WO2023144983A1 - Optical sensing device, optical sensing system, and optical sensing method - Google Patents

Optical sensing device, optical sensing system, and optical sensing method Download PDF

Info

Publication number
WO2023144983A1
WO2023144983A1 PCT/JP2022/003232 JP2022003232W WO2023144983A1 WO 2023144983 A1 WO2023144983 A1 WO 2023144983A1 JP 2022003232 W JP2022003232 W JP 2022003232W WO 2023144983 A1 WO2023144983 A1 WO 2023144983A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical sensing
sensing device
optical
measurement
light
Prior art date
Application number
PCT/JP2022/003232
Other languages
French (fr)
Japanese (ja)
Inventor
翼 中村
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2022/003232 priority Critical patent/WO2023144983A1/en
Publication of WO2023144983A1 publication Critical patent/WO2023144983A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present disclosure relates to optical sensing devices and the like.
  • LiDAR measurement Light Detection and Ranging
  • optical sensing optical sensing
  • a LiDAR device is mounted on each of two vehicles.
  • Each LiDAR device obtains information about the surrounding environment of the corresponding vehicle by performing LiDAR measurements.
  • the acquired information is used for collision avoidance and automatic control of individual vehicles (paragraphs [0074] to [0076] of Patent Document 1, see FIG. 6).
  • the two LiDAR devices perform mutual optical wireless communication. As a result, information obtained by one LiDAR device is transmitted to another LiDAR device (paragraph [0077] of Patent Document 1, see FIG. 6).
  • an object of the present disclosure is to suppress the occurrence of occlusion in an optical sensing system in which a plurality of optical sensing devices cooperate by optical wireless communication.
  • An optical sensing device transmits and receives first light used for first LiDAR measurement, and transmits or receives second light used for optical wireless communication with other optical sensing devices. and control means for switching between a first operating mode for performing a first LiDAR measurement and a second operating mode for performing optical wireless communication, wherein the first LiDAR measurement by the optical sensing device and other A second LiDAR measurement with the optical sensing device is performed on the same object.
  • An optical sensing system is an optical sensing system including an optical sensing device, the optical sensing device transmitting and receiving a first light used for a first LiDAR measurement, and another optical sensing device and a control means for switching between a first operation mode for performing a first LiDAR measurement and a second operation mode for performing optical wireless communication. , wherein a first LiDAR measurement by a light sensing device and a second LiDAR measurement by another light sensing device are performed on the same object.
  • the optical sensing device transmits and receives first light used for first LiDAR measurement, and transmits second light used for optical wireless communication with another optical sensing device. Or receive, the optical sensing device switches between a first operating mode performing a first LiDAR measurement and a second operating mode performing optical wireless communication, the first LiDAR measurement by the optical sensing device and other light A second LiDAR measurement by the sensing device is performed on the same object.
  • FIG. 1 is a block diagram showing the optical sensing system according to the first embodiment.
  • FIG. 2 is a block diagram showing the optical sensing device according to the first embodiment.
  • FIG. 3 is a block diagram showing the optical sensing device according to the first embodiment.
  • FIG. 4 is a block diagram showing the optical transceiver of the optical sensing device according to the first embodiment.
  • FIG. 5 is a block diagram showing the controller of the optical sensing device according to the first embodiment.
  • FIG. 6 is a block diagram showing the signal processing section of the optical sensing device according to the first embodiment.
  • FIG. 7 is a block diagram showing the hardware configuration of the optical sensing device according to the first embodiment.
  • FIG. 8 is a block diagram showing the hardware configuration of the optical sensing device according to the first embodiment.
  • FIG. 1 is a block diagram showing the optical sensing system according to the first embodiment.
  • FIG. 2 is a block diagram showing the optical sensing device according to the first embodiment.
  • FIG. 3 is a block diagram showing the optical
  • FIG. 9 is a block diagram showing the hardware configuration of the optical sensing device according to the first embodiment.
  • 10A is a flowchart showing the operation of the control unit of the optical sensing device according to the first embodiment
  • FIG. 10B is a flowchart showing the operation of the control unit of the optical sensing device according to the first embodiment
  • FIG. 11 is a flow chart showing the operation of the signal processing section of the optical sensing device according to the first embodiment.
  • FIG. 12 is a block diagram showing the optical sensing device according to the second embodiment.
  • FIG. 13 is a block diagram showing the optical sensing system according to the second embodiment.
  • FIG. 1 is a block diagram showing the optical sensing system according to the first embodiment.
  • FIG. 2 is a block diagram showing the optical sensing device according to the first embodiment.
  • FIG. 3 is a block diagram showing the optical sensing device according to the first embodiment.
  • FIG. 4 is a block diagram showing the optical transceiver of the optical sensing device according to the first embodiment.
  • FIG. 5 is a block diagram showing the controller of the optical sensing device according to the first embodiment.
  • FIG. 6 is a block diagram showing the signal processing section of the optical sensing device according to the first embodiment.
  • a light sensing system according to a first embodiment will be described with reference to FIGS. 1 to 6.
  • FIG. 1 is a block diagram showing the optical sensing system according to the first embodiment.
  • FIG. 2 is a block diagram showing the optical sensing device according to the first embodiment.
  • FIG. 3 is a block diagram showing the optical sensing device according to the first embodiment.
  • FIG. 4 is a block diagram showing the optical transceiver of
  • the optical sensing system 100 includes multiple optical sensing devices 1 .
  • the optical sensing system 100 includes two optical sensing devices 1_1 and 1_2.
  • a plurality of optical sensing devices 1 performs optical sensing on the same object (O in the figure).
  • object such an object may be referred to as an "object”.
  • L1 indicates light used for optical sensing.
  • first light such light may be referred to as "first light”.
  • the light sensing performed by the individual light sensing devices 1 is based on the LiDAR principle.
  • a plurality of optical sensing devices 1 are installed around a predetermined area that can include the object O. As shown in FIG. Hereinafter, such an area may be referred to as a "target area”. Also, the plurality of optical sensing devices 1 are installed so that the laser beams emitted from the individual optical sensing devices 1 irradiate the target area.
  • a plurality of optical sensing devices 1 are installed so as to surround the target area. That is, the plurality of optical sensing devices 1 are installed so as to surround the object O. As shown in FIG. As a result, the plurality of optical sensing devices 1 perform optical sensing on the same object O as described above.
  • the "same object” does not mean individual grains constituting such a granular material, but means the entire granular material.
  • the "same object” does not mean the individual grains of raw materials that make up the pile of raw materials, but the pile of raw materials.
  • each optical sensing device 1 performs optical wireless communication with other optical sensing devices 1 .
  • L2 indicates light used for optical wireless communication.
  • second light such light may be referred to as "second light”.
  • each optical sensing device 1 performs an optical search for searching for another optical sensing device 1 to be a partner of optical wireless communication.
  • L3 indicates light used for optical search.
  • such light may be referred to as "third light”.
  • each optical sensing device 1 includes an optical transmitter/receiver 11 and a controller 12 .
  • at least one optical sensing device 1 among the plurality of optical sensing devices 1 includes a signal processing section 13 and an output section 14 (see FIG. 2).
  • the optical sensing device 1_1 of the optical sensing devices 1_1 and 1_2 shown in FIG. 1 includes an optical transceiver 11, a control unit 12, a signal processing unit 13, and an output unit 14 (see FIG. 2).
  • the optical sensing device 1_2 of the optical sensing devices 1_1 and 1_2 shown in FIG. 1 includes an optical transmitter/receiver 11 and a control unit 12 (see FIG. 3).
  • the optical transmitter/receiver 11 includes a light emitting section 21 and a light receiving section 22 .
  • the light emitting section 21 is composed of, for example, an optical transmitter.
  • the light receiving unit 22 is configured by, for example, an optical receiver. Note that the light emitting section 21 and the light receiving section 22 may be physically separated from each other.
  • the optical transceiver 11 is used for optical sensing based on the principle of LiDAR. That is, the light emitting section 21 emits laser light for optical sensing. A target region is irradiated with the emitted laser light.
  • the orientation of the optical transmitter/receiver 11 is variable. Specifically, for example, the optical axis of the beam formed by the light transmitting/receiving unit 11 is within a predetermined angle range (for example, ⁇ 5°) with respect to the azimuth direction or each of the azimuth direction and the elevation direction. It is rotatable at Thereby, the light emitting section 21 sequentially emits laser light for optical sensing in a plurality of directions.
  • laser light is irradiated so as to scan the target area.
  • the irradiated laser light is scattered and reflected by objects (including the object O) existing in the target area.
  • the reflected light may be referred to as "reflected light”.
  • the light receiving section 22 receives the backscattered component of the reflected light.
  • the reflected light received by the light receiving section 22 may be referred to as "received light”.
  • the first light L1 for optical sensing includes laser light emitted by each optical sensing device 1 (see FIG. 1).
  • the first light L1 for optical sensing includes reflected light received by each optical sensing device 1 (see FIG. 1). That is, in each optical sensing device 1, the optical transmitter/receiver 11 transmits and receives the first light L1.
  • the optical transmitter/receiver 11 is used for optical wireless communication between a plurality of optical sensing devices 1 .
  • the optical transceiver 11 of the optical sensing device 1 on the transmitting side and the optical transceiver 11 of the optical sensing device 1 on the receiving side face each other by performing an optical search, which will be described later.
  • the light emitting unit 21 of the optical sensing device 1 on the transmitting side emits laser light for optical wireless communication.
  • the light receiving section 22 of the optical sensing device 1 on the receiving side receives the emitted laser light.
  • the optical sensing device 1 on the receiving side is the optical sensing device 1 including the signal processing unit 13 and the output unit 14 among the multiple optical sensing devices 1 .
  • the optical sensing device 1 on the receiving side is the optical sensing device 1_1 of the optical sensing devices 1_1 and 1_2.
  • the light sensing device 1 on the transmitting side is the light sensing device 1_2 of the light sensing devices 1_1 and 1_2.
  • the second light L2 for optical wireless communication includes laser light transmitted by the light sensing device 1 on the transmission side (see FIG. 1).
  • the second light L2 for optical wireless communication includes laser light received by the optical sensing device 1 on the receiving side (see FIG. 1). That is, in each of the optical sensing device 1 on the transmitting side and the optical sensing device 1 on the receiving side, the optical transmitter/receiver 11 transmits or receives the second light L2. In other words, in each optical sensing device 1, the optical transmitter/receiver 11 transmits or receives the second light L2.
  • the optical sensing device 1 on the transmitting side and the optical sensing device 1 on the receiving side can be switched. Therefore, in each optical sensing device 1, the optical transmitter/receiver 11 may transmit and receive the second light L2.
  • the optical transmitter/receiver 11 is used for optical search for searching for the optical sensing device 1 that is the partner of the optical wireless communication. That is, as described above, the orientation of the light transmitting/receiving section 11 is variable in each light sensing device 1 . Therefore, in the search-side optical sensing device 1, the optical sensing device 1 changes the direction of the optical transmission/reception section 11, so that the light emitting section 21 sequentially emits laser light for optical search in a plurality of directions. On the other hand, the optical sensing device 1 changes the orientation of the optical transmitter/receiver 11 in the optical sensing device 1 on the search target side as well.
  • variable range of the direction of the optical transmitter/receiver 11 in optical search may be set to a larger value than the variable range of the direction of the optical transmitter/receiver 11 in optical sensing.
  • the rotation range of the optical axis of the beam formed by the optical transmitter/receiver 11 may be set to a value larger than ⁇ 5°.
  • the optical sensing device 1 on the searching side changes the direction of the optical transmitter/receiver 11, and the optical sensing device 1 on the searched side changes the direction of the optical transmitter/receiver 11, so that these optical transmitter/receivers 11 face each other. conditions can arise.
  • the laser light for optical search emitted by the light emitting unit 21 of the optical sensing device 1 on the searching side is received by the light receiving unit 22 of the optical sensing device 1 on the searching side.
  • the light emitting unit 21 of the optical sensing device 1 on the side to be searched emits a laser beam for response to the laser beam for optical search.
  • the light receiving section 22 of the optical sensing device 1 on the searching side receives the emitted laser light.
  • the laser light for response may be laser light for optical wireless communication. That is, the optical sensing device 1 on the searched side in the optical search may become the optical sensing device 1 on the transmitting side in the optical wireless communication when receiving the laser light for the optical search. That is, in the example shown in FIG. 1, the optical sensing device 1 on the side to be searched is, for example, the optical sensing device 1_2 out of the optical sensing devices 1_1 and 1_2. On the other hand, in the example shown in FIG. 1, the optical sensing device 1 on the searching side is, for example, the optical sensing device 1_1 of the optical sensing devices 1_1 and 1_2.
  • the response laser light may be a dedicated laser light (for example, a laser light similar to the light search laser light). That is, the response laser light may be used for optical search or may be used for optical wireless communication. In other words, the laser light for response may be included in the second light L2 or may be included in the third light L3.
  • the third light L3 for optical search includes laser light emitted by the optical sensing device 1 on the search side (see FIG. 1).
  • the third light L3 for optical search includes laser light received by the optical sensing device 1 on the side to be searched (see FIG. 1). That is, in each of the optical sensing device 1 on the search side and the optical sensing device 1 on the searched side, the optical transmitter/receiver 11 transmits or receives the third light L3. In other words, in each optical sensing device 1, the optical transmitter/receiver 11 transmits or receives the third light L3.
  • the third light L3 may include response laser light in addition to light search laser light. Therefore, in each optical sensing device 1, the optical transmitter/receiver 11 may transmit and receive the third light L3.
  • these values may be values in the same wavelength band.
  • each two of these values ( ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4) may be values in different wavelength bands.
  • the light emitting section 21 preferably uses an optical transmitter corresponding to these wavelengths ( ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4).
  • the light receiving section 22 uses an optical receiver corresponding to these wavelengths ( ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4).
  • the wavelength ⁇ 1 is preferably set to a value used for LiDAR. Specifically, for example, the wavelength ⁇ 1 is set to a value in the 905 nm band or a value in the 1550 nm band.
  • the wavelength ⁇ 2 is preferably set to a value used for optical wireless communication from the viewpoint of realizing optical wireless communication. Specifically, for example, the wavelength ⁇ 2 is set to a value in the 800 nanometer band. That is, from the viewpoint of realizing both optical sensing and optical wireless communication, the wavelength ⁇ 1 and the wavelength ⁇ 2 are preferably set to values in different wavelength bands.
  • each of the wavelength ⁇ 3 and the wavelength ⁇ 4 is set to a value of a selected wavelength band among these wavelength bands, for example. That is, from the viewpoint of reducing the number of wavelength bands used, each of the length ⁇ 3 and the wavelength ⁇ 4 may be set to the same wavelength band value as the wavelength ⁇ 1 or the wavelength ⁇ 2.
  • the control unit 12 includes an operation mode setting unit 31, a measurement mode execution unit 32, a communication mode execution unit 33, a search mode execution unit 34 and a standby mode execution unit 35.
  • the optical sensing device 1 provided with this functional unit may be referred to as a "corresponding optical sensing device” or "the relevant optical sensing device”.
  • the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 .
  • each optical sensing device 1 has a plurality of operation modes.
  • the operation mode setting unit 31 selects one of the plurality of operation modes, and sets the operation mode of the corresponding optical sensing device 1 to the selected operation mode. In other words, the operation mode setting unit 31 switches the operation mode of the corresponding optical sensing device 1 .
  • a specific example of how the operation mode setting unit 31 sets the operation mode will be described later. Specific examples of the plurality of operation modes will be described below.
  • each light sensing device 1 has an operation mode that performs light sensing based on the LiDAR principle.
  • this operation mode may be referred to as “measurement mode” or “first operation mode”.
  • the operation of each light sensing device 1 in measurement mode is as follows.
  • each optical sensing device 1 the light emitting section 21 emits laser light for optical sensing. Further, when the emitted laser light is reflected by the object O, the light receiving section 22 receives the reflected light. These operations are performed under the control of the measurement mode execution section 32 in each optical sensing device 1 . In other words, in each optical sensing device 1, the measurement mode execution unit 32 executes control for emitting laser light for optical sensing and control for receiving the corresponding reflected light.
  • the measurement mode execution unit 32 measures the distance D based on the laser light emitted by the light emitting unit 21 and the reflected light received by the light receiving unit 22 .
  • the laser light emitted by the light emitting unit 21 is the laser light with which the object O is irradiated.
  • the reflected light received by the light receiving unit 22 is the reflected light reflected by the object O.
  • the measurement of the distance D uses, for example, the ToF (Time of Flight) method or the FMCW (Frequency Modulated Continuous Wave) method.
  • the light emitting section 21 emits pulsed laser light in each direction under the control of the measurement mode executing section 32 .
  • the measurement mode execution unit 32 receives information indicating timing t1 at which the light emitting unit 21 emits laser light in each direction, and information indicating timing t2 at which the light receiving unit 22 receives the corresponding reflected light (that is, the corresponding pulsed light). to get The measurement mode executing section 32 uses these pieces of information to calculate the time difference ⁇ t between the timings t1 and t2.
  • the time difference ⁇ t corresponds to the round-trip propagation time of the laser light emitted in each direction and the corresponding reflected light.
  • the measurement mode execution unit 32 calculates the one-way propagation distance (that is, the distance D) corresponding to the round-trip propagation time. Thus, the distance D is measured.
  • each optical sensing device 1 has a function of performing frequency modulation for FMCW and a function of performing coherent detection.
  • the light emitting unit 21 emits chirped laser light in each direction.
  • the frequency and phase of the received light are detected by performing coherent detection on the reflected light (that is, the received light) received by the light receiving section 22 .
  • the measurement mode execution unit 32 acquires information indicating the frequency f1 of the laser light emitted in each direction and information indicating the corresponding frequency f2 of the received light.
  • the measurement mode execution unit 32 uses these pieces of information to calculate the frequency difference (so-called “beat frequency”) ⁇ f between the frequencies f1 and f2.
  • the measurement mode execution unit 32 calculates the distance D using a predetermined formula relating to FMCW based on the calculated beat frequency ⁇ f. Thus, the distance D is measured.
  • the method for measuring the distance D is not limited to these specific examples. Various known techniques can be used to measure the distance D. A detailed description of these techniques is omitted.
  • the measurement mode execution unit 32 may calculate the distance D based on the phase difference between the laser light emitted in each direction and the corresponding received light. That is, the measurement mode execution unit 32 may use the indirect ToF method.
  • the measurement mode execution unit 32 executes optical sensing when the operation mode of the corresponding optical sensing device 1 is set to the measurement mode. In other words, the measurement mode execution unit 32 executes the measurement mode when the operation mode of the corresponding optical sensing device 1 is set to the measurement mode.
  • the measurement mode execution unit 32 generates data indicating the result of light sensing.
  • measurement data includes the individual distances D calculated above.
  • the measurement data also includes information indicating the emission direction of the laser beam corresponding to each of the distances D calculated above.
  • the emission direction indicated by the measurement data is represented, for example, by a difference value with respect to a predetermined reference direction.
  • the reference direction is, for example, the installation direction of the corresponding optical sensing device 1 .
  • the measurement mode execution section 32 outputs the generated measurement data to the communication mode execution section 33 .
  • the light sensing device 1 on the transmission side is the light sensing device 1 that does not have the signal processing section 13 and the output section 14 .
  • the connection line between the measurement mode execution section 32 and the communication mode execution section 33 in this case is omitted.
  • the measurement data indicating the optical sensing result of the optical sensing device 1 on the transmission side may be referred to as "first measurement data".
  • the output first measurement data is transmitted to the optical sensing device 1 on the receiving side, as will be described later.
  • the measurement mode execution section 32 outputs the generated measurement data to the signal processing section 13 .
  • the optical sensing device 1 on the receiving side is the optical sensing device 1 having the signal processing section 13 and the output section 14 .
  • the measurement data indicating the optical sensing result of the optical sensing device 1 on the receiving side may be referred to as "second measurement data".
  • the output second measurement data is used to generate point cloud data, as will be described later.
  • each optical sensing device 1 has an operational mode of performing optical wireless communication with other optical sensing devices 1 .
  • this operation mode may be referred to as “communication mode” or “second operation mode”.
  • the operation of each optical sensing device 1 in communication mode is as follows.
  • the light emitting section 21 emits laser light for optical wireless communication.
  • Such operations are performed under the control of the communication mode execution unit 33 in the optical sensing device 1 on the transmission side.
  • the communication mode execution unit 33 executes control to emit laser light for optical wireless communication.
  • the light receiving section 22 receives the emitted laser light.
  • Such an operation is executed under the control of the communication mode executing section 33 in the optical sensing device 1 on the receiving side.
  • the communication mode execution unit 33 executes control for receiving laser light for optical wireless communication.
  • the communication mode includes an operation mode corresponding to the light sensing device 1 on the transmitting side and an operation mode corresponding to the light sensing device 1 on the receiving side.
  • the operation mode corresponding to the optical sensing device 1 on the transmission side among the communication modes, may be referred to as the "transmission mode”.
  • an operation mode corresponding to the optical sensing device 1 on the receiving side may be referred to as a "reception mode”.
  • the communication mode execution unit 33 executes optical wireless communication to transmit information indicating the position and orientation of the optical sensing device 1 on the transmitting side to the optical sensing device 1 on the receiving side. to notify.
  • the communication mode execution unit 33 executes optical wireless communication to transmit information indicating the position and orientation of the optical sensing device 1 on the transmitting side to the optical sensing device 1 on the transmitting side. Get from 1.
  • first position information information indicating the position and orientation of the optical sensing device 1 on the transmission side
  • second position information information indicating the position and orientation of the optical sensing device 1 on the receiving side
  • the second position information is stored in advance in the light sensing device 1 on the receiving side, for example.
  • at least one of the first position information and the second position information may be collectively referred to as "position information”.
  • the position indicated by the first position information is, for example, the installation position of the optical sensing device 1 on the transmission side. More specifically, the first position information includes coordinate values (for example, latitude value ⁇ 1, longitude value ⁇ 1, and altitude value h1) indicating the installation position of the optical sensing device 1 on the transmitting side. That is, the position indicated by the first position information may be a so-called "absolute position".
  • the direction indicated by the first position information is the installation direction of the optical sensing device 1 on the transmission side.
  • a first axis which is a virtual axis corresponding to the front-rear direction of the optical sensing device 1 on the transmission side
  • a second axis which is a virtual axis corresponding to the horizontal direction of the optical sensing device 1 on the transmission side
  • a third axis which is a virtual axis corresponding to the vertical direction of the light sensing device 1 on the transmission side, is set.
  • the installation direction of the optical sensing device 1 on the transmission side is represented by the tilt value of each axis with respect to the state in which the optical sensing device 1 on the transmission side is installed on a horizontal plane.
  • the position indicated by the second position information is, for example, the installation position of the optical sensing device 1 on the receiving side. More specifically, the second position information includes coordinate values (for example, latitude value ⁇ 2, longitude value ⁇ 2, and altitude value h2) indicating the installation position of the optical sensing device 1 on the receiving side. That is, the position indicated by the second position information may be a so-called "absolute position".
  • the direction indicated by the second position information is the installation direction of the light sensing device 1 on the receiving side.
  • a first axis which is a virtual axis corresponding to the front-rear direction of the optical sensing device 1 on the receiving side
  • a second axis which is a virtual axis corresponding to the lateral direction of the optical sensing device 1 on the receiving side
  • a third axis which is a virtual axis corresponding to the vertical direction of the light sensing device 1 on the receiving side, is set.
  • the installation direction of the optical sensing device 1 on the receiving side is represented by the tilt value of each axis with respect to the state in which the optical sensing device 1 on the receiving side is temporarily installed on a horizontal plane.
  • the optical sensing device 1 on the transmitting side notifies the optical sensing device 1 on the receiving side of the first measurement data by executing optical wireless communication.
  • the optical sensing device 1 on the receiving side acquires the first measurement data from the optical sensing device 1 on the transmitting side by performing optical wireless communication.
  • the communication mode execution unit 33 executes optical wireless communication when the operation mode of the corresponding optical sensing device 1 is set to the communication mode. In other words, the communication mode execution unit 33 executes the communication mode when the operation mode of the corresponding optical sensing device 1 is set to the communication mode.
  • the communication mode execution unit 33 outputs the acquired first position information to the signal processing unit 13 . Also, in the optical sensing device 1 on the receiving side, the communication mode executing section 33 outputs the acquired first measurement data to the signal processing section 13 .
  • the output first position information and the output first measurement data are used to generate point cloud data, as will be described later.
  • each optical sensing device 1 has an operation mode in which it performs an optical search for searching for other optical sensing devices 1 with which to communicate optically wirelessly.
  • this operation mode may be referred to as “search mode” or “third operation mode”.
  • search mode search mode
  • third operation mode The operation of each light sensing device 1 in search mode is as follows.
  • the search-side optical sensing device 1 sequentially emits laser light for optical search in a plurality of directions by changing the direction of the optical transmitter/receiver 11 . Further, when the optical sensing device 1 on the searched side emits a response laser beam, the searching-side optical sensing device 1 receives the emitted response laser beam. These operations are executed under the control of the search mode execution unit 34 in the search-side optical sensing device 1 . In other words, in the optical sensing device 1 on the search side, the search mode execution unit 34 controls the orientation of the optical transmitter/receiver 11, controls the emission of laser light for optical search, and receives the laser light for response. to perform control.
  • the optical sensing device 1 on the search target side changes the orientation of the optical transmitter/receiver 11 .
  • a state in which the optical sensing device 1 on the searching side and the optical transmitter/receiver 11 of the optical sensing device 1 on the searched side face each other may occur.
  • the light receiving section 22 of the optical sensing device 1 on the side to be searched receives the emitted laser light for optical search.
  • the light emitting unit 21 of the optical sensing device 1 on the side to be searched emits laser light for response.
  • the search mode execution unit 34 performs control to change the direction of the optical transmitter/receiver 11, control to receive laser light for optical search, and control to receive laser light for response. Execute control to emit.
  • the search mode includes an operation mode corresponding to the optical sensing device 1 on the search side and an operation mode corresponding to the optical sensing device 1 on the searched side.
  • the operation mode corresponding to the optical sensing device 1 on the search side may be referred to as a “narrowly-defined search mode”.
  • an operation mode corresponding to the optical sensing device 1 on the side to be searched may be referred to as a "searched mode”.
  • the search mode execution unit 34 executes optical search when the operation mode of the corresponding optical sensing device 1 is set to the search mode.
  • the search mode executing section 34 executes the search mode when the operation mode of the corresponding optical sensing device 1 is set to the search mode.
  • each optical sensing device 1 has an operating mode in which it performs neither optical sensing, optical wireless communication nor optical searching.
  • this mode of operation is a mode of waiting to perform any of optical sensing, optical wireless communication, and optical searching.
  • this operation mode may be referred to as “standby mode” or "fourth operation mode”.
  • the definition of the standby mode may be an operation mode in which none of the laser light for optical sensing, the laser light for optical wireless communication, and the laser light for optical search is emitted. That is, the reception mode may be included in the standby mode instead of or in addition to being included in the communication mode. Also, the searched mode may be included in the standby mode instead of or in addition to being included in the search mode.
  • the standby mode is an operation mode in which the corresponding optical sensing device 1 does not change the orientation of the optical transceiver 11 .
  • Such standby is realized under the control of the standby mode execution unit 35.
  • the search mode execution unit 34 sets the state of the corresponding optical sensing device 1 to the standby state when the operation mode of the corresponding optical sensing device 1 is set to the standby mode.
  • the standby mode execution unit 35 executes the standby mode when the operation mode of the corresponding optical sensing device 1 is set to the search mode. This enables such waiting.
  • execution condition information information indicating execution conditions for individual operation modes (hereinafter sometimes referred to as "execution condition information") is stored in advance.
  • execution condition information information indicating execution conditions for individual operation modes.
  • the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 using the stored execution condition information.
  • the execution condition information includes information indicating execution conditions for the measurement mode.
  • the conditions for executing the measurement mode may be referred to as “measurement conditions” or “first conditions”.
  • the execution condition information includes information indicating execution conditions for the communication mode.
  • the condition for executing the communication mode may be referred to as “communication condition” or “second condition”.
  • the execution condition information includes information indicating execution conditions for the search mode.
  • the search mode execution condition may be referred to as a "search condition” or a "third condition”.
  • the execution condition information includes information indicating execution conditions for the standby mode.
  • the conditions for executing the standby mode may be referred to as “standby conditions” or "fourth conditions”.
  • the second condition includes a transmission mode execution condition and a reception mode execution condition.
  • the conditions for executing the transmission mode may be referred to as “transmission conditions”.
  • the condition for executing the reception mode may be referred to as a "reception condition”.
  • the third execution condition includes a narrowly defined search mode execution condition and a searched mode execution condition.
  • the narrowly defined search mode execution condition may be referred to as a “narrowly defined search condition”.
  • the execution conditions of the searched mode may be referred to as “searched conditions”.
  • the first condition, the second condition, the third condition, and the fourth condition are set to conditions that do not overlap each other.
  • the first condition, the second condition, the third condition, and the fourth condition are set as mutually exclusive conditions.
  • the operation mode setting unit 31 determines whether each of the first condition, the second condition, the third condition, and the fourth condition is satisfied.
  • the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to the measurement mode. Thereby, the measurement mode executing section 32 executes the measurement mode.
  • the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to the communication mode. Thereby, the communication mode execution unit 33 executes the communication mode.
  • the operation mode setting unit 31 determines which of the transmission condition and the reception condition is satisfied. When it is determined that the transmission condition is satisfied, the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to the transmission mode. Thereby, the communication mode execution unit 33 executes the transmission mode. On the other hand, when it is determined that the reception condition is satisfied, the operation mode setting section 31 sets the operation mode of the corresponding optical sensing device 1 to the reception mode. Thereby, the communication mode execution unit 33 executes the reception mode.
  • the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to search mode. Thereby, the search mode execution unit 34 executes the search mode.
  • the operation mode setting unit 31 determines which of the narrowly-defined search condition and the searched condition is satisfied.
  • the operation mode setting section 31 sets the operation mode of the corresponding optical sensing device 1 to the search mode in the narrow sense.
  • the search mode execution unit 34 executes a narrowly defined search mode.
  • the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to the search target mode. Thereby, the search mode execution unit 34 executes the searched mode.
  • the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to the standby mode. Thereby, the standby mode execution unit 35 executes the standby mode.
  • the operation mode setting unit 31 presets the execution priority in the measurement mode, the communication mode, the search mode, and the standby mode. In other words, the order of priority of determination in the first condition, the second condition, the third condition, and the fourth condition is set in advance.
  • the operation mode setting unit 31 sequentially determines whether or not each execution condition is satisfied in descending order of priority. When it is determined that any execution condition is satisfied, the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to the operation mode corresponding to the determined execution condition.
  • the priority is set as follows.
  • the operation mode setting unit 31 first determines whether or not the first condition is satisfied. When it is determined that the first condition is satisfied, the operation mode setting section 31 sets the operation mode of the corresponding optical sensing device 1 to the measurement mode. Thereby, the measurement mode executing section 32 executes the measurement mode.
  • the operation mode setting unit 31 determines whether or not the second condition is satisfied. When it is determined that the second condition is satisfied, the operation mode setting section 31 sets the operation mode of the corresponding optical sensing device 1 to the communication mode. Thereby, the communication mode execution unit 33 executes the communication mode.
  • the operation mode setting unit 31 determines which of the transmission condition and the reception condition is satisfied. When it is determined that the transmission condition is satisfied, the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to the transmission mode. Thereby, the communication mode execution unit 33 executes the transmission mode. On the other hand, when it is determined that the reception condition is satisfied, the operation mode setting section 31 sets the operation mode of the corresponding optical sensing device 1 to the reception mode. Thereby, the communication mode execution unit 33 executes the reception mode.
  • the operation mode setting unit 31 determines whether or not the third condition is satisfied. When it is determined that the third condition is satisfied, the operation mode setting section 31 sets the operation mode of the corresponding optical sensing device 1 to the search mode. Thereby, the search mode execution unit 34 executes the search mode.
  • the operation mode setting unit 31 determines which of the narrowly-defined search condition and the searched condition is satisfied.
  • the operation mode setting section 31 sets the operation mode of the corresponding optical sensing device 1 to the search mode in the narrow sense.
  • the search mode execution unit 34 executes a narrowly defined search mode.
  • the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to the search target mode. Thereby, the search mode execution unit 34 executes the searched mode.
  • the operation mode setting unit 31 determines whether or not the fourth condition is satisfied. When it is determined that the fourth condition is satisfied, the operation mode setting section 31 sets the operation mode of the corresponding optical sensing device 1 to the standby mode. Thereby, the standby mode execution unit 35 executes the standby mode.
  • priority is not limited to the above specific examples. Any priority may be set. Also, the priority may be changed by the user.
  • the operation mode of the optical sensing device 1 is set.
  • Each of the first, second, third and fourth conditions includes at least one condition as follows.
  • the first condition includes, for example, the condition that the current time has reached a predetermined time.
  • the operation mode setting section 31 has a clock function.
  • the operation mode setting unit 31 compares the current time indicated by the clock with the predetermined time. Thereby, the operation mode setting unit 31 determines whether or not such a condition is satisfied.
  • the first condition includes the condition that the elapsed time after the previous optical sensing was performed exceeds a predetermined time.
  • the operation mode setting unit 31 has a timer for measuring the elapsed time after each optical sensing is performed. The operation mode setting unit 31 uses such a timer to measure the elapsed time after the previous optical sensing was performed. The operation mode setting unit 31 compares the measured elapsed time with a predetermined time. Thereby, the operation mode setting unit 31 determines whether or not such a condition is satisfied.
  • the first condition may include any condition as long as the light sensing can be performed at appropriate timing. Also, these conditions may be set in advance or may be set by the user.
  • the second condition includes, for example, the condition that the optical search is completed.
  • the second condition includes, for example, the condition that the optical transceiver 11 of the optical sensing device 1 on the searching side and the optical transceiver 11 of the optical sensing device 1 on the searched side face each other.
  • the search mode execution unit 34 outputs information indicating that to the operation mode setting unit 31 when receiving the response laser light.
  • the search mode execution unit 34 outputs information to the operation mode setting unit 31 when receiving the laser light for optical search.
  • the operation mode setting unit 31 uses these pieces of information to determine whether or not such conditions are satisfied.
  • the transmission condition includes, for example, the condition that the searched mode was executed in the previous search mode.
  • the reception condition includes, for example, a condition that the search mode in the narrow sense was executed in the previous search mode.
  • the search mode execution unit 34 sends information indicating whether the narrowly defined search mode or the searched mode is executed to the operation mode setting unit 31 when the optical search is completed. Output.
  • the operation mode setting unit 31 uses such information to determine whether or not such conditions are satisfied.
  • the transmission condition includes, for example, the condition that the search mode in the narrow sense was executed in the previous search mode.
  • the reception condition includes, for example, the condition that the searched mode was executed in the immediately preceding search mode.
  • the search mode execution unit 34 sends information indicating whether the narrowly defined search mode or the searched mode is executed to the operation mode setting unit 31 when the optical search is completed. Output.
  • the operation mode setting unit 31 uses such information to determine whether or not such conditions are satisfied.
  • each optical sensing device 1 information indicating whether the transmission mode should be executed or the reception mode should be executed is stored in advance. More specifically, when optical wireless communication is performed a plurality of times, information indicating whether the transmission mode should be performed or the reception mode should be performed in each optical wireless communication is provided in advance. remembered.
  • the transmission conditions include the condition that such information indicates the transmission mode.
