WO2023145014A1 - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
WO2023145014A1
WO2023145014A1 PCT/JP2022/003386 JP2022003386W WO2023145014A1 WO 2023145014 A1 WO2023145014 A1 WO 2023145014A1 JP 2022003386 W JP2022003386 W JP 2022003386W WO 2023145014 A1 WO2023145014 A1 WO 2023145014A1
Authority
WO
WIPO (PCT)
Prior art keywords
teeth
linear motor
armature
phase
coil
Prior art date
Application number
PCT/JP2022/003386
Other languages
French (fr)
Japanese (ja)
Inventor
ザイニ アリフ
優 ▲高▼村
陽介 高石
慧大 平野
功太郎 榊原
健太郎 橋本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022541905A priority Critical patent/JPWO2023145014A1/ja
Priority to PCT/JP2022/003386 priority patent/WO2023145014A1/en
Publication of WO2023145014A1 publication Critical patent/WO2023145014A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Definitions

  • the present disclosure relates to a linear motor having multiple permanent magnets.
  • a linear motor includes a field magnetic pole having a plurality of permanent magnets and an armature that faces the field magnetic pole and moves in a linear direction with respect to the field magnetic pole.
  • the armature has an armature core having a plurality of teeth and coils wound around the teeth, and generates magnetic flux when current flows through the coils.
  • a thrust force that moves the armature in a straight line due to the interaction between the coil and the permanent magnet, that is, the attraction and repulsion generated between the coil and the permanent magnet according to the positional relationship between the magnetic flux and the permanent magnet. occurs.
  • a linear motor may generate cogging thrust, which is a pulsating thrust that accompanies the movement of the armature.
  • cogging thrust is a pulsating thrust that accompanies the movement of the armature.
  • One of the factors of the cogging thrust is that the attractive force generated between the end of the armature core in the moving direction of the armature and the field magnetic pole is affected by the positional relationship between the end of the armature core and the permanent magnet. It may change periodically due to
  • Patent Document 1 discloses a linear motor in which cogging thrust is reduced by forming teeth positioned at both ends of an armature core into a shape in which a part of the tip of each tooth is obliquely cut. disclosed. According to Patent Document 1, the width of the tip of each tooth positioned at both ends of the armature core is smaller than the width of the tip of the other teeth of the armature core, thereby reducing the width of the tip of the armature core. The phases of attraction forces generated in each cancel each other out. This makes it possible to reduce the cogging thrust of the entire armature.
  • each tooth positioned at both end portions of the armature core has a shape in which a part of the tip portion is cut obliquely.
  • the area of the surface of the teeth facing the permanent magnet is smaller.
  • the present disclosure has been made in view of the above, and an object thereof is to obtain a linear motor capable of reducing cogging thrust while maintaining thrust for driving the linear motor.
  • a linear motor includes field magnetic poles each having a plurality of permanent magnets arranged at regular intervals, and an armature core having a plurality of teeth. , a coil wound around each of two or more teeth out of the plurality of teeth, and an armature that faces the field magnetic pole and moves relative to the field magnetic pole.
  • the combination of the number of teeth possessed by the armature core and the number of magnetic poles facing the plurality of teeth and arranged in the direction of travel of the armature A given number of magnetic poles is a non-integer number.
  • the linear motor according to the present disclosure has the effect of reducing the cogging thrust while maintaining the thrust for driving the linear motor.
  • FIG. 4 is a diagram showing a first example in which the armature core of the linear motor according to the first embodiment is composed of split cores;
  • FIG. 4 shows a second example in which the armature core of the linear motor according to the first embodiment is composed of split cores;
  • Schematic diagram showing a modification of the linear motor according to the first embodiment FIG. 1 is a first diagram for explaining the cogging thrust reduction effect in the linear motor according to the first embodiment;
  • FIG. 2 is a second diagram for explaining the effect of reducing the cogging thrust in the linear motor according to the first embodiment;
  • FIG. 3 is a third diagram for explaining the effect of reducing the cogging thrust in the linear motor according to the first embodiment;
  • FIG. 1 is a first diagram for explaining the cogging thrust reduction effect in the linear motor according to the first embodiment
  • FIG. 2 is a second diagram for explaining the effect of reducing the cogging thrust in the linear motor according to the first embodiment
  • FIG. 3 is a third diagram for explaining the effect of reducing the
  • FIG. 5 is a diagram for explaining an example of the relationship between the cogging thrust and the number of magnetic poles in the basic combination in the linear motor according to the first embodiment;
  • FIG. 1 is a first diagram for explaining the thrust and thrust ripple in the linear motor according to the first embodiment;
  • FIG. 2 is a second diagram for explaining the thrust and thrust ripple in the linear motor according to the first embodiment;
  • FIG. 4 is a diagram for explaining adjustment of the number of turns in the linear motor according to the first embodiment;
  • Schematic diagram of a linear motor according to a second embodiment FIG. 5 is a diagram for explaining the effect of reducing cogging thrust in the linear motor according to the second embodiment;
  • FIG. 11 is a diagram for explaining the effect of reducing cogging thrust in the linear motor according to the third embodiment;
  • Schematic diagram of a linear motor according to a modification of the third embodiment Schematic diagram of a linear motor according to a fourth embodiment
  • FIG. 1 is a schematic diagram of a linear motor 1 according to the first embodiment.
  • the X-axis and the Y-axis are two axes perpendicular to each other.
  • the direction of the X axis is called the X direction
  • the direction of the Y axis is called the Y direction.
  • a linear motor 1 has a field magnetic pole 2 as a stator and an armature 3 as a mover.
  • the X direction is the traveling direction of the armature 3 with respect to the field magnetic poles 2 .
  • the width of the armature 3 in the X direction is shorter than the width of the field pole 2 in the X direction.
  • the armature 3 is arranged to face the field magnetic poles 2 .
  • the field pole 2 and the armature 3 face each other with a gap in the Y direction. The armature 3 moves relatively to the field magnetic pole 2 by the thrust generated by interaction with the field magnetic pole 2 .
  • the field pole 2 has a back yoke 4 and a plurality of permanent magnets 5 arranged on the back yoke 4 in the X direction.
  • the back yoke 4 is made of magnetic material.
  • Each permanent magnet 5 is arranged at regular intervals in the X direction.
  • the plurality of permanent magnets 5 are arranged so that N poles and S poles are alternately arranged in the X direction. That is, magnetic poles with different polarities are alternately arranged in the X direction.
  • the armature 3 has an armature core 6 and a plurality of coils 7.
  • the armature core 6 has a core back 8 extending in the X direction and a plurality of teeth 9 arranged in the X direction.
  • Each tooth 9 is made of a magnetic material.
  • Each tooth 9 extends from the core back 8 toward the field pole 2 .
  • Each tooth 9 is magnetically connected to each other by the core back 8 .
  • Each tooth 9 is arranged at regular intervals in the X direction. A gap between teeth 9 adjacent to each other in the X direction is called a slot.
  • Each coil 7 of the armature 3 is a concentrated winding coil formed for each tooth 9 .
  • the linear motor 1 is a three-phase motor driven by application of a three-phase AC voltage.
  • the armature 3 shown in FIG. 1 has three teeth 9 .
  • one coil 7 is wound around one tooth 9 .
  • a tooth number is assigned to each tooth 9 of the armature 3 for convenience.
  • Each tooth 9 is assigned a tooth number t1, t2, t3 from left to right in FIG.
  • a U-phase coil 7 is wound around the teeth 9 of t1.
  • a V-phase coil 7 is wound around the tooth 9 at t2.
  • a W-phase coil 7 is wound around the teeth 9 of t3.
  • Each of the teeth 9 around which the coil 7 is wound has the same shape as each other. That is, in the armature 3 shown in FIG. 1, the teeth 9 of t1, t2, and t3 have the same shape.
  • the wire diameters of all the coils 7 included in the armature 3 are the same. That is, all the coils 7 of the armature 3 are made of conductor wires having the same diameter. As a result, the time required to manufacture the armature 3 can be shortened, and the productivity of the armature 3 can be improved, compared to the case where the coils 7 for each phase must be formed using conductive wires having different diameters. can be done.
  • a voltage is applied to the armature 3 from a three-phase AC power supply. Illustration of the three-phase AC power supply is omitted.
  • the armature 3 generates magnetic flux when current flows through each coil 7 .
  • An attractive force and a repulsive force are generated between the coils 7 and the permanent magnets 5 according to the positional relationship between the magnetic flux and the permanent magnets 5, thereby generating a thrust that moves the armature 3 in the X direction.
  • the linear motor 1 moves the armature 3 in the X direction by generating thrust.
  • the number of magnetic poles in the combination is the number of magnetic poles within the width Tw of the armature core 6 in the X direction.
  • the width Tw is the X-direction width of the plurality of teeth 9 of the armature core 6 and is obtained by multiplying the pitch p of the teeth 9 by the number of teeth 9 .
  • the pitch p is the distance between the center lines of teeth 9 adjacent to each other in the X direction.
  • a center line of the tooth 9 represents the center of the tooth 9 in the X direction. In FIG. 1, the center line of each tooth 9 is represented by a one-dot chain line.
  • a combination of the number of magnetic poles and the number of teeth 9 is hereinafter referred to as a basic combination.
  • a basic combination is a combination of the number of teeth 9 that the armature core 6 has and the number of magnetic poles within the width Tw.
  • the basic combination can also be said to be a combination of the number of teeth 9 that the armature core 6 has and the number of magnetic poles that face the plurality of teeth 9 and are arranged in the X direction.
  • the number of teeth 9 and the number of magnetic poles are not integral multiples of each other. That is, the number of teeth 9 is not an integral multiple of the number of magnetic poles, and the number of magnetic poles is not an integral multiple of the number of teeth 9 . Further, the linear motor 1 is characterized in that the number of magnetic poles within the range of the width Tw of the armature core 6 is a decimal number, that is, a non-integer number in the basic combination.
  • the number of teeth 9 is 3 and the number of magnetic poles is 2.5 in the basic combination.
  • a basic combination in which the number of teeth 9 is 3 and the number of magnetic poles is 2.5 will be referred to as "2.5 poles 3 teeth”.
  • Nt is the number of teeth 9 around which the coil 7 is wound among the plurality of teeth 9 of the armature 3 .
  • L be the distance between the teeth 9 at both ends in the X direction of the teeth 9 around which the coil 7 is wound.
  • L is the distance between the center line of the teeth 9 at t1 and the center line of the teeth 9 at t3.
  • ⁇ p is the pitch of the magnetic poles.
  • the pitch of the magnetic poles is the distance between the center positions of magnetic poles of different polarities that are adjacent to each other in the X direction.
  • Nt is three.
  • L is 32 [mm] and ⁇ p is 19.2 [mm].
  • the result of calculating the equation (1) is 2.5, and the relationship holds that the number of teeth 9 in the basic combination is an integer while the number of magnetic poles is a decimal number.
  • the number of teeth 9 is an integer in the basic combination, whereas the number of magnetic poles is a non-integer. , the cogging thrust can be reduced. Effects of the configuration of the linear motor 1 according to the first embodiment will be described later.
  • the armature core 6 is made of a magnetic material.
  • the armature core 6 shown in FIG. 1 is manufactured as an integral body by press working or the like.
  • the armature core 6 may be a combination of a plurality of split cores manufactured by press working or the like.
  • the armature core 6 can be manufactured.
  • FIG. 2 is a diagram showing a first example in which the armature core 6 of the linear motor 1 according to the first embodiment is composed of split cores.
  • the armature core 6 is a combination of three parts 6a having the same shape.
  • Each component 6a is a split core.
  • the armature core 6 is divided into three parts 6a by dividing the core back 8 between the teeth 9 adjacent to each other. Since each part 6a has the same shape as each other, each part 6a can be manufactured using the same press die.
  • FIG. 3 is a diagram showing a second example in which the armature core 6 of the linear motor 1 according to Embodiment 1 is composed of split cores.
  • each of the core back 8 and the three teeth 9 is manufactured as a split core.
  • Armature core 6 is manufactured by combining core back 8 and three teeth 9 . Since each tooth 9 has the same shape, each tooth 9 can be manufactured using the same press die.
  • the armature core 6 By configuring the armature core 6 with split cores as in the first example or the second example, it is possible to reduce the size of the press die and reduce the cost required for the production equipment. Forming the armature core 6 with split cores is suitable for mass production of the armature core 6, because press working can be facilitated by downsizing the press die.
  • the armature core 6 or split cores may be manufactured by a method other than press working.
  • the linear motor 1 is a three-phase motor, and one-phase coils 7 are attached to each of the three teeth 9, but the number of phases is not limited to three.
  • the number of coils 7 provided in the armature 3 and the number of teeth 9 of the armature core 6 may be appropriately changed according to the number of phases.
  • the linear motor 1 may have a coil 7 wound around each of two or more teeth 9 .
  • FIG. 4 is a schematic diagram showing a modification of the linear motor 1 according to the first embodiment.
  • the armature core 6 of the linear motor 1 according to the modification has two auxiliary teeth 9a.
  • One of the two auxiliary teeth 9a is provided at one end of the armature core 6 in the X direction.
  • the other of the two auxiliary teeth 9a is provided at the other end of the armature core 6 in the X direction.
  • the shape of each auxiliary tooth 9 a is different from the shape of each tooth 9 .
  • the coil 7 is not wound around each auxiliary tooth 9a.
  • the linear motor 1 of this modified example has a basic combination of 2.5 poles and 3 teeth, as in the case shown in FIG.
  • the linear motor 1 can further reduce cogging by adding the auxiliary teeth 9a. It is to be noted that it is optional whether or not the linear motor 1 is provided with the auxiliary teeth 9a.
  • the field poles 2 include not only the permanent magnets 5 magnetized in the Y direction, but also the permanent magnets 5 magnetized in the X direction, or the permanent magnets 5 magnetized in an oblique direction between the X and Y directions. 5 may be used.
  • the field magnetic poles 2 may have a so-called magnetic flux concentration type structure in which magnetic flux is concentrated by having permanent magnets 5 magnetized in the X direction or oblique directions, or may have a Halbach array structure.
  • the magnetic flux density of the field pole 2 can be increased by making the field pole 2 have a magnetic flux concentration type structure or a Halbach arrangement structure. By increasing the magnetic flux density of the field magnetic poles 2, the thrust density of the linear motor 1 can be increased. It is optional whether the field magnetic pole 2 has a magnetic flux concentration type structure or a Halbach array structure.
  • the linear motor 1 can increase the magnetic flux density of the field magnetic pole 2 and the thrust density by providing the back yoke 4 made of a magnetic material to the field magnetic pole 2 . It is assumed that whether or not the back yoke 4 is provided on the field pole 2 is optional.
  • the state of magnetic flux between the armature 3 and the field pole 2 is discontinuous at the X-direction end of the armature 3 .
  • the attractive force generated between the permanent magnet 5 and the end of the armature 3 is caused by the positional relationship between the permanent magnet 5 and the end of the armature 3. changes cyclically.
  • a cogging thrust is generated in the linear motor 1 by adding a pulsation component to the thrust that moves the armature 3 .
  • the linear motor 1 uses an armature 3 with a finite length.
  • a cogging thrust caused by the edge of the that is, a cogging thrust due to the so-called edge effect is generated.
  • the armature does not have an edge where the state of magnetic flux between the armature and the magnetic field pole is discontinuous, cogging thrust due to the edge effect does not occur.
  • FIG. 5 is a first diagram for explaining the effect of reducing the cogging thrust in the linear motor 1 according to the first embodiment.
  • FIG. 6 is a second diagram for explaining the cogging thrust reduction effect in the linear motor 1 according to the first embodiment.
  • a basic combination of two poles and three teeth is a basic combination in which the number of teeth 9 is three and the number of magnetic poles is two.
  • the teeth numbers t1, t2, and t3 are also assigned to the three teeth 9 of such a motor as in the case of the linear motor 1.
  • Nt is 3 in the above formula (1).
  • L is 32 [mm] and ⁇ p is 24 [mm].
  • the result of calculating formula (1) is 2, and both the number of teeth 9 and the number of magnetic poles in the basic combination are integers.
  • FIG. 5 shows an example of a vector diagram for a case where no cogging thrust due to the end effect is generated, that is, for a rotary motor.
  • FIG. 6 shows an example of a vector diagram of a linear motor that is a comparative example when cogging thrust is generated due to the end effect. 5 and 6, the vertical axis represents the cosine component of the vector, and the horizontal axis represents the sine component of the vector.
  • the thick line represents the secondary component vector of the cogging thrust generated in each of the three teeth 9 when the rotor is rotated at an electrical angle of 360 degrees.
  • the secondary component is a frequency component that is twice the fundamental frequency, which is the rotation frequency of the rotor.
  • the cogging thrust generated in each tooth 9 includes a secondary component and a higher-order component than the secondary component, but the secondary component will be focused here.
  • An electrical angle of 360 degrees is defined as a section in which the field magnetic pole 2 generates a pair of magnetic flux density distributions of N and S poles. When one tooth 9 passes over the section of the N pole and the S pole, the tooth 9 receives magnetic attraction from each of the N pole and the S pole, thereby generating two thrust pulsations. Therefore, a secondary component, which is two pulsations, is generated in the section of 360 electrical degrees.
  • the amplitude of the secondary component vector in each tooth 9 is the same, and the secondary component vector in each tooth 9 is distributed with a phase difference of 120 degrees. Therefore, no synthesized vector is generated by synthesizing the secondary component vectors in each tooth 9 . In this way, in the rotary motor described in FIG. 5, the cogging thrust generated in each tooth 9 is balanced with each other, so that the cogging thrust in the entire armature is reduced.
  • FIG. 6 shows secondary component vectors of cogging thrust generated in each of the three teeth 9 when the operation of the rotary motor in FIG. 5 is replaced by a linear motor.
  • the secondary component vector of the cogging thrust is represented by a thick line.
  • the amplitude and phase of each secondary component vector shown in FIG. 6 change compared to the case shown in FIG. 5 due to end effects. Therefore, a synthesized vector is generated by synthesizing the secondary component vectors in each tooth 9 .
  • the white arrows in FIG. 6 represent composite vectors.
  • the linear motor 1 in the basic combination, by setting the number of magnetic poles within the range of the width Tw of the armature core 6 to be a non-integer, the amplitude and phase of the cogging thrust generated in each tooth 9 are reduced to is changed from the state shown in FIG.
  • the linear motor 1 reduces the cogging thrust in the entire armature 3 by changing the balance of the cogging thrust to reduce the resultant vector. Thereby, the linear motor 1 can reduce the cogging thrust compared to the case where the number of magnetic poles in the basic combination is an integer.
  • FIG. 7 is a third diagram for explaining the cogging thrust reduction effect in the linear motor 1 according to the first embodiment.
  • FIG. 7 shows a graph showing changes in the cogging thrust in the 2.5-pole, 3-teeth linear motor 1 according to the first embodiment, and a graph showing changes in the cogging thrust in the 2-pole, 3-teeth linear motor of the comparative example.
  • the solid line represents the graph for the case of 2.5 poles and 3 teeth.
  • the graph for 2-pole 3-teeth is represented by a broken line.
  • the vertical axis represents the cogging thrust normalized based on the amplitude in the case of two poles and three teeth.
  • the horizontal axis represents the electrical angle. The relationship between the cogging thrust and the electrical angle shown in FIG. 7 can be obtained by magnetic field analysis.
  • the waveform in the case of two poles and three teeth has two peaks and two valleys in the electrical angle range of 360 degrees. That is, it can be seen that the secondary component of the cogging thrust is dominant in the two-pole, three-teeth linear motor.
  • the waveform in the case of 2.5 poles and 3 teeth has 4 peaks and 4 valleys in the electrical angle range of 360 degrees.
  • the secondary component of the cogging thrust that was dominant in the case of 2 poles and 3 teeth has almost disappeared.
  • the linear motor 1 can significantly reduce the cogging thrust compared to the case of the comparative example.
  • FIG. 8 is a diagram for explaining an example of the relationship between the cogging thrust and the number of magnetic poles in the basic combination in the linear motor 1 according to the first embodiment.
