WO2023145089A1 - Artificial intelligence system, computer system for executing artificial intelligence operation method, and computer program recording medium - Google Patents

Artificial intelligence system, computer system for executing artificial intelligence operation method, and computer program recording medium Download PDF

Info

Publication number
WO2023145089A1
WO2023145089A1 PCT/JP2022/003671 JP2022003671W WO2023145089A1 WO 2023145089 A1 WO2023145089 A1 WO 2023145089A1 JP 2022003671 W JP2022003671 W JP 2022003671W WO 2023145089 A1 WO2023145089 A1 WO 2023145089A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
inference
human
environmental data
artificial intelligence
Prior art date
Application number
PCT/JP2022/003671
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 岡田
健人 宇野
Original Assignee
株式会社Abeja
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Abeja filed Critical 株式会社Abeja
Priority to JP2023576596A priority Critical patent/JPWO2023145089A1/ja
Priority to PCT/JP2022/003671 priority patent/WO2023145089A1/en
Publication of WO2023145089A1 publication Critical patent/WO2023145089A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present invention relates to an artificial intelligence system and an artificial intelligence operating method.
  • the present invention preferably relates to an artificial intelligence system with a learning function, and more particularly to so-called human-in-the-loop (HITL) applications that utilize human intelligence.
  • HTL human-in-the-loop
  • the device described in Patent Document 1 inputs control information related to process control latent in the head of a plant operator from the operator in real time during the operation of the plant, and the input control information and the operator operate the plant. , and from the plant observation data, patterns with statistical regularity are discriminated and learned, and based on the learned patterns, a qualitative model of plant operation is constructed. As learning progresses, plant processes are monitored and controlled based on the constructed qualitative model.
  • Patent Document 2 learns operating procedure knowledge using observation results of model performances by an expert who is skilled in operating equipment, and inquires of the expert about unknown points in the application order of the learned operating procedure knowledge. , update the learned operating procedure knowledge when the inquiry result is wrong.
  • tacit knowledge In the brains of plant operators and equipment operation experts, there exists a large amount of operational know-how and equipment operation procedures that correspond to a wide variety of possible situations as tacit knowledge. From this huge amount of tacit knowledge, what should be selected and taught to artificial intelligence? It is difficult for humans to judge whether or not If humans choose the knowledge to be taught to artificial intelligence by their own judgment, it is impossible to verbalize and define tacit knowledge and create and link teaching data to it until artificial intelligence is trained to a practical level. It can be done efficiently and waste too much time and too much work.
  • One object of the present invention is to provide an artificial intelligence system in which the system itself selects specific situations or events that would be improved by the use of knowledge and effectively requires humans to provide knowledge.
  • Another object of the present invention is to provide an artificial intelligence system that asks humans how they should help artificial intelligence.
  • An artificial intelligence system includes an inference system that accepts environmental data generated in the environment, makes inferences using the accepted environmental data, and outputs an inference result, and creates using the environmental data with human involvement.
  • a training system for training the inference system by inputting the input teacher data and incorporating knowledge into the inference system using the input teacher data.
  • the training system selects, from given environmental data, specific environmental data related to specific knowledge that is desired to be incorporated into the inference system, and participates in creating teacher data using the selected specific environmental data. It has human utilization means that require humans to
  • An artificial intelligence system selects what knowledge to incorporate into the inference system by itself, and requires humans to participate in creating training data about the selected knowledge. continue to grow.
  • FIG. 1 is a diagram illustrating a hardware configuration of an artificial intelligence system according to one embodiment
  • FIG. It is a figure which shows the concept of the basic function of the artificial intelligence system which concerns on this embodiment. It is a figure which shows the more concrete functional structure of the system which applied the artificial intelligence system which concerns on this embodiment to the support of plant operation. It is a figure which shows operation
  • FIG. 4 is a diagram illustrating user interfaces for know-how registration and training data registration in the artificial intelligence system according to the present embodiment; FIG.
  • FIG. 4 is a diagram illustrating a user interface for know-how proposal/evaluation in the artificial intelligence system according to the present embodiment; It is a figure which shows an example of the flow of reliability evaluation regarding real-time inference in the artificial intelligence system which concerns on this embodiment.
  • FIG. 5 is a diagram showing a modification of the configuration for performing know-how registration in step S5 shown in FIG. 4 in the artificial intelligence system according to this embodiment;
  • FIG. 4 is a diagram illustrating the flow of the process of learning a driving evaluation method;
  • FIG. 5 is a diagram illustrating the flow of communication between the operator and the system on the user interface during learning of the driving evaluation method;
  • FIG. 4 is a diagram illustrating the process flow of driving evaluation;
  • FIG. 4 is a diagram illustrating the flow of communication between the operator and the system on the user interface during driving evaluation;
  • FIG. 4 illustrates a proposal message of the real-time reasoning system;
  • xxx data may be used as an example of information, but any data structure of information may be used. That is, “xxx data” can be referred to as “xxx tables” to indicate that the information is independent of the data structure. Furthermore, “xxx data” may be simply referred to as "xxx”. In the following description, the configuration of each information is an example, and the information may be divided and held or combined and held.
  • processing may be explained with the “program” as the subject, but the program is executed by a processor (for example, CPU (Central Processing Unit)) to appropriately perform the specified processing.
  • the subject of processing may be a program because it is performed using storage resources (eg, memory) and/or communication interface devices (eg, ports).
  • a process described using a program as a subject may be a process performed by a processor or a computer having the processor.
  • FIG. 1 shows the physical configuration of a computer system to which the artificial intelligence system according to the embodiment is applied.
  • the computer system 50 is composed of multiple (or one) physical computers 201 connected to a network 240 .
  • the network 240 is one or more communication networks, and may include, for example, at least one of an FC (Fibre Channel) network and an IP (Internet Protocol) network.
  • Network 240 may exist outside computer system 50 .
  • Each physical computer 201 is, for example, a general-purpose computer and has physical computer resources 330 .
  • the physical computer resource 330 includes an interface section 251, a storage section 252, and a processor section 253 connected thereto.
  • the computer system 50 may be, for example, a cloud computing system that provides XaaS (X as a Service).
  • XaaS generally refers to any resources (for example, hardware, lines, software execution environment, application programs, development environment, etc.) necessary for building or operating a system that can be used through a network such as the Internet.
  • resources for example, hardware, lines, software execution environment, application programs, development environment, etc.
  • the letter (or word) adopted as "X" of XaaS differs depending on the type of XaaS (service model).
  • examples of XaaS include PaaS (Platform as a Service), SaaS (Software as a Service), PaaS (Platform as a Service), IaaS (Infrastructure as a Service) or HaaS (Hardware as a Service).
  • FIG. 2 is a diagram showing the concept of the basic functions of an artificial intelligence system according to one embodiment. Although there are limitless applications of artificial intelligence systems, in this embodiment, as one non-limiting example of such applications, the artificial intelligence system assists plant operators in plant operations (at least part of the operations). ).
  • the environment 20 shown in FIG. 2 is an environment in which an AI (artificial intelligence) system 30 participates or influences (for example, inference results of the AI system 30 are used).
  • environment 20 is the plant (which may of course include the plant itself, as well as humans 40 associated with it, as well as the environment and external systems associated with the plant).
  • Data entering AI system 30 from environment 20 may include data or signals input to/output from environment 20, data or signals passing through environment 20, and the like.
  • DCS Distributed Control System
  • the AI system 30 inputs environmental data from the environment 20 and makes inferences regarding the input environmental data.
  • AI system 30 preferably inputs environmental data in real time and performs inference work in real time.
  • the reliability of the inference made by the AI system 30 (that is, the inference ability, that is, the learning level of the AI system 30, or the inference result obtained from the inference) is evaluated.
  • An evaluation of reliability is preferably made for each environmental data input at each point in time or for each taxonomic group of environmental data. Thus, at some point in time, inference may be rated as highly reliable for some environmental data, but less reliable for other environmental data.
  • the AI system 30 If the reliability of inference is evaluated to be low for certain environmental data at a certain point in time, it means that at that point, the AI system 30 is immature in learning knowledge such as know-how about the environmental data. It means that it is desirable to study about Therefore, the AI system 30 presents the environmental data to the human 40 and requests the human to input knowledge about the environmental data to the AI system 30 as teacher data. Then, the AI system 30 learns based on the teacher data. In other words, the AI system 30 proactively works on the human 40 and utilizes human intelligence (HI) to acquire and learn new knowledge. On the other hand, if at some point in time the reliability of the inference is evaluated with respect to certain environmental data, the AI system 30 provides the inference result to the environment (including the human 40).
  • HI human intelligence
  • the AI system 30 proactively finds an opportunity, situation, or event in which it is preferable to use HI, and proactively works on the human 40 to use HI for learning (receiving teaching from HI). ) to increase the reliability of the inference.
  • the process from (2) “evaluate the reliability of inference” to (3) “notify humans if reliability is low” in FIG. It has three processes. 1) From environmental data that has been input and saved in the past, select environmental data that has not yet been used to create training data (preferably, prioritize environmental data that occurs more frequently). ), and use it as a material for new training data. 2) When environmental data is input in real time at each point in time and inference is performed in real time, based on the feature amount of the input environment data at each point in time (for example, the feature of the input environment data Based on quantitative similarity), the input environment data is evaluated to what extent it can elicit reliable inference results, and environmental data evaluated as having low confidence in elicitable inference results are used as new training data.
  • the inference results of the input environmental data at each point in time are provided to humans, and the humans are required to evaluate the validity of the inference results. . Then, based on the evaluation results of validity fed back from humans, the input environment data evaluated as having low validity of the inference result is selected as material for new teacher data.
  • FIG. 3 is a diagram showing a more specific functional configuration of a system in which the artificial intelligence system according to the embodiment is applied to assist plant operation.
  • the artificial intelligence system 30 of this embodiment shown in FIG. 3 can communicate with the plant system 20 and the plant operator 40 .
  • the artificial intelligence system 30 has an AI training system 300 and a real-time reasoning system 310 .
  • the real-time reasoning system 310 has a configuration as disclosed, for example, in WO2019/003485.
  • a plant system 20 as an example of an environment has an analysis system 21, an operation panel 22, a DCS 23, a sensor group 24, an equipment group 25, and a processed object group 26.
  • the equipment group 25 is various equipment that constitutes the production equipment of the plant system
  • the processed material group 26 is raw materials, intermediate products, products, wastes, etc. that are processed on the day of the production equipment.
  • the sensor group 24 senses the state and operation of the device group 25 and the processed object group 26 .
  • the DCS 23 performs process control of the equipment group 25 .
  • the operation panel 22 is operated by the operator 40 to operate the device group 25 .
  • the analysis system 21 receives data output from the sensor group 24 and analyzes various states, operations, performance, productivity, and the like of the plant system 20 .
  • plant data refers to a bundle of various signals and data originating from these plant system 20 components.
  • the AI system 30 includes data generated from time to time regarding the plant system 20 (hereinafter referred to as "plant data", but plant data includes data and signals input/output to/from the plant system 20, signals passing through the plant system 20, data, signals, etc.) are input in real time, and inference is performed in real time using the plant data ("(1) real time data” in FIG. 3) input in real time.
  • the result of inference (for example, a notification indicating which know-how is applied to which plant data and what kind of operation is proposed) is an operator (which may include people involved in the plant in aspects other than operation) 40.
  • the AI system 30 also includes a time-series set of plant data that occurred in the past in the plant system 20 ("(1) time-series data" in FIG. This time-series data is used in the learning cycle.
  • the AI training system 300 has a data classification section 301 , a know-how registration section 302 and a know-how evaluation section 303 .
  • the data classification unit 301 classifies the input plant data (real-time data and time-series data) into a plurality of groups according to classification rules (that is, labels the input plant data).
  • Classification rules may be set in advance by a system designer, an operator, or the like.
  • Groups that is, labels
  • the data classifier 301 classifies (labels) the real-time data before providing it to the real-time reasoning system 310 .
  • the data classification unit 301 classifies the time-series data, and then, based on the classification result, determines the driving know-how to be learned with priority (that is, whether the real-time inference system 310 has not learned the learning level Select and extract time-series data (plant data) related to operational know-how that is immature). The selective extraction method will be described later.
  • the data classification unit 301 then provides the extracted plant data to the know-how registration unit 302 .
  • the know-how registration unit 302 notifies the operator 40 of the plant data extracted by the data classification unit 301 and requests the operator 40 to register the know-how.
  • the operator 40 registers know-how in response to a request from the know-how registration unit 302 .
  • registration of know-how consists of, for example, two stages of registration work indicated as "know-how registration” and "teaching data registration” in the figure.
  • the operator 40 inputs basic information (for example, the name of the know-how and the details of the operator's operation) related to the know-how that is the basis of the operation shown in the notified plant data.
  • the know-how registration unit 302 creates training data from the registered information and provides the training data to the data classification unit 301 .
  • the data classification unit 301 has an inference model (not shown, hereinafter referred to as a learning model) that is in the process of learning, gives teacher data to the learning model, and makes the learning model learn new know-how. By repeating the above process for a large number of plant data, the inference performance of the learning model is improved.
  • the data classification unit 301 deploys the learning model to the real-time inference system 310 (that is, the inference model in the real-time inference system 310 is upgraded to a higher inference performance level). renew or nurture into something).
  • the real-time inference system 310 inputs plant data in real time, makes inferences, and passes the inference results regarding each plant data to the know-how evaluation unit 303 .
  • the know-how evaluation unit 303 evaluates the reliability of the inference result of each plant data, and determines whether the reliability level is lower than a certain level (that is, the plant data is related to the know-how to be learned) or the reliability level. Determine whether it is higher (that is, the plant data is not related to the know-how to be learned). If the judgment result is higher than the reliability level, it means that new know-how should be registered because the input plant data at that time is still unlearned or immature. Accordingly, real-time inference system 310 provides its inference results (which include at least the input plant data used for inference at that time) to data classifier 301 .
  • the data classification unit 301 passes the input plant data to the know-how registration unit 302 by the method already explained.
  • the know-how registration unit 302 requests the operator 40 to perform know-how registration and training data registration for the input plant data by the method already explained.
  • the know-how registration and teacher data registration at this time may be performed immediately after the inference result is obtained, or may be performed after a certain amount of low-reliability inference results have accumulated. However, if it is performed immediately after, it is convenient for the operator 40 because the know-how registration and the training data registration regarding the operation are requested immediately after the operator 40 performs the operation.
  • the learning model is then trained using the newly registered teacher data in the same manner as already explained, and eventually the learning level is further increased.
  • the resulting learning model is deployed to inference system 310 . This further enhances the reasoning capabilities of real-time reasoning system 310 .
  • the know-how evaluation unit 303 evaluates the inference result (the input plant data and the learned data used for the inference). know-how and a driving operation suggestion obtained from inference) in the form of a "know-how proposal" (for example, since an event XXXX has occurred, an operation XXX is proposed according to the know-how XXXX). displayed to member 40. The operator 40 evaluates whether the know-how proposal is appropriate or not, inputs the evaluation result, and feeds it back to the know-how evaluation unit 303 .
  • the know-how evaluation unit 303 notifies the data classification unit 301 of whether the know-how evaluation result fed back from the operator 40 is valid or invalid. If the operator 40 determines that the know-how proposal is inappropriate, it means that new know-how should be registered with respect to the input plant data used for the inference at that time. Therefore, in this case, the data classification unit 301 passes the input plant data to the know-how registration unit 302, and the know-how registration unit 302 transfers the input plant data to the know-how registration unit 302, as in the case where the reliability of the inference result is low.
  • Know-how registration and teacher data registration are performed for the input plant data by the following method.
  • the know-how registration and the training data registration in this case may be performed immediately after the feedback from the operator 40, or may be performed after a certain amount of feedback from the operator 40 has accumulated. would be more convenient for the operator 40. In any event, this feedback-based know-how and training data also enhances the reasoning capabilities of the real-time reasoning system 310 .
  • FIG. 4 is a diagram showing the operation of the artificial intelligence system according to this embodiment.
  • the AI system 30 of this embodiment acquires plant data (real-time data and/or time-series data) from the plant system 20 (step S1).
  • the real-time inference system 310 acquires real-time data from the plant system 20 (S2), performs an inference operation based on this real-time data, and outputs the inference result to the AI training system 300 (S3).
  • the AI training system 300 acquires and stores the time-series data from the plant system 20, and classifies the time-series data into a plurality of groups according to predetermined classification rules (S4).
  • the AI training system 300 preferentially selects a group with a high frequency of occurrence (the amount of plant data classified therein is relatively large) from among those groups (that is, various know-how areas), From within the selected group, data that has not yet been used to create training data (that is, plant data belonging to a new know-how area) is extracted, and the extracted plant data is presented to the operator 40 to provide know-how. Registration and training data registration are requested to the operator 40 (S5).
  • the AI training system 300 receives the know-how registered by the operator 40 (S6) and the training data related to the know-how (S5). Furthermore, the AI training system 300 uses the teaching data registered by the operator 40 to make its own learning model learn new know-how (that is, registered by the operator 40) (S7). Then, the AI training system 300 registers (deploys) the learned new learning model in the real-time inference system 310 (S8).
  • the AI training system 300 judges the reliability of the inference results input from the real-time inference system 310, and if it judges that the reliability is high, it proposes know-how based on the inference results to the operator 40 (S9). If it is judged that the reliability of the inference result is low, the input uranium and data used in the inference at that time are taken and the process proceeds to step S5 (S9). Also, if the evaluation of the know-how proposed to the operator 40 is received from the operator 40 and the evaluation that the know-how proposal is inappropriate is received, the input uranium and data used for the inference at that time are taken and the process proceeds to step S5 (S9). .
  • FIG. 5 is a diagram for explaining the know-how extraction process in the artificial intelligence system according to this embodiment.
