメートした後、ダイクロイックミラー14で白色レーザ光に合成する配置となるように、レーザ光源11、コリメータレンズ13、ダイクロイックミラー14を収容する。 The inner case 16 is a case made of resin whose thermal conductivity is superior to that of the heat sink 15 and the outer case 18 . The inner case 16 is, for example, PPS (polyphenylene sulfide) resin with a thermal conductivity of 0.29 W/(m·K), and the heat sink 15 and outer case 18 are made of ADC 12 (aluminum) with a thermal conductivity of 96 W/(m·K). An example of die casting), the thermal conductivity is superiorly low compared to the case where it is selected. The inner case 16 accommodates the laser light source 11, the collimator lens 13, and the dichroic mirror 14 so that the light of each color from the laser light source 11 is collimated by the collimator lens 13 and then synthesized into white laser light by the dichroic mirror 14. do.
 インナーケース16は、収容部161を有する。収容部161の側壁には、第1入射口162、第2入射口163、第3入射口164、第1出射口165、第2出射口166、第3出射口167が形成されている。第1入射口162と第3出射口167は互いに向き合う位置に形成される。第2入射口163と第2出射口166は互いに向き合う位置に形成される。第3入射口164と第1出射口165は互いに向き合う位置に形成される。第2入射口163と第2出射口166を結ぶ線と、第3入射口164と第1出射口165を結ぶ線は、略平行な位置関係にある。そして、第1入射口162と第3出射口167を結ぶ線は、第2入射口163と第2出射口166を結ぶ線、及び、第3入射口164と第1出射口165を結ぶ線に対し略直交する位置関係にある。 The inner case 16 has a housing portion 161 . A first inlet 162 , a second inlet 163 , a third inlet 164 , a first outlet 165 , a second outlet 166 , and a third outlet 167 are formed in the side wall of the accommodating portion 161 . The first entrance 162 and the third exit 167 are formed to face each other. The second entrance 163 and the second exit 166 are formed to face each other. The third entrance 164 and the first exit 165 are formed to face each other. A line connecting the second entrance 163 and the second exit 166 and a line connecting the third entrance 164 and the first exit 165 are substantially parallel to each other. The line connecting the first inlet 162 and the third outlet 167 is the line connecting the second inlet 163 and the second outlet 166, and the line connecting the third inlet 164 and the first outlet 165. It is in a positional relationship that is substantially orthogonal to.
 第1ダイクロイックミラー141は、第1入射口162と第3出射口167を結ぶ線と、第2入射口163と第2出射口166を結ぶ線の交点に対応する収容部161の位置に固定される。 The first dichroic mirror 141 is fixed at a position of the housing portion 161 corresponding to the intersection of a line connecting the first entrance 162 and the third exit 167 and a line connecting the second entrance 163 and the second exit 166 . be.
 第2ダイクロイックミラー142は、第1入射口162と第3出射口167を結ぶ線と、第3入射口164と第1出射口165を結ぶ線の交点に対応する収容部161の位置に固定される。 The second dichroic mirror 142 is fixed at a position of the housing portion 161 corresponding to the intersection of a line connecting the first entrance 162 and the third exit 167 and a line connecting the third entrance 164 and the first exit 165 . be.
 インナーケース16は、第1入射口162から青色レーザ光源11Bが収容部161に挿入された状態で、収容部161に青色レーザ光源11Bが固定される。また、第2入射口163から緑色レーザ光源11Gが収容部161に挿入された状態で、収容部161に緑色レーザ光源11Gが固定される。さらに、第3入射口164から赤色レーザ光源11Rが収容部161に挿入された状態で、収容部161に赤色レーザ光源11Rが固定される。 In the inner case 16, the blue laser light source 11B is fixed to the housing portion 161 in a state in which the blue laser light source 11B is inserted into the housing portion 161 from the first inlet 162. Further, the green laser light source 11G is fixed to the housing portion 161 in a state where the green laser light source 11G is inserted into the housing portion 161 from the second inlet 163 . Furthermore, the red laser light source 11R is fixed to the housing portion 161 in a state where the red laser light source 11R is inserted into the housing portion 161 from the third entrance 164 .
 第1コリメータレンズ13Bは、青色レーザ光源11Bと第1ダイクロイックミラー141の間に位置するように、収容部161に固定される。 The first collimator lens 13B is fixed to the housing portion 161 so as to be positioned between the blue laser light source 11B and the first dichroic mirror 141.
 第2コリメータレンズ13Gは、緑色レーザ光源11Gと第1ダイクロイックミラー141の間に位置するように、収容部161に固定される。 The second collimator lens 13G is fixed to the housing portion 161 so as to be positioned between the green laser light source 11G and the first dichroic mirror 141.
 第3コリメータレンズ13Rは、赤色レーザ光源11Rと第2ダイクロイックミラー142の間に位置するように、収容部161に固定される。 The third collimator lens 13R is fixed to the housing portion 161 so as to be positioned between the red laser light source 11R and the second dichroic mirror 142.
 インナーケース16の収容部161に収容されたレーザ光源11、コリメータレンズ13、ダイクロイックミラー14は、以下のように白色レーザ光WLを合成する。青色レーザ光源11Bが発した青色光は、第1ダイクロイックミラー141を透過した後、第2ダイクロイックミラー142で反射して第1出射口165に向かう。緑色レーザ光源11Gが発した緑色光は、第1ダイクロイックミラー142及び第2ダイクロイックミラー142で反射して第1出射口165に向かう。赤色レーザ光源11Rが発した赤色光は、第2ダイクロイックミラー142を透過して第1出射口165に向かう。このようにして、青色光、緑色光、赤色光は、インナーケース16の収容部161を通って第1出射口165に向かう過程で白色レーザ光WLとして合成される。 The laser light source 11, the collimator lens 13, and the dichroic mirror 14 housed in the housing portion 161 of the inner case 16 synthesize the white laser light WL as follows. The blue light emitted by the blue laser light source 11 B is transmitted through the first dichroic mirror 141 and then reflected by the second dichroic mirror 142 toward the first exit port 165 . The green light emitted by the green laser light source 11G is reflected by the first dichroic mirror 142 and the second dichroic mirror 142 and travels toward the first exit port 165 . The red light emitted by the red laser light source 11</b>R passes through the second dichroic mirror 142 and travels toward the first exit 165 . In this way, the blue light, green light, and red light are synthesized as white laser light WL in the process of passing through the accommodation portion 161 of the inner case 16 and heading toward the first emission port 165 .