  • the reception conditions also include a condition that such information indicates the reception mode. In this case, the operation mode setting unit 31 uses such information to determine whether these conditions are satisfied. However, such information may be input by the user instead of being stored in advance.
  • the second condition may include any condition as long as the light sensing can be performed at appropriate timing.
  • each of the transmission conditions and the reception conditions is not limited to the above specific examples.
  • Each of the transmission conditions and the reception conditions may include any conditions as long as the transmission and reception of laser light for optical wireless communication can be performed normally. Also, these conditions may be set in advance or may be set by the user.
  • the third condition includes, for example, the condition that the search mode has not been executed or completed.
  • the third condition includes, for example, the condition that another optical sensing device 1 to be the other party of optical wireless communication is undiscovered.
  • the search mode execution unit 34 sends information indicating that when the optical search is completed (that is, when another optical sensing device 1 is found) to the operation mode setting unit 31. output to The operation mode setting unit 31 stores such information.
  • the operation mode setting unit 31 determines whether or not such conditions are satisfied based on the presence or absence of such information.
  • each optical sensing device 1 information indicating whether the narrowly-defined search mode should be executed or the searched mode should be executed is stored in advance. More specifically, when the optical search is performed multiple times, information indicating whether the narrowly-defined search mode or the searched mode should be performed in each optical search is stored in advance.
  • a narrow search condition includes a condition that such information indicates a narrow search mode.
  • the search condition includes a condition that such information indicates the search mode. In this case, the operation mode setting unit 31 uses such information to determine whether these conditions are satisfied. However, such information may be input by the user instead of being stored in advance.
  • the third condition may include any condition as long as the optical search can be executed at appropriate timing.
  • each of the narrowly defined search conditions and searched conditions is not limited to the above specific examples.
  • Each of the search condition and the searched condition in a narrow sense may include any condition as long as it is a condition under which transmission and reception of laser light for optical search can be performed normally.
  • each of the narrowly defined search conditions and searched conditions may include any condition as long as it is a condition under which transmission and reception of laser light for response can be performed normally. Also, these conditions may be set in advance or may be set by the user.
  • the fourth condition includes, for example, the condition that none of the first, second, and third conditions are met. In this case, the operation mode setting unit 31 determines whether or not these conditions are satisfied based on the most recent determination result of the first condition, the most recent determination result of the second condition, and the most recent determination result of the third condition. do.
  • the fourth condition may include any condition as long as the individual optical sensing devices 1 can enter the standby state at appropriate timing. Also, these conditions may be set in advance or may be set by the user.
  • the signal processing unit 13 includes a point cloud data generating unit 41 and a three-dimensional model generating unit 42.
  • the communication mode execution unit 33 transmits the first position information and the first measurement data to the optical sensing device 1 on the transmitting side. Get from The communication mode execution unit 33 outputs the acquired first position information and first measurement data to the signal processing unit 13 . Also, in the optical sensing device 1 on the receiving side, the measurement mode execution unit 32 generates second measurement data. The measurement mode execution section 32 outputs the generated second measurement data to the signal processing section 13 . Further, the second position information is stored in advance in the optical sensing device 1 on the receiving side.
  • the point cloud data generation unit 41 acquires the output first position information, the output first measurement data, the stored second position information, and the output second measurement data.
  • the point cloud data generator 41 uses the position information and the measurement data to perform so-called "point cloud synthesis”. Thereby, the point cloud data generating unit 41 generates point cloud data corresponding to the position and shape of the object O.
  • FIG. 1 A block diagram illustrating an exemplary computing environment in accordance with the present disclosure.
  • the point cloud data generation unit 41 determines that the light sensing laser light emitted in each direction by the light sensing device 1 on the transmitting side is an object.
  • the position of the point reflected by (including the object O) (hereinafter sometimes referred to as "first reflection point") is calculated.
  • the point cloud data generator 41 plots points corresponding to the calculated individual positions in a virtual three-dimensional space.
  • the point cloud data generation unit 41 determines whether the laser beams for optical sensing emitted in each direction by the optical sensing device 1 on the receiving side are the objects.
  • the position of the point reflected by (including the object O) (hereinafter sometimes referred to as "second reflection point") is calculated.
  • the point cloud data generator 41 plots points corresponding to the calculated individual positions in a virtual three-dimensional space.
  • the point cloud data generation unit 41 uses the first position information and the second position information to convert the absolute positions indicated by these information into relative positions. Based on the relative positions, the point cloud data generator 41 plots the points corresponding to the positions of the individual first reflection points and the points corresponding to the positions of the individual second reflection points in the same three-dimensional space. That is, the point cloud data generation unit 41 performs point cloud synthesis for a plurality of optical sensing devices 1 (for example, two optical sensing devices 1_1 and 1_2). As a result, point cloud data is generated.
  • the laser light for optical sensing can also irradiate another object (hereinafter sometimes referred to as "non-target object") O' existing in the target area.
  • the generated point cloud data can include a point cloud corresponding to the non-target object O' in addition to the point cloud corresponding to the target object O.
  • the point cloud data generation unit 41 extracts the point cloud corresponding to the non-target object O' from among the point clouds included in the generated point cloud data, and converts the extracted point cloud to the generated point cloud. may be excluded from the generated point cloud data.
  • the point cloud data generating unit 41 extracts the point cloud corresponding to the object O from the point cloud included in the generated point cloud data, and converts the remaining point cloud to the generated point cloud data. may be excluded from.
  • the point cloud data generation unit 41 performs processing for calculating distances between points and individual surfaces (including planes and curved surfaces) that constitute individual objects for the generated point cloud data. ) is detected. Based on the results of these processes, the point cloud data generation unit 41 divides the point clouds included in the generated point cloud data into point groups corresponding to individual objects.
  • the point cloud data generation unit 41 acquires information indicating a pattern corresponding to the assumed shape and position of the non-target object O' and the position of the non-target object O' in the target space. Such information is pre-stored in the optical sensing device 1 on the receiving side, for example.
  • the point cloud data generator 41 performs pattern matching on the shape and position of each divided point cloud.
  • the point cloud data generation unit 41 determines whether or not each divided point cloud is a point cloud corresponding to the non-target object O' based on the pattern matching result.
  • the point cloud data generator 41 extracts a point cloud corresponding to the non-target object O' based on the determination result.
  • the point cloud data generation unit 41 acquires information indicating a pattern corresponding to the assumed shape and position of the target object O in the target space and the shape of the target object O. Such information is pre-stored in the optical sensing device 1 on the receiving side, for example.
  • the point cloud data generator 41 performs pattern matching on the shape and position of each divided point cloud.
  • the point cloud data generation unit 41 determines whether or not each divided point cloud is a point cloud corresponding to the object O based on the pattern matching result.
  • the point cloud data generator 41 extracts the point cloud corresponding to the object O based on the result of such determination.
  • a specific example of a method for converting an absolute position into a relative position is as follows.
  • the point cloud data generation unit 41 calculates the difference value between the coordinate values ( ⁇ 2, ⁇ 2, h2) indicated by the second position information and the coordinate values ( ⁇ 1, ⁇ 1, h1) indicated by the first position information.
  • the point cloud data generator 41 calculates coordinate values (r1, ⁇ 1, ⁇ 1) indicating the relative position of the optical sensing device 1 on the transmitting side with respect to the optical sensing device 1 on the receiving side based on the calculated difference value.
  • the coordinate values (r1, ⁇ 1, ⁇ 1) are coordinate values in the spherical coordinate system.
  • This spherical coordinate system has an origin corresponding to the installation position of the optical sensing device 1 on the receiving side.
  • this spherical coordinate system has a first axis corresponding to the installation direction of the optical sensing device 1 on the receiving side.
  • the point cloud data generation unit 41 generates the difference value of the coordinate values ( ⁇ 2, ⁇ 2, h2) indicated by the second position information with respect to the coordinate values ( ⁇ 1, ⁇ 1, h1) indicated by the first position information.
  • the point cloud data generator 41 calculates coordinate values (r2, ⁇ 2, ⁇ 2) indicating the relative position of the optical sensing device 1 on the receiving side with respect to the optical sensing device 1 on the transmitting side based on the calculated difference value.
  • the coordinate values (r2, ⁇ 2, ⁇ 2) are coordinate values in the spherical coordinate system.
  • This spherical coordinate system has an origin corresponding to the installation position of the optical sensing device 1 on the transmitting side.
  • This spherical coordinate system also has a first axis corresponding to the installation direction of the optical sensing device 1 on the transmitting side.
  • the point cloud data generation unit 41 outputs the generated point cloud data (that is, point cloud data corresponding to the position and shape of the object O) to the three-dimensional model generation unit 42 .
  • the 3D model generation unit 42 acquires the point cloud data output by the point cloud data generation unit 41 .
  • the three-dimensional model generation unit 42 generates a three-dimensional model of the object O using the acquired point cloud data. Specifically, for example, the 3D model generator 42 converts the acquired point cloud data into surface data (for example, mesh data or surface data). A three-dimensional model is thereby generated.
  • the processing executed by the signal processing unit 13 includes processing for generating point cloud data and processing for generating a three-dimensional model.
  • the signal processing unit 13 generates information indicating the result of such processing (hereinafter sometimes referred to as “result information”).
  • the signal processing unit 13 outputs the generated result information to the output unit 14 (see FIG. 2).
  • the result information is, for example, information including the 3D model generated by the 3D model generation unit 42 .
  • the output unit 14 acquires result information output by the signal processing unit 13 .
  • the output unit 14 outputs the acquired result information to the outside of the corresponding optical sensing device 1 .
  • the output unit 14 outputs the acquired result information to the external system 200 (see FIG. 2).
  • the external system 200 is, for example, a system higher than the optical sensing system 100 .
  • the external system 200 is provided outside the optical sensing system 100 .
  • the external system 200 may be a system of the user of the optical sensing system 100 .
  • the optical sensing device 1 having the output unit 14 (for example, the optical sensing device 1_1 of the optical sensing devices 1_1 and 1_2 shown in FIG. 1) is communicatively connected to the external system 200 via the network NW.
  • the network NW is configured by, for example, an LTE (Long Term Evolution) line or a 5G (5th Generation) line.
  • the output unit 14 transmits the acquired result information to the external system 200 via the network NW.
  • the output result information can be used for various purposes in the external system 200. Specifically, for example, the output result information is used for the process of estimating the volume of the object O. FIG.
  • the optical sensing system 100 is configured in this manner.
  • each optical sensing device 1 Next, the hardware configuration of each optical sensing device 1 will be described. More specifically, the hardware configuration of the optical sensing device 1_1 out of the optical sensing devices 1_1 and 1_2 shown in FIG. 1 will be described with reference to FIGS. 7 to 9. FIG.
  • the optical sensing device 1_1 has a function F1 of the optical transmitter/receiver 11, a function F2 of the control unit 12, a function F3 of the signal processing unit 13, and a function F4 of the output unit 14 (see FIG. 2).
  • the optical sensing device 1_1 includes an optical transmitter 51, an optical receiver 52, an output interface (“output I/F” in the figure) 53, a processor 54 and a memory 55.
  • the function F1 is realized by the optical transmitter 51 and the optical receiver 52.
  • the memory 55 also stores programs corresponding to the functions F2 and F3.
  • the processor 54 reads and executes programs stored in the memory 55 . Thereby, functions F2 and F3 are realized.
  • the function F4 is implemented by the output interface 53 .
  • the optical sensing device 1_1 comprises an optical transmitter 51, an optical receiver 52, an output interface 53 and a processing circuit 56.
  • the function F1 is realized by the optical transmitter 51 and the optical receiver 52.
  • FIG. The processing circuit 56 also executes processing corresponding to the functions F2 and F3. Thereby, functions F2 and F3 are realized. Also, the function F4 is implemented by the output interface 53 .
  • the optical sensing device 1_1 comprises an optical transmitter 51, an optical receiver 52, an output interface 53, a processor 54, a memory 55 and a processing circuit 56.
  • the function F1 is realized by the optical transmitter 51 and the optical receiver 52.
  • FIG. Some of the functions F2 and F3 are implemented by the processor 54 and the memory 55, and the rest of the functions F2 and F3 are implemented by the processing circuit 56.
  • FIG. Also, the function F4 is implemented by the output interface 53 .
  • the hardware configuration of the optical sensing device 1_2 is the same as the examples shown in FIGS. Therefore, detailed description is omitted.
  • the optical sensing device 1_2 does not have the function of the signal processing section 13 (see FIG. 3). Therefore, the function realized by the processor 54, the memory 55 and the processing circuit 56 in the optical sensing device 1_2 is only the function F2 among the functions F2 and F3.
  • the optical sensing device 1_2 does not have the function of the output unit 14 (see FIG. 3). Therefore, the output interface 53 is unnecessary in the optical sensing device 1_2.
  • the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 based on the second specific example.
  • the operation mode setting unit 31 determines whether or not the measurement mode execution information (that is, the first condition) is satisfied (step ST1).
  • the measurement mode execution information that is, the first condition
  • the first condition A specific example of the first condition and a specific example of the method of determining whether the first condition is satisfied have already been described. Therefore, repetitive description is omitted.
  • step ST1 If it is determined that the first condition is satisfied (step ST1 "YES"), then the operation mode setting section 31 sets the operation mode of the corresponding optical sensing device 1 to the measurement mode (step ST2). Next, the measurement mode executing section 32 executes the measurement mode (step ST3). Thereby, optical sensing based on the principle of LiDAR is performed. The details of the operation of each optical sensing device 1 in the measurement mode have already been explained. Therefore, repetitive description is omitted.
  • step ST4 If it is determined that the first condition is not satisfied ("NO" in step ST2), then the operation mode setting unit 31 determines whether or not the communication mode execution condition (that is, the second condition) is satisfied. (step ST4).
  • the communication mode execution condition that is, the second condition
  • step ST4 A specific example of the second condition and a specific example of the method of determining whether the second condition is satisfied have already been described. Therefore, repetitive description is omitted.
  • step ST4 If it is determined that the second condition is satisfied (step ST4 "YES"), then the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to the communication mode (step ST5). More specifically, the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to transmission mode or reception mode.
  • the communication mode executing section 33 executes the communication mode (step ST6). More specifically, the communication mode execution unit 33 executes transmission mode or reception mode. Thereby, optical wireless communication between the optical sensing devices 1 is performed. The details of the operation of each optical sensing device 1 in the communication mode have already been explained. Therefore, repetitive description is omitted.
  • step ST4 If it is determined that the second condition is not satisfied ("NO" in step ST4), then the operation mode setting unit 31 determines whether or not the search mode execution condition (that is, the third condition) is satisfied. (step ST7).
  • the search mode execution condition that is, the third condition
  • step ST7 A specific example of the third condition and a specific example of the method for determining whether or not the third condition is satisfied have already been described. Therefore, repetitive description is omitted.
  • step ST7 the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to the search mode (step ST8). More specifically, the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to a narrowly defined search mode or searched mode.
  • the search mode execution section 34 executes the search mode (step ST9). More specifically, the search mode execution unit 34 executes a narrowly defined search mode or searched mode. As a result, an optical search is performed to search for another optical sensing device 1 to be a partner of optical wireless communication. The details of the operation of each optical sensing device 1 in the search mode have already been explained. Therefore, repetitive description is omitted.
  • step ST7 If it is determined that the third condition is not satisfied ("NO" in step ST7), then the operation mode setting unit 31 determines whether or not the standby mode execution condition (that is, the fourth condition) is satisfied. (step ST10).
  • the standby mode execution condition that is, the fourth condition
  • step ST10 A specific example of the fourth condition and a specific example of the method of determining whether the fourth condition is satisfied have already been described. Therefore, repetitive description is omitted.
  • step ST10 If it is determined that the fourth condition is satisfied (step ST10 "YES"), then the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to the standby mode (step ST11). Next, the standby mode execution section 35 executes the standby mode (step ST12). As a result, the corresponding optical sensing device 1 enters a standby state.
  • the point cloud data generation unit 41 acquires first position information, first measurement data, second position information, and second measurement data (step ST21).
  • the point cloud data generator 41 uses these pieces of information and data to generate point cloud data corresponding to the position and shape of the object O (step ST22).
  • the three-dimensional model generation unit 42 generates a three-dimensional model of the object O using the generated point cloud data (step ST23).
  • a specific example of the point cloud data generation method and a specific example of the three-dimensional model generation method have already been described. Therefore, repetitive description is omitted.
  • the output unit 14 outputs information indicating the result of the processing executed by the signal processing unit 13 (that is, the processing of steps ST21 to ST23) to the outside (step ST24). That is, the output unit 14 outputs the result information to the outside.
  • the result information is, for example, information including the three-dimensional model generated in step ST23.
  • the signal processing unit 13 may not have the three-dimensional model generation unit 42.
  • the result information is information including the point cloud data generated by the point cloud data generation unit 41, for example.
  • the external system 200 may generate a three-dimensional model of the object O using such result information.
  • the first position information indicates the relative position of the optical sensing device 1 on the transmitting side with respect to the optical sensing device 1 on the receiving side instead of or in addition to the absolute position of the optical sensing device 1 on the transmitting side.
  • the second position information may indicate the relative position of the optical sensing device 1 on the receiving side with respect to the optical sensing device 1 on the transmitting side instead of or in addition to the absolute position of the optical sensing device 1 on the receiving side. good.
  • the optical sensing device 1 on the searched side receives laser light for optical search, it calculates a distance value r1 based on the received intensity, and An angle value ⁇ 1 and an angle value ⁇ 1 are calculated based on the orientation.
  • the coordinate values (r1, ⁇ 1, ⁇ 1) indicating the relative position of the optical sensing device 1 on the searched side with respect to the optical sensing device 1 on the searching side are calculated.
  • the optical sensing device 1 on the search side receives the response laser beam, it calculates the distance value r2 based on the received intensity of the laser beam, and calculates the angle values ⁇ 2 and ⁇ 2 based on the orientation of the optical transmitter/receiver 11. calculate.
  • coordinate values (r2, ⁇ 2, ⁇ 2) indicating the relative position of the optical sensing device 1 on the search side with respect to the optical sensing device 1 on the searched side are calculated.
  • optical wireless communication is performed between the optical sensing devices 1, so that position information indicating their relative positions is shared.
  • the distance value r1 may use the ToF method.
  • the laser light for optical search is incident on the lens of the light receiving unit 22 of the optical sensing device 1 on the side to be searched, part of it is reflected, and the reflected light becomes the light receiving unit of the optical sensing device 1 on the searching side. 22.
  • the response laser light is incident on the lens of the light sensing device 1 on the searching side, a part of it is reflected, and the reflected light becomes the light receiving portion of the light sensing device 1 on the side to be searched. 22. Therefore, the distance value r1 (or the distance value r2) can be calculated using the ToF method.
  • the laser light for optical search may include a signal indicating the time when the laser light was emitted.
  • the optical sensing device 1 on the searched side calculates the distance value r1 based on the time difference (that is, the one-way propagation time) between the time indicated by the signal and the time when the laser light was received.
  • the response laser light may contain a signal indicating the time when the laser light was emitted.
  • the optical sensing device 1 on the search side calculates the distance value r2 based on the time difference (that is, the one-way propagation time) between the time indicated by the signal and the time when the laser light was received.
  • the communication mode execution unit 33 when the relative position as described above has been calculated, performs the optical wireless communication according to the distance values (r1, r2) included in the relative position.
  • the intensity of the laser light for communication may be made different. Specifically, for example, the communication mode execution unit 33 may set the intensity of the laser light for optical wireless communication to a higher value as the distance value (r1, r2) increases. In other words, the communication mode execution unit 33 may set the intensity of the laser light for optical wireless communication to a higher value as the distance values (r1, r2) are smaller. Thereby, according to the distance between the optical sensing devices 1, a laser beam having an appropriate intensity can be used for optical wireless communication.
  • the position indicated by the position information is not limited to the installation position of the corresponding optical sensing device 1.
  • the reference position that is, the origin
  • these positions may be a third position different from the installation position of the optical sensing device 1_1 and different from the installation position of the optical sensing device 1_2.
  • these positions may be positions in the global coordinate system.
  • the optical wireless communication between the optical sensing devices 1 may use so-called "optical digital coherent communication".
  • each optical sensing device 1 has the function of performing digital signal processing.
  • the optical sensing device 1 on the transmission side converts information to be transmitted (for example, first position information and first measurement data) into a digital signal (so-called "encoding"), and corresponds to the converted digital signal.
  • a laser beam having amplitude, phase or frequency is emitted.
  • the optical sensing device 1 on the receiving side detects a digital signal contained in the received laser light and converts the detected digital signal into original information (eg, first positional information and first measurement data). (so-called "decryption").
  • original information eg, first positional information and first measurement data
  • the optical sensing system 100 has a function of detecting a rough position of each optical sensing device 1 using GPS (Global Positioning System) or low-capacity wireless communication (for example, BLUETOOTH (registered trademark) communication). It may have.
  • GPS Global Positioning System
  • BLUETOOTH registered trademark
  • the third condition may include the condition that the rough position of the other optical sensing device 1 has been detected using this function.
  • the third condition may include the condition that information indicating the presence of another optical sensing device 1 is obtained based on the result of detection by such a function.
  • control unit 12 may not have the search mode execution unit 34.
  • the operation mode of each light sensing device 1 may not include the search mode.
  • each optical sensing device 1 may store information indicating the position and orientation of another optical sensing device 1 in advance.
  • control unit 12 may not have the standby mode execution unit 35 .
  • the operation mode of each optical sensing device 1 may not include the standby mode. That is, the operation mode of each optical sensing device 1 should include at least the measurement mode and the communication mode. Also, the operation mode of each optical sensing device 1 may include a measurement mode, a communication mode, and a standby mode.
  • each optical sensing device 1 the optical sensing performed by this optical sensing device 1 may be referred to as "first LiDAR measurement”.
  • optical sensing performed by another optical sensing device 1 may be referred to as "second LiDAR measurement”.
  • the optical sensing system 100 includes the optical sensing device 1.
  • the optical sensing device 1 includes an optical transceiver 11 and a controller 12 .
  • the optical transceiver 11 transmits and receives a first light L1 used for optical sensing (first LiDAR measurement) based on the LiDAR principle, and transmits a second light L2 used for optical wireless communication with another optical sensing device 1. send or receive;
  • the control unit 12 switches between a measurement mode (first operation mode) in which optical sensing (first LiDAR measurement) is performed and a communication mode (second operation mode) in which optical wireless communication is performed.
  • Light sensing by the light sensing device 1 (first LiDAR measurement) and light sensing by another light sensing device 1 (second LiDAR measurement) are performed on the same object O.
  • the optical sensing system 100 is a system in which a plurality of optical sensing devices 1 cooperate by optical wireless communication.
  • the following effects can be obtained. That is, it is possible to suppress the occurrence of occlusion in the object O as compared with the case where a plurality of optical sensing devices 1 perform optical sensing on different objects.
  • the optical transmitting/receiving unit 11 transmits or receives the third light L3 used for optical search for searching for another optical sensing device 1 to be a partner of optical wireless communication.
  • the control unit 12 switches among a measurement mode (first operation mode), a communication mode (second operation mode), and a search mode (third operation mode) in which optical search is performed. Thereby, a search mode can be realized in addition to the measurement mode and the communication mode. As a result, even if each optical sensing device 1 does not know the positions of other optical sensing devices 1, optical wireless communication between the optical sensing devices 1 can be realized.
  • the optical sensing device 1 acquires first position information indicating the position and orientation of the other optical sensing device 1 from the other optical sensing device 1 by executing optical wireless communication. Thereby, the optical sensing device 1 on the receiving side can be realized. Further, by using the acquired first position information, point group synthesis between the optical sensing devices 1 can be realized in the optical sensing device 1 on the receiving side.
  • the optical sensing device 1 acquires first measurement data indicating the result of optical sensing (second LiDAR measurement) in the other optical sensing device 1 from the other optical sensing device 1 by executing optical wireless communication. do.
  • first measurement data indicating the result of optical sensing (second LiDAR measurement) in the other optical sensing device 1 from the other optical sensing device 1 by executing optical wireless communication. do.
  • point group synthesis between the optical sensing devices 1 can be realized in the optical sensing device 1 on the receiving side.
  • the optical sensing device 1 also provides first positional information, first measurement data, second positional information indicating the position and orientation of the optical sensing device 1, and the result of optical sensing (first LiDAR measurement) in the optical sensing device 1.
  • Point cloud data corresponding to the position and shape of the object O is generated using the second measurement data indicating By using these position information and measurement data, point group synthesis between the optical sensing devices 1 can be realized. Thereby, the point cloud data of the object O can be generated.
  • the optical sensing device 1 notifies other optical sensing devices 1 of the first position information indicating the position and orientation of the optical sensing device 1 by performing optical wireless communication. Thereby, the optical sensing device 1 on the transmission side can be realized. Also, by using the notified first position information, point group synthesis between the optical sensing devices 1 can be realized in the optical sensing device 1 on the receiving side.
  • the optical sensing device 1 notifies the other optical sensing devices 1 of first measurement data indicating the result of optical sensing (first LiDAR measurement) in the optical sensing device 1 by executing optical wireless communication.
  • first measurement data indicating the result of optical sensing (first LiDAR measurement) in the optical sensing device 1 by executing optical wireless communication.
  • the other optical sensing device 1 includes first positional information, first measurement data, second positional information indicating the position and orientation of the other optical sensing device 1, and optical sensing in the other optical sensing device 1 (second point cloud data corresponding to the position and shape of the object O is generated using the second measurement data indicating the results of the LiDAR measurement of .
  • second point cloud data corresponding to the position and shape of the object O is generated using the second measurement data indicating the results of the LiDAR measurement of .
  • the information used to generate the point cloud data (that is, the position information and the measurement data) is shared between the optical sensing devices 1 before the point cloud data is generated. Also, point group synthesis is performed by any one of the optical sensing devices 1 .
  • each optical sensing device uses GPS to acquire position information indicating the position and orientation of the optical sensing device. Also, each optical sensing device generates point cloud data based on the optical sensing results of the optical sensing device.
  • Each optical sensing device uses a wireless LAN (Local Area Network) to transmit the acquired position information and the generated point cloud data to an external system. In the external system, point group synthesis using the generated point cloud data is executed based on the generated position information. That is, point cloud synthesis in the optical sensing system for comparison is post-processing of point cloud data generated by a plurality of optical sensing devices.
  • LAN Local Area Network
  • the information used to generate the point cloud data is shared between the optical sensing devices 1 by optical wireless communication.
  • Group composition is performed. This makes it possible to achieve so-called "real-time" point cloud synthesis compared to the optical sensing system for comparison.
  • point cloud synthesis is performed when point cloud data is generated, instead of being performed as post-processing after point cloud data is generated. As a result, it is possible to suppress errors due to distortion in the post-processing from being mixed into the result of the point-group synthesis, as compared with a method in which the point-group synthesis is post-processed. As a result, highly accurate point group synthesis can be realized.
  • FIG. 12 is a block diagram showing the optical sensing device according to the second embodiment.
  • a light sensing device according to the second embodiment will be described with reference to FIG.
  • FIG. 13 is a block diagram showing the optical sensing system according to the second embodiment.
  • a light sensing system according to the second embodiment will be described with reference to FIG.
  • blocks similar to those shown in FIGS. 1 to 6 are assigned the same reference numerals, and descriptions thereof are omitted.
  • the optical sensing device 1 according to the first embodiment is an example of the optical sensing device 1a according to the second embodiment.
  • the optical sensing system 100 according to the first embodiment is an example of the optical sensing system 100a according to the second embodiment.
  • the optical sensing device 1a includes an optical transmitter/receiver 11 and a controller 12. As shown in FIG. 12, the optical sensing device 1a includes an optical transmitter/receiver 11 and a controller 12. As shown in FIG. 12, the optical sensing device 1a includes an optical transmitter/receiver 11 and a controller 12. As shown in FIG. 12, the optical sensing device 1a includes an optical transmitter/receiver 11 and a controller 12. As shown in FIG. 12,
  • the optical sensing system 100a includes an optical sensing device 1a.
  • the optical sensing device 1 a includes an optical transmitter/receiver 11 and a controller 12 .
  • the optical sensing system 100a includes the optical sensing device 1a.
  • the optical sensing device 1 a includes an optical transmitter/receiver 11 and a controller 12 .
  • the optical transceiver 11 transmits and receives a first light L1 used for optical sensing (first LiDAR measurement) based on the principle of LiDAR, and a first light L1 used for optical wireless communication with another optical sensing device 1a (not shown). 2. Transmit or receive light L2.
  • the control unit 12 switches between a first operation mode in which optical sensing (first LiDAR measurement) is performed and a second operation mode in which optical wireless communication is performed. Light sensing by the light sensing device 1a (first LiDAR measurement) and light sensing by another light sensing device 1a (not shown) (second LiDAR measurement) are performed on the same object O (not shown). be done.
  • the optical sensing system 100a is a system in which a plurality of optical sensing devices 1a cooperate by optical wireless communication.
  • the following effects can be obtained. That is, it is possible to suppress the occurrence of occlusion in the object O as compared with the case where a plurality of optical sensing devices 1a perform optical sensing on different objects.
  • optical transmitter/receiver 11 is hereinafter referred to as "optical transmitter/receiver”.
  • control part 12 is called a "control means.”
  • [Appendix] [Appendix 1] an optical transmitting/receiving means for transmitting and receiving the first light used for the first LiDAR measurement and transmitting or receiving the second light used for optical wireless communication with another optical sensing device; A control means for switching between a first operation mode for performing the first LiDAR measurement and a second operation mode for performing the optical wireless communication, The optical sensing device, wherein the first LiDAR measurement by the optical sensing device and the second LiDAR measurement by the other optical sensing device are performed on the same object.
  • the optical transmitting/receiving means transmits or receives a third light used for optical search for searching for the other optical sensing device to be a partner of the optical wireless communication,
  • the optical sensing device according to appendix 1, wherein the control means switches between the first operation mode, the second operation mode, and the third operation mode for performing the optical search.
  • the light according to Supplementary note 1 or 2 wherein first position information indicating the position and orientation of the other optical sensing device is obtained from the other optical sensing device by performing the optical wireless communication. sensing device.
  • first measurement data indicating a result of the second LiDAR measurement in the other optical sensing device is obtained from the other optical sensing device by performing the optical wireless communication. optical sensing device.
  • optical sensing device using the first position information, the first measurement data, the second position information indicating the position and orientation of the optical sensing device, and the second measurement data indicating the result of the first LiDAR measurement in the optical sensing device , the optical sensing device according to appendix 4, wherein point cloud data corresponding to the position and shape of the object is generated.
  • optical sensing device The optical sensing device according to Supplementary note 1 or 2, characterized in that the other optical sensing device is notified of first position information indicating the position and orientation of the optical sensing device by executing the optical wireless communication. .
  • Appendix 7 6. The light according to claim 6, wherein the other optical sensing device is notified of first measurement data indicating the result of the first LiDAR measurement in the optical sensing device by performing the optical wireless communication. sensing device.
  • the other optical sensing device comprises the first position information, the first measurement data, the second position information indicating the position and orientation of the other optical sensing device, and the second LiDAR in the other optical sensing device. 8.
  • An optical sensing system comprising an optical sensing device,
  • the optical sensing device is an optical transmitting/receiving means for transmitting and receiving the first light used for the first LiDAR measurement and transmitting or receiving the second light used for optical wireless communication with another optical sensing device;
  • a control means for switching between a first operation mode for performing the first LiDAR measurement and a second operation mode for performing the optical wireless communication,
  • the optical sensing system wherein the first LiDAR measurement by the optical sensing device and the second LiDAR measurement by the other optical sensing device are performed on the same object.
  • the optical transmitting/receiving means transmits or receives a third light used for optical search for searching for the other optical sensing device to be a partner of the optical wireless communication, 10.
  • the optical sensing device is characterized in that, by executing the optical wireless communication, first measurement data indicating the result of the second LiDAR measurement in the other optical sensing device is obtained from the other optical sensing device.
  • the optical sensing device comprises the first location information, the first measurement data, the second location information indicating the location and orientation of the optical sensing device, and the second location information indicating the result of the first LiDAR measurement in the optical sensing device.
  • the optical sensing system of claim 12 wherein the measurement data is used to generate point cloud data corresponding to the position and shape of the object.
  • optical sensing device notifies the other optical sensing device of first position information indicating the position and orientation of the optical sensing device by executing the optical wireless communication.
  • the optical sensing system according to . [Appendix 15] The optical sensing device is characterized by notifying the other optical sensing device of first measurement data indicating the result of the first LiDAR measurement in the optical sensing device by executing the optical wireless communication. 15.
  • the other optical sensing device comprises the first position information, the first measurement data, the second position information indicating the position and orientation of the other optical sensing device, and the second LiDAR in the other optical sensing device. 16.
  • the optical sensing system according to appendix 15, wherein the point cloud data corresponding to the position and shape of the object is generated using the second measurement data indicating the result of the measurement.
  • the optical sensing device transmits and receives a first light used for the first LiDAR measurement, and transmits or receives a second light used for optical wireless communication with another optical sensing device; wherein the optical sensing device switches between a first operating mode for performing the first LiDAR measurement and a second operating mode for performing the optical wireless communication;
  • the light sensing method wherein the first LiDAR measurement by the light sensing device and the second LiDAR measurement by the other light sensing device are performed on the same object.
  • the optical sensing device transmits or receives a third light used for optical search for searching for the other optical sensing device to be a partner of the optical wireless communication, 18.
  • the optical sensing device acquires first position information indicating the position and orientation of the other optical sensing device from the other optical sensing device by executing the optical wireless communication. 19.
  • the optical sensing device is characterized in that, by executing the optical wireless communication, first measurement data indicating the result of the second LiDAR measurement in the other optical sensing device is obtained from the other optical sensing device.
  • the optical sensing device comprises the first location information, the first measurement data, the second location information indicating the location and orientation of the optical sensing device, and the second location information indicating the result of the first LiDAR measurement in the optical sensing device. 21.
  • optical sensing device notifies the other optical sensing device of first position information indicating the position and orientation of the optical sensing device by executing the optical wireless communication.
  • the optical sensing device is characterized by notifying the other optical sensing device of first measurement data indicating the result of the first LiDAR measurement in the optical sensing device by executing the optical wireless communication. 23.
  • the other optical sensing device comprises the first position information, the first measurement data, the second position information indicating the position and orientation of the other optical sensing device, and the second LiDAR in the other optical sensing device. 24.
  • the optical sensing method according to appendix 23 wherein point cloud data corresponding to the position and shape of the object is generated using second measurement data indicating the result of the measurement.