  • FIG. 6 is a diagram illustrating a user interface (registration form displayed to the user) for know-how registration and training data registration in the artificial intelligence system according to this embodiment.
  • the process shown in FIG. 5 corresponds to the process performed by the data classification unit 301 and the know-how registration unit 302 in FIG. 3, that is, the process from steps S4 to S5 in FIG.
  • time-series data is divided into a plurality of groups (for example, groups corresponding to a plurality of types of driving operations, or For each group (that is, event type, in other words, know-how area), each Save the plant data at the point in time. Then, the amount of data stored in each group, in other words, the frequency of occurrence of each group is calculated and graphed.
  • groups for example, groups corresponding to a plurality of types of driving operations, or For each group (that is, event type, in other words, know-how area), each Save the plant data at the point in time.
  • the amount of data stored in each group in other words, the frequency of occurrence of each group is calculated and graphed.
  • data are classified into three groups A, B, and C, and group A has the highest frequency of occurrence.
  • Such a histogram for each group may be presented to the operator 40. Details of the set of plant data belonging to each group may also be presented to the operator 40 . This makes it easier for the operator to determine which know-how should be preferentially learned by the model.
  • the group that has a larger amount of plant data that has not yet been used to create training data (that is, contains unlearned events with a higher occurrence frequency) are preferentially selected (typically, the group with the highest occurrence frequency is selected), and from that group, unused plant data is extracted for creating teacher data. For example, in FIG. 5, some unused plant data is extracted from group A with the highest frequency of occurrence. Then, together with the extracted plant data, a know-how registration form such as that shown in FIG. 6A is displayed to the operator, thereby requesting the operator to register the know-how. The operator registers the know-how by inputting the required items in the form.
  • a training data registration form such as that shown in FIG. , and enter more detailed items to be registered.
  • one or more conditions to be confirmed when performing the registered operation that is, to be satisfied for performing the operation
  • teacher data is created based on these registration items.
  • step S13 in FIG. 5 the registered know-how is applied based on the registered training data.
  • Plant data for example, plant data with a high degree of similarity to the plant data used for know-how registration
  • Plant data that is judged to correspond to the above is automatically selected from a set of past plant data (time-series data) that has already been accumulated. Searched and extracted. Then, the same label as the registered know-how is automatically attached to the extracted plant data.
  • a new group (label) is created that collects only the plant data corresponding to the registered know-how.
  • the creation of detailed groups for each registered know-how described above may be performed completely automatically, but the help of the operator 40 may also be used.
  • the extracted data is presented to the operator 40 to determine whether or not the extracted data is appropriate. Only the extracted data may be put into the group.
  • the teacher data created based on the extracted data may be presented to the operator 40 to determine whether or not the teacher data is appropriate, and only when the teacher data is appropriate, the teacher data may be used for learning. good.
  • FIG. 7 is a diagram illustrating a user interface (know-how proposal form) for know-how proposal/evaluation in the artificial intelligence system according to this embodiment.
  • the form illustrated in FIG. 7 is presented to the operator 40 (at step S9 in FIG. 4) by the know-how evaluation unit 303 shown in FIG.
  • the know-how evaluation unit 303 evaluates the reliability of the inference result output by the real-time inference system 310, and if the reliability of the inference is higher than a predetermined level, the inference result ( For example, what kind of operation should be performed) is presented to the operator 40 in the form of a know-how proposal together with information on the plant data used in the inference and the know-how (label) applied there.
  • the name of application know-how the proposed operation content (inference result), the date and time of the target plant data, the registrant of the know-how, and the like are presented.
  • the operator 40 evaluates the proposal to determine whether it is appropriate or not, and inputs the result into the know-how proposal form.
  • FIG. 8 shows an example of the flow of reliability judgment performed by the know-how evaluation unit 303 for the inference results from the real-time inference system 310.
  • the real-time inference system 310 extracts the plant data having the same label (that is, the same group) as the label assigned to the input real-time used for inference from the set of time-series data. (Step S21). Then, the degree of similarity between the extracted predetermined feature amount of the time-series data having the same label and the feature amount of the input real-time data is calculated (S22). At that time, if training data has already been created for the time-series data, the conditions for performing the operation included in the training data (for example, "temperature sensor 1 is XX", "Pressure sensor 1 is XXX”, etc.) can be treated as a component having a greater weight than other components among the feature quantities.
  • the inference result is determined to be highly reliable; otherwise, it is determined to be unreliable (S23).
  • the inference result is determined to be highly reliable; otherwise, it is determined to be unreliable (S23).
  • FIG. 9 shows a modified example of the configuration for "presenting the new know-how area and registering know-how" in step S5 shown in FIG.
  • the know-how registration unit 302 (which is part of the AI training system 300 as shown in FIG. 3) includes a driving evaluation method learning unit 322, a driving evaluation unit 324, a know-how/ It has a teacher database 326 .
  • the operation evaluation method learning unit 322 evaluates the operation evaluation method, that is, the operation of the plant system 20 performed by the operator 40, that is, the quality of the operation action (for example, 60 points out of 100). ) method, and create a driving evaluation model that evaluates driving actions in that method.
  • the driving evaluation unit 324 uses the driving evaluation model created by the driving evaluation method learning unit 322 to evaluate the driving action performed by the operator 40, and the evaluation result (for example, 60 out of 100 points).
  • the know-how/teaching database 326 is a system that stores the know-how registered by the operator 40 and teaching data.
  • the operation evaluation method learning unit 322 includes a time-series database 320 (which is stored in the system according to the present embodiment) that accumulates operation data (time-series data) output from the plant system 20 in the past.
  • a data set related to a specific type of past driving action for example, operating a specific device for a specific purpose
  • the data set is used to drive the data set.
  • the data set is presented to the operator 40, and the operator 40 is requested to evaluate whether the driving action indicated by the data set is good or bad (preparatory evaluation in advance for learning the evaluation method).
  • the operator 40 judges whether the driving action indicated by the presented data set is good or bad, and inputs (registers) the evaluation result in the driving evaluation method learning unit 322 .
  • the driving evaluation method learning unit 322 retrieves a large number of data sets from the time-series database 320 for one type of driving action, and repeats the prior driving evaluation request and the registration of the driving evaluation result as described above. Learn how to evaluate that type of driving action to the required level.
  • a driving evaluation method learning unit 322 and a driving evaluation unit 324 may be provided for each of these driving action types. However, in the following description, the driving evaluation method learning unit 322 and the driving evaluation unit 324 for one type of driving action will be described.
  • the learned driving evaluation model created by the driving evaluation method learning unit 322 is deployed to the driving evaluation unit 324, thereby enabling the driving evaluation unit 324 to operate.
  • the operation evaluation unit 324 may use operation data output from the plant system 20 (past operation data accumulated in the time-series database 320, or current operation data (real-time data) obtained from the plant system 20. ) is input, a data set indicating a predetermined driving action type for a predetermined device is extracted from the driving data, and the data set is evaluated (e.g., 90 points, 65 points, etc.). ). Then, the driving evaluation unit 324 presents the data set and the evaluation result of the data set (driving action) (for example, scores such as 90 points and 65 points) to the operator.
  • driving action for example, scores such as 90 points and 65 points
  • the data set is displayed in the form of a graph showing changes in each data value along the time axis so that the operator 40 can easily grasp it visually.
  • the timing at which the driving evaluation unit 324 evaluates and the timing at which the evaluation result is presented to the operator 40 may be substantially simultaneous with the driving action to be evaluated (that is, in real time), or the driving action may be may be a predetermined time or a selected time after the is performed.
  • the evaluation of the driving action is performed in real time almost at the same time as the driving action, and the evaluation result is once stored in the system, and then is evaluated at a time convenient for the operator 40, such as a time selected by the operator 40.
  • the evaluation result may be presented to the operator 40 .
  • all evaluated driving actions may be presented to the operator 40 regardless of whether the evaluation results are good or bad, or the evaluation results may be worse than a predetermined standard. Only driving actions (for example, with a score of less than 80) may be selected and presented to the operator 40 . In any case, at least the driving action whose evaluation result is worse than the predetermined standard is the action that the operator 40 is not good at. Therefore, when the driving evaluation unit 324 notifies the operator 40 of a driving action with a poor evaluation result, the driving evaluation unit 324 requests the operator 40 to register know-how about the action.
  • the operator 40 can register the know-how and training data related to the driving action in the driving evaluation unit 324.
  • the driving evaluation unit 324 stores the registered know-how and training data in the know-how/training database 326 .
  • the teacher data stored here is used for learning an inference model or designing inference rules for constructing the real-time inference system 310, as already described with reference to FIGS. S8).
  • FIG. 10 illustrates the flow of the process in which the driving evaluation learning unit 322 described above learns the driving evaluation method.
  • FIG. 11 illustrates the flow of communication between the driving evaluation learning unit 22 and the operator 40 on the user interface when learning the driving evaluation method.
  • the operation evaluation learning unit 322 allows the operator 40 to select a device in the plant system 20 to be targeted for operation support and the type of operation action (S31).
  • the driving evaluation learning unit 322 presents the operator 40 with a request message such as "Please select a device and operation.”
  • the device to be supported and the type of driving action are specified, for example, "activation operation of XXX reaction system".
  • the driving evaluation learning unit 322 selects data items to be displayed for the operator 40 regarding the target device and the type of driving action (that is, to be viewed in order to evaluate the quality of the driving action).
  • a set is selected (S32). For example, as shown in FIG. 11, in S321, the driving evaluation learning unit 322 presents the operator 40 with a request message such as "Please select the item you want to display.”
  • a set of data items to be viewed for evaluation is designated, for example, "XX heater outlet gas temperature, XX catalyst first layer lower temperature, XXX heater outlet gas temperature, XXX outlet gas pressure".
  • the driving evaluation learning unit 322 acquires one data set of data items designated by the operator 40 from the time-series database 320 with respect to the target device and driving action type designated by the operator 40. These data sets are extracted and presented to the operator 40 in graph form (S33). For example, as shown in FIG. 11, in S331, the driving evaluation learning unit 322 creates a graph showing changes along the time axis of the data values of each extracted data set and asks, "Is this graph okay? Display the graph on the user interface screen with a request message such as "Please confirm".
  • the driving evaluation learning unit 322 causes the operator 40 to evaluate (scoring) each set of driving data displayed in the form of a graph (that is, each past driving action) (S34). ). For example, as shown in FIG. 11, in S341, the driving evaluation learning unit 322 displays a request message such as "Please select and score past driving data.” In S342, an evaluation score such as 70 points or 20 points is input for each graph (driving action).
  • the driving evaluation learning unit 322 evaluates each data set (driving action) presented to the operator 40 and the evaluation result ( points) are used to create a driving evaluation model that learns the driving evaluation method of the driving action type of the corresponding device (S35).
  • the evaluation method learned here does not necessarily have to be a detailed evaluation method that gives a two-digit score as exemplified, and may be a simpler evaluation method.
  • a simple evaluation method for example, there may be a method of evaluating in two stages, good or bad.
  • learning may be performed using only a data set that has obtained one evaluation result of good (or bad). For example, when learning using only datasets that have been evaluated as good, calculate the distance on the data space from the trained good dataset, and score according to that distance or simply judge whether it is good or bad can be created as an evaluation result.
  • the driving evaluation unit 324 evaluates the driving actions performed by the operator 40 in real time.
  • FIG. 12 illustrates the flow of the driving evaluation process performed by the driving evaluation unit 324 .
  • FIG. 13 illustrates the communication flow between the operation evaluation unit 324 and the operator 40 on the user interface at that time.
  • the operation evaluation unit 324 inputs real-time operation data (real-time data) from the plant system 20, and from the real-time data regarding the target device and operation action type, selects the data of the data item. A set is extracted (S41). Then, the driving evaluation unit 324 evaluates (scores) the extracted data set (that is, the driving action just performed) using the learned evaluation method (S42).
  • the driving evaluation unit 324 determines whether the evaluation result satisfies a predetermined selection condition (for example, the score is lower than a certain reference value, that is, the condition that the driving action just performed is worse than the certain reference value). If the condition is satisfied, the evaluated data set and the evaluation result are presented to the operator 40 (S43).
  • the data set is displayed, for example, in the form of a graph representing changes in data values along the time axis so that the operator 40 can easily understand it visually.
  • the operation evaluation unit 324 causes the operator 40 to specify, on the displayed graph of the data set, what is the data state that serves as an index (foundation) for the evaluation result (S44).
  • a display example of the user interface in the process of S43 to S44 in FIG. 12 described above is shown in S431 to S442 in FIG. (It should be noted that the operator 40 who responds to the displayed message shown in FIG. 13 may be a different person than the operator 40 who performed the evaluated driving action.) For example, when the operator 40 activates the target equipment If an operation is performed and the operation evaluation unit 324 evaluates the start operation as lower than a certain standard, the operation evaluation unit 324 in S431 of FIG. A message indicating the low evaluation result is displayed to the operator 40. In response to this message, if operator 40 agrees with the results of the evaluation, such as yes in S432, driving evaluator 324 graphs the evaluated data set as shown in S442.
  • a message such as "Please tell me where points were deducted.” is requested to the operator 40.
  • the operator 40 puts an index mark 51 on the data state corresponding to the above index on the graph (in this example, a location where a certain data value changes abruptly), as shown in S442. .
  • the driving evaluation unit 324 stores the data state of the portion marked with the designation mark 51 as an index of the evaluation result (low evaluation result).
  • the operation evaluator 324 prompts the operator 40 to input details of what the data state means and what the correct operation should have been when the data state occurred (see FIG. 12). S45). For example, as shown in FIG. 13, the operation unit 324 presents a request message to the operator 40 in S451, such as "Please tell me what state it is in and how it should be operated.” In response to this request, the operator 40, in S452, states, "The state 'XX heater outlet temperature' is 'suddenly dropping'. The state 'reaction may stop.' Please enter information such as The operation evaluation unit 324 stores the input information as the content of the proposal message to be presented to the operator 40 by the real-time inference unit 310 (see FIG. 3).
  • the driving evaluation unit 324 extracts one or more sets (usually many sets) of data sets corresponding to the target device and driving action type from the time-series database 320, and is presented to the operator 40 in the same graph format as above (S46). Then, the driving evaluation unit 324 designates a data state that serves as an indicator of the evaluation result (high evaluation result) in contrast to the previous evaluation result (low evaluation result) from among the graphs of these data sets.
  • a request is made to the operator 40 (S47). For example, as shown in FIG. 13, in S471, the operation unit 324 displays a message to the operator 40 such as "Please tell us what kind of driving you should aim for." Display a graph of a dataset (usually many sets).
  • the operator 40 selects from the displayed graph a portion of the data state that serves as an indicator of the driving action to be aimed at (highly evaluated), and the index is displayed at that portion. Attaching a mark 53 designates the data state corresponding to the index.
  • the driving evaluation unit 324 stores the designated data state as an index of the above-described contrasting evaluation result (high evaluation result).
  • the driving evaluation unit 324 sends the know-how name to the operator 40 regarding the data state that serves as an indicator of the low evaluation and high evaluation input by the operator 40 in S44 to S47 and the driving action to be taken.
  • Input is made (S48) (for example, S481 to S482 in FIG. 13), and the input information is stored in the know-how/teaching database 326 as teaching data in association with the know-how name (S49).
  • the teacher data stored in the know-how/teacher database 326 is used to create an inference model that configures the real-time inference system 310 (see FIG. 3), as already described.
  • the teacher data in the know-how and teacher database 326 can be used as the teacher data for the machine learning.
  • the teacher data in the know-how and teacher database 326 is the programming of the inference rules, that is, can be used for design.
  • the real-time inference system 310 created in this way inputs real-time operation data (real-time data) from the plant system 20, and from the real-time data, a data set of selected data items related to the operation action type of the target equipment. A data set containing data states corresponding to the low evaluation result index is extracted. The real-time reasoning system 310 then identifies the data state corresponding to the low-evaluation index from the extracted data set, what the data state means, and the operation to be performed on the data set is Identify something and use the identified matter to create a proposal message and present it to the operator 40 .
  • FIG. 14 shows an example of a suggestion message presented to the driver 40 by the real-time reasoning system 310.
  • the extracted data set is displayed in the form of a graph, and an index mark 55 is displayed on the graph at the location of the data state corresponding to the low-evaluation index.
  • the target device and the type of driving action are displayed, such as "Device: XXX reaction system. Operation: Activation.”
  • Status XX heater outlet temperature is dropping rapidly.
  • Suggestion Reduce XXXX operation range.” .
  • an artificial intelligence system and a learning method in an artificial intelligence system that select what knowledge to learn by themselves and proceed with learning while requesting humans to do so. can be realized.
  • part or all of the above configurations, functions, processing units, processing means, etc. may be realized by hardware, for example, by designing them with an integrated circuit.
  • the present invention can also be implemented by software program code that implements the functions of the embodiments.
  • a computer is provided with a storage medium recording the program code, and a processor included in the computer reads the program code stored in the storage medium.
  • the program code itself read from the storage medium implements the functions of the above-described embodiments, and the program code itself and the storage medium storing it constitute the present invention.
  • Examples of storage media for supplying such program code include flexible disks, CD-ROMs, DVD-ROMs, hard disks, SSDs (Solid State Drives), optical disks, magneto-optical disks, CD-Rs, magnetic tapes, A nonvolatile memory card, ROM, or the like is used.
  • program code that implements the functions described in this embodiment can be implemented in a wide range of programs or script languages, such as assembler, C/C++, perl, Shell, PHP, Java (registered trademark), and Python.
  • all or part of the program code of the software that implements the functions of each embodiment may be stored in advance in the storage resources of the computer, or may be stored in other devices connected to the network as necessary. It may be stored in the storage resource of the computer from a temporary storage device or from a non-temporary storage medium via an external I/F (not shown) provided in the computer.
  • the program code of the software that realizes the functions of the embodiment can be stored in storage means such as a hard disk or memory of a computer or in a storage medium such as a CD-RW or CD-R.
  • a processor provided in the computer may read and execute the program code stored in the storage means or the storage medium.
  • control lines and information lines indicate those that are considered necessary for explanation, and not all the control lines and information lines are necessarily indicated on the product. All configurations may be interconnected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

