WO2023145077A1 - 蓄熱システム制御装置、蓄熱システム、蓄熱システム制御方法、制御プログラム及び記録媒体 - Google Patents

蓄熱システム制御装置、蓄熱システム、蓄熱システム制御方法、制御プログラム及び記録媒体 Download PDF

Info

Publication number
WO2023145077A1
WO2023145077A1 PCT/JP2022/003614 JP2022003614W WO2023145077A1 WO 2023145077 A1 WO2023145077 A1 WO 2023145077A1 JP 2022003614 W JP2022003614 W JP 2022003614W WO 2023145077 A1 WO2023145077 A1 WO 2023145077A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
storage system
power supply
operation schedule
power
Prior art date
Application number
PCT/JP2022/003614
Other languages
English (en)
French (fr)
Inventor
仁隆 門脇
博之 中川
拓也 伊藤
正人 谷川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/003614 priority Critical patent/WO2023145077A1/ja
Priority to JP2023576587A priority patent/JPWO2023145077A5/ja
Publication of WO2023145077A1 publication Critical patent/WO2023145077A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading

Definitions

  • the present disclosure relates to a heat storage system control device, a heat storage system, a heat storage system control method, a control program, and a recording medium that store heat using electric power such as a hot water heater.
  • VPP virtual power plants
  • VPP provides functions equivalent to those of a power plant by controlling the energy resource of the consumer side, power generation equipment and storage equipment directly connected to the power grid, etc. by the owner or a third party. It is something to do.
  • a demand contract demand charge system
  • a mechanism for reducing the maximum electric power demand of each consumer is known.
  • the water heater is mainly operated at night when electricity rates are relatively low, and warm water is stored in the hot water storage tank. Therefore, when the operating hours of water heaters of a plurality of consumers in a certain area concentrate at a predetermined time at night, the peak value of overall power consumption increases, which can lead to tight supply and demand of power.
  • multiple customers are classified into multiple groups according to the capacity of the hot water storage tank of each customer's water heater, and the water heater operation of each group is staggered. is known. However, for example, it is not always possible for each consumer to uniformly boil water equivalent to the capacity of the hot water storage tank every day, so there are cases where the overall power consumption peak cannot be suppressed appropriately.
  • the operation timing of the water heater of each consumer is determined so as to increase the possibility of lowering the peak value of the overall power consumption of the water heater of a plurality of consumers.
  • a management device is known (see Patent Literature 1, for example).
  • the management device includes an "acquisition unit that acquires water heater information indicating the operation performance of the water heater of each of the plurality of consumers, and an operation time length of the water heater of each of the plurality of consumers based on the water heater information.
  • a classifying unit that identifies an index value related to the demand and classifies the plurality of consumers into a plurality of groups according to the index value; and an output unit for outputting timing information indicating the operating timing determined by the determining unit.
  • a plurality of consumers are classified into a plurality of groups in relation to the length of operation time of the water heater of each of the plurality of consumers. Since the operation time of the water heater affects the power consumption, the possibility of lowering the overall peak value of the power consumption of the water heater for multiple consumers is increased compared to the case of classification regardless of the operation time. However, although this is effective as a means of avoiding an increase in the power demand of the consumer, it does not consider how to deal with an increase in power on the supply side. Further, according to the management device disclosed in Patent Document 1, there is a high possibility that the overall peak value of power consumption of a plurality of consumers will be reduced.
  • the management device cannot know in advance the supply and demand information including all consumers other than the plurality of consumers managed by the management device, the result of supply and demand adjustment of the plurality of consumers managed by the management device However, there is a problem that there are cases where the power supply does not match the power supply and demand of the entire consumer.
  • the present disclosure changes the operation schedule of a heat storage device based on power supply and demand information from a power control instruction device that manages the power supply and demand of a plurality of consumers, thereby reducing the overall power supply and demand.
  • a heat storage system control device of the present disclosure includes a receiving unit that acquires power supply and demand information from a power control instruction device, an operation schedule determination unit that determines an operation schedule of a heat storage device based on the power supply and demand information, and the operation schedule determination unit. a transmission unit that transmits the operation schedule determined in the above to the power control instruction device; and a heat storage device control unit that controls the operation of the heat storage device based on the operation schedule determined by the operation schedule determination unit.
  • a heat storage system is a heat storage system that controls a heat storage device based on power supply and demand information, and includes a creation unit that creates the power supply and demand information, and a schedule for operating the heat storage device based on the power supply and demand information.
  • An operation schedule determination unit and a heat storage device control unit that controls operation of the heat storage device based on the operation schedule determined by the operation schedule determination unit.
  • a heat storage system control method of the present disclosure is a heat storage system control method for performing operation control of a heat storage device based on power supply and demand information, wherein an operation schedule for the heat storage device is determined based on the power supply and demand information, and the operation schedule is determined based on the power supply and demand information. The heat storage device is controlled based on the schedule.
  • a control program of the present disclosure is a control program that causes a computer to operate as a heat storage system control device that controls the operation of a heat storage device, the computer comprising: a receiving unit that receives power supply and demand information from a power control instruction device; It functions as an operation schedule determination unit that determines an operation schedule of the heat storage device based on the information and as a transmission unit that transmits the operation schedule to the power control instruction device and the heat storage device.
  • the recording medium of the present disclosure is a computer-readable medium in which a control program is recorded.
  • the operation schedule of the thermal storage device is changed based on the power supply and demand information from the power control instruction device, so the power used by the operation of the thermal storage device is adjusted to match the overall power supply and demand.
  • FIG. 1 is a hardware configuration diagram showing an example configuration of a heat storage system 100 according to Embodiment 1.
  • FIG. 1 is a functional block diagram showing an example of the configuration of a heat storage system 100 according to Embodiment 1;
  • FIG. 4 is a flowchart of control of the heat storage device 20 by the heat storage system control device 10 and transmission of an operation schedule to the power control instruction device 30 in the heat storage system 100 according to Embodiment 1.
  • FIG. 3 is an example of an operation schedule of the heat storage device 20 processed by the heat storage system control device 10 and power supply and demand information acquired from the power control instruction device 30.
  • FIG. 10 is a functional block diagram of a heat storage system 100 according to Embodiment 2; 10 is a flow chart of control of the heat storage device 20 by the heat storage system 100 and transmission of an operation schedule to the power control instruction device 30 according to Embodiment 2.
  • FIG. FIG. 11 is a hardware configuration diagram showing an example of the configuration of a heat storage system 100 according to Embodiment 3; FIG. 11 is a functional block diagram showing an example of the configuration of a heat storage system 100 according to Embodiment 3; FIG. 11 is a functional block diagram showing an example of the configuration of a heat storage system 100 according to Embodiment 3; It is an example of changing the operation schedule of the heat storage device 20 in the heat storage system 100 according to Embodiment 1.
  • a heat storage system control device a heat storage system, a heat storage system control method, a control program, and a recording medium according to embodiments will be described below with reference to the accompanying drawings.
  • the same reference numerals denote the same or corresponding parts, and are common throughout the embodiments described below.
  • the forms and steps (processes) of the components shown in the entire specification are merely examples, and are not limited to the forms described in the specification.
  • each component and each step (process) are not limited to combinations in each embodiment, and components described in other embodiments can be applied to other embodiments.
  • FIG. 1 is a hardware configuration diagram showing an example of the configuration of a heat storage system 100 according to Embodiment 1.
  • FIG. 2 is a functional block diagram showing an example of the configuration of the heat storage system 100 according to Embodiment 1.
  • the heat storage system control device 10 generates or changes the operation schedule of the heat storage device 20 based on the power supply and demand information from the external power control instruction device 30 . Also, the heat storage system control device 10 transmits information regarding the power demand of the heat storage device 20 to the power control instruction device 30 based on the operation schedule of the heat storage device 20 .
  • the heat storage system control device 10 is provided integrally with or independently of the heat storage device 20, and is connected to the external power control instruction device 30 and the heat storage device 20 so as to be communicable.
  • the heat storage system control device 10, the power control instruction device 30, and the heat storage device 20 can transmit and receive information via a wireless or wired communication channel, and the communication channel can include a wide area network such as the Internet or a telephone line. .
  • the heat storage system control device 10 is provided as an independent device.
  • the heat storage system control device 10 may exist, for example, on a server, may be connected to the network as an independent device, or may be connected to the network with the heat storage device 20 or the power control instruction device 30. They may be provided integrally.
  • each function realized by the heat storage system 100 is distributed to each device connected to the network, that is, the server, the heat storage device 20, the power control instruction device 30, and the like, and necessary information is transmitted and received between each device.
  • Each function of the heat storage system control device 10 may be realized by
  • the heat storage system control device 10 is composed of, for example, a microcomputer, and includes an arithmetic device 12, a storage device 13, and a communication interface (I/F) 14.
  • the communication interface 14 is connected to the heat storage device 20 and an external power control instruction device 30 to transmit and receive information.
  • the storage device 13 is a ROM that holds programs and data in advance, a RAM that temporarily stores data when executing the program, and the like.
  • non-volatile or volatile semiconductor memories such as flash memory, EPROM (Erasable and Programmable ROM) and EEPROM (Electrically Erasable and Programmable ROM) are used.
  • EPROM Erasable and Programmable ROM
  • EEPROM Electrical Erasable and Programmable ROM
  • removable recording media such as magnetic disks, flexible disks, optical disks, CDs (Compact Discs), MDs (Mini Discs) and DVDs (Digital Versatile Discs) may be used.
  • the storage device 13 stores information from the heat storage device 20 or the power control instruction device 30 and information processed by the arithmetic device 12 .
  • the computing device 12 performs various processes for executing the functions of the heat storage system control device 10 .
  • the arithmetic device 12 compares the load prediction result of the heat storage device 20 held in the storage device 13 and the power supply and demand information from the power control instruction device 30, for example, and performs processing to change the operation schedule of the heat storage device 20. FIG. That is, in cooperation with the storage device 13, each processing of the functional blocks shown in FIG. 2 is executed.
  • the heat storage device 20 is, for example, a hot water supply device installed in each home, and includes a heat pump section 25 , a hot water storage section 26 for storing hot water boiled by the heat pump section 25 , a sensor 27 and a control device 21 .
  • the heat pump section 25 includes, for example, an air heat exchanger, a compressor, a water heat exchanger, and a pressure reducer.
  • the heat pump unit 25 heats water using a water heat exchanger and sends it to the hot water storage unit 26 .
  • the hot water storage unit 26 includes a tank, piping, an on-off valve, heat insulating material, and the like. The hot water in the hot water storage section 26 may be appropriately circulated between the heat pump section 25 to keep it warm.
  • the sensor 27 includes a plurality of sensors, for example, a sensor that detects the temperature of the hot water in the hot water storage unit 26, a flow rate sensor that detects the amount of hot water that flows out from the heat storage device 20, and the power consumption of the compressor provided in the heat pump unit 25. It may include a sensor or the like that
  • the control device 21 controls the operation of the heat storage device 20 and has the same hardware configuration as the heat storage system control device 10 .
  • the control device 21 is composed of, for example, a microcomputer, and includes an arithmetic device 22 , a storage device 23 and a communication interface (I/F) 24 .
  • the functions of control device 21 are performed using arithmetic device 22 , storage device 23 and communication interface 24 .
  • the control device 21 in the heat storage device 20 may be omitted as hardware, and the heat storage system control device 10 has the function of the control device 21. may also serve as
  • the power control instruction device 30 is, for example, a device that manages local power consumption and power supply.
  • the power control instruction device 30 has information on power consumption and power supply in a certain region, and creates power supply and demand information, which is information on power consumption and power supply in the region, for consumers in the region including the heat storage system control device.