  • FIG. 8 is a line graph showing the relationship between the amplitude value of the cogging thrust and the number of magnetic poles in the basic combination when the number of magnetic poles in the basic combination is changed.
  • the number of magnetic poles in the basic combination is varied in the range of 2 to 2.9, while the number of teeth 9 in the basic combination remains 3.
  • the vertical axis represents the amplitude value of the cogging thrust.
  • the amplitude value represented by the vertical axis is the amplitude value normalized based on the amplitude value when the number of magnetic poles in the basic combination is two.
  • the horizontal axis represents the number of magnetic poles in the basic combination. The relationship between the amplitude value and the number of magnetic poles shown in FIG. 8 can be obtained by magnetic field analysis.
  • the linear motor 1 when the number of magnetic poles is a value other than two, the amplitude is smaller than when the number of magnetic poles is two. That is, according to FIG. 8, when the number of magnetic poles is a non-integer greater than 2 and less than 2.9, the linear motor 1 can reduce the cogging thrust more than when the number of magnetic poles is 2. can. In this way, the linear motor 1 has an integer number of teeth 9 and a non-integer number of magnetic poles in the basic combination, so that the number of teeth 9 and the number of magnetic poles in the basic combination are both integers. , the cogging thrust can be reduced.
  • the amplitude value is the minimum when the number of magnetic poles is 2.5. That is, according to FIG. 8, the linear motor 1 can minimize the cogging thrust by setting the number of magnetic poles in the basic combination to 2.5.
  • the optimal basic combination for minimizing the cogging thrust varies depending on the design of the magnetic structure of the linear motor 1, such as the shape or size of the teeth 9, the shape or size of the permanent magnets 5, and the like.
  • the number of teeth 9 and the number of magnetic poles in the basic combination can be changed as appropriate according to the configuration of the linear motor 1 .
  • FIG. 9 is a first diagram for explaining thrust and thrust ripple in the linear motor 1 according to the first embodiment.
  • FIG. 10 is a second diagram for explaining thrust and thrust ripple in the linear motor 1 according to the first embodiment.
  • FIG. 9 shows an example of the phase induced voltage vector and the voltage vector of the control device when both the number of teeth 9 and the number of magnetic poles in the basic combination are integers.
  • a control device is a device that controls the linear motor 1 .
  • a voltage vector of the control device is a vector of voltages for driving the linear motor 1, and is a vector of voltages output from a three-phase power supply for driving the linear motor 1.
  • FIG. FIG. 9 shows phase induced voltage vectors and voltage vectors in a 2-pole 3-teeth motor.
  • FIG. 10 shows an example of the phase induced voltage vector and the voltage vector of the control device when the number of teeth 9 in the basic combination is an integer and the number of magnetic poles is a non-integer.
  • FIGS. 9 and 10 show phase induced voltage vectors and voltage vectors in a 2.5-pole, 3-teeth motor.
  • arrows U, V, and W indicate voltage vectors of phases U, V, and W of the control equipment.
  • Each thick line of the U-phase, V-phase, and W-phase indicates the phase induced voltage vector of each of the U-, V-, and W-phases.
  • each coil 7 of the linear motor has the same number of turns.
  • the number of teeth 9 and the number of magnetic poles in the basic combination are both integers and the number of turns of each coil 7 is the same, the phase induced voltage vector and the voltage vector matches. In this case, the amplitude of the current in each phase is the same.
  • the number of teeth 9 in the basic combination is an integer
  • the number of magnetic poles is a non-integer
  • the number of turns of each coil 7 is the same
  • the phase of the phase induced voltage vector changes compared to the case. Therefore, in the example shown in FIG. 10, the phase of the phase induced voltage vector does not match the phase of the voltage vector. Since the phase of the phase induced voltage vector does not match the phase of the voltage vector, the amplitude of the projection component of the phase induced voltage vector onto the phase of the voltage vector differs for each phase. In this case, a difference in the amplitude of the current of each phase may cause a reduction in thrust and an increase in thrust ripple during energization.
  • the linear motor 1 may adjust the number of turns of the coil 7 for each phase as a countermeasure against the decrease in thrust force and the increase in thrust ripple.
  • the number of turns of the coil 7 for each phase is adjusted so that the phase of the voltage for driving the linear motor 1, that is, the amplitude of the projection component of the phase induced voltage vector onto the phase of the voltage vector is the same for each phase. .
  • FIG. 11 is a diagram for explaining adjustment of the number of turns in the linear motor 1 according to the first embodiment.
  • FIG. 11 shows the number of turns of the U-phase, V-phase and W-phase coils 7 and the U-phase, V-phase and W-phase drive shafts before and after the adjustment of the number of turns.
  • Figure 3 shows an example with component amplitudes.
  • the drive shaft component is a projected component of the phase induced voltage vector when the phase induced voltage vector is projected onto the phase of the voltage vector.
  • the value of the number of turns in FIG. 11 is a value normalized based on the total number of turns of each coil 7, and is represented by a value up to three decimal places.
  • the value representing the amplitude of the drive shaft component is a value normalized based on the total amplitude when the phase of the phase induced voltage vector matches the phase of the voltage vector for each of the U-phase, V-phase and W-phase. , expressed as a value up to three decimal places.
  • Each value shown in FIG. 11 is for the linear motor 1, which is a 2.5-pole, 3-teeth motor.
  • the number of turns of each of the U-phase, V-phase and W-phase are equal to each other and all are 0.333.
  • the U-phase phase induced voltage vector is shifted from the U-phase voltage vector toward the W-phase voltage vector.
  • the phase induced voltage vector of the W phase is shifted from the voltage vector of the W phase toward the voltage vector of the U phase.
  • the phase shift of the phase induced voltage vector from the phase of the voltage vector is calculated to be 30 degrees.
  • the number of turns of the U phase and the number of turns of the W phase are each greater than the number of turns of the V phase.
  • the adjustment to increase equalizes the amplitude of the drive shaft component in each phase.
  • the number of turns of the U phase and the number of turns of the W phase are each increased from 0.333 to 0.349, and the number of turns of the V phase is decreased from 0.333 to 0.302. adjustments are made. With this adjustment, the amplitude of the drive shaft component in each phase becomes 0.302.
  • the linear motor 1 can reduce the decrease in thrust and the increase in thrust ripple.
  • the linear motor 1 has an integer number of teeth 9 in the basic combination, whereas the number of magnetic poles is a non-integer number in the basic combination.
  • Cogging thrust can be reduced compared to the case where it is an integer.
  • the linear motor 1 can reduce the decrease in thrust density compared to the case where the tooth 9 is partially cut. As described above, the linear motor 1 has the effect of being able to reduce the cogging thrust while maintaining the thrust for driving the linear motor 1 .
  • FIG. 12 is a schematic diagram of a linear motor 1A according to the second embodiment.
  • the armature 3A of the linear motor 1A has teeth 9 around which the coils 7 are wound and teeth 9 around which the coils 7 are not wound.
  • the same reference numerals are assigned to the same components as in the first embodiment, and the configuration different from the first embodiment will be mainly described.
  • the armature core 6A of the armature 3A has six teeth 9 arranged in the X direction.
  • a tooth number is assigned to each tooth 9 of the armature 3A for convenience.
  • Each tooth 9 is assigned a tooth number t1, t2, t3, t4, t5 and t6 from left to right in FIG.
  • a U-phase coil 7 is wound around the teeth 9 of t2.
  • a V-phase coil 7 is wound around the teeth 9 of t4.
  • a W-phase coil 7 is wound around the teeth 9 of t6.
  • No coil 7 is wound around each tooth 9 at t1, t3, and t5.
  • the number of turns of each tooth 9 at t2, t4 and t6 is greater than the number of turns of each tooth 9 in the first embodiment.
  • Teeth 9 of t2, t4, and t6, which are teeth 9 around which coils 7 are wound, have the same shape.
  • the number of teeth 9 and the number of magnetic poles are not integral multiples of each other.
  • the linear motor 1A is characterized in that the number of magnetic poles within the range of the width Tw of the armature core 6 is a decimal number, that is, a non-integer number in the basic combination.
  • the result of calculating the above formula (1) is a non-integer.
  • L is the distance between the center line of the teeth 9 at t2 and the center line of the teeth 9 at t6.
  • Nt is 3 in the above formula (1).
  • L is 64 [mm] and ⁇ p is 21.3333333 [mm].
  • the result of calculating the equation (1) is approximately 4.5, and the relationship holds that the number of teeth 9 in the basic combination is an integer while the number of magnetic poles is a decimal number.
  • the number of teeth 9 is 6 and the number of magnetic poles is 4.5 in the basic combination.
  • a basic combination in which the number of teeth 9 is 6 and the number of magnetic poles is 4.5 is expressed as "4.5 poles 6 teeth”.
  • the number of the coils 7 in the armature 3A can be reduced compared to the case where the coils 7 are wound on all the teeth 9. can do.
  • the production cost of the linear motor 1A can be reduced.
  • the number of operations for winding the coils 7 can be reduced.
  • work for connecting the coils 7 can be reduced. Thereby, the productivity of the linear motor 1A can be improved.
  • FIG. 13 is a diagram for explaining the cogging thrust reduction effect in the linear motor 1A according to the second embodiment.
  • FIG. 13 shows a graph showing changes in the cogging thrust in the 4.5-pole, 6-teeth linear motor 1A according to the second embodiment, and a graph showing changes in the cogging thrust in the 4-pole, 6-teeth linear motor of the comparative example.
  • the linear motor according to the comparative example also has three coils 7, like the linear motor 1A shown in FIG.
  • Nt in the above formula (1) is 3.
  • L is 64 [mm] and ⁇ p is 24 [mm].
  • the result of calculating formula (1) is 4, and both the number of teeth 9 and the number of magnetic poles in the basic combination are integers.
  • the graph for 4.5 poles and 6 teeth is represented by a solid line.
  • the graph for the case of 4 poles and 6 teeth is represented by a dashed line.
  • the vertical axis represents the cogging thrust normalized based on the amplitude in the case of 4 poles and 6 teeth.
  • the horizontal axis represents the electrical angle. The relationship between the cogging thrust and the electrical angle shown in FIG. 13 can be obtained by magnetic field analysis.
  • the waveform in the case of 4 poles and 6 teeth has two peaks and two valleys in the electrical angle range of 360 degrees. That is, it can be seen that the secondary component of the cogging thrust is dominant in the 4-pole, 6-teeth linear motor.
  • the waveform in the case of 4.5 poles and 6 teeth has 4 peaks and 4 valleys in the electrical angle range of 360 degrees.
  • the secondary component of the cogging thrust that was dominant in the case of 4 poles and 6 teeth almost disappeared.
  • the linear motor 1A can significantly reduce the cogging thrust compared to the case of the comparative example.
  • the optimum basic combination for minimizing the cogging thrust varies depending on the design of the magnetic structure of the linear motor 1A, such as the shape or size of the teeth 9, the shape or size of the permanent magnets 5, and the like.
  • the number of teeth 9 and the number of magnetic poles in the basic combination can be appropriately changed according to the configuration of the linear motor 1A.
  • the linear motor 1A has the effect of reducing the cogging thrust while maintaining the thrust for driving the linear motor 1A, as in the first embodiment.
  • FIG. 14 is a schematic diagram of a linear motor 1B according to the third embodiment.
  • the number of teeth 9 of armatures 3 and 3A is an integral multiple of the number of phases.
  • Embodiment 3 describes a case where the number of teeth 9 of the armature 3B is not an integer multiple of the number of phases.
  • the same reference numerals are assigned to the same constituent elements as in the first or second embodiment, and the configuration different from that in the first or second embodiment will be mainly described.
  • the armature core 6B of the armature 3B has five teeth 9 arranged in the X direction.
  • a tooth number is assigned to each tooth 9 of the armature 3B for convenience.
  • Teeth numbers t1, t2, t3, t4 and t5 are assigned to the teeth 9 from left to right in FIG.
  • a U-phase coil 7 is wound around each of the teeth 9 at t1 and the teeth 9 at t5.
  • a V-phase coil 7 is wound around the tooth 9 at t2.
  • a V-phase coil 7 and a W-phase coil 7 are wound around the teeth 9 of t3.
  • a W-phase coil 7 is wound around the teeth 9 of t4.
  • the plurality of teeth 9 of the armature core 6B are composed of the teeth 9 wound with only one phase coil 7 out of three phases and the teeth 9 wound with two or more phase coils 7 out of three phases.
  • the teeth 9 of t1, t2, t3, t4, and t5, which are the teeth 9 around which the coil 7 is wound, have the same shape.
  • the number of magnetic poles and the number of teeth 9 are not integral multiples of each other.
  • the linear motor 1B is characterized in that the number of magnetic poles within the range of the width Tw of the armature core 6 is a decimal number, that is, a non-integer number in the basic combination.
  • the result of calculating the above formula (1) is a non-integer.
  • Nt is five.
  • L is 64 [mm] and ⁇ p is 20.5128205 [mm].
  • the result of calculating the equation (1) is approximately 3.9, and the relationship holds that the number of teeth 9 in the basic combination is an integer while the number of magnetic poles is a decimal number.
  • the number of teeth 9 is 5 and the number of magnetic poles is 3.9 in the basic combination.
  • the basic combination in which the number of teeth 9 is 5 and the number of magnetic poles is 3.9 is expressed as "3.9 poles 5 teeth”.
  • the order of the phases of the coil 7 in the X direction is determined by the basic combination, the number of phases, the number of teeth 9 around which the coils 7 of a plurality of phases are wound, the number of the coils 7 wound around the teeth 9, and the like.
  • FIG. 15 is a diagram for explaining the cogging thrust reduction effect in the linear motor 1B according to the third embodiment.
  • FIG. 15 shows a graph showing changes in the cogging thrust in the 3.9-pole, 5-teeth linear motor 1B according to the third embodiment, and a graph showing changes in the cogging thrust in the 4-pole, 5-teeth linear motor of the comparative example.
  • the linear motor according to the comparative example also has teeth 9 wound with only one phase coil 7 out of three phases and coils 7 of a plurality of phases out of three phases wound. and teeth 9.
  • Nt is 5 in the above formula (1).
  • L is 64 [mm]
  • ⁇ p is 20 [mm].
  • the result of calculating formula (1) is 4, and both the number of teeth 9 and the number of magnetic poles in the basic combination are integers.
  • the graph for the case of 3.9 poles and 5 teeth is represented by a solid line.
  • the graph for 4 poles and 5 teeth is represented by a dashed line.
  • the vertical axis represents the cogging thrust standardized based on the amplitude in the case of four poles and five teeth.
  • the horizontal axis represents the electrical angle. The relationship between the cogging thrust and the electrical angle shown in FIG. 15 can be obtained by magnetic field analysis.
  • the amplitude in the case of 3.9 poles and 5 teeth is smaller than the amplitude in the case of 4 poles and 5 teeth. From this, it can be seen that the secondary component of the cogging thrust is smaller in the linear motor 1B with 3.9 poles and 5 teeth than in the case of 4 poles and 5 teeth.
  • the overall cogging thrust is reduced by about 60% compared to the 4-pole, 5-teeth linear motor 1B.
  • the linear motor 1B can significantly reduce the cogging thrust compared to the case of the comparative example.
  • a linear motor 1B shown in FIG. 15 has one tooth 9 around which a plurality of phase coils 7 are wound, and each of the other teeth 9 is wound with only one phase coil 7 .
  • the linear motor 1B may have a plurality of teeth 9 around which coils 7 of a plurality of phases are wound.
  • FIG. 16 is a schematic diagram of a linear motor 1C according to a modification of the third embodiment.
  • a U-phase coil 7 is wound around the teeth 9 of t1.
  • a U-phase coil 7 and a V-phase coil 7 are wound around the teeth 9 of t2.
  • a V-phase coil 7 is wound around the teeth 9 of t3.
  • a V-phase coil 7 and a W-phase coil 7 are wound around the teeth 9 of t4.
  • a W-phase coil 7 is wound around the teeth 9 of t5.
  • each tooth 9 of t1, t3, t5 is wound with only one phase coil 7 out of three phases
  • each tooth 9 of t2, t4 is wound with two phases of three phases.
  • a phase coil 7 is wound.
  • the number of turns of each coil 7 is adjusted to balance the phase induced voltage vectors of each phase.
  • the plurality of teeth 9 there are teeth 9 with a large number of turns of the coil 7 and teeth 9 with a small number of turns of the coil 7. Since there is a difference in the number of turns of the coil 7 for each tooth 9 and the wire diameter of all the coils 7 is the same, a space without the coil 7 is likely to occur in the slot. If the lamination factor of the coil 7 decreases due to the space, the copper loss of the linear motors 1B and 1C increases.
  • the linear motors 1B and 1C can adjust a basic combination in which the number of teeth 9 is an integer and the number of magnetic poles is a non-integer so that the total number of turns of the coil 7 entering each slot is evened out.
  • the linear motors 1B and 1C can reduce the cogging thrust due to the end effect and improve the space factor.
  • the linear motors 1B and 1C can reduce cogging thrust and copper loss.
  • the number of coils 7 provided in the armatures 3B and 3C and the number of teeth 9 of the armature core 6B are arbitrary.
  • the linear motors 1B and 1C may have auxiliary teeth 9a like the linear motor 1 shown in FIG.
  • Linear motors 1B and 1C may have teeth 9 around which coils 7 are wound and teeth 9 around which coils 7 are not wound, like linear motor 1A according to the second embodiment.
  • the optimum basic combination for minimizing the cogging thrust varies depending on the magnetic structure design of the linear motors 1B and 1C, such as the shape or size of the teeth 9 and the shape or size of the permanent magnets 5.
  • the number of teeth 9 and the number of magnetic poles in the basic combination can be appropriately changed according to the configuration of the linear motors 1B and 1C.
  • the linear motors 1B and 1C similarly to the first embodiment, have the effect of reducing the cogging thrust while maintaining the thrust for driving the linear motors 1B and 1C.
  • FIG. 17 is a schematic diagram of a linear motor 1D according to the fourth embodiment.
  • a linear motor 1 ⁇ /b>D has a tandem armature 11 .
  • the tandem armature 11 has two armatures 3B that share the field poles 2. As shown in FIG.
  • the two armatures 3B are arranged in the X direction.
  • the tandem armature 11 is an example of an array armature composed of a plurality of armatures 3B.
  • the linear motor 1D increases the thrust by tandem driving in which two armatures 3B are driven at the same time as compared with the case of driving one armature 3B.
  • the same reference numerals are assigned to the same components as in the first to third embodiments, and the configuration different from the first to third embodiments will be mainly described.
  • each of the two armatures 3B has a configuration of 3.9 poles and 5 teeth.
  • the armatures 3B are arranged with a gap corresponding to 0.1 pole so that the electrical angles indicating the positions of the armatures 3B in the X direction are the same.
  • the width Tw' of the tandem armature 11 in the X direction is the sum of the width Tw of the armature core 6B in each armature 3B and the width of the gap.
  • the number of magnetic poles within the width Tw' is 7.9.
  • the number of magnetic poles within the range of the width Tw of the armature core 6B in each armature 3B is a non-integer
  • the number of magnetic poles within the range of the width Tw' of the tandem armature 11 is also a non-integer. is non-integer.
  • the number of magnetic poles facing the tandem armature 11 is a non-integer number.
  • the linear motor 1D can reduce cogging thrust by reducing magnetic interference between the armatures 3B. Since the electrical angles of the armatures 3B are the same, the phase induced voltage vectors of the armatures 3B match each other. Therefore, even if the armatures 3B are electrically connected to each other by parallel connection, the thrust ripple does not increase.
  • the arrayed armature of the linear motor 1D is not limited to the armature 3B described in the third embodiment.
  • the arrayed armature may be composed of any of the armatures described in the first to third embodiments.
  • the arrayed armature is not limited to the tandem armature 11 composed of two armatures, and may be composed of three or more armatures. That is, the arrayed armature may be composed of a plurality of armatures arranged in the X direction and sharing the field pole 2, and the number of armatures constituting the arrayed armature is arbitrary. be. Again, the number of magnetic poles within the width of the arrayed armature in the X direction is a non-integer number.
  • the number of coils 7 and the number of teeth 9 in each armature of the arrayed armature are arbitrary.
  • the linear motor 1D has the effect of reducing the cogging thrust while maintaining the thrust for driving the linear motor 1D, as in the first embodiment.
  • each embodiment is an example of the content of the present disclosure.
  • the configuration of each embodiment can be combined with another known technique. Configurations of respective embodiments may be combined as appropriate. A part of the configuration of each embodiment can be omitted or changed without departing from the gist of the present disclosure.