 しかしながら、意図しない波長のレーザ光がダイクロイックミラー14を透過あるいは反射してインナーケース16の内壁に照射された場合に、樹脂製のインナーケース16が融解し、照明装置1の機能に悪影響が生じる可能性がある。これは、例えば、青色レーザ光源11Bと赤色レーザ光源11Rを逆に組み付けるなどの誤組や、レーザ光源11の不良や故障によって、レーザ光源11から想定と異なる波長のレーザ光がダイクロイックミラー14に出射された場合に生じる。あるいは、ダイクロイックミラー14の誤組や不良によっても発生する可能性がある。 However, if a laser beam of an unintended wavelength passes through or is reflected by the dichroic mirror 14 and irradiates the inner wall of the inner case 16, the inner case 16 made of resin may melt, adversely affecting the function of the lighting device 1. have a nature. This is because, for example, a laser beam with a different wavelength than expected is emitted from the laser light source 11 to the dichroic mirror 14 due to an incorrect assembly such as reverse assembly of the blue laser light source 11B and the red laser light source 11R, or a defect or failure of the laser light source 11. occurs when Alternatively, it may occur due to misassembly or failure of the dichroic mirror 14 .
 上述した点を考慮して、インナーケース16には第2出射口166及び第3出射口167が形成されている。これにより、図9の点線矢印で示されているように、レーザ光が想定外の光路で第1出射口165でない方向に向かった場合に、レーザ光がインナーケース16の第2出射口166あるいは第3出射口167を通過し、外側の金属製アウターケース18の内壁(より具体的には、後述するアウターケース18の収容部181の内壁)に照射される。したがって、上述した樹脂製のインナーケース16の融解を防ぐことができる。 In consideration of the above points, the inner case 16 is formed with a second outlet 166 and a third outlet 167 . As a result, as indicated by the dotted line arrow in FIG. 9, when the laser light travels along an unexpected optical path in a direction other than the first emission port 165, the laser light is directed to the second emission port 166 of the inner case 16 or The light passes through the third outlet 167 and irradiates the inner wall of the outer metallic outer case 18 (more specifically, the inner wall of the accommodating portion 181 of the outer case 18 to be described later). Therefore, melting of the inner case 16 made of resin can be prevented.
 ペルチェモジュール17は、ペルチェ効果により、一方の面から他方の面に熱を移動させる機能を持つ熱電素子を有する。ペルチェモジュール17は、一方の面が第2ヒートシンク152と熱接触し、他方の面が後述するアウターケース18の下蓋部183に熱接触する。ペルチェモジュール17は、一方の面にサーマルペースト17aが塗られ、他方の面にサーマルペースト17bが塗られている。つまり、ペルチェモジュール17と第2ヒートシンク152はサーマルペースト17aを介して互いに熱接触する。そして、ペルチェモジュール17と下蓋部183はサーマルペースト17bを介して互いに熱接触する。 The Peltier module 17 has a thermoelectric element that has the function of transferring heat from one surface to the other by the Peltier effect. One surface of the Peltier module 17 is in thermal contact with the second heat sink 152, and the other surface is in thermal contact with the lower lid portion 183 of the outer case 18, which will be described later. The Peltier module 17 has one surface coated with thermal paste 17a and the other surface coated with thermal paste 17b. That is, the Peltier module 17 and the second heat sink 152 are in thermal contact with each other through the thermal paste 17a. The Peltier module 17 and the lower lid portion 183 are in thermal contact with each other via the thermal paste 17b.
 ここで、本開示の発明者は、本実施形態であるヘッドアップディスプレイHのように車載計器に照明装置1が搭載される場合、車載計器の周辺環境(具体的には、インストルメントパネル内)が高温で高湿となることを想定した。周辺環境が高い湿度である場合、ペルチェモジュール17が高湿な空気に晒されて結露する可能性があり、この結露により照明装置1の機能に悪影響を及ぼす可能性があることを、本開示の発明者は認識した。 Here, the inventor of the present disclosure believes that when the lighting device 1 is mounted on an on-vehicle instrument like the head-up display H of the present embodiment, the surrounding environment of the on-vehicle instrument (specifically, inside the instrument panel) was assumed to be hot and humid. If the surrounding environment has high humidity, the Peltier module 17 may be exposed to high humidity air and may condense, and the condensation may adversely affect the function of the lighting device 1. The inventor has recognized.
 アウターケース18は、レーザ光源11、配線12、コリメータレンズ13、ダイクロイックミラー14、ヒートシンク15、インナーケース16、ペルチェモジュール17を収容するケースである。 The outer case 18 is a case that accommodates the laser light source 11, the wiring 12, the collimator lens 13, the dichroic mirror 14, the heat sink 15, the inner case 16, and the Peltier module 17.
 アウターケース18の内部空間Sは、製造時に湿度の管理がされた状態で密閉封止されている。つまり、内部空間Sは、防湿封止空間である。この内部空間Sにより、前述したペルチェモジュール17が高湿な空気に晒されず、結露しない。 The internal space S of the outer case 18 is hermetically sealed in a state where humidity is controlled during manufacturing. That is, the internal space S is a moisture-proof sealed space. Due to this internal space S, the aforementioned Peltier module 17 is not exposed to high-humidity air and no dew condensation occurs.
 アウターケース18は、収容部181、上蓋部182(第2蓋部)、下蓋部183(第1蓋部)、シール部184、窓カバー部185を有する。 The outer case 18 has a housing portion 181 , an upper lid portion 182 (second lid portion), a lower lid portion 183 (first lid portion), a seal portion 184 and a window cover portion 185 .
 収容部181は、上面及び下面に開口が形成された筒状のケースである。収容部181は、出射口1811が形成されている。また、収容部181の外壁には出射口1811の周囲に凹状の載置部1812が形成されている。 The housing portion 181 is a cylindrical case with openings formed on the upper and lower surfaces. The accommodating portion 181 is formed with an exit port 1811 . A recessed mounting portion 1812 is formed around the exit port 1811 on the outer wall of the housing portion 181 .