  • a creation unit is provided. If necessary, the heat storage system control device 10 can acquire power supply and demand information including information such as power consumption, power supply, and power supply schedule for the entire area to which the heat storage device 20 belongs from the power control instruction device 30 .
  • the power control instruction device 30 is provided as an independent device.
  • the power control instruction device 30 may exist, for example, on a server, may be connected to the network as an independent device, or may be provided in any device connected to the network. Also good.
  • each function realized by the power control instruction device 30 is distributed to each device connected by a network, that is, a server or the like. function may be realized.
  • FIG. 3 is a flowchart of control of the heat storage device 20 by the heat storage system control device 10 and transmission of the operation schedule to the power control instruction device 30 in the heat storage system 100 according to the first embodiment.
  • FIG. 4 is an example of the operation schedule of the heat storage device 20 processed by the heat storage system control device 10 and the power supply and demand information acquired from the power control instruction device 30 .
  • the table shown at the top is the operation schedule of the heat storage device 20 .
  • the second table from the top in FIG. 4 is the power supply and demand information acquired from the power control instruction device 30, and shows the information of the region to which the heat storage device 20 belongs.
  • step S01 shown in FIG. 3 the heat storage system control device 10 predicts the load of the heat storage device 20.
  • This step S01 is called a load prediction step.
  • Load prediction is performed based on operation information obtained from the heat storage device 20 .
  • the acquisition unit 41 of the heat storage system control device 10 receives the operation information of the heat storage device 20 from the heat storage device 20, and the load prediction unit 42 predicts the future operation schedule.
  • the predicted driving schedule is also simply referred to as load prediction.
  • the operation information of the heat storage device 20 may be the operation history information of the heat storage device 20 already acquired by the heat storage system control device 10 and stored in the storage unit 48 . For example, since the heat storage device 20 is a water heater, power consumption increases during hot water storage time periods and hot water usage time periods.
  • the heat storage system control device 10 predicts an operation schedule based on operation history information of the heat storage device 20, operation setting information set in the heat storage device 20 by the user, and the like.
  • the operation schedule is represented, for example, as the power consumption of the heat storage device 20 in each time slot shown at the top of FIG. Further, the operation schedule may be represented by a graph showing the relationship between time and power consumption, with the horizontal axis representing time and the vertical axis representing power consumption.
  • the prediction of the operation schedule is made by inputting the outside air temperature, humidity, weather, history of hot water consumption for each time slot of each day of the week, and the industry in which the heat storage device 20 is used, and outputting the output for each time slot of the heat storage device 20. It is also possible to use a learning model that is learned using teacher data that is history data of power consumption in . In other words, the outdoor temperature, humidity, weather, history of hot water consumption for each time zone of each day of the week, industry type in which the heat storage device 20 is used, etc. are input to this learning model, and the power consumption of the heat storage device 20 in each time zone is calculated. to predict.
  • step S ⁇ b>02 the heat storage system control device 10 compares the operation schedule of the heat storage device 20 obtained in step S ⁇ b>01 with the power supply and demand information obtained from the power control instruction device 30 .
  • This step S02 is called a comparison step.
  • the power supply and demand information obtained from the power control instruction device 30 is, for example, the table displayed second from the top in FIG. It is the data of the scheduled value of power supply for each time zone.
  • the power supply and demand information obtained from the power control instruction device 30 may be information only on whether or not power is tight for each time period, or may be information on electricity rates for each time period. .
  • the power supply and demand information is electricity rates for each time period, a high electricity rate is set when the power supply is tight, and a low electricity rate is set when there is a surplus of power.
  • the comparison unit 43 of the heat storage system control device 10 compares the operation schedule of the heat storage device 20 with the power supply and demand information.
  • a time zone in which the power supply is tight may be detected under a predetermined condition in the power supply and demand information, or the degree of tightness of the power supply may be ranked. At this time, the time period during which it is determined that the supply is tight is called a tight time zone.
  • the time zone of the power supply and demand information may be classified into a high power demand time zone, in which the power supply is particularly tight, and an off-peak time zone, in which the power demand is low. .
  • the comparison unit 43 may rank the power consumption for each time period in the operation schedule of the heat storage device 20 . For example, it detects a time period that meets the condition that the power supply tightness rank is equal to or higher than a certain threshold and the power consumption rank of the heat storage device 20 is equal to or higher than a certain threshold. For example, in the power supply and demand information from the power control instruction device 30, the operation of the heat storage device 20 is stopped during high power demand time zones when power is tight. are subject to change to forced operation. When changing the operation schedule of the heat storage device 20, basically, whether or not the change is necessary is determined based on whether the amount of heat stored by the heat storage device 20 will be sufficient in the future.
  • the processing in the comparison unit 43 is not necessarily limited to comparing the operation schedule and the power supply and demand information, and may be, for example, comparing a predetermined condition with the operation schedule.
  • the processing in the comparison unit 43 may also determine whether or not the power supply and demand information also satisfies a predetermined condition.
  • step S ⁇ b>03 the heat storage system control device 10 determines or changes the operation schedule of the heat storage device 20 based on the information obtained by the comparison unit 43 .
  • This step S03 is called a driving schedule determination step.
  • the driving schedule determination unit 45 changes the driving schedule shown in the topmost table of FIG. 4 to the bottommost table of FIG.
  • the driving schedule determination part 45 is also called a driving schedule change part.
  • the operation schedule determination unit 45 changes the amount of power used in the time period detected by the comparison unit 43 or the time period that matches the conditions, and determines the amount of power used in the heat storage device 20 for a predetermined period (for example, one day). Change so that the sum is substantially equivalent before and after the change.
  • the driving schedule determining unit 45 outputs the changed driving schedule as data of the power consumption in each time zone shown at the bottom of FIG. 4, for example. Information output from the operation schedule determination unit 45 is sent to the transmission unit 46 and the heat storage device control unit 47 .
  • the operation schedule determining unit 45 prepares an electricity price table for each time slot so that the price for power consumed by the heat storage device 20 during a predetermined period (for example, one day) is reduced. You can refer to it.
  • the electricity rate table is stored in the storage unit 48 in advance. The electricity rate table can be obtained from the power control instruction device 30 .
  • FIG. 10 is an example of changing the operation schedule of the heat storage device 20 in the heat storage system 100 according to Embodiment 1.
  • the power rate is set at 32.74 yen per kWh, which is the unit power amount, as a daytime charge during the time period from 7:00 am to 11:00 pm, and is set as a night rate during the time period from 11:00 pm to 7:00 am. 21.16 yen per kWh is set.
  • heat is normally stored during the night time period from 11:00 pm as indicated by the solid line in FIG.
  • heat is stored not only at nighttime but also during the daytime as indicated by the dashed line in FIG.
  • the power supply side can encourage the heat storage device 20 to perform the heat storage operation during the off-peak hours by setting a low power rate during off-peak hours when there is a surplus of electric power.
  • the power control instruction device 30 provides the heat storage system control device 10 with the power rate for each time period as the power supply and demand information, so that the heat storage system control device 10 can actively perform the heat storage operation even during off-peak hours. Change your driving schedule.
  • the heat storage system control device 10 can set an operation schedule that can contribute to overall power supply and demand adjustment while keeping the amount of stored heat that will be required in the future, reducing power charges.
  • step S ⁇ b>04 the heat storage system control device 10 transmits information based on the changed operation schedule to the power control instruction device 30 and the heat storage device 20 .
  • This step S04 is called a transmission step.
  • the transmission unit 46 transmits the changed operating schedule to the power control instruction device 30 .
  • the heat storage device control unit 47 also sends the changed operation schedule and power consumption to the heat storage device 20 as control information.
  • the control information transmitted to the heat storage device 20 is processed by the control device 21 of the heat storage device 20 to control the operation of the heat storage device 20 .
  • the timing of information exchange between the power control instruction device 30 and the heat storage system control device 10 that the power supply and demand information is obtained from the power control instruction device 30 and transmitted by the transmission unit 46 to the power control instruction device 30 is, for example, in the morning. , day, night, etc., or at least regularly at intervals of about 30 minutes.
  • the exchange of information in the morning determines the operation schedule of the heat storage device 20 from morning to evening
  • the exchange of information in the afternoon determines the operation schedule from evening to midnight
  • the exchange of information in the evening determines the operation schedule from midnight to morning.
  • the heat storage system 100 changes the operation schedule of the heat storage device 20 based on the power supply and demand information obtained by the heat storage system control device 10 from the power control instruction device 30. It is possible to control the heat storage device 20 corresponding to the power supply and demand of all devices managed by the control instruction device 30 . In addition, by comparing the operation schedule of the heat storage system control device 10 obtained by load prediction with the power supply and demand information obtained from the power control instruction device 30, heat storage by the heat storage device 20 in a time zone when the power supply is tight (for example, boiling water) can be avoided.
  • the power supply for example, boiling water
  • the heat storage system control device 10 controls the heat storage device 20 to perform the heat storage operation during a period of time when a large amount of electric power obtained in advance is supplied. As a result, the user will not run out of hot water in the hot water storage unit 26 even during times when the amount of hot water used is large.
  • the operation schedule predicted and generated (changed) by the heat storage system controller 10 of the heat storage system 100 is, for example, a schedule for at least one day. By doing so, it is possible to avoid a plurality of power tight time periods that occur in one day in each region.
  • the heat storage device 20 controlled by the heat storage system control device 10 can be operated efficiently because the time zone in which the heat storage operation is performed is set more finely.
  • the heat storage system control device 10 of the heat storage system 100 responds to the outside with an operation schedule adjusted based on information from the power control instruction device 30 in advance, thereby increasing the means for responding to the power control instruction device 30. can be done. Therefore, the heat storage system control device 10 adjusts the operation schedule and sends it to the power control instruction device 30, so that the flexibility of supply and demand control adjustment for each device managed by the power control instruction device 30 can be enhanced. In addition, the heat storage system control device 10 avoids the operation of the heat storage device 20 during the time period when the power supply is considerably tight, and the heat storage device 20 is operated during the time period when the power supply amount is high. 30 can contribute to power supply and demand adjustment.
  • the heat storage system control device 10 of the heat storage system 100 may be a single terminal, or may be a control device 21 built in a specific heat storage device 20 . Also, the heat storage system control device 10 may be a virtual control device that is executed by a program on the cloud.
  • the heat storage system control device 10 may have a form in which each function realized by the heat storage system control device 10 is distributed to each device connected by a network, that is, a server, a heat storage device, a power control instruction device, etc., and each device Each function of the heat storage system control device 10 may be realized by transmitting and receiving necessary information between them.
  • Embodiment 2 A heat storage system 100 according to Embodiment 2 will be described.
  • the heat storage system control device 10 acquires the power supply and demand information again from the power control instruction device 30 and changes the operation schedule of the heat storage device 20.
  • the processing to be performed will be described.
  • symbol is attached
  • the description will focus on the changes from the first embodiment.
  • FIG. 5 is a functional block diagram of the heat storage system 100 according to the second embodiment.
  • FIG. 6 is a flowchart of control of the heat storage device 20 and transmission of the operation schedule to the power control instruction device 30 by the heat storage system 100 according to the second embodiment.