The present invention provides an artificial intelligence that selects by itself what knowledge to learn, and that proceeds to learn while making requests to a human. An artificial intelligence system 30 comprises: a real-time inference system 310 that receives input of data which occurs in an environment (for example, a plant) 20, that makes an inference, and that outputs an inference result; and an AI training system 300 that trains the real-time inference system 310 with input of training data which has been created using data from the environment. The AI training system 300 has a know-how evaluation unit 303 that evaluates reliability pertaining to the inference result and that, in accordance with the evaluation result for the reliability, selectively requests intervention from a human (for example, a plant operator) 40 in creation of the training data.

Description

人工知能システム及び人工知能の動作方法を実施するコンピュータシステム、並びにコンピュータプログラム記録媒体Computer system for implementing artificial intelligence system and method of operating artificial intelligence, and computer program recording medium
 本発明は、人工知能システム及び人工知能の動作方法に関する。 The present invention relates to an artificial intelligence system and an artificial intelligence operating method.
 本発明は、好ましくは、学習機能をもつ人工知能システムに関し、特に、人間の知能を利用する所謂ヒューマン・イン・ザループ(以下、HITLと略称する)の応用に関する。 The present invention preferably relates to an artificial intelligence system with a learning function, and more particularly to so-called human-in-the-loop (HITL) applications that utilize human intelligence.
 HITLを応用した従来技術として、特許文献1に記載のAIプロセス制御監視装置、および、特許文献2に記載のプラントオペレータ学習装置などがある。 Conventional technologies that apply HITL include the AI process control monitoring device described in Patent Document 1 and the plant operator learning device described in Patent Document 2.
 特許文献1に記載の装置は、プラント運転員の頭の中に潜在しているプロセス制御に関する制御情報をプラントの運転中にリアルタイムでオペレータから入力し、その入力された制御情報、運転員がプラントを操作した操作情報、及びプラントの観測データ中から、統計的な規則性を有するパターンを弁別して学習し、学習されたパターンに基づいてプラントの動作に関する定性的モデルを構築する。学習が進行するにつれて、構築された定性的モデルに基づいてプラントのプロセスの監視制御が行われる。 The device described in Patent Document 1 inputs control information related to process control latent in the head of a plant operator from the operator in real time during the operation of the plant, and the input control information and the operator operate the plant. , and from the plant observation data, patterns with statistical regularity are discriminated and learned, and based on the learned patterns, a qualitative model of plant operation is constructed. As learning progresses, plant processes are monitored and controlled based on the constructed qualitative model.
 特許文献2に記載の装置は、機器の操作に熟練しているエキスパートの模範演技の観察結果を用いて、操作手順知識を学習し、学習した操作手順知識の適用順序の不明点をエキスパートに問い合わせ、問い合わせ結果が間違いである場合に、学習した操作手順知識の更新を行う。 The device described in Patent Document 2 learns operating procedure knowledge using observation results of model performances by an expert who is skilled in operating equipment, and inquires of the expert about unknown points in the application order of the learned operating procedure knowledge. , update the learned operating procedure knowledge when the inquiry result is wrong.
特開平1-224804号公報JP-A-1-224804 特開2000-122780号公報JP-A-2000-122780
 プラント運転員や機器操作エキスパートの頭脳の中には、生じ得る多種多様な状況に対応した数多くの運転ノウハウや機器操作手順が暗黙知として存在する。それら膨大量の暗黙知の中から、何を選んで人工知能に教えれば、人工知能の学習が効率的に進むか、さらにはプラント運転や機器操作などの人口知能の用途にとり意味のある学習になるのか、ということを判断することは、人間にとり困難である。人間が自らの判断で人工知能に教えるべき知識を選んだならば、人工知能が実用可能レベルまで育成されるまでに、暗黙知の言語化・定義、それに対する教師データの作成と紐づけが非効率的に実施され、長すぎる時間と多すぎる作業が無駄に費やされるおそれがある。 In the brains of plant operators and equipment operation experts, there exists a large amount of operational know-how and equipment operation procedures that correspond to a wide variety of possible situations as tacit knowledge. From this huge amount of tacit knowledge, what should be selected and taught to artificial intelligence? It is difficult for humans to judge whether or not If humans choose the knowledge to be taught to artificial intelligence by their own judgment, it is impossible to verbalize and define tacit knowledge and create and link teaching data to it until artificial intelligence is trained to a practical level. It can be done efficiently and waste too much time and too much work.
 本発明の一つの目的は、知識の利用により改善されるであろう特定の状況又は事象をシステムが自ら選び、人間に効果的に知識の提供を要求する人工知能システムを提供することにある。 One object of the present invention is to provide an artificial intelligence system in which the system itself selects specific situations or events that would be improved by the use of knowledge and effectively requires humans to provide knowledge.
 本発明の別の一つの目的は、人間がどう人工知能を助けるべきかを自ら人間に要求する人工知能システムを提供することにある。 Another object of the present invention is to provide an artificial intelligence system that asks humans how they should help artificial intelligence.
 一つの実施形態にかかる人工知能システムは、環境で発生する環境データを受け入れ、受け入れた環境データを用いて推論を行って推論結果を出力する推論システムと、人間の関与により環境データを用いて作成された教師データを入力し、入力された教師データを用いて推論システムに知識を組み込むことで推論システムを育成する育成システムとを備える。育成システムは、所与の環境データの中から、推論システムに組み込むことが望ましい特定の知識に関係する特定の環境データを選択し、選択された特定の環境データを用いた教師データの作成に関与することを人間に要求する人間利用手段を有する。 An artificial intelligence system according to one embodiment includes an inference system that accepts environmental data generated in the environment, makes inferences using the accepted environmental data, and outputs an inference result, and creates using the environmental data with human involvement. a training system for training the inference system by inputting the input teacher data and incorporating knowledge into the inference system using the input teacher data. The training system selects, from given environmental data, specific environmental data related to specific knowledge that is desired to be incorporated into the inference system, and participates in creating teacher data using the selected specific environmental data. It has human utilization means that require humans to
 一つの実施形態にかかる人工知能システムは、何の知識を推論システムに組み込むべきかをシステム自身が選んで、選ばれた知識に関する教師データの作成への関与を人間に要求しながら、推論システムの育成を進めていく。 An artificial intelligence system according to one embodiment selects what knowledge to incorporate into the inference system by itself, and requires humans to participate in creating training data about the selected knowledge. continue to grow.
一実施形態に係る人工知能システムのハード構成を例示する図である。1 is a diagram illustrating a hardware configuration of an artificial intelligence system according to one embodiment; FIG. 本実施形態に係る人工知能システムの基本的機能の概念を示す図である。It is a figure which shows the concept of the basic function of the artificial intelligence system which concerns on this embodiment. 本実施形態に係る人工知能システムをプラント操作の支援に適用したシステムのより具体的な機能構成を示す図である。It is a figure which shows the more concrete functional structure of the system which applied the artificial intelligence system which concerns on this embodiment to the support of plant operation. 本実施形態に係る人工知能システムの動作を示す図である。It is a figure which shows operation|movement of the artificial intelligence system which concerns on this embodiment. 本実施形態に係る人工知能システムにおけるノウハウ抽出プロセスを説明するための図である。It is a figure for demonstrating the know-how extraction process in the artificial intelligence system which concerns on this embodiment. 本実施形態に係る人工知能システムにおけるノウハウ登録と教師データ登録のユーザーインタフェースを例示する図である。FIG. 4 is a diagram illustrating user interfaces for know-how registration and training data registration in the artificial intelligence system according to the present embodiment; 本実施形態に係る人工知能システムにおけるノウハウ提案・評価のユーザーインタフェースを例示する図である。FIG. 4 is a diagram illustrating a user interface for know-how proposal/evaluation in the artificial intelligence system according to the present embodiment; 本実施形態に係る人工知能システムにおけるリアルタイム推論に関する信頼性評価の流れの一例を示す図である。It is a figure which shows an example of the flow of reliability evaluation regarding real-time inference in the artificial intelligence system which concerns on this embodiment. 本実施形態に係る人工知能システムにおける図4に示されたステップS5のノウハウ登録を行うための構成の変形例を示す図である。FIG. 5 is a diagram showing a modification of the configuration for performing know-how registration in step S5 shown in FIG. 4 in the artificial intelligence system according to this embodiment; 運転評価法を学習するプロセスの流れを例示する図である。FIG. 4 is a diagram illustrating the flow of the process of learning a driving evaluation method; 運転評価法の学習時におけるユーザインタフェースでの運転員とシステムとの間のコミュニケーションの流れを例示する図である。FIG. 5 is a diagram illustrating the flow of communication between the operator and the system on the user interface during learning of the driving evaluation method; 運転評価のプロセスの流れを例示する図である。FIG. 4 is a diagram illustrating the process flow of driving evaluation; 運転評価時におけるユーザインタフェースでの運転員とシステムとの間のコミュニケーションの流れを例示する図である。FIG. 4 is a diagram illustrating the flow of communication between the operator and the system on the user interface during driving evaluation; リアルタイム推論システムの提案メッセージを例示する図である。FIG. 4 illustrates a proposal message of the real-time reasoning system;
 以下、本発明の実施形態について、図面を参照して説明する。なお、以下に説明する実施形態は請求の範囲に係る発明を限定するものではなく、また実施形態の中で説明されている諸要素及びその組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the embodiments described below do not limit the invention according to the scope of claims, and that all of the elements described in the embodiments and their combinations are essential to the solution of the invention. Not exclusively.
 なお、実施例を説明する図において、同一の機能を有する箇所には同一の符号を付し、その繰り返しの説明は省略する。 In addition, in the drawings for explaining the embodiments, the same reference numerals are given to the portions having the same functions, and the repeated description thereof will be omitted.
 また、以下の説明では、情報の一例として「xxxデータ」といった表現を用いる場合があるが、情報のデータ構造はどのようなものでもよい。すなわち、情報がデータ構造に依存しないことを示すために、「xxxデータ」を「xxxテーブル」と言うことができる。さらに、「xxxデータ」を単に「xxx」と言うこともある。そして、以下の説明において、各情報の構成は一例であり、情報を分割して保持したり、結合して保持したりしても良い。 Also, in the following explanation, the expression "xxx data" may be used as an example of information, but any data structure of information may be used. That is, "xxx data" can be referred to as "xxx tables" to indicate that the information is independent of the data structure. Furthermore, "xxx data" may be simply referred to as "xxx". In the following description, the configuration of each information is an example, and the information may be divided and held or combined and held.
 なお、以下の説明では、「プログラム」を主語として処理を説明する場合があるが、プログラムは、プロセッサ(例えばCPU(Central Processing Unit))によって実行されることで、定められた処理を、適宜に記憶資源(例えばメモリ)及び/又は通信インターフェースデバイス(例えばポート)を用いながら行うため、処理の主語がプログラムとされても良い。プログラムを主語として説明された処理は、プロセッサ或いはそのプロセッサを有する計算機が行う処理としても良い。 In the following explanation, the processing may be explained with the “program” as the subject, but the program is executed by a processor (for example, CPU (Central Processing Unit)) to appropriately perform the specified processing. The subject of processing may be a program because it is performed using storage resources (eg, memory) and/or communication interface devices (eg, ports). A process described using a program as a subject may be a process performed by a processor or a computer having the processor.
 図1は、実施形態に係る人工知能システムが適用される計算機システムの物理構成を示す。 FIG. 1 shows the physical configuration of a computer system to which the artificial intelligence system according to the embodiment is applied.
 計算機システム50は、ネットワーク240に接続された複数(又は1)の物理計算機201で構成される。 The computer system 50 is composed of multiple (or one) physical computers 201 connected to a network 240 .
 ネットワーク240は、1以上の通信ネットワークであり、例えば、FC(Fibre Channel)ネットワークとIP(Internet Protocol)ネットワークとのうちの少なくとも1つを含んでよい。ネットワーク240は、計算機システム50の外に存在してもよい。 The network 240 is one or more communication networks, and may include, for example, at least one of an FC (Fibre Channel) network and an IP (Internet Protocol) network. Network 240 may exist outside computer system 50 .
 各物理計算機201は、例えば汎用計算機であり、物理コンピュータリソース330を有する。物理コンピュータリソース330は、インターフェース部251、記憶部252及びそれらに接続されたプロセッサ部253を含む。 Each physical computer 201 is, for example, a general-purpose computer and has physical computer resources 330 . The physical computer resource 330 includes an interface section 251, a storage section 252, and a processor section 253 connected thereto.
 計算機システム50は、例えば、XaaS(X as a Service)を提供するクラウドコンピューティングシステムでよい。なお、「XaaS」とは、一般には、システムの構築又は運用に必要な何らかのリソース(例えば、ハードウェア、回線、ソフトウェア実行環境、アプリケーションプログラム、開発環境など)をインターネットのようなネットワークを通じて利用できるようにしたサービスを意味する。XaaSの「X」として採用される文字(又はワード)は、XaaSのタイプ(サービスモデル)によって異なる。例えば、XaaSの例として、PaaS(Platform as a Service)、SaaS(Software as a Service)、PaaS(Platform as a Service)、IaaS(Infrastructure as a Service)又はHaaS(Hardware as a Service)がある。 The computer system 50 may be, for example, a cloud computing system that provides XaaS (X as a Service). In addition, "XaaS" generally refers to any resources (for example, hardware, lines, software execution environment, application programs, development environment, etc.) necessary for building or operating a system that can be used through a network such as the Internet. means a service that The letter (or word) adopted as "X" of XaaS differs depending on the type of XaaS (service model). For example, examples of XaaS include PaaS (Platform as a Service), SaaS (Software as a Service), PaaS (Platform as a Service), IaaS (Infrastructure as a Service) or HaaS (Hardware as a Service).
 図2は、一つの実施形態に係る人工知能システムの基本的機能の概念を示す図である。人工知能システムの用途は無限にあり得るが、この実施形態では、その用途の非限定的な一例示として、プラント運転員によるプラントの運転操作を人工知能システムが支援する(運転操作の少なくとも一部を肩代わりする)ことを想定する。 FIG. 2 is a diagram showing the concept of the basic functions of an artificial intelligence system according to one embodiment. Although there are limitless applications of artificial intelligence systems, in this embodiment, as one non-limiting example of such applications, the artificial intelligence system assists plant operators in plant operations (at least part of the operations). ).
 図2に示す環境20は、AI(人工知能)システム30が関与又は影響する(例えば、AIシステム30の推論結果が利用される)環境である。例えばAIシステム30がプラントの運転に関与するこの実施形態においては、環境20はプラントである(プラント自体はもちろん、それに関わる人間40、ならびに、プラントと関係をもつ環境及び外部システムも含み得る)。環境20からAIシステム30に入るデータは、環境20に/から入力/出力されるデータや信号、環境20を通過するデータや信号などを含み得る。例えば、環境20がプラントなら、プラントへの各種操作指令、プラントに設置された各種センサが出すセンサデータ、プラントを制御するDCS(Distributed Control System:分散制御システム)に入出力される各種のDCSデータ、それら各種データの分析やプラントの生成物や状態などを分析して得られる分析データなどがありえる。 The environment 20 shown in FIG. 2 is an environment in which an AI (artificial intelligence) system 30 participates or influences (for example, inference results of the AI system 30 are used). For example, in this embodiment where AI system 30 is involved in the operation of a plant, environment 20 is the plant (which may of course include the plant itself, as well as humans 40 associated with it, as well as the environment and external systems associated with the plant). Data entering AI system 30 from environment 20 may include data or signals input to/output from environment 20, data or signals passing through environment 20, and the like. For example, if the environment 20 is a plant, various operation commands to the plant, sensor data output by various sensors installed in the plant, and various DCS data input/output to the DCS (Distributed Control System) that controls the plant. , and analytical data obtained by analyzing these various data and analyzing the products and conditions of the plant.