 収容部181は、内壁に第1傾斜部1813と第2傾斜部1814が形成されている。第1傾斜部1813は、インナーケース16の第2出射口166に対向する位置に形成されている。第2傾斜部1814は、インナーケース16の第3出射口167に対向する位置に形成されている。第1傾斜部1813は、第2出射口166から出射した意図しないレーザ光が、収容部181の内壁で反射して第1ダイクロイックミラー141に同じ光路で返らないように傾斜している。また、第2傾斜部1814は、第3出射口167から出射した意図しないレーザ光が、収容部181の内壁で反射して第2ダイクロイックミラー142に同じ光路で返らないように傾斜している。 A first inclined portion 1813 and a second inclined portion 1814 are formed on the inner wall of the housing portion 181 . The first inclined portion 1813 is formed at a position facing the second outlet 166 of the inner case 16 . The second inclined portion 1814 is formed at a position facing the third outlet 167 of the inner case 16 . The first inclined portion 1813 is inclined so that unintended laser light emitted from the second emission port 166 is not reflected by the inner wall of the housing portion 181 and returned to the first dichroic mirror 141 along the same optical path. Second inclined portion 1814 is inclined so that unintended laser light emitted from third outlet 167 does not reflect on the inner wall of housing portion 181 and return to second dichroic mirror 142 along the same optical path.
 また、第1傾斜部1813及び第2傾斜部1814の表面は、微細な凹凸形状(いわゆるシボ形状)を有する。これにより、意図しないレーザ光を拡散して、集光による融解が生じにくい。 In addition, the surfaces of the first inclined portion 1813 and the second inclined portion 1814 have fine uneven shapes (so-called embossed shapes). As a result, unintended laser light is diffused, and melting due to convergence is less likely to occur.
 収容部181は、出射口1811にインナーケース16の第1出射口165が対向するように、インナーケース16を支持し収容する。また、収容部181は、第2ヒートシンク152とペルチェモジュール17が熱接触するように、ペルチェモジュール17をインナーケース16よりも下面側に収容する。 The housing portion 181 supports and houses the inner case 16 so that the first exit port 165 of the inner case 16 faces the exit port 1811 . Further, the accommodation portion 181 accommodates the Peltier module 17 below the inner case 16 so that the second heat sink 152 and the Peltier module 17 are in thermal contact with each other.
 上蓋部182は、収容部181の上面側の開口を外側から覆うように、収容部181に接着固定(封止固定)される。下蓋部183は、収容部181の下面側の開口を外側から覆うように、シール部184を挟んで収容部181に接着固定(封止固定)される。窓カバー部185は、出射口1811を外側から覆うように、かつ、インナーケース16の第1出射口165から出射する白色レーザ光WLの光軸に対し窓カバー部185が第2角度θ2傾斜するように、載置部1812に接着固定(封止固定)される。第2角度θ2は、例えば、1~5度である。 The upper lid portion 182 is adhesively fixed (sealed and fixed) to the housing portion 181 so as to cover the opening on the upper surface side of the housing portion 181 from the outside. The lower lid portion 183 is adhesively fixed (sealed and fixed) to the housing portion 181 with a seal portion 184 interposed therebetween so as to cover the opening on the lower surface side of the housing portion 181 from the outside. The window cover part 185 covers the emission port 1811 from the outside, and is inclined at a second angle θ2 with respect to the optical axis of the white laser light WL emitted from the first emission port 165 of the inner case 16 . As shown in FIG. The second angle θ2 is, for example, 1 to 5 degrees.
 収容部181、上蓋部182、下蓋部183は、アルミダイキャストやマグネシウムダイキャストなどの熱伝導率が高い材料で成形される。 The housing portion 181, the upper lid portion 182, and the lower lid portion 183 are molded from a material with high thermal conductivity such as aluminum die-cast or magnesium die-cast.
 シール部184は、収容部181と下蓋部183の間の熱移動を阻害することを目的として、収容部181と下蓋部183の間に介在するシール材である。シール部184は、収容部181及び上蓋部182に対し優位的に熱伝導率が低い材料で構成されたシール材である。シール部184は、例えば、熱伝導率0.23W/(m・K)のPTFE(polytetrafluoroethylene)樹脂製のゴムパッキンであり、ヒートシンク15やアウターケース18に熱伝導率96W/(m・K)のADC12(アルミダイキャストの一例)を選定した場合に比べ、熱伝導率が優位的に低い。なお、シール部184は、熱伝導率が低い材料で構成された熱硬化接着剤やUV硬化接着剤などであってもよい。 The sealing portion 184 is a sealing material interposed between the accommodating portion 181 and the lower lid portion 183 for the purpose of inhibiting heat transfer between the accommodating portion 181 and the lower lid portion 183 . The sealing portion 184 is a sealing member made of a material having a significantly lower thermal conductivity than the housing portion 181 and the upper lid portion 182 . The seal part 184 is, for example, a rubber packing made of PTFE (polytetrafluoroethylene) resin with a thermal conductivity of 0.23 W/(m·K), and is attached to the heat sink 15 and the outer case 18 with a thermal conductivity of 96 W/(m·K). Compared to the case where ADC12 (an example of aluminum die-casting) is selected, the thermal conductivity is superiorly low. Note that the sealing portion 184 may be a thermosetting adhesive or a UV curing adhesive made of a material with low thermal conductivity.
 窓カバー部185は、ホウケイ酸塩クラウン光学ガラスなどの透明な板である。窓カバー部185は、白色レーザ光WLの光軸に対し窓カバー部185が第2角度θ2で傾斜するように配置されている。これにより、外部から窓カバー部185に光が入射しても、窓カバー部185を反射した光が迷光とならない。 The window cover part 185 is a transparent plate such as borosilicate crown optical glass. The window cover part 185 is arranged so that the window cover part 185 is inclined at the second angle θ2 with respect to the optical axis of the white laser light WL. Accordingly, even if light enters the window cover portion 185 from the outside, the light reflected by the window cover portion 185 does not become stray light.