  • the heat storage system control device 10 once generates an operation schedule based on the power supply and demand information, and the operation schedule of the heat storage device 20 is adapted to the power supply and demand.
  • the power control instruction device 30 may present the power supply and demand information to the heat storage system control device 10 again.
  • the heat storage system control device 10 generates or changes the operation schedule according to the power supply and demand information presented again.
  • step S11 shown in FIG. 6 the reception unit 44 of the heat storage system control device 10 of the heat storage system 100 acquires power supply and demand information from the power control instruction device 30.
  • This step S11 is called a re-receiving step.
  • the receiver 44 is also called a re-receiver.
  • This power supply and demand information is basically the reacquired power supply and demand information obtained again from the power control instruction device 30 after the operation schedule determined in step S03 of FIG. Information.
  • the reacquired power supply and demand information is adjusted by the power control instruction device 30 receiving the operation schedule determined in step S03 of FIG. It is power supply and demand information later.
  • the information obtained by the receiving unit 44 from the power control instruction device 30 is, for example, a ranking of the tightness of the power supply in the time period, which is ranked into two categories, ie, strong and weak.
  • the information acquired by the receiving unit 44 is not limited to this form of information, and may be, for example, the data of the amount of power demanded and the amount of power supplied for each time period described in the first embodiment.
  • step S12 the heat storage system control device 10 of the heat storage system 100 compares the reacquired power supply and demand information from the power control instruction device 30 with the operation schedule of the heat storage device 20 generated last time.
  • This step S12 is called a comparison step.
  • the comparison unit 43 determines a high tightness degree time zone in which the tightness degree of power supply is high in the reacquired power supply and demand information.
  • the operation schedule generated last time is stored in the storage unit 48 and compared with the reacquired power supply and demand information acquired by the reception unit 44 in the comparison unit 43 .
  • the comparison unit 43 determines whether the amount of power used by the heat storage device 20 is higher or lower than a predetermined threshold value in a high-stress time zone in which the power supply and demand information indicates that the power supply is in a tight situation.
  • the driving schedule may be subject to change. That is, it is determined that the power consumption should be reduced.
  • the comparison unit 43 may determine off-peak time zones in the reacquired power supply and demand information in which the tightness of the power supply is low.
  • the operation schedule generated last time is stored in the storage unit 48 and compared with the reacquired power supply and demand information acquired by the reception unit 44 in the comparison unit 43 .
  • the comparison unit 43 determines whether the amount of power used by the heat storage device 20 is higher or lower than a predetermined threshold during off-peak hours in which the power supply and demand information indicates that the tightness of the power supply is low. If the power consumption is lower than or equal to or less than the threshold during off-peak hours, the driving schedule may be subject to change. In other words, it is determined that it is a time period during which the power consumption can be increased.
  • step S ⁇ b>13 the heat storage system control device 10 of the heat storage system 100 determines or changes the operation schedule based on the comparison results of the comparison unit 43 .
  • This step S13 is called an operation schedule change step.
  • the driving schedule determining unit 45 changes the amount of electric power consumption during the time period determined by the comparing unit 43 to correspond to a predetermined condition so as to decrease.
  • a predetermined period for example, one day
  • step S ⁇ b>14 the heat storage system control device 10 of the heat storage system 100 transmits information based on the changed operation schedule to the power control instruction device 30 and the heat storage device 20 .
  • This step S14 is called a transmission step.
  • the operation schedule determined or changed by the operation schedule determination unit 45 is sent to the transmission unit 46 and the heat storage device control unit 47 .
  • the transmission unit 46 transmits the changed operating schedule to the power control instruction device 30 .
  • the heat storage device control unit 47 also sends the changed operation schedule to the heat storage device 20 as control information.
  • the control information transmitted to the heat storage device 20 is processed by the control device 21 of the heat storage device 20 to control the operation of the heat storage device 20 .
  • the heat storage system control device 10 changes the operation schedule of the heat storage device 20 based on the power supply and demand information from the power control instruction device 30, so that the power control instruction device 30
  • the power consumption of the heat storage device 20 connected to the heat storage system control device 10 can be adjusted according to whether the power supply and demand adjustment is established or not established. Therefore, the power supply and demand adjustment of the power control instruction device 30 can be flexibly handled, and the overall supply and demand adjustment including other devices connected to the power control instruction device 30 can be contributed.
  • the heat storage system control device 10 acquires the reacquired power supply and demand information obtained from the data once collected by the power control instruction device 30, and changes the operation schedule again based on the information.
  • the heat storage device 20 controlled by this changed operation schedule ensures efficient operation avoiding times when the supply is tight while ensuring the required amount of stored heat.
  • the heat storage system control device 10 can contribute to resolving a tight power supply state by controlling the operation of the heat storage device 20 and responding to the power supply and demand for all the devices connected to the power control instruction device 30. .
  • Embodiment 3 A heat storage system 100 according to Embodiment 3 will be described.
  • the heat storage system 100 according to Embodiment 3 generates or changes the operation schedule according to Embodiments 1 and 2, but has a plurality of heat storage devices 20 to be controlled.
  • symbol is attached
  • changes from the first or second embodiment will be mainly described.
  • FIG. 7 is a hardware configuration diagram showing an example of the configuration of the heat storage system 100 according to the third embodiment.
  • a heat storage system 100 according to Embodiment 3 a plurality of heat storage devices 20 are connected to a heat storage system control device 10, and based on operation information of the plurality of heat storage devices 20, load prediction and a plurality of heat storage devices 20 as a whole are performed. , the operation control of the heat storage device 20 is performed.
  • the heat storage system control device 10 is connected to a plurality of heat storage devices 20 .
  • the heat storage system control device 10 may be configured to be connected below the base unit.
  • the heat storage system control device 10 may be installed inside the parent device.
  • the heat storage system control device 10 inside the parent device controls the operation of the parent device and also controls the operation of the heat storage device 20 serving as the child device.
  • the plurality of heat storage devices 20 may each include a control device 21, or may be controlled by the heat storage system control device 10.
  • the heat storage system control device 10 is provided as a specific terminal independent of the plurality of heat storage devices 20, so that information on each heat storage device 20, information from the power control instruction device 30, and accumulated data can be obtained. Management becomes easier, and the risk of leakage to third parties can be reduced. This is the same even if the heat storage system control device 10 is installed in a specific heat storage device 20 or is installed on the cloud.
  • FIG. 8 is a functional block diagram showing an example of the configuration of the heat storage system 100 according to the third embodiment. Also in the heat storage system 100 according to Embodiment 3, the operation schedule of the heat storage device 20 is created or changed according to the flowchart shown in FIG. However, in Embodiment 3, since a plurality of heat storage devices 20 are connected to the heat storage system control device 10, the operation schedule is created or changed as follows.
  • the first method is a method in which the heat storage system 100 individually performs load prediction, comparison with power supply and demand information, and generation of an operation schedule for each of the plurality of heat storage devices 20 .
  • load prediction is performed based on the operation history of each of the plurality of heat storage devices 20, and the operation schedule is generated after comparison with the power supply and demand information.
  • the heat storage system control device 10 replies to the power control instruction device 30 about the generated operation schedules of the plurality of heat storage devices 20 and the power consumption in each time period. Therefore, although the processing load in the heat storage system control device 10 is high, flexible operation control corresponding to each heat storage device 20 is possible.
  • each of the plurality of heat storage devices 20 connected to the heat storage system control device 10 is optimally controlled to operate according to the power supply and demand information from the power control instruction device 30. It can contribute to the overall supply and demand adjustment connected to
  • the heat storage system 100 performs load prediction, comparison with power supply and demand information, and generation of an operation schedule for the heat storage device 20 serving as a parent device among the plurality of heat storage devices 20, and performs load prediction for the heat storage device 20 serving as a child device.
  • the same operation schedule as that of the master unit is used.
  • the heat storage system control device 10 replies to the power control instruction device 30 about the generated operation schedules of the plurality of heat storage devices 20 and the power consumption in each time period.
  • the heat storage system control device 10 performs load prediction on behalf of the plurality of heat storage devices 20 based on the operation information and the operation history of only the main unit.
  • the operation schedule of the master unit is generated or changed.
  • the operation schedule of the parent device generated by the operation schedule determination unit 45 is transmitted from the transmission unit 46 to the power control instruction device 30 . Further, the operation schedule of the parent device is sent to the parent device as the operation control signal of the parent device in the heat storage device control unit 47 .
  • a control signal is sent directly from the parent machine or from the heat storage device control section 47 to the child machine, and the child machine is operated under the same control as the parent machine.
  • the load on the heat storage system control device 10 is reduced more than when the load prediction is performed for each of the plurality of heat storage devices 20 .
  • the heat storage system control device 10 can efficiently operate the plurality of heat storage devices 20 by examining the plurality of heat storage devices 20 collectively.
  • the load prediction of the parent device is performed as a representative and the operation schedule is generated, it is not necessary to apply the same control to all of the child devices as the parent device. Accordingly, by changing the number of child units in operation or adjusting the number of units to be controlled in the same way as the parent unit, it is possible to flexibly adjust the power consumption. In this case, some of the child devices are subjected to the same operation control as the parent device, and some other child devices are subjected to different operation control from the parent device.
  • examples of the operation of the heat storage system 100 include the first method and the second method described above. Therefore, it is possible to flexibly adjust the power demand according to the power supply and demand information from the power control instruction device 30 .
  • FIG. 9 is a functional block diagram showing an example of the configuration of the heat storage system 100 according to the third embodiment. Also in the heat storage system 100 according to Embodiment 3, the operation schedule of the heat storage device 20 is created or changed according to the power supply and demand information presented again from the power control instruction device 30 according to the flowchart shown in FIG.
  • the heat storage system 100 when implementing the flowchart shown in FIG. 5, the heat storage system 100 generates an operation schedule by either the first method or the second method. However, when the power supply and demand information is re-presented from the power control instruction device 30 and the information on the strength of the power tight state for each time period is acquired, the heat storage system 100 operates some of the plurality of heat storage devices 20. Demand adjustment is possible by changing
  • the power consumption of some of the plurality of heat storage devices 20 is reduced.
  • the power consumption of the heat storage device 20 is increased during a time period when the power supply and demand information indicates that the power demand is less than a predetermined power value.
  • the total amount of power consumption of each heat storage device 20 in a predetermined period is changed so as to be the same before and after the change.
  • the present disclosure has been described above based on the embodiments, but the present disclosure is limited only to the configurations of the above-described embodiments. not something. For example, each embodiment may be combined.
  • the gist (technical scope) of the present disclosure also includes various modifications, applications, and ranges of utilization made as necessary by those skilled in the art. Further, by installing a control program for executing the contents described in the first to third embodiments in a computer, the computer can be used as the heat storage system 100 to execute each function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本開示は、複数の需要家の電力需給を管理する電力制御指示機器からの電力需給情報に基づき蓄熱装置の運転スケジュールを変更することにより、全体の電力需給に合った蓄熱装置の電力受給調整を行う蓄熱システム制御装置、蓄熱システム、蓄熱システム制御方法、制御プログラム及び記録媒体を得ることを目的とする。本開示の蓄熱システム制御装置は、電力制御指示機器から電力需給情報を取得する受信部と、電力需給情報に基づいて蓄熱装置の運転スケジュールを決定する運転スケジュール決定部と、運転スケジュール決定部において決定された運転スケジュールを電力制御指示機器に送信する送信部と、運転スケジュール決定部において決定された運転スケジュールに基づいて蓄熱装置の運転を制御する蓄熱装置制御部と、を備える。