Abstract

A linear motor (1) comprises: a field magnetic pole (2) having a plurality of permanent magnets (5), each of which is arranged at equal intervals; and an armature (3) that faces the field magnetic pole (2), moves relative to the field magnetic pole (2), and has an armature core (6), which has a plurality of teeth (9), and a coil (7), which is wound around each of two or more teeth (9) among the plurality of teeth (9). In the combination of the number of teeth (9) of the armature core (6) and the number of magnetic poles facing the plurality of teeth (9) and arranged in the direction of travel of the armature (3), the number of magnetic poles within the range of the width of the armature core (6) in the direction of travel is a non-integer.

Description

リニアモータlinear motor
 本開示は、複数の永久磁石を有するリニアモータに関する。 The present disclosure relates to a linear motor having multiple permanent magnets.
 複数の永久磁石を有する界磁磁極と、界磁磁極に向かい合わせられて界磁磁極に対して直線方向へ移動する電機子とを備えるリニアモータが知られている。電機子は、複数のティースを有する電機子コアとティースに巻かれたコイルとを有し、コイルに電流が流れることで磁束を発生させる。磁束と永久磁石との位置関係に応じてコイルと永久磁石との間に吸引力と反発力とが生じることによって、すなわちコイルと永久磁石との相互作用によって、電機子を直線方向へ移動させる推力が発生する。 A linear motor is known that includes a field magnetic pole having a plurality of permanent magnets and an armature that faces the field magnetic pole and moves in a linear direction with respect to the field magnetic pole. The armature has an armature core having a plurality of teeth and coils wound around the teeth, and generates magnetic flux when current flows through the coils. A thrust force that moves the armature in a straight line due to the interaction between the coil and the permanent magnet, that is, the attraction and repulsion generated between the coil and the permanent magnet according to the positional relationship between the magnetic flux and the permanent magnet. occurs.
 リニアモータは、電機子の移動に伴って推力が脈動するコギング推力を生じることがある。コギング推力の要因の1つとしては、電機子コアのうち電機子の進行方向における端部と界磁磁極との間に生じる吸引力が、電機子コアの端部と永久磁石との位置関係に起因して周期的に変化することが挙げられる。 A linear motor may generate cogging thrust, which is a pulsating thrust that accompanies the movement of the armature. One of the factors of the cogging thrust is that the attractive force generated between the end of the armature core in the moving direction of the armature and the field magnetic pole is affected by the positional relationship between the end of the armature core and the permanent magnet. It may change periodically due to
 特許文献1には、電機子コアの両端部に位置する各ティースを、ティースの先端部の一部が斜めに切断された形状とすることによって、コギング推力の低減を図ることとしたリニアモータが開示されている。特許文献1によると、電機子コアの両端部に位置する各ティースの先端部の幅が、電機子コアが有する他のティースの先端部の幅よりも短いことによって、電機子コアの両端部の各々に発生する吸引力の位相が互いに相殺される。これにより、電機子全体のコギング推力の低減が可能となる。 Patent Document 1 discloses a linear motor in which cogging thrust is reduced by forming teeth positioned at both ends of an armature core into a shape in which a part of the tip of each tooth is obliquely cut. disclosed. According to Patent Document 1, the width of the tip of each tooth positioned at both ends of the armature core is smaller than the width of the tip of the other teeth of the armature core, thereby reducing the width of the tip of the armature core. The phases of attraction forces generated in each cancel each other out. This makes it possible to reduce the cogging thrust of the entire armature.
特開2003-299342号公報JP-A-2003-299342
 上記特許文献1の技術では、電機子コアの両端部に位置する各ティースが、先端部の一部が斜めに切断された形状であることによって、先端部を切断しないままの形状である場合に比べて、ティースのうち永久磁石と向かい合う面の面積が小さくなる。このため、電機子コアの両端部に位置する各ティースと永久磁石との間における磁気抵抗が増加し、リニアモータの推力密度が低下することとなる。そのため、上記特許文献1の技術によると、リニアモータを駆動するための推力を維持しながらコギング推力を低減させることが困難であるという問題があった。 In the technique disclosed in Patent Document 1, each tooth positioned at both end portions of the armature core has a shape in which a part of the tip portion is cut obliquely. In comparison, the area of the surface of the teeth facing the permanent magnet is smaller. As a result, the magnetic resistance between the teeth positioned at both ends of the armature core and the permanent magnets increases, and the thrust density of the linear motor decreases. Therefore, according to the technique of Patent Document 1, there is a problem that it is difficult to reduce the cogging thrust while maintaining the thrust for driving the linear motor.
 本開示は、上記に鑑みてなされたものであって、リニアモータを駆動するための推力を維持しながらコギング推力を低減可能とするリニアモータを得ることを目的とする。 The present disclosure has been made in view of the above, and an object thereof is to obtain a linear motor capable of reducing cogging thrust while maintaining thrust for driving the linear motor.
 上述した課題を解決し、目的を達成するために、本開示にかかるリニアモータは、各々が等間隔に配列された複数の永久磁石を有する界磁磁極と、複数のティースを有する電機子コアと、複数のティースのうち2以上のティースの各々に巻かれたコイルとを有し、界磁磁極に向かい合わせられて界磁磁極に対して相対的に移動する電機子と、を備える。電機子コアが有するティースの数と、複数のティースと向かい合う磁極の数であって電機子の進行方向に配列された磁極の数との組み合わせにおいて、進行方向における電機子コアの幅の範囲内にある磁極の数は、非整数である。 In order to solve the above-described problems and achieve an object, a linear motor according to the present disclosure includes field magnetic poles each having a plurality of permanent magnets arranged at regular intervals, and an armature core having a plurality of teeth. , a coil wound around each of two or more teeth out of the plurality of teeth, and an armature that faces the field magnetic pole and moves relative to the field magnetic pole. Within the range of the width of the armature core in the direction of travel, the combination of the number of teeth possessed by the armature core and the number of magnetic poles facing the plurality of teeth and arranged in the direction of travel of the armature A given number of magnetic poles is a non-integer number.
 本開示にかかるリニアモータは、リニアモータを駆動するための推力を維持しながらコギング推力を低減できるという効果を奏する。 The linear motor according to the present disclosure has the effect of reducing the cogging thrust while maintaining the thrust for driving the linear motor.
実施の形態1にかかるリニアモータの模式図Schematic diagram of a linear motor according to the first embodiment 実施の形態1にかかるリニアモータの電機子コアを分割コアにより構成する第1の例を示す図FIG. 4 is a diagram showing a first example in which the armature core of the linear motor according to the first embodiment is composed of split cores; 実施の形態1にかかるリニアモータの電機子コアを分割コアにより構成する第2の例を示す図FIG. 4 shows a second example in which the armature core of the linear motor according to the first embodiment is composed of split cores; 実施の形態1にかかるリニアモータの変形例を示す模式図Schematic diagram showing a modification of the linear motor according to the first embodiment 実施の形態1にかかるリニアモータにおけるコギング推力の低減効果について説明するための第1の図FIG. 1 is a first diagram for explaining the cogging thrust reduction effect in the linear motor according to the first embodiment; 実施の形態1にかかるリニアモータにおけるコギング推力の低減効果について説明するための第2の図FIG. 2 is a second diagram for explaining the effect of reducing the cogging thrust in the linear motor according to the first embodiment; 実施の形態1にかかるリニアモータにおけるコギング推力の低減効果について説明するための第3の図FIG. 3 is a third diagram for explaining the effect of reducing the cogging thrust in the linear motor according to the first embodiment; 実施の形態1にかかるリニアモータにおけるコギング推力と基本組み合わせにおける磁極の数との関係の例を説明するための図FIG. 5 is a diagram for explaining an example of the relationship between the cogging thrust and the number of magnetic poles in the basic combination in the linear motor according to the first embodiment; 実施の形態1にかかるリニアモータにおける推力および推力リップルについて説明するための第1の図FIG. 1 is a first diagram for explaining the thrust and thrust ripple in the linear motor according to the first embodiment; 実施の形態1にかかるリニアモータにおける推力および推力リップルについて説明するための第2の図FIG. 2 is a second diagram for explaining the thrust and thrust ripple in the linear motor according to the first embodiment; 実施の形態1にかかるリニアモータにおけるターン数の調整について説明するための図FIG. 4 is a diagram for explaining adjustment of the number of turns in the linear motor according to the first embodiment; 実施の形態2にかかるリニアモータの模式図Schematic diagram of a linear motor according to a second embodiment 実施の形態2にかかるリニアモータにおけるコギング推力の低減効果について説明するための図FIG. 5 is a diagram for explaining the effect of reducing cogging thrust in the linear motor according to the second embodiment; 実施の形態3にかかるリニアモータの模式図Schematic diagram of a linear motor according to a third embodiment 実施の形態3にかかるリニアモータにおけるコギング推力の低減効果について説明するための図FIG. 11 is a diagram for explaining the effect of reducing cogging thrust in the linear motor according to the third embodiment; 実施の形態3の変形例にかかるリニアモータの模式図Schematic diagram of a linear motor according to a modification of the third embodiment 実施の形態4にかかるリニアモータの模式図Schematic diagram of a linear motor according to a fourth embodiment
 以下に、実施の形態にかかるリニアモータを図面に基づいて詳細に説明する。 The linear motor according to the embodiment will be described in detail below based on the drawings.
実施の形態1.
 図1は、実施の形態1にかかるリニアモータ1の模式図である。X軸およびY軸は、互いに垂直な2軸とする。以下の説明にて、X軸の方向をX方向、Y軸の方向をY方向と称する。
Embodiment 1.
FIG. 1 is a schematic diagram of a linear motor 1 according to the first embodiment. The X-axis and the Y-axis are two axes perpendicular to each other. In the following description, the direction of the X axis is called the X direction, and the direction of the Y axis is called the Y direction.
 リニアモータ1は、固定子である界磁磁極2と可動子である電機子3とを有する。X方向は、界磁磁極2に対する電機子3の進行方向である。X方向における電機子3の幅は、X方向における界磁磁極2の幅よりも短い。電機子3は、界磁磁極2に向かい合わせられて配置される。界磁磁極2および電機子3は、Y方向において、間隙を介して互いに向かい合う。電機子3は、界磁磁極2との相互作用による推力によって、界磁磁極2に対して相対的に移動する。 A linear motor 1 has a field magnetic pole 2 as a stator and an armature 3 as a mover. The X direction is the traveling direction of the armature 3 with respect to the field magnetic poles 2 . The width of the armature 3 in the X direction is shorter than the width of the field pole 2 in the X direction. The armature 3 is arranged to face the field magnetic poles 2 . The field pole 2 and the armature 3 face each other with a gap in the Y direction. The armature 3 moves relatively to the field magnetic pole 2 by the thrust generated by interaction with the field magnetic pole 2 .
 界磁磁極2は、バックヨーク4と、バックヨーク4上においてX方向に配列された複数の永久磁石5とを有する。バックヨーク4は、磁性材料からなる。各永久磁石5は、X方向において等間隔に配列されている。複数の永久磁石5は、X方向においてN極とS極とが交互に並ぶように配置される。すなわち、互いに異なる極性の磁極がX方向において交互に配置される。 The field pole 2 has a back yoke 4 and a plurality of permanent magnets 5 arranged on the back yoke 4 in the X direction. The back yoke 4 is made of magnetic material. Each permanent magnet 5 is arranged at regular intervals in the X direction. The plurality of permanent magnets 5 are arranged so that N poles and S poles are alternately arranged in the X direction. That is, magnetic poles with different polarities are alternately arranged in the X direction.
 電機子3は、電機子コア6と、複数のコイル7とを有する。電機子コア6は、X方向へ延びるコアバック8と、X方向に配列された複数のティース9とを有する。各ティース9は、磁性材料からなる。各ティース9は、コアバック8から界磁磁極2の方へ延びる。各ティース9は、コアバック8により互いに磁気的に接続されている。各ティース9は、X方向において等間隔に配置されている。X方向において互いに隣り合うティース9同士の隙間は、スロットと称される。電機子3の各コイル7は、ティース9ごとに形成される集中巻きのコイルである。 The armature 3 has an armature core 6 and a plurality of coils 7. The armature core 6 has a core back 8 extending in the X direction and a plurality of teeth 9 arranged in the X direction. Each tooth 9 is made of a magnetic material. Each tooth 9 extends from the core back 8 toward the field pole 2 . Each tooth 9 is magnetically connected to each other by the core back 8 . Each tooth 9 is arranged at regular intervals in the X direction. A gap between teeth 9 adjacent to each other in the X direction is called a slot. Each coil 7 of the armature 3 is a concentrated winding coil formed for each tooth 9 .
 リニアモータ1は、3相交流電圧の印加によって駆動する3相モータである。図1に示す電機子3は、3個のティース9を有する。電機子3において、1個のティース9に1個のコイル7が巻かれている。実施の形態1では、便宜上、電機子3の各ティース9にティース番号を割り当てる。各ティース9には、図1において左から右へ向かって、それぞれティース番号であるt1,t2,t3が割り当てられている。t1のティース9には、U相のコイル7が巻かれている。t2のティース9には、V相のコイル7が巻かれている。t3のティース9には、W相のコイル7が巻かれている。コイル7が巻かれたティース9の各々は、互いに同一の形状である。すなわち、図1に示す電機子3では、t1,t2,t3の各ティース9は、互いに同一の形状である。 The linear motor 1 is a three-phase motor driven by application of a three-phase AC voltage. The armature 3 shown in FIG. 1 has three teeth 9 . In the armature 3 , one coil 7 is wound around one tooth 9 . In Embodiment 1, a tooth number is assigned to each tooth 9 of the armature 3 for convenience. Each tooth 9 is assigned a tooth number t1, t2, t3 from left to right in FIG. A U-phase coil 7 is wound around the teeth 9 of t1. A V-phase coil 7 is wound around the tooth 9 at t2. A W-phase coil 7 is wound around the teeth 9 of t3. Each of the teeth 9 around which the coil 7 is wound has the same shape as each other. That is, in the armature 3 shown in FIG. 1, the teeth 9 of t1, t2, and t3 have the same shape.
 電機子3が有する全てのコイル7の線径は同じである。すなわち、電機子3の全てのコイル7は、同一の径の導線により形成されている。これにより、互いに異なる径の導線によって相ごとのコイル7を形成する必要がある場合に比べて、電機子3の製造にかかる時間を短縮することができ、電機子3の生産性を向上させることができる。 The wire diameters of all the coils 7 included in the armature 3 are the same. That is, all the coils 7 of the armature 3 are made of conductor wires having the same diameter. As a result, the time required to manufacture the armature 3 can be shortened, and the productivity of the armature 3 can be improved, compared to the case where the coils 7 for each phase must be formed using conductive wires having different diameters. can be done.
 電機子3には、3相交流電源から電圧が印加される。3相交流電源の図示は省略する。電機子3は、各コイル7に電流が流れることによって磁束を発生させる。磁束と永久磁石5との位置関係に応じて各コイル7と永久磁石5との間に吸引力と反発力とが生じることによって、電機子3をX方向へ移動させる推力が発生する。リニアモータ1は、推力を発生させることによって電機子3をX方向へ移動させる。 A voltage is applied to the armature 3 from a three-phase AC power supply. Illustration of the three-phase AC power supply is omitted. The armature 3 generates magnetic flux when current flows through each coil 7 . An attractive force and a repulsive force are generated between the coils 7 and the permanent magnets 5 according to the positional relationship between the magnetic flux and the permanent magnets 5, thereby generating a thrust that moves the armature 3 in the X direction. The linear motor 1 moves the armature 3 in the X direction by generating thrust.
 ここで、磁極の数とティース9の数との組み合わせについて説明する。当該組み合わせにおける磁極の数とは、X方向における電機子コア6の幅Twの範囲内にある磁極の数とする。幅Twは、電機子コア6が有する複数のティース9のX方向幅であって、ティース9のピッチpにティース9の数を乗じたものとする。ピッチpは、X方向において互いに隣り合うティース9の中心線同士の距離である。ティース9の中心線は、X方向におけるティース9の中心を表す。図1では、各ティース9の中心線を一点鎖線により表す。以下、磁極の数とティース9の数との組み合わせを、基本組み合わせと称する。基本組み合わせは、電機子コア6が有するティース9の数と、幅Twの範囲内にある磁極の数との組み合わせである。基本組み合わせは、電機子コア6が有するティース9の数と、複数のティース9と向かい合う磁極の数であってX方向に配列された磁極の数との組み合わせともいえる。 Here, the combination of the number of magnetic poles and the number of teeth 9 will be explained. The number of magnetic poles in the combination is the number of magnetic poles within the width Tw of the armature core 6 in the X direction. The width Tw is the X-direction width of the plurality of teeth 9 of the armature core 6 and is obtained by multiplying the pitch p of the teeth 9 by the number of teeth 9 . The pitch p is the distance between the center lines of teeth 9 adjacent to each other in the X direction. A center line of the tooth 9 represents the center of the tooth 9 in the X direction. In FIG. 1, the center line of each tooth 9 is represented by a one-dot chain line. A combination of the number of magnetic poles and the number of teeth 9 is hereinafter referred to as a basic combination. A basic combination is a combination of the number of teeth 9 that the armature core 6 has and the number of magnetic poles within the width Tw. The basic combination can also be said to be a combination of the number of teeth 9 that the armature core 6 has and the number of magnetic poles that face the plurality of teeth 9 and are arranged in the X direction.
 リニアモータ1の基本組み合わせにおいて、ティース9の数と磁極の数とは互いに整数倍ではない。すなわち、ティース9の数は磁極の数の整数倍ではなく、かつ、磁極の数はティース9の数の整数倍ではない。また、リニアモータ1は、基本組み合わせにおいて、電機子コア6の幅Twの範囲内にある磁極の数が小数、すなわち非整数であるという特徴を有する。 In the basic combination of the linear motor 1, the number of teeth 9 and the number of magnetic poles are not integral multiples of each other. That is, the number of teeth 9 is not an integral multiple of the number of magnetic poles, and the number of magnetic poles is not an integral multiple of the number of teeth 9 . Further, the linear motor 1 is characterized in that the number of magnetic poles within the range of the width Tw of the armature core 6 is a decimal number, that is, a non-integer number in the basic combination.
 実施の形態1にかかるリニアモータ1では、基本組み合わせにおいて、ティース9の数が3、かつ磁極の数が2.5である。以下、ティース9の数が3、かつ磁極の数が2.5の基本組み合わせを、「2.5極3ティース」と表す。 In the linear motor 1 according to Embodiment 1, the number of teeth 9 is 3 and the number of magnetic poles is 2.5 in the basic combination. Hereinafter, a basic combination in which the number of teeth 9 is 3 and the number of magnetic poles is 2.5 will be referred to as "2.5 poles 3 teeth".
 次の式(1)を計算した結果が非整数、すなわち小数である場合に、基本組み合わせにおいて、ティース9の数が整数であるのに対して磁極の数は小数であるという関係が成り立つ。リニアモータ1について、式(1)を計算した結果は非整数となる。
{L×Nt/(Nt-1)}÷τp  ・・・(1)
When the result of calculating the following formula (1) is a non-integer, that is, a decimal number, there is a relation that the number of teeth 9 is an integer number and the number of magnetic poles is a decimal number in the basic combination. For the linear motor 1, the result of calculating the equation (1) is a non-integer.
{L×Nt/(Nt−1)}÷τp (1)
 なお、Ntは、電機子3が有する複数のティース9のうちコイル7が巻かれたティース9の数とする。Lは、コイル7が巻かれたティース9のうちX方向における両端のティース9同士の距離とする。図1に示すリニアモータ1では、Lは、t1のティース9の中心線とt3のティース9の中心線との距離である。τpは、磁極のピッチとする。磁極のピッチは、互いに異なる極性の磁極であってX方向において互いに隣り合う磁極の中心位置同士の距離である。図1に示す例では、Ntは3である。また、例えば、Lは32[mm]、τpは19.2[mm]とする。この場合、式(1)を計算した結果は2.5であって、基本組み合わせにおいてティース9の数が整数であるのに対して磁極の数は小数であるという関係が成り立つ。 Note that Nt is the number of teeth 9 around which the coil 7 is wound among the plurality of teeth 9 of the armature 3 . Let L be the distance between the teeth 9 at both ends in the X direction of the teeth 9 around which the coil 7 is wound. In the linear motor 1 shown in FIG. 1, L is the distance between the center line of the teeth 9 at t1 and the center line of the teeth 9 at t3. τp is the pitch of the magnetic poles. The pitch of the magnetic poles is the distance between the center positions of magnetic poles of different polarities that are adjacent to each other in the X direction. In the example shown in FIG. 1, Nt is three. Also, for example, L is 32 [mm] and τp is 19.2 [mm]. In this case, the result of calculating the equation (1) is 2.5, and the relationship holds that the number of teeth 9 in the basic combination is an integer while the number of magnetic poles is a decimal number.
 リニアモータ1は、基本組み合わせにおいてティース9の数が整数であるのに対して磁極の数が非整数であることによって、基本組み合わせにおいてティース9の数も磁極の数も整数である場合に比べて、コギング推力を低減できる。実施の形態1にかかるリニアモータ1の構成による作用効果については後述する。 In the linear motor 1, the number of teeth 9 is an integer in the basic combination, whereas the number of magnetic poles is a non-integer. , the cogging thrust can be reduced. Effects of the configuration of the linear motor 1 according to the first embodiment will be described later.