 以上のように、バックライトユニット1の青色レーザ光源11Bの熱は、アウターケース18の収容部181に伝達して放熱される。一方で、バックライトユニット1の赤色レーザ光源11R及び緑色レーザ光源11Gの熱は、ペルチェモジュール17によって下蓋部183からロアケースLCに伝達して放熱される。 As described above, the heat of the blue laser light source 11B of the backlight unit 1 is transmitted to the housing portion 181 of the outer case 18 and radiated. On the other hand, the heat of the red laser light source 11R and the green laser light source 11G of the backlight unit 1 is transferred from the lower lid portion 183 to the lower case LC by the Peltier module 17 and radiated.
 白色レーザ光WLを合成するにあたって、青色レーザ光源11Bが出力するレーザ光のパワーは、他のレーザ光源(赤色レーザ光源11R及び緑色レーザ光源11G)のパワーに比べて小さい。したがって、青色レーザ光源11Bをペルチェモジュール17で冷却する必要がなく、アウターケース18の収容部181からケースCの内部の空気に放熱する構成で充分に動作を保証できる。つまり、上記の構成は、ペルチェモジュール17で冷却する光源の数を少なくすることができるため、安価な構成となる。 When synthesizing the white laser light WL, the power of the laser light output from the blue laser light source 11B is smaller than the power of the other laser light sources (the red laser light source 11R and the green laser light source 11G). Therefore, there is no need to cool the blue laser light source 11B with the Peltier module 17, and the operation can be sufficiently ensured with the configuration in which the heat is dissipated from the accommodating portion 181 of the outer case 18 to the air inside the case C. In other words, the above configuration can reduce the number of light sources to be cooled by the Peltier module 17, resulting in an inexpensive configuration.
 また、アウターケース18の収容部181と下蓋部183は、シール部184によって互いの熱移動が阻害されている。 Also, the heat transfer between the accommodation portion 181 and the lower lid portion 183 of the outer case 18 is inhibited by the sealing portion 184 .
 このように構成することで、ペルチェモジュール17によって赤色レーザ光源11R及び緑色レーザ光源11Gを温度調整する際の熱が、青色レーザ光源11Bの温度に悪影響を与えない。また、ペルチェモジュール17によって赤色レーザ光源11R及び緑色レーザ光源11Gを温度調整する際の熱が、青色レーザ光源11B側に流入することによって、赤色レーザ光源11R及び緑色レーザ光源11Gの温度調整制御に悪影響が出ることがない。総じて、ペルチェモジュール17によるレーザ光源11の温度調整制御の精度を高めることに寄与する。また、温度調整制御を要するレーザ光源11の輝度調整制御の精度を高めることにも寄与する。 With this configuration, the heat generated when the Peltier module 17 adjusts the temperature of the red laser light source 11R and the green laser light source 11G does not adversely affect the temperature of the blue laser light source 11B. Also, the heat generated when the temperature of the red laser light source 11R and the green laser light source 11G is adjusted by the Peltier module 17 flows into the blue laser light source 11B, which adversely affects the temperature adjustment control of the red laser light source 11R and the green laser light source 11G. never comes out. Overall, this contributes to increasing the accuracy of temperature adjustment control of the laser light source 11 by the Peltier module 17 . It also contributes to increasing the accuracy of brightness adjustment control of the laser light source 11 that requires temperature adjustment control.
(バックライトユニット1の防湿封止維持構造)
 つぎに、本開示のバックライトユニット1が有する防湿封止状態の維持構造について、図3~図10を参照して説明する。
(Moisture-proof sealing maintenance structure of backlight unit 1)
Next, a moisture-proof sealed state maintenance structure of the backlight unit 1 of the present disclosure will be described with reference to FIGS. 3 to 10. FIG.
 アウターケース18の内部空間Sは、負圧空間としてある。つまり、アウターケース18の内部の気圧は、アウターケース18の外部の気圧よりも低い。内部空間Sを負圧空間にすると、外側から封止固定した上蓋部182、下蓋部183及び窓カバー部185に外圧が作用する。この外圧により、これらの蓋(上蓋部182、下蓋部183及び窓カバー部185)が外れ難くなるので、バックライトユニット1の防湿封止状態を良好に維持することが可能になる。なお、アウターケース18の内部空間Sを負圧状態にする方法は後述する。 The internal space S of the outer case 18 is a negative pressure space. That is, the air pressure inside the outer case 18 is lower than the air pressure outside the outer case 18 . When the internal space S is made into a negative pressure space, an external pressure acts on the upper lid portion 182, the lower lid portion 183, and the window cover portion 185 sealed and fixed from the outside. This external pressure makes it difficult for these lids (the upper lid portion 182, the lower lid portion 183, and the window cover portion 185) to come off, so that the moisture-proof sealed state of the backlight unit 1 can be maintained satisfactorily. A method of making the internal space S of the outer case 18 into a negative pressure state will be described later.
 また、上蓋部182には、内部空間Sの気密度を検査するための検査孔1821が形成されている。検査孔1821は、アウターケース18の内部空間Sと外部空間を連通させる孔であり、製造工程において、検査装置500(図11参照)などを用いた内部空間Sの気密度検査を可能にする。なお、内部空間Sの気密度検査の方法は後述する。 In addition, an inspection hole 1821 for inspecting the airtightness of the internal space S is formed in the upper lid portion 182 . The inspection hole 1821 is a hole that communicates the internal space S and the external space of the outer case 18, and enables an airtightness inspection of the internal space S using an inspection device 500 (see FIG. 11) or the like in the manufacturing process. A method of airtightness inspection of the internal space S will be described later.