Description

蓄熱システム制御装置、蓄熱システム、蓄熱システム制御方法、制御プログラム及び記録媒体
 本開示は、例えば給湯機等の電力により蓄熱を行う蓄熱システム制御装置、蓄熱システム、蓄熱システム制御方法、制御プログラム及び記録媒体に関するものである。
 今日においてヴァーチャルパワープラント(VPP)等により自然エネルギーの利用効率を最大化するための仕組みが議論されている。例えば、VPPは、需要家側エネルギーリソース、電力系統に直接接続されている発電設備及び蓄電設備等の保有者又は第三者が、そのエネルギーリソースを制御することにより発電所と同等の機能を提供するものである。また、特に電力の利用については、デマンド契約(デマンド料金制)が知られており、各需要家の最大需要電力を減らすための仕組みが知られている。
 また、給湯機は、主として電力料金の比較的低い夜間に運転され貯湯タンクに温水を貯める。そのため、あるエリアにおける複数の需要家の給湯機についての運転時間が夜間の所定時刻に集中すると、総合的な消費電力のピーク値が増大し、電力の需給逼迫が生じ得る。これを防ぐ技術として、各需要家の給湯機の貯湯タンクの容量に応じて複数の需要家を複数のグループに分類して、各グループの給湯機の運転開始時刻をずらすように給湯機の運転を制御する技術が知られている。しかし、例えば各需要家では一律に毎日貯湯タンク容量分の沸き上げが行われるとは限らないため、適切に総合的な消費電力のピークを抑制できない場合がある。
 そこで、上記のような課題を解決するため、複数の需要家における給湯機の総合的な消費電力のピーク値を低下させる可能性を高めるように、各需要家の給湯機の運転時期を決定する管理装置が知られている(たとえば、特許文献1参照)。その管理装置は、「複数の需要家それぞれの給湯機の運転実績を示す給湯機情報を取得する取得部と、前記給湯機情報に基づいて前記複数の需要家それぞれの給湯機の運転時間の長さに関連する指標値を特定し、当該指標値に応じて前記複数の需要家を複数のグループに分類する分類部と、前記複数のグループそれぞれについて当該グループに係る給湯機の運転時期を決定する決定部と、前記決定部により決定された運転時期を示す時期情報を出力する出力部とを備える」ものである。
特許第6739040号公報
 特許文献1に開示されている管理装置によれば、複数の需要家それぞれの給湯機の運転時間の長さに関連して複数の需要家が複数のグループに分類される。給湯機の運転時間は消費電力に影響するので、運転時間と無関係に分類する場合に比べて、複数の需要家における給湯機の総合的な消費電力のピーク値を低下させる可能性が高められる。しかし、需要家の需要電力が増加した場合の回避手段としては有効であるが、供給側の電力が増大した場合の対応については考慮されていない。また、特許文献1に開示されている管理装置によれば、複数の需要家の総合的な消費電力のピーク値を低下させる可能性が高くなる。しかし、管理装置は、管理装置が管理している複数の需要家以外の全ての需要家を含めた需給情報を予め知ることができないため、管理装置が管理する複数の需要家の需給調整の結果が需要家全体の電力需給に合わない場合があるという課題があった。
 本開示は、上記のような課題を解決するため、複数の需要家の電力需給を管理する電力制御指示機器からの電力需給情報に基づき蓄熱装置の運転スケジュールを変更することにより、全体の電力需給に合った蓄熱装置の電力受給調整を行う蓄熱システム制御装置、蓄熱システム、蓄熱システム制御方法、制御プログラム及び記録媒体を得ることを目的とする。
 本開示の蓄熱システム制御装置は、電力制御指示機器から電力需給情報を取得する受信部と、前記電力需給情報に基づいて蓄熱装置の運転スケジュールを決定する運転スケジュール決定部と、前記運転スケジュール決定部において決定された運転スケジュールを前記電力制御指示機器に送信する送信部と、前記運転スケジュール決定部において決定された運転スケジュールに基づいて前記蓄熱装置の運転を制御する蓄熱装置制御部と、を備える。
 本開示の蓄熱システムは、電力需給情報に基づき蓄熱装置を制御する蓄熱システムであって、前記電力需給情報を作成する作成部と、前記電力需給情報に基づいて前記蓄熱装置の運転スケジュールを決定する運転スケジュール決定部と、前記運転スケジュール決定部において決定された運転スケジュールに基づいて前記蓄熱装置の運転を制御する蓄熱装置制御部と、を備える。
 また、本開示の蓄熱システム制御方法は、電力需給情報に基づき蓄熱装置の運転制御を行う蓄熱システム制御方法であって、前記電力需給情報に基づいて前記蓄熱装置の運転スケジュールを決定し、前記運転スケジュールに基づき前記蓄熱装置を制御するものである。
 また、本開示の制御プログラムは、コンピュータを蓄熱装置の運転制御を行う蓄熱システム制御装置として作動させる制御プログラムであって、コンピュータを、電力制御指示機器から電力需給情報を受け取る受信部、前記電力需給情報に基づいて前記蓄熱装置の運転スケジュールを決定する運転スケジュール決定部及び前記運転スケジュールを前記電力制御指示機器及び前記蓄熱装置に送信する送信部として機能させるためのものである。
 また、本開示の記録媒体は、制御プログラムを記録した、コンピュータが読み取り可能なものである。
 本開示によれば、電力制御指示機器からの電力需給情報に基づき蓄熱装置の運転スケジュールを変更するため、蓄熱装置の運転による使用電力が全体の電力需給に合ったものに調整される。
実施の形態1に係る蓄熱システム100の構成の一例を示すハードウェア構成図である。 実施の形態1に係る蓄熱システム100の構成の一例を示す機能ブロック図である。 実施の形態1に係る蓄熱システム100において、蓄熱システム制御装置10による蓄熱装置20の制御及び電力制御指示機器30への運転スケジュール送信についてのフローチャートである。 蓄熱システム制御装置10により処理される蓄熱装置20の運転スケジュール及び電力制御指示機器30から取得される電力需給情報の一例である。 実施の形態2に係る蓄熱システム100の機能ブロック図である。 実施の形態2に係る蓄熱システム100による蓄熱装置20の制御及び電力制御指示機器30への運転スケジュール送信についてのフローチャートである。 実施の形態3に係る蓄熱システム100の構成の一例を示すハードウェア構成図である。 実施の形態3に係る蓄熱システム100の構成の一例を示す機能ブロック図である。 実施の形態3に係る蓄熱システム100の構成の一例を示す機能ブロック図である。 実施の形態1に係る蓄熱システム100における蓄熱装置20の運転スケジュールの変更の一例である。
 以下、実施の形態に係る蓄熱システム制御装置、蓄熱システム、蓄熱システム制御方法、制御プログラム及び記録媒体について、添付図面などを参照しながら説明する。以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態及びステップ(工程)は、あくまでも例示であって、明細書に記載された形態に限定するものではない。また、各構成要素及び各ステップ(工程)は、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することもできる。
 実施の形態1.
 図1は、実施の形態1に係る蓄熱システム100の構成の一例を示すハードウェア構成図である。図2は、実施の形態1に係る蓄熱システム100の構成の一例を示す機能ブロック図である。実施の形態1に係る蓄熱システムは、蓄熱システム制御装置10が外部の電力制御指示機器30からの電力需給情報に基づき蓄熱装置20の運転スケジュールを生成又は変更するものである。また、蓄熱システム制御装置10は、蓄熱装置20の運転スケジュールに基づき蓄熱装置20の電力の需要に関する情報を電力制御指示機器30へ送信するものである。
(蓄熱システム制御装置10)
 蓄熱システム制御装置10は、蓄熱装置20と一体又は独立して設けられたものであり、外部の電力制御指示機器30及び蓄熱装置20と通信可能に接続されているものである。蓄熱システム制御装置10、電力制御指示機器30及び蓄熱装置20は、無線又は有線による通信路を介して情報を送受信可能となっており、通信路は例えばインターネット又は電話回線等の広域ネットワークを含み得る。実施の形態1においては、一例として図1に示す様に、蓄熱システム制御装置10が独立した装置として設けられた形態を用いて説明している。しかし、蓄熱システム制御装置10は、例えばサーバ上に存在していても良いし、独立した装置としてネットワークに接続されていても良いし、ネットワークに接続された蓄熱装置20又は電力制御指示機器30と一体に設けられていても良い。また、蓄熱システム100が実現する各機能は、ネットワークで接続された各機器、即ちサーバ、蓄熱装置20及び電力制御指示機器30などに分散して配置され、各機器間で必要な情報を送受信して蓄熱システム制御装置10の各機能を実現しても良い。
 蓄熱システム制御装置10は、例えばマイクロコンピュータで構成され、演算装置12、記憶装置13及び通信インターフェイス(I/F)14を備える。蓄熱システム制御装置10の機能、すなわち図2に示される各機能ブロックは、演算装置12、記憶装置13及び通信インターフェイス14を用いて実現される。通信インターフェイス14は、蓄熱装置20及び外部の電力制御指示機器30と接続され、情報の送受信を行うものである。
 記憶装置13は、プログラム及びデータ等を予め保持しているROM、プログラムの実行に際してデータを一時的に記憶するためのRAM等である。また、記憶装置13として、フラッシュメモリ、EPROM(Erasable and Programmable ROM)およびEEPROM(Electrically Erasable and Programmable ROM)などの不揮発性または揮発性の半導体メモリなどが用いられる。また、記憶装置13として、例えば、磁気ディスク、フレキシブルディスク、光ディスク、CD(Compact Disc)、MD(Mini Disc)およびDVD(Digital Versatile Disc)などの着脱可能な記録媒体が用いられてもよい。記憶装置13は、蓄熱装置20又は電力制御指示機器30からの情報、演算装置12において処理された情報を記憶する。
 演算装置12は、蓄熱システム制御装置10の機能を実行するための各種処理を行うものである。演算装置12は、例えば記憶装置13に保持された蓄熱装置20の負荷予測結果と電力制御指示機器30からの電力需給情報とを比較し、蓄熱装置20の運転スケジュールを変更する処理を行う。つまり、記憶装置13と共同して、図2に示される機能ブロックの各処理を実行するものである。
(蓄熱装置20)
 蓄熱装置20は、例えば各家庭に設置された給湯装置であり、ヒートポンプ部25、ヒートポンプ部25で沸かした湯を貯留する貯湯部26、センサ27及び制御装置21を備える。
 ヒートポンプ部25は、例えば空気熱交換器、圧縮機、水熱交換器及び減圧器を備える。ヒートポンプ部25は、水熱交換器を用いて水を加熱し、貯湯部26に送る。貯湯部26は、タンク、配管、開閉弁及び断熱材等を備える。貯湯部26の湯は適宜ヒートポンプ部25との間を循環し、保温しても良い。
 センサ27は、複数のセンサを含み、例えば貯湯部26の湯の温度を検出するセンサ、蓄熱装置20から外部へ流出する湯量を検出する流量センサ及びヒートポンプ部25が備える圧縮機の消費電力を測定するセンサ等を含み得る。
 制御装置21は、蓄熱装置20の運転を制御するものであり、ハードウェア構成としては蓄熱システム制御装置10と同様に構成される。制御装置21は、例えばマイクロコンピュータで構成され、演算装置22、記憶装置23及び通信インターフェイス(I/F)24を備える。制御装置21の機能は、演算装置22、記憶装置23及び通信インターフェイス24を用いて実行される。なお、蓄熱システム制御装置10が蓄熱装置20に内蔵される場合は、蓄熱装置20内の制御装置21は、ハードウェアとしては省略されていてもよく、蓄熱システム制御装置10が制御装置21の機能を兼ねても良い。
(電力制御指示機器30)
 電力制御指示機器30は、例えば地域の使用電力及び供給電力を管理する装置である。電力制御指示機器30は、ある地域の使用電力及び供給電力の情報を有しており、蓄熱システム制御装置を含む地域の需要家に地域の使用電力及び供給電力の情報である電力需給情報を作成する作成部を備える。必要に応じて蓄熱システム制御装置10は、蓄熱装置20が所属する地域の全体の使用電力、供給電力及び供給電力の予定などの情報を含む電力需給情報を電力制御指示機器30から取得できる。実施の形態1においては、一例として図1に示す様に、電力制御指示機器30が独立した装置として設けられた形態を用いて説明している。しかし、電力制御指示機器30は、例えばサーバ上に存在していても良いし、独立した装置としてネットワークに接続されていても良いし、ネットワークに接続されたいずれかの機器内に設けられていても良い。また、電力制御指示機器30が実現する各機能は、ネットワークで接続された各機器、即ちサーバなどに分散して配置され、各機器間で必要な情報を送受信して電力制御指示機器30の各機能を実現しても良い。