 AIシステム30は、環境20から環境データを入力し、入力された環境データに関して推論を行う。好ましくはAIシステム30は、リアルタイムで環境データを入力し、リアルタイムで推論作業を行う。AIシステム30が行う推論(つまり、AIシステム30の推論能力つまり学習レベル、あるいは、その推論から得られた推論結果)に関しての信頼性が評価される。信頼性の評価は、好ましくは、各時点で入力される環境データごとに、または環境データの分類グループごとに、なされる。したがって、ある時点で、ある環境データに関しては推論の信頼性が高いと評価されるが、別の環境データについては信頼性が低いと評価される場合がある。 The AI system 30 inputs environmental data from the environment 20 and makes inferences regarding the input environmental data. AI system 30 preferably inputs environmental data in real time and performs inference work in real time. The reliability of the inference made by the AI system 30 (that is, the inference ability, that is, the learning level of the AI system 30, or the inference result obtained from the inference) is evaluated. An evaluation of reliability is preferably made for each environmental data input at each point in time or for each taxonomic group of environmental data. Thus, at some point in time, inference may be rated as highly reliable for some environmental data, but less reliable for other environmental data.
 ある時点で、ある環境データに関し推論の信頼性が低いと評価された場合、それは、その時点では、AIシステム30はその環境データに関するノウハウなどの知識の学習が未熟であり、ゆえに、その環境データに関する学習をすることが望ましいことを意味する。そこで、AIシステム30は、その環境データを人間40に提示して、人間に対し、その環境データに関する知識を教師データとしてAIシステム30に入力するよう依頼する。そして、その教師データに基づいて、AIシステム30が学習を行う。つまり、AIシステム30が主体的に人間40に働きかけて人間知能(HI)を利用し、新しい知識を獲得し学習する。他方、ある時点で、ある環境データに関し推論の信頼性が高いと評価された場合、AIシステム30は環境(人間40も含む)に推論結果を提供する。 If the reliability of inference is evaluated to be low for certain environmental data at a certain point in time, it means that at that point, the AI system 30 is immature in learning knowledge such as know-how about the environmental data. It means that it is desirable to study about Therefore, the AI system 30 presents the environmental data to the human 40 and requests the human to input knowledge about the environmental data to the AI system 30 as teacher data. Then, the AI system 30 learns based on the teacher data. In other words, the AI system 30 proactively works on the human 40 and utilizes human intelligence (HI) to acquire and learn new knowledge. On the other hand, if at some point in time the reliability of the inference is evaluated with respect to certain environmental data, the AI system 30 provides the inference result to the environment (including the human 40).
 このように、AIシステム30は、HIを利用することが好ましい機会、状況又は事象を主体的に見つけ出し、その機会に主体的に人間40に働きかけてHIを学習に利用する(HIから教えを受ける)ことで、推論の信頼性を高める。 In this way, the AI system 30 proactively finds an opportunity, situation, or event in which it is preferable to use HI, and proactively works on the human 40 to use HI for learning (receiving teaching from HI). ) to increase the reliability of the inference.
 図2中の(2)「推論の信頼性を評価する」から(3)「信頼性が低い場合は人間に通知する」のプロセスの非限定的な具体例として、AIシステム30は、次の3通りのプロセスをもつ。
 1)過去に入力され保存された環境データの中から、未だ教師データの作成に利用した履歴のない環境データを選別して(好ましくは、発生頻度のより高い環境データから優先的に選別して)、新たな教師データの材料とする
 2)各時点でリアルタイムで環境データを入力してリアルタイムに推論を行なう時、その各時点の入力環境データの特徴量に基づいて(例えば入力環境データの特徴量の類似性に基づいて)、その入力環境データがどの程度に信頼できる推論結果を引き出し得るかを評価し、引き出し得る推論結果の信頼性が低いと評価された環境データを新たな教師データの材料として選ぶ。
 3)各時点でリアルタイムで環境データを入力してリアルタイムに推論を行なう時、その各時点の入力環境データの推論結果を人間に提供して、人間にその推論結果の妥当性の評価を要求する。そして、人間からフィードバックされる妥当性の評価結果に基づいて、推論結果の妥当性が低いと評価された入力環境データを、新たな教師データの材料として選ぶ。
As a non-limiting specific example of the process from (2) “evaluate the reliability of inference” to (3) “notify humans if reliability is low” in FIG. It has three processes.
1) From environmental data that has been input and saved in the past, select environmental data that has not yet been used to create training data (preferably, prioritize environmental data that occurs more frequently). ), and use it as a material for new training data. 2) When environmental data is input in real time at each point in time and inference is performed in real time, based on the feature amount of the input environment data at each point in time (for example, the feature of the input environment data Based on quantitative similarity), the input environment data is evaluated to what extent it can elicit reliable inference results, and environmental data evaluated as having low confidence in elicitable inference results are used as new training data. choose as material.
3) When inputting environmental data in real time at each point in time and making inferences in real time, the inference results of the input environmental data at each point in time are provided to humans, and the humans are required to evaluate the validity of the inference results. . Then, based on the evaluation results of validity fed back from humans, the input environment data evaluated as having low validity of the inference result is selected as material for new teacher data.
 図3は、実施形態に係る人工知能システムをプラントの運転操作の支援に適用したシステムのより具体的な機能構成を示す図である。 FIG. 3 is a diagram showing a more specific functional configuration of a system in which the artificial intelligence system according to the embodiment is applied to assist plant operation.
 図3に示す本実施形態の人工知能システム30は、プラントシステム20とプラント運転員40とに通信可能である。人工知能システム30は、AI育成システム300及びリアルタイム推論システム310を有する。リアルタイム推論システム310は、例えば国際公開2019/003485に開示されたような構成を有する。 The artificial intelligence system 30 of this embodiment shown in FIG. 3 can communicate with the plant system 20 and the plant operator 40 . The artificial intelligence system 30 has an AI training system 300 and a real-time reasoning system 310 . The real-time reasoning system 310 has a configuration as disclosed, for example, in WO2019/003485.
 環境の一例としてのプラントシステム20は、分析システム21、操作盤22、DCS23、センサ群24、機器群25、及び被処理物群26を有する。機器群25はプラントシステムの生産設備を構成する各種の機器であり、被処理物群26はその生産設備日で処理される原料、中間生成物、生産物、廃棄物などである。センサ群24は、機器群25及び被処理物群26の状態や動作などをセンスする。DCS23は、機器群25のプロセス制御を行う。操作盤22は、運転員40により操作されて機器群25を操作する。分析システム21は、センサ群24から出力されるデータを受けて、プラントシステム20の各種の状態、動作、性能及び生産性などに関する分析を行う。本明細書でいう「プラントデータ」は、これらのプラントシステム20の構成要素から生じる種々の信号やデータの束を指す。 A plant system 20 as an example of an environment has an analysis system 21, an operation panel 22, a DCS 23, a sensor group 24, an equipment group 25, and a processed object group 26. The equipment group 25 is various equipment that constitutes the production equipment of the plant system, and the processed material group 26 is raw materials, intermediate products, products, wastes, etc. that are processed on the day of the production equipment. The sensor group 24 senses the state and operation of the device group 25 and the processed object group 26 . The DCS 23 performs process control of the equipment group 25 . The operation panel 22 is operated by the operator 40 to operate the device group 25 . The analysis system 21 receives data output from the sensor group 24 and analyzes various states, operations, performance, productivity, and the like of the plant system 20 . As used herein, "plant data" refers to a bundle of various signals and data originating from these plant system 20 components.
 AIシステム30は、プラントシステム20に関して時々刻々発生するデータ(以下、「プラントデータ」と呼ぶが、プラントデータにはプラントシステム20に/から入力/出力されるデータや信号、プラントシステム20を通過するデータや信号などが含まれ得る)をリアルタイムに入力し、このリアルタイムに入力されたプラントデータ(図3中の「(1)リアルタイムデータ」)を用いてリアルタイムに推論を行なう。推論の結果(例えば、どのようなプラントデータに対してどのノウハウを適用してどのような運転操作を提案するかを示す通知)は運転員(運転員には、プラントの運転に関わる人だけでなく、運転以外の面でプラントに関わる人も含まれ得る)40に出力される。AIシステム30は、また、プラントシステム20で過去に発生したプラントデータの時系列のセット(図3中の「(1)時系列データ」)(時系列データは、事前にある期間にわたり外部で蓄積された過去のプラントデータでもよいし、入力リアルタイムデータをAIシステム30内で順に保存し蓄積したものでもよい)を入力して、この時系列データを学習サイクルに用いる。 The AI system 30 includes data generated from time to time regarding the plant system 20 (hereinafter referred to as "plant data", but plant data includes data and signals input/output to/from the plant system 20, signals passing through the plant system 20, data, signals, etc.) are input in real time, and inference is performed in real time using the plant data ("(1) real time data" in FIG. 3) input in real time. The result of inference (for example, a notification indicating which know-how is applied to which plant data and what kind of operation is proposed) is an operator (which may include people involved in the plant in aspects other than operation) 40. The AI system 30 also includes a time-series set of plant data that occurred in the past in the plant system 20 ("(1) time-series data" in FIG. This time-series data is used in the learning cycle.
 AI育成システム300は、データ分類部301、ノウハウ登録部302及びノウハウ評価部303を有する。 The AI training system 300 has a data classification section 301 , a know-how registration section 302 and a know-how evaluation section 303 .
 データ分類部301は、入力されたプラントデータ(リアルタイムデータ及び時系列データ)を、分類ルールに従って、複数のグループに分類する(つまり、入力プラントデータにラベル付けをする)。分類ルールは予めシステム設計者又は運転員などによって設定されてよい。グループ(つまり、ラベル)は、例えば、各種の運転操作別のグループ、各種のアラーム別のグループ、あるいは、機器の立ち上げや目標値変更など各種の運転場面別のグループなど、任意に設定されてよい。リアルタイムデータに関しては、データ分類部301はリアルタイムデータを分類した(ラベルを付けた)の後に、そのリアルタイムデータをリアルタイム推論システム310に提供する。 The data classification unit 301 classifies the input plant data (real-time data and time-series data) into a plurality of groups according to classification rules (that is, labels the input plant data). Classification rules may be set in advance by a system designer, an operator, or the like. Groups (that is, labels) can be arbitrarily set, such as groups for various driving operations, groups for various alarms, or groups for various driving situations such as starting up equipment and changing target values. good. For real-time data, the data classifier 301 classifies (labels) the real-time data before providing it to the real-time reasoning system 310 .
 他方、時系列データに関しては、データ分類部301は、時系列データを分類した後、その分類結果に基づいて、優先的に学習すべき運転ノウハウ(つまり、リアルタイム推論システム310が未学習か学習レベルが未熟である運転ノウハウ)に関わる時系列データ(プラントデータ)を選別して抽出する。その選別抽出方法は後述される。そして、データ分類部301は、抽出されたプラントデータをノウハウ登録部302に提供する。 On the other hand, with respect to the time-series data, the data classification unit 301 classifies the time-series data, and then, based on the classification result, determines the driving know-how to be learned with priority (that is, whether the real-time inference system 310 has not learned the learning level Select and extract time-series data (plant data) related to operational know-how that is immature). The selective extraction method will be described later. The data classification unit 301 then provides the extracted plant data to the know-how registration unit 302 .
 ノウハウ登録部302は、データ分類部301により抽出されたプラントデータを運転員40に通知して、運転員40に対してノウハウの登録を依頼する。運転員40はノウハウ登録部302からの依頼に応じてノウハウの登録を行う。この実施形態では、ノウハウの登録は、例えば図中で「ノウハウ登録」と「教師データ登録」と示さた2段階の登録作業からなる。一段目の「ノウハウ登録」は、通知されたプラントデータに示される運転操作の根拠なったノウハウに関する基本的な情報(例えば、そのノウハウの名称や運手操作の内容)を運転員40が入力することにより行われる。次の「教師データ登録」は、教師データに必要な当該ノウハウのより詳細な情報(例えば、機器の温度や圧力がこのようになったからその操作を行ったなど、その操作の必要を生んだ条件など)を運転員40が入力することにより行われる。 The know-how registration unit 302 notifies the operator 40 of the plant data extracted by the data classification unit 301 and requests the operator 40 to register the know-how. The operator 40 registers know-how in response to a request from the know-how registration unit 302 . In this embodiment, registration of know-how consists of, for example, two stages of registration work indicated as "know-how registration" and "teaching data registration" in the figure. In the "know-how registration" in the first step, the operator 40 inputs basic information (for example, the name of the know-how and the details of the operator's operation) related to the know-how that is the basis of the operation shown in the notified plant data. It is done by Next, "teaching data registration" is more detailed information on the know-how required for teaching data (for example, the conditions that made the operation necessary, such as the temperature and pressure of the device that caused the operation to be performed). etc.) is input by the operator 40 .
 ノウハウ登録と教師データ登録が運転員40によりなされたら、ノウハウ登録部302は、その登録された情報から教師データを作成して、教師データをデータ分類部301に提供する。データ分類部301は、学習途中の推論モデル(図示せず。以下、学習モデルという)を有しており、その学習モデルに教師データを与えて、学習モデルに新しいノウハウを学習させる。以上が多数のプラントデータについて繰り返されることで、学習モデルの推論性能が向上していく。所定の条件に合うレベルまで学習モデルの学習が進むと、データ分類部301は、その学習モデルをリアルタイム推論システム310にデプロイする(つまり、リアルタイム推論システム310内の推論モデルを、より推論性能の高いものに更新つまり育成する)。 When the operator 40 registers the know-how and the training data, the know-how registration unit 302 creates training data from the registered information and provides the training data to the data classification unit 301 . The data classification unit 301 has an inference model (not shown, hereinafter referred to as a learning model) that is in the process of learning, gives teacher data to the learning model, and makes the learning model learn new know-how. By repeating the above process for a large number of plant data, the inference performance of the learning model is improved. When learning of the learning model progresses to a level that satisfies a predetermined condition, the data classification unit 301 deploys the learning model to the real-time inference system 310 (that is, the inference model in the real-time inference system 310 is upgraded to a higher inference performance level). renew or nurture into something).
 リアルタイム推論システム310は、リアルタイムでプラントデータを入力して推論を行い、各プラントデータに関する推論結果をノウハウ評価部303に渡す。ノウハウ評価部303は、各プラントデータの推論結果の信頼性を評価し、信頼性があるレベルより低い(つまり、そのプラントデータは学習すべきノウハウに関わるものである)のか、信頼性があるレベルより高い(つまり、そのプラントデータは学習すべきノウハウに関わるものではない)のかを判断する。その判断結果が信頼性があるレベルより高いという場合、それは、その時の入力プラントデータに関して、まだ未学習または学習未熟であるから、新しいノウハウを登録するべきである、ということを意味する。したがって、リアルタイム推論システム310は、その推論結果(これには少なくともその時の推論に使われた入力プラントデータが含まれる)をデータ分類部301に提供する。 The real-time inference system 310 inputs plant data in real time, makes inferences, and passes the inference results regarding each plant data to the know-how evaluation unit 303 . The know-how evaluation unit 303 evaluates the reliability of the inference result of each plant data, and determines whether the reliability level is lower than a certain level (that is, the plant data is related to the know-how to be learned) or the reliability level. Determine whether it is higher (that is, the plant data is not related to the know-how to be learned). If the judgment result is higher than the reliability level, it means that new know-how should be registered because the input plant data at that time is still unlearned or immature. Accordingly, real-time inference system 310 provides its inference results (which include at least the input plant data used for inference at that time) to data classifier 301 .
 すると、データ分類部301は、すでに説明した通りの方法で、その入力プラントデータをノウハウ登録部302に渡す。すると、ノウハウ登録部302が、既に説明した通りの方法で、その入力プラントデータについて、運転員40に依頼してノウハウ登録と教師データ登録を行う。このときのノウハウ登録と教師データ登録は、推論結果が出た直後に行ってもよいし、あるいは、信頼性の低い推論結果がある程度溜まってから行ってもよい。しかし、直後に行った場合には、運転員40にとっては、自分がある操作を行った直後にその操作に関してノウハウ登録と教師データ登録を要求されるので都合がいい。いずれにせよ、こうして教師データが新たに登録されると、その後に、すでに説明した通りの方法で、新たに登録された教師データを用いた学習モデルの学習が行われ、やがて、学習レベルが一層上がった学習モデルが推論システム310にデプロイされる。これにより、リアルタイム推論システム310の推論能力が更に高まる。 Then, the data classification unit 301 passes the input plant data to the know-how registration unit 302 by the method already explained. Then, the know-how registration unit 302 requests the operator 40 to perform know-how registration and training data registration for the input plant data by the method already explained. The know-how registration and teacher data registration at this time may be performed immediately after the inference result is obtained, or may be performed after a certain amount of low-reliability inference results have accumulated. However, if it is performed immediately after, it is convenient for the operator 40 because the know-how registration and the training data registration regarding the operation are requested immediately after the operator 40 performs the operation. In any case, once the teacher data is newly registered in this way, the learning model is then trained using the newly registered teacher data in the same manner as already explained, and eventually the learning level is further increased. The resulting learning model is deployed to inference system 310 . This further enhances the reasoning capabilities of real-time reasoning system 310 .