 図10に示すように、検査孔1821は、内部空間Sの気密度検査を行った後、封止される。図10の(a)に示す例では、封止材として光硬化性樹脂1822及び熱硬化性樹脂1823を使用する。まず、光硬化性樹脂1822で熱硬化性樹脂1823の脱落を防止する仮封止をした後、熱硬化性樹脂1823で本封止を行う。なお、検査孔1821の封止構造は、図10の(b)に示すように、ねじ1824と樹脂Oリング1825を使用したものであってもよい。この場合は、樹脂Oリング1825を介してねじ1824で検査孔1821を塞ぐ。 As shown in FIG. 10, the inspection hole 1821 is sealed after the airtightness inspection of the internal space S is performed. In the example shown in FIG. 10A, a photocurable resin 1822 and a thermosetting resin 1823 are used as sealing materials. First, temporary sealing is performed with a photocurable resin 1822 to prevent the thermosetting resin 1823 from coming off, and then permanent sealing is performed with the thermosetting resin 1823 . The sealing structure of the inspection hole 1821 may use a screw 1824 and a resin O-ring 1825 as shown in FIG. 10(b). In this case, the inspection hole 1821 is closed with the screw 1824 through the resin O-ring 1825 .
 上蓋部182における検査孔1821の形成位置は、図8に示すように、レーザ光源11が出力するレーザ光の光路から離間する位置であることが望ましい。また、本実施形態の上蓋部182は、検査孔1821が形成される空間と、レーザ光の光路空間を遮る仕切り壁部1826を備える。これにより、検査孔1821がレーザ光の光路空間に悪影響を与えることを防止できる。 The formation position of the inspection hole 1821 in the upper lid portion 182 is desirably a position away from the optical path of the laser light output from the laser light source 11, as shown in FIG. Further, the upper lid portion 182 of this embodiment includes a space in which the inspection hole 1821 is formed and a partition wall portion 1826 that blocks the optical path space of the laser beam. This can prevent the inspection hole 1821 from adversely affecting the optical path space of the laser beam.
(バックライトユニット1の製造方法)
 つぎに、バックライトユニット1の製造方法について、図11などを参照して説明する。バックライトユニット1の製造方法には、工程1~工程7が含まれるが、その他の工程を追加したり、一部の工程を省略したり、工程の順番を入れ替えることは可能である。
(Manufacturing method of backlight unit 1)
Next, a method for manufacturing the backlight unit 1 will be described with reference to FIG. 11 and the like. The manufacturing method of the backlight unit 1 includes steps 1 to 7, but it is possible to add other steps, omit some steps, or change the order of the steps.
 工程1では、アウターケース18の出射口1811の外壁にある載置部1812に窓カバー部185を外側から載置し、熱硬化性樹脂(不図示)で封止固定する。 In step 1, the window cover part 185 is mounted from the outside on the mounting part 1812 on the outer wall of the exit port 1811 of the outer case 18, and sealed and fixed with a thermosetting resin (not shown).
 工程2では、アウターケース18の下面側の開口を外側から塞ぐように下蓋部183を載置し、熱硬化性樹脂(不図示)で封止固定する。 In step 2, the lower lid portion 183 is placed so as to cover the opening on the lower surface side of the outer case 18 from the outside, and is sealed and fixed with a thermosetting resin (not shown).
 工程3では、アウターケース18の収容部181に内機部材(レーザ光源11、配線12、コリメータレンズ13、ダイクロイックミラー14、ヒートシンク15、インナーケース16、ペルチェモジュール17)を収容する。 In process 3, the inner machine members (laser light source 11, wiring 12, collimator lens 13, dichroic mirror 14, heat sink 15, inner case 16, Peltier module 17) are accommodated in the accommodating portion 181 of the outer case 18.
 工程4では、上蓋部182の内壁に熱硬化性吸湿剤(不図示)を塗布し、熱硬化性吸湿剤を加熱により硬化させて熱硬化性吸湿剤を上蓋部182に固定する。熱硬化性吸湿剤は、硬化が完了してから直ちに吸湿作用が始まるため、アウターケース18の最終的な封止工程のできるだけ直前に組み付けられる部品に固定するのが好ましい。その点において上蓋部182は、最後に組み付けられる部品であるため、熱硬化性吸湿剤の固定に好適であり、熱硬化性吸湿剤を固定した後の吸湿能力(吸湿総量)の低下を抑制することができる。逆に、収容部181のように最初から組み付けに登場する部品は、封止完了するまでに吸湿能力が経時的に低下してしまうため、熱硬化性吸湿剤の固定に適さない。 In step 4, a thermosetting moisture absorbent (not shown) is applied to the inner wall of the upper lid portion 182 and cured by heating to fix the thermosetting moisture absorbent to the upper lid portion 182 . Since the thermosetting desiccant begins to absorb moisture immediately after curing is completed, it is preferable to fix the thermosetting desiccant to the parts to be assembled as soon as possible before the final sealing process of the outer case 18 . In that respect, the upper lid part 182 is the last part to be assembled, so it is suitable for fixing the thermosetting moisture absorbent, and suppresses the decrease in the moisture absorption capacity (total amount of moisture absorption) after fixing the thermosetting moisture absorbent. be able to. Conversely, a component such as the housing portion 181 that appears in the assembly from the beginning is not suitable for fixing the thermosetting moisture absorbent because the moisture absorbing ability deteriorates with time until the sealing is completed.
 工程5では、アウターケース18の上面側の開口を外側から塞ぐように上蓋部182を載置し、熱硬化性樹脂(不図示)で固定する。この工程5が終わると、上蓋部182に形成された検査孔1821が唯一の通気可能な孔になる。 In step 5, the upper lid portion 182 is placed so as to cover the opening on the upper surface side of the outer case 18 from the outside, and is fixed with a thermosetting resin (not shown). After this step 5, the inspection hole 1821 formed in the upper lid portion 182 becomes the only ventilation hole.
 工程6では、上蓋部182に形成された検査孔1821を介して脱気を行い、アウターケース18の内部空間Sを負圧状態にする。例えば、検査孔1821を介してアウターケース18の気密度検査を行う検査装置500(図11参照)を用いて収容部181の内部空間Sを負圧状態にする。 In step 6, degassing is performed through the inspection hole 1821 formed in the upper lid portion 182, and the internal space S of the outer case 18 is brought into a negative pressure state. For example, an inspection device 500 (see FIG. 11) that inspects the airtightness of the outer case 18 through the inspection hole 1821 is used to put the internal space S of the housing portion 181 into a negative pressure state.