Abstract

Occlusion is suppressed in this optical sensing system, in which a plurality of optical sensing devices are linked by means of optical wireless communication. An optical sensing device (1) comprises a light transmitting and receiving means (11) for transmitting and receiving first light (L1) used for first LiDAR measurement, and for transmitting or receiving second light (L2) used for optical wireless communication with another optical sensing device (1), and a control means (12) for switching between a first operating mode in which the first LiDAR measurement is executed, and a second operating mode in which the optical wireless communication is executed, wherein the first LiDAR measurement performed by the optical sensing device (1) and second LiDAR measurement performed by the other optical sensing device (1) are executed with respect to the same target object (O).

Description

光センシング装置、光センシングシステム及び光センシング方法Optical sensing device, optical sensing system and optical sensing method
 本開示は、光センシング装置等に関する。 The present disclosure relates to optical sensing devices and the like.
 LiDAR(Light Detection and Ranging)を用いて、物体を検出したり、又は距離を測定したりする技術が知られている。以下、かかる技術を「LiDAR測定」又は「光センシング」という。また、個々のLiDAR装置が出射するレーザ光を用いて、複数台のLiDAR装置が相互の光無線通信を実行する技術が知られている(例えば、特許文献1参照)。 Techniques for detecting objects or measuring distances using LiDAR (Light Detection and Ranging) are known. Such technology is hereinafter referred to as "LiDAR measurement" or "optical sensing". Also, there is known a technique in which a plurality of LiDAR devices perform mutual optical wireless communication using laser light emitted by each LiDAR device (see, for example, Patent Document 1).
 特許文献1に記載のシステムにおいては、例えば、2台の車両の各々にLiDAR装置が搭載される。個々のLiDAR装置は、LiDAR測定を実行することにより、対応する車両の周囲環境に関する情報を取得する。当該取得された情報は、個々の車両の衝突回避及び自動制御に用いられる(特許文献1の段落[0074]~[0076]、図6参照)。また、特許文献1に記載のシステムにおいては、当該2台のLiDAR装置が相互の光無線通信を実行する。これにより、1台のLiDAR装置により得られた情報が他の1台のLiDAR装置に送信される(特許文献1の段落[0077]、図6参照)。 In the system described in Patent Document 1, for example, a LiDAR device is mounted on each of two vehicles. Each LiDAR device obtains information about the surrounding environment of the corresponding vehicle by performing LiDAR measurements. The acquired information is used for collision avoidance and automatic control of individual vehicles (paragraphs [0074] to [0076] of Patent Document 1, see FIG. 6). Further, in the system described in Patent Document 1, the two LiDAR devices perform mutual optical wireless communication. As a result, information obtained by one LiDAR device is transmitted to another LiDAR device (paragraph [0077] of Patent Document 1, see FIG. 6).
特表2020-506402号公報Japanese Patent Publication No. 2020-506402
 特許文献1に記載の技術においては、LiDAR測定において、個々のLiDAR装置が互いに異なる物体にレーザ光を照射することが想定されている(特許文献1の図2、図3参照)。このため、個々の物体の表面のうち、LiDAR装置と向かい合わない領域において、レーザ光が照射されない部位が発生する(特許文献1の図2参照)。すなわち、いわゆる「オクルージョン(Occlusion)」が発生する。この結果、例えば、これらの物体の三次元モデルを生成するとき、オクルージョンに対応する欠落部が三次元モデルにおいて発生するという問題があった。 In the technology described in Patent Document 1, in LiDAR measurement, it is assumed that individual LiDAR devices irradiate different objects with laser light (see FIGS. 2 and 3 of Patent Document 1). Therefore, on the surface of each object, there is a portion that is not irradiated with laser light in a region that does not face the LiDAR device (see FIG. 2 of Patent Document 1). That is, so-called "occlusion" occurs. As a result, for example, when generating a three-dimensional model of these objects, there is a problem that a missing part corresponding to occlusion occurs in the three-dimensional model.
 本開示の目的は、上述した課題を鑑み、複数台の光センシング装置が光無線通信により連携する光センシングシステムにおいて、オクルージョンの発生を抑制することにある。 In view of the problems described above, an object of the present disclosure is to suppress the occurrence of occlusion in an optical sensing system in which a plurality of optical sensing devices cooperate by optical wireless communication.
 本開示の一側面に係る光センシング装置は、第1のLiDAR測定に用いる第1光を送信及び受信し、他の光センシング装置との光無線通信に用いる第2光を送信又は受信する光送受信手段と、第1のLiDAR測定を実行する第1動作モードと、光無線通信を実行する第2動作モードとを切り替える制御手段と、を備え、当該光センシング装置による第1のLiDAR測定及び他の光センシング装置による第2のLiDAR測定は、同一の対象物に対して実行される。 An optical sensing device according to one aspect of the present disclosure transmits and receives first light used for first LiDAR measurement, and transmits or receives second light used for optical wireless communication with other optical sensing devices. and control means for switching between a first operating mode for performing a first LiDAR measurement and a second operating mode for performing optical wireless communication, wherein the first LiDAR measurement by the optical sensing device and other A second LiDAR measurement with the optical sensing device is performed on the same object.
 本開示の一側面に係る光センシングシステムは、光センシング装置を含む光センシングシステムであって、光センシング装置は、第1のLiDAR測定に用いる第1光を送信及び受信し、他の光センシング装置との光無線通信に用いる第2光を送信又は受信する光送受信手段と、第1のLiDAR測定を実行する第1動作モードと、光無線通信を実行する第2動作モードとを切り替える制御手段と、を備え、光センシング装置による第1のLiDAR測定及び他の光センシング装置による第2のLiDAR測定は、同一の対象物に対して実行される。 An optical sensing system according to one aspect of the present disclosure is an optical sensing system including an optical sensing device, the optical sensing device transmitting and receiving a first light used for a first LiDAR measurement, and another optical sensing device and a control means for switching between a first operation mode for performing a first LiDAR measurement and a second operation mode for performing optical wireless communication. , wherein a first LiDAR measurement by a light sensing device and a second LiDAR measurement by another light sensing device are performed on the same object.
 本開示の一側面に係る光センシング方法は、光センシング装置が、第1のLiDAR測定に用いる第1光を送信及び受信し、他の光センシング装置との光無線通信に用いる第2光を送信又は受信し、光センシング装置が、第1のLiDAR測定を実行する第1動作モードと、光無線通信を実行する第2動作モードとを切り替え、光センシング装置による第1のLiDAR測定及び他の光センシング装置による第2のLiDAR測定は、同一の対象物に対して実行される。 In the optical sensing method according to one aspect of the present disclosure, the optical sensing device transmits and receives first light used for first LiDAR measurement, and transmits second light used for optical wireless communication with another optical sensing device. Or receive, the optical sensing device switches between a first operating mode performing a first LiDAR measurement and a second operating mode performing optical wireless communication, the first LiDAR measurement by the optical sensing device and other light A second LiDAR measurement by the sensing device is performed on the same object.
 本開示によれば、複数台の光センシング装置が光無線通信により連携する光センシングシステムにおいて、オクルージョンの発生を抑制することができる。 According to the present disclosure, it is possible to suppress the occurrence of occlusion in an optical sensing system in which a plurality of optical sensing devices cooperate through optical wireless communication.
図1は、第1実施形態に係る光センシングシステムを示すブロック図である。FIG. 1 is a block diagram showing the optical sensing system according to the first embodiment. 図2は、第1実施形態に係る光センシング装置を示すブロック図である。FIG. 2 is a block diagram showing the optical sensing device according to the first embodiment. 図3は、第1実施形態に係る光センシング装置を示すブロック図である。FIG. 3 is a block diagram showing the optical sensing device according to the first embodiment. 図4は、第1実施形態に係る光センシング装置の光送受信部を示すブロック図である。FIG. 4 is a block diagram showing the optical transceiver of the optical sensing device according to the first embodiment. 図5は、第1実施形態に係る光センシング装置の制御部を示すブロック図である。FIG. 5 is a block diagram showing the controller of the optical sensing device according to the first embodiment. 図6は、第1実施形態に係る光センシング装置の信号処理部を示すブロック図である。FIG. 6 is a block diagram showing the signal processing section of the optical sensing device according to the first embodiment. 図7は、第1実施形態に係る光センシング装置のハードウェア構成を示すブロック図である。FIG. 7 is a block diagram showing the hardware configuration of the optical sensing device according to the first embodiment. 図8は、第1実施形態に係る光センシング装置のハードウェア構成を示すブロック図である。FIG. 8 is a block diagram showing the hardware configuration of the optical sensing device according to the first embodiment. 図9は、第1実施形態に係る光センシング装置のハードウェア構成を示すブロック図である。FIG. 9 is a block diagram showing the hardware configuration of the optical sensing device according to the first embodiment. 図10Aは、第1実施形態に係る光センシング装置の制御部の動作を示すフローチャートである。10A is a flowchart showing the operation of the control unit of the optical sensing device according to the first embodiment; FIG. 図10Bは、第1実施形態に係る光センシング装置の制御部の動作を示すフローチャートである。10B is a flowchart showing the operation of the control unit of the optical sensing device according to the first embodiment; FIG. 図11は、第1実施形態に係る光センシング装置の信号処理部の動作を示すフローチャートである。FIG. 11 is a flow chart showing the operation of the signal processing section of the optical sensing device according to the first embodiment. 図12は、第2実施形態に係る光センシング装置を示すブロック図である。FIG. 12 is a block diagram showing the optical sensing device according to the second embodiment. 図13は、第2実施形態に係る光センシングシステムを示すブロック図である。FIG. 13 is a block diagram showing the optical sensing system according to the second embodiment.
 以下、本開示の実施形態について、添付の図面を参照して詳細に説明する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings.
[第1実施形態]
 図1は、第1実施形態に係る光センシングシステムを示すブロック図である。図2は、第1実施形態に係る光センシング装置を示すブロック図である。図3は、第1実施形態に係る光センシング装置を示すブロック図である。図4は、第1実施形態に係る光センシング装置の光送受信部を示すブロック図である。図5は、第1実施形態に係る光センシング装置の制御部を示すブロック図である。図6は、第1実施形態に係る光センシング装置の信号処理部を示すブロック図である。図1~図6を参照して、第1実施形態に係る光センシングシステムについて説明する。
[First embodiment]
FIG. 1 is a block diagram showing the optical sensing system according to the first embodiment. FIG. 2 is a block diagram showing the optical sensing device according to the first embodiment. FIG. 3 is a block diagram showing the optical sensing device according to the first embodiment. FIG. 4 is a block diagram showing the optical transceiver of the optical sensing device according to the first embodiment. FIG. 5 is a block diagram showing the controller of the optical sensing device according to the first embodiment. FIG. 6 is a block diagram showing the signal processing section of the optical sensing device according to the first embodiment. A light sensing system according to a first embodiment will be described with reference to FIGS. 1 to 6. FIG.
 図1に示す如く、光センシングシステム100は、複数台の光センシング装置1を備える。具体的には、例えば、光センシングシステム100は、2台の光センシング装置1_1,1_2を備える。 As shown in FIG. 1 , the optical sensing system 100 includes multiple optical sensing devices 1 . Specifically, for example, the optical sensing system 100 includes two optical sensing devices 1_1 and 1_2.
 複数台の光センシング装置1は、同一の物体(図中O)に対する光センシングを実行する。以下、かかる物体を「対象物」ということがある。図中、L1は、光センシングに用いられる光を示している。以下、かかる光を「第1光」ということがある。個々の光センシング装置1により実行される光センシングは、LiDARの原理に基づくものである。ここで、複数台の光センシング装置1は、対象物Oを含み得る所定の領域の周囲に設置される。以下、かかる領域を「対象領域」ということがある。また、複数台の光センシング装置1は、個々の光センシング装置1により出射されたレーザ光が対象領域に照射されるように設置される。換言すれば、複数台の光センシング装置1は、対象領域を包囲するように設置される。すなわち、複数台の光センシング装置1は、対象物Oを包囲するように設置される。これにより、上記のとおり、複数台の光センシング装置1は、同一の対象物Oに対する光センシングを実行する。 A plurality of optical sensing devices 1 performs optical sensing on the same object (O in the figure). Hereinafter, such an object may be referred to as an "object". In the figure, L1 indicates light used for optical sensing. Hereinafter, such light may be referred to as "first light". The light sensing performed by the individual light sensing devices 1 is based on the LiDAR principle. Here, a plurality of optical sensing devices 1 are installed around a predetermined area that can include the object O. As shown in FIG. Hereinafter, such an area may be referred to as a "target area". Also, the plurality of optical sensing devices 1 are installed so that the laser beams emitted from the individual optical sensing devices 1 irradiate the target area. In other words, a plurality of optical sensing devices 1 are installed so as to surround the target area. That is, the plurality of optical sensing devices 1 are installed so as to surround the object O. As shown in FIG. As a result, the plurality of optical sensing devices 1 perform optical sensing on the same object O as described above.
 なお、対象物Oが粉粒体である場合、「同一の対象物」は、かかる粉粒体を構成する個々の粒を意味するものではなく、かかる粉粒体の全体を意味するものであっても良い。例えば、対象物Oが原料ヤードにおける原料の山である場合、「同一の対象物」は、原料の山を構成する個々の原料の粒を意味するものではなく、原料の山を意味する。 In addition, when the object O is a granular material, the "same object" does not mean individual grains constituting such a granular material, but means the entire granular material. can be For example, when the object O is a pile of raw materials in a raw material yard, the "same object" does not mean the individual grains of raw materials that make up the pile of raw materials, but the pile of raw materials.
 また、個々の光センシング装置1は、他の光センシング装置1に対する光無線通信を実行する。図中、L2は、光無線通信に用いられる光を示している。以下、かかる光を「第2光」ということがある。また、個々の光センシング装置1は、光無線通信の相手となる他の光センシング装置1を探索するための光探索を実行する。図中、L3は、光探索に用いられる光を示している。以下、かかる光を「第3光」ということがある。 Also, each optical sensing device 1 performs optical wireless communication with other optical sensing devices 1 . In the figure, L2 indicates light used for optical wireless communication. Hereinafter, such light may be referred to as "second light". In addition, each optical sensing device 1 performs an optical search for searching for another optical sensing device 1 to be a partner of optical wireless communication. In the figure, L3 indicates light used for optical search. Hereinafter, such light may be referred to as "third light".
 図2及び図3の各々に示す如く、個々の光センシング装置1は、光送受信部11及び制御部12を備える。これに加えて、複数台の光センシング装置1のうちの少なくとも1台の光センシング装置1は、信号処理部13及び出力部14を備える(図2参照)。具体的には、例えば、図1に示す光センシング装置1_1,1_2のうちの光センシング装置1_1は、光送受信部11、制御部12、信号処理部13及び出力部14を備える(図2参照)。これに対して、図1に示す光センシング装置1_1,1_2のうちの光センシング装置1_2は、光送受信部11及び制御部12を備える(図3参照)。 As shown in each of FIGS. 2 and 3, each optical sensing device 1 includes an optical transmitter/receiver 11 and a controller 12 . In addition, at least one optical sensing device 1 among the plurality of optical sensing devices 1 includes a signal processing section 13 and an output section 14 (see FIG. 2). Specifically, for example, the optical sensing device 1_1 of the optical sensing devices 1_1 and 1_2 shown in FIG. 1 includes an optical transceiver 11, a control unit 12, a signal processing unit 13, and an output unit 14 (see FIG. 2). . On the other hand, the optical sensing device 1_2 of the optical sensing devices 1_1 and 1_2 shown in FIG. 1 includes an optical transmitter/receiver 11 and a control unit 12 (see FIG. 3).
 図4に示す如く、光送受信部11は、光出射部21及び受光部22を備える。光出射部21は、例えば、光送信機により構成されている。受光部22は、例えば、光受信機により構成されている。なお、光出射部21及び受光部22は、互いに物理的に分離されているものであっても良い。 As shown in FIG. 4 , the optical transmitter/receiver 11 includes a light emitting section 21 and a light receiving section 22 . The light emitting section 21 is composed of, for example, an optical transmitter. The light receiving unit 22 is configured by, for example, an optical receiver. Note that the light emitting section 21 and the light receiving section 22 may be physically separated from each other.
 第一に、光送受信部11は、LiDARの原理に基づく光センシングに用いられる。すなわち、光出射部21は、光センシング用のレーザ光を出射する。当該出射されたレーザ光は、対象領域に照射される。ここで、個々の光センシング装置1においては、光送受信部11の向きが可変である。具体的には、例えば、光送受信部11により形成されるビームの光軸が、アジマス方向に対して又はアジマス方向及びエレベーション方向の各々に対して、所定の角度範囲(例えば±5°)内にて回動自在である。これにより、光出射部21は、光センシング用のレーザ光を複数方向に順次出射する。この結果、対象領域をスキャンするようにレーザ光が照射される。当該照射されたレーザ光は、対象領域に存在する物体(対象物Oを含む。)により散乱的に反射される。以下、当該反射された光を「反射光」ということがある。受光部22は、反射光のうちの後方散乱成分を受信する。以下、受光部22により受信された反射光を「受信光」ということがある。 First, the optical transceiver 11 is used for optical sensing based on the principle of LiDAR. That is, the light emitting section 21 emits laser light for optical sensing. A target region is irradiated with the emitted laser light. Here, in each optical sensing device 1, the orientation of the optical transmitter/receiver 11 is variable. Specifically, for example, the optical axis of the beam formed by the light transmitting/receiving unit 11 is within a predetermined angle range (for example, ±5°) with respect to the azimuth direction or each of the azimuth direction and the elevation direction. It is rotatable at Thereby, the light emitting section 21 sequentially emits laser light for optical sensing in a plurality of directions. As a result, laser light is irradiated so as to scan the target area. The irradiated laser light is scattered and reflected by objects (including the object O) existing in the target area. Hereinafter, the reflected light may be referred to as "reflected light". The light receiving section 22 receives the backscattered component of the reflected light. Hereinafter, the reflected light received by the light receiving section 22 may be referred to as "received light".
 このように、光センシング用の第1光L1は、個々の光センシング装置1により出射されるレーザ光を含む(図1参照)。また、光センシング用の第1光L1は、個々の光センシング装置1により受信される反射光を含む(図1参照)。すなわち、個々の光センシング装置1において、光送受信部11は、第1光L1を送信及び受信する。 Thus, the first light L1 for optical sensing includes laser light emitted by each optical sensing device 1 (see FIG. 1). The first light L1 for optical sensing includes reflected light received by each optical sensing device 1 (see FIG. 1). That is, in each optical sensing device 1, the optical transmitter/receiver 11 transmits and receives the first light L1.
 第二に、光送受信部11は、複数の光センシング装置1間の光無線通信に用いられる。すなわち、後述する光探索が実行されることにより、送信側の光センシング装置1の光送受信部11と受信側の光センシング装置1の光送受信部11とが互いに対向した状態が発生する。かかる状態にて、送信側の光センシング装置1の光出射部21は、光無線通信用のレーザ光を出射する。他方、受信側の光センシング装置1の受光部22は、当該出射されたレーザ光を受信する。 Second, the optical transmitter/receiver 11 is used for optical wireless communication between a plurality of optical sensing devices 1 . In other words, the optical transceiver 11 of the optical sensing device 1 on the transmitting side and the optical transceiver 11 of the optical sensing device 1 on the receiving side face each other by performing an optical search, which will be described later. In this state, the light emitting unit 21 of the optical sensing device 1 on the transmitting side emits laser light for optical wireless communication. On the other hand, the light receiving section 22 of the optical sensing device 1 on the receiving side receives the emitted laser light.
 ここで、受信側の光センシング装置1は、複数台の光センシング装置1のうち、信号処理部13及び出力部14を備える光センシング装置1である。例えば、図1に示す例において、受信側の光センシング装置1は、光センシング装置1_1,1_2のうちの光センシング装置1_1である。他方、図1に示す例において、送信側の光センシング装置1は、光センシング装置1_1,1_2のうちの光センシング装置1_2である。 Here, the optical sensing device 1 on the receiving side is the optical sensing device 1 including the signal processing unit 13 and the output unit 14 among the multiple optical sensing devices 1 . For example, in the example shown in FIG. 1, the optical sensing device 1 on the receiving side is the optical sensing device 1_1 of the optical sensing devices 1_1 and 1_2. On the other hand, in the example shown in FIG. 1, the light sensing device 1 on the transmitting side is the light sensing device 1_2 of the light sensing devices 1_1 and 1_2.
 このように、光無線通信用の第2光L2は、送信側の光センシング装置1により送信されるレーザ光を含む(図1参照)。換言すれば、光無線通信用の第2光L2は、受信側の光センシング装置1により受信されるレーザ光を含む(図1参照)。すなわち、送信側の光センシング装置1及び受信側の光センシング装置1の各々において、光送受信部11は、第2光L2を送信又は受信する。換言すれば、個々の光センシング装置1において、光送受信部11は、第2光L2を送信又は受信する。 Thus, the second light L2 for optical wireless communication includes laser light transmitted by the light sensing device 1 on the transmission side (see FIG. 1). In other words, the second light L2 for optical wireless communication includes laser light received by the optical sensing device 1 on the receiving side (see FIG. 1). That is, in each of the optical sensing device 1 on the transmitting side and the optical sensing device 1 on the receiving side, the optical transmitter/receiver 11 transmits or receives the second light L2. In other words, in each optical sensing device 1, the optical transmitter/receiver 11 transmits or receives the second light L2.
 なお、相互の光無線通信においては、送信側の光センシング装置1と受信側の光センシング装置1とが入れ替わり得る。このため、個々の光センシング装置1において、光送受信部11は、第2光L2を送信及び受信するものであっても良い。 In mutual optical wireless communication, the optical sensing device 1 on the transmitting side and the optical sensing device 1 on the receiving side can be switched. Therefore, in each optical sensing device 1, the optical transmitter/receiver 11 may transmit and receive the second light L2.
 第三に、光送受信部11は、光無線通信の相手となる光センシング装置1を探索するための光探索に用いられる。すなわち、上記のとおり、個々の光センシング装置1においては、光送受信部11の向きが可変である。そこで、探索側の光センシング装置1においては、光センシング装置1が光送受信部11の向きを変化させることにより、光出射部21が光探索用のレーザ光を複数方向に順次出射する。他方、被探索側の光センシング装置1においても、光センシング装置1が光送受信部11の向きを変化させる。ここで、光探索における光送受信部11の向きの可変範囲は、光センシングにおける光送受信部11の向きの可変範囲よりも大きい値に設定されるものであっても良い。具体的には、例えば、光探索において、光送受信部11により形成されるビームの光軸の回動範囲は、±5°よりも大きい値に設定されるものであっても良い。 Thirdly, the optical transmitter/receiver 11 is used for optical search for searching for the optical sensing device 1 that is the partner of the optical wireless communication. That is, as described above, the orientation of the light transmitting/receiving section 11 is variable in each light sensing device 1 . Therefore, in the search-side optical sensing device 1, the optical sensing device 1 changes the direction of the optical transmission/reception section 11, so that the light emitting section 21 sequentially emits laser light for optical search in a plurality of directions. On the other hand, the optical sensing device 1 changes the orientation of the optical transmitter/receiver 11 in the optical sensing device 1 on the search target side as well. Here, the variable range of the direction of the optical transmitter/receiver 11 in optical search may be set to a larger value than the variable range of the direction of the optical transmitter/receiver 11 in optical sensing. Specifically, for example, in the optical search, the rotation range of the optical axis of the beam formed by the optical transmitter/receiver 11 may be set to a value larger than ±5°.
 探索側の光センシング装置1が光送受信部11の向きを変化させるとともに、被探索側の光センシング装置1が光送受信部11の向きを変化させることにより、これらの光送受信部11が互いに対向した状態が発生し得る。かかる状態において、探索側の光センシング装置1の光出射部21が出射した光探索用のレーザ光は、被探索側の光センシング装置1の受光部22により受信される。かかる受信に応じて、被探索側の光センシング装置1の光出射部21は、光探索用のレーザ光に対する応答用のレーザ光を出射する。探索側の光センシング装置1の受光部22は、当該出射されたレーザ光を受信する。 The optical sensing device 1 on the searching side changes the direction of the optical transmitter/receiver 11, and the optical sensing device 1 on the searched side changes the direction of the optical transmitter/receiver 11, so that these optical transmitter/receivers 11 face each other. conditions can arise. In this state, the laser light for optical search emitted by the light emitting unit 21 of the optical sensing device 1 on the searching side is received by the light receiving unit 22 of the optical sensing device 1 on the searching side. In response to such reception, the light emitting unit 21 of the optical sensing device 1 on the side to be searched emits a laser beam for response to the laser beam for optical search. The light receiving section 22 of the optical sensing device 1 on the searching side receives the emitted laser light.
 ここで、応答用のレーザ光は、光無線通信用のレーザ光であっても良い。すなわち、光探索における被探索側の光センシング装置1は、光探索用のレーザ光を受信したとき、光無線通信における送信側の光センシング装置1となるものであっても良い。すなわち、図1に示す例において、被探索側の光センシング装置1は、例えば、光センシング装置1_1,1_2のうちの光センシング装置1_2である。他方、図1に示す例において、探索側の光センシング装置1は、例えば、光センシング装置1_1,1_2のうちの光センシング装置1_1である。 Here, the laser light for response may be laser light for optical wireless communication. That is, the optical sensing device 1 on the searched side in the optical search may become the optical sensing device 1 on the transmitting side in the optical wireless communication when receiving the laser light for the optical search. That is, in the example shown in FIG. 1, the optical sensing device 1 on the side to be searched is, for example, the optical sensing device 1_2 out of the optical sensing devices 1_1 and 1_2. On the other hand, in the example shown in FIG. 1, the optical sensing device 1 on the searching side is, for example, the optical sensing device 1_1 of the optical sensing devices 1_1 and 1_2.
 または、応答用のレーザ光は、専用のレーザ光(例えば光探索用のレーザ光と同様のレーザ光)であっても良い。すなわち、応答用のレーザ光は、光探索に用いられるものであっても良く、又は光無線通信に用いられるものであっても良い。換言すれば、応答用のレーザ光は、第2光L2に含まれるものであっても良く、又は第3光L3に含まれるものであっても良い。 Alternatively, the response laser light may be a dedicated laser light (for example, a laser light similar to the light search laser light). That is, the response laser light may be used for optical search or may be used for optical wireless communication. In other words, the laser light for response may be included in the second light L2 or may be included in the third light L3.
 このように、光探索用の第3光L3は、探索側の光センシング装置1により出射されるレーザ光を含む(図1参照)。換言すれば、光探索用の第3光L3は、被探索側の光センシング装置1により受信されるレーザ光を含む(図1参照)。すなわち、探索側の光センシング装置1及び被探索側の光センシング装置1の各々において、光送受信部11は、第3光L3を送信又は受信する。換言すれば、個々の光センシング装置1において、光送受信部11は、第3光L3を送信又は受信する。 Thus, the third light L3 for optical search includes laser light emitted by the optical sensing device 1 on the search side (see FIG. 1). In other words, the third light L3 for optical search includes laser light received by the optical sensing device 1 on the side to be searched (see FIG. 1). That is, in each of the optical sensing device 1 on the search side and the optical sensing device 1 on the searched side, the optical transmitter/receiver 11 transmits or receives the third light L3. In other words, in each optical sensing device 1, the optical transmitter/receiver 11 transmits or receives the third light L3.
 なお、上記のとおり、第3光L3は、光探索用のレーザ光に加えて、応答用のレーザ光を含み得る。このため、個々の光センシング装置1において、光送受信部11は、第3光L3を送信及び受信するものであっても良い。 It should be noted that, as described above, the third light L3 may include response laser light in addition to light search laser light. Therefore, in each optical sensing device 1, the optical transmitter/receiver 11 may transmit and receive the third light L3.
 なお、光センシング用のレーザ光の波長λ1、光無線通信用のレーザ光の波長λ2、光探索用のレーザ光の波長λ3及び応答用のレーザ光の波長λ4について、これらの値(λ1,λ2,λ3,λ4)のうちの各2個の値は、互いに同じ波長帯の値であっても良い。または、これらの値(λ1,λ2,λ3,λ4)のうちの各2個の値は、互いに異なる波長帯の値であっても良い。光出射部21は、これらの波長(λ1,λ2,λ3,λ4)に対応した光送信機を用いるのが好適である。また、受光部22は、これらの波長(λ1,λ2,λ3,λ4)に対応した光受信機を用いるのが好適である。 For the wavelength λ1 of the laser light for optical sensing, the wavelength λ2 of the laser light for optical wireless communication, the wavelength λ3 of the laser light for optical search, and the wavelength λ4 of the laser light for response, these values (λ1, λ2 , λ3, λ4) may be values in the same wavelength band. Alternatively, each two of these values (λ1, λ2, λ3, λ4) may be values in different wavelength bands. The light emitting section 21 preferably uses an optical transmitter corresponding to these wavelengths (λ1, λ2, λ3, λ4). Moreover, it is preferable that the light receiving section 22 uses an optical receiver corresponding to these wavelengths (λ1, λ2, λ3, λ4).
 ただし、波長λ1は、光センシングを実現する観点から、LiDARに用いられる値に設定されるのが好適である。具体的には、例えば、波長λ1は、905ナノメートル帯の値又は1550ナノメートル帯の値に設定される。これに対して、波長λ2は、光無線通信を実現する観点から、光無線通信に用いられる値に設定されるのが好適である。具体的には、例えば、波長λ2は、800ナノメートル帯の値に設定される。すなわち、光センシング及び光無線通信の両方を実現する観点から、波長λ1と波長λ2は、互いに異なる波長帯の値に設定されるのが好適である。なお、波長λ3及び波長λ4の各々は、例えば、これらの波長帯のうちの選択された波長帯の値に設定される。すなわち、使用される波長帯の個数を低減する観点から、長λ3及び波長λ4の各々は、波長λ1又は波長λ2と同じ波長帯の値に設定されるものであっても良い。 However, from the viewpoint of realizing optical sensing, the wavelength λ1 is preferably set to a value used for LiDAR. Specifically, for example, the wavelength λ1 is set to a value in the 905 nm band or a value in the 1550 nm band. On the other hand, the wavelength λ2 is preferably set to a value used for optical wireless communication from the viewpoint of realizing optical wireless communication. Specifically, for example, the wavelength λ2 is set to a value in the 800 nanometer band. That is, from the viewpoint of realizing both optical sensing and optical wireless communication, the wavelength λ1 and the wavelength λ2 are preferably set to values in different wavelength bands. In addition, each of the wavelength λ3 and the wavelength λ4 is set to a value of a selected wavelength band among these wavelength bands, for example. That is, from the viewpoint of reducing the number of wavelength bands used, each of the length λ3 and the wavelength λ4 may be set to the same wavelength band value as the wavelength λ1 or the wavelength λ2.
 図5に示す如く、制御部12は、動作モード設定部31、測定モード実行部32、通信モード実行部33、探索モード実行部34及び待機モード実行部35を備える。以下、個々の光センシング装置1の個々の機能部の説明において、この機能部が設けられた光センシング装置1を「対応する光センシング装置」又は「当該光センシング装置」ということがある。 As shown in FIG. 5, the control unit 12 includes an operation mode setting unit 31, a measurement mode execution unit 32, a communication mode execution unit 33, a search mode execution unit 34 and a standby mode execution unit 35. Hereinafter, in the description of each functional unit of each optical sensing device 1, the optical sensing device 1 provided with this functional unit may be referred to as a "corresponding optical sensing device" or "the relevant optical sensing device".
 動作モード設定部31は、対応する光センシング装置1の動作モードを設定する。ここで、後述するとおり、個々の光センシング装置1は、複数個の動作モードを有する。動作モード設定部31は、当該複数個の動作モードのうちのいずれか1個の動作モードを選択して、対応する光センシング装置1の動作モードを当該選択された動作モードに設定する。換言すれば、動作モード設定部31は、対応する光センシング装置1の動作モードを切り替える。動作モード設定部31による動作モードの設定方法の具体例については後述する。以下、当該複数個の動作モードの具体例について説明する。 The operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 . Here, as will be described later, each optical sensing device 1 has a plurality of operation modes. The operation mode setting unit 31 selects one of the plurality of operation modes, and sets the operation mode of the corresponding optical sensing device 1 to the selected operation mode. In other words, the operation mode setting unit 31 switches the operation mode of the corresponding optical sensing device 1 . A specific example of how the operation mode setting unit 31 sets the operation mode will be described later. Specific examples of the plurality of operation modes will be described below.
〈測定モード(第1動作モード)〉
 第一に、個々の光センシング装置1は、LiDARの原理に基づく光センシングを実行する動作モードを有する。以下、この動作モードを「測定モード」又は「第1動作モード」ということがある。測定モードにおける個々の光センシング装置1の動作は、以下のとおりである。
<Measurement mode (first operation mode)>
First, each light sensing device 1 has an operation mode that performs light sensing based on the LiDAR principle. Hereinafter, this operation mode may be referred to as "measurement mode" or "first operation mode". The operation of each light sensing device 1 in measurement mode is as follows.
 すなわち、上記のとおり、個々の光センシング装置1において、光出射部21は、光センシング用のレーザ光を出射する。また、受光部22は、当該出射されたレーザ光が対象物Oにより反射されたとき、かかる反射光を受信する。これらの動作は、個々の光センシング装置1において、測定モード実行部32による制御の下に実行される。換言すれば、個々の光センシング装置1において、測定モード実行部32は、光センシング用のレーザ光を出射する制御、及び対応する反射光を受信する制御を実行する。 That is, as described above, in each optical sensing device 1, the light emitting section 21 emits laser light for optical sensing. Further, when the emitted laser light is reflected by the object O, the light receiving section 22 receives the reflected light. These operations are performed under the control of the measurement mode execution section 32 in each optical sensing device 1 . In other words, in each optical sensing device 1, the measurement mode execution unit 32 executes control for emitting laser light for optical sensing and control for receiving the corresponding reflected light.
 また、測定モード実行部32は、光出射部21により出射されたレーザ光及び受光部22により受信された反射光に基づき、距離Dの測定を実行する。ここで、光出射部21により出射されたレーザ光は、対象物Oに照射されるレーザ光である。また、受光部22により受信された反射光は、対象物Oにより反射された反射光である。距離Dの測定は、例えば、ToF(Time of Flight)方式又はFMCW(Frequency Modulated Continuous Wave)方式を用いる。 Also, the measurement mode execution unit 32 measures the distance D based on the laser light emitted by the light emitting unit 21 and the reflected light received by the light receiving unit 22 . Here, the laser light emitted by the light emitting unit 21 is the laser light with which the object O is irradiated. Also, the reflected light received by the light receiving unit 22 is the reflected light reflected by the object O. As shown in FIG. The measurement of the distance D uses, for example, the ToF (Time of Flight) method or the FMCW (Frequency Modulated Continuous Wave) method.
 ToF方式を用いる場合、光出射部21は、測定モード実行部32による制御の下、各方向にパルス状のレーザ光を出射する。測定モード実行部32は、光出射部21が各方向にレーザ光を出射したタイミングt1を示す情報、及び対応する反射光(すなわち対応するパルス光)を受光部22が受信したタイミングt2を示す情報を取得する。測定モード実行部32は、これらの情報を用いて、タイミングt1,t2間の時間差Δtを算出する。時間差Δtは、各方向に出射されたレーザ光及び対応する反射光の往復伝搬時間に対応している。測定モード実行部32は、かかる往復伝搬時間に対応する片道伝搬距離(すなわち距離D)を算出する。このようにして、距離Dが測定される。 When using the ToF method, the light emitting section 21 emits pulsed laser light in each direction under the control of the measurement mode executing section 32 . The measurement mode execution unit 32 receives information indicating timing t1 at which the light emitting unit 21 emits laser light in each direction, and information indicating timing t2 at which the light receiving unit 22 receives the corresponding reflected light (that is, the corresponding pulsed light). to get The measurement mode executing section 32 uses these pieces of information to calculate the time difference Δt between the timings t1 and t2. The time difference Δt corresponds to the round-trip propagation time of the laser light emitted in each direction and the corresponding reflected light. The measurement mode execution unit 32 calculates the one-way propagation distance (that is, the distance D) corresponding to the round-trip propagation time. Thus, the distance D is measured.
 FMCW方式を用いる場合、個々の光センシング装置1は、FMCW用の周波数変調を実行する機能、及びコヒーレント検波を実行する機能を有する。FMCW用の周波数変調が実行されることにより、光出射部21は、各方向にチャープ状のレーザ光を出射する。また、受光部22により受信された反射光(すなわち受信光)に対するコヒーレント検波が実行されることにより、受信光の周波数及び位相が検出される。測定モード実行部32は、各方向に出射されたレーザ光の周波数f1を示す情報、及び対応する受信光の周波数f2を示す情報を取得する。測定モード実行部32は、これらの情報を用いて、周波数f1,f2における周波数差(いわゆる「ビート周波数」)Δfを算出する。測定モード実行部32は、当該算出されたビート周波数Δfに基づき、FMCWに係る所定の数式を用いて距離Dを算出する。このようにして、距離Dが測定される。 When using the FMCW method, each optical sensing device 1 has a function of performing frequency modulation for FMCW and a function of performing coherent detection. By performing frequency modulation for FMCW, the light emitting unit 21 emits chirped laser light in each direction. Moreover, the frequency and phase of the received light are detected by performing coherent detection on the reflected light (that is, the received light) received by the light receiving section 22 . The measurement mode execution unit 32 acquires information indicating the frequency f1 of the laser light emitted in each direction and information indicating the corresponding frequency f2 of the received light. The measurement mode execution unit 32 uses these pieces of information to calculate the frequency difference (so-called “beat frequency”) Δf between the frequencies f1 and f2. The measurement mode execution unit 32 calculates the distance D using a predetermined formula relating to FMCW based on the calculated beat frequency Δf. Thus, the distance D is measured.
 なお、距離Dの測定方法は、これらの具体例に限定されるものではない。距離Dの測定には、公知の種々の技術を用いることができる。これらの技術についての詳細な説明は省略する。例えば、測定モード実行部32は、各方向に出射されたレーザ光と対応する受信光との位相差に基づき距離Dを算出するものであっても良い。すなわち、測定モード実行部32は、間接ToF方式を用いるものであっても良い。 It should be noted that the method for measuring the distance D is not limited to these specific examples. Various known techniques can be used to measure the distance D. A detailed description of these techniques is omitted. For example, the measurement mode execution unit 32 may calculate the distance D based on the phase difference between the laser light emitted in each direction and the corresponding received light. That is, the measurement mode execution unit 32 may use the indirect ToF method.
 このようにして、LiDARの原理に基づく光センシングが実現される。すなわち、測定モード実行部32は、対応する光センシング装置1の動作モードが測定モードに設定されたとき、光センシングを実行する。換言すれば、測定モード実行部32は、対応する光センシング装置1の動作モードが測定モードに設定されたとき、測定モードを実行する。 In this way, light sensing based on the principle of LiDAR is realized. That is, the measurement mode execution unit 32 executes optical sensing when the operation mode of the corresponding optical sensing device 1 is set to the measurement mode. In other words, the measurement mode execution unit 32 executes the measurement mode when the operation mode of the corresponding optical sensing device 1 is set to the measurement mode.
 測定モード実行部32は、光センシングの結果を示すデータを生成する。以下、かかるデータを「測定データ」ということがある。測定データは、上記算出された個々の距離Dを含む。また、測定データは、上記算出された個々の距離Dに対応するレーザ光の出射方向を示す情報を含む。測定データが示す出射方向は、例えば、所定の基準方向に対する差分値により表される。基準方向は、例えば、対応する光センシング装置1の設置方向である。 The measurement mode execution unit 32 generates data indicating the result of light sensing. Hereinafter, such data may be referred to as "measurement data". The measurement data includes the individual distances D calculated above. The measurement data also includes information indicating the emission direction of the laser beam corresponding to each of the distances D calculated above. The emission direction indicated by the measurement data is represented, for example, by a difference value with respect to a predetermined reference direction. The reference direction is, for example, the installation direction of the corresponding optical sensing device 1 .
 送信側の光センシング装置1において、測定モード実行部32は、上記生成された測定データを通信モード実行部33に出力する。ここで、送信側の光センシング装置1は、信号処理部13及び出力部14を有しない光センシング装置1である。図5において、この場合における測定モード実行部32と通信モード実行部33間の接続線は図示を省略している。以下、送信側の光センシング装置1における光センシングの結果を示す測定データを「第1測定データ」ということがある。当該出力された第1測定データは、後述するとおり、受信側の光センシング装置1に送信される。 In the optical sensing device 1 on the transmission side, the measurement mode execution section 32 outputs the generated measurement data to the communication mode execution section 33 . Here, the light sensing device 1 on the transmission side is the light sensing device 1 that does not have the signal processing section 13 and the output section 14 . In FIG. 5, the connection line between the measurement mode execution section 32 and the communication mode execution section 33 in this case is omitted. Hereinafter, the measurement data indicating the optical sensing result of the optical sensing device 1 on the transmission side may be referred to as "first measurement data". The output first measurement data is transmitted to the optical sensing device 1 on the receiving side, as will be described later.