 他方、その時の入力プラントデータに関する推論結果があるレベル以上に信頼性が高いと判断した場合、ノウハウ評価部303は、その推論結果(そこには、入力プラントデータと、その推論に用いた学習済みノウハウと、推論から得られた運転操作の提案とが含まれる)を「ノウハウ提案」(例えば、XXXXという事象が発生したから、XXXXというノウハウに従って、XXXという操作を提案する)という形で、運転員40に表示する。運転員40は、そのノウハウ提案が妥当か不当かを評価し、その評価結果を入力してノウハウ評価部303にフィードバックする。 On the other hand, if it is determined that the inference result regarding the input plant data at that time is more reliable than a certain level, the know-how evaluation unit 303 evaluates the inference result (the input plant data and the learned data used for the inference). know-how and a driving operation suggestion obtained from inference) in the form of a "know-how proposal" (for example, since an event XXXX has occurred, an operation XXX is proposed according to the know-how XXXX). displayed to member 40. The operator 40 evaluates whether the know-how proposal is appropriate or not, inputs the evaluation result, and feeds it back to the know-how evaluation unit 303 .
 ノウハウ評価部303は、運転員40からフィードバックされたノウハウ評価結果が妥当と不当どちらを示すかを、データ分類部301に通知する。運転員40がノウハウ提案を不当と判断した場合、それは、その時の推論に使われた入力プラントデータデータについて、新たなノウハウを登録すべきことを意味する。したがって、この場合は、上述した推論結果の信頼性が低かった場合と同様に、データ分類部301は、その入力プラントデータをノウハウ登録部302に渡し、そして、ノウハウ登録部302が、既に説明した通りの方法で、その入力プラントデータについて、ノウハウ登録と教師データ登録を行う。この場合のノウハウ登録と教師データ登録も、運転員40からのフィードバックの直後に行ってもよいし、あるいは、運転員40からのフィードバックがある程度の量溜まってからノ行ってもよいが、前者の方が運転員40には都合がよいであろう。いずれせよ、このフィードバックに基づいたノウハウと教師データのとうろくによっても、リアルタイム推論システム310の推論能力が更に高まる。 The know-how evaluation unit 303 notifies the data classification unit 301 of whether the know-how evaluation result fed back from the operator 40 is valid or invalid. If the operator 40 determines that the know-how proposal is inappropriate, it means that new know-how should be registered with respect to the input plant data used for the inference at that time. Therefore, in this case, the data classification unit 301 passes the input plant data to the know-how registration unit 302, and the know-how registration unit 302 transfers the input plant data to the know-how registration unit 302, as in the case where the reliability of the inference result is low. Know-how registration and teacher data registration are performed for the input plant data by the following method. The know-how registration and the training data registration in this case may be performed immediately after the feedback from the operator 40, or may be performed after a certain amount of feedback from the operator 40 has accumulated. would be more convenient for the operator 40. In any event, this feedback-based know-how and training data also enhances the reasoning capabilities of the real-time reasoning system 310 .
 図4は、本実施形態に係る人工知能システムの動作を示す図である。 FIG. 4 is a diagram showing the operation of the artificial intelligence system according to this embodiment.
 本実施形態のAIシステム30は、プラントシステム20からプラントデータ(リアルタイムデータ及び/又は時系列データ)を取得する(ステップS1)。 The AI system 30 of this embodiment acquires plant data (real-time data and/or time-series data) from the plant system 20 (step S1).
 リアルタイム推論システム310は、プラントシステム20からのリアルタイムデータを取得し(S2)、このリアルタイムデータに基づいて推論動作を行い、推論結果をAI育成システム300に出力する(S3)。 The real-time inference system 310 acquires real-time data from the plant system 20 (S2), performs an inference operation based on this real-time data, and outputs the inference result to the AI training system 300 (S3).
 一方、AI育成システム300は、プラントシステム20からの時系列データを取得して保存し、所定の分類ルールに従ってこの時系列データを複数のグループに分類する(S4)。次いで、AI育成システム300は、それらのグループ(つまり、様々なノウハウ領域)のうち、発生頻度が高い(そこに分類されたプラントデータの量が比較的に大きい)グループを優先的に選らび、その選ばれたグループ内から、未だ教師データ作成に使われてないデータ(つまり、新しいノウハウ領域に属するプラントデータ)を抽出して、その抽出されたプラントデータを運転員40に提示して、ノウハウ登録と教師データ登録とを運転員40に依頼する(S5)。そして、AI育成システム300は、運転員40が登録した(S6)ノウハウとそのノウハウに関する教師データとを受け取る(S5)。さらに、AI育成システム300は、運転員40が登録した教師データを用いて、自身が有する学習モデルに新しい(つまり運転員40により登録された)ノウハウを学習させる(S7)。そして、AI育成システム300は、学習した新しい学習モデルをリアルタイム推論システム310に登録(デプロイ)する(S8)。 On the other hand, the AI training system 300 acquires and stores the time-series data from the plant system 20, and classifies the time-series data into a plurality of groups according to predetermined classification rules (S4). Next, the AI training system 300 preferentially selects a group with a high frequency of occurrence (the amount of plant data classified therein is relatively large) from among those groups (that is, various know-how areas), From within the selected group, data that has not yet been used to create training data (that is, plant data belonging to a new know-how area) is extracted, and the extracted plant data is presented to the operator 40 to provide know-how. Registration and training data registration are requested to the operator 40 (S5). Then, the AI training system 300 receives the know-how registered by the operator 40 (S6) and the training data related to the know-how (S5). Furthermore, the AI training system 300 uses the teaching data registered by the operator 40 to make its own learning model learn new know-how (that is, registered by the operator 40) (S7). Then, the AI training system 300 registers (deploys) the learned new learning model in the real-time inference system 310 (S8).
 また、AI育成システム300は、リアルタイム推論システム310から入力された推論結果の信頼性を判断し、信頼性が高いと判断したら運転員40に対して推論結果に基づくノウハウを提案する(S9)。推論結果の信頼性が低いと判断したら、その時の推論に用いた入力ウランとデータをもって上記ステップS5へ進む(S9)。また、運転員40に提案したノウハウに対する運転員40の評価を受け取り、ノウハウ提案が不当という評価を受けた場合には、その時の推論に用いた入力ウランとデータをもって上記ステップS5へ進む(S9)。 In addition, the AI training system 300 judges the reliability of the inference results input from the real-time inference system 310, and if it judges that the reliability is high, it proposes know-how based on the inference results to the operator 40 (S9). If it is judged that the reliability of the inference result is low, the input uranium and data used in the inference at that time are taken and the process proceeds to step S5 (S9). Also, if the evaluation of the know-how proposed to the operator 40 is received from the operator 40 and the evaluation that the know-how proposal is inappropriate is received, the input uranium and data used for the inference at that time are taken and the process proceeds to step S5 (S9). .
 図5は、本実施形態に係る人工知能システムにおけるノウハウ抽出プロセスを説明するための図である。図6は、本実施形態に係る人工知能システムにおけるノウハウ登録及び教師データ登録のユーザーインタフェース(ユーザに表示される登録フォーム)を例示する図である。 FIG. 5 is a diagram for explaining the know-how extraction process in the artificial intelligence system according to this embodiment. FIG. 6 is a diagram illustrating a user interface (registration form displayed to the user) for know-how registration and training data registration in the artificial intelligence system according to this embodiment.
 図5に示されたプロセスは、図3におけるデータ分類部301とノウハウ登録部302が行なうプロセス、すなわち、図4におけるステップS4からS5のプロセスに相当する。 The process shown in FIG. 5 corresponds to the process performed by the data classification unit 301 and the know-how registration unit 302 in FIG. 3, that is, the process from steps S4 to S5 in FIG.
 図5において、まず、ステップS11のデータの分類とグラフ化と頻度計算では、時系列データを所定の分類ルールに基づいて複数のグループ(例えば、複数タイプの運転操作にそれぞれ対応するグループ、あるいは、複数タイプのアラームにそれぞれ対応するグループなど、起り得る複数タイプの事象つまり複数のノウハウ領域にそれぞれ対応するグループ)に分類し、グループ(つまり、事象タイプ、換言すれば、ノウハウ領域)ごとに、各時点のプラントデータを保存していく。そして、各グループの保存データ量、換言すれば、各グループの発生頻度を計算しグラフ化する。図示の例では、3つのグループA、B、Cにデータが分類され、グループAの発生頻度が最も高い。 In FIG. 5, first, in the data classification, graphing, and frequency calculation in step S11, time-series data is divided into a plurality of groups (for example, groups corresponding to a plurality of types of driving operations, or For each group (that is, event type, in other words, know-how area), each Save the plant data at the point in time. Then, the amount of data stored in each group, in other words, the frequency of occurrence of each group is calculated and graphed. In the illustrated example, data are classified into three groups A, B, and C, and group A has the highest frequency of occurrence.
 このようなグループごとのヒストグラムは、運転員40に提示されてよい。また、各グループに属するプラントデータのセットの詳細も、運転員40に提示されてよい。それにより、運転員は、何がモデルに優先的に学習させるべきノウハウかの判断がやりやすくなる。 Such a histogram for each group may be presented to the operator 40. Details of the set of plant data belonging to each group may also be presented to the operator 40 . This makes it easier for the operator to determine which know-how should be preferentially learned by the model.
 次に、ステップS12のノウハウ登録では、複数のグループの中から、未だ教師データ作成に利用されてないプラントデータの量がより多い(つまり、発生頻度のより高い未学習の事象を含んだ)グループが優先的に選ばれ(典型的には発生頻度が最も高いグループが選ばれ)、そのグループから、教師データ作成に未利用のプラントデータが抽出される。例えば図5において、発生頻度の最も高いグループAの中から、ある未利用のプラントデータが抽出される。そして、抽出されたプラントデータとともに、図6(A)に例示するようなノウハウ登録フォームが運転員に表示され、それにより、運転員に対してノウハウ登録が依頼される。運転員は、そのフォームに必要事項を入力することで、ノウハウ登録を行う。 Next, in the know-how registration in step S12, among the plurality of groups, the group that has a larger amount of plant data that has not yet been used to create training data (that is, contains unlearned events with a higher occurrence frequency) are preferentially selected (typically, the group with the highest occurrence frequency is selected), and from that group, unused plant data is extracted for creating teacher data. For example, in FIG. 5, some unused plant data is extracted from group A with the highest frequency of occurrence. Then, together with the extracted plant data, a know-how registration form such as that shown in FIG. 6A is displayed to the operator, thereby requesting the operator to register the know-how. The operator registers the know-how by inputting the required items in the form.
 図6(A)に例示するように、ノウハウ登録時には、抽出されたプラントデータに関する運転ノウハウの基本的な事項、例えば、ノウハウ名、操作された機器、操作の内容、操作された時間などが、運転員40から入力される。 As exemplified in FIG. 6A, at the time of know-how registration, basic items of the operation know-how related to the extracted plant data, such as know-how name, operated equipment, details of operation, time of operation, etc. Input from the operator 40 .
 その後のステップS13の教師データ登録では、図6(B)に例示するような教師データ登録フォームが運転員40に表示され、運転員40はそのフォームに、教師データの作成に必要な、ノウハウ登録に追加して登録すべきより細かい事項を入力する。図6(B)に示す例では、登録された操作を行う時に確認すべき(つまり、その操作を行うために満たされるべき)1以上の条件、例えば「機器Aの液体温度」及び「機器Aの気化速度」などが登録される。これらの登録事項に基づいて、教師データが作成される。 In the training data registration in step S13 thereafter, a training data registration form such as that shown in FIG. , and enter more detailed items to be registered. In the example shown in FIG. 6B, one or more conditions to be confirmed when performing the registered operation (that is, to be satisfied for performing the operation), such as "liquid temperature of device A" and "device A "Vaporization speed of" etc. are registered. Teacher data is created based on these registration items.
 上記のノウハウ登録と教師データ登録により、ある運転ノウハウの教師データが作られて登録されると、その後、図5にステップS13で示すように、その登録教師データに基づいて、その登録ノウハウの適用に該当すると判断されるプラントデータ(例えば、ノウハウ登録に使ったプラントデータに類似度の高いプラントデータ)が、既に蓄積されている過去のプラントデータ(時系列データ)のセットの中から自動的にサーチされ抽出される。そして、抽出されたプラントデータに対して、その登録ノウハウと同じラベルが自動的に付けられる。これにより、その登録ノウハウに該当するプラントデータだけを集めた新たなグループ(ラベル)が作られたことになる。すなわち、図5のステップS12のグループAのグラフに例示するように、ステップS11で所定の分類ルールで分類されたグループA(これは、比較的に大雑把な分類である)の中に、登録ノウハウごとのより詳細なグループ1、2、3が作られて、それぞれのグループのデータにそのグループのラベルが付けられることになる。そして、それら登録ノウハウ毎に分類された抽出データに基づいて、その登録ノウハウに関する追加の教師データが作られ、それら追加の教師データを用いて、学習モデルの追加の学習が行われ、それにより、学習レベルがさらに向上する。 When training data for a certain driving know-how is created and registered by the above-described know-how registration and training data registration, then, as shown in step S13 in FIG. 5, the registered know-how is applied based on the registered training data. Plant data (for example, plant data with a high degree of similarity to the plant data used for know-how registration) that is judged to correspond to the above is automatically selected from a set of past plant data (time-series data) that has already been accumulated. Searched and extracted. Then, the same label as the registered know-how is automatically attached to the extracted plant data. As a result, a new group (label) is created that collects only the plant data corresponding to the registered know-how. That is, as illustrated in the graph of group A in step S12 of FIG. More detailed groups 1, 2, 3 for each will be created and the data in each group will be labeled with that group. Then, based on the extracted data classified for each registered know-how, additional teacher data related to the registered know-how is created, and the additional teacher data is used to perform additional learning of the learning model, thereby: Your learning level will be further improved.
 上記のように登録ノウハウ毎の詳細なグループが一旦作られると、図3に示したデータ分類部301が時系列データやリアルタイムデータを分類する(ラベルを付ける)時(図5のS11)にも、それら詳細なグループ(ラベル)が適用される。したがって、登録ノウハウが増えていくにつれて、データ分類がより精細になっていき、それは、推論の精度向上に寄与する。 Once a detailed group for each registered know-how is created as described above, when the data classification unit 301 shown in FIG. 3 classifies (labels) time-series data and real-time data (S11 in FIG. 5), , those detailed groups (labels) are applied. Therefore, as the registered know-how increases, the data classification becomes more precise, which contributes to the improvement of inference accuracy.
 なお、上述した登録ノウハウ毎の詳細なグループの作成は、完全に自動で行ってもよいが、運転員40の助けを利用してもよい。例えば、過去の蓄積データセットから登録ノウハウに該当するデータを抽出した際、その抽出されたデータを運転員40に提示して、抽出デーが妥当か否かを判断してもらい、妥当な場合にのみ抽出データをそのグループに入れるようにしてもよい。あるいは、その抽出データに基づいて作った教師データを運転員40に提示して、教師デーが妥当か否かを判断してもらい、妥当な場合にのみその教師データを学習に使うようにしてもよい。 It should be noted that the creation of detailed groups for each registered know-how described above may be performed completely automatically, but the help of the operator 40 may also be used. For example, when data corresponding to registered know-how is extracted from a past accumulated data set, the extracted data is presented to the operator 40 to determine whether or not the extracted data is appropriate. Only the extracted data may be put into the group. Alternatively, the teacher data created based on the extracted data may be presented to the operator 40 to determine whether or not the teacher data is appropriate, and only when the teacher data is appropriate, the teacher data may be used for learning. good.
 図7は、本実施形態に係る人工知能システムにおけるノウハウ提案・評価のユーザーインタフェース(ノウハウ提案フォーム)を例示する図である。図7に例示されたフォームは、図3に示したノウハウ評価部303が(図4のステップS9で)運転員40に提示するフォームである。 FIG. 7 is a diagram illustrating a user interface (know-how proposal form) for know-how proposal/evaluation in the artificial intelligence system according to this embodiment. The form illustrated in FIG. 7 is presented to the operator 40 (at step S9 in FIG. 4) by the know-how evaluation unit 303 shown in FIG.
 図3を参照して既に説明したように、リアルタイム推論システム310が出力する推論結果の信頼性をノウハウ評価部303が評価して、推論の信頼性が所定レベル以上に高ければ、その推論結果(例えば、どんな操作をすべきかということ)が、その推論で用いられたプラントデータと、そこに適用されたノウハウ(ラベル)の情報と共に、ノウハウ提案という形で運転員40に提示される。例えば、図7に例示するように、適用ノウハウの名称、提案された操作内容(推論結果)、対象のプラントデータの日時、そのノウハウの登録者などが提示される。運転員40は、その提案を評価して妥当か否かを判断し、その結果をノウハウ提案フォームに入力する。 As already described with reference to FIG. 3, the know-how evaluation unit 303 evaluates the reliability of the inference result output by the real-time inference system 310, and if the reliability of the inference is higher than a predetermined level, the inference result ( For example, what kind of operation should be performed) is presented to the operator 40 in the form of a know-how proposal together with information on the plant data used in the inference and the know-how (label) applied there. For example, as exemplified in FIG. 7, the name of application know-how, the proposed operation content (inference result), the date and time of the target plant data, the registrant of the know-how, and the like are presented. The operator 40 evaluates the proposal to determine whether it is appropriate or not, and inputs the result into the know-how proposal form.
 ノウハウ提案が妥当でないと評価された場合には、すでに説明したように、その推論で用いられたプラントデータを用いて新たにノウハウ登録と教師データ登録が行われる。 If the know-how proposal is evaluated as inappropriate, as already explained, new know-how registration and teacher data registration are performed using the plant data used in the inference.