(蓄熱システム100の動作)
 図3は、実施の形態1に係る蓄熱システム100において、蓄熱システム制御装置10による蓄熱装置20の制御及び電力制御指示機器30への運転スケジュール送信についてのフローチャートである。図4は、蓄熱システム制御装置10により処理される蓄熱装置20の運転スケジュール及び電力制御指示機器30から取得される電力需給情報の一例である。図4において、一番上に示されている表が蓄熱装置20の運転スケジュールである。図4において上から2つ目に示されている表が電力制御指示機器30から取得される電力需給情報であり、蓄熱装置20が属する地域の情報を示したものである。
 図3に示すステップS01において、蓄熱システム制御装置10は、蓄熱装置20の負荷予測を行う。このステップS01を負荷予測ステップと呼ぶ。負荷予測は、蓄熱装置20から得た運転情報に基づいて行う。蓄熱システム制御装置10の取得部41は、蓄熱装置20から蓄熱装置20の運転情報を受け取り、負荷予測部42において今後の運転スケジュールを予測する。その予測された運転スケジュールは、単に負荷予測とも称する。なお、蓄熱装置20の運転情報は、蓄熱システム制御装置10が既に取得し記憶部48に保存された蓄熱装置20の運転履歴情報であっても良い。例えば、蓄熱装置20は、給湯機であるため、貯湯する時間帯、湯の利用が多い時間帯においては使用電力が多くなる。蓄熱システム制御装置10は、蓄熱装置20の運転履歴情報、ユーザーが蓄熱装置20に設定した運転設定情報等を基に運転スケジュールを予測する。運転スケジュールは、例えば図4の一番上に示されている各時間帯における蓄熱装置20の使用電力量として表されるものである。また、運転スケジュールは、横軸を時間とし、縦軸を使用電力量として、時間と使用電力量との関係を示したグラフで表されるものであっても良い。
 上記の運転スケジュールの予測は、入力を外気温度、湿度、天気、各曜日の時間帯ごとの湯の使用量履歴及び蓄熱装置20が使用されている業種とし、出力を蓄熱装置20の各時間帯における使用電力量の履歴データとした教師データを用いて学習させた学習モデルを用いて行っても良い。つまり、この学習モデルに外気温度、湿度、天気、各曜日の時間帯ごとの湯の使用量履歴及び蓄熱装置20が使用されている業種などを入力し、蓄熱装置20の各時間帯における使用電力を予測する。
 次にステップS02において、蓄熱システム制御装置10は、ステップS01で得られた蓄熱装置20の運転スケジュールと電力制御指示機器30から得られた電力需給情報との比較を行う。このステップS02を比較ステップと呼ぶ。電力制御指示機器30から得られた電力需給情報は、例えば図4の上から2番目に表示された表であり、電力制御指示機器30が管理している地域の全体の使用電力の予測値と供給電力の予定値の時間帯ごとのデータである。または、電力制御指示機器30から得られる電力需給情報は、時間帯ごとに電力が逼迫しているか否かのみの情報であっても良いし、時間帯ごとの電気料金の情報であっても良い。電力需給情報が時間帯ごとの電気料金の場合は、電力の供給が逼迫している時には高い電気料金が設定され、電力が余剰である場合には低い電気料金が設定されている。
 蓄熱システム制御装置10は、比較部43において蓄熱装置20の運転スケジュールと電力需給情報とを比較する。比較部43においては、例えば電力需給情報において電力の供給が逼迫している時間帯を所定の条件で検出するか又は電力の供給の逼迫度合いをランク付けしても良い。このとき、供給が逼迫していると判定された時間帯を逼迫時間帯と呼ぶ。さらに、電力需給情報の時間帯は、電力需給情報において特に電力供給の逼迫状況が強いとされている高逼迫度時間帯、電力需要の低い時間帯である閑散時間帯などに分類しても良い。
 また、比較部43においては、蓄熱装置20の運転スケジュールにおける各時間帯の電力使用量をランク付けしても良い。例えば、電力の供給の逼迫度合いランクがある閾値以上であり、かつ蓄熱装置20の電力使用量のランクがある閾値以上である条件に合致する時間帯を検出する。例えば、電力制御指示機器30からの電力需給情報において電力が逼迫している高逼迫度時間帯は、蓄熱装置20の運転を停止する対象となり、電力に余剰がある閑散時間帯においては蓄熱装置20を強制運転に変更する対象となる。蓄熱装置20の運転スケジュールを変更するに当たっては、基本的に蓄熱装置20による蓄熱量が今後足りているか否かに基づいて変更要否を判断する。なお、比較部43における処理は、必ずしも運転スケジュールと電力需給情報とを比較するものに限定されず、例えば予め決められた条件と運転スケジュールとを比較するものであっても良い。また、比較部43における処理は、電力需給情報についても予め決められた条件に該当するか否かを判定するものであっても良い。
 次にステップS03においては、蓄熱システム制御装置10は、比較部43において得られた情報を基に蓄熱装置20の運転スケジュールの決定又は変更を行う。このステップS03を運転スケジュール決定ステップと呼ぶ。例えば、運転スケジュール決定部45は、図4の一番上に示される表で示される運転スケジュールを図4の一番下に示される表のように変更する。なお、運転スケジュール決定部45は、運転スケジュール変更部とも称する。
 運転スケジュール決定部45においては、比較部43において検出された時間帯又は条件に合致した時間帯の使用電力量を変更し、かつ蓄熱装置20の所定の期間(例えば1日)における使用電力量の総和が変更前後で実質的に同等になるように変更する。運転スケジュール決定部45は、変更した運転スケジュールを例えば図4の一番下に示される各時間帯における使用電力量のデータとして出力する。運転スケジュール決定部45から出力された情報は、送信部46及び蓄熱装置制御部47へ送られる。
 また、運転スケジュールを変更するにあたっては、運転スケジュール決定部45は、蓄熱装置20がある所定の期間(例えば1日)に消費する電力による料金が小さくなるように、時間帯ごとの電気料金テーブルを参照しても良い。この場合、電気料金テーブルは、予め記憶部48に記憶されている。電気料金テーブルは、電力制御指示機器30から入手することができる。
 図10は、実施の形態1に係る蓄熱システム100における蓄熱装置20の運転スケジュールの変更の一例である。電力料金は、例えば午前7時から午後11時の時間帯は昼間料金として単位電力量である1kWhあたり32.74円に設定され、午後11時から午前7時までの時間帯は、夜間料金として1kWhあたり21.16円が設定されている。このような電力料金プランの場合、通常図10において実線で示すように午後11時からの夜間の時間帯に蓄熱を行う。しかし、実施の形態1に係る蓄熱システム100においては、図10において破線で示すように夜間だけでなく昼間の時間帯にも蓄熱を行う。電力供給側は、電力が余剰となっている閑散時間帯の電力料金を安く設定することにより、蓄熱装置20に閑散時間帯の蓄熱運転を促すことができる。つまり、電力制御指示機器30が蓄熱システム制御装置10に時間帯ごとの電力料金を電力需給情報として提供することにより、蓄熱システム制御装置10は、閑散時間帯においても積極的に蓄熱運転をするよう運転スケジュールを変更する。蓄熱システム制御装置10は、今後必要な蓄熱量を確保しつつ、電力料金も抑え、また全体の電力需給調整にも寄与できる運転スケジュールの設定が可能となる。
 次にステップS04においては、蓄熱システム制御装置10は、変更した運転スケジュールに基づく情報を電力制御指示機器30及び蓄熱装置20へ送信する。このステップS04を、送信ステップと呼ぶ。送信部46は、電力制御指示機器30へ変更した運転スケジュールを送る。また、蓄熱装置制御部47は、変更した運転スケジュール及び消費電力量を蓄熱装置20へ制御情報として送る。蓄熱装置20へ送信された制御情報は、蓄熱装置20の制御装置21で処理され、蓄熱装置20の運転が制御される。
 なお、電力制御指示機器30から電力需給情報を得る、送信部46が電力制御指示機器30に送信する、という電力制御指示機器30と蓄熱システム制御装置10との情報のやり取りのタイミングは、例えば朝、昼、夜など、または短くても30分間程度の間隔で定期的に行う。例えば、朝の情報のやり取りは、朝から夕方までの蓄熱装置20の運転スケジュールを決定し、昼の情報のやり取りは夕方から深夜までの運転スケジュールを決定し、夜の情報のやり取りは深夜から朝までの運転スケジュールを決定する。30分程度の間隔で情報をやり取りする場合は、貯湯量が想定以上に過不足生じていないかを確認し、運転スケジュール変更可否を判断する。
 (実施の形態1の効果)
 以上に説明したように、実施の形態1に係る蓄熱システム100は、蓄熱システム制御装置10が電力制御指示機器30から得た電力需給情報に基づいて蓄熱装置20の運転スケジュールを変更するため、電力制御指示機器30が管理する全ての機器の電力需給に対応した蓄熱装置20の制御を行える。また、負荷予測により得た蓄熱システム制御装置10の運転スケジュールと電力制御指示機器30から得た電力需給情報とを比較することにより、電力の供給が逼迫した時間帯の蓄熱装置20による蓄熱(例えば湯沸かし)を避けることができる。具体的には、蓄熱システム制御装置10は、事前に得られた電力の供給が多い時間帯に、蓄熱装置20を蓄熱運転させるように制御する。これにより、ユーザーは、湯の使用量が多い時間帯においても貯湯部26の湯切れが発生することがない。
 また、蓄熱システム100の蓄熱システム制御装置10において負荷予測及び生成(変更)される運転スケジュールは、例えば最低一日分のスケジュールである。このようにすることで、各地域において一日に発生する複数の電力逼迫時間帯の回避を実現できる。また、蓄熱システム制御装置10により制御される蓄熱装置20は、蓄熱運転が行われる時間帯をより細かに設定されるため、効率的な運転を実施可能となる。
 また、蓄熱システム100の蓄熱システム制御装置10は、事前に電力制御指示機器30からの情報を基に調整した運転スケジュールを外部に回答することにより、電力制御指示機器30の対応手段を増加させることができる。従って、蓄熱システム制御装置10が運転スケジュールを調整し、電力制御指示機器30へ送ることにより、電力制御指示機器30が管理する各機器に対する需給コントロール調整の柔軟性を高めることもできる。また、蓄熱システム制御装置10により電力供給の逼迫状況が相当高い時間帯の蓄熱装置20の運転が回避され、蓄熱装置20が電力供給量の多い時間帯に蓄熱運転させることにより、電力制御指示機器30による電力需給調整に寄与できる。
 (変形例)
 蓄熱システム100の蓄熱システム制御装置10は、単独の端末であっても良いし、特定の蓄熱装置20内に内蔵された制御装置21であっても良い。また、蓄熱システム制御装置10は、クラウド上においてプログラムにより実行される仮想的な制御装置であっても良い。蓄熱システム制御装置10は、蓄熱システム制御装置10が実現する各機能がネットワークで接続された各機器、即ちサーバ、蓄熱装置及び電力制御指示機器などに分散して配置された形態でも良く、各機器間で必要な情報を送受信して蓄熱システム制御装置10の各機能を実現しても良い。
 実施の形態2.
 実施の形態2に係る蓄熱システム100について説明する。実施の形態2においては、実施の形態1に係る運転スケジュールの生成又は変更後に、蓄熱システム制御装置10が再度電力制御指示機器30からの電力需給情報を取得して蓄熱装置20の運転スケジュールを変更する処理について説明する。なお、実施の形態2において、実施の形態1と共通する部分には同一の符号を付し、詳細な説明を省略する。実施の形態2においては実施の形態1からの変更点を中心に説明する。
 図5は、実施の形態2に係る蓄熱システム100の機能ブロック図である。図6は、実施の形態2に係る蓄熱システム100による蓄熱装置20の制御及び電力制御指示機器30への運転スケジュール送信についてのフローチャートである。実施の形態2において、蓄熱システム制御装置10は、一度電力需給情報に基づいて運転スケジュールを生成しており、蓄熱装置20の運転スケジュールは電力需給に合わせたものになっている。ただし、結果として電力需給調整が不十分であった場合は、電力制御指示機器30は、再度蓄熱システム制御装置10に対し電力需給情報を提示する場合がある。蓄熱システム制御装置10は、その再度提示された電力需給情報に合わせ、運転スケジュールを生成又は変更するものである。
 図6に示されるステップS11において、蓄熱システム100の蓄熱システム制御装置10の受信部44は、電力制御指示機器30からの電力需給情報を取得する。このステップS11を再受信ステップと呼ぶ。また、受信部44は、再受信部とも称する。この電力需給情報は、原則として実施の形態1において説明した、図3のステップS03で決定した運転スケジュールを電力制御指示機器30に送信した後に、電力制御指示機器30から再度取得した再取得電力需給情報である。再取得電力需給情報は、図3のステップS03で決定した運転スケジュールを電力制御指示機器30が受信し、電力制御指示機器30によって管理されている他の機器の電力の需給も含めて調整された後の電力需給情報である。