 図11に示すように、検査装置500は、ワークW(バックライトユニット1)をセット可能なワークセット部501と、ワークセット部501に昇降可能に設けられる。検査装置500は、筒状の検査部502と、真空ポンプ504と、バルブ505と、レギュレータ506と、気圧計507と、電源508とを備える。検査部502は、セットされたワークWの検査孔1821に気密的に接続可能である。真空ポンプ504は、空気流路503を介して検査部502に接続される。バルブ505は、空気流路503に介在し、空気流路503を開閉する。レギュレータ506は、バルブ505と真空ポンプ504との間の空気流路503に介在し、真空圧を調整する。気圧計507は、検査部502とバルブ505との間の空気流路503に接続され、ワークW内部の空気圧を計測する。電源508は、気圧計507の電源である。また、図11に点線で示すように、ワークW、検査部502、バルブ505、及び気圧計507を囲む空間VSは、脱気により真空又は負圧状態を維持することができる。本実施形態の工程6では、空間VSを負圧状態とすることで、アウターケース18の内部空間Sを負圧状態とし、続く工程7も負圧状態の空間Vにおいて行われる。 As shown in FIG. 11, the inspection apparatus 500 is provided with a work setting section 501 on which a work W (backlight unit 1) can be set, and on the work setting section 501 so as to be able to move up and down. The inspection device 500 includes a tubular inspection portion 502 , a vacuum pump 504 , a valve 505 , a regulator 506 , a barometer 507 and a power supply 508 . The inspection unit 502 can be airtightly connected to the inspection hole 1821 of the set work W. As shown in FIG. A vacuum pump 504 is connected to the inspection section 502 via an air flow path 503 . A valve 505 is interposed in the air flow path 503 to open and close the air flow path 503 . A regulator 506 is interposed in the air flow path 503 between the valve 505 and the vacuum pump 504 to adjust the vacuum pressure. A barometer 507 is connected to the air flow path 503 between the inspection unit 502 and the valve 505 to measure the air pressure inside the workpiece W. A power supply 508 is a power supply for the barometer 507 . Further, as indicated by dotted lines in FIG. 11, the space VS surrounding the workpiece W, the inspection unit 502, the valve 505, and the barometer 507 can be maintained in a vacuum or negative pressure state by degassing. In step 6 of the present embodiment, the space VS is brought into a negative pressure state so that the internal space S of the outer case 18 is brought into a negative pressure state, and the subsequent step 7 is also performed in the negative pressure space V. FIG.
 なお、検査装置500を用いたアウターケース18の気密度検査は、ワークセット部501にセットしたワークWの検査孔1821に検査部502を気密的に接続した後、バルブ505の開状態で真空ポンプ504を駆動し、空気流路503内及びワークWの内部空間Sを真空にする。その後、バルブ505を閉じた状態で気圧計507の数値を監視し、気密度の判定を行う。気密度の判定において、気圧計507の数値が変化しない、もしくは少数第1位が変化する程度である場合は、気密度OKとする。気密度の判定において、気圧計507の数値が変化する場合は、気密度NGとする。 In the airtightness inspection of the outer case 18 using the inspection device 500, the inspection unit 502 is airtightly connected to the inspection hole 1821 of the workpiece W set in the workpiece setting unit 501, and then the valve 505 is opened and the vacuum pump is operated. 504 is driven to evacuate the inside of the air flow path 503 and the internal space S of the workpiece W. After that, the numerical value of the barometer 507 is monitored with the valve 505 closed to determine the airtightness. In determining the airtightness, if the numerical value of the barometer 507 does not change, or if the number changes to the first decimal place, the airtightness is determined to be OK. In determining the airtightness, if the numerical value of the barometer 507 changes, the airtightness is NG.
 工程6における内部空間Sの負圧の程度は、実使用の温度範囲(車載であれば-40~105℃)のどの温度帯域であっても上蓋部182、下蓋部183、窓カバー部185が外れないように、可能なかぎり高い温度でも負圧状態(外側から内側に圧力がかかる状態)を維持するように設定することが好ましい。例えば、常温(最大35℃)よりも高い温度(例えば、50℃)においても負圧状態となるようにすることが好ましい。なお、常温は、例えば、日本産業規格(JIS Z 8703)に基づいて20℃±15℃(5~35℃)と定義することができる。 The degree of negative pressure in the internal space S in step 6 is the upper lid portion 182, the lower lid portion 183, and the window cover portion 185 in any temperature range of the temperature range of actual use (-40 to 105 ° C. for in-vehicle use). It is preferable to maintain a negative pressure state (a state in which pressure is applied from the outside to the inside) even at the highest possible temperature so as not to come off. For example, it is preferable to create a negative pressure state even at a temperature (for example, 50° C.) higher than normal temperature (maximum 35° C.). The room temperature can be defined as, for example, 20°C ± 15°C (5 to 35°C) based on Japanese Industrial Standards (JIS Z 8703).
 より好ましくは、常温(最大35℃)と最大使用温度(ここでは105℃)の中間値70℃よりも高い温度(例えば、80℃)において負圧状態となるようにすることが好ましい。なお、最大使用温度は、車載計器が想定する温度範囲を-40~105℃としたとき、その最大温度である105℃と定義することができる。さらに好ましくは、最大使用温度(ここでは105℃)において負圧状態となるようにすることが最も好ましい。 More preferably, it is preferable to create a negative pressure state at a temperature (for example, 80°C) higher than 70°C, the intermediate value between normal temperature (maximum 35°C) and maximum use temperature (here, 105°C). The maximum operating temperature can be defined as 105°C, which is the maximum temperature of -40°C to 105°C, assuming that the temperature range assumed for onboard instruments is -40°C to 105°C. More preferably, it is most preferable to have a negative pressure state at the maximum operating temperature (here, 105° C.).
 工程7では、負圧状態の空間Vにおいて検査孔1821を塞ぐ。検査孔1821を塞ぐにあたっては、まず、光硬化性樹脂1822で熱硬化性樹脂1823の脱落を防止する仮封止をした後、熱硬化性樹脂1823で本封止を行う(図10の(a)参照)。また、硬化性樹脂1822、1823に代替して、樹脂Oリング(トーラス形状のゴムガスケット)1825などのシール材を検査孔1821にネジ締めするようにしてもよい(図10の(b)参照)。 In step 7, the inspection hole 1821 is closed in the negative pressure space V. In closing the inspection hole 1821, first, temporary sealing is performed with a photocurable resin 1822 to prevent the thermosetting resin 1823 from falling off, and then permanent sealing is performed with the thermosetting resin 1823 (see (a) in FIG. 10). )reference). Also, instead of the curable resins 1822 and 1823, a sealing material such as a resin O-ring (torus-shaped rubber gasket) 1825 may be screwed into the inspection hole 1821 (see FIG. 10(b)). .