 図8は、リアルタイム推論システム310からの推論結果についてノウハウ評価部303が行う信頼性の判断の流れの一例を示す。 FIG. 8 shows an example of the flow of reliability judgment performed by the know-how evaluation unit 303 for the inference results from the real-time inference system 310. FIG.
 図8に示すように、リアルタイム推論システム310で推論に用いられた入力リアルタイムに付けられたラベルと同じラベルをもつ(つまり、同じグループの)プラントデータを、時系列データのセットの中から抽出する(ステップS21)。そして、その抽出された同ラベルをもつ時系列データの所定の特徴量と、その入力リアルタイムデータの特徴量との間の類似度を計算する(S22)。その際、その時系列データに付いて教師データが既に作成済みなら、その教師データに含まれる操作を行うべき条件(例えば、図5や図6(B)に例示した「温度センサ1がXX」、「圧力センサ1がXXX」など)は、特徴量の中でも他の成分により重みの大きい成分として扱うことができる。 As shown in FIG. 8, the real-time inference system 310 extracts the plant data having the same label (that is, the same group) as the label assigned to the input real-time used for inference from the set of time-series data. (Step S21). Then, the degree of similarity between the extracted predetermined feature amount of the time-series data having the same label and the feature amount of the input real-time data is calculated (S22). At that time, if training data has already been created for the time-series data, the conditions for performing the operation included in the training data (for example, "temperature sensor 1 is XX", "Pressure sensor 1 is XXX", etc.) can be treated as a component having a greater weight than other components among the feature quantities.
 その後、計算された類似度が所定レベルより高ければ、その推論結果は信頼性が高いと判断され、そうでなけば、信頼性が低いと判断される(S23)。  After that, if the calculated similarity is higher than a predetermined level, the inference result is determined to be highly reliable; otherwise, it is determined to be unreliable (S23).
 その後、計算された類似度が所定レベルより高ければ、その推論結果は信頼性が高いと判断され、そうでなけば、信頼性が低いと判断される(S23)。  After that, if the calculated similarity is higher than a predetermined level, the inference result is determined to be highly reliable; otherwise, it is determined to be unreliable (S23).
 図9は、図4に示されたステップS5の“新ノウハウ領域の提示と、ノウハウの登録”を行うための構成の変形例を示す。 FIG. 9 shows a modified example of the configuration for "presenting the new know-how area and registering know-how" in step S5 shown in FIG.
 図9に示すように、ノウハウ登録部302(これは、図3に示すように、AI育成システム300の一部である)が、運転評価法学習部322と、運転評価部324と、ノウハウ・教師データベース326を有する。運転評価法学習部322は、運転評価法、すなわち、運転員40が行ったプラントシステム20の操作つまり運転アクションの良し悪しを評価する(例えば、百点満点中の60点などというように採点する)方法、を学習して、その方法で運転アクションを評価する運転評価モデルを作成するシステムである。運転評価部324は、運転評価法学習部322によって作成された運転評価モデルを用いて、運転員40が行った運転アクションを評価して、その評価結果(例えば、百点満点中の60点などという採点結果)を運転員40に伝えて、その運転アクションに関するノウハウ(特に、評価結果の低い運転アクションに関するノウハウ)の登録を運転員40に依頼するシステムである。ノウハウ・教師データベース326は、運転員40が登録したノウハウ及び教師データを格納するシステムである。 As shown in FIG. 9, the know-how registration unit 302 (which is part of the AI training system 300 as shown in FIG. 3) includes a driving evaluation method learning unit 322, a driving evaluation unit 324, a know-how/ It has a teacher database 326 . The operation evaluation method learning unit 322 evaluates the operation evaluation method, that is, the operation of the plant system 20 performed by the operator 40, that is, the quality of the operation action (for example, 60 points out of 100). ) method, and create a driving evaluation model that evaluates driving actions in that method. The driving evaluation unit 324 uses the driving evaluation model created by the driving evaluation method learning unit 322 to evaluate the driving action performed by the operator 40, and the evaluation result (for example, 60 out of 100 points). This is a system that informs the operator 40 of the scoring result (scoring result) and requests the operator 40 to register the know-how on the driving action (especially, the know-how on the driving action with a low evaluation result). The know-how/teaching database 326 is a system that stores the know-how registered by the operator 40 and teaching data.
 図9に示すように、運転評価法学習部322は、プラントシステム20から過去に出力された運転データ(時系列データ)を蓄積した時系列データベース320(これは、本実施形態にかかるシステム内にあっても、同システム外にあってもよい)から、過去の特定種類の(例えば、特定の機器を特定の目的で操作する)運転アクションに関わるデータセットを取り出し、そして、そのデータセットを運転員40に提示して、そのデータセットの示す運転アクションの良し悪しの評価(評価法の学習のために行う事前の準備的な評価)を、運転員40に依頼する。運転員40は、その依頼に応えて、提示されたデータセットの示す運転アクションの良し悪しを判断して、その評価結果を運転評価法学習部322に入力(登録)する。運転評価法学習部322は、一つの種類の運転アクションについて、時系列データベース320から多数のデータセットを取りだして、上記のような事前の運転評価依頼と運転評価結果の登録とを繰り返すことで、その種類の運転アクションを評価する方法を必要なレベルまで学習する。 As shown in FIG. 9, the operation evaluation method learning unit 322 includes a time-series database 320 (which is stored in the system according to the present embodiment) that accumulates operation data (time-series data) output from the plant system 20 in the past. A data set related to a specific type of past driving action (for example, operating a specific device for a specific purpose) is extracted from the system, and the data set is used to drive the data set. The data set is presented to the operator 40, and the operator 40 is requested to evaluate whether the driving action indicated by the data set is good or bad (preparatory evaluation in advance for learning the evaluation method). In response to the request, the operator 40 judges whether the driving action indicated by the presented data set is good or bad, and inputs (registers) the evaluation result in the driving evaluation method learning unit 322 . The driving evaluation method learning unit 322 retrieves a large number of data sets from the time-series database 320 for one type of driving action, and repeats the prior driving evaluation request and the registration of the driving evaluation result as described above. Learn how to evaluate that type of driving action to the required level.
 なお、プラントには数多くの機器があり、そして、プラント運転に必要な運転アクションの種類は数多くある。例えば、それぞれの機器について、立ち上げ操作、停止操作、及び、運転条件変更の操作などがある。それらの運転アクション種類の各々ごとに、運転評価法学習部322と運転評価部324が設けられてよい。しかし、以下の説明では、一種類の運転アクションに関する運転評価法学習部322と運転評価部324を取り上げて説明する。 In addition, there are many devices in the plant, and there are many types of operation actions required for plant operation. For example, for each device, there are a start-up operation, a stop operation, and an operation for changing operating conditions. A driving evaluation method learning unit 322 and a driving evaluation unit 324 may be provided for each of these driving action types. However, in the following description, the driving evaluation method learning unit 322 and the driving evaluation unit 324 for one type of driving action will be described.
 運転評価法学習部322により作成された学習済みの運転評価モデルは、運転評価部324にデプロイされ、それにより、運転評価部324が動作可能になる。運転評価部324は、プラントシステム20から出力される運転データ(時系列データベース320に蓄積された過去の運転データでもよいし、あるいは、プラントシステム20から得られる現在の運転データ(リアルタイムデータ)でもよい)を入力し、その運転データから所定の機器の所定の運転アクション種類を示すデータセットを取り出して、そのデータセットを評価する(例えば、90点であるとか、65点であるとか、採点をする)。そして、運転評価部324は、そのデータセットと、そのデータセット(運転アクション)の評価結果(例えば、90点や65点などの点数)とを、運転員に提示する。この場合、データセットは、運転員40が視覚的に把握しやすいように、それぞれのデータ値の時間軸に沿った変化を示したグラフの形式で表示される。運転評価部324が評価を行う時期と、その評価結果を運転員40に提示する時期は、それぞれ、評価対象となった運転アクションとほぼ同時(つまり、リアルタイム)でもよいし、あるいは、その運転アクションが行われた後の所定時期か又は選択された時期でもよい。例えば、運転アクションの評価は運転アクションとほぼ同時にリアルタイムで行われ、その評価結果は一旦本システム内に保存され、その後、運転員40により選択された時期のような運転員40にとり都合の良い時期に、その評価結果が運転員40に提示されるようになっていてよい。 The learned driving evaluation model created by the driving evaluation method learning unit 322 is deployed to the driving evaluation unit 324, thereby enabling the driving evaluation unit 324 to operate. The operation evaluation unit 324 may use operation data output from the plant system 20 (past operation data accumulated in the time-series database 320, or current operation data (real-time data) obtained from the plant system 20. ) is input, a data set indicating a predetermined driving action type for a predetermined device is extracted from the driving data, and the data set is evaluated (e.g., 90 points, 65 points, etc.). ). Then, the driving evaluation unit 324 presents the data set and the evaluation result of the data set (driving action) (for example, scores such as 90 points and 65 points) to the operator. In this case, the data set is displayed in the form of a graph showing changes in each data value along the time axis so that the operator 40 can easily grasp it visually. The timing at which the driving evaluation unit 324 evaluates and the timing at which the evaluation result is presented to the operator 40 may be substantially simultaneous with the driving action to be evaluated (that is, in real time), or the driving action may be may be a predetermined time or a selected time after the is performed. For example, the evaluation of the driving action is performed in real time almost at the same time as the driving action, and the evaluation result is once stored in the system, and then is evaluated at a time convenient for the operator 40, such as a time selected by the operator 40. Also, the evaluation result may be presented to the operator 40 .
 運転員40に評価結果を提示する時、評価結果の良し悪しに関わらず、評価した運転アクション(データセット)を全て運転員40に提示しても良いし、あるいは、評価結果が所定基準より悪い(例えば、点数が80点未満の)運転アクションだけを選んで運転員40に提示しても良い。いずれにせよ、少なくとも、評価結果が所定基準より悪い運転アクションは、運転員40が不得意なアクションであるから、運転員40を助けるために、ノウハウの登録対象とすることが望ましい。したがって、運転評価部324は、評価結果の悪い運転アクションを運転員40に通知した際には、そのアクションについてのノウハウの登録を運転員40に依頼する。 When presenting the evaluation results to the operator 40, all evaluated driving actions (data sets) may be presented to the operator 40 regardless of whether the evaluation results are good or bad, or the evaluation results may be worse than a predetermined standard. Only driving actions (for example, with a score of less than 80) may be selected and presented to the operator 40 . In any case, at least the driving action whose evaluation result is worse than the predetermined standard is the action that the operator 40 is not good at. Therefore, when the driving evaluation unit 324 notifies the operator 40 of a driving action with a poor evaluation result, the driving evaluation unit 324 requests the operator 40 to register know-how about the action.
 運転員40は、その登録依頼に応えて、その運転アクションに関するノウハウと教師データとを運転評価部324に登録することができる。運転評価部324は、登録されたノウハウと教師データをノウハウ・教師データベース326に格納する。ここに格納された教師データは、既に図3と図4を参照して説明したように、リアルタイム推論システム310を構築する推論モデルの学習又は推論ルールの設計に用いられる(図4のステップS7~S8)。 In response to the registration request, the operator 40 can register the know-how and training data related to the driving action in the driving evaluation unit 324. The driving evaluation unit 324 stores the registered know-how and training data in the know-how/training database 326 . The teacher data stored here is used for learning an inference model or designing inference rules for constructing the real-time inference system 310, as already described with reference to FIGS. S8).
 図10は、上述した運転評価学習部322が運転評価法を学習するプロセスの流れを例示する。図11は、運転評価法の学習時におけるユーザインタフェースでの運転評価学習部22と運転員40との間のコミュニケーションの流れを例示する。 FIG. 10 illustrates the flow of the process in which the driving evaluation learning unit 322 described above learns the driving evaluation method. FIG. 11 illustrates the flow of communication between the driving evaluation learning unit 22 and the operator 40 on the user interface when learning the driving evaluation method.
 図10に示すように運転評価学習部322は、運転員40に運転支援の対象にしたいプラントシステム20内の装置と運転アクションの種類を選択させる(S31)。例えば、図11に示すように、S311で、運転評価学習部322が運転員40に「装置と操作を選んでください」というような要求メッセージを提示し、これに応答して運転員40が、S312で、例えば「XXX反応系の起動操作」というように、支援対象にしたい装置と運転アクションの種類を指定する。 As shown in FIG. 10, the operation evaluation learning unit 322 allows the operator 40 to select a device in the plant system 20 to be targeted for operation support and the type of operation action (S31). For example, as shown in FIG. 11, in S311, the driving evaluation learning unit 322 presents the operator 40 with a request message such as "Please select a device and operation." In S312, the device to be supported and the type of driving action are specified, for example, "activation operation of XXX reaction system".
 その後、図10に示すように運転評価学習部322は、運転員40に、その対象装置と運転アクション種類に関して表示させたい(つまり、運転アクションの良し悪しを評価するために見るべき)データ項目のセットを選択させる(S32)。例えば、図11に示すように、S321で、運転評価学習部322が運転員40に「表示したい項目を選んでください」というような要求メッセージを提示し、これに応答して運転員40が、S322で、例えば「XXヒーター出口ガス温度、XX触媒1層目下部温度、XXXヒーター出口ガス温度、XXX出口ガス圧」というように、評価のために見るべきデータ項目のセットを指定する。 After that, as shown in FIG. 10, the driving evaluation learning unit 322 selects data items to be displayed for the operator 40 regarding the target device and the type of driving action (that is, to be viewed in order to evaluate the quality of the driving action). A set is selected (S32). For example, as shown in FIG. 11, in S321, the driving evaluation learning unit 322 presents the operator 40 with a request message such as "Please select the item you want to display." At S322, a set of data items to be viewed for evaluation is designated, for example, "XX heater outlet gas temperature, XX catalyst first layer lower temperature, XXX heater outlet gas temperature, XXX outlet gas pressure".
 その後、図10に示すように運転評価学習部322は、運転員40に指定された対象装置と運転アクション種類に関して、運転員40に指定されたデータ項目のデータセットを時系列データベース320から1セット以上抽出し、それらのデータセットをグラフ形式で運転員40に提示する(S33)。例えば、図11に示すように、S331で、運転評価学習部322が、抽出した各データセットのデータ値の時間軸に沿った変化を表したグラフを作成して、「このグラフで問題ないか確認してください」というような要求メッセージとともに、そのグラフをユーザインタフェーススクリーンに表示する。 After that, as shown in FIG. 10, the driving evaluation learning unit 322 acquires one data set of data items designated by the operator 40 from the time-series database 320 with respect to the target device and driving action type designated by the operator 40. These data sets are extracted and presented to the operator 40 in graph form (S33). For example, as shown in FIG. 11, in S331, the driving evaluation learning unit 322 creates a graph showing changes along the time axis of the data values of each extracted data set and asks, "Is this graph okay? Display the graph on the user interface screen with a request message such as "Please confirm".
 その後、図10に示すように運転評価学習部322は、グラフ形式で表示された運転データの各セット(つまり、過去の各運転アクション)についての評価(採点)を運転員40に行わせる(S34)。例えば、図11に示すように、S341で、運転評価学習部322が「過去の運転データを選択し点数をつけてください」というような要求メッセージを表示し、それに応答して運転員40が、S342で、それぞれのグラフ(運転アクション)に対して、例えば70点とか、20点などの評価点数を入力する。 After that, as shown in FIG. 10, the driving evaluation learning unit 322 causes the operator 40 to evaluate (scoring) each set of driving data displayed in the form of a graph (that is, each past driving action) (S34). ). For example, as shown in FIG. 11, in S341, the driving evaluation learning unit 322 displays a request message such as "Please select and score past driving data." In S342, an evaluation score such as 70 points or 20 points is input for each graph (driving action).
 その後、図10に示すように運転評価学習部322は、運転員40に提示したそれぞれのデータセット(運転アクション)と、運転員40から入力されたそれぞれのデータセット(運転アクション)の評価結果(点数)を用いて、対応する装置の運転アクション種類の運転評価法を学習した運転評価モデルを作成する(S35)。なお、ここで学習される評価方法は、必ずしも例示された二桁の点数をつけるような詳細な評価方法でなければならないわけではなく、より簡易な評価方法であってもよい。簡易な評価方法として、例えば、良いか悪いかの二段階で評価する方法があり得る。この二段階評価法の場合、良い(又は悪い)という一方の評価結果を得たデータセットだけを用いて学習してもよい。例えば、良いという評価を得たデータセットだけを用いて学習する場合、学習した良いデータセットからのデータ空間上での距離を計算して、その距離に応じた点数又は単に良いか悪いかの判断を、評価結果として出すような運転評価モデルを作ることができる。 After that, as shown in FIG. 10, the driving evaluation learning unit 322 evaluates each data set (driving action) presented to the operator 40 and the evaluation result ( points) are used to create a driving evaluation model that learns the driving evaluation method of the driving action type of the corresponding device (S35). It should be noted that the evaluation method learned here does not necessarily have to be a detailed evaluation method that gives a two-digit score as exemplified, and may be a simpler evaluation method. As a simple evaluation method, for example, there may be a method of evaluating in two stages, good or bad. In the case of this two-level evaluation method, learning may be performed using only a data set that has obtained one evaluation result of good (or bad). For example, when learning using only datasets that have been evaluated as good, calculate the distance on the data space from the trained good dataset, and score according to that distance or simply judge whether it is good or bad can be created as an evaluation result.