 電機子コア6は、磁性材料からなる。図1に示す電機子コア6は、プレス加工等により一体物として製作される。電機子コア6は、プレス加工等により製作された複数の分割コアを組み合わせたものであっても良い。生産設備、リニアモータ1のサイズ、コイル7の仕様といった事情によって、一体物として電機子コア6を製作することが困難である場合に、複数の分割コアを製作し、複数の分割コアを組み合わせることによって、電機子コア6を製作することができる。 The armature core 6 is made of a magnetic material. The armature core 6 shown in FIG. 1 is manufactured as an integral body by press working or the like. The armature core 6 may be a combination of a plurality of split cores manufactured by press working or the like. When it is difficult to manufacture the armature core 6 as an integral body due to circumstances such as the production equipment, the size of the linear motor 1, and the specifications of the coil 7, it is possible to manufacture a plurality of split cores and combine the plurality of split cores. , the armature core 6 can be manufactured.
 ここで、電機子コア6を分割コアにより構成する例について説明する。図2は、実施の形態1にかかるリニアモータ1の電機子コア6を分割コアにより構成する第1の例を示す図である。第1の例において、電機子コア6は、互いに同一形状の3個の部品6aを組み合わせたものである。各部品6aは、分割コアである。電機子コア6は、互いに隣り合うティース9間にてコアバック8を分割することにより、3個の部品6aに分割される。各部品6aが互いに同一形状であるため、各部品6aは、同一のプレス金型を使用して製作可能である。 Here, an example in which the armature core 6 is composed of split cores will be described. FIG. 2 is a diagram showing a first example in which the armature core 6 of the linear motor 1 according to the first embodiment is composed of split cores. In the first example, the armature core 6 is a combination of three parts 6a having the same shape. Each component 6a is a split core. The armature core 6 is divided into three parts 6a by dividing the core back 8 between the teeth 9 adjacent to each other. Since each part 6a has the same shape as each other, each part 6a can be manufactured using the same press die.
 図3は、実施の形態1にかかるリニアモータ1の電機子コア6を分割コアにより構成する第2の例を示す図である。第2の例では、コアバック8と3個のティース9との各々が分割コアとして製作される。電機子コア6は、コアバック8と3個のティース9とを組み合わせることによって製作される。各ティース9が同一形状であるため、各ティース9は、同一のプレス金型を使用して製作可能である。 FIG. 3 is a diagram showing a second example in which the armature core 6 of the linear motor 1 according to Embodiment 1 is composed of split cores. In a second example, each of the core back 8 and the three teeth 9 is manufactured as a split core. Armature core 6 is manufactured by combining core back 8 and three teeth 9 . Since each tooth 9 has the same shape, each tooth 9 can be manufactured using the same press die.
 第1の例または第2の例のように、分割コアにより電機子コア6を構成することで、プレス金型の小型化が可能となり、生産設備に必要な費用を低減できる。プレス金型の小型化によってプレス加工の容易化が可能となることから、分割コアにより電機子コア6を構成することは、電機子コア6の大量生産に適している。なお、電機子コア6または分割コアは、プレス加工以外の方法により製作されても良い。 By configuring the armature core 6 with split cores as in the first example or the second example, it is possible to reduce the size of the press die and reduce the cost required for the production equipment. Forming the armature core 6 with split cores is suitable for mass production of the armature core 6, because press working can be facilitated by downsizing the press die. The armature core 6 or split cores may be manufactured by a method other than press working.
 実施の形態1では、リニアモータ1は3相モータであって、3個のティース9の各々に1相のコイル7を取り付けることとしたが、相数は3に限られないものとする。電機子3に設けられるコイル7の数と電機子コア6のティース9の数とは、相数に応じて適宜変更しても良い。リニアモータ1は、2以上のティース9の各々に巻かれたコイル7を有するものであれば良い。 In Embodiment 1, the linear motor 1 is a three-phase motor, and one-phase coils 7 are attached to each of the three teeth 9, but the number of phases is not limited to three. The number of coils 7 provided in the armature 3 and the number of teeth 9 of the armature core 6 may be appropriately changed according to the number of phases. The linear motor 1 may have a coil 7 wound around each of two or more teeth 9 .
 電機子コア6は、複数のティース9とは別のティースである補助ティースをさらに有しても良い。図4は、実施の形態1にかかるリニアモータ1の変形例を示す模式図である。変形例にかかるリニアモータ1の電機子コア6は、2個の補助ティース9aを有する。2個の補助ティース9aのうちの一方は、電機子コア6のうちX方向における一方の端部に設けられている。2個の補助ティース9aのうちの他方は、電機子コア6のうちX方向における他方の端部に設けられている。各補助ティース9aの形状は、各ティース9の形状とは異なる。各補助ティース9aには、コイル7は巻かれていない。 The armature core 6 may further have auxiliary teeth that are different from the plurality of teeth 9 . FIG. 4 is a schematic diagram showing a modification of the linear motor 1 according to the first embodiment. The armature core 6 of the linear motor 1 according to the modification has two auxiliary teeth 9a. One of the two auxiliary teeth 9a is provided at one end of the armature core 6 in the X direction. The other of the two auxiliary teeth 9a is provided at the other end of the armature core 6 in the X direction. The shape of each auxiliary tooth 9 a is different from the shape of each tooth 9 . The coil 7 is not wound around each auxiliary tooth 9a.
 本変形例のリニアモータ1は、図1に示す場合と同様に、2.5極3ティースの基本組み合わせを有する。リニアモータ1は、補助ティース9aが追加されることによって、コギングをさらに低減できる。なお、リニアモータ1に補助ティース9aを設けるか否かは任意であるものとする。 The linear motor 1 of this modified example has a basic combination of 2.5 poles and 3 teeth, as in the case shown in FIG. The linear motor 1 can further reduce cogging by adding the auxiliary teeth 9a. It is to be noted that it is optional whether or not the linear motor 1 is provided with the auxiliary teeth 9a.
 図1に示す界磁磁極2には、Y方向に着磁された永久磁石5のみが使用されている。界磁磁極2には、Y方向に着磁された永久磁石5のみならず、X方向に着磁された永久磁石5、またはX方向およびY方向の間の斜め方向に着磁された永久磁石5が使用されても良い。界磁磁極2は、X方向または斜め方向に着磁された永久磁石5を有することにより、磁束を集中させたいわゆる磁束集中型構造とされても良く、またはハルバッハ配列構造とされても良い。界磁磁極2が磁束集中型構造またはハルバッハ配列構造とされることによって、界磁磁極2の磁束密度を高めることができる。界磁磁極2の磁束密度を高めることによって、リニアモータ1の推力密度を高めることができる。なお、界磁磁極2を磁束集中型構造またはハルバッハ配列構造とするか否かは任意であるものとする。 Only permanent magnets 5 magnetized in the Y direction are used in the field poles 2 shown in FIG. The field poles 2 include not only the permanent magnets 5 magnetized in the Y direction, but also the permanent magnets 5 magnetized in the X direction, or the permanent magnets 5 magnetized in an oblique direction between the X and Y directions. 5 may be used. The field magnetic poles 2 may have a so-called magnetic flux concentration type structure in which magnetic flux is concentrated by having permanent magnets 5 magnetized in the X direction or oblique directions, or may have a Halbach array structure. The magnetic flux density of the field pole 2 can be increased by making the field pole 2 have a magnetic flux concentration type structure or a Halbach arrangement structure. By increasing the magnetic flux density of the field magnetic poles 2, the thrust density of the linear motor 1 can be increased. It is optional whether the field magnetic pole 2 has a magnetic flux concentration type structure or a Halbach array structure.
 リニアモータ1は、磁性材料からなるバックヨーク4が界磁磁極2に設けられることによって、界磁磁極2の磁束密度を高め、推力密度を高めることができる。なお、界磁磁極2にバックヨーク4を設けるか否かは任意であるものとする。 The linear motor 1 can increase the magnetic flux density of the field magnetic pole 2 and the thrust density by providing the back yoke 4 made of a magnetic material to the field magnetic pole 2 . It is assumed that whether or not the back yoke 4 is provided on the field pole 2 is optional.
 次に、実施の形態1にかかるリニアモータ1の構成による作用効果について説明する。リニアモータ1では、電機子3のX方向端部において、界磁磁極2との間の磁束の状態が不連続となる。界磁磁極2に対して電機子3が移動すると、永久磁石5と電機子3の端部との間に生じる吸引力が、永久磁石5と電機子3の端部との位置関係に起因して周期的に変化する。これにより、リニアモータ1には、電機子3を移動させる推力に脈動成分が加わることによるコギング推力が生じる。 Next, the effects of the configuration of the linear motor 1 according to Embodiment 1 will be described. In the linear motor 1 , the state of magnetic flux between the armature 3 and the field pole 2 is discontinuous at the X-direction end of the armature 3 . When the armature 3 moves with respect to the field magnetic pole 2, the attractive force generated between the permanent magnet 5 and the end of the armature 3 is caused by the positional relationship between the permanent magnet 5 and the end of the armature 3. changes cyclically. As a result, a cogging thrust is generated in the linear motor 1 by adding a pulsation component to the thrust that moves the armature 3 .
 リニアモータ1には、有限長さの電機子3が用いられており、界磁磁極2との間の磁束の状態が不連続となる端部が電機子3に存在することから、電機子3の端部に起因するコギング推力、いわゆる端効果によるコギング推力が生じる。一方、回転型のモータの場合、界磁磁極との間の磁束の状態が不連続となる端部が電機子には存在しないことから、端効果によるコギング推力は生じない。 The linear motor 1 uses an armature 3 with a finite length. A cogging thrust caused by the edge of the , that is, a cogging thrust due to the so-called edge effect is generated. On the other hand, in the case of a rotary motor, since the armature does not have an edge where the state of magnetic flux between the armature and the magnetic field pole is discontinuous, cogging thrust due to the edge effect does not occur.
 図5は、実施の形態1にかかるリニアモータ1におけるコギング推力の低減効果について説明するための第1の図である。図6は、実施の形態1にかかるリニアモータ1におけるコギング推力の低減効果について説明するための第2の図である。 FIG. 5 is a first diagram for explaining the effect of reducing the cogging thrust in the linear motor 1 according to the first embodiment. FIG. 6 is a second diagram for explaining the cogging thrust reduction effect in the linear motor 1 according to the first embodiment.
 図5および図6には、実施の形態1にかかるリニアモータ1の代わりに、2極3ティースの基本組み合わせを有するモータにおけるコギング推力のベクトル図を示す。2極3ティースの基本組み合わせは、ティース9の数が3、かつ磁極の数が2の基本組み合わせである。かかるモータの3個のティース9にも、リニアモータ1の場合と同様に、t1,t2,t3のティース番号を割り当てるものとする。なお、2極3ティースの基本組み合わせの場合、上記式(1)におけるNtは3である。また、例えば、Lは32[mm]、τpは24[mm]とする。この場合、式(1)を計算した結果は2であって、基本組み合わせにおいてティース9の数および磁極の数はいずれも整数である。 5 and 6 show vector diagrams of cogging thrust in a motor having a basic combination of two poles and three teeth instead of the linear motor 1 according to the first embodiment. A basic combination of two poles and three teeth is a basic combination in which the number of teeth 9 is three and the number of magnetic poles is two. The teeth numbers t1, t2, and t3 are also assigned to the three teeth 9 of such a motor as in the case of the linear motor 1. FIG. In addition, in the case of the basic combination of two poles and three teeth, Nt is 3 in the above formula (1). Also, for example, L is 32 [mm] and τp is 24 [mm]. In this case, the result of calculating formula (1) is 2, and both the number of teeth 9 and the number of magnetic poles in the basic combination are integers.
 図5には、端効果によるコギング推力が生じない場合、すなわち回転型のモータについてのベクトル図の例を示す。図6には、端効果によるコギング推力が生じる場合、すなわち比較例であるリニアモータについてのベクトル図の例を示す。図5および図6において、縦軸はベクトルのcos成分、横軸はベクトルのsin成分を表す。 FIG. 5 shows an example of a vector diagram for a case where no cogging thrust due to the end effect is generated, that is, for a rotary motor. FIG. 6 shows an example of a vector diagram of a linear motor that is a comparative example when cogging thrust is generated due to the end effect. 5 and 6, the vertical axis represents the cosine component of the vector, and the horizontal axis represents the sine component of the vector.
 図5では、360度の電気角にて回転子を回転させた場合に3個のティース9の各々に発生するコギング推力の2次成分ベクトルを太線により表す。2次成分は、回転子の回転周波数である基本周波数の2倍の周波数成分である。各ティース9に発生するコギング推力には、2次成分と、2次よりも高次の成分とが含まれるが、ここでは、2次成分に着目するものとする。電気角360度とは、界磁磁極2がN極およびS極の一対の磁束密度分布を発生する区間と定義されている。N極およびS極の当該区間上を1つのティース9が通ったときに、ティース9がN極およびS極の各々から磁気吸引力を受けることによって、2回の推力脈動が発生する。このため、電気角360度の区間において、2回の脈動である2次成分が発生する。 In FIG. 5, the thick line represents the secondary component vector of the cogging thrust generated in each of the three teeth 9 when the rotor is rotated at an electrical angle of 360 degrees. The secondary component is a frequency component that is twice the fundamental frequency, which is the rotation frequency of the rotor. The cogging thrust generated in each tooth 9 includes a secondary component and a higher-order component than the secondary component, but the secondary component will be focused here. An electrical angle of 360 degrees is defined as a section in which the field magnetic pole 2 generates a pair of magnetic flux density distributions of N and S poles. When one tooth 9 passes over the section of the N pole and the S pole, the tooth 9 receives magnetic attraction from each of the N pole and the S pole, thereby generating two thrust pulsations. Therefore, a secondary component, which is two pulsations, is generated in the section of 360 electrical degrees.
 図5に示すように、各ティース9における2次成分ベクトルの振幅は同じであって、かつ、各ティース9における2次成分ベクトルは120度ずつの位相差で分布している。このため、各ティース9における2次成分ベクトルを合成することによる合成ベクトルは発生しない。このように、図5において説明する回転型のモータでは、各ティース9に発生するコギング推力が互いに釣り合うことによって、電機子全体におけるコギング推力が小さくなる。 As shown in FIG. 5, the amplitude of the secondary component vector in each tooth 9 is the same, and the secondary component vector in each tooth 9 is distributed with a phase difference of 120 degrees. Therefore, no synthesized vector is generated by synthesizing the secondary component vectors in each tooth 9 . In this way, in the rotary motor described in FIG. 5, the cogging thrust generated in each tooth 9 is balanced with each other, so that the cogging thrust in the entire armature is reduced.
 図6には、図5における回転型のモータの動作をリニアモータに置き換えた場合に、3個のティース9の各々に発生するコギング推力の2次成分ベクトルを示す。図6でも、コギング推力の2次成分ベクトルを太線により表す。図6に示す各2次成分ベクトルの振幅および位相は、端効果によって、図5に示す場合と比べて変化する。このため、各ティース9における2次成分ベクトルを合成することによる合成ベクトルが発生する。図6における白抜き矢印は、合成ベクトルを表す。このように、図6において説明するリニアモータでは、各ティース9に発生するコギング推力のバランスが崩れることによって、電機子全体におけるコギング推力が大きくなる。 FIG. 6 shows secondary component vectors of cogging thrust generated in each of the three teeth 9 when the operation of the rotary motor in FIG. 5 is replaced by a linear motor. In FIG. 6 as well, the secondary component vector of the cogging thrust is represented by a thick line. The amplitude and phase of each secondary component vector shown in FIG. 6 change compared to the case shown in FIG. 5 due to end effects. Therefore, a synthesized vector is generated by synthesizing the secondary component vectors in each tooth 9 . The white arrows in FIG. 6 represent composite vectors. As described above, in the linear motor described with reference to FIG. 6, the cogging thrust generated in each tooth 9 is out of balance, and the cogging thrust in the entire armature increases.
 実施の形態1にかかるリニアモータ1では、基本組み合わせにおいて、電機子コア6の幅Twの範囲内にある磁極の数を非整数とすることによって、各ティース9に発生するコギング推力の振幅および位相を、図6に示す状態から変化させる。リニアモータ1は、コギング推力のバランスを変化させることによって合成ベクトルを小さくさせることで、電機子3全体におけるコギング推力を低減させる。これにより、リニアモータ1は、基本組み合わせにおける磁極の数が整数である場合に比べて、コギング推力を低減させることができる。 In the linear motor 1 according to the first embodiment, in the basic combination, by setting the number of magnetic poles within the range of the width Tw of the armature core 6 to be a non-integer, the amplitude and phase of the cogging thrust generated in each tooth 9 are reduced to is changed from the state shown in FIG. The linear motor 1 reduces the cogging thrust in the entire armature 3 by changing the balance of the cogging thrust to reduce the resultant vector. Thereby, the linear motor 1 can reduce the cogging thrust compared to the case where the number of magnetic poles in the basic combination is an integer.
 図7は、実施の形態1にかかるリニアモータ1におけるコギング推力の低減効果について説明するための第3の図である。図7には、実施の形態1にかかる2.5極3ティースのリニアモータ1におけるコギング推力の変化を表すグラフと、比較例である2極3ティースのリニアモータにおけるコギング推力の変化を表すグラフとを示す。図7において、2.5極3ティースの場合のグラフは実線により表す。2極3ティースの場合のグラフは破線により表す。図7において、縦軸は、2極3ティースの場合における振幅を基に規格化されたコギング推力を表す。図7において、横軸は電気角を表す。図7に示すコギング推力と電気角との関係は、磁界解析によって求めることができる。 FIG. 7 is a third diagram for explaining the cogging thrust reduction effect in the linear motor 1 according to the first embodiment. FIG. 7 shows a graph showing changes in the cogging thrust in the 2.5-pole, 3-teeth linear motor 1 according to the first embodiment, and a graph showing changes in the cogging thrust in the 2-pole, 3-teeth linear motor of the comparative example. and In FIG. 7, the solid line represents the graph for the case of 2.5 poles and 3 teeth. The graph for 2-pole 3-teeth is represented by a broken line. In FIG. 7, the vertical axis represents the cogging thrust normalized based on the amplitude in the case of two poles and three teeth. In FIG. 7, the horizontal axis represents the electrical angle. The relationship between the cogging thrust and the electrical angle shown in FIG. 7 can be obtained by magnetic field analysis.
 図7に示すように、2極3ティースの場合における波形には、360度の電気角範囲に2つの山と2つの谷とが存在している。すなわち、2極3ティースのリニアモータでは、コギング推力の2次成分が支配的であることが分かる。これに対し、2.5極3ティースの場合における波形は、360度の電気角範囲に4つの山と4つの谷とが存在している。2.5極3ティースの場合における波形では、2極3ティースの場合に支配的であったコギング推力の2次成分がほとんど消えている。その結果、2.5極3ティースのリニアモータ1では、2極3ティースの場合に比べて、コギング推力の全体がおよそ70%低減されている。このように、リニアモータ1は、比較例の場合に比べて、コギング推力を大幅に低減させることができる。 As shown in FIG. 7, the waveform in the case of two poles and three teeth has two peaks and two valleys in the electrical angle range of 360 degrees. That is, it can be seen that the secondary component of the cogging thrust is dominant in the two-pole, three-teeth linear motor. On the other hand, the waveform in the case of 2.5 poles and 3 teeth has 4 peaks and 4 valleys in the electrical angle range of 360 degrees. In the waveform in the case of 2.5 poles and 3 teeth, the secondary component of the cogging thrust that was dominant in the case of 2 poles and 3 teeth has almost disappeared. As a result, in the 2.5-pole, 3-teeth linear motor 1, the overall cogging thrust is reduced by about 70% compared to the 2-pole, 3-teeth linear motor. Thus, the linear motor 1 can significantly reduce the cogging thrust compared to the case of the comparative example.
 図8は、実施の形態1にかかるリニアモータ1におけるコギング推力と基本組み合わせにおける磁極の数との関係の例を説明するための図である。図8には、基本組み合わせにおける磁極の数を変化させた場合における、コギング推力の振幅値と、基本組み合わせにおける磁極の数との関係を折れ線グラフにより表す。図8に示す関係では、基本組み合わせにおける磁極の数は2から2.9の範囲において変化させる一方、基本組み合わせにおけるティース9の数は3のままとする。図8において、縦軸は、コギング推力の振幅値を表す。縦軸により表す振幅値は、基本組み合わせにおける磁極の数が2である場合における振幅値を基に規格化された振幅値である。図8において、横軸は、基本組み合わせにおける磁極の数を表す。図8に示す振幅値と磁極の数との関係は、磁界解析によって求めることができる。 FIG. 8 is a diagram for explaining an example of the relationship between the cogging thrust and the number of magnetic poles in the basic combination in the linear motor 1 according to the first embodiment. FIG. 8 is a line graph showing the relationship between the amplitude value of the cogging thrust and the number of magnetic poles in the basic combination when the number of magnetic poles in the basic combination is changed. In the relationship shown in FIG. 8, the number of magnetic poles in the basic combination is varied in the range of 2 to 2.9, while the number of teeth 9 in the basic combination remains 3. In FIG. 8, the vertical axis represents the amplitude value of the cogging thrust. The amplitude value represented by the vertical axis is the amplitude value normalized based on the amplitude value when the number of magnetic poles in the basic combination is two. In FIG. 8, the horizontal axis represents the number of magnetic poles in the basic combination. The relationship between the amplitude value and the number of magnetic poles shown in FIG. 8 can be obtained by magnetic field analysis.
 図8において、磁極の数が2以外の値である場合に、磁極の数が2である場合よりも振幅が小さくなる。すなわち、図8によると、リニアモータ1は、磁極の数が2よりも大きくかつ2.9未満の非整数である場合に、磁極の数が2である場合よりもコギング推力を低減させることができる。このように、リニアモータ1は、基本組み合わせにおけるティース9の数を整数、かつ磁極の数を非整数とすることによって、基本組み合わせにおいてティース9の数も磁極の数も整数である場合に比べて、コギング推力を低減させることができる。 In FIG. 8, when the number of magnetic poles is a value other than two, the amplitude is smaller than when the number of magnetic poles is two. That is, according to FIG. 8, when the number of magnetic poles is a non-integer greater than 2 and less than 2.9, the linear motor 1 can reduce the cogging thrust more than when the number of magnetic poles is 2. can. In this way, the linear motor 1 has an integer number of teeth 9 and a non-integer number of magnetic poles in the basic combination, so that the number of teeth 9 and the number of magnetic poles in the basic combination are both integers. , the cogging thrust can be reduced.
 また、図8に示す例では、磁極の数が2.5である場合に振幅値が最小となる。すなわち、図8によると、リニアモータ1は、基本組み合わせにおける磁極の数を2.5とすることによって、コギング推力を最小とすることができる。なお、コギング推力を最小とするために最適な基本組み合わせは、ティース9の形状または大きさ、永久磁石5の形状または大きさなどといった、リニアモータ1における磁気構造の設計によって変わる。基本組み合わせにおけるティース9の数と磁極の数とは、リニアモータ1の構成によって適宜変更することができる。 Also, in the example shown in FIG. 8, the amplitude value is the minimum when the number of magnetic poles is 2.5. That is, according to FIG. 8, the linear motor 1 can minimize the cogging thrust by setting the number of magnetic poles in the basic combination to 2.5. The optimal basic combination for minimizing the cogging thrust varies depending on the design of the magnetic structure of the linear motor 1, such as the shape or size of the teeth 9, the shape or size of the permanent magnets 5, and the like. The number of teeth 9 and the number of magnetic poles in the basic combination can be changed as appropriate according to the configuration of the linear motor 1 .
 次に、リニアモータ1に生じ得る推力低下、および、リニアモータ1の通電時に発生し得る推力リップルの増加についての対策を説明する。図9は、実施の形態1にかかるリニアモータ1における推力および推力リップルについて説明するための第1の図である。図10は、実施の形態1にかかるリニアモータ1における推力および推力リップルについて説明するための第2の図である。 Next, countermeasures for a reduction in thrust that can occur in the linear motor 1 and an increase in thrust ripple that can occur when the linear motor 1 is energized will be described. FIG. 9 is a first diagram for explaining thrust and thrust ripple in the linear motor 1 according to the first embodiment. FIG. 10 is a second diagram for explaining thrust and thrust ripple in the linear motor 1 according to the first embodiment.
 図9には、基本組み合わせにおいてティース9の数と磁極の数とがいずれも整数である場合における相誘起電圧ベクトルと制御機器の電圧ベクトルとの例を示す。制御機器は、リニアモータ1を制御する機器とする。制御機器の電圧ベクトルは、リニアモータ1を駆動するための電圧のベクトルであって、リニアモータ1を駆動する3相電源から出力される電圧のベクトルとする。図9には、2極3ティースモータにおける相誘起電圧ベクトルと電圧ベクトルとを示す。図10には、基本組み合わせにおけるティース9の数を整数かつ磁極の数を非整数とした場合における相誘起電圧ベクトルと制御機器の電圧ベクトルとの例を示す。図10には、2.5極3ティースモータにおける相誘起電圧ベクトルと電圧ベクトルとを示す。図9および図10において、U,V,Wの各矢印は、制御機器のU,V,Wの各相の電圧ベクトルを示す。U相、V相、W相の各太線は、U,V,Wの各相の相誘起電圧ベクトルを示す。 FIG. 9 shows an example of the phase induced voltage vector and the voltage vector of the control device when both the number of teeth 9 and the number of magnetic poles in the basic combination are integers. A control device is a device that controls the linear motor 1 . A voltage vector of the control device is a vector of voltages for driving the linear motor 1, and is a vector of voltages output from a three-phase power supply for driving the linear motor 1. FIG. FIG. 9 shows phase induced voltage vectors and voltage vectors in a 2-pole 3-teeth motor. FIG. 10 shows an example of the phase induced voltage vector and the voltage vector of the control device when the number of teeth 9 in the basic combination is an integer and the number of magnetic poles is a non-integer. FIG. 10 shows phase induced voltage vectors and voltage vectors in a 2.5-pole, 3-teeth motor. In FIGS. 9 and 10, arrows U, V, and W indicate voltage vectors of phases U, V, and W of the control equipment. Each thick line of the U-phase, V-phase, and W-phase indicates the phase induced voltage vector of each of the U-, V-, and W-phases.
 一般に、集中巻きモータであるリニアモータでは、コイル7のターン数はリニアモータの全てのコイル7において同じである。図9および図10に示す例では、各コイル7のターン数がいずれも同じであるものとする。図9に示すように、基本組み合わせにおいてティース9の数と磁極の数とがいずれも整数であって、かつ各コイル7のターン数がいずれも同じである場合、相誘起電圧ベクトルと電圧ベクトルとは一致する。この場合、各相の電流の振幅は同じとなる。 In general, in a linear motor that is a concentrated winding motor, all the coils 7 of the linear motor have the same number of turns. In the examples shown in FIGS. 9 and 10, it is assumed that each coil 7 has the same number of turns. As shown in FIG. 9, when the number of teeth 9 and the number of magnetic poles in the basic combination are both integers and the number of turns of each coil 7 is the same, the phase induced voltage vector and the voltage vector matches. In this case, the amplitude of the current in each phase is the same.
 これに対し、図10に示すように、基本組み合わせにおけるティース9の数が整数かつ磁極の数が非整数であって、かつ各コイル7のターン数がいずれも同じである場合、図9に示す場合と比較して相誘起電圧ベクトルの位相が変化する。このため、図10に示す例では、相誘起電圧ベクトルの位相が電圧ベクトルの位相とは一致しなくなる。相誘起電圧ベクトルの位相が電圧ベクトルの位相とは一致しないことで、電圧ベクトルの位相への相誘起電圧ベクトルの投影成分の振幅は、相ごとに異なることとなる。この場合、各相の電流の振幅に差が生じることで、推力の低下、および通電時における推力リップルの増加が生じ得る。 On the other hand, as shown in FIG. 10, when the number of teeth 9 in the basic combination is an integer, the number of magnetic poles is a non-integer, and the number of turns of each coil 7 is the same, the number of turns shown in FIG. The phase of the phase induced voltage vector changes compared to the case. Therefore, in the example shown in FIG. 10, the phase of the phase induced voltage vector does not match the phase of the voltage vector. Since the phase of the phase induced voltage vector does not match the phase of the voltage vector, the amplitude of the projection component of the phase induced voltage vector onto the phase of the voltage vector differs for each phase. In this case, a difference in the amplitude of the current of each phase may cause a reduction in thrust and an increase in thrust ripple during energization.
 実施の形態1にかかるリニアモータ1は、推力の低下および推力リップルの増加への対策として、各相のコイル7のターン数を調整しても良い。各相のコイル7のターン数は、リニアモータ1を駆動するための電圧の位相、すなわち電圧ベクトルの位相への相誘起電圧ベクトルの投影成分の振幅が各相について同じとなるように調整される。 The linear motor 1 according to the first embodiment may adjust the number of turns of the coil 7 for each phase as a countermeasure against the decrease in thrust force and the increase in thrust ripple. The number of turns of the coil 7 for each phase is adjusted so that the phase of the voltage for driving the linear motor 1, that is, the amplitude of the projection component of the phase induced voltage vector onto the phase of the voltage vector is the same for each phase. .
 図11は、実施の形態1にかかるリニアモータ1におけるターン数の調整について説明するための図である。図11には、ターン数の調整前とターン数の調整後との各々について、U相、V相およびW相の各コイル7のターン数と、U相、V相およびW相の各駆動軸成分の振幅との例を表す。駆動軸成分は、電圧ベクトルの位相へ相誘起電圧ベクトルを投影した場合における相誘起電圧ベクトルの投影成分とする。図11におけるターン数の値は、各コイル7のターン数の合計を基に規格化された値であって、小数点以下3桁までの値により表す。駆動軸成分の振幅を表す値は、U相、V相およびW相の各々について相誘起電圧ベクトルの位相が電圧ベクトルの位相に一致する場合における振幅の合計を基に規格化された値であって、小数点以下3桁までの値により表す。図11に示す各値は、2.5極3ティースモータであるリニアモータ1についての値とする。 FIG. 11 is a diagram for explaining adjustment of the number of turns in the linear motor 1 according to the first embodiment. FIG. 11 shows the number of turns of the U-phase, V-phase and W-phase coils 7 and the U-phase, V-phase and W-phase drive shafts before and after the adjustment of the number of turns. Figure 3 shows an example with component amplitudes. The drive shaft component is a projected component of the phase induced voltage vector when the phase induced voltage vector is projected onto the phase of the voltage vector. The value of the number of turns in FIG. 11 is a value normalized based on the total number of turns of each coil 7, and is represented by a value up to three decimal places. The value representing the amplitude of the drive shaft component is a value normalized based on the total amplitude when the phase of the phase induced voltage vector matches the phase of the voltage vector for each of the U-phase, V-phase and W-phase. , expressed as a value up to three decimal places. Each value shown in FIG. 11 is for the linear motor 1, which is a 2.5-pole, 3-teeth motor.
 ターン数の調整前において、U相、V相およびW相の各々のターン数は互いに等しく、いずれも0.333である。図10に示すように、2.5極3ティースモータでは、U相の相誘起電圧ベクトルは、U相の電圧ベクトルからW相の電圧ベクトルの方へ寄せられる。また、W相の相誘起電圧ベクトルは、W相の電圧ベクトルからU相の電圧ベクトルの方へ寄せられる。2.5極3ティースモータにおいて、電圧ベクトルの位相からの相誘起電圧ベクトルの位相のずれは30度と算出される。相誘起電圧ベクトルの位相が電圧ベクトルの位相から30度ずれることによって、U相およびW相の各々における駆動軸成分の振幅は、0.333から0.289(≒0.333×cos30°)にまで減少する。 Before the adjustment of the number of turns, the number of turns of each of the U-phase, V-phase and W-phase are equal to each other and all are 0.333. As shown in FIG. 10, in the 2.5-pole 3-teeth motor, the U-phase phase induced voltage vector is shifted from the U-phase voltage vector toward the W-phase voltage vector. Also, the phase induced voltage vector of the W phase is shifted from the voltage vector of the W phase toward the voltage vector of the U phase. In the 2.5-pole 3-teeth motor, the phase shift of the phase induced voltage vector from the phase of the voltage vector is calculated to be 30 degrees. By shifting the phase of the phase induced voltage vector from the phase of the voltage vector by 30 degrees, the amplitude of the drive shaft component in each of the U-phase and W-phase changes from 0.333 to 0.289 (≈0.333×cos30°). to
 U相およびW相の各々における駆動軸成分の振幅がV相における駆動軸成分の振幅よりも小さいことから、V相のターン数よりもU相のターン数とW相のターン数との各々を大きくさせる調整によって、各相における駆動軸成分の振幅が均される。図11に示す例では、U相のターン数およびW相のターン数との各々を0.333から0.349へ増加させ、かつV相のターン数を0.333から0.302へ減少させる調整が行われる。かかる調整により、各相における駆動軸成分の振幅は、いずれも0.302となる。このように、各相のコイル7のターン数を調整することによって、各相における駆動軸成分の振幅を均すことができる。リニアモータ1は、各相における駆動軸成分の振幅が均されることによって、推力の低下を少なくするとともに、推力リップルの増加を少なくすることができる。 Since the amplitude of the drive shaft component in each of the U phase and the W phase is smaller than the amplitude of the drive shaft component in the V phase, the number of turns of the U phase and the number of turns of the W phase are each greater than the number of turns of the V phase. The adjustment to increase equalizes the amplitude of the drive shaft component in each phase. In the example shown in FIG. 11, the number of turns of the U phase and the number of turns of the W phase are each increased from 0.333 to 0.349, and the number of turns of the V phase is decreased from 0.333 to 0.302. adjustments are made. With this adjustment, the amplitude of the drive shaft component in each phase becomes 0.302. By adjusting the number of turns of the coil 7 of each phase in this manner, the amplitude of the drive shaft component in each phase can be equalized. By equalizing the amplitude of the drive shaft component in each phase, the linear motor 1 can reduce the decrease in thrust and the increase in thrust ripple.
 実施の形態1によると、リニアモータ1は、基本組み合わせにおいてティース9の数が整数であるのに対して磁極の数が非整数であることによって、基本組み合わせにおいてティース9の数も磁極の数も整数である場合に比べて、コギング推力を低減できる。リニアモータ1は、ティース9の一部を切断する場合と比べて、推力密度の低下を少なくすることができる。以上により、リニアモータ1は、リニアモータ1を駆動するための推力を維持しながらコギング推力を低減できるという効果を奏する。 According to the first embodiment, the linear motor 1 has an integer number of teeth 9 in the basic combination, whereas the number of magnetic poles is a non-integer number in the basic combination. Cogging thrust can be reduced compared to the case where it is an integer. The linear motor 1 can reduce the decrease in thrust density compared to the case where the tooth 9 is partially cut. As described above, the linear motor 1 has the effect of being able to reduce the cogging thrust while maintaining the thrust for driving the linear motor 1 .
実施の形態2.
 図12は、実施の形態2にかかるリニアモータ1Aの模式図である。リニアモータ1Aの電機子3Aは、コイル7が巻かれているティース9とコイル7が巻かれていないティース9とを有する。実施の形態2では、上記の実施の形態1と同一の構成要素には同一の符号を付し、実施の形態1とは異なる構成について主に説明する。
Embodiment 2.
FIG. 12 is a schematic diagram of a linear motor 1A according to the second embodiment. The armature 3A of the linear motor 1A has teeth 9 around which the coils 7 are wound and teeth 9 around which the coils 7 are not wound. In the second embodiment, the same reference numerals are assigned to the same components as in the first embodiment, and the configuration different from the first embodiment will be mainly described.
 電機子3Aの電機子コア6Aは、X方向に配列された6個のティース9を有する。実施の形態2では、便宜上、電機子3Aの各ティース9にティース番号を割り当てる。各ティース9には、図12において左から右へ向かって、それぞれティース番号であるt1,t2,t3,t4,t5,t6が割り当てられている。t2のティース9には、U相のコイル7が巻かれている。t4のティース9には、V相のコイル7が巻かれている。t6のティース9には、W相のコイル7が巻かれている。t1,t3,t5の各ティース9には、コイル7は巻かれていない。t2,t4,t6の各ティース9におけるターン数は、実施の形態1の各ティース9におけるターン数よりも多い。コイル7が巻かれたティース9であるt2,t4,t6の各ティース9は、互いに同一の形状である。 The armature core 6A of the armature 3A has six teeth 9 arranged in the X direction. In Embodiment 2, a tooth number is assigned to each tooth 9 of the armature 3A for convenience. Each tooth 9 is assigned a tooth number t1, t2, t3, t4, t5 and t6 from left to right in FIG. A U-phase coil 7 is wound around the teeth 9 of t2. A V-phase coil 7 is wound around the teeth 9 of t4. A W-phase coil 7 is wound around the teeth 9 of t6. No coil 7 is wound around each tooth 9 at t1, t3, and t5. The number of turns of each tooth 9 at t2, t4 and t6 is greater than the number of turns of each tooth 9 in the first embodiment. Teeth 9 of t2, t4, and t6, which are teeth 9 around which coils 7 are wound, have the same shape.
 実施の形態2においても、実施の形態1と同様に、リニアモータ1Aの基本組み合わせにおいて、ティース9の数と磁極の数とは互いに整数倍ではない。また、リニアモータ1Aは、基本組み合わせにおいて、電機子コア6の幅Twの範囲内にある磁極の数が小数、すなわち非整数であるという特徴を有する。また、実施の形態2においても、上記式(1)を計算した結果は非整数となる。図12に示すリニアモータ1Aでは、Lは、t2のティース9の中心線とt6のティース9の中心線との距離である。図12に示す例では、上記式(1)におけるNtは3である。また、例えば、Lは64[mm]、τpは21.3333333[mm]とする。この場合、式(1)を計算した結果はおよそ4.5であって、基本組み合わせにおいてティース9の数が整数であるのに対して磁極の数は小数であるという関係が成り立つ。 Also in the second embodiment, as in the first embodiment, in the basic combination of the linear motor 1A, the number of teeth 9 and the number of magnetic poles are not integral multiples of each other. Further, the linear motor 1A is characterized in that the number of magnetic poles within the range of the width Tw of the armature core 6 is a decimal number, that is, a non-integer number in the basic combination. Also in the second embodiment, the result of calculating the above formula (1) is a non-integer. In the linear motor 1A shown in FIG. 12, L is the distance between the center line of the teeth 9 at t2 and the center line of the teeth 9 at t6. In the example shown in FIG. 12, Nt is 3 in the above formula (1). Also, for example, L is 64 [mm] and τp is 21.3333333 [mm]. In this case, the result of calculating the equation (1) is approximately 4.5, and the relationship holds that the number of teeth 9 in the basic combination is an integer while the number of magnetic poles is a decimal number.
 実施の形態2にかかるリニアモータ1Aでは、基本組み合わせにおいて、ティース9の数が6、かつ磁極の数が4.5である。以下、ティース9の数が6、かつ磁極の数が4.5の基本組み合わせを、「4.5極6ティース」と表す。 In the linear motor 1A according to the second embodiment, the number of teeth 9 is 6 and the number of magnetic poles is 4.5 in the basic combination. Hereinafter, a basic combination in which the number of teeth 9 is 6 and the number of magnetic poles is 4.5 is expressed as "4.5 poles 6 teeth".
 コイル7が巻かれているティース9とコイル7が巻かれていないティース9とを有することで、全てのティース9にコイル7が巻かれる場合に比べて、電機子3Aにおけるコイル7の数を少なくすることができる。コイル7の数が少なくなり、かつ、コイル7を設置するための部品の数が少なくなることによって、リニアモータ1Aの生産コストを低減できる。コイル7の数が少なくなることによって、コイル7を巻き付ける作業の回数を少なくすることができる。また、コイル7の数を少なくできることによって、コイル7同士の結線のための作業を少なくすることができる。これにより、リニアモータ1Aの生産性を向上させることができる。 By having the teeth 9 wound with the coils 7 and the teeth 9 not wound with the coils 7, the number of the coils 7 in the armature 3A can be reduced compared to the case where the coils 7 are wound on all the teeth 9. can do. By reducing the number of coils 7 and the number of parts for installing the coils 7, the production cost of the linear motor 1A can be reduced. By reducing the number of coils 7, the number of operations for winding the coils 7 can be reduced. In addition, since the number of coils 7 can be reduced, work for connecting the coils 7 can be reduced. Thereby, the productivity of the linear motor 1A can be improved.
 コイル7が巻かれる各ティース9には1つの相のコイル7のみが巻かれることによって、互いに異なる相のコイル7同士を絶縁するための部品が不要である。リニアモータ1Aの部品点数が少なくなることによって、リニアモータ1Aの生産コストを低減できる。 Since only one phase coil 7 is wound on each tooth 9 around which the coil 7 is wound, a component for insulating the coils 7 of different phases from each other is not required. The production cost of the linear motor 1A can be reduced by reducing the number of parts of the linear motor 1A.
 図13は、実施の形態2にかかるリニアモータ1Aにおけるコギング推力の低減効果について説明するための図である。図13には、実施の形態2にかかる4.5極6ティースのリニアモータ1Aにおけるコギング推力の変化を表すグラフと、比較例である4極6ティースのリニアモータにおけるコギング推力の変化を表すグラフとを示す。比較例にかかるリニアモータも、図12に示すリニアモータ1Aと同様に、3個のコイル7を有する。なお、比較例である4極6ティースの基本組み合わせの場合、上記式(1)におけるNtは3である。また、例えば、Lは64[mm]、τpは24[mm]とする。この場合、式(1)を計算した結果は4であって、基本組み合わせにおいてティース9の数および磁極の数はいずれも整数である。 FIG. 13 is a diagram for explaining the cogging thrust reduction effect in the linear motor 1A according to the second embodiment. FIG. 13 shows a graph showing changes in the cogging thrust in the 4.5-pole, 6-teeth linear motor 1A according to the second embodiment, and a graph showing changes in the cogging thrust in the 4-pole, 6-teeth linear motor of the comparative example. and The linear motor according to the comparative example also has three coils 7, like the linear motor 1A shown in FIG. In the case of the basic combination of 4 poles and 6 teeth as a comparative example, Nt in the above formula (1) is 3. Also, for example, L is 64 [mm] and τp is 24 [mm]. In this case, the result of calculating formula (1) is 4, and both the number of teeth 9 and the number of magnetic poles in the basic combination are integers.
 図13において、4.5極6ティースの場合のグラフは実線により表す。4極6ティースの場合のグラフは破線により表す。図13において、縦軸は、4極6ティースの場合における振幅を基に規格化されたコギング推力を表す。図13において、横軸は電気角を表す。図13に示すコギング推力と電気角との関係は、磁界解析によって求めることができる。 In FIG. 13, the graph for 4.5 poles and 6 teeth is represented by a solid line. The graph for the case of 4 poles and 6 teeth is represented by a dashed line. In FIG. 13, the vertical axis represents the cogging thrust normalized based on the amplitude in the case of 4 poles and 6 teeth. In FIG. 13, the horizontal axis represents the electrical angle. The relationship between the cogging thrust and the electrical angle shown in FIG. 13 can be obtained by magnetic field analysis.
 図13に示すように、4極6ティースの場合における波形には、360度の電気角範囲に2つの山と2つの谷とが存在している。すなわち、4極6ティースのリニアモータでは、コギング推力の2次成分が支配的であることが分かる。これに対し、4.5極6ティースの場合における波形は、360度の電気角範囲に4つの山と4つの谷とが存在している。4.5極6ティースの場合における波形では、4極6ティースの場合に支配的であったコギング推力の2次成分がほとんど消えている。その結果、4.5極6ティースのリニアモータ1では、4極6ティースの場合に比べて、コギング推力の全体がおよそ70%低減されている。このように、リニアモータ1Aは、比較例の場合に比べて、コギング推力を大幅に低減させることができる。 As shown in FIG. 13, the waveform in the case of 4 poles and 6 teeth has two peaks and two valleys in the electrical angle range of 360 degrees. That is, it can be seen that the secondary component of the cogging thrust is dominant in the 4-pole, 6-teeth linear motor. On the other hand, the waveform in the case of 4.5 poles and 6 teeth has 4 peaks and 4 valleys in the electrical angle range of 360 degrees. In the waveform in the case of 4.5 poles and 6 teeth, the secondary component of the cogging thrust that was dominant in the case of 4 poles and 6 teeth almost disappeared. As a result, in the 4.5-pole, 6-teeth linear motor 1, the overall cogging thrust is reduced by about 70% compared to the 4-pole, 6-teeth linear motor. Thus, the linear motor 1A can significantly reduce the cogging thrust compared to the case of the comparative example.
 なお、コギング推力を最小とするために最適な基本組み合わせは、ティース9の形状または大きさ、永久磁石5の形状または大きさなどといった、リニアモータ1Aにおける磁気構造の設計によって変わる。基本組み合わせにおけるティース9の数と磁極の数とは、リニアモータ1Aの構成によって適宜変更することができる。 The optimum basic combination for minimizing the cogging thrust varies depending on the design of the magnetic structure of the linear motor 1A, such as the shape or size of the teeth 9, the shape or size of the permanent magnets 5, and the like. The number of teeth 9 and the number of magnetic poles in the basic combination can be appropriately changed according to the configuration of the linear motor 1A.
 実施の形態2においても、リニアモータ1Aは、実施の形態1と同様に、リニアモータ1Aを駆動するための推力を維持しながらコギング推力を低減できるという効果を奏する。 Also in the second embodiment, the linear motor 1A has the effect of reducing the cogging thrust while maintaining the thrust for driving the linear motor 1A, as in the first embodiment.
実施の形態3.
 図14は、実施の形態3にかかるリニアモータ1Bの模式図である。実施の形態1および2では、電機子3,3Aのティース9の数が、相数の整数倍であった。実施の形態3では、電機子3Bのティース9の数が、相数の整数倍ではないケースについて説明する。実施の形態3では、上記の実施の形態1または2と同一の構成要素には同一の符号を付し、実施の形態1または2とは異なる構成について主に説明する。
Embodiment 3.
FIG. 14 is a schematic diagram of a linear motor 1B according to the third embodiment. In Embodiments 1 and 2, the number of teeth 9 of armatures 3 and 3A is an integral multiple of the number of phases. Embodiment 3 describes a case where the number of teeth 9 of the armature 3B is not an integer multiple of the number of phases. In the third embodiment, the same reference numerals are assigned to the same constituent elements as in the first or second embodiment, and the configuration different from that in the first or second embodiment will be mainly described.
 電機子3Bの電機子コア6Bは、X方向に配列された5個のティース9を有する。実施の形態3では、便宜上、電機子3Bの各ティース9にティース番号を割り当てる。各ティース9には、図14において左から右へ向かって、それぞれティース番号であるt1,t2,t3,t4,t5が割り当てられている。 The armature core 6B of the armature 3B has five teeth 9 arranged in the X direction. In Embodiment 3, a tooth number is assigned to each tooth 9 of the armature 3B for convenience. Teeth numbers t1, t2, t3, t4 and t5 are assigned to the teeth 9 from left to right in FIG.
 t1のティース9とt5のティース9との各々には、U相のコイル7が巻かれている。t2のティース9には、V相のコイル7が巻かれている。t3のティース9には、V相のコイル7とW相のコイル7とが巻かれている。t4のティース9には、W相のコイル7が巻かれている。このように、電機子コア6Bの複数のティース9は、3相のうち1相のコイル7のみが巻かれたティース9と、3相のうち2以上の相のコイル7が巻かれたティース9とを含む。コイル7が巻かれたティース9であるt1,t2,t3,t4,t5の各ティース9は、互いに同一の形状である。 A U-phase coil 7 is wound around each of the teeth 9 at t1 and the teeth 9 at t5. A V-phase coil 7 is wound around the tooth 9 at t2. A V-phase coil 7 and a W-phase coil 7 are wound around the teeth 9 of t3. A W-phase coil 7 is wound around the teeth 9 of t4. In this way, the plurality of teeth 9 of the armature core 6B are composed of the teeth 9 wound with only one phase coil 7 out of three phases and the teeth 9 wound with two or more phase coils 7 out of three phases. including. The teeth 9 of t1, t2, t3, t4, and t5, which are the teeth 9 around which the coil 7 is wound, have the same shape.
 実施の形態3においても、実施の形態1と同様に、リニアモータ1Bの基本組み合わせにおいて、磁極の数とティース9の数は互いに整数倍ではない。また、リニアモータ1Bは、基本組み合わせにおいて、電機子コア6の幅Twの範囲内にある磁極の数が小数、すなわち非整数であるという特徴を有する。また、実施の形態3においても、上記式(1)を計算した結果は非整数となる。図14に示す例では、Ntは5である。また、例えば、Lは64[mm]、τpは20.5128205[mm]とする。この場合、式(1)を計算した結果はおよそ3.9であって、基本組み合わせにおいてティース9の数が整数であるのに対して磁極の数は小数であるという関係が成り立つ。 Also in the third embodiment, as in the first embodiment, in the basic combination of the linear motor 1B, the number of magnetic poles and the number of teeth 9 are not integral multiples of each other. Further, the linear motor 1B is characterized in that the number of magnetic poles within the range of the width Tw of the armature core 6 is a decimal number, that is, a non-integer number in the basic combination. Also in the third embodiment, the result of calculating the above formula (1) is a non-integer. In the example shown in FIG. 14, Nt is five. Also, for example, L is 64 [mm] and τp is 20.5128205 [mm]. In this case, the result of calculating the equation (1) is approximately 3.9, and the relationship holds that the number of teeth 9 in the basic combination is an integer while the number of magnetic poles is a decimal number.
 実施の形態3にかかるリニアモータ1Bでは、基本組み合わせにおいて、ティース9の数が5、かつ磁極の数が3.9である。以下、ティース9の数が5、かつ磁極の数が3.9の基本組み合わせを、「3.9極5ティース」と表す。コイル7の相のX方向における順序は、基本組み合わせ、相数、複数の相のコイル7が巻かれたティース9の数、ティース9に巻かれるコイル7の数などによって決められる。 In the linear motor 1B according to Embodiment 3, the number of teeth 9 is 5 and the number of magnetic poles is 3.9 in the basic combination. Hereinafter, the basic combination in which the number of teeth 9 is 5 and the number of magnetic poles is 3.9 is expressed as "3.9 poles 5 teeth". The order of the phases of the coil 7 in the X direction is determined by the basic combination, the number of phases, the number of teeth 9 around which the coils 7 of a plurality of phases are wound, the number of the coils 7 wound around the teeth 9, and the like.
 図15は、実施の形態3にかかるリニアモータ1Bにおけるコギング推力の低減効果について説明するための図である。図15には、実施の形態3にかかる3.9極5ティースのリニアモータ1Bにおけるコギング推力の変化を表すグラフと、比較例である4極5ティースのリニアモータにおけるコギング推力の変化を表すグラフとを示す。比較例にかかるリニアモータも、図14に示すリニアモータ1Bと同様に、3相のうち1相のコイル7のみが巻かれたティース9と、3相のうち複数の相のコイル7が巻かれたティース9とを有する。なお、比較例である4極5ティースの基本組み合わせの場合、上記式(1)におけるNtは5である。また、例えば、Lは64[mm]、τpは20[mm]とする。この場合、式(1)を計算した結果は4であって、基本組み合わせにおいてティース9の数および磁極の数はいずれも整数である。 FIG. 15 is a diagram for explaining the cogging thrust reduction effect in the linear motor 1B according to the third embodiment. FIG. 15 shows a graph showing changes in the cogging thrust in the 3.9-pole, 5-teeth linear motor 1B according to the third embodiment, and a graph showing changes in the cogging thrust in the 4-pole, 5-teeth linear motor of the comparative example. and Similarly to the linear motor 1B shown in FIG. 14, the linear motor according to the comparative example also has teeth 9 wound with only one phase coil 7 out of three phases and coils 7 of a plurality of phases out of three phases wound. and teeth 9. In the case of the basic combination of 4 poles and 5 teeth, which is a comparative example, Nt is 5 in the above formula (1). Also, for example, L is 64 [mm] and τp is 20 [mm]. In this case, the result of calculating formula (1) is 4, and both the number of teeth 9 and the number of magnetic poles in the basic combination are integers.
 図15において、3.9極5ティースの場合のグラフは実線により表す。4極5ティースの場合のグラフは破線により表す。図15において、縦軸は、4極5ティースの場合における振幅を基に規格化されたコギング推力を表す。図15において、横軸は電気角を表す。図15に示すコギング推力と電気角との関係は、磁界解析によって求めることができる。 In FIG. 15, the graph for the case of 3.9 poles and 5 teeth is represented by a solid line. The graph for 4 poles and 5 teeth is represented by a dashed line. In FIG. 15, the vertical axis represents the cogging thrust standardized based on the amplitude in the case of four poles and five teeth. In FIG. 15, the horizontal axis represents the electrical angle. The relationship between the cogging thrust and the electrical angle shown in FIG. 15 can be obtained by magnetic field analysis.
 図15に示すように、3.9極5ティースの場合における振幅は、4極5ティースの場合における振幅よりも小さい。このことから、3.9極5ティースのリニアモータ1Bでは、4極5ティースの場合に比べて、コギング推力の2次成分が小さくなっていることが分かる。3.9極5ティースのリニアモータ1Bでは、4極5ティースの場合に比べて、コギング推力の全体がおよそ60%低減されている。このように、リニアモータ1Bは、比較例の場合に比べて、コギング推力を大幅に低減させることができる。 As shown in FIG. 15, the amplitude in the case of 3.9 poles and 5 teeth is smaller than the amplitude in the case of 4 poles and 5 teeth. From this, it can be seen that the secondary component of the cogging thrust is smaller in the linear motor 1B with 3.9 poles and 5 teeth than in the case of 4 poles and 5 teeth. In the 3.9-pole, 5-teeth linear motor 1B, the overall cogging thrust is reduced by about 60% compared to the 4-pole, 5-teeth linear motor 1B. Thus, the linear motor 1B can significantly reduce the cogging thrust compared to the case of the comparative example.
 図15に示すリニアモータ1Bは、複数の相のコイル7が巻かれたティース9は1個であって、他のティース9にはいずれも1相のコイル7のみが巻かれている。リニアモータ1Bは、複数の相のコイル7が巻かれたティース9を複数有しても良い。 A linear motor 1B shown in FIG. 15 has one tooth 9 around which a plurality of phase coils 7 are wound, and each of the other teeth 9 is wound with only one phase coil 7 . The linear motor 1B may have a plurality of teeth 9 around which coils 7 of a plurality of phases are wound.
 図16は、実施の形態3の変形例にかかるリニアモータ1Cの模式図である。リニアモータ1Cの電機子3Cにおいて、t1のティース9にはU相のコイル7が巻かれている。t2のティース9にはU相のコイル7とV相のコイル7とが巻かれている。t3のティース9にはV相のコイル7が巻かれている。t4のティース9にはV相のコイル7とW相のコイル7とが巻かれている。t5のティース9にはW相のコイル7が巻かれている。このように、リニアモータ1Cでは、t1,t3,t5の各ティース9には3相のうち1相のコイル7のみが巻かれており、t2,t4の各ティース9には3相のうち2相のコイル7が巻かれている。 FIG. 16 is a schematic diagram of a linear motor 1C according to a modification of the third embodiment. In the armature 3C of the linear motor 1C, a U-phase coil 7 is wound around the teeth 9 of t1. A U-phase coil 7 and a V-phase coil 7 are wound around the teeth 9 of t2. A V-phase coil 7 is wound around the teeth 9 of t3. A V-phase coil 7 and a W-phase coil 7 are wound around the teeth 9 of t4. A W-phase coil 7 is wound around the teeth 9 of t5. Thus, in the linear motor 1C, each tooth 9 of t1, t3, t5 is wound with only one phase coil 7 out of three phases, and each tooth 9 of t2, t4 is wound with two phases of three phases. A phase coil 7 is wound.
 複数の相のコイル7が巻かれたティース9が増えることによって、各相の相誘起電圧ベクトルの平衡化のための調整と、各相における相インダクタンスの差異を低減させるための調整とが容易となる。これにより、リニアモータ1Cは、通電時の推力リップルの低減が可能となる。 By increasing the number of teeth 9 around which coils 7 of a plurality of phases are wound, adjustment for balancing the phase induced voltage vectors of each phase and adjustment for reducing the difference in phase inductance between the phases are facilitated. Become. As a result, the linear motor 1C can reduce the thrust ripple when energized.
 ティース9の数が相数の整数倍ではないケースでは、各相の相誘起電圧ベクトルを平衡化させるために、各コイル7のターン数が調整される。複数のティース9の中には、コイル7のターン数が多いティース9と、コイル7のターン数が少ないティース9とが生じる。ティース9ごとのコイル7のターン数に差があり、また、全てのコイル7の線径は同じであることから、スロットにはコイル7が無いスペースが生じ易い。スペースが生じることによってコイル7の占積率が低下すると、リニアモータ1B,1Cの銅損が高くなる。 In cases where the number of teeth 9 is not an integer multiple of the number of phases, the number of turns of each coil 7 is adjusted to balance the phase induced voltage vectors of each phase. Among the plurality of teeth 9, there are teeth 9 with a large number of turns of the coil 7 and teeth 9 with a small number of turns of the coil 7. Since there is a difference in the number of turns of the coil 7 for each tooth 9 and the wire diameter of all the coils 7 is the same, a space without the coil 7 is likely to occur in the slot. If the lamination factor of the coil 7 decreases due to the space, the copper loss of the linear motors 1B and 1C increases.
 リニアモータ1B,1Cは、各スロットに入るコイル7の合計ターン数が均されるように、ティース9の数が整数かつ磁極の数が非整数である基本組み合わせを調整することができる。この場合、リニアモータ1B,1Cは、端効果によるコギング推力の低減を図るとともに、占積率を向上させることも可能となる。これにより、リニアモータ1B,1Cは、コギング推力を低減させるとともに、銅損を低減させることができる。 The linear motors 1B and 1C can adjust a basic combination in which the number of teeth 9 is an integer and the number of magnetic poles is a non-integer so that the total number of turns of the coil 7 entering each slot is evened out. In this case, the linear motors 1B and 1C can reduce the cogging thrust due to the end effect and improve the space factor. As a result, the linear motors 1B and 1C can reduce cogging thrust and copper loss.
 電機子3B,3Cに設けられるコイル7の数と電機子コア6Bのティース9の数とは、任意であるものとする。リニアモータ1B,1Cは、図4に示すリニアモータ1と同様に補助ティース9aを有するものであっても良い。リニアモータ1B,1Cは、実施の形態2にかかるリニアモータ1Aと同様に、コイル7が巻かれているティース9とコイル7が巻かれていないティース9とを有するものであっても良い。 The number of coils 7 provided in the armatures 3B and 3C and the number of teeth 9 of the armature core 6B are arbitrary. The linear motors 1B and 1C may have auxiliary teeth 9a like the linear motor 1 shown in FIG. Linear motors 1B and 1C may have teeth 9 around which coils 7 are wound and teeth 9 around which coils 7 are not wound, like linear motor 1A according to the second embodiment.
 なお、コギング推力を最小とするために最適な基本組み合わせは、ティース9の形状または大きさ、永久磁石5の形状または大きさなどといった、リニアモータ1B,1Cにおける磁気構造の設計によって変わる。基本組み合わせにおけるティース9の数と磁極の数とは、リニアモータ1B,1Cの構成によって適宜変更することができる。 The optimum basic combination for minimizing the cogging thrust varies depending on the magnetic structure design of the linear motors 1B and 1C, such as the shape or size of the teeth 9 and the shape or size of the permanent magnets 5. The number of teeth 9 and the number of magnetic poles in the basic combination can be appropriately changed according to the configuration of the linear motors 1B and 1C.
 実施の形態3においても、リニアモータ1B,1Cは、実施の形態1と同様に、リニアモータ1B,1Cを駆動するための推力を維持しながらコギング推力を低減できるという効果を奏する。 In the third embodiment, similarly to the first embodiment, the linear motors 1B and 1C have the effect of reducing the cogging thrust while maintaining the thrust for driving the linear motors 1B and 1C.
実施の形態4.
 図17は、実施の形態4にかかるリニアモータ1Dの模式図である。リニアモータ1Dは、タンデム型電機子11を有する。タンデム型電機子11は、界磁磁極2を共用する2個の電機子3Bを有する。2個の電機子3Bは、X方向に並べられている。タンデム型電機子11は、複数の電機子3Bから構成される配列型電機子の一例である。リニアモータ1Dは、2個の電機子3Bを同時に駆動するタンデム駆動によって、1個の電機子3Bを駆動する場合よりも推力を増加させる。実施の形態4では、上記の実施の形態1から3と同一の構成要素には同一の符号を付し、実施の形態1から3とは異なる構成について主に説明する。
Embodiment 4.
FIG. 17 is a schematic diagram of a linear motor 1D according to the fourth embodiment. A linear motor 1</b>D has a tandem armature 11 . The tandem armature 11 has two armatures 3B that share the field poles 2. As shown in FIG. The two armatures 3B are arranged in the X direction. The tandem armature 11 is an example of an array armature composed of a plurality of armatures 3B. The linear motor 1D increases the thrust by tandem driving in which two armatures 3B are driven at the same time as compared with the case of driving one armature 3B. In the fourth embodiment, the same reference numerals are assigned to the same components as in the first to third embodiments, and the configuration different from the first to third embodiments will be mainly described.
 実施の形態4では、2個の電機子3Bの各々が3.9極5ティースの構成を有する。各電機子3Bは、X方向における電機子3Bの位置を示す電気角が互いに同じになるように、0.1極相当の隙間を介して配置される。X方向におけるタンデム型電機子11の幅Tw’は、各電機子3Bにおける電機子コア6Bの幅Twと当該隙間の幅との合計となる。幅Tw’の範囲内にある磁極の数は、7.9である。リニアモータ1Dは、各電機子3Bにおける電機子コア6Bの幅Twの範囲内における磁極の数が非整数であって、かつ、タンデム型電機子11の幅Tw’の範囲内における磁極の数も非整数である。このように、タンデム型電機子11と向かい合う磁極の数は、非整数である。 In Embodiment 4, each of the two armatures 3B has a configuration of 3.9 poles and 5 teeth. The armatures 3B are arranged with a gap corresponding to 0.1 pole so that the electrical angles indicating the positions of the armatures 3B in the X direction are the same. The width Tw' of the tandem armature 11 in the X direction is the sum of the width Tw of the armature core 6B in each armature 3B and the width of the gap. The number of magnetic poles within the width Tw' is 7.9. In the linear motor 1D, the number of magnetic poles within the range of the width Tw of the armature core 6B in each armature 3B is a non-integer, and the number of magnetic poles within the range of the width Tw' of the tandem armature 11 is also a non-integer. is non-integer. Thus, the number of magnetic poles facing the tandem armature 11 is a non-integer number.
 隙間を介して2個の電機子3Bが配置されることによって、電機子3B同士の磁気的干渉を低減できる。リニアモータ1Dは、電機子3B同士の磁気的干渉を低減できることによって、コギング推力を低減させることができる。各電機子3Bの電気角が互いに同じであることで、各電機子3Bの相誘起電圧ベクトルが互いに一致する。このため、電機子3B同士が並列接続により電気的に接続されても、推力リップルは増加しない。 By arranging the two armatures 3B with a gap, magnetic interference between the armatures 3B can be reduced. The linear motor 1D can reduce cogging thrust by reducing magnetic interference between the armatures 3B. Since the electrical angles of the armatures 3B are the same, the phase induced voltage vectors of the armatures 3B match each other. Therefore, even if the armatures 3B are electrically connected to each other by parallel connection, the thrust ripple does not increase.
 リニアモータ1Dが有する配列型電機子は、実施の形態3にて説明した電機子3Bから構成されるものに限られない。配列型電機子は、実施の形態1から3にて説明したいずれの電機子から構成されるものであっても良い。また、配列型電機子は、2個の電機子から構成されるタンデム型電機子11に限られず、3個以上の電機子から構成されるものであっても良い。すなわち、配列型電機子は、X方向に並べられており界磁磁極2を共用する複数の電機子から構成されるものであれば良く、配列型電機子を構成する電機子の数は任意である。この場合も、X方向における配列型電機子の幅の範囲内にある磁極の数は、非整数である。なお、配列型電機子の各電機子におけるコイル7の数とティース9の数とは、任意であるものとする。 The arrayed armature of the linear motor 1D is not limited to the armature 3B described in the third embodiment. The arrayed armature may be composed of any of the armatures described in the first to third embodiments. Also, the arrayed armature is not limited to the tandem armature 11 composed of two armatures, and may be composed of three or more armatures. That is, the arrayed armature may be composed of a plurality of armatures arranged in the X direction and sharing the field pole 2, and the number of armatures constituting the arrayed armature is arbitrary. be. Again, the number of magnetic poles within the width of the arrayed armature in the X direction is a non-integer number. The number of coils 7 and the number of teeth 9 in each armature of the arrayed armature are arbitrary.
 実施の形態4においても、リニアモータ1Dは、実施の形態1と同様に、リニアモータ1Dを駆動するための推力を維持しながらコギング推力を低減できるという効果を奏する。 Also in the fourth embodiment, the linear motor 1D has the effect of reducing the cogging thrust while maintaining the thrust for driving the linear motor 1D, as in the first embodiment.
 以上の各実施の形態に示した構成は、本開示の内容の一例を示すものである。各実施の形態の構成は、別の公知の技術と組み合わせることが可能である。各実施の形態の構成同士が適宜組み合わせられても良い。本開示の要旨を逸脱しない範囲で、各実施の形態の構成の一部を省略または変更することが可能である。 The configuration shown in each embodiment above is an example of the content of the present disclosure. The configuration of each embodiment can be combined with another known technique. Configurations of respective embodiments may be combined as appropriate. A part of the configuration of each embodiment can be omitted or changed without departing from the gist of the present disclosure.
 1,1A,1B,1C,1D リニアモータ、2 界磁磁極、3,3A,3B,3C 電機子、4 バックヨーク、5 永久磁石、6,6A,6B 電機子コア、6a 部品、7 コイル、8 コアバック、9 ティース、9a 補助ティース、11 タンデム型電機子。 1, 1A, 1B, 1C, 1D linear motor, 2 field magnetic poles, 3, 3A, 3B, 3C armature, 4 back yoke, 5 permanent magnet, 6, 6A, 6B armature core, 6a part, 7 coil, 8 core back, 9 teeth, 9a auxiliary teeth, 11 tandem armature.

Claims (7)

  1.  各々が等間隔に配列された複数の永久磁石を有する界磁磁極と、
     複数のティースを有する電機子コアと、複数の前記ティースのうち2以上の前記ティースの各々に巻かれたコイルとを有し、前記界磁磁極に向かい合わせられて前記界磁磁極に対して相対的に移動する電機子と、を備え、
     前記電機子コアが有する前記ティースの数と、複数の前記ティースと向かい合う磁極の数であって前記電機子の進行方向に配列された前記磁極の数との組み合わせにおいて、前記進行方向における前記電機子コアの幅の範囲内にある前記磁極の数は、非整数であることを特徴とするリニアモータ。
    a field pole each having a plurality of equally spaced permanent magnets;
    An armature core having a plurality of teeth and a coil wound around each of two or more of the plurality of teeth, facing the field magnetic pole and facing the field magnetic pole an armature that moves in a static direction;
    The armature in the advancing direction in combination of the number of the teeth of the armature core and the number of the magnetic poles facing the plurality of the teeth and arranged in the advancing direction of the armature A linear motor, wherein the number of magnetic poles within the width of the core is a non-integer number.
  2.  前記コイルが巻かれた前記ティースの各々は、互いに同一の形状であって、
     前記進行方向における前記電機子の幅は、前記進行方向における前記界磁磁極の幅よりも短く、
     複数の前記ティースのうち前記コイルが巻かれた前記ティースの数をNt、前記コイルが巻かれた前記ティースのうち前記進行方向における両端のティース同士の距離をL、前記進行方向における互いに異なる極性の磁極同士の距離をτpとして、{L×Nt/(Nt-1)}÷τpの値が非整数であることを特徴とする請求項1に記載のリニアモータ。
    Each of the teeth around which the coil is wound has the same shape as each other,
    the width of the armature in the direction of travel is shorter than the width of the field pole in the direction of travel;
    Among the plurality of teeth, Nt is the number of teeth wound with the coil, L is the distance between the teeth at both ends in the traveling direction of the teeth wound with the coil, and L is the number of teeth with different polarities in the traveling direction. 2. The linear motor according to claim 1, wherein the value of {L×Nt/(Nt−1)}÷τp is a non-integer, where τp is the distance between the magnetic poles.
  3.  前記リニアモータを駆動するための電圧の位相への相誘起電圧ベクトルの投影成分の振幅が複数の相の各々において同じとなるように、複数の相の各々の前記コイルのターン数が調整されていることを特徴とする請求項1または2に記載のリニアモータ。 The number of turns of the coil in each of the plurality of phases is adjusted so that the amplitude of the projection component of the phase induced voltage vector onto the phase of the voltage for driving the linear motor is the same in each of the plurality of phases. 3. The linear motor according to claim 1 or 2, wherein:
  4.  複数の前記ティースは、前記コイルが巻かれた前記ティースと前記コイルが巻かれていない前記ティースとを含むことを特徴とする請求項1から3のいずれか1つに記載のリニアモータ。 The linear motor according to any one of claims 1 to 3, wherein the plurality of teeth includes the teeth wound with the coil and the teeth not wound with the coil.
  5.  前記電機子コアが有する前記ティースの数は、相数の整数倍ではなく、かつ、複数の前記ティースは、複数の相のうち2以上の相の前記コイルが巻かれた前記ティースを含むことを特徴とする請求項1から3のいずれか1つに記載のリニアモータ。 The number of teeth included in the armature core is not an integer multiple of the number of phases, and the plurality of teeth includes the teeth wound with the coils of two or more phases out of the plurality of phases. 4. A linear motor according to any one of claims 1 to 3.
  6.  前記進行方向に並べられており前記界磁磁極を共用する複数の前記電機子から構成される配列型電機子を備え、
     前記進行方向における前記配列型電機子の幅の範囲内にある前記磁極の数は、非整数であることを特徴とする請求項1から5のいずれか1つに記載のリニアモータ。
    an arrayed armature composed of a plurality of the armatures arranged in the traveling direction and sharing the field magnetic poles;
    6. The linear motor according to any one of claims 1 to 5, wherein the number of magnetic poles within the width of the arrayed armature in the traveling direction is a non-integer number.
  7.  複数の前記ティースに取り付けられた全ての前記コイルの線径は同じであることを特徴とする請求項1から6のいずれか1つに記載のリニアモータ。 The linear motor according to any one of claims 1 to 6, wherein all the coils attached to the plurality of teeth have the same wire diameter.
PCT/JP2022/003386 2022-01-28 2022-01-28 Linear motor WO2023145014A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022541905A JPWO2023145014A1 (en) 2022-01-28 2022-01-28
PCT/JP2022/003386 WO2023145014A1 (en) 2022-01-28 2022-01-28 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/003386 WO2023145014A1 (en) 2022-01-28 2022-01-28 Linear motor

Publications (1)

Publication Number Publication Date
WO2023145014A1 true WO2023145014A1 (en) 2023-08-03

Family

ID=87470951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003386 WO2023145014A1 (en) 2022-01-28 2022-01-28 Linear motor

Country Status (2)

Country Link
JP (1) JPWO2023145014A1 (en)
WO (1) WO2023145014A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030195B2 (en) * 1978-11-15 1985-07-15 松下電器産業株式会社 straight electric machine
JP2000278931A (en) * 1999-03-19 2000-10-06 Yaskawa Electric Corp Linear motor
KR20070094212A (en) * 2006-03-16 2007-09-20 자화전자 주식회사 A linear motor having field permanent magnet and armature with salient poles and method for manufacture thereof
JP2009545939A (en) * 2006-07-31 2009-12-24 シーメンス アクチエンゲゼルシヤフト Linear motor with force pulsation compensation
JP2013219882A (en) * 2012-04-06 2013-10-24 Yamaha Motor Co Ltd Linear motor
WO2019008848A1 (en) * 2017-07-04 2019-01-10 三菱電機株式会社 Rotating electric machine and direct-acting electric motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030195B2 (en) * 1978-11-15 1985-07-15 松下電器産業株式会社 straight electric machine
JP2000278931A (en) * 1999-03-19 2000-10-06 Yaskawa Electric Corp Linear motor
KR20070094212A (en) * 2006-03-16 2007-09-20 자화전자 주식회사 A linear motor having field permanent magnet and armature with salient poles and method for manufacture thereof
JP2009545939A (en) * 2006-07-31 2009-12-24 シーメンス アクチエンゲゼルシヤフト Linear motor with force pulsation compensation
JP2013219882A (en) * 2012-04-06 2013-10-24 Yamaha Motor Co Ltd Linear motor
WO2019008848A1 (en) * 2017-07-04 2019-01-10 三菱電機株式会社 Rotating electric machine and direct-acting electric motor

Also Published As

Publication number Publication date
JPWO2023145014A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
US8446054B2 (en) Periodic magnetic field generation device, and linear motor and rotary motor using the same
EP2304863B1 (en) Interior permanent magnet motor including rotor with unequal poles
US7569962B2 (en) Multi-phase brushless motor with reduced number of stator poles
US8102085B2 (en) Converter-fed single strand short stroke linear motor
JP4828666B2 (en) Synchronous motor and synchronous motor drive system
US20030042815A1 (en) Electric rotating machine and electromagnetic machine and apparatus
US10873226B2 (en) Rotary electric machine
US20130015742A1 (en) Synchronous motor
WO2009084197A1 (en) Permanent-magnet synchronous motor
US20160276880A1 (en) Transverse flux machine
JPWO2004093301A1 (en) Linear motor
JPH1198791A (en) Brushless dc motor
EP3471239B1 (en) Rotary electric apparatus
JP2011223676A (en) Permanent magnet type motor
JP6138075B2 (en) 2-phase synchronous motor
JP2001157428A (en) Permanent magnet-type synchronous motor and elevator apparatus using it
WO2023145014A1 (en) Linear motor
JP2010088271A (en) Permanent magnet type synchronous motor
US20090051253A1 (en) Printing Machine or Electrical Machine for a Printing Machine
JP2018050430A (en) Linear motor
JP3824060B2 (en) Linear motor
JP2002281721A (en) Permanent magnet synchronous motor
JP2005057942A (en) Rotary electric machine
WO2023157273A1 (en) Linear transport system
WO2020261809A1 (en) Linear motor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022541905

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923878

Country of ref document: EP

Kind code of ref document: A1