(バックライトユニット1の製造方法の変形例1)
 上記の製造方法では、負圧状態の空間Vにおいて工程7を行うことで、アウターケース18の内部空間Sを負圧空間としているが、アウターケース18の内部空間Sを常温(最大35℃)よりも高い温度(例えば、50~105℃)とした状態において工程7を行うことで、実使用時にアウターケース18の内部空間Sが負圧空間となるようにしてもよい。
(Modification 1 of the manufacturing method of the backlight unit 1)
In the manufacturing method described above, the internal space S of the outer case 18 is a negative pressure space by performing the step 7 in the negative pressure space V. The internal space S of the outer case 18 may be a negative pressure space during actual use by performing Step 7 in a state of a high temperature (for example, 50 to 105° C.).
(バックライトユニット1の製造方法の変形例2)
 また、上記の製造方法は、上蓋部182が検査孔1821を有し、検査孔1821の封止工程(工程7)がアウターケース18の内部空間Sを封止するための最終工程であるが、上蓋部182が検査孔1821を有しておらず、上蓋部182の封止固定工程がアウターケース18の内部空間Sを封止するための最終工程である場合は、上蓋部182の封止固定工程の前に内部空間Sを負圧状態にする工程を行うことで、内部空間Sが負圧状態のバックライトユニット1を製造することができる。
(Modification 2 of the manufacturing method of the backlight unit 1)
In the manufacturing method described above, the upper lid portion 182 has the inspection hole 1821, and the step of sealing the inspection hole 1821 (step 7) is the final step for sealing the internal space S of the outer case 18. When the upper lid portion 182 does not have the inspection hole 1821 and the step of sealing and fixing the upper lid portion 182 is the final step for sealing the internal space S of the outer case 18, the sealing and fixing of the upper lid portion 182 is performed. By performing the step of making the internal space S in a negative pressure state before the process, the backlight unit 1 in which the internal space S is in a negative pressure state can be manufactured.
 以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。 Although each embodiment has been described in detail above, it is not limited to a specific embodiment, and various modifications and changes are possible within the scope described in the claims. It is also possible to combine all or more of the constituent elements of the above-described embodiments.
 H   …ヘッドアップディスプレイ
 D   …画像表示器
 S   …内部空間
 V   …空間
 W   …ワーク
 1   …バックライトユニット(照明装置)
 11  …レーザ光源
 11B …青色レーザ光源(第1レーザ光源)
 11G …緑色レーザ光源(第2レーザ光源)
 11R …赤色レーザ光源(第3レーザ光源)
 12  …配線
 12B …第1配線
 12GR…第2配線
 13  …コリメータレンズ
 13B …第1コリメータレンズ
 13G …第2コリメータレンズ
 13R …第3コリメータレンズ
 14  …ダイクロイックミラー
 141 …第1ダイクロイックミラー
 142 …第2ダイクロイックミラー
 15  …ヒートシンク
 151 …第1ヒートシンク
 1511…放熱部
 1512…支持部
 152 …第2ヒートシンク
 1521…放熱部
 1522…支持部
 16  …インナーケース
 161 …収容部
 162 …第1入射口
 163 …第2入射口
 164 …第3入射口
 165 …第1出射口
 166 …第2出射口
 167 …第3出射口
 17  …ペルチェモジュール
 18  …アウターケース
 181 …収容部
 1811…出射口
 1812…載置部
 182 …上蓋部
 1821…検査孔
 1822…光硬化性樹脂
 1823…熱硬化性樹脂
 1824…ねじ
 1825…樹脂Oリング
 1826…仕切り壁部
 183 …下蓋部
 184 …シール部
 185 …窓カバー部
 2   …回転拡散板
 3   …レンズ
 4   …液晶パネル
 500 …検査装置
 501 …ワークセット部
 502 …検査部
 503 …空気流路
 504 …真空ポンプ
 505 …バルブ
 506 …レギュレータ
 507 …気圧計
 508 …電源
H...Head-up display D...Image display S...Internal space V...Space W...Work 1...Backlight unit (illumination device)
11... Laser light source 11B... Blue laser light source (first laser light source)
11G ... green laser light source (second laser light source)
11R ... red laser light source (third laser light source)
REFERENCE SIGNS LIST 12 wiring 12B first wiring 12GR second wiring 13 collimator lens 13B first collimator lens 13G second collimator lens 13R third collimator lens 14 dichroic mirror 141 first dichroic mirror 142 second dichroic Mirror 15 Heat sink 151 First heat sink 1511 Heat radiation part 1512 Support part 152 Second heat sink 1521 Heat radiation part 1522 Support part 16 Inner case 161 Accommodating part 162 First entrance 163 Second entrance DESCRIPTION OF SYMBOLS 164... 3rd inlet 165... 1st outlet 166... 2nd outlet 167... 3rd outlet 17... Peltier module 18... Outer case 181... Accommodating part 1811... Outlet 1812... Mounting part 182... Upper cover part 1821 ... inspection hole 1822 ... photocurable resin 1823 ... thermosetting resin 1824 ... screw 1825 ... resin O-ring 1826 ... partition wall section 183 ... lower lid section 184 ... seal section 185 ... window cover section 2 ... rotary diffusion plate 3 ... lens DESCRIPTION OF SYMBOLS 4... Liquid crystal panel 500... Inspection apparatus 501... Work setting part 502... Inspection part 503... Air flow path 504... Vacuum pump 505... Valve 506... Regulator 507... Barometer 508... Power supply

Claims (7)

  1.  レーザ光を出力するレーザ光源と、
     前記レーザ光源を冷却するペルチェモジュールと、
     前記レーザ光源及び前記ペルチェモジュールを内部に防湿封止するケースと、を備える照明装置であって、
     前記ケースは、
     前記レーザ光を出射する出射口が形成された筒状の収容部と、
     前記ペルチェモジュールと熱接触し、前記収容部の一方の開口を塞ぐ第1蓋部と、
     前記収容部の他方の開口を塞ぐ第2蓋部と、を有し、
     前記収容部には、負圧空間が形成される、照明装置。
    a laser light source that outputs laser light;
    a Peltier module for cooling the laser light source;
    A lighting device comprising a case for sealing the laser light source and the Peltier module inside against moisture,
    Said case is
    a cylindrical accommodating portion formed with an emission port for emitting the laser light;
    a first lid that is in thermal contact with the Peltier module and closes one opening of the housing;
    a second lid portion that closes the other opening of the accommodating portion;
    The lighting device, wherein a negative pressure space is formed in the accommodating portion.
  2.  前記第2蓋部には、前記収容部の気密度を検査するための検査孔が形成されている、請求項1に記載の照明装置。 The lighting device according to claim 1, wherein an inspection hole for inspecting the airtightness of the accommodating portion is formed in the second lid portion.
  3.  前記検査孔は、前記検査後に封止部材によって封止される、請求項2に記載の照明装置。 The lighting device according to claim 2, wherein the inspection hole is sealed with a sealing member after the inspection.
  4.  前記収容部の外壁に、前記出射口を覆う透光性の窓カバー部が固定される、請求項3に記載の照明装置。 4. The lighting device according to claim 3, wherein a translucent window cover portion covering said exit port is fixed to the outer wall of said housing portion.
  5.  ヘッドアップディスプレイであって、
     請求項1~4のいずれか1項に記載の照明装置と、
     前記照明装置から出力された照明光をコリメートするレンズと、
     前記レンズを通過した照明光によって照明される液晶パネルと、を備える、ヘッドアップディスプレイ。
    a heads-up display,
    a lighting device according to any one of claims 1 to 4;
    a lens for collimating illumination light output from the illumination device;
    and a liquid crystal panel illuminated by illumination light that has passed through the lens.
  6.  照明装置の製造方法であって、
     開口部を有するケースの収容部にレーザ光源とペルチェモジュールを収容する収容工程と、
     前記収容部を負圧状態にする負圧工程と、
     前記ケースを封止する封止工程と、を有する、照明装置の製造方法。
    A method for manufacturing a lighting device,
    a housing step of housing the laser light source and the Peltier module in a housing portion of a case having an opening;
    a negative pressure step in which the accommodating portion is placed in a negative pressure state;
    and a sealing step of sealing the case.
  7.  前記負圧工程は、前記収容部を常温よりも高い第1温度にすることで前記負圧状態とする、請求項6に記載の照明装置の製造方法。 7. The method of manufacturing a lighting device according to claim 6, wherein said negative pressure step brings said housing portion into said negative pressure state by setting said accommodating portion to a first temperature higher than normal temperature.
PCT/JP2022/048481 2022-01-26 2022-12-28 Lighting device, head-up display, and method for manufacturing lighting device WO2023145380A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022009824 2022-01-26
JP2022-009824 2022-01-26

Publications (1)

Publication Number Publication Date
WO2023145380A1 true WO2023145380A1 (en) 2023-08-03

Family

ID=87471115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048481 WO2023145380A1 (en) 2022-01-26 2022-12-28 Lighting device, head-up display, and method for manufacturing lighting device

Country Status (1)

Country Link
WO (1) WO2023145380A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194504A (en) * 2013-03-29 2014-10-09 Funai Electric Co Ltd Projector and head-up display device
JP2017112202A (en) * 2015-12-16 2017-06-22 パイオニア株式会社 Sealing structure and manufacturing method of the same
JP2017116588A (en) * 2015-12-21 2017-06-29 株式会社日立エルジーデータストレージ Scanning type image display device
JP2017130344A (en) * 2016-01-20 2017-07-27 セイコーエプソン株式会社 Light source device and projector
JP2021064618A (en) * 2021-01-13 2021-04-22 マクセル株式会社 Light source device and electronic apparatus using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194504A (en) * 2013-03-29 2014-10-09 Funai Electric Co Ltd Projector and head-up display device
JP2017112202A (en) * 2015-12-16 2017-06-22 パイオニア株式会社 Sealing structure and manufacturing method of the same
JP2017116588A (en) * 2015-12-21 2017-06-29 株式会社日立エルジーデータストレージ Scanning type image display device
JP2017130344A (en) * 2016-01-20 2017-07-27 セイコーエプソン株式会社 Light source device and projector
JP2021064618A (en) * 2021-01-13 2021-04-22 マクセル株式会社 Light source device and electronic apparatus using the same

Similar Documents

Publication Publication Date Title
CN101533210B (en) Light control device, lighting device, and projector
US8585215B2 (en) Projector with light-shielding member and holding member having varied coefficient of thermal conductivity
JP7331834B2 (en) head up display
KR101764939B1 (en) Lighting device
JP2015087589A (en) Image processor, and assembly method thereof
JP2008209665A (en) Head-up display device
WO2023145380A1 (en) Lighting device, head-up display, and method for manufacturing lighting device
JP2009067352A (en) Head-up display device
WO2023048293A1 (en) Lighting device, and head-up display
CN107664907B (en) Light modulation device and projector
JP2019166852A (en) Head-up display
JP2023120674A (en) Lens setting structure and manufacturing method of light source unit
CN118043722A (en) Lighting device and head-up display device
JP5678715B2 (en) Lighting device
JP2005148658A (en) Display device
JP2010020052A (en) Optical device and projector
JP7100811B2 (en) Backlight unit and head-up display
US11307377B2 (en) Light source device, projector and lighting device
JP2015024666A (en) Lighting device
JP2008185753A (en) Display device
JP2011088583A (en) Illumination device
WO2019159637A1 (en) Head-up display device
JP7428566B2 (en) Measuring equipment and dust-proofing methods for measuring equipment
CN113534592B (en) Projection optical device and projector
JP2019008090A (en) Head-up display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924227

Country of ref document: EP

Kind code of ref document: A1