 上述の学習により作成された運転評価モデルを用いて、運転評価部324が、運転員40が行った運転アクションをリアルタイムで評価する。図12は、運転評価部324が行う運転評価のプロセスの流れを例示する。図13は、その時のユーザインタフェースでの運転評価部324と運転員40との間のコミュニケーションの流れを例示する。 Using the driving evaluation model created by the learning described above, the driving evaluation unit 324 evaluates the driving actions performed by the operator 40 in real time. FIG. 12 illustrates the flow of the driving evaluation process performed by the driving evaluation unit 324 . FIG. 13 illustrates the communication flow between the operation evaluation unit 324 and the operator 40 on the user interface at that time.
 図12に示すように運転評価部324は、プラントシステム20からリアルタイムの運転データ(リアルタイムデータ)を入力し、その中の対象の装置と運転アクション種類に関するリアルタイムデータから、選択されたデータ項目のデータセットを抽出する(S41)。そして、運転評価部324は、その抽出したデータセット(つまり、今実施された運転アクション)を学習済みの評価方法で評価(採点)する(S42)。 As shown in FIG. 12, the operation evaluation unit 324 inputs real-time operation data (real-time data) from the plant system 20, and from the real-time data regarding the target device and operation action type, selects the data of the data item. A set is extracted (S41). Then, the driving evaluation unit 324 evaluates (scores) the extracted data set (that is, the driving action just performed) using the learned evaluation method (S42).
 そして、運転評価部324は、その評価結果が所定の選別条件(例えば、採点された点数がある基準値より低い、つまり、今行われた運転アクションをある基準より悪いと追う条件)を満たすか否かを判断し、その条件を満たす場合、評価されたデータセットとその評価結果とを、運転員40に提示する(S43)。データセットは、運転員40が視覚的に理解しやすいように、例えば、時間軸に沿ったデータ値の変化を表現したグラフの形式で表示される。そして、運転評価部324は、その評価結果の指標(根拠)となるデータ状態が何であるかを、表示されたデータセットのグラフ上で、運転員40に指定させる(S44)。 Then, the driving evaluation unit 324 determines whether the evaluation result satisfies a predetermined selection condition (for example, the score is lower than a certain reference value, that is, the condition that the driving action just performed is worse than the certain reference value). If the condition is satisfied, the evaluated data set and the evaluation result are presented to the operator 40 (S43). The data set is displayed, for example, in the form of a graph representing changes in data values along the time axis so that the operator 40 can easily understand it visually. Then, the operation evaluation unit 324 causes the operator 40 to specify, on the displayed graph of the data set, what is the data state that serves as an index (foundation) for the evaluation result (S44).
 なお、上記のS43では、低い評価結果が出た場合だけが選択的に運転員40に提示されるが、必ずしもそうでなければならないわけではない。別法として、評価結果の高い低いに関わらず、評価を行った全ての場合が運転員40に提示され得るようにしてもよいし、あるいは、高い評価結果が出た場合が選択的に運転員40に提示され得るようにしてもよい。 It should be noted that in S43 above, only the low evaluation results are selectively presented to the operator 40, but this is not necessarily the case. Alternatively, all evaluation cases may be presented to the operator 40, regardless of whether the evaluation result is high or low. 40 may be presented.
 上述した図12のS43~S44のプロセスにおけるユーザインタフェースの表示例が、図13のS431~S442に示されている。(なお、図13に示された表示メッセージに応答する運転員40は、評価された運転アクションを行った運転員40とは異なる人物であってよい。)例えば、運転員40が対象機器の起動操作を行ない、その起動操作を運転評価部324はある基準より低いと評価した場合、運転評価部324は、図13のS431で、「今日の起動操作は65点です。この評価点数は正しいですか?」というように、その低い評価結果を示すメッセージを運転員40に表示する。このメッセージに応答して、運転員40が、S432で「はい」のように、その評価結果に同意すれば、運転評価部324は、S442に示すように、評価されたデータセットのグラフを運転員40に表示するとともに、S441に示すように、「減点された個所を教えてください」のようなメッセージを表示して、その評価結果の指標となるデータ状態がグラフ上のどの個所であるかを指定するよう、運転員40に要求する。この要求に応えて、運転員40は、S442に示すように、指標マーク51をグラフ上の上記指標に該当するデータ状態の個所(この例では、あるデータ値が急激に変化した個所)に付す。運転評価部324は、この指定マーク51が付された個所のデータ状態を、上記評価結果(低い評価結果)の指標として記憶する。 A display example of the user interface in the process of S43 to S44 in FIG. 12 described above is shown in S431 to S442 in FIG. (It should be noted that the operator 40 who responds to the displayed message shown in FIG. 13 may be a different person than the operator 40 who performed the evaluated driving action.) For example, when the operator 40 activates the target equipment If an operation is performed and the operation evaluation unit 324 evaluates the start operation as lower than a certain standard, the operation evaluation unit 324 in S431 of FIG. A message indicating the low evaluation result is displayed to the operator 40. In response to this message, if operator 40 agrees with the results of the evaluation, such as yes in S432, driving evaluator 324 graphs the evaluated data set as shown in S442. In addition to displaying to the member 40, as shown in S441, a message such as "Please tell me where points were deducted." is requested to the operator 40. In response to this request, the operator 40 puts an index mark 51 on the data state corresponding to the above index on the graph (in this example, a location where a certain data value changes abruptly), as shown in S442. . The driving evaluation unit 324 stores the data state of the portion marked with the designation mark 51 as an index of the evaluation result (low evaluation result).
 その後、図12に示すように、運転評価部324は、そのデータ状態が意味する事柄と、そのデータ状態が起きた時に行うべきであった正しい操作の詳細情報を、運転員40に入力させる(S45)。例えば、図13に示すように、運転操作部324は、S451で、「どんな状態か、どう操作すべきか教えてください」のような要求メッセージを運転員40に提示する。この要求に応えて運転員40が、S452で、「状態『XXヒーター出口温度』が『急降下しています』。状態『反応停止する可能性があります』。操作『XXXX操作幅』を『小さくしてください』。」のような情報を入力する。運転評価部324は、その入力情報を、リアルタイム推論部310(図3参照)が運転員40に提示することになる提案メッセージの内容として、記憶する。 Thereafter, as shown in FIG. 12, the operation evaluator 324 prompts the operator 40 to input details of what the data state means and what the correct operation should have been when the data state occurred (see FIG. 12). S45). For example, as shown in FIG. 13, the operation unit 324 presents a request message to the operator 40 in S451, such as "Please tell me what state it is in and how it should be operated." In response to this request, the operator 40, in S452, states, "The state 'XX heater outlet temperature' is 'suddenly dropping'. The state 'reaction may stop.' Please enter information such as The operation evaluation unit 324 stores the input information as the content of the proposal message to be presented to the operator 40 by the real-time inference unit 310 (see FIG. 3).
 その後、図12に示すように、運転評価部324は、時系列データベース320から、対象の装置と運転アクション種類に該当するデータセットを1セット以上(通常は多くのセットを)抽出して、それぞれのデータセットを上記と同様のグラフ形式で運転員40に提示する(S46)。そして、運転評価部324は、それらのデータセットのグラフの中から、先ほどの評価結果(低評価結果)とは対照的な評価結果(高評価結果)の指標となるデータ状態を指定するよう、運転員40に要求する(S47)。例えば、図13に示すように、運転操作部324は、S471で、「目指すべき運転を教えてください」のようなメッセージを運転員40に表示するとともに、S472 で、抽出された1セット以上(通常は多くのセット)のデータセットのグラフを表示する。これに応えて、運転員40は、S472に示すように、表示されたグラフの中から、目指すべき(高く評価される)運転アクションの指標となるデータ状態の個所を選らび、その個所に指標マーク53を付けることで、その指標に該当するデータ状態を指定する。運転評価部324は、その指定されたデータ状態を、上記対照的な評価結果(高い評価結果)の指標として記憶する。 After that, as shown in FIG. 12, the driving evaluation unit 324 extracts one or more sets (usually many sets) of data sets corresponding to the target device and driving action type from the time-series database 320, and is presented to the operator 40 in the same graph format as above (S46). Then, the driving evaluation unit 324 designates a data state that serves as an indicator of the evaluation result (high evaluation result) in contrast to the previous evaluation result (low evaluation result) from among the graphs of these data sets. A request is made to the operator 40 (S47). For example, as shown in FIG. 13, in S471, the operation unit 324 displays a message to the operator 40 such as "Please tell us what kind of driving you should aim for." Display a graph of a dataset (usually many sets). In response to this, as shown in S472, the operator 40 selects from the displayed graph a portion of the data state that serves as an indicator of the driving action to be aimed at (highly evaluated), and the index is displayed at that portion. Attaching a mark 53 designates the data state corresponding to the index. The driving evaluation unit 324 stores the designated data state as an index of the above-described contrasting evaluation result (high evaluation result).
 その後、図12に示すように、運転評価部324は、S44~S47で運転員40が入力した低評価と高評価の指標となるデータ状態と行うべき運転アクションについて、ノウハウ名を運転員40に入力させ(S48)(例えば、図13のS481~S482)、そして、そのノウハウ名に関連付けて、それらの入力情報を、教師データとして、ノウハウ・教師データベース326に格納する(S49)。 After that, as shown in FIG. 12, the driving evaluation unit 324 sends the know-how name to the operator 40 regarding the data state that serves as an indicator of the low evaluation and high evaluation input by the operator 40 in S44 to S47 and the driving action to be taken. Input is made (S48) (for example, S481 to S482 in FIG. 13), and the input information is stored in the know-how/teaching database 326 as teaching data in association with the know-how name (S49).
 ノウハウ・教師データベース326に格納された教師データは、既に説明したように、リアルタイム推論システム310(図3参照)を構成する推論モデルの作成に使用される。例えば、その推論モデルが機械学習可能なニューラルネットワークを用いて構成される場合には、ノウハウ・教師データベース326内の教師データは、その機械学習のための教師データとして使用され得る。あるいは、その推論モデルが、予めプログラムされた推論ルールを用いて推論を行うノイマン型のシステムを用いて構成される場合には、ノウハウ・教師データベース326内の教師データは、その推論ルールのプログラミングつまり設計に利用され得る。 The teacher data stored in the know-how/teacher database 326 is used to create an inference model that configures the real-time inference system 310 (see FIG. 3), as already described. For example, if the inference model is constructed using a machine-learnable neural network, the teacher data in the know-how and teacher database 326 can be used as the teacher data for the machine learning. Alternatively, if the inference model is configured using a von Neumann-type system that makes inferences using preprogrammed inference rules, the teacher data in the know-how and teacher database 326 is the programming of the inference rules, that is, can be used for design.
 こうして作られたリアルタイム推論システム310は、プラントシステム20からリアルタイムの運転データ(リアルタイムデータ)を入力し、そのリアルタイムデータの中から、対象の機器の運転アクション種類に関する選択されたデータ項目のデータセットであって、低評価結果の指標に該当するデータ状態を含んだデータセットを抽出する。そして、リアルタイム推論システム310は、その抽出されたデータセットの中から低評価の指標に相当するデータ状態を特定し、そのデータ状態が何を意味するか、及び、そのデータセットに関して行うべき操作は何かを特定し、その特定された事柄を用いて提案メッセージを作成して運転員40に提示する。 The real-time inference system 310 created in this way inputs real-time operation data (real-time data) from the plant system 20, and from the real-time data, a data set of selected data items related to the operation action type of the target equipment. A data set containing data states corresponding to the low evaluation result index is extracted. The real-time reasoning system 310 then identifies the data state corresponding to the low-evaluation index from the extracted data set, what the data state means, and the operation to be performed on the data set is Identify something and use the identified matter to create a proposal message and present it to the operator 40 .
 図14は、リアルタイム推論システム310が運転者40に提示する提案メッセージの一例を示す。図14に示すように、抽出されたデータセットがグラフ形式で表示され、そのグラフ上で、低評価の指標に該当するデータ状態の個所に指標マーク55が表示される。そして、そのデータセットについて、「装置:XXX反応系。操作:起動」のように、対象の機器と運転アクション種類が表示される。さらに、「状態:XXヒーター出口温度が急低下しています。提案:XXXX操作幅を小さくしてください」のように、指標のデータ状態についての説明と、行うべき操作の詳細情報が表示される。 FIG. 14 shows an example of a suggestion message presented to the driver 40 by the real-time reasoning system 310. FIG. As shown in FIG. 14, the extracted data set is displayed in the form of a graph, and an index mark 55 is displayed on the graph at the location of the data state corresponding to the low-evaluation index. Then, for that data set, the target device and the type of driving action are displayed, such as "Device: XXX reaction system. Operation: Activation." In addition, "Status: XX heater outlet temperature is dropping rapidly. Suggestion: Reduce XXXX operation range." .
 以上詳細に説明したように、本実施形態のAIシステム30によれば、何の知識を学習すべきかを自ら選んで人間に要求しながら学習を進めていく人工知能システム及び人工知能システムにおける学習方法を実現することができる。 As described in detail above, according to the AI system 30 of the present embodiment, an artificial intelligence system and a learning method in an artificial intelligence system that select what knowledge to learn by themselves and proceed with learning while requesting humans to do so. can be realized.
 なお、上記した実施例は本発明を分かりやすく説明するために構成を詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成に追加、削除、置換することが可能である。 It should be noted that the above embodiment describes the configuration in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. Moreover, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部または全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、本発明は、実施例の機能を実現するソフトウェアのプログラムコードによっても実現できる。この場合、プログラムコードを記録した記憶媒体をコンピュータに提供し、そのコンピュータが備えるプロセッサが記憶媒体に格納されたプログラムコードを読み出す。この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施例の機能を実現することになり、そのプログラムコード自体、及びそれを記憶した記憶媒体は本発明を構成することになる。このようなプログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク、CD-ROM、DVD-ROM、ハードディスク、SSD(Solid State Drive)、光ディスク、光磁気ディスク、CD-R、磁気テープ、不揮発性のメモリカード、ROMなどが用いられる。 In addition, part or all of the above configurations, functions, processing units, processing means, etc. may be realized by hardware, for example, by designing them with an integrated circuit. The present invention can also be implemented by software program code that implements the functions of the embodiments. In this case, a computer is provided with a storage medium recording the program code, and a processor included in the computer reads the program code stored in the storage medium. In this case, the program code itself read from the storage medium implements the functions of the above-described embodiments, and the program code itself and the storage medium storing it constitute the present invention. Examples of storage media for supplying such program code include flexible disks, CD-ROMs, DVD-ROMs, hard disks, SSDs (Solid State Drives), optical disks, magneto-optical disks, CD-Rs, magnetic tapes, A nonvolatile memory card, ROM, or the like is used.
 また、本実施例に記載の機能を実現するプログラムコードは、例えば、アセンブラ、C/C++、perl、Shell、PHP、Java(登録商標)、Python等の広範囲のプログラムまたはスクリプト言語で実装できる。 Also, the program code that implements the functions described in this embodiment can be implemented in a wide range of programs or script languages, such as assembler, C/C++, perl, Shell, PHP, Java (registered trademark), and Python.
 さらに、各実施例の機能を実現するソフトウェアのプログラムコードのすべてまたは一部は、予め計算機の記憶資源に格納されていてもよいし、必要に応じて、ネットワークに接続された他の装置の非一時的記憶装置から、または計算機が備える図略の外部I/Fを介して、非一時的な記憶媒体から、計算機の記憶資源に格納されてもよい。 Furthermore, all or part of the program code of the software that implements the functions of each embodiment may be stored in advance in the storage resources of the computer, or may be stored in other devices connected to the network as necessary. It may be stored in the storage resource of the computer from a temporary storage device or from a non-temporary storage medium via an external I/F (not shown) provided in the computer.
 さらに、実施例の機能を実現するソフトウェアのプログラムコードを、ネットワークを介して配信することによって、それをコンピュータのハードディスクやメモリ等の記憶手段またはCD-RW、CD-R等の記憶媒体に格納し、コンピュータが備えるプロセッサが当該記憶手段や当該記憶媒体に格納されたプログラムコードを読み出して実行するようにしてもよい。 Furthermore, by distributing the program code of the software that realizes the functions of the embodiment via a network, it can be stored in storage means such as a hard disk or memory of a computer or in a storage medium such as a CD-RW or CD-R. Alternatively, a processor provided in the computer may read and execute the program code stored in the storage means or the storage medium.
 上述の実施例において、制御線や情報線は、説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。全ての構成が相互に接続されていてもよい。 In the above examples, the control lines and information lines indicate those that are considered necessary for explanation, and not all the control lines and information lines are necessarily indicated on the product. All configurations may be interconnected.
 20…環境、プラントシステム 30…人工知能システム 40…運転員、人間 300…AI育成システム 301…データ分類部 302…ノウハウ登録部 303…ノウハウ評価部 310…リアルタイム推論システム 320…時系列データベース 322…運転評価法学習部 324…運転評価部 326…ノウハウ・教師データベース