 受信部44において電力制御指示機器30から取得した情報は、例えば時間帯における電力供給の逼迫状況を強弱の2種類にランク付けして表したものである。ただし、受信部44が取得する情報は、この情報の形態に限定されるものではなく、例えば実施の形態1において説明した時間帯ごとの電力の需要量及び供給量のデータであっても良い。
 次にステップS12において、蓄熱システム100の蓄熱システム制御装置10は、電力制御指示機器30からの再取得電力需給情報と前回生成した蓄熱装置20の運転スケジュールとを比較する。このステップS12を比較ステップと呼ぶ。まず、比較部43は、再取得電力需給情報のうち電力供給の逼迫度が高い高逼迫度時間帯を判定する。前回生成した運転スケジュールは、記憶部48に保存されており、比較部43において、受信部44で取得した再取得電力需給情報と比較される。例えば、比較部43においては、電力需給情報において電力供給の逼迫状況が強いとされている高逼迫時間帯において蓄熱装置20の使用電力量が所定の閾値に対して高いか低いかを判定する。運転スケジュールのうち、高逼迫時間帯において、電力使用量が閾値よりも高い又は閾値以上である場合は、運転スケジュールの変更の対象になり得る。つまり、電力使用量を削減すべき対象であると判定される。
 また、比較部43は、再取得電力需給情報のうち電力供給の逼迫度が低い閑散時間帯を判定しても良い。前回生成した運転スケジュールは、記憶部48に保存されており、比較部43において、受信部44で取得した再取得電力需給情報と比較される。例えば、比較部43においては、電力需給情報において電力供給の逼迫状況が低いとされている閑散時間帯において蓄熱装置20の使用電力量が所定の閾値に対して高いか低いかを判定する。閑散時間帯において、電力使用量が閾値よりも低い又は閾値以下である場合は、運転スケジュールの変更の対象になり得る。つまり、電力使用量を増加しても差し支えない時間帯であると判定される。
 次にステップS13において、蓄熱システム100の蓄熱システム制御装置10は、比較部43で比較した結果に基づいて運転スケジュールを決定又は変更する。このステップS13を運転スケジュール変更ステップと呼ぶ。例えば、運転スケジュール決定部45は、比較部43で所定の条件に該当すると判定された時間帯の電力使用量を減少させるように変更する。なお、特定の時間帯の電力使用量を変更する場合は、所定の期間(例えば1日)における蓄熱量が変更前後で実質的に同等以上になるように変更するとよい。
 次にステップS14において、蓄熱システム100の蓄熱システム制御装置10は、変更した運転スケジュールに基づく情報を電力制御指示機器30及び蓄熱装置20へ送信する。このステップS14を送信ステップと呼ぶ。運転スケジュール決定部45で決定又は変更された運転スケジュールは、送信部46及び蓄熱装置制御部47へ送られる。送信部46は、電力制御指示機器30へ変更した運転スケジュールを送る。また、蓄熱装置制御部47は、変更した運転スケジュールを蓄熱装置20へ制御情報として送る。蓄熱装置20へ送信された制御情報は、蓄熱装置20の制御装置21で処理され、蓄熱装置20の運転が制御される。
 (実施の形態2の効果)
 従来のように、電力制御指示機器30からの電力需給情報に基づいて使用電力のピークカットを実施すると、電力制御指示機器30に接続された他の制御装置も含めて一律でピークカットを行うことになる。その場合、電力制御指示機器30における使用電力と供給電力との需給関係は、需給関係が成立するときは需要が過剰に供給を下回り、それ以外は需給関係が成立しないという2択の状況になってしまうという課題があった。しかし、実施の形態2に係る蓄熱システム100は、例えば蓄熱システム制御装置10が電力制御指示機器30からの電力需給情報に基づき、蓄熱装置20の運転スケジュールを変更することにより、電力制御指示機器30における電力需給調整の成立又は不成立に合わせて蓄熱システム制御装置10に接続された蓄熱装置20の使用電力を調整できる。そのため、電力制御指示機器30の電力需給調整に柔軟に対応でき、電力制御指示機器30に接続された他の機器も含めた全体の需給調整に寄与できる。
 また、蓄熱装置20以外の機器においては、電力カットが可能な時間帯又は電力が不可欠な時間帯が決まっているため、電力制御指示機器30からの電力需給情報を受け取っても、電力使用量を変更することができない。しかし、実施の形態2に係る蓄熱システム制御装置10は、電力制御指示機器30が一度集めたデータから得られた再取得電力需給情報を取得し、その情報に基づき再度運転スケジュールを変更する。この変更された運転スケジュールによって制御される蓄熱装置20は、必要な蓄熱量を確保しながら、供給が逼迫した時間帯を避けた効率的な運用を図られる。また、蓄熱システム制御装置10は、蓄熱装置20の運転を制御しつつ、電力制御指示機器30に接続している機器全体についての電力の需給に対応して電力供給の逼迫状態の解消に貢献できる。
 実施の形態3.
 実施の形態3に係る蓄熱システム100について説明する。実施の形態3に係る蓄熱システム100は、実施の形態1及び実施の形態2に係る運転スケジュールの生成又は変更を行うが、制御する対象となる蓄熱装置20が複数になっている。なお、実施の形態3において、実施の形態1又は2と共通する部分には同一の符号を付し、詳細な説明を省略する。実施の形態3においては実施の形態1又は2からの変更点を中心に説明する。
 図7は、実施の形態3に係る蓄熱システム100の構成の一例を示すハードウェア構成図である。実施の形態3に係る蓄熱システム100は、蓄熱システム制御装置10が複数の蓄熱装置20が接続され、複数の蓄熱装置20の運転情報を基に複数の蓄熱装置20の全体としての負荷予測及び複数の蓄熱装置20の運転制御を行う。
 図7においては、実施の形態3に係る蓄熱システム制御装置10が複数の蓄熱装置20に接続されている。ただし、蓄熱システム制御装置10の下に複数の蓄熱装置20が並列に接続されている形態に限定されるものではなく、例えば1つ又は複数の蓄熱装置20を親機とし、その他の蓄熱装置20を親機の下に接続するように構成されていても良い。この場合、蓄熱システム制御装置10は、親機の内部に設置されていても良い。そして、親機の内部の蓄熱システム制御装置10は、親機の運転を制御するとともに子機となる蓄熱装置20の運転制御を行う。
 複数の蓄熱装置20は、それぞれが制御装置21を備えていても良いし、蓄熱システム制御装置10により制御されている形態でも良い。
 実施の形態3に係る蓄熱システム制御装置10は、複数の蓄熱装置20から独立した特定の端末として設けられることにより、各蓄熱装置20に関する情報、電力制御指示機器30からの情報及び蓄積したデータの管理が容易になり、第三者への漏洩リスクを抑えることができる。これは、蓄熱システム制御装置10が特定の蓄熱装置20内に設置されている場合、クラウド上に設けられている場合であっても同様である。
 図8は、実施の形態3に係る蓄熱システム100の構成の一例を示す機能ブロック図である。実施の形態3に係る蓄熱システム100においても、図3に示されるフローチャートに従って蓄熱装置20の運転スケジュールの作成又は変更が行われる。ただし、実施の形態3においては、蓄熱システム制御装置10は、複数の蓄熱装置20が接続されているため、運転スケジュールの作成又は変更は以下のように行われる。
 まず第1の方法は、蓄熱システム100が、複数の蓄熱装置20のそれぞれについて個別に負荷予測、電力需給情報との比較及び運転スケジュールの生成を行う方法である。この場合、複数の蓄熱装置20のそれぞれの運転履歴などに基づき負荷予測が行われ、電力需給情報との比較を行った上で運転スケジュールの生成が行われる。そして、蓄熱システム制御装置10は、生成した複数の蓄熱装置20の運転スケジュールと各時間帯の消費電力について電力制御指示機器30に回答する。そのため、蓄熱システム制御装置10における処理の負荷が高いが、それぞれの蓄熱装置20に応じた柔軟な運転制御が可能である。また、一つの蓄熱システム制御装置10に接続された複数の蓄熱装置20の使用電力の予測の結果は、蓄熱システム制御装置10内に保持されているため、各時間帯における複数の蓄熱装置20の使用電力の総和の値が突出しないようにしつつ、個別の蓄熱装置20の運転制御の調整が可能となる。これにより、蓄熱システム制御装置10に接続された複数の蓄熱装置20のそれぞれが電力制御指示機器30からの電力需給情報に最適に運転制御されるため、蓄熱システム制御装置10は電力制御指示機器30に接続されている全体の需給調整に貢献できる。
 第2の方法は、蓄熱システム100が、複数の蓄熱装置20のうち親機となる蓄熱装置20について負荷予測、電力需給情報との比較及び運転スケジュールの生成を行い、子機となる蓄熱装置20については、親機と同じ運転スケジュールとする方法である。そして、蓄熱システム制御装置10は、生成した複数の蓄熱装置20の運転スケジュールと各時間帯の消費電力について電力制御指示機器30に回答する。この場合、例えば蓄熱システム制御装置10は、複数の蓄熱装置20を代表して親機のみの運転情報及び運転履歴等に基づいて負荷予測を行う。そして、負荷予測部42で得られた予測結果と受信部44で取得した電力需給情報とに基づいて親機の運転スケジュールを生成又は変更する。運転スケジュール決定部45で生成された親機の運転スケジュールは、送信部46から電力制御指示機器30に送信される。また、親機の運転スケジュールは、蓄熱装置制御部47において親機の運転制御信号として親機に送られる。子機については、親機から又は蓄熱装置制御部47から直接制御信号が子機に送られ、親機と同じ制御で運転される。
 このように、代表して親機の負荷予測を行い運転スケジュールが生成される場合は、複数の蓄熱装置20のそれぞれについて負荷予測を行うよりも蓄熱システム制御装置10の負荷が軽減する。また、蓄熱システム制御装置10は、複数台まとめて検討することで複数台の蓄熱装置20について効率のよい運転を可能にできる。なお、代表して親機の負荷予測を行い運転スケジュールが生成される場合は、子機のうち全てを親機と同じ制御にする必要はなく、例えば電力制御指示機器30からの電力需給情報に応じて、子機の運転台数の変更や親機と同じ制御にする台数を調整することにより、柔軟に使用電力の調整が可能となる。この場合は、子機のうち一部を親機と同じ運転制御とし、子機のうち他の一部は、親機とは異なる運転制御をすることになる。
 以上のように、蓄熱システム100の動作としては、一例として上記の第1の方法及び第2の方法があるが、何れも複数の蓄熱装置20の使用電力について蓄熱システム100が一括して管理できるため、電力制御指示機器30からの電力需給情報に応じた柔軟な電力の需要調整が可能となる。
 図9は、実施の形態3に係る蓄熱システム100の構成の一例を示す機能ブロック図である。実施の形態3に係る蓄熱システム100においても、図5に示されるフローチャートに従って電力制御指示機器30から再度提示された電力需給情報に従って蓄熱装置20の運転スケジュールの作成又は変更が行われる。
 図5に示されるフローチャートを実施する際にも、蓄熱システム100は上記の第1の方法及び第2の方法の何れかで運転スケジュールの生成を行う。ただし、電力制御指示機器30からの電力需給情報の再提示時に時間帯ごとの電力逼迫状態の強弱の情報を取得した場合は、蓄熱システム100は、複数の蓄熱装置20のうちの一部の運転を変更することにより需要調整が可能であり、より柔軟な需要調整が可能となる。
 例えば、電力需給情報において所定の電力値よりも多い電力需要がある時間帯においては、複数の蓄熱装置20のうち一部の使用電力量を減らす。また、電力需給情報において所定の電力値よりも少ない電力需要がある時間帯においては、蓄熱装置20の使用電力を増加させる。変更するにあたって、所定の期間におけるそれぞれの蓄熱装置20の使用電力量の総和は、変更前後で同じになるように変更する。
 実施の形態1~3において説明した蓄熱システム100及び蓄熱システム制御装置10においては、以上に本開示を実施の形態に基づいて説明したが、本開示は上述した実施の形態の構成のみに限定されるものではない。例えば、各実施の形態を組み合わせて構成されていても良い。要するに、いわゆる当業者が必要に応じてなす種々なる変更、応用、利用の範囲をも本開示の要旨(技術的範囲)に含むことを念のため申し添える。また、実施の形態1~3において説明した内容を実行させるための制御プログラムをコンピュータにインストールすることによりコンピュータを蓄熱システム100として各機能を実行させることができる。
 10 蓄熱システム制御装置、12 演算装置、13 記憶装置、14 通信インターフェイス、20 蓄熱装置、21 制御装置、22 演算装置、23 記憶装置、24 通信インターフェイス、25 ヒートポンプ部、26 貯湯部、27 センサ、30 電力制御指示機器、41 取得部、42 負荷予測部、43 比較部、44 受信部、45 運転スケジュール決定部、46 送信部、47 蓄熱装置制御部、48 記憶部、100 蓄熱システム。

Claims (29)

  1.  電力制御指示機器から電力需給情報を取得する受信部と、
     前記電力需給情報に基づいて蓄熱装置の運転スケジュールを決定する運転スケジュール決定部と、
     前記運転スケジュール決定部において決定された運転スケジュールを前記電力制御指示機器に送信する送信部と、
     前記運転スケジュール決定部において決定された運転スケジュールに基づいて前記蓄熱装置の運転を制御する蓄熱装置制御部と、を備える、蓄熱システム制御装置。
  2.  前記送信部は、
     前記運転スケジュール決定部において決定された運転スケジュールによる消費電力量を前記電力制御指示機器に送信する、請求項1に記載の蓄熱システム制御装置。
  3.  前記蓄熱装置の負荷予測と前記電力需給情報とを比較する比較部を更に備える、請求項1又は2に記載の蓄熱システム制御装置。
  4.  前記比較部は、
     前記電力需給情報において電力供給の逼迫している時間帯である逼迫時間帯を判定し、
     前記運転スケジュール決定部は、
     前記逼迫時間帯における前記蓄熱装置の使用電力量が閾値以下になるように運転スケジュールを決定する、請求項3に記載の蓄熱システム制御装置。
  5.  前記比較部は、
     前記電力需給情報において電力需要が少ない時間帯である閑散時間帯を判定し、
     前記運転スケジュール決定部は、
     前記閑散時間帯における前記蓄熱装置の使用電力量が閾値以上になるように運転スケジュールを決定する、請求項3又は4に記載の蓄熱システム制御装置。
  6.  前記運転スケジュール決定部は、
     前記蓄熱装置による蓄熱量の総和が変更前の運転スケジュールと同等以上になるように運転スケジュールを決定する、請求項4又は5に記載の蓄熱システム制御装置。
  7.  前記比較部は、
     前記送信部が運転スケジュールを前記電力制御指示機器に送信した後に前記受信部が前記電力制御指示機器から再度取得した再取得電力需給情報を、電力供給の逼迫度が高い高逼迫時間帯とそれ以外の時間帯とに分類し、
     前記運転スケジュール決定部は、
     前記送信部が前記電力制御指示機器に送信した運転スケジュールのうち、前記高逼迫時間帯における前記蓄熱装置の使用電力量を減少させ、それ以外の時間帯の使用電力量を増加させる、請求項3~6の何れか1項に記載の蓄熱システム制御装置。
  8.  少なくとも前記蓄熱装置の運転履歴及びユーザーの運転設定情報から前記蓄熱装置の負荷予測を行う負荷予測部を更に備える、請求項3~7の何れか1項に記載の蓄熱システム制御装置。
  9.  前記蓄熱装置の内部に設置される、請求項1~8の何れか1項に記載の蓄熱システム制御装置。
  10.  電力需給情報に基づき蓄熱装置を制御する蓄熱システムであって、
     前記電力需給情報を作成する作成部と、
     前記電力需給情報に基づいて前記蓄熱装置の運転スケジュールを決定する運転スケジュール決定部と、
     前記運転スケジュール決定部において決定された運転スケジュールに基づいて前記蓄熱装置の運転を制御する蓄熱装置制御部と、を備える、蓄熱システム。
  11.  前記蓄熱装置を制御する蓄熱システム制御装置と、前記電力需給情報を前記蓄熱システム制御装置に提供する電力制御指示機器と、を備え、
     前記蓄熱システム制御装置は、
     前記運転スケジュール決定部と、
     前記電力制御指示機器から前記電力需給情報を取得する受信部と、
     前記運転スケジュール決定部において決定された運転スケジュールを前記電力制御指示機器に送信する送信部と、
     前記蓄熱装置を制御する前記蓄熱装置制御部と、を備える、請求項10に記載の蓄熱システム。
  12.  前記送信部は、
     前記運転スケジュール決定部において決定された運転スケジュールによる消費電力量を前記電力制御指示機器に送信する、請求項11に記載の蓄熱システム。
  13.  前記電力制御指示機器は、
     前記電力需給情報として時間帯ごとの単位電力量あたりの電力料金の情報を前記蓄熱装置制御部に送る、請求項11又は12に記載の蓄熱システム。
  14.  前記電力制御指示機器は、
     電力の供給が逼迫している時間帯の電力料金を高く設定する、請求項13に記載の蓄熱システム。
  15.  前記蓄熱システム制御装置は、
     前記蓄熱装置の負荷予測と前記電力需給情報とを比較する比較部を更に備える、請求項11~14の何れか1項に記載の蓄熱システム。
  16.  前記比較部は、
     前記電力需給情報において電力供給の逼迫している時間帯である逼迫時間帯を判定し、
     前記運転スケジュール決定部は、
     前記逼迫時間帯における前記蓄熱装置の使用電力量が閾値以下になるように運転スケジュールを決定する、請求項15に記載の蓄熱システム。
  17.  前記比較部は、
     前記電力需給情報において電力需要が少ない時間帯である閑散時間帯を判定し、
     前記運転スケジュール決定部は、
     前記閑散時間帯における前記蓄熱装置の使用電力量が閾値以上になるように運転スケジュールを決定する、請求項16に記載の蓄熱システム。
  18.  前記運転スケジュール決定部は、
     前記蓄熱装置の蓄熱量の総和が変更前の運転スケジュールと同等以上になるように運転スケジュールを決定する、請求項15又は16に記載の蓄熱システム。
  19.  前記比較部は、
     前記送信部が運転スケジュールを前記電力制御指示機器に送信した後に、前記受信部が前記電力制御指示機器から再度取得した再取得電力需給情報を電力供給の逼迫度が高い高逼迫時間帯とそれ以外の時間帯とに分類し、
     前記運転スケジュール決定部は、
     前記送信部が前記電力制御指示機器に送信した運転スケジュールのうち、前記高逼迫時間帯における前記蓄熱装置の使用電力量を減少させ、それ以外の時間帯の使用電力量を増加させる、請求項16~18の何れか1項に記載の蓄熱システム。
  20.  前記蓄熱システム制御装置は、
     少なくとも前記蓄熱装置の運転履歴及びユーザーの運転設定情報から前記蓄熱装置の負荷予測を行う負荷予測部を更に備える、請求項15~19の何れか1項に記載の蓄熱システム。
  21.  前記蓄熱システム制御装置は、
     前記蓄熱装置の内部に設置される、請求項11~20の何れか1項に記載の蓄熱システム。
  22.  前記蓄熱装置は、
     複数の蓄熱装置を含み、
     前記複数の蓄熱装置のうち少なくとも一部は、
     異なる運転スケジュールで運転される、請求項10~21の何れか1項に記載の蓄熱システム。
  23.  前記蓄熱装置は、
     複数の蓄熱装置を含み、
     前記複数の蓄熱装置は、
     同一の運転スケジュールで運転される、請求項10~21の何れか1項に記載の蓄熱システム。
  24.  電力需給情報に基づき蓄熱装置の運転制御を行う蓄熱システム制御方法であって、
     前記電力需給情報に基づいて前記蓄熱装置の運転スケジュールを決定し、
     前記運転スケジュールに基づき前記蓄熱装置を制御する、蓄熱システム制御方法。
  25.  前記運転スケジュールを電力制御指示機器にも送信し、
     前記電力制御指示機器は、
     前記運転スケジュールを受信した後に需給調整を行い、再取得電力需給情報を作成する、請求項24に記載の蓄熱システム制御方法。
  26.  前記送信ステップ後に前記電力制御指示機器から前記再取得電力需給情報に基づいて前記運転スケジュールを変更する、請求項25に記載の蓄熱システム制御方法。
  27.  コンピュータを蓄熱装置の運転制御を行う蓄熱システム制御装置として作動させる制御プログラムであって、
     コンピュータを、
     電力制御指示機器から電力需給情報を受け取る受信部、前記電力需給情報に基づいて前記蓄熱装置の運転スケジュールを決定する運転スケジュール決定部及び前記運転スケジュールを前記電力制御指示機器及び前記蓄熱装置に送信する送信部として機能させるための制御プログラム。
  28.  コンピュータを、さらに前記送信ステップ後に前記電力制御指示機器から需給調整後の電力需給情報である再取得電力需給情報を受け取る再受信部及び前記再取得電力需給情報に基づいて前記蓄熱装置の運転スケジュールを変更する運転スケジュール変更部として機能させるための請求項27に記載の制御プログラム。
  29.  請求項27又は28に記載の制御プログラムを記録した、コンピュータが読み取り可能な、記録媒体。
PCT/JP2022/003614 2022-01-31 2022-01-31 蓄熱システム制御装置、蓄熱システム、蓄熱システム制御方法、制御プログラム及び記録媒体 WO2023145077A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/003614 WO2023145077A1 (ja) 2022-01-31 2022-01-31 蓄熱システム制御装置、蓄熱システム、蓄熱システム制御方法、制御プログラム及び記録媒体
JP2023576587A JPWO2023145077A5 (ja) 2022-01-31 蓄熱システム制御装置、蓄熱システム、蓄熱システム制御方法及び制御プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/003614 WO2023145077A1 (ja) 2022-01-31 2022-01-31 蓄熱システム制御装置、蓄熱システム、蓄熱システム制御方法、制御プログラム及び記録媒体

Publications (1)

Publication Number Publication Date
WO2023145077A1 true WO2023145077A1 (ja) 2023-08-03

Family

ID=87470976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003614 WO2023145077A1 (ja) 2022-01-31 2022-01-31 蓄熱システム制御装置、蓄熱システム、蓄熱システム制御方法、制御プログラム及び記録媒体

Country Status (1)

Country Link
WO (1) WO2023145077A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257949A (ja) * 2010-06-08 2011-12-22 Chugoku Electric Power Co Inc:The 電力需要計画調整装置、電力需要計画調整方法、及びプログラム
WO2014203393A1 (ja) * 2013-06-21 2014-12-24 三菱電機株式会社 電力管理システム及び冷蔵庫
JP2017116199A (ja) * 2015-12-25 2017-06-29 三菱電機株式会社 貯湯式給湯機
JP6739040B2 (ja) 2016-04-26 2020-08-12 パナソニックIpマネジメント株式会社 管理装置、計画方法及び制御プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257949A (ja) * 2010-06-08 2011-12-22 Chugoku Electric Power Co Inc:The 電力需要計画調整装置、電力需要計画調整方法、及びプログラム
WO2014203393A1 (ja) * 2013-06-21 2014-12-24 三菱電機株式会社 電力管理システム及び冷蔵庫
JP2017116199A (ja) * 2015-12-25 2017-06-29 三菱電機株式会社 貯湯式給湯機
JP6739040B2 (ja) 2016-04-26 2020-08-12 パナソニックIpマネジメント株式会社 管理装置、計画方法及び制御プログラム

Also Published As

Publication number Publication date
JPWO2023145077A1 (ja) 2023-08-03

Similar Documents

Publication Publication Date Title
US10277031B2 (en) Systems for provisioning energy generation and storage systems
US9362754B2 (en) Energy consumption management
EP2660942B1 (en) Operation planning method
US9831677B2 (en) Software abstraction layer for energy generation and storage systems
US9002531B2 (en) System and method for predictive peak load management via integrated load management
GR20190100088A (el) Μεθοδος για βελτιωμενη διαχειριση της ενεργειας ενος σχεδον ενεργειακα αυτοδυναμου κτιριου
EP2639922A1 (en) Operation planning method, operation planning device, method for operating heat pump hot-water supply system, and method for operating heat pump hot-water supply and heating system
US20150280435A1 (en) Generator efficiency with an ancillary services network
CN102377182A (zh) 无ami/amr系统的需求响应的甩负载系统
CN103733461B (zh) 用于发电/耗电系统的控制单元
WO2014089466A1 (en) Using demand side resources to provide frequency regulation
EP3493344A1 (en) Method, system and computer programs for scheduling energy transfer in a distributed peer-to-peer energy network
US11150618B2 (en) Packetized energy management control systems and methods of using the same
Mathieu et al. An efficient algorithm for the provision of a day-ahead modulation service by a load aggregator
FI128279B (en) Method and system for dynamically grouping a group of power units to produce frequency control for a power system
CN117081118A (zh) 家庭能源系统控制方法、系统、能源管理装置和存储介质
WO2016193308A1 (en) Remote battery management system, management device, and remote battery management method
JP7063749B2 (ja) 電力制御装置および電力制御方法
WO2023145077A1 (ja) 蓄熱システム制御装置、蓄熱システム、蓄熱システム制御方法、制御プログラム及び記録媒体
CN108063438A (zh) 直流微电网系统的控制方法和装置
JP7108524B2 (ja) 充放電制御装置及び充放電制御方法
JP7353096B2 (ja) 蓄電制御装置
Jeddi et al. Network impact of multiple HEMUs with PVs and BESS in a low voltage distribution feeder
Arafat et al. Maximum Reserved Capacity of Aggregated Electric Water Heaters Virtual Battery for Peak Management
US20230121114A1 (en) Energy Management Method and Energy Management System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023576587

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18714161

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022923940

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022923940

Country of ref document: EP

Effective date: 20240902