 他方、受信側の光センシング装置1において、測定モード実行部32は、上記生成された測定データを信号処理部13に出力する。ここで、上記のとおり、受信側の光センシング装置1は、信号処理部13及び出力部14を有する光センシング装置1である。以下、受信側の光センシング装置1における光センシングの結果を示す測定データを「第2測定データ」ということがある。当該出力された第2測定データは、後述するとおり、点群データの生成に用いられる。 On the other hand, in the optical sensing device 1 on the receiving side, the measurement mode execution section 32 outputs the generated measurement data to the signal processing section 13 . Here, as described above, the optical sensing device 1 on the receiving side is the optical sensing device 1 having the signal processing section 13 and the output section 14 . Hereinafter, the measurement data indicating the optical sensing result of the optical sensing device 1 on the receiving side may be referred to as "second measurement data". The output second measurement data is used to generate point cloud data, as will be described later.
〈通信モード(第2動作モード)〉
 第二に、個々の光センシング装置1は、他の光センシング装置1に対する光無線通信を実行する動作モードを有する。以下、この動作モードを「通信モード」又は「第2動作モード」ということがある。通信モードにおける個々の光センシング装置1の動作は、以下のとおりである。
<Communication mode (second operation mode)>
Secondly, each optical sensing device 1 has an operational mode of performing optical wireless communication with other optical sensing devices 1 . Hereinafter, this operation mode may be referred to as "communication mode" or "second operation mode". The operation of each optical sensing device 1 in communication mode is as follows.
 すなわち、上記のとおり、送信側の光センシング装置1において、光出射部21は、光無線通信用のレーザ光を出射する。かかる動作は、送信側の光センシング装置1において、通信モード実行部33による制御の下に実行される。換言すれば、送信側の光センシング装置1において、通信モード実行部33は、光無線通信用のレーザ光を出射する制御を実行する。 That is, as described above, in the optical sensing device 1 on the transmission side, the light emitting section 21 emits laser light for optical wireless communication. Such operations are performed under the control of the communication mode execution unit 33 in the optical sensing device 1 on the transmission side. In other words, in the optical sensing device 1 on the transmission side, the communication mode execution unit 33 executes control to emit laser light for optical wireless communication.
 他方、受信側の光センシング装置1において、受光部22は、当該出射されたレーザ光を受信する。かかる動作は、受信側の光センシング装置1において、通信モード実行部33による制御の下に実行される。換言すれば、受信側の光センシング装置1において、通信モード実行部33は、光無線通信用のレーザ光を受信する制御を実行する。 On the other hand, in the optical sensing device 1 on the receiving side, the light receiving section 22 receives the emitted laser light. Such an operation is executed under the control of the communication mode executing section 33 in the optical sensing device 1 on the receiving side. In other words, in the optical sensing device 1 on the receiving side, the communication mode execution unit 33 executes control for receiving laser light for optical wireless communication.
 このように、通信モードは、送信側の光センシング装置1に対応する動作モード、及び受信側の光センシング装置1に対応する動作モードを含む。以下、通信モードのうちの送信側の光センシング装置1に対応する動作モードを「送信モード」ということがある。また、通信モードのうちの受信側の光センシング装置1に対応する動作モードを「受信モード」ということがある。 Thus, the communication mode includes an operation mode corresponding to the light sensing device 1 on the transmitting side and an operation mode corresponding to the light sensing device 1 on the receiving side. Hereinafter, the operation mode corresponding to the optical sensing device 1 on the transmission side, among the communication modes, may be referred to as the "transmission mode". In addition, among the communication modes, an operation mode corresponding to the optical sensing device 1 on the receiving side may be referred to as a "reception mode".
 ここで、送信側の光センシング装置1において、通信モード実行部33は、光無線通信を実行することにより、送信側の光センシング装置1の位置及び向きを示す情報を受信側の光センシング装置1に通知する。換言すれば、受信側の光センシング装置1において、通信モード実行部33は、光無線通信を実行することにより、送信側の光センシング装置1の位置及び向きを示す情報を送信側の光センシング装置1から取得する。 Here, in the optical sensing device 1 on the transmitting side, the communication mode execution unit 33 executes optical wireless communication to transmit information indicating the position and orientation of the optical sensing device 1 on the transmitting side to the optical sensing device 1 on the receiving side. to notify. In other words, in the optical sensing device 1 on the receiving side, the communication mode execution unit 33 executes optical wireless communication to transmit information indicating the position and orientation of the optical sensing device 1 on the transmitting side to the optical sensing device 1 on the transmitting side. Get from 1.
 以下、送信側の光センシング装置1の位置及び向きを示す情報を「第1位置情報」ということがある。第1位置情報は、例えば、送信側の光センシング装置1に予め記憶されている。これに対して、受信側の光センシング装置1の位置及び向きを示す情報を「第2位置情報」ということがある。第2位置情報は、例えば、受信側の光センシング装置1に予め記憶されている。また、第1位置情報及び第2位置情報のうちの少なくとも一方を総称して「位置情報」ということがある。 Hereinafter, information indicating the position and orientation of the optical sensing device 1 on the transmission side may be referred to as "first position information". The first position information is stored in advance in the light sensing device 1 on the transmission side, for example. On the other hand, information indicating the position and orientation of the optical sensing device 1 on the receiving side may be referred to as "second position information". The second position information is stored in advance in the light sensing device 1 on the receiving side, for example. Also, at least one of the first position information and the second position information may be collectively referred to as "position information".
 第1位置情報が示す位置は、例えば、送信側の光センシング装置1の設置位置である。より具体的には、第1位置情報は、送信側の光センシング装置1の設置位置を示す座標値(例えば緯度値ψ1、経度値γ1及び標高値h1)を含む。すなわち、第1位置情報が示す位置は、いわゆる「絶対位置」であっても良い。 The position indicated by the first position information is, for example, the installation position of the optical sensing device 1 on the transmission side. More specifically, the first position information includes coordinate values (for example, latitude value ψ1, longitude value γ1, and altitude value h1) indicating the installation position of the optical sensing device 1 on the transmitting side. That is, the position indicated by the first position information may be a so-called "absolute position".
 第1位置情報が示す向きは、送信側の光センシング装置1の設置方向である。具体的には、例えば、送信側の光センシング装置1の前後方向に対応する仮想的な軸である第1軸が設定される。また、送信側の光センシング装置1の左右方向に対応する仮想的な軸である第2軸が設定される。また、送信側の光センシング装置1の上下方向に対応する仮想的な軸である第3軸が設定される。送信側の光センシング装置1の設置方向は、仮に送信側の光センシング装置1が水平面に設置された状態に対する各軸の傾き値により表される。 The direction indicated by the first position information is the installation direction of the optical sensing device 1 on the transmission side. Specifically, for example, a first axis, which is a virtual axis corresponding to the front-rear direction of the optical sensing device 1 on the transmission side, is set. A second axis, which is a virtual axis corresponding to the horizontal direction of the optical sensing device 1 on the transmission side, is set. A third axis, which is a virtual axis corresponding to the vertical direction of the light sensing device 1 on the transmission side, is set. The installation direction of the optical sensing device 1 on the transmission side is represented by the tilt value of each axis with respect to the state in which the optical sensing device 1 on the transmission side is installed on a horizontal plane.
 第2位置情報が示す位置は、例えば、受信側の光センシング装置1の設置位置である。より具体的には、第2位置情報は、受信側の光センシング装置1の設置位置を示す座標値(例えば緯度値ψ2、経度値γ2及び標高値h2)を含む。すなわち、第2位置情報が示す位置は、いわゆる「絶対位置」であっても良い。 The position indicated by the second position information is, for example, the installation position of the optical sensing device 1 on the receiving side. More specifically, the second position information includes coordinate values (for example, latitude value ψ2, longitude value γ2, and altitude value h2) indicating the installation position of the optical sensing device 1 on the receiving side. That is, the position indicated by the second position information may be a so-called "absolute position".
 第2位置情報が示す向きは、受信側の光センシング装置1の設置方向である。具体的には、例えば、受信側の光センシング装置1の前後方向に対応する仮想的な軸である第1軸が設定される。また、受信側の光センシング装置1の左右方向に対応する仮想的な軸である第2軸が設定される。また、受信側の光センシング装置1の上下方向に対応する仮想的な軸である第3軸が設定される。受信側の光センシング装置1の設置方向は、仮に受信側の光センシング装置1が水平面に設置された状態に対する各軸の傾き値により表される。 The direction indicated by the second position information is the installation direction of the light sensing device 1 on the receiving side. Specifically, for example, a first axis, which is a virtual axis corresponding to the front-rear direction of the optical sensing device 1 on the receiving side, is set. A second axis, which is a virtual axis corresponding to the lateral direction of the optical sensing device 1 on the receiving side, is set. A third axis, which is a virtual axis corresponding to the vertical direction of the light sensing device 1 on the receiving side, is set. The installation direction of the optical sensing device 1 on the receiving side is represented by the tilt value of each axis with respect to the state in which the optical sensing device 1 on the receiving side is temporarily installed on a horizontal plane.
 また、送信側の光センシング装置1は、光無線通信を実行することにより、第1測定データを受信側の光センシング装置1に通知する。換言すれば、受信側の光センシング装置1は、光無線通信を実行することにより、第1測定データを送信側の光センシング装置1から取得する。 Also, the optical sensing device 1 on the transmitting side notifies the optical sensing device 1 on the receiving side of the first measurement data by executing optical wireless communication. In other words, the optical sensing device 1 on the receiving side acquires the first measurement data from the optical sensing device 1 on the transmitting side by performing optical wireless communication.
 このようにして、光センシング装置1間の光無線通信が実現される。すなわち、通信モード実行部33は、対応する光センシング装置1の動作モードが通信モードに設定されたとき、光無線通信を実行する。換言すれば、通信モード実行部33は、対応する光センシング装置1の動作モードが通信モードに設定されたとき、通信モードを実行する。 In this way, optical wireless communication between the optical sensing devices 1 is realized. That is, the communication mode execution unit 33 executes optical wireless communication when the operation mode of the corresponding optical sensing device 1 is set to the communication mode. In other words, the communication mode execution unit 33 executes the communication mode when the operation mode of the corresponding optical sensing device 1 is set to the communication mode.
 受信側の光センシング装置1において、通信モード実行部33は、上記取得された第1位置情報を信号処理部13に出力する。また、受信側の光センシング装置1において、通信モード実行部33は、上記取得された第1測定データを信号処理部13に出力する。当該出力された第1位置情報及び当該出力された第1測定データは、後述するとおり、点群データの生成に用いられる。 In the optical sensing device 1 on the receiving side, the communication mode execution unit 33 outputs the acquired first position information to the signal processing unit 13 . Also, in the optical sensing device 1 on the receiving side, the communication mode executing section 33 outputs the acquired first measurement data to the signal processing section 13 . The output first position information and the output first measurement data are used to generate point cloud data, as will be described later.
〈探索モード(第3動作モード)〉
 第三に、個々の光センシング装置1は、光無線通信の相手となる他の光センシング装置1を探索するための光探索を実行する動作モードを有する。以下、この動作モードを「探索モード」又は「第3動作モード」ということがある。探索モードにおける個々の光センシング装置1の動作は、以下のとおりである。
<Search mode (third operation mode)>
Thirdly, each optical sensing device 1 has an operation mode in which it performs an optical search for searching for other optical sensing devices 1 with which to communicate optically wirelessly. Hereinafter, this operation mode may be referred to as "search mode" or "third operation mode". The operation of each light sensing device 1 in search mode is as follows.
 すなわち、上記のとおり、探索側の光センシング装置1は、光送受信部11の向きを変化させることにより、光探索用のレーザ光を複数方向に順次出射する。また、探索側の光センシング装置1は、被探索側の光センシング装置1が応答用のレーザ光を出射したとき、当該出射された応答用のレーザ光を受信する。これらの動作は、探索側の光センシング装置1において、探索モード実行部34による制御の下に実行される。換言すれば、探索側の光センシング装置1において、探索モード実行部34は、光送受信部11の向きを変化させる制御、光探索用のレーザ光を出射する制御、及び応答用のレーザ光を受信する制御を実行する。 That is, as described above, the search-side optical sensing device 1 sequentially emits laser light for optical search in a plurality of directions by changing the direction of the optical transmitter/receiver 11 . Further, when the optical sensing device 1 on the searched side emits a response laser beam, the searching-side optical sensing device 1 receives the emitted response laser beam. These operations are executed under the control of the search mode execution unit 34 in the search-side optical sensing device 1 . In other words, in the optical sensing device 1 on the search side, the search mode execution unit 34 controls the orientation of the optical transmitter/receiver 11, controls the emission of laser light for optical search, and receives the laser light for response. to perform control.
 また、被探索側の光センシング装置1は、光送受信部11の向きを変化させる。これにより、探索側の光センシング装置1と被探索側の光センシング装置1の光送受信部11とが互いに対向した状態が発生し得る。かかる状態にて、被探索側の光センシング装置1の受光部22は、上記出射された光探索用のレーザ光を受信する。かかる受信に応じて、被探索側の光センシング装置1の光出射部21は、応答用のレーザ光を出射する。これらの動作は、被探索側の光センシング装置1において、探索モード実行部34による制御の下に実行される。換言すれば、被探索側の光センシング装置1において、探索モード実行部34は、光送受信部11の向きを変化させる制御、光探索用のレーザ光を受信する制御、及び応答用のレーザ光を出射する制御を実行する。 In addition, the optical sensing device 1 on the search target side changes the orientation of the optical transmitter/receiver 11 . As a result, a state in which the optical sensing device 1 on the searching side and the optical transmitter/receiver 11 of the optical sensing device 1 on the searched side face each other may occur. In this state, the light receiving section 22 of the optical sensing device 1 on the side to be searched receives the emitted laser light for optical search. In response to such reception, the light emitting unit 21 of the optical sensing device 1 on the side to be searched emits laser light for response. These operations are performed under the control of the search mode execution unit 34 in the optical sensing device 1 on the searched side. In other words, in the optical sensing device 1 on the search target side, the search mode execution unit 34 performs control to change the direction of the optical transmitter/receiver 11, control to receive laser light for optical search, and control to receive laser light for response. Execute control to emit.
 このように、探索モードは、探索側の光センシング装置1に対応する動作モード、及び被探索側の光センシング装置1に対応する動作モードを含む。以下、探索モードのうちの探索側の光センシング装置1に対応する動作モードを「狭義の探索モード」ということがある。また、探索モードのうちの被探索側の光センシング装置1に対応する動作モードを「被探索モード」ということがある。 Thus, the search mode includes an operation mode corresponding to the optical sensing device 1 on the search side and an operation mode corresponding to the optical sensing device 1 on the searched side. Hereinafter, among the search modes, the operation mode corresponding to the optical sensing device 1 on the search side may be referred to as a "narrowly-defined search mode". Further, among the search modes, an operation mode corresponding to the optical sensing device 1 on the side to be searched may be referred to as a "searched mode".
 このようにして、光無線探索が実現される。すなわち、探索モード実行部34は、対応する光センシング装置1の動作モードが探索モードに設定されたとき、光探索を実行する。換言すれば、探索モード実行部34は、対応する光センシング装置1の動作モードが探索モードに設定されたとき、探索モードを実行する。 In this way, optical wireless search is realized. That is, the search mode execution unit 34 executes optical search when the operation mode of the corresponding optical sensing device 1 is set to the search mode. In other words, the search mode executing section 34 executes the search mode when the operation mode of the corresponding optical sensing device 1 is set to the search mode.
〈待機モード(第4動作モード)〉
 第四に、個々の光センシング装置1は、光センシング、光無線通信及び光探索のうちのいずれも実行しない動作モードを有する。換言すれば、この動作モードは、光センシング、光無線通信及び光探索のうちのいずれかを実行するために待機するモードである。以下、この動作モードを「待機モード」又は「第4動作モード」ということがある。
<Standby mode (fourth operation mode)>
Fourth, each optical sensing device 1 has an operating mode in which it performs neither optical sensing, optical wireless communication nor optical searching. In other words, this mode of operation is a mode of waiting to perform any of optical sensing, optical wireless communication, and optical searching. Hereinafter, this operation mode may be referred to as "standby mode" or "fourth operation mode".
 なお、待機モードの定義は、光センシング用のレーザ光、光無線通信用のレーザ光及び光探索用のレーザ光のうちのいずれも出射しない動作モードであっても良い。すなわち、受信モードは、通信モードに含まれるのに代えて又は加えて、待機モードに含まれるものであっても良い。また、被探索モードは、探索モードに含まれるのに代えて又は加えて、待機モードに含まれるものであっても良い。 The definition of the standby mode may be an operation mode in which none of the laser light for optical sensing, the laser light for optical wireless communication, and the laser light for optical search is emitted. That is, the reception mode may be included in the standby mode instead of or in addition to being included in the communication mode. Also, the searched mode may be included in the standby mode instead of or in addition to being included in the search mode.
 以下、受信モードが通信モードに含まれる場合の例を中心に説明する。また、被探索モードが探索モードに含まれる場合の例を中心に説明する。この場合、待機モードは、対応する光センシング装置1が光送受信部11の向きを変化させない動作モードである。 The following description will focus on an example in which the reception mode is included in the communication mode. Also, an example in which the searched mode is included in the search mode will be mainly described. In this case, the standby mode is an operation mode in which the corresponding optical sensing device 1 does not change the orientation of the optical transceiver 11 .
 かかる待機は、待機モード実行部35による制御の下に実現される。例えば、探索モード実行部34は、対応する光センシング装置1の動作モードが待機モードに設定されたとき、対応する光センシング装置1の状態を待機状態に設定する。換言すれば、待機モード実行部35は、対応する光センシング装置1の動作モードが探索モードに設定されたとき、待機モードを実行する。これにより、かかる待機が実現される。 Such standby is realized under the control of the standby mode execution unit 35. For example, the search mode execution unit 34 sets the state of the corresponding optical sensing device 1 to the standby state when the operation mode of the corresponding optical sensing device 1 is set to the standby mode. In other words, the standby mode execution unit 35 executes the standby mode when the operation mode of the corresponding optical sensing device 1 is set to the search mode. This enables such waiting.
 動作モード設定部31においては、個々の動作モードの実行条件を示す情報(以下「実行条件情報」ということがある。)が予め記憶されている。動作モード設定部31は、当該記憶された実行条件情報を用いて、対応する光センシング装置1の動作モードを設定する。 In the operation mode setting unit 31, information indicating execution conditions for individual operation modes (hereinafter sometimes referred to as "execution condition information") is stored in advance. The operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 using the stored execution condition information.
 すなわち、実行条件情報は、測定モードの実行条件を示す情報を含む。以下、測定モードの実行条件を「測定条件」又は「第1条件」ということがある。また、実行条件情報は、通信モードの実行条件を示す情報を含む。以下、通信モードの実行条件を「通信条件」又は「第2条件」ということがある。また、実行条件情報は、探索モードの実行条件を示す情報を含む。以下、探索モードの実行条件を「探索条件」又は「第3条件」ということがある。また、実行条件情報は、待機モードの実行条件を示す情報を含む。以下、待機モードの実行条件を「待機条件」又は「第4条件」ということがある。 That is, the execution condition information includes information indicating execution conditions for the measurement mode. Hereinafter, the conditions for executing the measurement mode may be referred to as "measurement conditions" or "first conditions". Also, the execution condition information includes information indicating execution conditions for the communication mode. Hereinafter, the condition for executing the communication mode may be referred to as "communication condition" or "second condition". Also, the execution condition information includes information indicating execution conditions for the search mode. Hereinafter, the search mode execution condition may be referred to as a "search condition" or a "third condition". Further, the execution condition information includes information indicating execution conditions for the standby mode. Hereinafter, the conditions for executing the standby mode may be referred to as "standby conditions" or "fourth conditions".
 ここで、第2条件は、送信モードの実行条件及び受信モードの実行条件を含む。以下、送信モードの実行条件を「送信条件」ということがある。また、受信モードの実行条件を「受信条件」ということがある。また、第3実行条件は、狭義の探索モードの実行条件及び被探索モードの実行条件を含む。以下、狭義の探索モードの実行条件を「狭義の探索条件」ということがある。また、被探索モードの実行条件を「被探索条件」ということがある。 Here, the second condition includes a transmission mode execution condition and a reception mode execution condition. Hereinafter, the conditions for executing the transmission mode may be referred to as "transmission conditions". Also, the condition for executing the reception mode may be referred to as a "reception condition". In addition, the third execution condition includes a narrowly defined search mode execution condition and a searched mode execution condition. Hereinafter, the narrowly defined search mode execution condition may be referred to as a "narrowly defined search condition". Moreover, the execution conditions of the searched mode may be referred to as "searched conditions".
 以下、動作モードの設定方法の具体例について説明する。 A specific example of how to set the operation mode will be described below.
〈動作モードの設定方法の第1具体例〉
 第1具体例において、第1条件、第2条件、第3条件及び第4条件は、互いに重複しない条件に設定されている。換言すれば、第1条件、第2条件、第3条件及び第4条件は、互いに排他の関係にある条件に設定されている。この場合、動作モード設定部31は、第1条件、第2条件、第3条件及び第4条件の各々が満たされているか否かを判定する。
<First specific example of how to set the operation mode>
In the first specific example, the first condition, the second condition, the third condition, and the fourth condition are set to conditions that do not overlap each other. In other words, the first condition, the second condition, the third condition, and the fourth condition are set as mutually exclusive conditions. In this case, the operation mode setting unit 31 determines whether each of the first condition, the second condition, the third condition, and the fourth condition is satisfied.
 第1条件が満たされていると判定された場合、動作モード設定部31は、対応する光センシング装置1の動作モードを測定モードに設定する。これにより、測定モード実行部32は、測定モードを実行する。 When it is determined that the first condition is satisfied, the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to the measurement mode. Thereby, the measurement mode executing section 32 executes the measurement mode.
 第2条件が満たされていると判定された場合、動作モード設定部31は、対応する光センシング装置1の動作モードを通信モードに設定する。これにより、通信モード実行部33は、通信モードを実行する。 When it is determined that the second condition is satisfied, the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to the communication mode. Thereby, the communication mode execution unit 33 executes the communication mode.
 より具体的には、この場合、動作モード設定部31は、送信条件及び受信条件のうちのいずれが満たされているのかを判定する。送信条件が満たされていると判定された場合、動作モード設定部31は、対応する光センシング装置1の動作モードを送信モードに設定する。これにより、通信モード実行部33は、送信モードを実行する。他方、受信条件が満たされていると判定された場合、動作モード設定部31は、対応する光センシング装置1の動作モードを受信モードに設定する。これにより、通信モード実行部33は、受信モードを実行する。 More specifically, in this case, the operation mode setting unit 31 determines which of the transmission condition and the reception condition is satisfied. When it is determined that the transmission condition is satisfied, the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to the transmission mode. Thereby, the communication mode execution unit 33 executes the transmission mode. On the other hand, when it is determined that the reception condition is satisfied, the operation mode setting section 31 sets the operation mode of the corresponding optical sensing device 1 to the reception mode. Thereby, the communication mode execution unit 33 executes the reception mode.
 第3条件が満たされていると判定された場合、動作モード設定部31は、対応する光センシング装置1の動作モードを探索モードに設定する。これにより、探索モード実行部34は、探索モードを実行する。 When it is determined that the third condition is satisfied, the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to search mode. Thereby, the search mode execution unit 34 executes the search mode.
 より具体的には、この場合、動作モード設定部31は、狭義の探索条件及び被探索条件のうちのいずれが満たされているのかを判定する。狭義の探索条件が満たされていると判定された場合、動作モード設定部31は、対応する光センシング装置1の動作モードを狭義の探索モードに設定する。これにより、探索モード実行部34は、狭義の探索モードを実行する。他方、被探索条件が満たされていると判定された場合、動作モード設定部31は、対応する光センシング装置1の動作モードを被探索モードに設定する。これにより、探索モード実行部34は、被探索モードを実行する。 More specifically, in this case, the operation mode setting unit 31 determines which of the narrowly-defined search condition and the searched condition is satisfied. When it is determined that the search condition in the narrow sense is satisfied, the operation mode setting section 31 sets the operation mode of the corresponding optical sensing device 1 to the search mode in the narrow sense. As a result, the search mode execution unit 34 executes a narrowly defined search mode. On the other hand, when it is determined that the search condition is satisfied, the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to the search target mode. Thereby, the search mode execution unit 34 executes the searched mode.
 第4条件が満たされていると判定された場合、動作モード設定部31は、対応する光センシング装置1の動作モードを待機モードに設定する。これにより、待機モード実行部35は、待機モードを実行する。 When it is determined that the fourth condition is satisfied, the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to the standby mode. Thereby, the standby mode execution unit 35 executes the standby mode.
 なお、これらの動作モードが高速に切り替わることにより、人間の目には複数の動作モードが同時に(並行して)実行されているように見えることもある。例えば、測定モードにおける個々のラインのスキャン中に他の動作モードが実行されているように見えることもある。 It should be noted that, due to the rapid switching of these operation modes, it may appear to the human eye that multiple operation modes are being executed simultaneously (in parallel). For example, it may appear that other modes of operation are being performed while scanning individual lines in the measurement mode.
〈動作モードの設定方法の第2具体例〉
 第2具体例において、動作モード設定部31は、測定モード、通信モード、探索モード及び待機モードにおける実行の優先順位が予め設定されている。換言すれば、第1条件、第2条件、第3条件及び第4条件における判定の優先順位が予め設定されている。
<Second Concrete Example of Operation Mode Setting Method>
In the second specific example, the operation mode setting unit 31 presets the execution priority in the measurement mode, the communication mode, the search mode, and the standby mode. In other words, the order of priority of determination in the first condition, the second condition, the third condition, and the fourth condition is set in advance.
 動作モード設定部31は、優先順位が高い順に、個々の実行条件が満たされているか否かを順次判定する。動作モード設定部31は、いずれかの実行条件が満たされていると判定されたとき、対応する光センシング装置1の動作モードを当該判定された実行条件に対応する動作モードに設定する。 The operation mode setting unit 31 sequentially determines whether or not each execution condition is satisfied in descending order of priority. When it is determined that any execution condition is satisfied, the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to the operation mode corresponding to the determined execution condition.
 具体的には、例えば、以下のように優先順位が設定されているものとする。 Specifically, for example, it is assumed that the priority is set as follows.
優先順位:(高い)第1条件-第2条件-第3条件-第4条件(低い) Priority: (high) 1st condition - 2nd condition - 3rd condition - 4th condition (low)
 この場合、動作モード設定部31は、まず、第1条件が満たされているか否かを判定する。第1条件が満たされていると判定された場合、動作モード設定部31は、対応する光センシング装置1の動作モードを測定モードに設定する。これにより、測定モード実行部32は、測定モードを実行する。 In this case, the operation mode setting unit 31 first determines whether or not the first condition is satisfied. When it is determined that the first condition is satisfied, the operation mode setting section 31 sets the operation mode of the corresponding optical sensing device 1 to the measurement mode. Thereby, the measurement mode executing section 32 executes the measurement mode.
 第1条件が満たされていないと判定された場合、次いで、動作モード設定部31は、第2条件が満たされているか否かを判定する。第2条件が満たされていると判定された場合、動作モード設定部31は、対応する光センシング装置1の動作モードを通信モードに設定する。これにより、通信モード実行部33は、通信モードを実行する。 When it is determined that the first condition is not satisfied, then the operation mode setting unit 31 determines whether or not the second condition is satisfied. When it is determined that the second condition is satisfied, the operation mode setting section 31 sets the operation mode of the corresponding optical sensing device 1 to the communication mode. Thereby, the communication mode execution unit 33 executes the communication mode.
 より具体的には、この場合、動作モード設定部31は、送信条件及び受信条件のうちのいずれが満たされているのかを判定する。送信条件が満たされていると判定された場合、動作モード設定部31は、対応する光センシング装置1の動作モードを送信モードに設定する。これにより、通信モード実行部33は、送信モードを実行する。他方、受信条件が満たされていると判定された場合、動作モード設定部31は、対応する光センシング装置1の動作モードを受信モードに設定する。これにより、通信モード実行部33は、受信モードを実行する。 More specifically, in this case, the operation mode setting unit 31 determines which of the transmission condition and the reception condition is satisfied. When it is determined that the transmission condition is satisfied, the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to the transmission mode. Thereby, the communication mode execution unit 33 executes the transmission mode. On the other hand, when it is determined that the reception condition is satisfied, the operation mode setting section 31 sets the operation mode of the corresponding optical sensing device 1 to the reception mode. Thereby, the communication mode execution unit 33 executes the reception mode.
 第2条件が満たされていないと判定された場合、次いで、動作モード設定部31は、第3条件が満たされているか否かを判定する。第3条件が満たされていると判定された場合、動作モード設定部31は、対応する光センシング装置1の動作モードを探索モードに設定する。これにより、探索モード実行部34は、探索モードを実行する。 When it is determined that the second condition is not satisfied, then the operation mode setting unit 31 determines whether or not the third condition is satisfied. When it is determined that the third condition is satisfied, the operation mode setting section 31 sets the operation mode of the corresponding optical sensing device 1 to the search mode. Thereby, the search mode execution unit 34 executes the search mode.
 より具体的には、この場合、動作モード設定部31は、狭義の探索条件及び被探索条件のうちのいずれが満たされているのかを判定する。狭義の探索条件が満たされていると判定された場合、動作モード設定部31は、対応する光センシング装置1の動作モードを狭義の探索モードに設定する。これにより、探索モード実行部34は、狭義の探索モードを実行する。他方、被探索条件が満たされていると判定された場合、動作モード設定部31は、対応する光センシング装置1の動作モードを被探索モードに設定する。これにより、探索モード実行部34は、被探索モードを実行する。 More specifically, in this case, the operation mode setting unit 31 determines which of the narrowly-defined search condition and the searched condition is satisfied. When it is determined that the search condition in the narrow sense is satisfied, the operation mode setting section 31 sets the operation mode of the corresponding optical sensing device 1 to the search mode in the narrow sense. As a result, the search mode execution unit 34 executes a narrowly defined search mode. On the other hand, when it is determined that the search condition is satisfied, the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to the search target mode. Thereby, the search mode execution unit 34 executes the searched mode.
 第3条件が満たされていないと判定された場合、動作モード設定部31は、第4条件が満たされているか否かを判定する。第4条件が満たされていると判定された場合、動作モード設定部31は、対応する光センシング装置1の動作モードを待機モードに設定する。これにより、待機モード実行部35は、待機モードを実行する。 When it is determined that the third condition is not satisfied, the operation mode setting unit 31 determines whether or not the fourth condition is satisfied. When it is determined that the fourth condition is satisfied, the operation mode setting section 31 sets the operation mode of the corresponding optical sensing device 1 to the standby mode. Thereby, the standby mode execution unit 35 executes the standby mode.
 なお、優先順位は、上記の具体例に限定されるものではない。優先順位は、如何なる順位に設定されるものであっても良い。また、優先順位は、ユーザにより変更されるものであっても良い。 It should be noted that the order of priority is not limited to the above specific examples. Any priority may be set. Also, the priority may be changed by the user.
 なお、これらの動作モードが高速に切り替わることにより、人間の目には複数の動作モードが同時に(並行して)実行されているように見えることもある。例えば、測定モードにおける個々のラインのスキャン中に他の動作モードが実行されているように見えることもある。 It should be noted that, due to the rapid switching of these operation modes, it may appear to the human eye that multiple operation modes are being executed simultaneously (in parallel). For example, it may appear that other modes of operation are being performed while scanning individual lines in the measurement mode.
 このようにして、光センシング装置1の動作モードが設定される。 In this way, the operation mode of the optical sensing device 1 is set.
 ここで、第1条件、第2条件、第3条件及び第4条件の各々の具体例について説明する。以下のとおり、第1条件、第2条件、第3条件及び第4条件の各々は、少なくとも1個の条件を含む。 Specific examples of each of the first, second, third and fourth conditions will now be described. Each of the first, second, third and fourth conditions includes at least one condition as follows.
〈第1条件の具体例〉
 第1条件は、例えば、現在時刻が所定時刻になったという条件を含む。この場合、動作モード設定部31は、時計の機能を有する。動作モード設定部31は、かかる時計が示す現在時刻を所定時刻と比較する。これにより、動作モード設定部31は、かかる条件が満たされているか否かを判定する。
<Specific example of the first condition>
The first condition includes, for example, the condition that the current time has reached a predetermined time. In this case, the operation mode setting section 31 has a clock function. The operation mode setting unit 31 compares the current time indicated by the clock with the predetermined time. Thereby, the operation mode setting unit 31 determines whether or not such a condition is satisfied.
 または、例えば、第1条件は、前回の光センシングが実行された後の経過時間が所定時間を超えたという条件を含む。この場合、動作モード設定部31は、各回の光センシングが実行された後の経過時間を計測するためのタイマを有する。動作モード設定部31は、かかるタイマを用いて、前回の光センシングが実行された後の経過時間を計測する。動作モード設定部31は、当該計測された経過時間を所定時間と比較する。これにより、動作モード設定部31は、かかる条件が満たされているか否かを判定する。 Alternatively, for example, the first condition includes the condition that the elapsed time after the previous optical sensing was performed exceeds a predetermined time. In this case, the operation mode setting unit 31 has a timer for measuring the elapsed time after each optical sensing is performed. The operation mode setting unit 31 uses such a timer to measure the elapsed time after the previous optical sensing was performed. The operation mode setting unit 31 compares the measured elapsed time with a predetermined time. Thereby, the operation mode setting unit 31 determines whether or not such a condition is satisfied.
 なお、第1条件に含まれる条件は、上記の具体例に限定されるものではない。第1条件は、光センシングが適切なタイミングに実行され得る条件であれば、如何なる条件を含むものであっても良い。また、これらの条件は、予め設定されているものであっても良く、又はユーザにより設定されるものであっても良い。 It should be noted that the conditions included in the first condition are not limited to the above specific examples. The first condition may include any condition as long as the light sensing can be performed at appropriate timing. Also, these conditions may be set in advance or may be set by the user.
〈第2条件の具体例〉
 第2条件は、例えば、光探索が完了したという条件を含む。換言すれば、第2条件は、例えば、探索側の光センシング装置1の光送受信部11と被探索側の光センシング装置1の光送受信部11とが互いに対向した状態であるという条件を含む。この場合、探索側の光センシング装置1において、探索モード実行部34は、応答用のレーザ光を受信したとき、その旨を示す情報を動作モード設定部31に出力する。他方、被探索側の光センシング装置1において、探索モード実行部34は、光探索用のレーザ光を受信したとき、その旨を示す情報を動作モード設定部31に出力する。動作モード設定部31は、これらの情報を用いて、かかる条件が満たされているか否かを判定する。
<Specific example of the second condition>
The second condition includes, for example, the condition that the optical search is completed. In other words, the second condition includes, for example, the condition that the optical transceiver 11 of the optical sensing device 1 on the searching side and the optical transceiver 11 of the optical sensing device 1 on the searched side face each other. In this case, in the optical sensing device 1 on the search side, the search mode execution unit 34 outputs information indicating that to the operation mode setting unit 31 when receiving the response laser light. On the other hand, in the optical sensing device 1 on the search target side, the search mode execution unit 34 outputs information to the operation mode setting unit 31 when receiving the laser light for optical search. The operation mode setting unit 31 uses these pieces of information to determine whether or not such conditions are satisfied.
 ここで、送信条件は、例えば、直前の探索モードにおいて被探索モードが実行されたという条件を含む。また、受信条件は、例えば、直前の探索モードにおいて狭義の探索モードが実行されたという条件を含む。この場合、個々の光センシング装置1において、探索モード実行部34は、光探索が完了したとき、狭義の探索モードが実行されたか被探索モードが実行されたかを示す情報を動作モード設定部31に出力する。動作モード設定部31は、かかる情報を用いて、かかる条件が満たされているか否かを判定する。 Here, the transmission condition includes, for example, the condition that the searched mode was executed in the previous search mode. Also, the reception condition includes, for example, a condition that the search mode in the narrow sense was executed in the previous search mode. In this case, in each optical sensing device 1, the search mode execution unit 34 sends information indicating whether the narrowly defined search mode or the searched mode is executed to the operation mode setting unit 31 when the optical search is completed. Output. The operation mode setting unit 31 uses such information to determine whether or not such conditions are satisfied.
 または、送信条件は、例えば、直前の探索モードにおいて狭義の探索モードが実行されたという条件を含む。また、受信条件は、例えば、直前の探索モードにおいて被探索モードが実行されたという条件を含む。この場合、個々の光センシング装置1において、探索モード実行部34は、光探索が完了したとき、狭義の探索モードが実行されたか被探索モードが実行されたかを示す情報を動作モード設定部31に出力する。動作モード設定部31は、かかる情報を用いて、かかる条件が満たされているか否かを判定する。 Alternatively, the transmission condition includes, for example, the condition that the search mode in the narrow sense was executed in the previous search mode. Also, the reception condition includes, for example, the condition that the searched mode was executed in the immediately preceding search mode. In this case, in each optical sensing device 1, the search mode execution unit 34 sends information indicating whether the narrowly defined search mode or the searched mode is executed to the operation mode setting unit 31 when the optical search is completed. Output. The operation mode setting unit 31 uses such information to determine whether or not such conditions are satisfied.
 または、例えば、個々の光センシング装置1において、送信モードが実行されるべきであるか受信モードが実行されるべきであるかを示す情報が予め記憶されている。より具体的には、複数回の光無線通信が実行されるとき、各回の光無線通信において、送信モードが実行されるべきであるか受信モードが実行されるべきであるかを示す情報が予め記憶されている。送信条件は、かかる情報が送信モードを示すという条件を含む。また、受信条件は、かかる情報が受信モードを示すという条件を含む。この場合、動作モード設定部31は、かかる情報を用いて、これらの条件が満たされているか否かを判定する。ただし、かかる情報は、予め記憶されているのに代えて、ユーザにより入力されるものであっても良い。 Alternatively, for example, in each optical sensing device 1, information indicating whether the transmission mode should be executed or the reception mode should be executed is stored in advance. More specifically, when optical wireless communication is performed a plurality of times, information indicating whether the transmission mode should be performed or the reception mode should be performed in each optical wireless communication is provided in advance. remembered. The transmission conditions include the condition that such information indicates the transmission mode. The reception conditions also include a condition that such information indicates the reception mode. In this case, the operation mode setting unit 31 uses such information to determine whether these conditions are satisfied. However, such information may be input by the user instead of being stored in advance.
 なお、第2条件に含まれる条件は、上記の具体例に限定されるものではない。第2条件は、光センシングが適切なタイミングに実行され得る条件であれば、如何なる条件を含むものであっても良い。また、送信条件及び受信条件の各々は、上記の具体例に限定されるものではない。送信条件及び受信条件の各々は、光無線通信用のレーザ光の送信及び受信が正常に実行され得る条件であれば、如何なる条件を含むものであっても良い。また、これらの条件は、予め設定されているものであっても良く、又はユーザにより設定されるものであっても良い。 It should be noted that the conditions included in the second condition are not limited to the above specific examples. The second condition may include any condition as long as the light sensing can be performed at appropriate timing. Moreover, each of the transmission conditions and the reception conditions is not limited to the above specific examples. Each of the transmission conditions and the reception conditions may include any conditions as long as the transmission and reception of laser light for optical wireless communication can be performed normally. Also, these conditions may be set in advance or may be set by the user.
〈第3条件の具体例〉
 第3条件は、例えば、探索モードが未実行又は未完了であるという条件を含む。換言すれば、第3条件は、例えば、光無線通信の相手となる他の光センシング装置1が未発見であるという条件を含む。この場合、個々の光センシング装置1において、探索モード実行部34は、光探索が完了したとき(すなわち他の光センシング装置1が発見されたとき)、その旨を示す情報を動作モード設定部31に出力する。動作モード設定部31は、かかる情報を記憶する。動作モード設定部31は、かかる情報の有無に基づき、かかる条件が満たされているか否かを判定する。
<Specific example of the third condition>
The third condition includes, for example, the condition that the search mode has not been executed or completed. In other words, the third condition includes, for example, the condition that another optical sensing device 1 to be the other party of optical wireless communication is undiscovered. In this case, in each optical sensing device 1, the search mode execution unit 34 sends information indicating that when the optical search is completed (that is, when another optical sensing device 1 is found) to the operation mode setting unit 31. output to The operation mode setting unit 31 stores such information. The operation mode setting unit 31 determines whether or not such conditions are satisfied based on the presence or absence of such information.
 ここで、例えば、個々の光センシング装置1において、狭義の探索モードが実行されるべきであるか被探索モードが実行されるべきであるかを示す情報が予め記憶されている。より具体的には、複数回の光探索が実行されるとき、各回の光探索において、狭義の探索モードが実行されるべきであるか被探索モードが実行されるべきであるかを示す情報が予め記憶されている。狭義の探索条件は、かかる情報が狭義の探索モードを示すという条件を含む。また、被探索条件は、かかる情報が被探索モードを示すという条件を含む。この場合、動作モード設定部31は、かかる情報を用いて、これらの条件が満たされているか否かを判定する。ただし、かかる情報は、予め記憶されているのに代えて、ユーザにより入力されるものであっても良い。 Here, for example, in each optical sensing device 1, information indicating whether the narrowly-defined search mode should be executed or the searched mode should be executed is stored in advance. More specifically, when the optical search is performed multiple times, information indicating whether the narrowly-defined search mode or the searched mode should be performed in each optical search is stored in advance. A narrow search condition includes a condition that such information indicates a narrow search mode. Also, the search condition includes a condition that such information indicates the search mode. In this case, the operation mode setting unit 31 uses such information to determine whether these conditions are satisfied. However, such information may be input by the user instead of being stored in advance.
 なお、第3条件に含まれる条件は、上記の具体例に限定されるものではない。第3条件は、光探索が適切なタイミングに実行され得る条件であれば、如何なる条件を含むものであっても良い。また、狭義の探索条件及び被探索条件の各々は、上記の具体例に限定されるものではない。狭義の探索条件及び被探索条件の各々は、光探索用のレーザ光の送信及び受信が正常に実行され得る条件であれば、如何なる条件を含むものであっても良い。かつ、狭義の探索条件及び被探索条件の各々は、応答用のレーザ光の送信及び受信が正常に実行され得る条件であれば、如何なる条件を含むものであっても良い。また、これらの条件は、予め設定されているものであっても良く、又はユーザにより設定されるものであっても良い。 It should be noted that the conditions included in the third condition are not limited to the above specific examples. The third condition may include any condition as long as the optical search can be executed at appropriate timing. Moreover, each of the narrowly defined search conditions and searched conditions is not limited to the above specific examples. Each of the search condition and the searched condition in a narrow sense may include any condition as long as it is a condition under which transmission and reception of laser light for optical search can be performed normally. In addition, each of the narrowly defined search conditions and searched conditions may include any condition as long as it is a condition under which transmission and reception of laser light for response can be performed normally. Also, these conditions may be set in advance or may be set by the user.
〈第4条件の具体例〉
 第4条件は、例えば、第1条件、第2条件及び第3条件がいずれも満たされていないという条件を含む。この場合、動作モード設定部31は、直近の第1条件の判定結果、直近の第2条件の判定結果及び直近の第3条件の判定結果に基づき、かかる条件が満たされているか否かを判定する。
<Specific example of the fourth condition>
The fourth condition includes, for example, the condition that none of the first, second, and third conditions are met. In this case, the operation mode setting unit 31 determines whether or not these conditions are satisfied based on the most recent determination result of the first condition, the most recent determination result of the second condition, and the most recent determination result of the third condition. do.
 なお、第4条件に含まれる条件は、上記の具体例に限定されるものではない。第4条件は、個々の光センシング装置1が適切なタイミングに待機状態となり得る条件であれば、如何なる条件を含むものであっても良い。また、これらの条件は、予め設定されているものであっても良く、又はユーザにより設定されるものであっても良い。 It should be noted that the conditions included in the fourth condition are not limited to the above specific examples. The fourth condition may include any condition as long as the individual optical sensing devices 1 can enter the standby state at appropriate timing. Also, these conditions may be set in advance or may be set by the user.
 図6に示す如く、信号処理部13は、点群データ生成部41及び三次元モデル生成部42を備える。 As shown in FIG. 6, the signal processing unit 13 includes a point cloud data generating unit 41 and a three-dimensional model generating unit 42.
 上記のとおり、受信側の光センシング装置1(すなわち信号処理部13を有する光センシング装置1)において、通信モード実行部33は、第1位置情報及び第1測定データを送信側の光センシング装置1から取得する。通信モード実行部33は、当該取得された第1位置情報及び第1測定データを信号処理部13に出力する。また、受信側の光センシング装置1において、測定モード実行部32は、第2測定データを生成する。測定モード実行部32は、当該生成された第2測定データを信号処理部13に出力する。また、受信側の光センシング装置1においては、第2位置情報が予め記憶されている。 As described above, in the optical sensing device 1 on the receiving side (that is, the optical sensing device 1 having the signal processing unit 13), the communication mode execution unit 33 transmits the first position information and the first measurement data to the optical sensing device 1 on the transmitting side. Get from The communication mode execution unit 33 outputs the acquired first position information and first measurement data to the signal processing unit 13 . Also, in the optical sensing device 1 on the receiving side, the measurement mode execution unit 32 generates second measurement data. The measurement mode execution section 32 outputs the generated second measurement data to the signal processing section 13 . Further, the second position information is stored in advance in the optical sensing device 1 on the receiving side.
 点群データ生成部41は、当該出力された第1位置情報、当該出力された第1測定データ、当該記憶された第2位置情報、及び当該出力された第2測定データを取得する。点群データ生成部41は、これらの位置情報及び測定データを用いて、いわゆる「点群合成」を実行する。これにより、点群データ生成部41は、対象物Oの位置及び形状に対応する点群データを生成する。 The point cloud data generation unit 41 acquires the output first position information, the output first measurement data, the stored second position information, and the output second measurement data. The point cloud data generator 41 uses the position information and the measurement data to perform so-called "point cloud synthesis". Thereby, the point cloud data generating unit 41 generates point cloud data corresponding to the position and shape of the object O. FIG.
 すなわち、点群データ生成部41は、第1位置情報及び第1測定データに基づき、送信側の光センシング装置1により各方向に出射された光センシング用のレーザ光について、これらのレーザ光が物体(対象物Oを含む。)により反射された地点(以下「第1反射点」ということがある。)の位置を算出する。点群データ生成部41は、当該算出された個々の位置に対応する点を仮想的な三次元空間にプロットする。 That is, based on the first position information and the first measurement data, the point cloud data generation unit 41 determines that the light sensing laser light emitted in each direction by the light sensing device 1 on the transmitting side is an object. The position of the point reflected by (including the object O) (hereinafter sometimes referred to as "first reflection point") is calculated. The point cloud data generator 41 plots points corresponding to the calculated individual positions in a virtual three-dimensional space.
 また、点群データ生成部41は、第2位置情報及び第2測定データに基づき、受信側の光センシング装置1により各方向に出射された光センシング用のレーザ光について、これらのレーザ光が物体(対象物Oを含む。)により反射された地点(以下「第2反射点」ということがある。)の位置を算出する。点群データ生成部41は、当該算出された個々の位置に対応する点を仮想的な三次元空間にプロットする。 In addition, based on the second position information and the second measurement data, the point cloud data generation unit 41 determines whether the laser beams for optical sensing emitted in each direction by the optical sensing device 1 on the receiving side are the objects. The position of the point reflected by (including the object O) (hereinafter sometimes referred to as "second reflection point") is calculated. The point cloud data generator 41 plots points corresponding to the calculated individual positions in a virtual three-dimensional space.
 このとき、点群データ生成部41は、第1位置情報及び第2位置情報を用いて、これらの情報が示す絶対位置を相対位置に変換する。点群データ生成部41は、かかる相対位置に基づき、個々の第1反射点の位置に対応する点及び個々の第2反射点の位置に対応する点を同一の三次元空間にプロットする。すなわち、点群データ生成部41は、複数台の光センシング装置1(例えば2台の光センシング装置1_1,1_2)について、点群合成を実行する。これにより、点群データが生成される。 At this time, the point cloud data generation unit 41 uses the first position information and the second position information to convert the absolute positions indicated by these information into relative positions. Based on the relative positions, the point cloud data generator 41 plots the points corresponding to the positions of the individual first reflection points and the points corresponding to the positions of the individual second reflection points in the same three-dimensional space. That is, the point cloud data generation unit 41 performs point cloud synthesis for a plurality of optical sensing devices 1 (for example, two optical sensing devices 1_1 and 1_2). As a result, point cloud data is generated.
 なお、光センシング用のレーザ光は、対象物Oに照射されるのに加えて、対象領域に存在する他の物体(以下「非対象物」ということがある。)O’に照射され得る。これにより、上記生成された点群データは、対象物Oに対応する点群に加えて、非対象物O’に対応する点群を含み得る。この場合、点群データ生成部41は、上記生成された点群データに含まれる点群のうちの非対象物O’に対応する点群を抽出して、当該抽出された点群を上記生成された点群データから除外するものであっても良い。または、点群データ生成部41は、上記生成された点群データに含まれる点群のうちの対象物Oに対応する点群を抽出して、残余の点群を上記生成された点群データから除外するものであっても良い。 In addition to irradiating the target object O, the laser light for optical sensing can also irradiate another object (hereinafter sometimes referred to as "non-target object") O' existing in the target area. Thereby, the generated point cloud data can include a point cloud corresponding to the non-target object O' in addition to the point cloud corresponding to the target object O. In this case, the point cloud data generation unit 41 extracts the point cloud corresponding to the non-target object O' from among the point clouds included in the generated point cloud data, and converts the extracted point cloud to the generated point cloud. may be excluded from the generated point cloud data. Alternatively, the point cloud data generating unit 41 extracts the point cloud corresponding to the object O from the point cloud included in the generated point cloud data, and converts the remaining point cloud to the generated point cloud data. may be excluded from.
 かかる点群の抽出には、公知の種々の技術が用いられる。具体的には、例えば、点群データ生成部41は、上記生成された点群データに対して、点間距離を算出する処理、及び個々の物体を構成する個々の面(平面及び曲面を含み得る。)を検出する処理などを実行する。点群データ生成部41は、これらの処理の結果に基づき、上記生成された点群データに含まれる点群を個々の物体に対応する点群に分割する。 Various known techniques are used to extract such point clouds. Specifically, for example, the point cloud data generation unit 41 performs processing for calculating distances between points and individual surfaces (including planes and curved surfaces) that constitute individual objects for the generated point cloud data. ) is detected. Based on the results of these processes, the point cloud data generation unit 41 divides the point clouds included in the generated point cloud data into point groups corresponding to individual objects.
 点群データ生成部41は、非対象物O’の形状及び対象空間における非対象物O’の位置について、想定される形状及び位置に対応するパターンを示す情報を取得する。かかる情報は、例えば、受信側の光センシング装置1に予め記憶されている。点群データ生成部41は、上記分割された個々の点群の形状及び位置について、かかるパターンに対するパターンマッチングを実行する。点群データ生成部41は、かかるパターンマッチングの結果に基づき、上記分割された個々の点群が非対象物O’に対応する点群であるか否かを判定する。点群データ生成部41は、かかる判定の結果に基づき、非対象物O’に対応する点群を抽出する。 The point cloud data generation unit 41 acquires information indicating a pattern corresponding to the assumed shape and position of the non-target object O' and the position of the non-target object O' in the target space. Such information is pre-stored in the optical sensing device 1 on the receiving side, for example. The point cloud data generator 41 performs pattern matching on the shape and position of each divided point cloud. The point cloud data generation unit 41 determines whether or not each divided point cloud is a point cloud corresponding to the non-target object O' based on the pattern matching result. The point cloud data generator 41 extracts a point cloud corresponding to the non-target object O' based on the determination result.
 または、点群データ生成部41は、対象物Oの形状及び対象空間における対象物Oの位置について、想定される形状及び位置に対応するパターンを示す情報を取得する。かかる情報は、例えば、受信側の光センシング装置1に予め記憶されている。点群データ生成部41は、上記分割された個々の点群の形状及び位置について、かかるパターンに対するパターンマッチングを実行する。点群データ生成部41は、かかるパターンマッチングの結果に基づき、上記分割された個々の点群が対象物Oに対応する点群であるか否かを判定する。点群データ生成部41は、かかる判定の結果に基づき、対象物Oに対応する点群を抽出する。 Alternatively, the point cloud data generation unit 41 acquires information indicating a pattern corresponding to the assumed shape and position of the target object O in the target space and the shape of the target object O. Such information is pre-stored in the optical sensing device 1 on the receiving side, for example. The point cloud data generator 41 performs pattern matching on the shape and position of each divided point cloud. The point cloud data generation unit 41 determines whether or not each divided point cloud is a point cloud corresponding to the object O based on the pattern matching result. The point cloud data generator 41 extracts the point cloud corresponding to the object O based on the result of such determination.
 このようにして、対象物Oの位置及び形状に対応する点群データが生成される。 In this way, point cloud data corresponding to the position and shape of the object O are generated.
 なお、絶対位置を相対位置に変換する方法の具体例は、例えば、以下のとおりである。 A specific example of a method for converting an absolute position into a relative position is as follows.
 すなわち、点群データ生成部41は、第2位置情報が示す座標値(ψ2,γ2,h2)に対する第1位置情報が示す座標値(ψ1,γ1,h1)の差分値を算出する。点群データ生成部41は、当該算出された差分値に基づき、受信側の光センシング装置1に対する送信側の光センシング装置1の相対位置を示す座標値(r1,θ1,φ1)を算出する。ここで、座標値(r1,θ1,φ1)は、球面座標系における座標値である。この球面座標系は、受信側の光センシング装置1の設置位置に対応する原点を有する。また、この球面座標系は、受信側の光センシング装置1の設置方向に対応する第1の軸を有する。このようにして、第1位置情報が示す絶対位置が相対位置に変換される。 That is, the point cloud data generation unit 41 calculates the difference value between the coordinate values (ψ2, γ2, h2) indicated by the second position information and the coordinate values (ψ1, γ1, h1) indicated by the first position information. The point cloud data generator 41 calculates coordinate values (r1, θ1, φ1) indicating the relative position of the optical sensing device 1 on the transmitting side with respect to the optical sensing device 1 on the receiving side based on the calculated difference value. Here, the coordinate values (r1, θ1, φ1) are coordinate values in the spherical coordinate system. This spherical coordinate system has an origin corresponding to the installation position of the optical sensing device 1 on the receiving side. Also, this spherical coordinate system has a first axis corresponding to the installation direction of the optical sensing device 1 on the receiving side. Thus, the absolute position indicated by the first position information is converted into a relative position.
 これに代えて又は加えて、点群データ生成部41は、第1位置情報が示す座標値(ψ1,γ1,h1)に対する第2位置情報が示す座標値(ψ2,γ2,h2)の差分値を算出する。点群データ生成部41は、当該算出された差分値に基づき、送信側の光センシング装置1に対する受信側の光センシング装置1の相対位置を示す座標値(r2,θ2,φ2)を算出する。ここで、座標値(r2,θ2,φ2)は、球面座標系における座標値である。この球面座標系は、送信側の光センシング装置1の設置位置に対応する原点を有する。また、この球面座標系は、送信側の光センシング装置1の設置方向に対応する第1の軸を有する。このようにして、第2位置情報が示す絶対位置が相対位置に変換される。 Instead of or in addition to this, the point cloud data generation unit 41 generates the difference value of the coordinate values (ψ2, γ2, h2) indicated by the second position information with respect to the coordinate values (ψ1, γ1, h1) indicated by the first position information. Calculate The point cloud data generator 41 calculates coordinate values (r2, θ2, φ2) indicating the relative position of the optical sensing device 1 on the receiving side with respect to the optical sensing device 1 on the transmitting side based on the calculated difference value. Here, the coordinate values (r2, θ2, φ2) are coordinate values in the spherical coordinate system. This spherical coordinate system has an origin corresponding to the installation position of the optical sensing device 1 on the transmitting side. This spherical coordinate system also has a first axis corresponding to the installation direction of the optical sensing device 1 on the transmitting side. Thus, the absolute position indicated by the second position information is converted into a relative position.
 点群データ生成部41は、上記生成された点群データ(すなわち対象物Oの位置及び形状に対応する点群データ)を三次元モデル生成部42に出力する。 The point cloud data generation unit 41 outputs the generated point cloud data (that is, point cloud data corresponding to the position and shape of the object O) to the three-dimensional model generation unit 42 .
 三次元モデル生成部42は、点群データ生成部41により出力された点群データを取得する。三次元モデル生成部42は、当該取得された点群データを用いて、対象物Oの三次元モデルを生成する。具体的には、例えば、三次元モデル生成部42は、当該取得された点群データを面データ(例えばメッシュデータ又はサーフェスデータ)に変換する。これにより、三次元モデルが生成される。 The 3D model generation unit 42 acquires the point cloud data output by the point cloud data generation unit 41 . The three-dimensional model generation unit 42 generates a three-dimensional model of the object O using the acquired point cloud data. Specifically, for example, the 3D model generator 42 converts the acquired point cloud data into surface data (for example, mesh data or surface data). A three-dimensional model is thereby generated.
 このほか、点群データの生成及び三次元モデルの生成には、三次元LiDARに係る公知の種々の技術を用いることができる。これらの技術についての詳細な説明は省略する。 In addition, various known techniques related to 3D LiDAR can be used to generate point cloud data and 3D models. A detailed description of these techniques is omitted.
 このように、信号処理部13により実行される処理は、点群データを生成する処理、及び三次元モデルを生成する処理を含む。信号処理部13は、かかる処理の結果を示す情報(以下「結果情報」ということがある。)を生成する。信号処理部13は、当該生成された結果情報を出力部14に出力する(図2参照)。結果情報は、例えば、三次元モデル生成部42により生成された三次元モデルを含む情報である。 Thus, the processing executed by the signal processing unit 13 includes processing for generating point cloud data and processing for generating a three-dimensional model. The signal processing unit 13 generates information indicating the result of such processing (hereinafter sometimes referred to as “result information”). The signal processing unit 13 outputs the generated result information to the output unit 14 (see FIG. 2). The result information is, for example, information including the 3D model generated by the 3D model generation unit 42 .
 出力部14は、信号処理部13により出力された結果情報を取得する。出力部14は、当該取得された結果情報を対応する光センシング装置1の外部に出力する。具体的には、例えば、出力部14は、当該取得された結果情報を外部システム200に出力する(図2参照)。外部システム200は、例えば、光センシングシステム100に対する上位のシステムである。外部システム200は、光センシングシステム100の外部に設けられている。なお、外部システム200は、光センシングシステム100のユーザのシステムであっても良い。 The output unit 14 acquires result information output by the signal processing unit 13 . The output unit 14 outputs the acquired result information to the outside of the corresponding optical sensing device 1 . Specifically, for example, the output unit 14 outputs the acquired result information to the external system 200 (see FIG. 2). The external system 200 is, for example, a system higher than the optical sensing system 100 . The external system 200 is provided outside the optical sensing system 100 . Note that the external system 200 may be a system of the user of the optical sensing system 100 .
 この場合、出力部14を有する光センシング装置1(例えば図1に示す光センシング装置1_1,1_2のうちの光センシング装置1_1)は、ネットワークNWを介して外部システム200と通信自在に接続される。ネットワークNWは、例えば、LTE(Long Term Evolution)回線又は5G(5th Generation)回線により構成されている。出力部14は、ネットワークNWを介して、上記取得された結果情報を外部システム200に送信する。 In this case, the optical sensing device 1 having the output unit 14 (for example, the optical sensing device 1_1 of the optical sensing devices 1_1 and 1_2 shown in FIG. 1) is communicatively connected to the external system 200 via the network NW. The network NW is configured by, for example, an LTE (Long Term Evolution) line or a 5G (5th Generation) line. The output unit 14 transmits the acquired result information to the external system 200 via the network NW.
 当該出力された結果情報は、外部システム200において、種々の用途に用いられ得る。具体的には、例えば、当該出力された結果情報は、対象物Oの体積を推定する処理に用いられる。 The output result information can be used for various purposes in the external system 200. Specifically, for example, the output result information is used for the process of estimating the volume of the object O. FIG.
 このようにして、光センシングシステム100が構成されている。 The optical sensing system 100 is configured in this manner.
 次に、個々の光センシング装置1のハードウェア構成について説明する。より具体的には、図7~図9を参照して、図1に示す光センシング装置1_1,1_2のうちの光センシング装置1_1のハードウェア構成について説明する。 Next, the hardware configuration of each optical sensing device 1 will be described. More specifically, the hardware configuration of the optical sensing device 1_1 out of the optical sensing devices 1_1 and 1_2 shown in FIG. 1 will be described with reference to FIGS. 7 to 9. FIG.
 光センシング装置1_1は、光送受信部11の機能F1、制御部12の機能F2、信号処理部13の機能F3及び出力部14の機能F4を有する(図2参照)。これに対して、図7に示す如く、光センシング装置1_1は、光送信機51、光受信機52、出力インタフェース(図中「出力I/F」)53、プロセッサ54及びメモリ55を備える。この場合、機能F1は、光送信機51及び光受信機52により実現される。また、メモリ55は、機能F2,F3に対応するプログラムを記憶する。プロセッサ54は、メモリ55に記憶されたプログラムを読み出して実行する。これにより、機能F2,F3が実現される。また、機能F4は、出力インタフェース53により実現される。 The optical sensing device 1_1 has a function F1 of the optical transmitter/receiver 11, a function F2 of the control unit 12, a function F3 of the signal processing unit 13, and a function F4 of the output unit 14 (see FIG. 2). On the other hand, as shown in FIG. 7, the optical sensing device 1_1 includes an optical transmitter 51, an optical receiver 52, an output interface (“output I/F” in the figure) 53, a processor 54 and a memory 55. FIG. In this case, the function F1 is realized by the optical transmitter 51 and the optical receiver 52. FIG. The memory 55 also stores programs corresponding to the functions F2 and F3. The processor 54 reads and executes programs stored in the memory 55 . Thereby, functions F2 and F3 are realized. Also, the function F4 is implemented by the output interface 53 .
 または、図8に示す如く、光センシング装置1_1は、光送信機51、光受信機52、出力インタフェース53及び処理回路56を備える。この場合、機能F1は、光送信機51及び光受信機52により実現される。また、処理回路56は、機能F2,F3に対応する処理を実行する。これにより、機能F2,F3が実現される。また、機能F4は、出力インタフェース53により実現される。 Alternatively, as shown in FIG. 8, the optical sensing device 1_1 comprises an optical transmitter 51, an optical receiver 52, an output interface 53 and a processing circuit 56. In this case, the function F1 is realized by the optical transmitter 51 and the optical receiver 52. FIG. The processing circuit 56 also executes processing corresponding to the functions F2 and F3. Thereby, functions F2 and F3 are realized. Also, the function F4 is implemented by the output interface 53 .
 または、図9に示す如く、光センシング装置1_1は、光送信機51、光受信機52、出力インタフェース53、プロセッサ54、メモリ55及び処理回路56を備える。この場合、機能F1は、光送信機51及び光受信機52により実現される。また、機能F2,F3のうちの一部の機能がプロセッサ54及びメモリ55により実現されるとともに、機能F2,F3のうちの残余の機能が処理回路56により実現される。また、機能F4は、出力インタフェース53により実現される。 Alternatively, as shown in FIG. 9, the optical sensing device 1_1 comprises an optical transmitter 51, an optical receiver 52, an output interface 53, a processor 54, a memory 55 and a processing circuit 56. In this case, the function F1 is realized by the optical transmitter 51 and the optical receiver 52. FIG. Some of the functions F2 and F3 are implemented by the processor 54 and the memory 55, and the rest of the functions F2 and F3 are implemented by the processing circuit 56. FIG. Also, the function F4 is implemented by the output interface 53 .
 なお、光センシング装置1_2のハードウェア構成は、図7~図9に示す例と同様である。このため、詳細な説明は省略する。ただし、光センシング装置1_2は、信号処理部13の機能を有しない(図3参照)。このため、光センシング装置1_2において、プロセッサ54、メモリ55及び処理回路56により実現される機能は、機能F2,F3のうちの機能F2のみである。また、光センシング装置1_2は、出力部14の機能を有しない(図3参照)。このため、光センシング装置1_2において、出力インタフェース53は不要である。 The hardware configuration of the optical sensing device 1_2 is the same as the examples shown in FIGS. Therefore, detailed description is omitted. However, the optical sensing device 1_2 does not have the function of the signal processing section 13 (see FIG. 3). Therefore, the function realized by the processor 54, the memory 55 and the processing circuit 56 in the optical sensing device 1_2 is only the function F2 among the functions F2 and F3. Also, the optical sensing device 1_2 does not have the function of the output unit 14 (see FIG. 3). Therefore, the output interface 53 is unnecessary in the optical sensing device 1_2.
 次に、光センシングシステム100の動作について説明する。より具体的には、図10A及び図10Bに示すフローチャートを参照して、個々の光センシング装置1における制御部12の動作について説明する。 Next, the operation of the optical sensing system 100 will be described. More specifically, the operation of the controller 12 in each optical sensing device 1 will be described with reference to the flowcharts shown in FIGS. 10A and 10B.
 図10A及び図10Bに示す例において、動作モード設定部31は、上記第2具体例に基づき、対応する光センシング装置1の動作モードを設定する。 In the examples shown in FIGS. 10A and 10B, the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 based on the second specific example.
 まず、動作モード設定部31は、測定モードの実行情報(すなわち第1条件)が満たされているか否かを判定する(ステップST1)。第1条件の具体例、及び第1条件が満たされているか否かの判定方法の具体例は、既に説明したとおりである。このため、再度の説明は省略する。 First, the operation mode setting unit 31 determines whether or not the measurement mode execution information (that is, the first condition) is satisfied (step ST1). A specific example of the first condition and a specific example of the method of determining whether the first condition is satisfied have already been described. Therefore, repetitive description is omitted.
 第1条件が満たされていると判定された場合(ステップST1“YES”)、次いで、動作モード設定部31は、対応する光センシング装置1の動作モードを測定モードに設定する(ステップST2)。次いで、測定モード実行部32は、測定モードを実行する(ステップST3)。これにより、LiDARの原理に基づく光センシングが実行される。なお、測定モードにおける個々の光センシング装置1の動作の詳細については、既に説明したとおりである。このため、再度の説明は省略する。 If it is determined that the first condition is satisfied (step ST1 "YES"), then the operation mode setting section 31 sets the operation mode of the corresponding optical sensing device 1 to the measurement mode (step ST2). Next, the measurement mode executing section 32 executes the measurement mode (step ST3). Thereby, optical sensing based on the principle of LiDAR is performed. The details of the operation of each optical sensing device 1 in the measurement mode have already been explained. Therefore, repetitive description is omitted.
 第1条件が満たされていないと判定された場合(ステップST2“NO”)、次いで、動作モード設定部31は、通信モードの実行条件(すなわち第2条件)が満たされているか否かを判定する(ステップST4)。第2条件の具体例、及び第2条件が満たされているか否かの判定方法の具体例は、既に説明したとおりである。このため、再度の説明は省略する。 If it is determined that the first condition is not satisfied ("NO" in step ST2), then the operation mode setting unit 31 determines whether or not the communication mode execution condition (that is, the second condition) is satisfied. (step ST4). A specific example of the second condition and a specific example of the method of determining whether the second condition is satisfied have already been described. Therefore, repetitive description is omitted.
 第2条件が満たされていると判定された場合(ステップST4“YES”)、次いで、動作モード設定部31は、対応する光センシング装置1の動作モードを通信モードに設定する(ステップST5)。より具体的には、動作モード設定部31は、対応する光センシング装置1の動作モードを送信モード又は受信モードに設定する。次いで、通信モード実行部33は、通信モードを実行する(ステップST6)。より具体的には、通信モード実行部33は、送信モード又は受信モードを実行する。これにより、光センシング装置1間の光無線通信が実行される。なお、通信モードにおける個々の光センシング装置1の動作の詳細については、既に説明したとおりである。このため、再度の説明は省略する。 If it is determined that the second condition is satisfied (step ST4 "YES"), then the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to the communication mode (step ST5). More specifically, the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to transmission mode or reception mode. Next, the communication mode executing section 33 executes the communication mode (step ST6). More specifically, the communication mode execution unit 33 executes transmission mode or reception mode. Thereby, optical wireless communication between the optical sensing devices 1 is performed. The details of the operation of each optical sensing device 1 in the communication mode have already been explained. Therefore, repetitive description is omitted.
 第2条件が満たされていないと判定された場合(ステップST4“NO”)、次いで、動作モード設定部31は、探索モードの実行条件(すなわち第3条件)が満たされているか否かを判定する(ステップST7)。第3条件の具体例、及び第3条件が満たされているか否かの判定方法の具体例は、既に説明したとおりである。このため、再度の説明は省略する。 If it is determined that the second condition is not satisfied ("NO" in step ST4), then the operation mode setting unit 31 determines whether or not the search mode execution condition (that is, the third condition) is satisfied. (step ST7). A specific example of the third condition and a specific example of the method for determining whether or not the third condition is satisfied have already been described. Therefore, repetitive description is omitted.
 第3条件が満たされていると判定された場合(ステップST7“YES”)、次いで、動作モード設定部31は、対応する光センシング装置1の動作モードを探索モードに設定する(ステップST8)。より具体的には、動作モード設定部31は、対応する光センシング装置1の動作モードを狭義の探索モード又は被探索モードに設定する。次いで、探索モード実行部34は、探索モードを実行する(ステップST9)。より具体的には、探索モード実行部34は、狭義の探索モード又は被探索モードを実行する。これにより、光無線通信の相手となる他の光センシング装置1を探索するための光探索が実行される。なお、探索モードにおける個々の光センシング装置1の動作の詳細については、既に説明したとおりである。このため、再度の説明は省略する。 If it is determined that the third condition is satisfied (step ST7 "YES"), then the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to the search mode (step ST8). More specifically, the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to a narrowly defined search mode or searched mode. Next, the search mode execution section 34 executes the search mode (step ST9). More specifically, the search mode execution unit 34 executes a narrowly defined search mode or searched mode. As a result, an optical search is performed to search for another optical sensing device 1 to be a partner of optical wireless communication. The details of the operation of each optical sensing device 1 in the search mode have already been explained. Therefore, repetitive description is omitted.
 第3条件が満たされていないと判定された場合(ステップST7“NO”)、次いで、動作モード設定部31は、待機モードの実行条件(すなわち第4条件)が満たされているか否かを判定する(ステップST10)。第4条件の具体例、及び第4条件が満たされているか否かの判定方法の具体例は、既に説明したとおりである。このため、再度の説明は省略する。 If it is determined that the third condition is not satisfied ("NO" in step ST7), then the operation mode setting unit 31 determines whether or not the standby mode execution condition (that is, the fourth condition) is satisfied. (step ST10). A specific example of the fourth condition and a specific example of the method of determining whether the fourth condition is satisfied have already been described. Therefore, repetitive description is omitted.
 第4条件が満たされていると判定された場合(ステップST10“YES”)、次いで、動作モード設定部31は、対応する光センシング装置1の動作モードを待機モードに設定する(ステップST11)。次いで、待機モード実行部35は、待機モードを実行する(ステップST12)。これにより、対応する光センシング装置1は、待機状態となる。 If it is determined that the fourth condition is satisfied (step ST10 "YES"), then the operation mode setting unit 31 sets the operation mode of the corresponding optical sensing device 1 to the standby mode (step ST11). Next, the standby mode execution section 35 executes the standby mode (step ST12). As a result, the corresponding optical sensing device 1 enters a standby state.
 次に、光センシングシステム100の他の動作について説明する。より具体的には、図11に示すフローチャートを参照して、図1に示す光センシング装置1_1,1_2のうちの光センシング装置1_1における信号処理部13及び出力部14の動作について説明する。 Next, another operation of the optical sensing system 100 will be described. More specifically, operations of the signal processing unit 13 and the output unit 14 in the optical sensing device 1_1 of the optical sensing devices 1_1 and 1_2 shown in FIG. 1 will be described with reference to the flowchart shown in FIG.
 なお、光センシング装置1_1,1_2の各々による光センシングが実行済みであるものとする。これにより、第1測定データ及び第2測定データが生成済みである。また、光センシング装置1_1,1_2間の光無線通信が実行済みであるものとする。これにより、第1位置情報及び第1測定データが送信済み(すなわち受信済み)である。 It is assumed that light sensing has already been performed by each of the light sensing devices 1_1 and 1_2. Thus, the first measurement data and the second measurement data have been generated. It is also assumed that optical wireless communication has already been performed between the optical sensing devices 1_1 and 1_2. Accordingly, the first position information and the first measurement data have been transmitted (that is, received).
 まず、点群データ生成部41は、第1位置情報、第1測定データ、第2位置情報及び第2測定データを取得する(ステップST21)。次いで、点群データ生成部41は、これらの情報及びデータを用いて、対象物Oの位置及び形状に対応する点群データを生成する(ステップST22)。次いで、三次元モデル生成部42は、当該生成された点群データを用いて、対象物Oの三次元モデルを生成する(ステップST23)。点群データの生成方法の具体例、及び三次元モデルの生成方法の具体例については、既に説明したとおりである。このため、再度の説明は省略する。 First, the point cloud data generation unit 41 acquires first position information, first measurement data, second position information, and second measurement data (step ST21). Next, the point cloud data generator 41 uses these pieces of information and data to generate point cloud data corresponding to the position and shape of the object O (step ST22). Next, the three-dimensional model generation unit 42 generates a three-dimensional model of the object O using the generated point cloud data (step ST23). A specific example of the point cloud data generation method and a specific example of the three-dimensional model generation method have already been described. Therefore, repetitive description is omitted.
 次いで、出力部14は、信号処理部13により実行された処理(すなわちステップST21~ST23の処理)の結果を示す情報を外部に出力する(ステップST24)。すなわち、出力部14は、結果情報を外部に出力する。結果情報は、例えば、ステップST23にて生成された三次元モデルを含む情報である。 Next, the output unit 14 outputs information indicating the result of the processing executed by the signal processing unit 13 (that is, the processing of steps ST21 to ST23) to the outside (step ST24). That is, the output unit 14 outputs the result information to the outside. The result information is, for example, information including the three-dimensional model generated in step ST23.
 次に、光センシングシステム100の変形例について説明する。 Next, a modified example of the optical sensing system 100 will be described.
 第一に、信号処理部13は、三次元モデル生成部42を有しないものであっても良い。この場合、結果情報は、例えば、点群データ生成部41により生成された点群データを含む情報である。外部システム200は、かかる結果情報を用いて、対象物Oの三次元モデルを生成するものであっても良い。 First, the signal processing unit 13 may not have the three-dimensional model generation unit 42. In this case, the result information is information including the point cloud data generated by the point cloud data generation unit 41, for example. The external system 200 may generate a three-dimensional model of the object O using such result information.
 第二に、第1位置情報は、送信側の光センシング装置1の絶対位置に代えて又は加えて、受信側の光センシング装置1に対する送信側の光センシング装置1の相対位置を示すものであっても良い。また、第2位置情報は、受信側の光センシング装置1の絶対位置に代えて又は加えて、送信側の光センシング装置1に対する受信側の光センシング装置1の相対位置を示すものであっても良い。 Second, the first position information indicates the relative position of the optical sensing device 1 on the transmitting side with respect to the optical sensing device 1 on the receiving side instead of or in addition to the absolute position of the optical sensing device 1 on the transmitting side. can be The second position information may indicate the relative position of the optical sensing device 1 on the receiving side with respect to the optical sensing device 1 on the transmitting side instead of or in addition to the absolute position of the optical sensing device 1 on the receiving side. good.
 具体的には、例えば、光探索において、被探索側の光センシング装置1は、光探索用のレーザ光を受信したとき、その受信強度に基づき距離値r1を算出するとともに、光送受信部11の向きに基づき角度値θ1及び角度値φ1を算出する。これにより、探索側の光センシング装置1に対する被探索側の光センシング装置1の相対位置を示す座標値(r1,θ1,φ1)が算出される。他方、探索側の光センシング装置1は、応答用のレーザ光を受信したとき、その受信強度に基づき距離値r2を算出するとともに、光送受信部11の向きに基づき角度値θ2及び角度値φ2を算出する。これにより、被探索側の光センシング装置1に対する探索側の光センシング装置1の相対位置を示す座標値(r2,θ2,φ2)が算出される。その後、光センシング装置1間の光無線通信が実行されることにより、これらの相対位置を示す位置情報が共有される。 Specifically, for example, in an optical search, when the optical sensing device 1 on the searched side receives laser light for optical search, it calculates a distance value r1 based on the received intensity, and An angle value θ1 and an angle value φ1 are calculated based on the orientation. As a result, the coordinate values (r1, θ1, φ1) indicating the relative position of the optical sensing device 1 on the searched side with respect to the optical sensing device 1 on the searching side are calculated. On the other hand, when the optical sensing device 1 on the search side receives the response laser beam, it calculates the distance value r2 based on the received intensity of the laser beam, and calculates the angle values θ2 and φ2 based on the orientation of the optical transmitter/receiver 11. calculate. As a result, coordinate values (r2, θ2, φ2) indicating the relative position of the optical sensing device 1 on the search side with respect to the optical sensing device 1 on the searched side are calculated. After that, optical wireless communication is performed between the optical sensing devices 1, so that position information indicating their relative positions is shared.
 なお、距離値r1(又は距離値r2)は、ToF方式を用いるものであっても良い。例えば、光探索用のレーザ光が被探索側の光センシング装置1の受光部22のレンズに入射したとき、その一部が反射されて、かかる反射光が探索側の光センシング装置1の受光部22により受信され得る。同様に、応答用のレーザ光が探索側の光センシング装置1の受光部22のレンズに入射したとき、その一部が反射されて、かかる反射光が被探索側の光センシング装置1の受光部22により受信され得る。このため、距離値r1(又は距離値r2)は、ToF方式を用いて算出することができる。 Note that the distance value r1 (or the distance value r2) may use the ToF method. For example, when the laser light for optical search is incident on the lens of the light receiving unit 22 of the optical sensing device 1 on the side to be searched, part of it is reflected, and the reflected light becomes the light receiving unit of the optical sensing device 1 on the searching side. 22. Similarly, when the response laser light is incident on the lens of the light sensing device 1 on the searching side, a part of it is reflected, and the reflected light becomes the light receiving portion of the light sensing device 1 on the side to be searched. 22. Therefore, the distance value r1 (or the distance value r2) can be calculated using the ToF method.
 または、例えば、光探索用のレーザ光は、かかるレーザ光が出射された時刻を示す信号を含むものであっても良い。この場合、被探索側の光センシング装置1は、かかる信号が示す時刻と、かかるレーザ光を受信した時刻との時間差(すなわち片道伝搬時間)に基づき、距離値r1を算出する。同様に、応答用のレーザ光は、かかるレーザ光が出射された時刻を示す信号を含むものであっても良い。この場合、探索側の光センシング装置1は、かかる信号が示す時刻と、かかるレーザ光を受信した時刻との時間差(すなわち片道伝搬時間)に基づき、距離値r2を算出する。 Alternatively, for example, the laser light for optical search may include a signal indicating the time when the laser light was emitted. In this case, the optical sensing device 1 on the searched side calculates the distance value r1 based on the time difference (that is, the one-way propagation time) between the time indicated by the signal and the time when the laser light was received. Similarly, the response laser light may contain a signal indicating the time when the laser light was emitted. In this case, the optical sensing device 1 on the search side calculates the distance value r2 based on the time difference (that is, the one-way propagation time) between the time indicated by the signal and the time when the laser light was received.
 第三に、通信モード実行部33は、送信モードを実行する場合において、上記のような相対位置が算出済みであるとき、相対位置に含まれる距離値(r1,r2)に応じて、光無線通信用のレーザ光の強度を異ならしめるものであっても良い。具体的には、例えば、通信モード実行部33は、かかる距離値(r1,r2)が大きいほど、光無線通信用のレーザ光の強度を大きい値に設定するものであっても良い。換言すれば、通信モード実行部33は、かかる距離値(r1,r2)が小さいほど、光無線通信用のレーザ光の強度を大きい値に設定するもので合っても良い。これにより、光センシング装置1間の距離に応じて、適切な強度を有するレーザ光を光無線通信に用いることができる。 Thirdly, when executing the transmission mode, the communication mode execution unit 33, when the relative position as described above has been calculated, performs the optical wireless communication according to the distance values (r1, r2) included in the relative position. The intensity of the laser light for communication may be made different. Specifically, for example, the communication mode execution unit 33 may set the intensity of the laser light for optical wireless communication to a higher value as the distance value (r1, r2) increases. In other words, the communication mode execution unit 33 may set the intensity of the laser light for optical wireless communication to a higher value as the distance values (r1, r2) are smaller. Thereby, according to the distance between the optical sensing devices 1, a laser beam having an appropriate intensity can be used for optical wireless communication.
 第四に、位置情報が示す位置は、対応する光センシング装置1の設置位置に限定されるものではない。また、点群データを生成する処理において個々の点がプロットされる三次元空間における基準位置(すなわち原点)は、いずれかの光センシング装置1の設置位置に限定されるものではない。これらの位置は、光センシング装置1_1の設置位置と異なり、かつ、光センシング装置1_2の設置位置と異なる第3の位置であっても良い。また、これらの位置は、グローバル座標系における位置であっても良い。 Fourth, the position indicated by the position information is not limited to the installation position of the corresponding optical sensing device 1. Also, the reference position (that is, the origin) in the three-dimensional space where individual points are plotted in the process of generating point cloud data is not limited to any installation position of the optical sensing device 1 . These positions may be a third position different from the installation position of the optical sensing device 1_1 and different from the installation position of the optical sensing device 1_2. Also, these positions may be positions in the global coordinate system.
 第五に、光センシング装置1間の光無線通信は、いわゆる「光デジタルコヒーレント通信」を用いるものであっても良い。この場合、個々の光センシング装置1は、デジタル信号処理を実行する機能を有する。送信側の光センシング装置1は、送信の対象となる情報(例えば第1位置情報及び第1測定データ)をデジタル信号に変換して(いわゆる「符号化」)、変換後のデジタル信号に対応する振幅、位相又は周波数を有するレーザ光を出射する。他方、受信側の光センシング装置1は、受信されたレーザ光に含まれるデジタル信号を検出して、当該検出されたデジタル信号を元の情報(例えば第1位置情報及び第1測定データ)に変換する(いわゆる「復号」)。このようにして、光デジタルコヒーレント通信が実現される。 Fifth, the optical wireless communication between the optical sensing devices 1 may use so-called "optical digital coherent communication". In this case, each optical sensing device 1 has the function of performing digital signal processing. The optical sensing device 1 on the transmission side converts information to be transmitted (for example, first position information and first measurement data) into a digital signal (so-called "encoding"), and corresponds to the converted digital signal. A laser beam having amplitude, phase or frequency is emitted. On the other hand, the optical sensing device 1 on the receiving side detects a digital signal contained in the received laser light and converts the detected digital signal into original information (eg, first positional information and first measurement data). (so-called "decryption"). Thus, optical digital coherent communication is realized.
 第六に、光センシングシステム100は、GPS(Global Positioning System)又は低容量の無線通信(例えばBLUETOOTH(登録商標)通信)を用いて、個々の光センシング装置1の大まかな位置を検出する機能を有するものであっても良い。個々の光センシング装置1は、かかる機能を用いて他の光センシング装置1の大まかな位置を検出した後、探索モードを実行することにより他の光センシング装置1の正確な位置を検出するものであっても良い。 Sixthly, the optical sensing system 100 has a function of detecting a rough position of each optical sensing device 1 using GPS (Global Positioning System) or low-capacity wireless communication (for example, BLUETOOTH (registered trademark) communication). It may have. Each optical sensing device 1 uses this function to detect the rough position of the other optical sensing device 1, and then executes the search mode to detect the precise position of the other optical sensing device 1. It can be.
 すなわち、この場合、第3条件は、かかる機能を用いて他の光センシング装置1の大まかな位置が検出済みであるという条件を含むもので合っても良い。換言すれば、第3条件は、かかる機能による検出の結果に基づき、他の光センシング装置1が存在することを示す情報が得られているという条件を含むものであっても良い。 That is, in this case, the third condition may include the condition that the rough position of the other optical sensing device 1 has been detected using this function. In other words, the third condition may include the condition that information indicating the presence of another optical sensing device 1 is obtained based on the result of detection by such a function.
 第七に、制御部12は、探索モード実行部34を有しないものであっても良い。換言すれば、個々の光センシング装置1の動作モードは、探索モードを含まないものであっても良い。この場合、光無線通信及び点群合成を実現する観点から、個々の光センシング装置1において、他の光センシング装置1の位置及び向きを示す情報が予め記憶されているものであっても良い。 Seventh, the control unit 12 may not have the search mode execution unit 34. In other words, the operation mode of each light sensing device 1 may not include the search mode. In this case, from the viewpoint of realizing wireless optical communication and point group synthesis, each optical sensing device 1 may store information indicating the position and orientation of another optical sensing device 1 in advance.
 また、制御部12は、待機モード実行部35を有しないものであっても良い。換言すれば、個々の光センシング装置1の動作モードは、待機モードを含まないものであっても良い。すなわち、個々の光センシング装置1の動作モードは、少なくとも測定モード及び通信モードを含むものであれば良い。また、個々の光センシング装置1の動作モードは、測定モード、通信モード及び待機モードを含むものであっても良い。 Also, the control unit 12 may not have the standby mode execution unit 35 . In other words, the operation mode of each optical sensing device 1 may not include the standby mode. That is, the operation mode of each optical sensing device 1 should include at least the measurement mode and the communication mode. Also, the operation mode of each optical sensing device 1 may include a measurement mode, a communication mode, and a standby mode.
 次に、光センシングシステム100の効果について説明する。 Next, the effects of the optical sensing system 100 will be described.
 以下、個々の光センシング装置1に関する説明において、この光センシング装置1により実行される光センシングを「第1のLiDAR測定」ということがある。また、個々の光センシング装置1に関する説明において、他の光センシング装置1により実行される光センシングを「第2のLiDAR測定」ということがある。 In the following description of each optical sensing device 1, the optical sensing performed by this optical sensing device 1 may be referred to as "first LiDAR measurement". In addition, in the description of each optical sensing device 1, optical sensing performed by another optical sensing device 1 may be referred to as "second LiDAR measurement".
 上記のとおり、光センシングシステム100は、光センシング装置1を含む。光センシング装置1は、光送受信部11と、制御部12と、を備える。光送受信部11は、LiDARの原理に基づく光センシング(第1のLiDAR測定)に用いる第1光L1を送信及び受信し、他の光センシング装置1との光無線通信に用いる第2光L2を送信又は受信する。制御部12は、光センシング(第1のLiDAR測定)を実行する測定モード(第1動作モード)と、光無線通信を実行する通信モード(第2動作モード)とを切り替える。光センシング装置1による光センシング(第1のLiDAR測定)及び他の光センシング装置1による光センシング(第2のLiDAR測定)は、同一の対象物Oに対して実行される。 As described above, the optical sensing system 100 includes the optical sensing device 1. The optical sensing device 1 includes an optical transceiver 11 and a controller 12 . The optical transceiver 11 transmits and receives a first light L1 used for optical sensing (first LiDAR measurement) based on the LiDAR principle, and transmits a second light L2 used for optical wireless communication with another optical sensing device 1. send or receive; The control unit 12 switches between a measurement mode (first operation mode) in which optical sensing (first LiDAR measurement) is performed and a communication mode (second operation mode) in which optical wireless communication is performed. Light sensing by the light sensing device 1 (first LiDAR measurement) and light sensing by another light sensing device 1 (second LiDAR measurement) are performed on the same object O. FIG.
 このように、光センシングシステム100は、複数台の光センシング装置1が光無線通信により連携するシステムである。かかるシステムにおいて、複数台の光センシング装置1が同一の対象物Oに対する光センシングを実行することにより、以下のような効果が得られる。すなわち、仮に複数台の光センシング装置1が互いに異なる物体に対する光センシングを実行する場合に比して、対象物Oにおけるオクルージョンの発生を抑制することができる。 In this way, the optical sensing system 100 is a system in which a plurality of optical sensing devices 1 cooperate by optical wireless communication. In such a system, when a plurality of optical sensing devices 1 perform optical sensing on the same object O, the following effects can be obtained. That is, it is possible to suppress the occurrence of occlusion in the object O as compared with the case where a plurality of optical sensing devices 1 perform optical sensing on different objects.
 この結果、例えば、光センシングの結果に基づき対象物Oの三次元モデルを生成するとき、オクルージョンに起因する欠落部の発生を抑制することができる。また、例えば、当該生成された三次元モデルを用いて対象物Oの体積を推定するとき、三次元モデルの欠落部に起因する推定の誤差の発生を抑制することができる。これにより、対象物Oの体積を正確に推定することができる。 As a result, for example, when generating a three-dimensional model of the object O based on the results of optical sensing, it is possible to suppress the occurrence of missing portions due to occlusion. Also, for example, when estimating the volume of the target object O using the generated three-dimensional model, it is possible to suppress the occurrence of estimation errors due to missing portions of the three-dimensional model. Thereby, the volume of the target object O can be estimated correctly.
 次に、光センシングシステム100の他の効果について説明する。 Next, other effects of the optical sensing system 100 will be described.
 光送受信部11は、光無線通信の相手となる他の光センシング装置1を探索するための光探索に用いる第3光L3を送信又は受信する。制御部12は、測定モード(第1動作モード)と、通信モード(第2動作モード)と、光探索を実行する探索モード(第3動作モード)とを切り替える。これにより、測定モード及び通信モードに加えて、探索モードを実現することができる。この結果、個々の光センシング装置1において他の光センシング装置1の位置が未知である場合であっても、光センシング装置1間の光無線通信を実現することができる。 The optical transmitting/receiving unit 11 transmits or receives the third light L3 used for optical search for searching for another optical sensing device 1 to be a partner of optical wireless communication. The control unit 12 switches among a measurement mode (first operation mode), a communication mode (second operation mode), and a search mode (third operation mode) in which optical search is performed. Thereby, a search mode can be realized in addition to the measurement mode and the communication mode. As a result, even if each optical sensing device 1 does not know the positions of other optical sensing devices 1, optical wireless communication between the optical sensing devices 1 can be realized.
 また、光センシング装置1は、光無線通信を実行することにより、他の光センシング装置1の位置及び向きを示す第1位置情報を他の光センシング装置1から取得する。これにより、受信側の光センシング装置1を実現することができる。また、当該取得された第1位置情報を用いることにより、受信側の光センシング装置1において、光センシング装置1間の点群合成を実現することができる。 In addition, the optical sensing device 1 acquires first position information indicating the position and orientation of the other optical sensing device 1 from the other optical sensing device 1 by executing optical wireless communication. Thereby, the optical sensing device 1 on the receiving side can be realized. Further, by using the acquired first position information, point group synthesis between the optical sensing devices 1 can be realized in the optical sensing device 1 on the receiving side.
 また、光センシング装置1は、光無線通信を実行することにより、他の光センシング装置1における光センシング(第2のLiDAR測定)の結果を示す第1測定データを他の光センシング装置1から取得する。当該取得された第1測定データを用いることにより、受信側の光センシング装置1において、光センシング装置1間の点群合成を実現することができる。 Further, the optical sensing device 1 acquires first measurement data indicating the result of optical sensing (second LiDAR measurement) in the other optical sensing device 1 from the other optical sensing device 1 by executing optical wireless communication. do. By using the acquired first measurement data, point group synthesis between the optical sensing devices 1 can be realized in the optical sensing device 1 on the receiving side.
 また、光センシング装置1は、第1位置情報、第1測定データ、光センシング装置1の位置及び向きを示す第2位置情報、並びに光センシング装置1における光センシング(第1のLiDAR測定)の結果を示す第2測定データを用いて、対象物Oの位置及び形状に対応する点群データを生成する。これらの位置情報及び測定データを用いることにより、光センシング装置1間の点群合成を実現することができる。これにより、対象物Oの点群データを生成することができる。 The optical sensing device 1 also provides first positional information, first measurement data, second positional information indicating the position and orientation of the optical sensing device 1, and the result of optical sensing (first LiDAR measurement) in the optical sensing device 1. Point cloud data corresponding to the position and shape of the object O is generated using the second measurement data indicating By using these position information and measurement data, point group synthesis between the optical sensing devices 1 can be realized. Thereby, the point cloud data of the object O can be generated.
 また、光センシング装置1は、光無線通信を実行することにより、光センシング装置1の位置及び向きを示す第1位置情報を他の光センシング装置1に通知する。これにより、送信側の光センシング装置1を実現することができる。また、当該通知された第1位置情報を用いることにより、受信側の光センシング装置1において、光センシング装置1間の点群合成を実現することができる。 In addition, the optical sensing device 1 notifies other optical sensing devices 1 of the first position information indicating the position and orientation of the optical sensing device 1 by performing optical wireless communication. Thereby, the optical sensing device 1 on the transmission side can be realized. Also, by using the notified first position information, point group synthesis between the optical sensing devices 1 can be realized in the optical sensing device 1 on the receiving side.
 また、光センシング装置1は、光無線通信を実行することにより、光センシング装置1における光センシング(第1のLiDAR測定)の結果を示す第1測定データを他の光センシング装置1に通知する。当該通知された第1測定データを用いることにより、受信側の光センシング装置1において、光センシング装置1間の点群合成を実現することができる。 In addition, the optical sensing device 1 notifies the other optical sensing devices 1 of first measurement data indicating the result of optical sensing (first LiDAR measurement) in the optical sensing device 1 by executing optical wireless communication. By using the notified first measurement data, point group synthesis between the optical sensing devices 1 can be realized in the optical sensing device 1 on the receiving side.
 また、他の光センシング装置1は、第1位置情報、第1測定データ、他の光センシング装置1の位置及び向きを示す第2位置情報、並びに他の光センシング装置1における光センシング(第2のLiDAR測定)の結果を示す第2測定データを用いて、対象物Oの位置及び形状に対応する点群データを生成する。これらの位置情報及び測定データを用いることにより、光センシング装置1間の点群合成を実現することができる。これにより、対象物Oの点群データを生成することができる。 Further, the other optical sensing device 1 includes first positional information, first measurement data, second positional information indicating the position and orientation of the other optical sensing device 1, and optical sensing in the other optical sensing device 1 (second point cloud data corresponding to the position and shape of the object O is generated using the second measurement data indicating the results of the LiDAR measurement of . By using these position information and measurement data, point group synthesis between the optical sensing devices 1 can be realized. Thereby, the point cloud data of the object O can be generated.
 このように、光センシングシステム100においては、点群データが生成される前に、点群データの生成に用いられる情報(すなわち位置情報及び測定データ)が光センシング装置1間にて共有される。また、点群合成は、いずれかの光センシング装置1により実行される。 As described above, in the optical sensing system 100, the information used to generate the point cloud data (that is, the position information and the measurement data) is shared between the optical sensing devices 1 before the point cloud data is generated. Also, point group synthesis is performed by any one of the optical sensing devices 1 .
 ここで、光センシングシステム100に対する比較用の光センシングシステムとして、以下のようなシステムを考える。すなわち、比較用の光センシングシステムにおいて、個々の光センシング装置は、GPSを用いて、当該光センシング装置の位置及び向きを示す位置情報を取得する。また、個々の光センシング装置は、当該光センシング装置における光センシングの結果に基づく点群データを生成する。個々の光センシング装置は、無線LAN(Local Area Network)を用いて、当該取得された位置情報及び当該生成された点群データを外部システムに送信する。外部システムにおいては、上記生成された位置情報に基づき、上記生成された点群データを用いた点群合成が実行される。すなわち、比較用の光センシングシステムにおける点群合成は、複数台の光センシング装置により生成された点群データに対する後処理である。 Here, as an optical sensing system for comparison with the optical sensing system 100, the following system is considered. That is, in the optical sensing system for comparison, each optical sensing device uses GPS to acquire position information indicating the position and orientation of the optical sensing device. Also, each optical sensing device generates point cloud data based on the optical sensing results of the optical sensing device. Each optical sensing device uses a wireless LAN (Local Area Network) to transmit the acquired position information and the generated point cloud data to an external system. In the external system, point group synthesis using the generated point cloud data is executed based on the generated position information. That is, point cloud synthesis in the optical sensing system for comparison is post-processing of point cloud data generated by a plurality of optical sensing devices.
 これに対して、光センシングシステム100においては、上記のとおり、点群データの生成に用いられる情報が光無線通信により光センシング装置1間にて共有されて、いずれかの光センシング装置1により点群合成が実行される。これにより、比較用の光センシングシステムに比して、いわゆる「リアルタイム」な点群合成を実現することができる。また、点群合成は、点群データの生成後に後処理として実行されるのに代えて、点群データの生成時に実行される。これにより、点群合成を後処理にする方式に比して、後処理における歪みに起因する誤差が点群合成の結果に混入するのを抑制することができる。この結果、高精度な点群合成を実現することができる。 On the other hand, in the optical sensing system 100, as described above, the information used to generate the point cloud data is shared between the optical sensing devices 1 by optical wireless communication. Group composition is performed. This makes it possible to achieve so-called "real-time" point cloud synthesis compared to the optical sensing system for comparison. Also, point cloud synthesis is performed when point cloud data is generated, instead of being performed as post-processing after point cloud data is generated. As a result, it is possible to suppress errors due to distortion in the post-processing from being mixed into the result of the point-group synthesis, as compared with a method in which the point-group synthesis is post-processed. As a result, highly accurate point group synthesis can be realized.
[第2実施形態]
 図12は、第2実施形態に係る光センシング装置を示すブロック図である。図12を参照して、第2実施形態に係る光センシング装置について説明する。また、図13は、第2実施形態に係る光センシングシステムを示すブロック図である。図13を参照して、第2実施形態に係る光センシングシステムについて説明する。なお、図12及び図13において、図1~図6に示すブロックと同様のブロックには同一符号を付して説明を省略する。
[Second embodiment]
FIG. 12 is a block diagram showing the optical sensing device according to the second embodiment. A light sensing device according to the second embodiment will be described with reference to FIG. FIG. 13 is a block diagram showing the optical sensing system according to the second embodiment. A light sensing system according to the second embodiment will be described with reference to FIG. In FIGS. 12 and 13, blocks similar to those shown in FIGS. 1 to 6 are assigned the same reference numerals, and descriptions thereof are omitted.
 ここで、第1実施形態に係る光センシング装置1は、第2実施形態に係る光センシング装置1aの一例である。また、第1実施形態に係る光センシングシステム100は、第2実施形態に係る光センシングシステム100aの一例である。 Here, the optical sensing device 1 according to the first embodiment is an example of the optical sensing device 1a according to the second embodiment. Also, the optical sensing system 100 according to the first embodiment is an example of the optical sensing system 100a according to the second embodiment.
 図12に示す如く、光センシング装置1aは、光送受信部11及び制御部12を備える。 As shown in FIG. 12, the optical sensing device 1a includes an optical transmitter/receiver 11 and a controller 12. As shown in FIG.
 図13に示す如く、光センシングシステム100aは、光センシング装置1aを含む。光センシング装置1aは、光送受信部11及び制御部12を備える。 As shown in FIG. 13, the optical sensing system 100a includes an optical sensing device 1a. The optical sensing device 1 a includes an optical transmitter/receiver 11 and a controller 12 .
 これらの場合であっても、以下のとおり、第1実施形態にて説明したものと同様の効果が得られる。 Even in these cases, the same effects as those described in the first embodiment can be obtained as follows.
 すなわち、光センシングシステム100aは、光センシング装置1aを含む。光センシング装置1aは、光送受信部11と、制御部12と、を備える。光送受信部11は、LiDARの原理に基づく光センシング(第1のLiDAR測定)に用いる第1光L1を送信及び受信し、他の光センシング装置1a(不図示)との光無線通信に用いる第2光L2を送信又は受信する。制御部12は、光センシング(第1のLiDAR測定)を実行する第1動作モードと、光無線通信を実行する第2動作モードとを切り替える。光センシング装置1aによる光センシング(第1のLiDAR測定)及び他の光センシング装置1a(不図示)による光センシング(第2のLiDAR測定)は、同一の対象物O(不図示)に対して実行される。 That is, the optical sensing system 100a includes the optical sensing device 1a. The optical sensing device 1 a includes an optical transmitter/receiver 11 and a controller 12 . The optical transceiver 11 transmits and receives a first light L1 used for optical sensing (first LiDAR measurement) based on the principle of LiDAR, and a first light L1 used for optical wireless communication with another optical sensing device 1a (not shown). 2. Transmit or receive light L2. The control unit 12 switches between a first operation mode in which optical sensing (first LiDAR measurement) is performed and a second operation mode in which optical wireless communication is performed. Light sensing by the light sensing device 1a (first LiDAR measurement) and light sensing by another light sensing device 1a (not shown) (second LiDAR measurement) are performed on the same object O (not shown). be done.
 このように、光センシングシステム100aは、複数台の光センシング装置1aが光無線通信により連携するシステムである。かかるシステムにおいて、複数台の光センシング装置1aが同一の対象物Oに対する光センシングを実行することにより、以下のような効果が得られる。すなわち、仮に複数台の光センシング装置1aが互いに異なる物体に対する光センシングを実行する場合に比して、対象物Oにおけるオクルージョンの発生を抑制することができる。 In this way, the optical sensing system 100a is a system in which a plurality of optical sensing devices 1a cooperate by optical wireless communication. In such a system, when a plurality of optical sensing devices 1a perform optical sensing on the same object O, the following effects can be obtained. That is, it is possible to suppress the occurrence of occlusion in the object O as compared with the case where a plurality of optical sensing devices 1a perform optical sensing on different objects.
 以上、実施形態を参照して本開示を説明したが、本開示は上記実施形態に限定されるものではない。本開示の構成や詳細には、本開示のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present disclosure has been described above with reference to the embodiments, the present disclosure is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present disclosure within the scope of the present disclosure.
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。 Some or all of the above embodiments can also be described as the following additional remarks, but are not limited to the following.
 以下、光送受信部11を「光送受信手段」という。また、制御部12を「制御手段」という。 The optical transmitter/receiver 11 is hereinafter referred to as "optical transmitter/receiver". Moreover, the control part 12 is called a "control means."
[付記]
  [付記1]
 第1のLiDAR測定に用いる第1光を送信及び受信し、他の光センシング装置との光無線通信に用いる第2光を送信又は受信する光送受信手段と、
 前記第1のLiDAR測定を実行する第1動作モードと、前記光無線通信を実行する第2動作モードとを切り替える制御手段と、を備え、
 当該光センシング装置による前記第1のLiDAR測定及び前記他の光センシング装置による第2のLiDAR測定は、同一の対象物に対して実行される
 ことを特徴とする光センシング装置。
  [付記2]
 前記光送受信手段は、前記光無線通信の相手となる前記他の光センシング装置を探索するための光探索に用いる第3光を送信又は受信し、
 前記制御手段は、前記第1動作モードと、前記第2動作モードと、前記光探索を実行する第3動作モードとを切り替える
 ことを特徴とする付記1に記載の光センシング装置。
  [付記3]
 前記光無線通信を実行することにより、前記他の光センシング装置の位置及び向きを示す第1位置情報を前記他の光センシング装置から取得することを特徴とする付記1又は付記2に記載の光センシング装置。
  [付記4]
 前記光無線通信を実行することにより、前記他の光センシング装置における前記第2のLiDAR測定の結果を示す第1測定データを前記他の光センシング装置から取得することを特徴とする付記3に記載の光センシング装置。
  [付記5]
 前記第1位置情報、前記第1測定データ、当該光センシング装置の位置及び向きを示す第2位置情報、並びに当該光センシング装置における前記第1のLiDAR測定の結果を示す第2測定データを用いて、前記対象物の位置及び形状に対応する点群データを生成することを特徴とする付記4に記載の光センシング装置。
  [付記6]
 前記光無線通信を実行することにより、当該光センシング装置の位置及び向きを示す第1位置情報を前記他の光センシング装置に通知することを特徴とする付記1又は付記2に記載の光センシング装置。
  [付記7]
 前記光無線通信を実行することにより、当該光センシング装置における前記第1のLiDAR測定の結果を示す第1測定データを前記他の光センシング装置に通知することを特徴とする付記6に記載の光センシング装置。
  [付記8]
 前記他の光センシング装置は、前記第1位置情報、前記第1測定データ、前記他の光センシング装置の位置及び向きを示す第2位置情報、並びに前記他の光センシング装置における前記第2のLiDAR測定の結果を示す第2測定データを用いて、前記対象物の位置及び形状に対応する点群データを生成することを特徴とする付記7に記載の光センシング装置。
  [付記9]
 光センシング装置を含む光センシングシステムであって、
 前記光センシング装置は、
 第1のLiDAR測定に用いる第1光を送信及び受信し、他の光センシング装置との光無線通信に用いる第2光を送信又は受信する光送受信手段と、
 前記第1のLiDAR測定を実行する第1動作モードと、前記光無線通信を実行する第2動作モードとを切り替える制御手段と、を備え、
 前記光センシング装置による前記第1のLiDAR測定及び前記他の光センシング装置による第2のLiDAR測定は、同一の対象物に対して実行される
 ことを特徴とする光センシングシステム。
  [付記10]
 前記光送受信手段は、前記光無線通信の相手となる前記他の光センシング装置を探索するための光探索に用いる第3光を送信又は受信し、
 前記制御手段は、前記第1動作モードと、前記第2動作モードと、前記光探索を実行する第3動作モードとを切り替える
 ことを特徴とする付記9に記載の光センシングシステム。
  [付記11]
 前記光センシング装置は、前記光無線通信を実行することにより、前記他の光センシング装置の位置及び向きを示す第1位置情報を前記他の光センシング装置から取得することを特徴とする付記9又は付記10に記載の光センシングシステム。
  [付記12]
 前記光センシング装置は、前記光無線通信を実行することにより、前記他の光センシング装置における前記第2のLiDAR測定の結果を示す第1測定データを前記他の光センシング装置から取得することを特徴とする付記11に記載の光センシングシステム。
  [付記13]
 前記光センシング装置は、前記第1位置情報、前記第1測定データ、前記光センシング装置の位置及び向きを示す第2位置情報、並びに前記光センシング装置における前記第1のLiDAR測定の結果を示す第2測定データを用いて、前記対象物の位置及び形状に対応する点群データを生成することを特徴とする付記12に記載の光センシングシステム。
  [付記14]
 前記光センシング装置は、前記光無線通信を実行することにより、前記光センシング装置の位置及び向きを示す第1位置情報を前記他の光センシング装置に通知することを特徴とする付記9又は付記10に記載の光センシングシステム。
  [付記15]
 前記光センシング装置は、前記光無線通信を実行することにより、前記光センシング装置における前記第1のLiDAR測定の結果を示す第1測定データを前記他の光センシング装置に通知することを特徴とする付記14に記載の光センシングシステム。
  [付記16]
 前記他の光センシング装置は、前記第1位置情報、前記第1測定データ、前記他の光センシング装置の位置及び向きを示す第2位置情報、並びに前記他の光センシング装置における前記第2のLiDAR測定の結果を示す第2測定データを用いて、前記対象物の位置及び形状に対応する点群データを生成することを特徴とする付記15に記載の光センシングシステム。
  [付記17]
 光センシング装置が、第1のLiDAR測定に用いる第1光を送信及び受信し、他の光センシング装置との光無線通信に用いる第2光を送信又は受信し、
 前記光センシング装置が、前記第1のLiDAR測定を実行する第1動作モードと、前記光無線通信を実行する第2動作モードとを切り替え、
 前記光センシング装置による前記第1のLiDAR測定及び前記他の光センシング装置による第2のLiDAR測定は、同一の対象物に対して実行される
 ことを特徴とする光センシング方法。
  [付記18]
 前記光センシング装置は、前記光無線通信の相手となる前記他の光センシング装置を探索するための光探索に用いる第3光を送信又は受信し、
 前記光センシング装置は、前記第1動作モードと、前記第2動作モードと、前記光探索を実行する第3動作モードとを切り替える
 ことを特徴とする付記17に記載の光センシング方法。
  [付記19]
 前記光センシング装置は、前記光無線通信を実行することにより、前記他の光センシング装置の位置及び向きを示す第1位置情報を前記他の光センシング装置から取得することを特徴とする付記17又は付記18に記載の光センシング方法。
  [付記20]
 前記光センシング装置は、前記光無線通信を実行することにより、前記他の光センシング装置における前記第2のLiDAR測定の結果を示す第1測定データを前記他の光センシング装置から取得することを特徴とする付記19に記載の光センシング方法。
  [付記21]
 前記光センシング装置は、前記第1位置情報、前記第1測定データ、前記光センシング装置の位置及び向きを示す第2位置情報、並びに前記光センシング装置における前記第1のLiDAR測定の結果を示す第2測定データを用いて、前記対象物の位置及び形状に対応する点群データを生成することを特徴とする付記20に記載の光センシング方法。
  [付記22]
 前記光センシング装置は、前記光無線通信を実行することにより、前記光センシング装置の位置及び向きを示す第1位置情報を前記他の光センシング装置に通知することを特徴とする付記17又は付記18に記載の光センシング方法。
  [付記23]
 前記光センシング装置は、前記光無線通信を実行することにより、前記光センシング装置における前記第1のLiDAR測定の結果を示す第1測定データを前記他の光センシング装置に通知することを特徴とする付記22に記載の光センシング方法。
  [付記24]
 前記他の光センシング装置は、前記第1位置情報、前記第1測定データ、前記他の光センシング装置の位置及び向きを示す第2位置情報、並びに前記他の光センシング装置における前記第2のLiDAR測定の結果を示す第2測定データを用いて、前記対象物の位置及び形状に対応する点群データを生成することを特徴とする付記23に記載の光センシング方法。
[Appendix]
[Appendix 1]
an optical transmitting/receiving means for transmitting and receiving the first light used for the first LiDAR measurement and transmitting or receiving the second light used for optical wireless communication with another optical sensing device;
A control means for switching between a first operation mode for performing the first LiDAR measurement and a second operation mode for performing the optical wireless communication,
The optical sensing device, wherein the first LiDAR measurement by the optical sensing device and the second LiDAR measurement by the other optical sensing device are performed on the same object.
[Appendix 2]
The optical transmitting/receiving means transmits or receives a third light used for optical search for searching for the other optical sensing device to be a partner of the optical wireless communication,
The optical sensing device according to appendix 1, wherein the control means switches between the first operation mode, the second operation mode, and the third operation mode for performing the optical search.
[Appendix 3]
The light according to Supplementary note 1 or 2, wherein first position information indicating the position and orientation of the other optical sensing device is obtained from the other optical sensing device by performing the optical wireless communication. sensing device.
[Appendix 4]
3. The method according to appendix 3, wherein first measurement data indicating a result of the second LiDAR measurement in the other optical sensing device is obtained from the other optical sensing device by performing the optical wireless communication. optical sensing device.
[Appendix 5]
using the first position information, the first measurement data, the second position information indicating the position and orientation of the optical sensing device, and the second measurement data indicating the result of the first LiDAR measurement in the optical sensing device , the optical sensing device according to appendix 4, wherein point cloud data corresponding to the position and shape of the object is generated.
[Appendix 6]
The optical sensing device according to Supplementary note 1 or 2, characterized in that the other optical sensing device is notified of first position information indicating the position and orientation of the optical sensing device by executing the optical wireless communication. .
[Appendix 7]
6. The light according to claim 6, wherein the other optical sensing device is notified of first measurement data indicating the result of the first LiDAR measurement in the optical sensing device by performing the optical wireless communication. sensing device.
[Appendix 8]
The other optical sensing device comprises the first position information, the first measurement data, the second position information indicating the position and orientation of the other optical sensing device, and the second LiDAR in the other optical sensing device. 8. The optical sensing device according to appendix 7, wherein the point cloud data corresponding to the position and shape of the object is generated using the second measurement data indicating the result of the measurement.
[Appendix 9]
An optical sensing system comprising an optical sensing device,
The optical sensing device is
an optical transmitting/receiving means for transmitting and receiving the first light used for the first LiDAR measurement and transmitting or receiving the second light used for optical wireless communication with another optical sensing device;
A control means for switching between a first operation mode for performing the first LiDAR measurement and a second operation mode for performing the optical wireless communication,
The optical sensing system, wherein the first LiDAR measurement by the optical sensing device and the second LiDAR measurement by the other optical sensing device are performed on the same object.
[Appendix 10]
The optical transmitting/receiving means transmits or receives a third light used for optical search for searching for the other optical sensing device to be a partner of the optical wireless communication,
10. The optical sensing system of claim 9, wherein the control means switches between the first operating mode, the second operating mode, and a third operating mode in which the optical search is performed.
[Appendix 11]
Supplementary note 9 or, wherein the optical sensing device acquires first position information indicating the position and orientation of the other optical sensing device from the other optical sensing device by executing the optical wireless communication. 11. The optical sensing system according to Appendix 10.
[Appendix 12]
The optical sensing device is characterized in that, by executing the optical wireless communication, first measurement data indicating the result of the second LiDAR measurement in the other optical sensing device is obtained from the other optical sensing device. 12. The optical sensing system according to claim 11.
[Appendix 13]
The optical sensing device comprises the first location information, the first measurement data, the second location information indicating the location and orientation of the optical sensing device, and the second location information indicating the result of the first LiDAR measurement in the optical sensing device. 13. The optical sensing system of claim 12, wherein the measurement data is used to generate point cloud data corresponding to the position and shape of the object.
[Appendix 14]
Supplementary Note 9 or Supplementary Note 10, wherein the optical sensing device notifies the other optical sensing device of first position information indicating the position and orientation of the optical sensing device by executing the optical wireless communication. The optical sensing system according to .
[Appendix 15]
The optical sensing device is characterized by notifying the other optical sensing device of first measurement data indicating the result of the first LiDAR measurement in the optical sensing device by executing the optical wireless communication. 15. The optical sensing system according to Appendix 14.
[Appendix 16]
The other optical sensing device comprises the first position information, the first measurement data, the second position information indicating the position and orientation of the other optical sensing device, and the second LiDAR in the other optical sensing device. 16. The optical sensing system according to appendix 15, wherein the point cloud data corresponding to the position and shape of the object is generated using the second measurement data indicating the result of the measurement.
[Appendix 17]
The optical sensing device transmits and receives a first light used for the first LiDAR measurement, and transmits or receives a second light used for optical wireless communication with another optical sensing device;
wherein the optical sensing device switches between a first operating mode for performing the first LiDAR measurement and a second operating mode for performing the optical wireless communication;
The light sensing method, wherein the first LiDAR measurement by the light sensing device and the second LiDAR measurement by the other light sensing device are performed on the same object.
[Appendix 18]
The optical sensing device transmits or receives a third light used for optical search for searching for the other optical sensing device to be a partner of the optical wireless communication,
18. The optical sensing method of claim 17, wherein the optical sensing device switches between the first operational mode, the second operational mode, and a third operational mode that performs the optical search.
[Appendix 19]
Supplementary note 17, wherein the optical sensing device acquires first position information indicating the position and orientation of the other optical sensing device from the other optical sensing device by executing the optical wireless communication. 19. The optical sensing method according to appendix 18.
[Appendix 20]
The optical sensing device is characterized in that, by executing the optical wireless communication, first measurement data indicating the result of the second LiDAR measurement in the other optical sensing device is obtained from the other optical sensing device. The optical sensing method according to Supplementary Note 19.
[Appendix 21]
The optical sensing device comprises the first location information, the first measurement data, the second location information indicating the location and orientation of the optical sensing device, and the second location information indicating the result of the first LiDAR measurement in the optical sensing device. 21. The optical sensing method according to claim 20, wherein the measurement data is used to generate point cloud data corresponding to the position and shape of the object.
[Appendix 22]
Supplementary Note 17 or Supplementary Note 18, wherein the optical sensing device notifies the other optical sensing device of first position information indicating the position and orientation of the optical sensing device by executing the optical wireless communication. The optical sensing method described in .
[Appendix 23]
The optical sensing device is characterized by notifying the other optical sensing device of first measurement data indicating the result of the first LiDAR measurement in the optical sensing device by executing the optical wireless communication. 23. The optical sensing method according to appendix 22.
[Appendix 24]
The other optical sensing device comprises the first position information, the first measurement data, the second position information indicating the position and orientation of the other optical sensing device, and the second LiDAR in the other optical sensing device. 24. The optical sensing method according to appendix 23, wherein point cloud data corresponding to the position and shape of the object is generated using second measurement data indicating the result of the measurement.
1,1a 光センシング装置
11 光送受信部
12 制御部
13 信号処理部
14 出力部
21 光出射部
22 受光部
31 動作モード設定部
32 測定モード実行部
33 通信モード実行部
34 探索モード実行部
35 待機モード実行部
41 点群データ生成部
42 三次元モデル生成部
51 光送信機
52 光受信機
53 出力インタフェース
54 プロセッサ
55 メモリ
56 処理回路
100,100a 光センシングシステム
200 外部システム
1, 1a Optical sensing device 11 Optical transceiver 12 Control unit 13 Signal processing unit 14 Output unit 21 Light emitting unit 22 Light receiving unit 31 Operation mode setting unit 32 Measurement mode execution unit 33 Communication mode execution unit 34 Search mode execution unit 35 Standby mode Execution unit 41 Point cloud data generation unit 42 Three-dimensional model generation unit 51 Optical transmitter 52 Optical receiver 53 Output interface 54 Processor 55 Memory 56 Processing circuits 100, 100a Optical sensing system 200 External system

Claims (24)

  1.  第1のLiDAR測定に用いる第1光を送信及び受信し、他の光センシング装置との光無線通信に用いる第2光を送信又は受信する光送受信手段と、
     前記第1のLiDAR測定を実行する第1動作モードと、前記光無線通信を実行する第2動作モードとを切り替える制御手段と、を備え、
     当該光センシング装置による前記第1のLiDAR測定及び前記他の光センシング装置による第2のLiDAR測定は、同一の対象物に対して実行される
     ことを特徴とする光センシング装置。
    an optical transmitting/receiving means for transmitting and receiving the first light used for the first LiDAR measurement and transmitting or receiving the second light used for optical wireless communication with another optical sensing device;
    A control means for switching between a first operation mode for performing the first LiDAR measurement and a second operation mode for performing the optical wireless communication,
    The optical sensing device, wherein the first LiDAR measurement by the optical sensing device and the second LiDAR measurement by the other optical sensing device are performed on the same object.
  2.  前記光送受信手段は、前記光無線通信の相手となる前記他の光センシング装置を探索するための光探索に用いる第3光を送信又は受信し、
     前記制御手段は、前記第1動作モードと、前記第2動作モードと、前記光探索を実行する第3動作モードとを切り替える
     ことを特徴とする請求項1に記載の光センシング装置。
    The optical transmitting/receiving means transmits or receives a third light used for optical search for searching for the other optical sensing device to be a partner of the optical wireless communication,
    2. The optical sensing device according to claim 1, wherein said control means switches between said first operation mode, said second operation mode, and a third operation mode in which said optical search is performed.
  3.  前記光無線通信を実行することにより、前記他の光センシング装置の位置及び向きを示す第1位置情報を前記他の光センシング装置から取得することを特徴とする請求項1又は請求項2に記載の光センシング装置。 3. The optical wireless communication according to claim 1, wherein first position information indicating the position and orientation of the other optical sensing device is obtained from the other optical sensing device by performing the optical wireless communication. optical sensing device.
  4.  前記光無線通信を実行することにより、前記他の光センシング装置における前記第2のLiDAR測定の結果を示す第1測定データを前記他の光センシング装置から取得することを特徴とする請求項3に記載の光センシング装置。 4. The method according to claim 3, wherein first measurement data indicating a result of said second LiDAR measurement in said other optical sensing device is acquired from said other optical sensing device by executing said optical wireless communication. An optical sensing device as described.
  5.  前記第1位置情報、前記第1測定データ、当該光センシング装置の位置及び向きを示す第2位置情報、並びに当該光センシング装置における前記第1のLiDAR測定の結果を示す第2測定データを用いて、前記対象物の位置及び形状に対応する点群データを生成することを特徴とする請求項4に記載の光センシング装置。 using the first position information, the first measurement data, the second position information indicating the position and orientation of the optical sensing device, and the second measurement data indicating the result of the first LiDAR measurement in the optical sensing device 5. The optical sensing device according to claim 4, wherein point cloud data corresponding to the position and shape of the object are generated.
  6.  前記光無線通信を実行することにより、当該光センシング装置の位置及び向きを示す第1位置情報を前記他の光センシング装置に通知することを特徴とする請求項1又は請求項2に記載の光センシング装置。 3. The light according to claim 1, wherein first position information indicating the position and orientation of the optical sensing device is notified to the other optical sensing device by executing the optical wireless communication. sensing device.
  7.  前記光無線通信を実行することにより、当該光センシング装置における前記第1のLiDAR測定の結果を示す第1測定データを前記他の光センシング装置に通知することを特徴とする請求項6に記載の光センシング装置。 7. The optical sensing device according to claim 6, wherein the other optical sensing device is notified of the first measurement data indicating the result of the first LiDAR measurement in the optical sensing device by performing the optical wireless communication. Optical sensing device.
  8.  前記他の光センシング装置は、前記第1位置情報、前記第1測定データ、前記他の光センシング装置の位置及び向きを示す第2位置情報、並びに前記他の光センシング装置における前記第2のLiDAR測定の結果を示す第2測定データを用いて、前記対象物の位置及び形状に対応する点群データを生成することを特徴とする請求項7に記載の光センシング装置。 The other optical sensing device comprises the first position information, the first measurement data, the second position information indicating the position and orientation of the other optical sensing device, and the second LiDAR in the other optical sensing device. 8. The optical sensing device according to claim 7, wherein the point cloud data corresponding to the position and shape of the object is generated using the second measurement data indicating the result of the measurement.
  9.  光センシング装置を含む光センシングシステムであって、
     前記光センシング装置は、
     第1のLiDAR測定に用いる第1光を送信及び受信し、他の光センシング装置との光無線通信に用いる第2光を送信又は受信する光送受信手段と、
     前記第1のLiDAR測定を実行する第1動作モードと、前記光無線通信を実行する第2動作モードとを切り替える制御手段と、を備え、
     前記光センシング装置による前記第1のLiDAR測定及び前記他の光センシング装置による第2のLiDAR測定は、同一の対象物に対して実行される
     ことを特徴とする光センシングシステム。
    An optical sensing system comprising an optical sensing device,
    The optical sensing device is
    an optical transmitting/receiving means for transmitting and receiving the first light used for the first LiDAR measurement and transmitting or receiving the second light used for optical wireless communication with another optical sensing device;
    A control means for switching between a first operation mode for performing the first LiDAR measurement and a second operation mode for performing the optical wireless communication,
    The optical sensing system, wherein the first LiDAR measurement by the optical sensing device and the second LiDAR measurement by the other optical sensing device are performed on the same object.
  10.  前記光送受信手段は、前記光無線通信の相手となる前記他の光センシング装置を探索するための光探索に用いる第3光を送信又は受信し、
     前記制御手段は、前記第1動作モードと、前記第2動作モードと、前記光探索を実行する第3動作モードとを切り替える
     ことを特徴とする請求項9に記載の光センシングシステム。
    The optical transmitting/receiving means transmits or receives a third light used for optical search for searching for the other optical sensing device to be a partner of the optical wireless communication,
    10. The optical sensing system according to claim 9, wherein said control means switches between said first operational mode, said second operational mode and a third operational mode in which said optical search is performed.
  11.  前記光センシング装置は、前記光無線通信を実行することにより、前記他の光センシング装置の位置及び向きを示す第1位置情報を前記他の光センシング装置から取得することを特徴とする請求項9又は請求項10に記載の光センシングシステム。 10. The optical sensing device acquires first position information indicating the position and orientation of the other optical sensing device from the other optical sensing device by executing the optical wireless communication. Or the optical sensing system according to claim 10.
  12.  前記光センシング装置は、前記光無線通信を実行することにより、前記他の光センシング装置における前記第2のLiDAR測定の結果を示す第1測定データを前記他の光センシング装置から取得することを特徴とする請求項11に記載の光センシングシステム。 The optical sensing device is characterized in that, by executing the optical wireless communication, first measurement data indicating the result of the second LiDAR measurement in the other optical sensing device is obtained from the other optical sensing device. 12. The optical sensing system of claim 11 .
  13.  前記光センシング装置は、前記第1位置情報、前記第1測定データ、前記光センシング装置の位置及び向きを示す第2位置情報、並びに前記光センシング装置における前記第1のLiDAR測定の結果を示す第2測定データを用いて、前記対象物の位置及び形状に対応する点群データを生成することを特徴とする請求項12に記載の光センシングシステム。 The optical sensing device comprises the first location information, the first measurement data, the second location information indicating the location and orientation of the optical sensing device, and the second location information indicating the result of the first LiDAR measurement in the optical sensing device. 13. The optical sensing system of claim 12, wherein two measurement data are used to generate point cloud data corresponding to the position and shape of the object.
  14.  前記光センシング装置は、前記光無線通信を実行することにより、前記光センシング装置の位置及び向きを示す第1位置情報を前記他の光センシング装置に通知することを特徴とする請求項9又は請求項10に記載の光センシングシステム。 10. The light sensing device notifies the other light sensing device of first position information indicating the position and orientation of the light sensing device by executing the optical wireless communication. Item 11. The optical sensing system according to item 10.
  15.  前記光センシング装置は、前記光無線通信を実行することにより、前記光センシング装置における前記第1のLiDAR測定の結果を示す第1測定データを前記他の光センシング装置に通知することを特徴とする請求項14に記載の光センシングシステム。 The optical sensing device is characterized by notifying the other optical sensing device of first measurement data indicating the result of the first LiDAR measurement in the optical sensing device by executing the optical wireless communication. 15. The optical sensing system of claim 14.
  16.  前記他の光センシング装置は、前記第1位置情報、前記第1測定データ、前記他の光センシング装置の位置及び向きを示す第2位置情報、並びに前記他の光センシング装置における前記第2のLiDAR測定の結果を示す第2測定データを用いて、前記対象物の位置及び形状に対応する点群データを生成することを特徴とする請求項15に記載の光センシングシステム。 The other optical sensing device comprises the first position information, the first measurement data, the second position information indicating the position and orientation of the other optical sensing device, and the second LiDAR in the other optical sensing device. 16. The optical sensing system according to claim 15, wherein point cloud data corresponding to the position and shape of the object is generated using second measurement data indicating the result of the measurement.
  17.  光センシング装置が、第1のLiDAR測定に用いる第1光を送信及び受信し、他の光センシング装置との光無線通信に用いる第2光を送信又は受信し、
     前記光センシング装置が、前記第1のLiDAR測定を実行する第1動作モードと、前記光無線通信を実行する第2動作モードとを切り替え、
     前記光センシング装置による前記第1のLiDAR測定及び前記他の光センシング装置による第2のLiDAR測定は、同一の対象物に対して実行される
     ことを特徴とする光センシング方法。
    The optical sensing device transmits and receives a first light used for the first LiDAR measurement, and transmits or receives a second light used for optical wireless communication with another optical sensing device;
    wherein the optical sensing device switches between a first operating mode for performing the first LiDAR measurement and a second operating mode for performing the optical wireless communication;
    The light sensing method, wherein the first LiDAR measurement by the light sensing device and the second LiDAR measurement by the other light sensing device are performed on the same object.
  18.  前記光センシング装置は、前記光無線通信の相手となる前記他の光センシング装置を探索するための光探索に用いる第3光を送信又は受信し、
     前記光センシング装置は、前記第1動作モードと、前記第2動作モードと、前記光探索を実行する第3動作モードとを切り替える
     ことを特徴とする請求項17に記載の光センシング方法。
    The optical sensing device transmits or receives a third light used for optical search for searching for the other optical sensing device to be a partner of the optical wireless communication,
    18. The light sensing method of claim 17, wherein the light sensing device switches between the first operating mode, the second operating mode, and a third operating mode for performing the optical search.
  19.  前記光センシング装置は、前記光無線通信を実行することにより、前記他の光センシング装置の位置及び向きを示す第1位置情報を前記他の光センシング装置から取得することを特徴とする請求項17又は請求項18に記載の光センシング方法。 17. The optical sensing device acquires first position information indicating the position and orientation of the other optical sensing device from the other optical sensing device by executing the optical wireless communication. Or the optical sensing method according to claim 18.
  20.  前記光センシング装置は、前記光無線通信を実行することにより、前記他の光センシング装置における第2のLiDAR測定の結果を示す第1測定データを前記他の光センシング装置から取得することを特徴とする請求項19に記載の光センシング方法。 The optical sensing device acquires first measurement data indicating a result of second LiDAR measurement in the other optical sensing device from the other optical sensing device by executing the optical wireless communication. The optical sensing method according to claim 19.
  21.  前記光センシング装置は、前記第1位置情報、前記第1測定データ、前記光センシング装置の位置及び向きを示す第2位置情報、並びに前記光センシング装置における前記第1のLiDAR測定の結果を示す第2測定データを用いて、前記対象物の位置及び形状に対応する点群データを生成することを特徴とする請求項20に記載の光センシング方法。 The optical sensing device comprises the first location information, the first measurement data, the second location information indicating the location and orientation of the optical sensing device, and the second location information indicating the result of the first LiDAR measurement in the optical sensing device. 21. The optical sensing method of claim 20, wherein two measurement data are used to generate point cloud data corresponding to the position and shape of the object.
  22.  前記光センシング装置は、前記光無線通信を実行することにより、前記光センシング装置の位置及び向きを示す第1位置情報を前記他の光センシング装置に通知することを特徴とする請求項17又は請求項18に記載の光センシング方法。 18. The light sensing device notifies the other light sensing device of the first location information indicating the position and orientation of the light sensing device by executing the optical wireless communication. Item 19. The optical sensing method according to Item 18.
  23.  前記光センシング装置は、前記光無線通信を実行することにより、前記光センシング装置における前記第1のLiDAR測定の結果を示す第1測定データを前記他の光センシング装置に通知することを特徴とする請求項22に記載の光センシング方法。 The optical sensing device is characterized by notifying the other optical sensing device of first measurement data indicating the result of the first LiDAR measurement in the optical sensing device by executing the optical wireless communication. 23. The optical sensing method according to claim 22.
  24.  前記他の光センシング装置は、前記第1位置情報、前記第1測定データ、前記他の光センシング装置の位置及び向きを示す第2位置情報、並びに前記他の光センシング装置における前記第2のLiDAR測定の結果を示す第2測定データを用いて、前記対象物の位置及び形状に対応する点群データを生成することを特徴とする請求項23に記載の光センシング方法。 The other optical sensing device comprises the first position information, the first measurement data, the second position information indicating the position and orientation of the other optical sensing device, and the second LiDAR in the other optical sensing device. 24. The optical sensing method according to claim 23, wherein the point cloud data corresponding to the position and shape of the object is generated using the second measurement data indicating the result of the measurement.
PCT/JP2022/003232 2022-01-28 2022-01-28 Optical sensing device, optical sensing system, and optical sensing method WO2023144983A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/003232 WO2023144983A1 (en) 2022-01-28 2022-01-28 Optical sensing device, optical sensing system, and optical sensing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/003232 WO2023144983A1 (en) 2022-01-28 2022-01-28 Optical sensing device, optical sensing system, and optical sensing method

Publications (1)

Publication Number Publication Date
WO2023144983A1 true WO2023144983A1 (en) 2023-08-03

Family

ID=87470907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003232 WO2023144983A1 (en) 2022-01-28 2022-01-28 Optical sensing device, optical sensing system, and optical sensing method

Country Status (1)

Country Link
WO (1) WO2023144983A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020508447A (en) * 2017-02-17 2020-03-19 エイアイ インコーポレイテッドAEYE, Inc. LADAR pulse interference avoidance method and system
WO2021106207A1 (en) * 2019-11-29 2021-06-03 日本電気株式会社 Measurement device, information processing device, data specification method, and non-transitory computer-readable medium
CN113012187A (en) * 2019-12-19 2021-06-22 动态Ad有限责任公司 Foreground extraction using surface fitting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020508447A (en) * 2017-02-17 2020-03-19 エイアイ インコーポレイテッドAEYE, Inc. LADAR pulse interference avoidance method and system
WO2021106207A1 (en) * 2019-11-29 2021-06-03 日本電気株式会社 Measurement device, information processing device, data specification method, and non-transitory computer-readable medium
CN113012187A (en) * 2019-12-19 2021-06-22 动态Ad有限责任公司 Foreground extraction using surface fitting

Similar Documents

Publication Publication Date Title
KR101868600B1 (en) Apparatus and method for calculating detecting angle of target using long range radar, and system with the apparatus
WO2014192805A1 (en) Laser radar device and method for generating laser image
JP2020509386A (en) Method and apparatus for capturing surroundings
JP2019053030A (en) Radar image processing method, apparatus and system
JP7403611B2 (en) Method and apparatus for characterizing user platform environment
JP5361914B2 (en) Radar device, radar receiver and target detection method
CN110888146B (en) Autonomous vehicle computing system, light detection and ranging calibration system and method thereof
EP3371620B1 (en) Method for registering location of device and device
JPWO2005026769A1 (en) Radar equipment
JP2018023049A (en) Wireless communication apparatus and wireless communication method
US11796653B2 (en) Detecting and tracking Lidar cross-talk
JP2014098571A (en) Object detection device, object detection method, object detection program, and operation control system
JP2009270863A (en) Bistatic radar system
WO2023144983A1 (en) Optical sensing device, optical sensing system, and optical sensing method
KR101890359B1 (en) Beam Width Adjusting Apparatus for Periodically Rotating Radar and Long Range Radar System
KR20170090230A (en) Method for removing interference according to multi-path in frequency modulation lidar sensor system and apparatus thereof
JP2007278772A (en) Radar device
JP4037310B2 (en) Laser radar apparatus and beam direction setting method thereof
WO2019151110A1 (en) Road surface information acquisition method
CN111505654A (en) Object position detection method and laser radar
JP2007170859A (en) Radar system
JP5379312B2 (en) Distance measuring device
JP7220246B2 (en) Position detection method, device, equipment and readable storage medium
JP2008304329A (en) Measuring device
JP3759458B2 (en) Radar system and target detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923847

Country of ref document: EP

Kind code of ref document: A1