 
20... Environment, plant system 30... Artificial intelligence system 40... Operator, human 300... AI training system 301... Data classification unit 302... Know-how registration unit 303... Know-how evaluation unit 310... Real-time reasoning system 320... Time-series database 322... Operation Evaluation method learning unit 324 Driving evaluation unit 326 Know-how/teacher database

Claims (9)

  1.  環境で発生する環境データを受け入れ、受け入れた前記環境データを用いて推論を行って推論結果を出力する推論システムと、
     人間の関与により前記環境データを用いて作成された教師データを入力し、入力された前記教師データを用いて前記推論システムに知識を組み込むことで前記推論システムを育成する育成システムと
    を備え、
     前記育成システムは、所与の環境データの中から、前記推論システムに組み込むことが望ましい特定の知識に関係する特定の環境データを選択し、選択された前記特定の環境データを用いた教師データの作成に関与するよう前記人間に要求する人間利用手段を有する
    人工知能システム。
    an inference system that receives environmental data generated in an environment, performs inference using the received environmental data, and outputs an inference result;
    a training system for training the inference system by inputting teacher data created using the environmental data with human involvement and incorporating knowledge into the inference system using the input teacher data;
    The training system selects, from given environmental data, specific environmental data related to specific knowledge that is desired to be incorporated into the inference system, and prepares teacher data using the selected specific environmental data. An artificial intelligence system having human utilization means that requires said human to participate in its creation.
  2.  請求項1記載の人工知能システムにおいて、
     前記人間利用手段が、前記推論結果に関する信頼性を評価し、前記信頼性の評価結果に応じて選択的に、前記人間に教師データ作成への関与を要求するように構成された
    人工知能システム。
    The artificial intelligence system of claim 1,
    The artificial intelligence system, wherein the human utilization means evaluates the reliability of the inference result, and selectively requests the human to participate in creating training data according to the evaluation result of the reliability.
  3.  請求項1又は2のいずれか一項記載の人工知能システムにおいて、
     前記人間利用手段が、過去に発生した前記環境データのセットを有し、前記セットの中からまだ前記推論システムの育成に用いられてない未学習環境データを選択し、選択した前記未学習環境データを前記人間に提供して、前記人間に教師データ作成への関与を要求するように構成された
    人工知能システム。
    In the artificial intelligence system according to any one of claims 1 or 2,
    The human utilization means has a set of the environmental data generated in the past, selects unlearned environmental data that has not yet been used for training the inference system from the set, and selects the unlearned environmental data. to the human, and request the human to participate in creating training data.
  4.  請求項1乃至3のいずれか一項記載の人工知能システムにおいて、
     前記人間利用手段が、過去に発生した前記環境データのセットを有し、前記セットの中から発生頻度のより高い前記環境データをより優先的に選択し、選択した前記環境データを前記人間に提供して、前記人間に教師データ作成への関与を要求するように構成された
    人工知能システム。
    In the artificial intelligence system according to any one of claims 1 to 3,
    The human utilization means has a set of the environmental data generated in the past, preferentially selects the environmental data with a higher frequency of occurrence from the set, and provides the selected environmental data to the human. and requesting the human to participate in creating training data.
  5.  請求項1乃至4のいずれか一項記載の人工知能システムにおいて、
     前記人間利用手段が、前記推論システムに入力された前記環境データの類似性を評価し、前記類似性の評価結果に応じて選択的に、前記人間に教師データ作成への関与を要求するように構成された
    人工知能システム。
    In the artificial intelligence system according to any one of claims 1 to 4,
    The human utilization means evaluates the similarity of the environmental data input to the inference system, and selectively requests the human to participate in creating training data according to the similarity evaluation result. Composed artificial intelligence system.
  6.  請求項1乃至5のいずれか一項記載の人工知能システムにおいて、
     前記人間利用手段が、前記推論システムから出力された前記推論結果を前記人間に提供し、前記人間から前記推論結果に関するフィードバックを受け、前記フィードバックに応じて選択的に、前記人間に教師データ作成への関与を要求するように構成された
    人工知能システム。
    In the artificial intelligence system according to any one of claims 1 to 5,
    The human utilization means provides the human with the inference result output from the inference system, receives feedback on the inference result from the human, and selectively prepares training data for the human according to the feedback. An artificial intelligence system configured to request the involvement of
  7.  請求項1記載の人工知能システムにおいて、
     前記人間利用手段が、
     前記環境データを評価するための評価方法に関する評価情報を前記人間から入力して、前記評価情報を用いて前記評価方法を学習する評価方法学習手段と、
     学習した前記評価方法を用いて、前記所与の環境データを評価し、前記所与の環境データの中から、所定条件を満たす評価結果が得られたものを前記特定の環境データとして選択し、選択された前記特定の環境データを前記人間に提示して、前記特定の環境データを用いた教師データの作成に関与するよう前記人間に要求する評価手段と
    を有する
    人工知能システム。
    The artificial intelligence system of claim 1,
    the human utilization means comprising:
    evaluation method learning means for inputting evaluation information relating to an evaluation method for evaluating the environmental data from the person and learning the evaluation method using the evaluation information;
    evaluating the given environmental data using the learned evaluation method, and selecting, from among the given environmental data, those for which evaluation results satisfying a predetermined condition are obtained as the specific environmental data; and an evaluation means for presenting the selected specific environmental data to the human and requesting the human to participate in creating teacher data using the specific environmental data.
  8.  コンピュータプログラムを記憶した記憶装置と、前記コンピュータプログラムを機械的に読み取り実行するCPU とを備え、環境及び人間と通信可能なコンピュータシステムであって、
     前記CPUは、前記コンピュータプログラムを実行することにより、人工知能の動作方法を実施し、前記人工知能の動作方法は、
     前記環境で発生する環境データを受け入れ、受け入れた前記環境データを用いて推論を行って推論結果を出力する推論工程と、
     前記人間の関与により前記環境データを用いて作成された教師データを入力し、入力された前記教師データを用いて前記推論工程に知識を組み込むことで前記推論工程を育成する育成工程と
    を備え、
     前記育成工程は、所与の環境データの中から、前記推論工程に組み込むことが望ましい特定の知識に関係する特定の環境データを選択し、選択された前記環境データを用いた教師データの作成に関与するよう前記人間に要求する人間利用工程を有する、
    人工知能の動作方法を実施するコンピュータシステム。
    A computer system comprising a storage device storing a computer program and a CPU for mechanically reading and executing the computer program, and capable of communicating with the environment and humans,
    The CPU executes an artificial intelligence operation method by executing the computer program, and the artificial intelligence operation method includes:
    an inference step of receiving environmental data generated in the environment, performing inference using the received environmental data, and outputting an inference result;
    a nurturing step of inputting training data created using the environmental data with the involvement of the human, and training the inference step by incorporating knowledge into the inference step using the input training data,
    The nurturing step selects, from given environmental data, specific environmental data related to specific knowledge that is desired to be incorporated in the inference step, and creates teacher data using the selected environmental data. having a human utilization process that requires said human to engage;
    A computer system that implements an artificial intelligence method of operation.
  9.  機械読み取り可能なコンピュータプログラムを格納したプログラム格納媒体において、
     前記プログラムが、プロセッサに対して、人工知能の動作方法を行わせる命令コードを含み、
     前記動作方法が、
     環境で発生する環境データを受け入れ、受け入れた前記環境データを用いて推論を行って推論結果を出力する推論工程と、
     人間の関与により前記環境データを用いて作成された教師データを入力し、入力された前記教師データを用いて前記推論工程に知識を組み込むことで前記推論工程を育成する育成工程と
    を備え、
     前記育成工程は、所与の環境データの中から、前記推論工程に組み込むことが望ましい特定の知識に関係する特定の環境データを選択し、選択された前記環境データを用いた教師データの作成に関与するよう前記人間に要求する人間利用工程を有する
    プログラム記録媒体。
     
     
    In a program storage medium storing a machine-readable computer program,
    The program includes instruction code that causes the processor to perform an artificial intelligence operation method,
    The method of operation comprises:
    an inference step of receiving environmental data generated in the environment, performing inference using the received environmental data, and outputting an inference result;
    a training step of inputting teacher data created using the environmental data with human involvement and training the inference step by incorporating knowledge into the inference step using the input teacher data;
    The nurturing step selects, from given environmental data, specific environmental data related to specific knowledge that is desired to be incorporated in the inference step, and creates teacher data using the selected environmental data. A program-recorded medium having a human-assisted process that requires said human to participate.

PCT/JP2022/003671 2022-01-31 2022-01-31 Artificial intelligence system, computer system for executing artificial intelligence operation method, and computer program recording medium WO2023145089A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023576596A JPWO2023145089A1 (en) 2022-01-31 2022-01-31
PCT/JP2022/003671 WO2023145089A1 (en) 2022-01-31 2022-01-31 Artificial intelligence system, computer system for executing artificial intelligence operation method, and computer program recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/003671 WO2023145089A1 (en) 2022-01-31 2022-01-31 Artificial intelligence system, computer system for executing artificial intelligence operation method, and computer program recording medium

Publications (1)

Publication Number Publication Date
WO2023145089A1 true WO2023145089A1 (en) 2023-08-03

Family

ID=87470983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003671 WO2023145089A1 (en) 2022-01-31 2022-01-31 Artificial intelligence system, computer system for executing artificial intelligence operation method, and computer program recording medium

Country Status (2)

Country Link
JP (1) JPWO2023145089A1 (en)
WO (1) WO2023145089A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017107386A (en) * 2015-12-09 2017-06-15 日本電信電話株式会社 Instance selection device, classification device, method, and program
WO2019150813A1 (en) * 2018-01-30 2019-08-08 富士フイルム株式会社 Data processing device and method, recognition device, learning data storage device, machine learning device, and program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017107386A (en) * 2015-12-09 2017-06-15 日本電信電話株式会社 Instance selection device, classification device, method, and program
WO2019150813A1 (en) * 2018-01-30 2019-08-08 富士フイルム株式会社 Data processing device and method, recognition device, learning data storage device, machine learning device, and program

Also Published As

Publication number Publication date
JPWO2023145089A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
Cysneiros et al. A framework for integrating non-functional requirements into conceptual models
EP0335957B1 (en) Expert system with process control
US20050015217A1 (en) Analyzing events
US20050049988A1 (en) Provision of data for analysis
US20220172146A1 (en) Apparatus for the semantic-based optimization of production facilities with explainability
JP2006202304A (en) System for automatic invocation of computational resources
JPH04191928A (en) Software working tool
EP4033317A1 (en) Method and system for managing a cyber-physical production system with predictive capabilities of anomalous operating conditions
Maniktala et al. Avoiding help avoidance: Using interface design changes to promote unsolicited hint usage in an intelligent tutor
WO2023145089A1 (en) Artificial intelligence system, computer system for executing artificial intelligence operation method, and computer program recording medium
JP2023111624A (en) Plant operation assistance system and computer system for implementation of plant operation assistance method, and computer program recording medium
Pasqual Development of an expert system for the identification and control of weeds in wheat, triticale, barley and oat crops
JPH0831084B2 (en) User support method for information processing system
Dhaya et al. Fuzzy based quantitative evaluation of architectures using architectural knowledge
Molina et al. Applying genetic classifier systems for the analysis of activities in collaborative learning environments
Xue et al. Multi-task learning with modular reinforcement learning
EP3944078B1 (en) Dynamic management system for user-contextualized web interfaces and related operating method
JPH06222922A (en) Expert system
Minca et al. Fuzzy based petri nets for the production systems diagnosis
Birch et al. An object-oriented expert system based on pattern recognition
Maniktala et al. Correction to: Avoiding Help Avoidance: Using Interface Design Changes to Promote Unsolicited Hint Usage in an Intelligent Tutor.
Schrama Transparent Decision Support in ever-changing healthcare contexts.
JP3312141B2 (en) Instruction break-down apparatus and method, and instruction analysis apparatus and method
JP2001117774A (en) Production system with adaptation mechanism
JPH1049566A (en) System constructing device, system constructing method, and medium for recording system construction program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923952

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023576596

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE