WO2023144923A1 - Control device and processing equipment - Google Patents

Control device and processing equipment Download PDF

Info

Publication number
WO2023144923A1
WO2023144923A1 PCT/JP2022/002877 JP2022002877W WO2023144923A1 WO 2023144923 A1 WO2023144923 A1 WO 2023144923A1 JP 2022002877 W JP2022002877 W JP 2022002877W WO 2023144923 A1 WO2023144923 A1 WO 2023144923A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
motor
safety
output
control device
Prior art date
Application number
PCT/JP2022/002877
Other languages
French (fr)
Japanese (ja)
Inventor
賢治 武田
智之 青山
淳之介 井村
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to PCT/JP2022/002877 priority Critical patent/WO2023144923A1/en
Priority to TW111145389A priority patent/TW202331431A/en
Publication of WO2023144923A1 publication Critical patent/WO2023144923A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B9/00Safety arrangements
    • G05B9/02Safety arrangements electric

Definitions

  • the present disclosure relates to control devices and processing equipment, and in one non-limiting specific example, to control devices that control the operation of motors in various processing equipment or machine drive systems that are equipped with motors.
  • a safe stop function that controls to safely stop the motor of the equipment (hereinafter sometimes abbreviated as "safety function") must be provided.
  • the control for safely stopping the motor includes various types of control such as torque-off stop and deceleration stop. This control is executed based on a signal (sometimes called a safety signal or the like) from an external device provided outside the device.
  • Patent Literature 1 describes a power converter with an STO (safe torque off) function.
  • STO safety torque off
  • the safety functions of mechanical drive systems using motors are internationally standardized, and the above STO is one of the internationally standardized (defined) safety functions.
  • the STO function can be said to be a function for forcibly interrupting the torque of the motor.
  • each block such as input, output, and monitoring in the safety function is not standardized, so it is left to individual product design.
  • the safety signal from the external device and the path of the signal are duplicated, and the same safety signal is output from the external device at the same time. It is conceivable to configure With such a configuration, even if a failure occurs in one of the safety paths, control for safely stopping the motor can be executed.
  • Double safety path monitoring can be realized, for example, by externally monitoring the operating state of the output block that outputs control signals to the motor drive circuit.
  • this is applied to industrial machine systems that use multiple-axis motors and their control devices, such as servo press machines and plastic processing machines, the burden of monitoring increases in the host system, and the failure rate due to wiring etc. increases. I have a problem.
  • An object of the present invention is to facilitate the construction of a safety system in an industrial machine in which the motor is used by incorporating a monitoring function for a multiple system safety system and a protection function according to the monitoring result into a control system that drives and controls the motor. It is to be.
  • the present invention employs the configurations and methods described in the claims.
  • the control device of the present invention is
  • a motor that puts the motor into a normal operation state by sending a drive current to the motor, and controls the motor so that the normal operation state goes into a safe stop state in response to a multiple command related to safety function operation sent from the outside.
  • a control unit a command monitoring unit that monitors whether the commands match each other;
  • the command monitoring unit generates a safe stop command for safely stopping the motor when a period in which the commands do not match each other exceeds an allowable value, and continuously sends the generated safe stop command to the motor control unit. Send out.
  • FIG. 1 is a circuit diagram showing a configuration of a motor control device according to Embodiment 1 of the present disclosure
  • FIG. 2 is a circuit diagram showing one specific example of a safe torque off (STO) circuit of FIG. 1
  • FIG. 2 is a circuit diagram showing one specific example of the safety monitoring circuit of FIG. 1
  • FIG. 5 is a circuit diagram showing an example of a safe torque-off circuit according to Embodiment 2 of the present disclosure
  • FIG. 7 is a circuit diagram showing the configuration of a motor control device according to Embodiment 3 of the present disclosure
  • FIG. 5 is an example of a safety input circuit according to Embodiment 4 of the present disclosure
  • FIG. 11 is a circuit diagram illustrating the configuration of a motor control device according to Embodiment 5 of the present disclosure
  • FIG. 11 is a circuit diagram showing another specific example of a safety control block and a safe torque-off circuit according to Embodiment 6 of the present disclosure
  • FIG. 11 is a circuit diagram showing another specific example of a safety control block and a safe torque-off circuit according to Embodiment 7 of the present disclosure
  • the motor control device 1 is a device for controlling the operation (rotation start/stop, rotation direction, rotation speed, etc.) of an electric motor (hereinafter simply referred to as a motor) 3 used as a power source for processing equipment. It is a main device (control device) in the disclosed processing equipment system.
  • the motor control device 1 comprises various functional block units as shown in FIGS. 1, 5 and 7 in order to control the operation of the motor 3 and the machining equipment in which the motor 3 is used.
  • the processing equipment that uses the motor 3 and the motor control device 1 is not particularly limited, and examples thereof include various industrial equipment such as plastic processing machines such as servo press machines and injection molding machines.
  • the external safety device 2 monitors the operation of the motor 3 or the processing equipment, generates multiple commands (arbitrary number of signals indicating the same content for Lo/High) regarding the safety function operation of the processing equipment, and generates multiplex command to the motor control device 1 through the transmission system.
  • the external safety device 2 is an external device separate from the motor control device 1.
  • the motor control device 1 is connected via multiple (double in each figure) signal lines and a wired interface. connected with The connection between the motor control device 1 and the external safety device 2 may be partially or wholly replaced by communication means (wireless interface).
  • the external safety device 2 can also be called a safety function unit.
  • a transmission system (wired or wireless interface, etc.) for multiple commands sent from the external safety device 2 (safety function section) to the motor control device 1 can be called a safety signal transmission section.
  • a stop command (e.g., a predefined signal (e.g., Low or High signal) to the motor control device 1.
  • a stop command e.g., a predefined signal (e.g., Low or High signal) to the motor control device 1.
  • the control of the motor 3 by the motor control device 1 is executed as it is. is sent (input) to the motor control device 1.
  • the above-described stop command and execution command are collectively referred to as safety input signals S1 and S2. .
  • the configuration of the safety function unit (external safety device 2), which is an external device, and the method of detecting anomalies, etc., are well known, and detailed description thereof will be omitted as appropriate.
  • Safety monitoring device (indicated by reference numeral 16 in Figures 1, 5 and 7)
  • the safety monitoring device 16 checks that the contents of the multiple safety input signals S1 and S2 sent (inputted) from the external safety device 2 to the motor control device 1 (instructions, ie Lo/High states) match each other. It is a device that plays a role as a "command monitoring unit" that monitors.
  • the safety monitoring device 16 inputs multiple safety input signals S1 and S2 through branch lines of the signal lines through which the safety input signals S1 and S2 are transmitted, and outputs the content of the input signal (command ) are compared to monitor and eventually diagnose, and a signal indicating the diagnosis result is output to the motor control device.
  • the signal indicating this diagnosis result will be referred to as "diagnosis protection signal Sd".
  • the safety monitoring device 16 When the commands (Lo/High) included in the multiple safety input signals (S1, S2) output from the external safety device 2 match each other, the safety monitoring device 16 outputs the diagnosis protection signal Sd. Description will be made on the assumption that a Lo signal is output, and if they do not match, a High signal is output as the diagnostic protection signal Sd.
  • the motor control device 1 described in (1) normally sends a drive current to the motor 3, thereby controlling the motor 3 and the machining equipment so as to perform operations and functions according to the purpose.
  • this state may be referred to as a "normal operating state”.
  • the operation of the motor 3 and the processing equipment in the normal operating state is well known, detailed description thereof will be omitted.
  • the motor control device 1 performs control such as reducing or cutting off the drive current sent to the motor 3 when the stop command (for example, Lo signal) is input from the above (2), that is, the external safety device 2. to safely stop the motor 3 and the processing equipment.
  • the motor 3 processing equipment
  • the motor 3 can be shifted from a normal operation state to a safe stop (torque off or deceleration stop) state.
  • the significance of sending multiple commands (safety input signals S1 and S2) from the external safety device 2 to the motor control device 1 is to enhance safety protection. More specifically, for example, when a stop command and an execution command are sent from the external safety device 2 to the motor control device 1 through two signal lines, one of the signal transmission systems (circuits, signal lines, radio wave state, etc.), the command (safety input signal) can be transmitted through the remaining signal transmission system even if the command cannot be transmitted.
  • the motor control device 1 enters a safe stop state when a safety input signal (S1 or S2) indicating a stop command is input from any of the signal transmission systems of the external safety device 2 in the above normal operation state.
  • a safety input signal S1 or S2
  • the same control as described above is performed to safely stop the motor 3 and the processing equipment.
  • safety protection is strengthened by adopting a configuration in which safe stop control is performed in accordance with a stop command input from any of the signal transmission systems.
  • the phase (for example, execution command timing to switch to the stop command) may occur.
  • the motor control device 1 performs safe stop control in response to the earlier sent stop command from the safety point of view.
  • the stop command signal to which the response is made is an erroneous signal based on a malfunction of the external safety device 2, etc., there are disadvantages associated with the timing of performing a safe stop being too early (e.g. lowering the quality, etc.) may occur.
  • the safety monitoring device 16 is a device responsible for monitoring and diagnosing whether the external safety device 2 is operating normally.
  • the safety monitoring device as described above has been used as an external device similar to the external safety device 2, that is, as an external device of the motor control device 1, exclusively during maintenance of the processing equipment system, so that each part is in a normal condition. I was diagnosing whether it works or not.
  • a safety monitoring device for example, a device using a signal monitoring method called EDM (External Device Monitoring) is known.
  • each embodiment described below adopts a configuration in which a safety monitoring device is mounted as an internal device of the motor control device 1.
  • the safety monitoring device 16 will be replaced with the safety monitoring unit 16 in the following description.
  • FIG. 1 is a diagram illustrating a configuration example of a motor control device according to Embodiment 1 of the present disclosure.
  • a configuration example for controlling a three-phase AC motor will be described below as a specific example, but the present invention is not limited to this and can be applied to control of various other motors.
  • the motor control device 1 is connected to an external safety device 2, a motor 3, and a three-phase AC main power supply 5 (hereinafter simply referred to as AC main power supply 5).
  • AC main power supply 5 a three-phase AC main power supply 5 (hereinafter simply referred to as AC main power supply 5).
  • Various blocks (circuits) are provided to control the shaft (the encoder 4 is provided).
  • the main functional blocks (circuits) included in the motor control device 1 are a safe torque off circuit (STO) 10, a three-phase inverter 11, an AC/DC conversion circuit 12, a current detector 13, and a motor control calculator 14. , a control pulse generator (PWM) 15 and a safety monitor 16 .
  • STO safe torque off circuit
  • PWM control pulse generator
  • the AC/DC conversion circuit 12 is connected to the AC main power supply 5 , converts the three-phase AC input from the AC main power supply 5 into DC, and supplies the converted DC power to the three-phase inverter 11 .
  • the AC main power supply 5 is, for example, an external power supply such as a commercial three-phase 200V AC.
  • the three-phase inverter 11, as shown in FIG. 1, includes a switch circuit having six switches (U, V, W and X, Y, Z) that can be turned on/off. are connected to the three terminals of
  • the three phases of the three-phase inverter 11 are hereinafter referred to as the U-phase, V-phase, and W-phase, respectively. Symbols are assigned, and symbols X, Y, and Z are assigned to each of the lower switches (arms) in the figure.
  • the switches U, V, and W of each phase of the three-phase inverter 11 are connected in parallel to the output line of one pole (for example, the positive pole) of the AC/DC conversion circuit 12 and connected to the corresponding phase (terminal) of the motor 3. It is The switches X, Y, and Z of the three-phase inverter 11 are connected in parallel to the output line of the other pole (for example, the negative pole) of the AC/DC conversion circuit 12 and connected to the corresponding pole (terminal) of the motor 3. ing. Further, the switch U and the switch X are connected in series with each other and connected to the same pole of the motor 3 (the lowest terminal in FIG. 1).
  • switch V and switch Y are connected in series with each other and connected to the same pole of motor 3 (the second terminal from the top in FIG. 1).
  • switch W and switch Z are connected in series with each other and connected to the same pole of motor 3 (top terminal in FIG. 1).
  • the three-phase inverter 11 having such switch circuits can be realized by power semiconductors.
  • the three-phase inverter 11 selectively turns on the switch U/X, the switch V/Y, and the switch W/Z according to the control pulse signal output from the control pulse generator 15 via the safe torque off circuit (STO) 10.
  • STO safe torque off circuit
  • a three-phase alternating current is generated by performing a switching operation to The AC current after such switching operation is sent to the motor 3 as a drive current, thereby rotating the motor 3 and operating the corresponding processing equipment.
  • the motor control calculation unit 14 calculates a control operation amount for feedback-controlling the operation of the motor 3, generates a control signal indicating the calculated control operation amount, and A control signal is output to the control pulse generator (“PWM” block in FIG. 1) 15 .
  • PWM control pulse generator
  • the motor control calculation unit 14 detects the drive current (voltage waveform, etc.) supplied to the motor 3 through the current detection unit 13 arranged at any two of the three poles of the motor 3. do.
  • the motor control calculation unit 14 also detects the rotation direction, the rotation speed, and the rotation position of the motor (the phase of the rotation shaft) of the motor 3 through the encoder 4 attached to the rotation shaft of the motor 3 .
  • the motor control calculation unit 14 can input and detect user's operation instructions through an operation input unit (not shown) including switches, levers, and the like of the processing equipment.
  • the motor control calculation unit 14 calculates the difference ( error). Then, the motor control calculation unit 14 calculates a control operation amount (here, the mode of the three-phase alternating current to be supplied) that allows the motor 3 to operate without error corresponding to the basic program and the user's operation instruction, and calculates A control signal indicating the result (hereinafter also simply referred to as a “control operation amount”) is output to the control pulse generator 15 .
  • a control operation amount here, the mode of the three-phase alternating current to be supplied
  • the control pulse generation unit 15 performs PWM (Pulse Width Modulation) modulation on the input control signal, and outputs the control pulse signal whose pulse width is modulated to the safe torque-off circuit 10 .
  • a control pulse generator (PWM) 15 outputs the generated control pulse signal to the three-phase inverter 11 .
  • the control pulse generation unit 15 shown in FIG. 1 The control pulse generation unit 15 shown in FIG.
  • the pulse generation method generated (output) by the control pulse generator 15 may be, for example, a pulse frequency modulation method that adjusts the pulse generation interval based on the magnitude of the control operation amount.
  • the ON/OFF state of each switch (U, V, W, X, V, Z) of the three-phase inverter 11 is defined by vector coordinates.
  • a method of selecting a predetermined vector for each instantaneous value of the control operation amount may be used.
  • the motor control calculation unit 14 and the control pulse generation unit 15 can be implemented by a microcomputer or the like on which a control program is implemented, or by an analog/digital circuit.
  • the same is true for the safe torque-off circuit 10 and the safety monitoring unit 16, but when configuring a safety system, blocks related to safety functions should be configured separately from others in order to minimize the influence of other functional blocks. is desirable.
  • the safe torque-off circuit 10 may be an analog/digital circuit, and may be physically separated from hardware such as a microcomputer on which other functions (control program, etc.) are implemented.
  • a safe torque-off circuit (STO) 10 is a circuit that functions when safely stopping the motor 3 used in the motor control device 1. As shown in FIG. PWM) 15 , safety monitoring unit 16 , and three-phase inverter 11 . Also, the safe torque off circuit (STO) 10 is connected to the motor control calculation block 14 via the control pulse generator (PWM) 15 .
  • the safe torque-off circuit 10 of the motor control device 1 is located in the middle of the path for transferring the control pulse signal obtained by the control pulse generator 15 to the three-phase inverter 11, and receives a safety input signal separately input from the external safety device 2.
  • the control pulse signal transfer is activated or interrupted based on the contents of the commands of S1 and S2.
  • the safe torque-off circuit 10 transfers (supplies)/blocks the transfer of the control pulse signal supplied from the control pulse generator 15 to the three-phase inverter 11 in accordance with the commands of the safety input signals S1 and S2. (Supply Prohibited) Perform the action.
  • the safe torque-off circuit 10 determines that it is in a normal operation state, and transfers (supplies) the control pulse signal to the three-phase inverter 11. .
  • the safe torque-off circuit 10 determines that a safe stop is necessary, and cuts off (supply) the transfer (supply) of the control pulse signal to the three-phase inverter 11 ( restrict.
  • This cut-off (supply inhibition) operation causes the motor 3 to perform a safe torque off (hereinafter referred to as "STO") operation. More specifically, the STO operation of the motor 3 is realized by turning off the power semiconductor gate (corresponding to each switch shown in FIG. 1) that constitutes the three-phase inverter 11 by interrupting the control pulse signal. .
  • the safe torque-off circuit 10 receives signals sent from the external safety device 2 and the safety monitoring unit 16 described above, both of the safety input signals S1 and S2 are High, and the diagnostic protection signal Sd is In the case of Lo, the control pulse signal input from the control pulse generator 15 is sent (transferred) to the three-phase inverter 11 as it is.
  • the motor 3 rotates according to the type of the device and the user's operation, and the motor is controlled by feedback control. 3 As a result, it is possible to ensure the accuracy of the operation of the equipment.
  • the safe torque-off circuit 10 operates when at least one of the safety input signals S1 and S2 among the signals sent and input from the external safety device 2 and the safety monitoring section 16 is Lo, or when the diagnostic protection signal Sd is When it is High, the transfer of the control pulse signal input from the control pulse generator 15 is cut off (supply prohibited). In one specific example of this case, the safe torque-off circuit 10 switches off all the switches (U, V, W, X, Y, and Z) are turned off (see FIG. 1).
  • the High state diagnostic protection signal Sd or the Low state safety input signal S1 (S2) may be referred to as a "current cutoff signal”.
  • the drive current is no longer supplied to the motor 3 by performing the safe stop control according to the output of the current cut-off signal as described above, so the motor 3 is in operation.
  • the torque is turned off and the motor rotates only with the remaining power.
  • the processing equipment is quickly stopped when the motor 3 is in a torque-off state. safety stop.
  • FIG. 2 is a circuit diagram showing a specific configuration example of the safe torque-off circuit 10. As shown in FIG. From another point of view, FIG. 2 is a diagram for explaining a specific example in which a drive current is not supplied to the motor 3 by inputting a current interruption signal to the safe torque-off circuit 10 .
  • the safe torque-off circuit 10 includes a buffer circuit BF0 having a plurality of buffer elements, a gate drive element GD having a plurality (six in this example) of photocouplers, an anode cutoff switch Q1, and Q2.
  • a buffer circuit BF0 in the safe torque-off circuit STO10 is connected to a reference potential (common) corresponding to 0V.
  • a power supply potential of a constant voltage power supply (not shown) is connected to the other end of the buffer circuit BF0 and one end of the anode cutoff switches Q1 and Q2.
  • the signs and constants of the signals should be changed so that the motor control device 1 reaches the STO operation in the base state of this system.
  • the level of the reference voltage applied by the voltage source may be chosen.
  • the buffer circuit BF0 determines whether or not to output control pulse signals input from the control pulse generation unit 15 through six signal lines (in other words, for six switches) to a subsequent stage for diagnostics input from the safety monitoring unit 16. It plays a role of switching by the protection signal Sd.
  • the buffer circuit BF0 includes (six) amplifying and inverting elements that amplify and invert the currents of the six signal lines to which the control pulse signal is input, and an inverting and amplifying element that inverts and amplifies the diagnostic protection signal Sd. and an element.
  • a signal line is connected to the buffer circuit BF0 so that the output of the inverting amplifying element is input to each of the six amplifying inverting elements (preceding stage of the inverting section).
  • the outputs of the six amplifying and inverting elements are connected to the cathodes of the light emitting diodes in the optocouplers of the gate drive elements GD that operate the corresponding switches (U, V, W, X, Y, and Z) of the three-phase inverter 11. It is connected.
  • diagnosis protection signal Sd input to the enable terminal is High
  • it is inverted to a Lo signal by the inversion amplification element
  • the Lo signal is input to all the amplification inversion elements of the buffer circuit BF0.
  • Outputs of all amplifying and inverting elements become High due to the inverting process.
  • none of the light emitting diodes of the gate drive element GD emit light, none of the photocouplers output current, and all switches (U to Z) of the three-phase inverter 11 are turned off.
  • a plurality of (six in this example) pulse signals output from the control pulse generator 15 pass through the buffer element BF0 and the gate drive element GD in order to the three-phase inverter. 11 respectively. Then, the three-phase inverter 11 transmits (supplies) alternating current to the motor 3 connected to the outside of the motor control device 1 by switching the built-in power semiconductor.
  • the enable terminal of the buffer element BF0 is turned off, and as a result, the light emission of the light emitting diodes of all the photocouplers (U to Z) of the gate drive element GD is cut off.
  • the configuration is such that safe torque off of the motor 3 can be realized.
  • Buffer element BF0 may be a multi-channel element. Also in this case, an enable terminal capable of turning ON/OFF the output of each channel of the buffer element BF0 may be provided, and the diagnosis protection signal Sd may be input to the enable terminal.
  • the gate drive element GD As for the gate drive element GD, the circuit configuration using a photocoupler has been described in FIG. As another example, the gate drive element GD is an element capable of switching between transfer/transfer inhibition (blocking) of each pulse signal input from the control pulse generator 15, such as an optical coupler. or an element incorporating a magnetic coupler. Furthermore, as another example, the gate drive element GD is not limited to a configuration in which each pulse signal input from the control pulse generation unit 15 is transferred as it is, and each pulse signal is transferred to each gate of the three-phase inverter 11 ( It may be a circuit that converts to various digital signals for driving the switches (U to Z).
  • FIG. 3 shows one specific example of a circuit that makes up the safety monitoring section 16 of the present disclosure. Note that the logic elements in the figure are connected to a constant voltage source (not shown) when driven as an actual circuit, but the description of the constant voltage source is omitted because it does not affect the description of the function.
  • the safety monitoring unit 16 shown in FIG. 3 branches the safety input signals S1 and S2 sent from the external safety device 2 in parallel to a first processing block B1 and a second processing block B2, respectively, and performs calculations. process. Then, the safety monitoring unit 16 performs a logical sum (OR) operation on the operation output of the first processing block B1 and the operation output of the second processing block B2 in the third processing block B3 to generate a diagnosis protection signal Sd. generate and output .
  • the first processing block B1 of the safety monitoring unit 16 is configured by sequentially connecting an XOR unit B11, a charging/discharging unit B12, and a latch unit B13 in series from the front side.
  • the XOR unit B11 compares the safety input signal S1 and the safety input signal S2, detects whether there is a difference in the polarity of High/Low of these signals, and if there is a difference, outputs a High signal to the subsequent stage. to output
  • the XOR section B11 corresponds to the "comparison section" of the present disclosure.
  • the XOR unit B11 includes an XOR element X1 that performs a logical XOR operation of the safety input signal S1 and the safety input signal S2, and a resistor R11 that pulls down the result of the operation (that is, the output of the XOR element X1). and can be composed of
  • the pull-down resistor R11 corresponds to the "first resistor" of the present disclosure.
  • a resistor having an equivalent function will be referred to as a "pull-down resistor”, and a resistor that plays the opposite role of pulling up the output will be referred to as a “pull-up resistor”.
  • One end of the pull-down resistor R11 is connected to the output ends of the XOR element X1 and the XOR section B11, and the other end of the pull-down resistor R11 is connected to the reference potential.
  • Such a pull-down resistor R11 has a role of, for example, lowering the output potential of the XOR unit B11 to the reference potential when the safety monitoring unit 16 is activated, and stabilizing the output value. is.
  • the charging/discharging unit B12 plays a role of a timer that stores information on the duration of the difference by charging the high current output when the difference is detected by the XOR unit B11. .
  • a charging/discharging unit B12 for example, as illustrated in FIG. .
  • the resistor R12 corresponds to the "second resistor" of the present disclosure.
  • One end of the resistor R12 is connected to the output end of the XOR element (X1), and the other end of the resistor R12 is connected to the output end of the charging/discharging section B12.
  • the capacitor C11 has a role of charging and discharging the current supplied to the charging/discharging section B12, and one end (positive voltage terminal) of the capacitor C11 is connected to the other end of the resistor R12 and the output terminal of the charging/discharging section B12. , and the other end of the capacitor C11 is connected to the reference potential.
  • a circuit of series-connected diode D11 and resistor R13 (hereinafter also referred to as a diode circuit) is connected in parallel from the output side of resistor R12 to the input side.
  • the resistor R13 corresponds to the "third resistor” of the present disclosure.
  • the magnitude relationship between the resistance values of the resistor R12 (second resistor) and the resistor R13 (third resistor) is R12>R13.
  • the above diode circuit does not function when charging the capacitor C11 (the circuit with only the resistor R12 functions), and functions as a parallel resistance circuit of the resistors R12 and R13 when discharging the capacitor C11. Therefore, the difference in the resistance values of the resistors R12 and R13 allows the charging and discharging currents (time constants) to be adjusted to different values.
  • the charging/discharging unit B12 having such a configuration charges the capacitor C11 (charge accumulation) when the output of the preceding XOR unit B11 changes from Low to High (in other words, when there is a difference between the signals S1 and S2). to start. Then, when the output of the XOR unit B11 returns to Low before the charge accumulated in the capacitor C11 reaches the threshold value (in other words, when there is no difference between the signals S1 and S2), the charge/discharge unit B12 The capacitor C11 (in other words, the timer) is reset by discharging the charge accumulated in the capacitor C11 to the resistors R11, R12, and R13.
  • the latch unit B13 has a function of determining whether or not the voltage of the capacitor C11 exceeds a predetermined voltage threshold, and holding (continuously outputting) the determination result as a High state output when the voltage exceeds the predetermined voltage threshold. . If the voltage of the capacitor C11 is regarded as a timer, this action can be said to have the same effect as determining whether or not the duration of the difference between the safety input signal S1 and the safety input signal S2 has exceeded a predetermined time limit.
  • the charge/discharge unit B12 and the latch unit B13 correspond to the "latch unit" of the present disclosure. Also, hereinafter, the output of the latch section B13 will be referred to as a signal SL.
  • the latch section B13 includes a logical OR element O11 and a pull-down resistor R14 that pulls down the output of the logical OR element O11.
  • the latch unit B13 also includes a capacitor C12 that stores (charges and discharges) the output of the logical OR element O11.
  • a capacitor C12 that stores (charges and discharges) the output of the logical OR element O11.
  • one input of the OR element O11 is connected to the output terminal of the timer unit B12 and the voltage terminal (positive voltage terminal) of the capacitor C11, and the other input of the OR element O11 is connected to the output of the OR element O11. It consists of a direct feedback circuit. Whether or not the voltage of the capacitor C11 exceeds the threshold is determined using the high-level voltage, which is the characteristic value of the logical OR element O11, as a threshold.
  • the second processing block B2 detects (determines) when both the safety input signal S1 and the safety input signal S2 indicate an operation permission state (for example, High) of the motor 3, and determines the detection result (operation permission state). If Lo) is output.
  • the second processing block B2 includes a NAND element N1 for calculating a logical NAND of the safety input signal S1 and the safety input signal S2, a resistor R21 for pulling up the output of the NAND element N1, Consists of
  • the third processing block B3 includes an OR element O3 that performs a logical sum (OR operation) of input signals, and a pull-up resistor R3 connected to the output end of the OR element O3 and the output side of the third processing block B3. , provided.
  • the input end of the OR element O3 is connected to the output end of the first processing block B1 and the output end of the second processing block B2, respectively.
  • the safety monitoring unit 16 ORs the output of the first processing block B1 and the output of the second processing block B2 using the OR element O3 of the third processing block B3, and outputs the result of the OR operation (Lo or High ) as the diagnostic protection signal Sd. Then, the low or high diagnostic protection signal Sd output from the safety monitoring unit 16 is input to the enable terminal of the buffer element BF0 (see FIG. 2) in the safe torque-off circuit 10 in the subsequent stage.
  • the diagnosis protection signal Sd is in the Lo state
  • the first processing block B1 outputs a Lo signal by operating the pull-down resistors R11, R14, etc. at startup.
  • a difference occurs between the safety input signal S1 input from the external safety device 2 and the safety input signal (the output of the XOR section B11 becomes High), and the difference becomes a predetermined value.
  • the high diagnostic protection signal Sd is continuously output.
  • the output of the second processing block B2 will be Lo when both the safety input signals S1 and S2 are High (operation permitted state). Also, the third processing block B3 outputs the logical OR of the output of the first processing block B1 and the output of the second processing block B2 as the diagnosis protection signal Sd.
  • the safety monitoring unit 16 outputs a signal different from the normal signal (detects an abnormality between the signals S1 and S2) only when the first processing block B1 determines that the difference has continued for a certain period of time. )be able to.
  • the drive current is sent to the motor 3 to bring the motor 3 and the processing equipment into the normal operation state, and the safety input signal S1 related to the safety function operation of the processing equipment sent from the external safety device 2 , S2 (multiplexed commands), the motor control unit ( A safety monitoring unit 16 (command monitoring unit ) is built in.
  • the safety monitoring unit 16 includes an XOR unit B11 (comparison unit) that compares the respective safety input signals S1 and S2 (command) and outputs the difference as a High signal, and a High signal A power storage unit (charging/discharging unit B12) that accumulates electric charge, and a safe stop command generation unit (charging/discharging unit) that generates and outputs a safety stop command (High diagnostic protection signal Sd) when the voltage of the power storage unit exceeds a threshold value. B12 and a latch portion B13).
  • the safety input signal S1 and the safety input signal S2 are inputted and compared with each other, and one of these two inputs (S1, S2) , the abnormality can be detected and the STO of the operation of the motor 3 can be operated.
  • the safety monitoring unit 16 is incorporated as an internal device of the motor control device 1, it is possible to monitor whether the external safety device 2 is operating properly without using an external monitoring device. In other words, monitoring can be performed without wiring. Therefore, there is an advantage that the safety design of the motor control device 1 and the processing equipment system as a whole, which incorporates a monitoring function for monitoring multiple safety input signals and detecting abnormalities, is facilitated.
  • the power storage unit (charge/discharge unit B12) of the safety monitoring unit 16 secures the time from when the XOR unit B11 (comparison unit) outputs a High signal until the voltage of the capacitor C11 exceeds the threshold.
  • An RC time constant circuit (R12 and C11) is provided to charge capacitor C11 as follows.
  • the safety stop command generation unit also includes a latch unit B13 that holds the output of the safety stop signal (High diagnostic protection signal Sd) when the voltage of the capacitor C11 exceeds the threshold (discharged from the capacitor C11).
  • the RC time constant circuit (R12 and C11) as described above can perform the same function as a general timer that measures time based on, for example, a clock signal, and can be realized at low cost.
  • the safety monitoring unit 16 sends the multiplexed commands (safety input signals S1, S2) to the first processing block B1 (first signal processing unit) and the second processing block B1 (first signal processing unit), respectively. branched in parallel to the signal processing unit B2 (second signal processing unit), and based on the logical sum (OR) of the calculation output of the first processing block B1 and the calculation output of the second processing block B2, safe torque off
  • the following diagnostic protection signal Sd is output to the circuit 10 (motor controller).
  • the safety monitoring unit 16 uses the above-described timer function to send Lo as the diagnostic protection signal Sd when the period in which the safety input signals S1 and S2 (multiplexed commands) do not match each other does not exceed the allowable value. Then, when the period of non-coincidence exceeds the allowable value, Hi (safety stop command) is sent as the diagnosis protection signal Sd.
  • the first processing block B1 (first signal processing section) includes an XOR section B11, a charge/discharge section B12, and a latch section B13. are serially connected in order, and the second processing block B2 (second signal processing section) is provided with a NAND section that performs NAND operations on the safety input signals S1 and S2 (multiplexed commands) and outputs them.
  • the XOR unit B11 includes an XOR element X1 that outputs an exclusive OR of the safety input signals S1 and S2 (multiplexed instructions), and a first resistor (R11) that pulls down the output of the XOR element X1. And prepare.
  • the charge/discharge unit B12 is an RC time constant circuit composed of a second resistor (R12) one end of which is connected to the output end of the XOR element X1, and a capacitor C11 connected to the other end of the second resistor (R12). and charges the capacitor C11 when the output of the XOR element X1 is High, and discharges the capacitor C11 when the output of the XOR element X1 is Low.
  • the latch section B13 includes an OR element O11 whose first input terminal is connected to the output terminal of the RC time constant circuit (R12, C11), and a pull-down resistor (R14) that pulls down the output of the OR element O11. , and the output of the OR element O11 is directly connected to the second input terminal of the OR element O11.
  • the NAND section B2 of the second processing block B2 includes a logical NAND element (N1) for calculating and outputting a negative logical product (NAND) of the commands (S1, S2), and a resistor (R21) that pulls up the output of the logic NAND element (N1).
  • N1 logical NAND element
  • R21 resistor
  • a motor control system such as an inverter circuit for driving and controlling the motor 3 is equipped with a monitoring function of a multiple system safety system and a protection function according to the monitoring result. It is possible to more easily construct a safety system in a system of industrial machines such as processing equipment that uses
  • the frequency of switching the output (High/Lo state) of the XOR element X1 is high, depending on the configuration of the capacitor C11 in the subsequent charging/discharging section B12, particularly when the discharge time constant of the capacitor C11 is large, the following problems may occur. can occur. That is, since the time for which the output of the XOR element X1 remains in the Lo state is shortened, the charge in the capacitor C11 of the charging/discharging section B12 is not sufficiently discharged, and the output of the XOR element X1 repeatedly becomes High, thereby The voltage rise characteristics of C11 may become uneven.
  • the resistance value of the resistor R11 of the XOR unit B11 and the resistance value of the resistor R13 of the charging/discharging unit B12 are sufficiently smaller than the resistance value of the resistor R12 of the charging/discharging unit B12.
  • the discharge time constant can be made smaller than the constant, and the discharge time can be shortened.
  • the circuit configuration of the first processing block B1 in this embodiment it is possible to improve the discharge characteristics of the capacitor C11 while maintaining the accuracy of the timer measurement time described above. Further, according to this circuit configuration, even when the frequency of switching the output (High/Lo state) of the XOR element X1 is high, the voltage rise characteristic of the capacitor C11 can be maintained.
  • FIG. 3 a configuration is adopted in which a capacitor C12 is connected in parallel to the output of the OR element O11.
  • the noise component can be absorbed by the capacitor C12, so malfunction caused by the noise or the like can be prevented or suppressed.
  • FIG. 4 is a configuration example of a safe torque-off circuit according to Embodiment 2 of the motor control device of the present disclosure.
  • the configuration shown in FIG. 4 is an alternative to the safe torque off circuit 10 shown in FIG. 2 described above.
  • the safe torque-off circuit 10A shown in FIG. 4 has the anode cutoff switches Q1 and Q2 removed from the configuration shown in FIG. A1 and a logical AND element A2 have been added.
  • the safe torque-off circuit 10A shown in FIG. 4 can achieve safe torque-off of the dual system motor.
  • the safe torque-off circuit 10A is configured so that the STO operation can be performed even by the diagnostic protection signal Sd. are branched and connected to each other.
  • the output terminals of the logic AND elements A1 and A2 are connected to the enable terminals of the buffer elements BF1 and BF2 to which the diagnosis protection signal Sd is input.
  • Signal lines for the safety input signal S1 and the safety input signal S2 are connected to one ends of the inputs of the logic AND element A1 and the logic AND element A2.
  • the other terminals of the inputs of the logical AND element A1 and the logical AND element A2 are respectively provided with inverting portions so that the inverted signal of the diagnosis protection signal Sd is input (see FIG. 4 as appropriate).
  • each signal (S1, S2, Sd) other than the above is the same as in the case of FIG. 2, and a detailed description thereof will be omitted.
  • FIG. 5 is an example of a motor control device according to Embodiment 3 of the motor control device of the present disclosure.
  • the motor control device 1A shown in FIG. 5 not only monitors the difference between the safety input signal S1 and the safety input signal S2 by the safety monitoring unit 16, but also checks whether the safety monitoring unit 16 that performs such monitoring functions normally. It has a function that can be inspected. Differences from the motor control device 1 described above with reference to FIG. 1 will be described below.
  • Embodiment 3 it is assumed that a monitor device 2B such as an image display is used as an external device of the motor control device 1A. 5 is equivalent to the external safety device 2 shown in FIG.
  • the motor control device 1A of Embodiment 3 includes test switches QT1 and QT2 capable of blocking transmission of the respective signals (S1 and S2) on the transmission paths of the safety input signal S1 and the safety input signal S2. In the state shown in FIG. 5, these test switches QT1 and QT2 are both ON. Further, in Embodiment 3, the ON/OFF of these test switches QT1 and QT2 can be operated by the motor control calculation section 14A. Further, the motor control calculation section 14A of Embodiment 3 is configured to detect the state of the diagnostic protection signal Sd output from the safety monitoring section 16. FIG.
  • the motor control calculation unit 14A additionally includes an operation unit 142 that outputs a signal for turning on/off the test switches QT1 and QT2.
  • This operation unit 142 has a function of operating so that at least one of the multiple commands (S1, S2) is not sent to the motor control unit (safe torque off circuit 10 in this example).
  • the motor control calculation unit 14A also includes a notification unit 141 that notifies the external monitor device 2B of the diagnosis protection signal Sd, the state of the device, etc. based on the diagnosis protection signal Sd transmitted from the safety monitoring unit 16.
  • the diagnostic protection signal Sd output from the safety monitoring section 16 is also input to the notification section 141 and the operation section 142 .
  • Other configurations (functions) of the motor control calculation unit 14A are equivalent to those of the motor control calculation unit 14 described above with reference to FIG.
  • the circuit configuration shown in FIG. 5 if the STO state occurs due to the action of the diagnostic protection signal Sd, although the motor 3 is in a torque-off state due to the STO operation, the cause (in this example, the diagnostic protection signal Sd (whether it was an effect or not) may not be able to be determined.
  • test switches QT1 and QT2 are configured so that they can be operated from the operation section 142 provided in the motor control calculation section 14A, so there is an advantage that the safety is further enhanced.
  • one of the test switches QT1 or QT2 is turned OFF intentionally (for example, by a user's operation) to turn off the safety input.
  • the diagnosis protection signal Sd correctly transitions to High.
  • the circuit configuration shown in FIG. 5 it is possible to self-diagnose whether or not the safety monitoring unit 16 is normal, so that a more failure-free safety system can be constructed.
  • test switches QT1 and QT2 shown in FIG. 5 are illustrated as physical switches that cut off the safety input, the polarity (high/high/high) of the safety input signals S1 and S2 such as pull-down/pull-up are also possible.
  • a similar self-diagnostic function can be achieved with a mechanism that inverts Lo).
  • FIG. 6 is a circuit diagram showing a configuration example when an electrical input circuit is provided in the transmission path of the safety input signals S1 and S2 in the motor control device according to Embodiment 4 of the present disclosure.
  • a first-order lag filter consisting of a resistor RF and a capacitor CF is provided in front of the safety monitoring unit 16 and the safe torque-off circuit 10 in the transmission path of the safety input signals S1 and S2. , is input to the safety monitoring unit 16 and the safe torque-off circuit 10 .
  • each first-order lag filter the output terminal of the resistor RF is connected to one terminal of the capacitor CF and the input terminals of the safety monitoring section 16 and the safe torque-off circuit 10 . Also, the other terminal of the capacitor CF is connected to the reference potential. Furthermore, the time constant of each first-order lag filter is sufficiently larger than the time constant of the RC time constant circuit defined by the resistor R12 (second resistor) and capacitor C11 of the safety monitoring unit (command monitoring unit) 16 described above. set short.
  • FIG. 7 is a diagram according to Embodiment 5, and is a circuit diagram showing an example in which the motor control device of the present disclosure can also be applied to a safety function different from STO.
  • a motor control device 1B shown in FIG. 7 is additionally equipped with a safety control unit 20, and includes safety input signals S1 and S2, a diagnostic protection signal Sd, and the output of the encoder 4 (rotor position information of the motor 3). is input to the safety control unit 20 .
  • the safety control unit 20 is arranged before the motor control calculation unit 14 and the safe torque off circuit 10 and after the external safety device 2 and the safety monitoring unit (command monitoring unit) 16. and the position of the rotor.
  • the safety control unit 20 has a function of outputting double deceleration instructions SL1 and SL2 to the motor control calculation block 14.
  • the safety control unit 20 also has a function of outputting double safe stop (STO) instructions ST1 and ST2 to the safe torque-off circuit 10 .
  • STO double safe stop
  • the safety control unit 20 can be realized by analog and digital circuits, software such as a microcomputer, or a combination thereof.
  • the motor control device 1 may have a configuration in which some functions of the motor control device 1 are separated and added as an option.
  • the safety monitoring unit 16 and the safety control unit 20 shown in FIG. 7 may be optional blocks that can be attached and detached via an interface or the like, separate from the main body (that is, the internal blocks of the motor control device 1).
  • any type of safety function can be added as required. Therefore, the cost of the main body of the motor control device 1 can be reduced, and the optimum safety function for the motor 3 can be selected according to the type and operation of the motor 3 and the device to which the motor 3 is attached.
  • the safety function SafeStop1 is defined as a safe stop function that has a period of deceleration based on a predetermined deceleration pattern as a step prior to torque-off stop at STO.
  • the safety control unit 20 performs the following control.
  • FIG. 8 shows an example of the internal circuits of the safety control section 20 and the safe torque-off circuit 10 according to the sixth embodiment.
  • the output of the safety control section 20 is logically configured so that ST1 and ST2 become Lo when the diagnostic protection signal Sd is High. STO can work. Even in such a configuration, by utilizing the safety monitoring block 16 and the diagnostic protection signal Sd for diagnosis of the safety inputs S1 and S2, a safety system with fewer failures can be realized.
  • FIG. 9 shows an example of internal circuits of the safety monitoring unit 16 and the safe torque-off circuit 10 according to the seventh embodiment.
  • second anode cutoff switches Q1D and Q2D are inserted between the outputs of the anode cutoff switches Q1 and Q2 and the anode of the gate drive element GD. .
  • the second anode cutoff switches Q1D and Q2D are normally ON (hereinafter referred to as "normally on”) polarity, and are driven (switched off) by the high output of the diagnostic protection signal SL. It's becoming With this configuration, when a difference is detected between the safety input signal S1 and the safety input signal S2, the diagnosis protection signal SL outputs a high signal, thereby turning off both the second anode cutoff switches Q1D and Q2D. As a result, the motor 3 is in a torque-off state.
  • the anode cutoff switches Q1 and Q2 which play a role of cutting off the drive signals supplied to the motor 3 in response to the commands S1 and S2 (safety input signals), correspond to the "first cutoff section" in the present disclosure.
  • the second anode cutoff switches Q1D and Q2D which serve to cut off the drive signal supplied to the motor 3 in response to the diagnostic protection signal SL (safety stop signal), are the "second cutoff section" in the present disclosure. handle.
  • the anode cutoff switch Q1 and the second anode cutoff switch Q1D in the first cutoff section are connected in series, and similarly, the anode cutoff switch Q2 and the second anode cutoff switch Q2 in the first cutoff section are connected in series. and Q2D are connected in series.
  • the signal to be input to the safety monitoring section 16 is input so as to feed back the output voltage of the second anode cutoff switches Q1D and Q2D (second cutoff section).
  • the second anode cutoff switches Q1D and Q2D have normally-on polarities. Therefore, while the diagnostic protection signal SL is Low after the device is started, the input to the safety monitoring unit 16 is not for other implementations. Signals corresponding to the safety input signals S1 and S2 are input in the same manner as in the form.
  • the safety monitoring unit 16 sets the diagnostic protection signal SL to High, the second anode cutoff switches Q1D and Q2D are turned off, so the inputs to the safety monitoring unit 16 are the safety input signal S1 and the safety input signal S2.
  • the input state of is not reflected, the torque-off state of the motor 3 is maintained by the action of the latch portion B13, so the safety function can be achieved.
  • the safety monitoring unit 16 is configured to feed back the downstream signal as an input of the safety monitoring unit 16 to the part (the second anode cutoff switches Q1D and Q2D in this embodiment) that operates the torque off, FIG. 3, the second processing block B2 and the third processing block B3 are not necessary, which contributes to the miniaturization of the apparatus.

Abstract

A control device 1 is provided with: a motor control unit (10, 11, etc.) that supplies a drive current to a motor 3, which is a power source of processing equipment, so as to place the motor 3 in a normal operating state, and, in response to multiplexed commands (S1, S2) that are sent from the outside and relate to a safety function operation of the processing equipment, controls the drive current so as to place the motor 3 and the processing equipment in a safety stop state; and a command monitoring unit 16 that monitors whether or not the commands (High/Low of S1, S2) match each other. If the period during which the commands do not match exceeds an allowable value, the command monitoring unit 16 generates a safety stop signal Sd (High) for safely stopping the motor 3, and continuously sends the safety stop signal Sd (High) to the motor control unit. This configuration makes it possible to facilitate the construction of a safety system that uses a control device.

Description

制御装置および加工機器Controller and processing equipment
 本開示は制御装置および加工機器に関し、非制限的な一具体例では、モータを備えた各種加工機器ないし機械駆動システムにおけるモータの動作を制御する制御装置に関する。 The present disclosure relates to control devices and processing equipment, and in one non-limiting specific example, to control devices that control the operation of motors in various processing equipment or machine drive systems that are equipped with motors.
 モータを備えた各種加工機器(例えば射出成型機、プレス機)の分野では、当該加工機器および周囲の環境の安全確保等のために、当該機器のモータを安全に停止させる制御を行う安全停止機能(以下、「安全機能」と略称する場合がある)を設ける必要がある。具体的には、モータを安全に停止させるための制御として、トルクオフ停止、減速停止、などの各種の制御が挙げられる。この制御は、当該機器の外部に設けられた外部装置からの信号(安全信号などと呼ばれることがある)に基づいて実行される。 In the field of various processing equipment equipped with motors (e.g. injection molding machines, press machines), in order to ensure the safety of the processing equipment and the surrounding environment, etc., a safe stop function that controls to safely stop the motor of the equipment (hereinafter sometimes abbreviated as "safety function") must be provided. Specifically, the control for safely stopping the motor includes various types of control such as torque-off stop and deceleration stop. This control is executed based on a signal (sometimes called a safety signal or the like) from an external device provided outside the device.
 モータのトルクオフ制御を行う従来例として、例えば、下記の特許文献1記載の技術がある。特許文献1には、STO(安全トルクオフ)機能を備えた電力変換器が記載されている。また、モータを用いた機械駆動システムの安全機能は、国際的に規格化されており、上記のSTOも国際的に規格化(定義)されている安全機能の内の一つである。STO機能は、強制的にモータのトルクを遮断する機能と言える。 As a conventional example of torque-off control of a motor, there is, for example, the technology described in Patent Document 1 below. Patent Literature 1 describes a power converter with an STO (safe torque off) function. In addition, the safety functions of mechanical drive systems using motors are internationally standardized, and the above STO is one of the internationally standardized (defined) safety functions. The STO function can be said to be a function for forcibly interrupting the torque of the motor.
 一方で、安全機能における入力、出力、およびモニタリング等の各ブロックの具体的な構成は、規格化されていないため、個別の製品設計に委ねられている。 On the other hand, the specific configuration of each block such as input, output, and monitoring in the safety function is not standardized, so it is left to individual product design.
特開2011-8642号公報JP-A-2011-8642
 ところで、安全機能の強化を図るために、個別の製品設計において、外部装置からの安全信号ひいては信号の経路(安全経路)を2重化し、外部装置から同一の安全信号を同時並行的に出力する構成とすることが考えられる。このような構成とすれば、万が一、片方の安全経路に故障が生じた場合であっても、モータを安全に停止させる制御を実行することができる。 By the way, in order to strengthen the safety function, in individual product design, the safety signal from the external device and the path of the signal (safety route) are duplicated, and the same safety signal is output from the external device at the same time. It is conceivable to configure With such a configuration, even if a failure occurs in one of the safety paths, control for safely stopping the motor can be executed.
 2重の安全経路のモニタリングは、例えば、モータの駆動回路に制御信号を出力する出力ブロックの動作状態を外部で監視することで実現できる。一方、例えばサーボプレス機械やプラスチック加工機など、複数軸のモータおよびその制御装置を用いる産業機械システムにこれを適用する場合、上位システムにおいて監視の負担が高まり、また配線等による故障率の増加といった課題がある。 Double safety path monitoring can be realized, for example, by externally monitoring the operating state of the output block that outputs control signals to the motor drive circuit. On the other hand, when this is applied to industrial machine systems that use multiple-axis motors and their control devices, such as servo press machines and plastic processing machines, the burden of monitoring increases in the host system, and the failure rate due to wiring etc. increases. I have a problem.
 本発明の目的は、モータを駆動制御する制御系に、多重系の安全システムのモニタリング機能およびモニタリング結果に応じた保護機能を内蔵させることにより、当該モータが用いられる産業機械における安全システム構築を容易とすることにある。 An object of the present invention is to facilitate the construction of a safety system in an industrial machine in which the motor is used by incorporating a monitoring function for a multiple system safety system and a protection function according to the monitoring result into a control system that drives and controls the motor. It is to be.
上記目的を達成するために、本発明は、特許請求の範囲に記載の構成及び方法を採用する。その一例を挙げるならば、本発明の制御装置は、 In order to achieve the above objects, the present invention employs the configurations and methods described in the claims. As an example, the control device of the present invention is
 モータに駆動電流を送出することにより前記モータを通常動作状態とし、外部から送出される安全機能動作に関する多重の指令に応じて前記通常動作状態から安全停止状態とするように前記モータを制御するモータ制御部と、
 各々の前記指令が互いに一致するかを監視する指令監視部と、を備え、
A motor that puts the motor into a normal operation state by sending a drive current to the motor, and controls the motor so that the normal operation state goes into a safe stop state in response to a multiple command related to safety function operation sent from the outside. a control unit;
a command monitoring unit that monitors whether the commands match each other;
 前記指令監視部は、前記指令の互いに一致しない期間が許容値を超えた場合、前記モータを安全停止させる安全停止命令を生成し、生成された前記安全停止命令を前記モータ制御部に継続的に送出する。 The command monitoring unit generates a safe stop command for safely stopping the motor when a period in which the commands do not match each other exceeds an allowable value, and continuously sends the generated safe stop command to the motor control unit. Send out.
 本発明によれば、モータが使用される産業機械のシステムにおける安全システムの構築を容易に行うことができる。 According to the present invention, it is possible to easily construct a safety system in an industrial machine system that uses a motor.
本開示の実施の形態1によるモータ制御装置の構成を示す回路図である。1 is a circuit diagram showing a configuration of a motor control device according to Embodiment 1 of the present disclosure; FIG. 図1の安全トルクオフ(STO)回路の一具体例を示す回路図である。2 is a circuit diagram showing one specific example of a safe torque off (STO) circuit of FIG. 1; FIG. 図1の安全モニタリング回路の一具体例を示す回路図である。2 is a circuit diagram showing one specific example of the safety monitoring circuit of FIG. 1; FIG. 本開示の実施の形態2による安全トルクオフ回路の一例を示す回路図である。FIG. 5 is a circuit diagram showing an example of a safe torque-off circuit according to Embodiment 2 of the present disclosure; 本開示の実施の形態3によるモータ制御装置の構成を示す回路図である。FIG. 7 is a circuit diagram showing the configuration of a motor control device according to Embodiment 3 of the present disclosure; 本開示の実施の形態4による安全入力回路の例である。FIG. 5 is an example of a safety input circuit according to Embodiment 4 of the present disclosure; FIG. 本開示の実施の形態5によるモータ制御装置の構成を説明する回路図である。FIG. 11 is a circuit diagram illustrating the configuration of a motor control device according to Embodiment 5 of the present disclosure; 本開示の実施の形態6による安全制御ブロックおよび安全トルクオフ回路の他の具体例を示す回路図である。FIG. 11 is a circuit diagram showing another specific example of a safety control block and a safe torque-off circuit according to Embodiment 6 of the present disclosure; 本開示の実施の形態7による安全制御ブロックおよび安全トルクオフ回路の他の具体例を示す回路図である。FIG. 11 is a circuit diagram showing another specific example of a safety control block and a safe torque-off circuit according to Embodiment 7 of the present disclosure;
 <概略構成>
 以下、本開示の各実施形態の説明の前に、各実施形態に共通する概略的な内容について、適宜図面を参照しつつ説明する。以下に説明する加工機器システムは、主として、以下の(1)~(3)の装置が組み合わされてなる。
<Outline configuration>
Hereinafter, before describing each embodiment of the present disclosure, general contents common to each embodiment will be described with reference to the drawings as appropriate. The processing equipment system described below is mainly composed of a combination of the following devices (1) to (3).
 (1)モータ制御装置(図1、図5、図7中に符号1,1A,1Bで示し、以下は代表的に符号1を用いる。) (1) Motor control device (indicated by symbols 1, 1A, and 1B in FIGS. 1, 5, and 7; symbol 1 is used representatively below.)
 モータ制御装置1は、加工機器の動力源として用いられる電動モータ(以下、単にモータと略称する)3の動作(回転の開始/停止、回転方向、回転速度など)を制御する装置であり、本開示の加工機器システムにおける主要な装置(制御装置)である。モータ制御装置1は、モータ3ひいてはモータ3が用いられる加工機器の動作を制御するために、図1、図5、図7中に示すような種々のブロック機能部を備える。 The motor control device 1 is a device for controlling the operation (rotation start/stop, rotation direction, rotation speed, etc.) of an electric motor (hereinafter simply referred to as a motor) 3 used as a power source for processing equipment. It is a main device (control device) in the disclosed processing equipment system. The motor control device 1 comprises various functional block units as shown in FIGS. 1, 5 and 7 in order to control the operation of the motor 3 and the machining equipment in which the motor 3 is used.
 なお、モータ3およびモータ制御装置1が用いられる加工機器は、特に制限されるものではなく、例えば、サーボプレス機械、射出成型機などのプラスチック加工機など、種々の産業機器が挙げられる。 The processing equipment that uses the motor 3 and the motor control device 1 is not particularly limited, and examples thereof include various industrial equipment such as plastic processing machines such as servo press machines and injection molding machines.
 (2)外部安全装置(図1、図5、および図7中に符号2、2Aで示し、以下は代表的に符号2を使用する。) (2) External safety device (indicated by symbols 2 and 2A in FIGS. 1, 5, and 7; symbol 2 is used representatively below.)
 外部安全装置2は、モータ3または加工機器の動作をモニタリングし、加工機器の安全機能動作に関する多重の指令(Lo/Highについて同一内容を示す任意の数の信号)を生成し、生成された多重の指令を、伝送系を通じてモータ制御装置1に送出(入力)する装置である。 The external safety device 2 monitors the operation of the motor 3 or the processing equipment, generates multiple commands (arbitrary number of signals indicating the same content for Lo/High) regarding the safety function operation of the processing equipment, and generates multiplex command to the motor control device 1 through the transmission system.
 この外部安全装置2は、図示のように、モータ制御装置1とは別の外部装置であり、この例では、多重(各図では二重)の信号線および有線インタフェースを介してモータ制御装置1と接続される。なお、モータ制御装置1と外部安全装置2との接続は、一部またはすべてを通信手段(無線インタフェース)を用いて代替する構成であってもよい。外部安全装置2は、安全機能部と言い換えることもできる。また、外部安全装置2(安全機能部)からモータ制御装置1に送出される多重の指令の伝送系(有線または無線のインタフェースなど)は、安全信号伝送部と言い換えることもできる。 As shown, the external safety device 2 is an external device separate from the motor control device 1. In this example, the motor control device 1 is connected via multiple (double in each figure) signal lines and a wired interface. connected with The connection between the motor control device 1 and the external safety device 2 may be partially or wholly replaced by communication means (wireless interface). The external safety device 2 can also be called a safety function unit. Further, a transmission system (wired or wireless interface, etc.) for multiple commands sent from the external safety device 2 (safety function section) to the motor control device 1 can be called a safety signal transmission section.
 これら外部安全装置2は、モータ3または加工機器の動作の異常を検出した場合、モータ3ひいては加工機器を安全に停止させる旨を指示する停止指令(例えば予め定義された信号(例えばLo又はHighの信号)をモータ制御装置1に送出(入力)する。一方、外部安全装置2は、モータ3または加工機器の動作の異常を検出しない場合、モータ制御装置1によるモータ3の制御をそのまま実行する旨を指示する実行指令(例えばHigh又はLoの信号)をモータ制御装置1に送出(入力)する。各図および以下は、上述した停止指令および実行指令を総称して、安全入力信号S1、S2という。 When these external safety devices 2 detect an abnormality in the operation of the motor 3 or the processing equipment, a stop command (e.g., a predefined signal (e.g., Low or High signal) to the motor control device 1. On the other hand, if the external safety device 2 does not detect any abnormality in the operation of the motor 3 or the processing equipment, the control of the motor 3 by the motor control device 1 is executed as it is. is sent (input) to the motor control device 1. In each figure and below, the above-described stop command and execution command are collectively referred to as safety input signals S1 and S2. .
 なお、外部装置である安全機能部(外部安全装置2)の構成および異常検出の手法等は公知であるため、適宜、詳細な説明を省略する。 The configuration of the safety function unit (external safety device 2), which is an external device, and the method of detecting anomalies, etc., are well known, and detailed description thereof will be omitted as appropriate.
 (3)安全モニタリング装置(図1、図5、図7中に符号16で示す。) (3) Safety monitoring device (indicated by reference numeral 16 in Figures 1, 5 and 7)
 安全モニタリング装置16は、外部安全装置2からモータ制御装置1に送出(入力)される、多重の安全入力信号S1、S2の各々の内容(指令すなわちLo/Highの状態)が互いに一致することを監視する「指令監視部」としての役割を担う装置である。図示の例では、安全モニタリング装置16は、安全入力信号S1、S2が伝送される信号線の分岐線を通じて多重の安全入力信号S1、S2の各々を入力し、該入力された信号の内容(指令)を比較等することにより監視ひいては診断を行い、診断結果を示す信号をモータ制御装置に出力する。以下、この診断結果を示す信号を「診断保護信号Sd」と称する。 The safety monitoring device 16 checks that the contents of the multiple safety input signals S1 and S2 sent (inputted) from the external safety device 2 to the motor control device 1 (instructions, ie Lo/High states) match each other. It is a device that plays a role as a "command monitoring unit" that monitors. In the illustrated example, the safety monitoring device 16 inputs multiple safety input signals S1 and S2 through branch lines of the signal lines through which the safety input signals S1 and S2 are transmitted, and outputs the content of the input signal (command ) are compared to monitor and eventually diagnose, and a signal indicating the diagnosis result is output to the motor control device. Hereinafter, the signal indicating this diagnosis result will be referred to as "diagnosis protection signal Sd".
 以下、安全モニタリング装置16は、外部安全装置2から出力される多重の安全入力信(S1,S2)号に含まれる各々の指令(Lo/High)が、互いに一致する場合は診断保護信号SdとしてLoの信号を出力し、一致しない場合には診断保護信号SdとしてHighの信号を出力する場合を前提として説明する。 When the commands (Lo/High) included in the multiple safety input signals (S1, S2) output from the external safety device 2 match each other, the safety monitoring device 16 outputs the diagnosis protection signal Sd. Description will be made on the assumption that a Lo signal is output, and if they do not match, a High signal is output as the diagnostic protection signal Sd.
 次に、安全モニタリング装置16の技術的意義を、他の装置との関係で説明する。(1)で上述したモータ制御装置1は、通常時には、モータ3に駆動電流を送出することにより、モータ3ひいては加工機器を、目的等に従った動作ひいては機能を遂行するように制御する。以下、この状態を「通常動作状態」と称する場合がある。また、通常動作状態におけるモータ3ひいては加工機器の動作は公知であるため、その詳細な説明を省略する。 Next, the technical significance of the safety monitoring device 16 will be explained in relation to other devices. The motor control device 1 described in (1) normally sends a drive current to the motor 3, thereby controlling the motor 3 and the machining equipment so as to perform operations and functions according to the purpose. Hereinafter, this state may be referred to as a "normal operating state". Further, since the operation of the motor 3 and the processing equipment in the normal operating state is well known, detailed description thereof will be omitted.
 一方、モータ制御装置1は、上記(2)すなわち外部の外部安全装置2から停止指令(例えばLoの信号)が入力された場合、モータ3に送出される駆動電流を減らすまたは遮断する等の制御を行って、モータ3および加工機器を安全に停止させる。このような制御が行われることで、モータ3(加工機器)を通常動作状態から安全停止(トルクオフまたは減速停止)状態に移行することができる。 On the other hand, the motor control device 1 performs control such as reducing or cutting off the drive current sent to the motor 3 when the stop command (for example, Lo signal) is input from the above (2), that is, the external safety device 2. to safely stop the motor 3 and the processing equipment. By performing such control, the motor 3 (processing equipment) can be shifted from a normal operation state to a safe stop (torque off or deceleration stop) state.
 なお、外部安全装置2からモータ制御装置1に多重の指令(安全入力信号S1、S2)を送出する意義は、安全保護の強化を図ることにある。より具体的には、例えば、外部安全装置2からモータ制御装置1に2本の信号線を通じて停止指令および実行指令を送出する場合、片方の信号送信系(回路や信号線、無線の場合は電波状態など)にトラブルが発生して上記指令を伝送できなくなった場合でも、残りの信号送信系を通じて指令(安全入力信号)を伝送することができる。 The significance of sending multiple commands (safety input signals S1 and S2) from the external safety device 2 to the motor control device 1 is to enhance safety protection. More specifically, for example, when a stop command and an execution command are sent from the external safety device 2 to the motor control device 1 through two signal lines, one of the signal transmission systems (circuits, signal lines, radio wave state, etc.), the command (safety input signal) can be transmitted through the remaining signal transmission system even if the command cannot be transmitted.
 このため、モータ制御装置1は、上記の通常動作状態において、外部安全装置2のいずれかの信号送信系から停止指令を示す安全入力信号(S1又はS2)が入力された場合、安全停止状態に移行すべく、上述と同様の制御を行って、モータ3および加工機器を安全に停止させる。このように、いずれかの信号送信系から入力された停止指令に応じて安全停止の制御を行う構成とすることにより、安全保護の強化が図られる。 Therefore, the motor control device 1 enters a safe stop state when a safety input signal (S1 or S2) indicating a stop command is input from any of the signal transmission systems of the external safety device 2 in the above normal operation state. In order to shift, the same control as described above is performed to safely stop the motor 3 and the processing equipment. In this way, safety protection is strengthened by adopting a configuration in which safe stop control is performed in accordance with a stop command input from any of the signal transmission systems.
 一方、上記のように、外部安全装置2の片方の信号送信系が故障した場合にこれを放置したまま加工機器を稼働し続けると、上述した安全保護の強化が形骸化する。加えて、外部安全装置2に更なる故障が発生した場合、モータ制御装置1による安全停止の制御が出来なくなるおそれがある。このような事例は、例えばLoの信号を実行指令に割り当て、Highの信号を停止指令に割り当てた場合に発生しやすいことが考えられる。このため、以下は、この逆、すなわち安全入力信号S1、S2として、Highの信号を実行指令に割り当て、Loの信号を停止指令に割り当てた構成を前提とする。このような構成とした場合、一方の信号送信系に断線等のトラブルが発生した場合、かかる信号送信系の信号(指令)がLoになるため、種々のトラブルの発生を検知しやすいメリットがあると考えられる。 On the other hand, as described above, if one of the signal transmission systems of the external safety device 2 breaks down and the processing equipment continues to operate while this is left unattended, the enhancement of safety protection described above becomes a mere avail. In addition, if a further failure occurs in the external safety device 2, the motor control device 1 may not be able to control the safe stop. Such cases are likely to occur when, for example, a Lo signal is assigned to an execution command and a High signal is assigned to a stop command. For this reason, the following is premised on the reverse, that is, a configuration in which the High signal is assigned to the execution command and the Lo signal is assigned to the stop command as the safety input signals S1 and S2. With such a configuration, when trouble such as disconnection occurs in one of the signal transmission systems, the signal (command) of the signal transmission system becomes Lo, which has the advantage of facilitating detection of various troubles. it is conceivable that.
 一方、外部安全装置2の全ての信号送信系に断線などがなく、安全入力信号S1、S2(Lo/Highの指令)が概ね正常に送られている場合であっても、位相(例えば実行指令から停止指令に切り替わるタイミング)のずれが発生することもあり得る。この場合、モータ制御装置1は、安全面からは、早く送出された方の停止指令に応答して安全停止の制御を行うことになる。しかしながら、応答の対象となった停止指令の信号が外部安全装置2の誤動作等に基づく誤った信号である場合、安全停止を行うタイミングが早すぎることに伴う不利益(加工機器の稼働率ないし生産性を下げる等)が発生し得る。 On the other hand, even if there is no disconnection in any signal transmission system of the external safety device 2 and the safety input signals S1 and S2 (Lo/High commands) are generally sent normally, the phase (for example, execution command timing to switch to the stop command) may occur. In this case, the motor control device 1 performs safe stop control in response to the earlier sent stop command from the safety point of view. However, if the stop command signal to which the response is made is an erroneous signal based on a malfunction of the external safety device 2, etc., there are disadvantages associated with the timing of performing a safe stop being too early (e.g. lowering the quality, etc.) may occur.
 このため、加工機器のシステムにおいては、(3)で上述した安全モニタリング装置16、すなわち、外部安全装置2からモータ制御装置1に送出(入力)される、多重の指令(Lo/High)が互いに一致することを監視および診断する装置を設ける必要がある。 Therefore, in the processing equipment system, multiple commands (Lo/High) sent (input) from the safety monitoring device 16 described above in (3), that is, the external safety device 2 to the motor control device 1 are mutually Equipment must be provided to monitor and diagnose matches.
 言い換えると、安全モニタリング装置16は、外部安全装置2が正常に動作していることを監視ひいては診断する役割を担う装置である。以下は、安全モニタリング装置16は、外部安全装置2からモータ制御装置1に向けて送出(入力)される多重の安全入力信号S1,S2の各々の指令(Lo/High)が互いに一致する場合、外部安全装置2が正常に動作していると判断して、Loの信号を出力する(診断保護信号Sd=Lo)。 In other words, the safety monitoring device 16 is a device responsible for monitoring and diagnosing whether the external safety device 2 is operating normally. When the commands (Lo/High) of the multiple safety input signals S1 and S2 sent (inputted) from the external safety device 2 to the motor control device 1 match each other, the safety monitoring device 16 will: It determines that the external safety device 2 is operating normally, and outputs a Lo signal (diagnostic protection signal Sd=Lo).
 また、安全モニタリング装置16は、外部安全装置2からモータ制御装置1に向けて送出(入力)される多重の安全入力信号S1,S2の各々の指令(Lo/High)が互いに一致しない場合、外部安全装置2または伝送系が正常に動作していないものと判断して、Highの信号を出力する(診断保護信号Sd=High)。 Further, when the commands (Lo/High) of the multiple safety input signals S1 and S2 sent (input) from the external safety device 2 to the motor control device 1 do not match each other, the safety monitoring device 16 It determines that the safety device 2 or the transmission system is not operating normally, and outputs a High signal (diagnostic protection signal Sd=High).
 なお、従来、上記のような安全モニタリング装置は、外部安全装置2と同様の外付けの装置、すなわちモータ制御装置1の外部装置として、専ら加工機器システムのメンテナンス時に使用することで、各部が正常動作するか否かの診断等を行っていた。このような安全モニタリング装置は、例えば、EDM(External Device Monitoring)と呼ばれる信号を監視する方法を用いる装置が知られている。 Conventionally, the safety monitoring device as described above has been used as an external device similar to the external safety device 2, that is, as an external device of the motor control device 1, exclusively during maintenance of the processing equipment system, so that each part is in a normal condition. I was diagnosing whether it works or not. As such a safety monitoring device, for example, a device using a signal monitoring method called EDM (External Device Monitoring) is known.
 一方、安全モニタリング装置をモータ制御装置1の外部装置として使用する場合、加工機器システムに対する配線が複雑になる問題があり、また、メンテナンスの頻度等によっては配線の接続作業が煩わしくなる等の問題もある。 On the other hand, when the safety monitoring device is used as an external device of the motor control device 1, there is a problem that the wiring to the processing equipment system becomes complicated, and depending on the frequency of maintenance, wiring connection work becomes troublesome. be.
 上記のような問題に鑑みて、以下に説明する各実施の形態では、安全モニタリング装置を、モータ制御装置1の内部装置として実装する構成を採用する。以下、説明の便宜等のため、安全モニタリング装置16を安全モニタリング部16と読み替えて説明する。 In view of the above problems, each embodiment described below adopts a configuration in which a safety monitoring device is mounted as an internal device of the motor control device 1. For convenience of explanation, the safety monitoring device 16 will be replaced with the safety monitoring unit 16 in the following description.
 <<実施の形態1>>
 図1は、本開示の実施の形態1に係るモータ制御装置の構成例を示す図である。以下に、一具体例として三相交流モータを制御する構成例について説明するが、本発明は、これに制限されることなく、他の種々のモータの制御に適用することができる。
<<Embodiment 1>>
FIG. 1 is a diagram illustrating a configuration example of a motor control device according to Embodiment 1 of the present disclosure. A configuration example for controlling a three-phase AC motor will be described below as a specific example, but the present invention is not limited to this and can be applied to control of various other motors.
 また、モータを用いた機械駆動システムの安全機能は、国際的な規格(代表的にはIEC61800-5の群)に複数定義されており、本発明は、安全トルクオフ(STO)をはじめとする各種の安全機能に適用できる。以下に説明する実施の形態1および実施の形態2では、特に、安全停止動作の一例である安全トルクオフ(STO)の制御を行う場合を前提として説明する。 In addition, the safety functions of mechanical drive systems using motors are defined in multiple international standards (typically IEC61800-5 group). can be applied to the safety functions of Embodiments 1 and 2 described below will be described on the assumption that safe torque off (STO), which is an example of a safe stop operation, is controlled.
 図1に示すように、このモータ制御装置1は、外部安全装置2、モータ3、および三相交流による主電源5(以下、単に交流主電源5という)に接続され、モータ3(モータ3の軸にはエンコーダ4が設けられている)を制御するために、種々のブロック(回路)を備える。 As shown in FIG. 1, the motor control device 1 is connected to an external safety device 2, a motor 3, and a three-phase AC main power supply 5 (hereinafter simply referred to as AC main power supply 5). Various blocks (circuits) are provided to control the shaft (the encoder 4 is provided).
 ここで、モータ制御装置1が備える主たる機能ブロック(回路)は、安全トルクオフ回路(STO)10と、3相インバータ11と、交直変換回路12と、電流検出部13と、モータ制御演算部14と、制御パルス生成部(PWM)15と、安全モニタリング部16と、を含む。 Here, the main functional blocks (circuits) included in the motor control device 1 are a safe torque off circuit (STO) 10, a three-phase inverter 11, an AC/DC conversion circuit 12, a current detector 13, and a motor control calculator 14. , a control pulse generator (PWM) 15 and a safety monitor 16 .
 <外部ブロックとの結線等>
 上記のうち、交直変換回路12は、交流主電源5に接続され、交流主電源5から入力される三相交流を直流に変換し、変換された直流電源を3相インバータ11に供給する。交流主電源5は、例えば商用の三相200V交流などの外部電源である。
<Connections with external blocks, etc.>
Among the above, the AC/DC conversion circuit 12 is connected to the AC main power supply 5 , converts the three-phase AC input from the AC main power supply 5 into DC, and supplies the converted DC power to the three-phase inverter 11 . The AC main power supply 5 is, for example, an external power supply such as a commercial three-phase 200V AC.
 3相インバータ11は、図1に示すように、オン/オフが切り替えられる6つのスイッチ(U,V,W、およびX,Y,Z)を有するスイッチ回路を備え、これらスイッチを介してモータ3の3つの端子と接続されている。 The three-phase inverter 11, as shown in FIG. 1, includes a switch circuit having six switches (U, V, W and X, Y, Z) that can be turned on/off. are connected to the three terminals of
 以下、3相インバータ11の3つの相を、それぞれU相、V相、W相と呼称し、3相インバータ11の図1中の上側のスイッチ(アーム)の各々にU,V,およびWの記号を割り当て、図中の下側のスイッチ(アーム)の各々には、記号X,Y,およびZを割り当てる。 The three phases of the three-phase inverter 11 are hereinafter referred to as the U-phase, V-phase, and W-phase, respectively. Symbols are assigned, and symbols X, Y, and Z are assigned to each of the lower switches (arms) in the figure.
 3相インバータ11の各相のスイッチU,V,Wは、交直変換回路12の一方の極(例えば正極)の出力線に並列に接続され、かつ、対応するモータ3の相(端子)に接続されている。また、3相インバータ11のスイッチX,Y,Zは、交直変換回路12の他方の極(例えば負極)の出力線に並列に接続され、かつ、対応するモータ3の極(端子)に接続されている。さらに、上記のスイッチUとスイッチXとは、互いに直列的に接続され、モータ3における同一の極(図1中の一番下の端子)に接続されている。同様に、スイッチVとスイッチYとは、互いに直列的に接続され、モータ3における同一の極(図1中の上から二番目の端子)に接続されている。同様に、スイッチWとスイッチZとは、互いに直列的に接続され、モータ3における同一の極(図1中の一番上の端子)に接続されている。 The switches U, V, and W of each phase of the three-phase inverter 11 are connected in parallel to the output line of one pole (for example, the positive pole) of the AC/DC conversion circuit 12 and connected to the corresponding phase (terminal) of the motor 3. It is The switches X, Y, and Z of the three-phase inverter 11 are connected in parallel to the output line of the other pole (for example, the negative pole) of the AC/DC conversion circuit 12 and connected to the corresponding pole (terminal) of the motor 3. ing. Further, the switch U and the switch X are connected in series with each other and connected to the same pole of the motor 3 (the lowest terminal in FIG. 1). Similarly, switch V and switch Y are connected in series with each other and connected to the same pole of motor 3 (the second terminal from the top in FIG. 1). Similarly, switch W and switch Z are connected in series with each other and connected to the same pole of motor 3 (top terminal in FIG. 1).
 このようなスイッチ回路(複数のスイッチ)を有する3相インバータ11は、パワー半導体によって実現することができる。3相インバータ11は、安全トルクオフ回路(STO)10を介して制御パルス生成部15から出力される制御パルス信号に従って、スイッチU/X、スイッチV/Y、スイッチW/Zを択一的にオンにするスイッチング動作を行うことで、3相の交流電流を生成する。かかるスイッチング動作後の交流電流が駆動電流としてモータ3に送出されることで、モータ3が回転し、対応する加工機器が作動する。 The three-phase inverter 11 having such switch circuits (a plurality of switches) can be realized by power semiconductors. The three-phase inverter 11 selectively turns on the switch U/X, the switch V/Y, and the switch W/Z according to the control pulse signal output from the control pulse generator 15 via the safe torque off circuit (STO) 10. A three-phase alternating current is generated by performing a switching operation to The AC current after such switching operation is sent to the motor 3 as a drive current, thereby rotating the motor 3 and operating the corresponding processing equipment.
 モータ制御演算部14は、基本プログラムおよび種々の入力信号に基づいて、モータ3の動作をフィードバック制御するための制御操作量を演算し、演算された制御操作量を示す制御信号を生成し、かかる制御信号を制御パルス生成部(図1中の「PWM」ブロック)15に出力する。 Based on the basic program and various input signals, the motor control calculation unit 14 calculates a control operation amount for feedback-controlling the operation of the motor 3, generates a control signal indicating the calculated control operation amount, and A control signal is output to the control pulse generator (“PWM” block in FIG. 1) 15 .
 より具体的には、モータ制御演算部14は、モータ3に供給される駆動電流(電圧波形など)を、モータ3の3極の内の任意の2極に配置された電流検出部13を通じて検出する。また、モータ制御演算部14は、モータ3の回転軸に取り付けられたエンコーダ4を通じて、モータ3の回転方向、回転速度、およびモータの回転位置(回転軸の位相)を検出する。加えて、モータ制御演算部14は、加工機器のスイッチやレバー等を含む操作入力部(図示せず)を通じて、ユーザの操作指示を入力および検出することができる。 More specifically, the motor control calculation unit 14 detects the drive current (voltage waveform, etc.) supplied to the motor 3 through the current detection unit 13 arranged at any two of the three poles of the motor 3. do. The motor control calculation unit 14 also detects the rotation direction, the rotation speed, and the rotation position of the motor (the phase of the rotation shaft) of the motor 3 through the encoder 4 attached to the rotation shaft of the motor 3 . In addition, the motor control calculation unit 14 can input and detect user's operation instructions through an operation input unit (not shown) including switches, levers, and the like of the processing equipment.
 そして、モータ制御演算部14は、上述した種々の入力信号に基づいて、上述の検出結果と、規定されたモータ3の動作(予め定められた回転方向、回転速度、位相)と、の差分(誤差)を算出する。そして、モータ制御演算部14は、モータ3が基本プログラムおよびユーザの操作指示に対応した誤差のない動作となるような制御操作量(ここでは供給する三相交流電流の態様)を演算し、演算結果を示す制御信号(以下、単に「制御操作量」とも称する)を制御パルス生成部15に出力する。 Based on the various input signals described above, the motor control calculation unit 14 calculates the difference ( error). Then, the motor control calculation unit 14 calculates a control operation amount (here, the mode of the three-phase alternating current to be supplied) that allows the motor 3 to operate without error corresponding to the basic program and the user's operation instruction, and calculates A control signal indicating the result (hereinafter also simply referred to as a “control operation amount”) is output to the control pulse generator 15 .
 制御パルス生成部15は、入力した制御信号にPWM(Pulse Width Modulation)変調を施し、パルス幅を変調した制御パルス信号を安全トルクオフ回路10に出力する。制御パルス生成部(PWM)15は、入力された制御操作量の大きさに応じてパルス幅変換し、複数本(この例では3相×2極=6本)の信号線を通じて各々の信号線から制御パルス信号を生成する。制御パルス生成部(PWM)15は、生成された制御パルス信号を3相インバータ11に出力する。 The control pulse generation unit 15 performs PWM (Pulse Width Modulation) modulation on the input control signal, and outputs the control pulse signal whose pulse width is modulated to the safe torque-off circuit 10 . The control pulse generator (PWM) 15 converts the pulse width according to the magnitude of the input control operation amount, and passes through a plurality of signal lines (three phases x two poles = six in this example) to each signal line. to generate a control pulse signal. A control pulse generator (PWM) 15 outputs the generated control pulse signal to the three-phase inverter 11 .
 図1に示す制御パルス生成部15は、パルス生成方式として、三角波状の搬送波と、モータ制御演算部14から入力される制御操作量  The control pulse generation unit 15 shown in FIG.
と、を比較して、これらの大小関係に基づいてパルスを生成するパルス幅変調(PWM)方式を使用する。他にも、制御パルス生成部15が生成(出力)するパルス生成方式として、例えば、上記の制御操作量の大小に基づきパルス生成間隔を調整するパルス周波数変調方式としてもよい。あるいは、制御パルス生成部15が生成(出力)するパルス生成方式として、3相インバータ11の各々のスイッチ(U,V,W,X,V,Z)のオン/オフ状態をベクトル座標で定義して、上記の制御操作量の瞬時値毎に所定のベクトルを選定する方式、などを用いてもよい。 , and a pulse width modulation (PWM) scheme is used to generate pulses based on these magnitude relationships. Alternatively, the pulse generation method generated (output) by the control pulse generator 15 may be, for example, a pulse frequency modulation method that adjusts the pulse generation interval based on the magnitude of the control operation amount. Alternatively, as a pulse generation method generated (output) by the control pulse generator 15, the ON/OFF state of each switch (U, V, W, X, V, Z) of the three-phase inverter 11 is defined by vector coordinates. Alternatively, a method of selecting a predetermined vector for each instantaneous value of the control operation amount may be used.
 なお、モータ制御演算部14および制御パルス生成部15は、制御プログラムが実装されたマイコン等、またはアナログ・デジタル回路によって実装することができる。安全トルクオフ回路10、安全モニタリング部16も同様であるが、安全システムを構成する上で、安全機能に関するブロックは、他の機能ブロックからの影響を最小化するため、他から分離して構成することが望ましい。例えば、安全トルクオフ回路10のみをアナログ・デジタル回路とし、他の機能(制御プログラム等)が実装されたマイコン等のハードウェアとは物理的に分離する構成とするとよい。 The motor control calculation unit 14 and the control pulse generation unit 15 can be implemented by a microcomputer or the like on which a control program is implemented, or by an analog/digital circuit. The same is true for the safe torque-off circuit 10 and the safety monitoring unit 16, but when configuring a safety system, blocks related to safety functions should be configured separately from others in order to minimize the influence of other functional blocks. is desirable. For example, only the safe torque-off circuit 10 may be an analog/digital circuit, and may be physically separated from hardware such as a microcomputer on which other functions (control program, etc.) are implemented.
 安全トルクオフ回路(STO)10は、モータ制御装置1に使用されるモータ3を安全に停止させる際に機能する回路であり、図1に示すように、外部安全装置2と、制御パルス生成部(PWM)15と、安全モニタリング部16と、3相インバータ11と、に接続されている。また、安全トルクオフ回路(STO)10は、制御パルス生成部(PWM)15を介してモータ制御演算ブロック14と接続されている。 A safe torque-off circuit (STO) 10 is a circuit that functions when safely stopping the motor 3 used in the motor control device 1. As shown in FIG. PWM) 15 , safety monitoring unit 16 , and three-phase inverter 11 . Also, the safe torque off circuit (STO) 10 is connected to the motor control calculation block 14 via the control pulse generator (PWM) 15 .
 モータ制御装置1の安全トルクオフ回路10は、制御パルス生成部15で得られた制御パルス信号を3相インバータ11へ転送する経路の中間に位置し、外部安全装置2から別途入力される安全入力信号S1、S2の指令内容に基づき、制御パルス信号の転送を稼働または遮断する。 The safe torque-off circuit 10 of the motor control device 1 is located in the middle of the path for transferring the control pulse signal obtained by the control pulse generator 15 to the three-phase inverter 11, and receives a safety input signal separately input from the external safety device 2. The control pulse signal transfer is activated or interrupted based on the contents of the commands of S1 and S2.
 本実施の形態では、安全トルクオフ回路10は、安全入力信号S1、S2の指令に応じて、制御パルス生成部15から供給される制御パルス信号の3相インバータ11への転送(供給)/転送遮断(供給禁止)動作を行う。 In the present embodiment, the safe torque-off circuit 10 transfers (supplies)/blocks the transfer of the control pulse signal supplied from the control pulse generator 15 to the three-phase inverter 11 in accordance with the commands of the safety input signals S1 and S2. (Supply Prohibited) Perform the action.
 具体的には、安全トルクオフ回路10は、安全入力信号S1、S2の両方が実行指令である場合、通常動作状態であると判断して、制御パルス信号を3相インバータ11に転送(供給)する。 Specifically, when both of the safety input signals S1 and S2 are execution commands, the safe torque-off circuit 10 determines that it is in a normal operation state, and transfers (supplies) the control pulse signal to the three-phase inverter 11. .
 一方、安全トルクオフ回路10は、安全入力信号S1、S2の一方が停止指令である場合、安全停止の必要ありと判断して、3相インバータ11への制御パルス信号の転送(供給)を遮断(禁止)する。この遮断(供給禁止)動作により、モータ3のセーフトルクオフ(Safe torque off、以下「STO」と称する)動作がなされる。より具体的には、モータ3のSTO動作は、制御パルス信号の遮断によって3相インバータ11を構成するパワー半導体のゲート(図1に示す各スイッチに対応する)をオフにすることで実現される。 On the other hand, when one of the safety input signals S1 and S2 is a stop command, the safe torque-off circuit 10 determines that a safe stop is necessary, and cuts off (supply) the transfer (supply) of the control pulse signal to the three-phase inverter 11 ( restrict. This cut-off (supply inhibition) operation causes the motor 3 to perform a safe torque off (hereinafter referred to as "STO") operation. More specifically, the STO operation of the motor 3 is realized by turning off the power semiconductor gate (corresponding to each switch shown in FIG. 1) that constitutes the three-phase inverter 11 by interrupting the control pulse signal. .
 一具体例では、安全トルクオフ回路10は、上述した外部安全装置2および安全モニタリング部16から送出される信号を入力し、安全入力信号S1、S2の両方がHighで、かつ、診断保護信号SdがLoの場合、制御パルス生成部15から入力された制御パルス信号を、そのまま3相インバータ11に送出(転送)する。 In one specific example, the safe torque-off circuit 10 receives signals sent from the external safety device 2 and the safety monitoring unit 16 described above, both of the safety input signals S1 and S2 are High, and the diagnostic protection signal Sd is In the case of Lo, the control pulse signal input from the control pulse generator 15 is sent (transferred) to the three-phase inverter 11 as it is.
 したがって、本システムによれば、モータ3が取り付けられた各種機器の通常運転時に、当該機器の種類やユーザの操作内容等に応じた回転動作がモータ3により行われ、かつ、フィードバック制御により、モータ3ひいては機器の運転の精度を確保することができる。 Therefore, according to this system, during normal operation of various devices to which the motor 3 is attached, the motor 3 rotates according to the type of the device and the user's operation, and the motor is controlled by feedback control. 3 As a result, it is possible to ensure the accuracy of the operation of the equipment.
 一方、安全トルクオフ回路10は、上述した外部安全装置2および安全モニタリング部16から送出され入力される信号のうち、安全入力信号S1、S2の少なくとも一つがLoである場合、または診断保護信号SdがHighの場合、制御パルス生成部15から入力された制御パルス信号の転送を遮断(供給禁止)する。この場合の一具体例では、安全トルクオフ回路10は、3相インバータ11を構成するパワー半導体のゲートをオフにすべく、3相インバータ11のすべてのスイッチ(U、V、W、X、Y、およびZ)をオフにする制御を行う(図1を参照)。 On the other hand, the safe torque-off circuit 10 operates when at least one of the safety input signals S1 and S2 among the signals sent and input from the external safety device 2 and the safety monitoring section 16 is Lo, or when the diagnostic protection signal Sd is When it is High, the transfer of the control pulse signal input from the control pulse generator 15 is cut off (supply prohibited). In one specific example of this case, the safe torque-off circuit 10 switches off all the switches (U, V, W, X, Y, and Z) are turned off (see FIG. 1).
 なお、以下は説明の便宜等のため、High状態の診断保護信号Sd、またはLo状態の安全入力信号S1(S2)を、「電流遮断信号」と称する場合がある。 For convenience of explanation, the High state diagnostic protection signal Sd or the Low state safety input signal S1 (S2) may be referred to as a "current cutoff signal".
 上記のように、電流遮断信号の出力に応じた安全停止の制御が行われることにより、図1からも理解できるように、モータ3に駆動電流が供給されなくなるので、モータ3が動作中である場合にトルクオフ状態となって余力だけで回る状態となる。なお、実際には、モータ3に接続されている各種の加工機器における駆動機構の摩擦抵抗等により、当該加工機器は、モータ3がトルクオフ状態となることにより速やかに停止されることとなり、当該機器の安全停止が図られる。 As can be understood from FIG. 1, the drive current is no longer supplied to the motor 3 by performing the safe stop control according to the output of the current cut-off signal as described above, so the motor 3 is in operation. In this case, the torque is turned off and the motor rotates only with the remaining power. In fact, due to the frictional resistance of the driving mechanism of various processing equipment connected to the motor 3, the processing equipment is quickly stopped when the motor 3 is in a torque-off state. safety stop.
 ところで、上述した国際的な規格(例えばIEC61508またはISO13849)では、安全システムを2重の入力および2重の出力で構成する等の概念が示されているが、入力、出力、およびモニタリング等の各ブロックの具体的な構成までは示されていない。 By the way, the above-mentioned international standards (for example, IEC61508 or ISO13849) show the concept of constructing a safety system with dual inputs and dual outputs. A specific configuration of the blocks is not shown.
 そこで、本発明者は、以下に説明するように、上記の種々のブロックの具体的な構成を提案する。 Therefore, the present inventor proposes specific configurations of the various blocks described above, as described below.
 図2は、安全トルクオフ回路10の具体的な構成例を示す回路図である。別の観点からは、図2は、安全トルクオフ回路10に電流遮断信号が入力されることでモータ3に駆動電流が供給されなくなる具体例を説明するための図である。 FIG. 2 is a circuit diagram showing a specific configuration example of the safe torque-off circuit 10. As shown in FIG. From another point of view, FIG. 2 is a diagram for explaining a specific example in which a drive current is not supplied to the motor 3 by inputting a current interruption signal to the safe torque-off circuit 10 .
 図2に示す例では、安全トルクオフ回路10は、複数のバッファ素子を備えたバッファ回路BF0と、複数(この例では6つ)のフォトカプラを備えたゲートドライブ素子GDと、アノード遮断スイッチQ1,Q2と、を備える。この例では、安全トルクオフ回路STO10におけるバッファ回路BF0の一端側は、0Vに相当する基準電位(コモン)に接続されている。また、バッファ回路BF0の他端側と、アノード遮断スイッチQ1,Q2の一端側に対しては、図示しない定電圧電源の電源電位が接続される。 In the example shown in FIG. 2, the safe torque-off circuit 10 includes a buffer circuit BF0 having a plurality of buffer elements, a gate drive element GD having a plurality (six in this example) of photocouplers, an anode cutoff switch Q1, and Q2. In this example, one end of the buffer circuit BF0 in the safe torque-off circuit STO10 is connected to a reference potential (common) corresponding to 0V. A power supply potential of a constant voltage power supply (not shown) is connected to the other end of the buffer circuit BF0 and one end of the anode cutoff switches Q1 and Q2.
 なお、フェールセーフの観点からは、例えば安全入力信号S1、S2の信号線が断線した場合などに備え、本システムの基底状態においてモータ制御装置1がSTO動作に至るように、信号の符号または定電圧電源により印加される基準電圧のレベルを選定するとよい。 From the standpoint of fail-safe, for example, in preparation for disconnection of the signal lines of the safety input signals S1 and S2, the signs and constants of the signals should be changed so that the motor control device 1 reaches the STO operation in the base state of this system. The level of the reference voltage applied by the voltage source may be chosen.
 バッファ回路BF0は、制御パルス生成部15から6本(言い換えるとスイッチ6個分)の信号線を通じて入力される制御パルス信号の後段への出力又は非出力を、安全モニタリング部16から入力される診断保護信号Sdにより切り替える役割を担う。 The buffer circuit BF0 determines whether or not to output control pulse signals input from the control pulse generation unit 15 through six signal lines (in other words, for six switches) to a subsequent stage for diagnostics input from the safety monitoring unit 16. It plays a role of switching by the protection signal Sd.
 具体的には、バッファ回路BF0は、制御パルス信号が入力される6本の信号線の各々の電流を増幅および反転する(6つの)増幅反転素子と、診断保護信号Sdを反転増幅する反転増幅素子と、を有する。バッファ回路BF0は、かかる反転増幅素子の出力が6つの増幅反転素子のそれぞれ(反転部の前段)に入力されるように、信号線が接続されている。また、6つの増幅反転素子の出力は、3相インバータ11の対応するスイッチ(U、V、W、X、Y、およびZ)を操作するゲートドライブ素子GDのフォトカプラ内の発光ダイオードのカソードに接続されている。 Specifically, the buffer circuit BF0 includes (six) amplifying and inverting elements that amplify and invert the currents of the six signal lines to which the control pulse signal is input, and an inverting and amplifying element that inverts and amplifies the diagnostic protection signal Sd. and an element. A signal line is connected to the buffer circuit BF0 so that the output of the inverting amplifying element is input to each of the six amplifying inverting elements (preceding stage of the inverting section). Also, the outputs of the six amplifying and inverting elements are connected to the cathodes of the light emitting diodes in the optocouplers of the gate drive elements GD that operate the corresponding switches (U, V, W, X, Y, and Z) of the three-phase inverter 11. It is connected.
 図2に示す状態では、アノード遮断スイッチQ1,Q2がオフでありゲートドライブ素子GDの発光ダイオードに電流が供給されないため、いずれのフォトカプラからも電流が出力されない。この結果、3相インバータ11の対応するスイッチ(U~Z)もオフであり(適宜、図1を参照)、モータ3に駆動電流が供給されない。 In the state shown in FIG. 2, the anode cutoff switches Q1 and Q2 are off and no current is supplied to the light emitting diode of the gate drive element GD, so no current is output from any photocoupler. As a result, the corresponding switches (U to Z) of the three-phase inverter 11 are also turned off (see FIG. 1 as appropriate), and no drive current is supplied to the motor 3 .
 また、図2に示す状態から、安全入力信号(S1,S2のいずれか)に基づいて一方のアノード遮断スイッチQ1(又はQ2)がオンになった場合でも、他方のアノード遮断スイッチQ2(又はQ1)がオフの場合は、対応するゲートドライブ素子GDの発光ダイオードに電流が供給されず、対応するフォトカプラからも電流が出力されない。この結果、3相インバータ11の対応する3つのスイッチU・V・W(又はX・Y・Z)もオフの状態であり、モータ3に駆動電流が供給されない。 Moreover, even if one anode cutoff switch Q1 (or Q2) is turned on based on the safety input signal (either S1 or S2) from the state shown in FIG. ) is off, no current is supplied to the light-emitting diode of the corresponding gate drive element GD, and no current is output from the corresponding photocoupler. As a result, the corresponding three switches U, V, and W (or X, Y, and Z) of the three-phase inverter 11 are also in an off state, and no drive current is supplied to the motor 3 .
 なお、本実施の形態では、一方のアノード遮断スイッチQ1(又はQ2)だけがオンになる状態が一定時間続いた場合、診断保護信号SdがHighになることにより、3相インバータ11の全てのスイッチ(U~Z)がオフになり、モータ3に駆動電流が供給されなくなる。この動作を実現するための具体的な回路構成等については、図3の説明で後述する。 In the present embodiment, when only one anode cutoff switch Q1 (or Q2) is turned on for a certain period of time, all the switches of the three-phase inverter 11 are turned on because the diagnosis protection signal Sd goes high. (U to Z) are turned off, and no drive current is supplied to the motor 3 . A specific circuit configuration and the like for realizing this operation will be described later with reference to FIG.
 一方、図2に示す状態から、安全入力信号S1,S2に基づいて両方のアノード遮断スイッチQ1,Q2がオンになった場合、ゲートドライブ素子GDの全ての発光ダイオードに定電圧電源からの電流が供給可能な状態となる。この場合、ゲートドライブ素子GDの各々の発光ダイオードの発光の有無ひいては各々のフォトカプラの出力電流による3相インバータ11の対応するスイッチ(U~Z)のオン/オフの状態ないし切り替えは、バッファ回路BF0の対応する増幅反転素子からの出力(Lo/High)によって決まる。 On the other hand, when both anode cutoff switches Q1 and Q2 are turned on based on the safety input signals S1 and S2 from the state shown in FIG. It will be ready for supply. In this case, the on/off state or switching of the corresponding switches (U to Z) of the three-phase inverter 11 according to the presence or absence of light emission of each light emitting diode of the gate drive element GD and the output current of each photocoupler is determined by the buffer circuit. It is determined by the output (Lo/High) from the corresponding amplifying and inverting element of BF0.
 この例では、制御パルス生成部15からHighの信号が入力されバッファ回路BF0の増幅反転素子からLoの信号が出力された場合、ゲートドライブ素子GDの対応する発光ダイオードが発光し、対応するフォトカプラから電流が出力され、3相インバータ11の対応するスイッチ(U~Zのいずれか)がオンになる。反対に、制御パルス生成部15からLoの信号が入力されバッファ回路BF0の増幅反転素子からHighの信号が出力された場合、ゲートドライブ素子GDの対応する発光ダイオードは発光せず、対応するフォトカプラからは電流が出力されず、3相インバータ11の対応するスイッチ(U~Zのいずれか)はオフになる。 In this example, when a High signal is input from the control pulse generator 15 and a Lo signal is output from the amplifying/inverting element of the buffer circuit BF0, the corresponding light-emitting diode of the gate drive element GD emits light, and the corresponding photocoupler , the corresponding switch (any one of U to Z) of the three-phase inverter 11 is turned on. Conversely, when a Lo signal is input from the control pulse generator 15 and a High signal is output from the amplifying/inverting element of the buffer circuit BF0, the corresponding light-emitting diode of the gate drive element GD does not emit light, and the corresponding photocoupler , the corresponding switch (any one of U to Z) of the three-phase inverter 11 is turned off.
 さらに、イネーブル端子(反転増幅素子)に入力される診断保護信号SdがHighの場合、反転増幅素子によってLoの信号に反転され、当該Loの信号がバッファ回路BF0の全ての増幅反転素子に入力され反転処理されることにより、全ての増幅反転素子の出力は、Highになる。この結果、ゲートドライブ素子GDの全ての発光ダイオードは発光せず、全てのフォトカプラから電流が出力されず、3相インバータ11の全てのスイッチ(U~Z)はオフになる。 Furthermore, when the diagnosis protection signal Sd input to the enable terminal (inverting amplification element) is High, it is inverted to a Lo signal by the inversion amplification element, and the Lo signal is input to all the amplification inversion elements of the buffer circuit BF0. Outputs of all amplifying and inverting elements become High due to the inverting process. As a result, none of the light emitting diodes of the gate drive element GD emit light, none of the photocouplers output current, and all switches (U to Z) of the three-phase inverter 11 are turned off.
 このように、図2に示す回路構成によれば、安全入力信号S1,S2(指令)に基づいて、すべての発光ダイオードに電流が供給可能な状態となり、かつ、診断保護信号SdがLoである(言い換えると安全停止命令が送出されない)ことを条件に、モータ3に駆動電流が供給される。 Thus, according to the circuit configuration shown in FIG. 2, based on the safety input signals S1 and S2 (instructions), current can be supplied to all the light emitting diodes, and the diagnosis protection signal Sd is Lo. (In other words, a drive current is supplied to the motor 3 on condition that the safety stop command is not sent).
 これに対し、ゲートドライブ素子GDのいずれかのフォトカプラがオンの状態において、バッファ回路BF0の反転増幅素子に入力される診断保護信号SdがHi状態になると、反転増幅によりかかるHiの信号がLoに反転し、バッファ回路BF0の各々の増幅反転素子に入力される。この結果、制御パルス生成部15から各々の信号線を通じて入力される制御パルス信号の後段(ゲートドライブ素子GD)への出力が阻止され、ゲートドライブ素子GDの全てのフォトカプラがオフの状態になる。したがって、この場合、3相インバータ11の全てのスイッチ(U~Z)がオフの状態であり(適宜、図1を参照)、モータ3に駆動電流が供給されない(遮断される)。 On the other hand, when any photocoupler of the gate drive element GD is in the ON state and the diagnostic protection signal Sd input to the inverting amplifier element of the buffer circuit BF0 becomes Hi, the signal of Hi applied by inverting amplification becomes Lo. , and input to each amplifying/inverting element of the buffer circuit BF0. As a result, the output of the control pulse signal input from the control pulse generator 15 through each signal line to the subsequent stage (gate drive element GD) is blocked, and all the photocouplers of the gate drive element GD are turned off. . Therefore, in this case, all the switches (U to Z) of the three-phase inverter 11 are in an off state (see FIG. 1 as needed), and the drive current is not supplied to the motor 3 (cut off).
 かくして、図2に示す回路例によれば、制御パルス生成部15から出力された複数(この例では6つ)のパルス信号は、バッファ素子BF0およびゲートドライブ素子GDを順に介して、3相インバータ11へそれぞれ転送される。そして、3相インバータ11は、内蔵するパワー半導体のスイッチングにより、モータ制御装置1の外部に接続されたモータ3へ交流電流を送出(供給)する。 Thus, according to the circuit example shown in FIG. 2, a plurality of (six in this example) pulse signals output from the control pulse generator 15 pass through the buffer element BF0 and the gate drive element GD in order to the three-phase inverter. 11 respectively. Then, the three-phase inverter 11 transmits (supplies) alternating current to the motor 3 connected to the outside of the motor control device 1 by switching the built-in power semiconductor.
 なお、診断保護信号Sdが喪失した場合には、バッファ素子BF0のイネーブル端子がオフとなり、この結果、ゲートドライブ素子GDの全てのフォトカプラ(U~Z)の発光ダイオードの発光が遮断され、同様に、モータ3の安全トルクオフが実現できる構成となっている。 When the diagnosis protection signal Sd is lost, the enable terminal of the buffer element BF0 is turned off, and as a result, the light emission of the light emitting diodes of all the photocouplers (U to Z) of the gate drive element GD is cut off. In addition, the configuration is such that safe torque off of the motor 3 can be realized.
 <変形例等>
 なお、バッファ素子BF0は、多チャンネルの素子であってもよい。この場合も、バッファ素子BF0の各チャンネルの出力のON/OFFを操作可能なイネーブル端子を設け、イネーブル端子に診断保護信号Sdを入力する構成とすればよい。
<Modifications, etc.>
Buffer element BF0 may be a multi-channel element. Also in this case, an enable terminal capable of turning ON/OFF the output of each channel of the buffer element BF0 may be provided, and the diagnosis protection signal Sd may be input to the enable terminal.
 また、ゲートドライブ素子GDは、図2ではフォトカプラを用いた回路構成について説明した。他の例として、ゲートドライブ素子GDは、制御パルス生成部15から入力される各々のパルス信号ごとに、当該パルス信号の転送/転送禁止(遮断)の切換えが可能な素子、例えば、光学式カプラや磁気カプラを内蔵した素子であってもよい。さらに、他の例として、ゲートドライブ素子GDは、制御パルス生成部15から入力される各々のパルス信号をそのまま転送する構成に限られず、各々のパルス信号を、3相インバータ11の各々のゲート(スイッチU~Z)を駆動するための種々のデジタル信号に変換する回路であってもよい。 As for the gate drive element GD, the circuit configuration using a photocoupler has been described in FIG. As another example, the gate drive element GD is an element capable of switching between transfer/transfer inhibition (blocking) of each pulse signal input from the control pulse generator 15, such as an optical coupler. or an element incorporating a magnetic coupler. Furthermore, as another example, the gate drive element GD is not limited to a configuration in which each pulse signal input from the control pulse generation unit 15 is transferred as it is, and each pulse signal is transferred to each gate of the three-phase inverter 11 ( It may be a circuit that converts to various digital signals for driving the switches (U to Z).
 <安全モニタリング部>
 図3は、本開示の安全モニタリング部16を構成する回路の一具体例を示している。なお、図中の論理素子は、実際の回路として駆動させる場合は図示しない定電圧源が接続されるが、機能の説明においては影響がないため、定電圧源に関する説明を省略する。
<Safety Monitoring Department>
FIG. 3 shows one specific example of a circuit that makes up the safety monitoring section 16 of the present disclosure. Note that the logic elements in the figure are connected to a constant voltage source (not shown) when driven as an actual circuit, but the description of the constant voltage source is omitted because it does not affect the description of the function.
 図3に示す安全モニタリング部16は、外部安全装置2から送出された安全入力信号S1およびS2を、それぞれ、第1の処理ブロックB1と、第2の処理ブロックB2と、に並列分岐して演算処理を行う。そして、安全モニタリング部16は、第1の処理ブロックB1の演算出力と、第2の処理ブロックB2の演算出力とを第3の処理ブロックB3で論理和(OR)演算して、診断保護信号Sdを生成および出力する。 The safety monitoring unit 16 shown in FIG. 3 branches the safety input signals S1 and S2 sent from the external safety device 2 in parallel to a first processing block B1 and a second processing block B2, respectively, and performs calculations. process. Then, the safety monitoring unit 16 performs a logical sum (OR) operation on the operation output of the first processing block B1 and the operation output of the second processing block B2 in the third processing block B3 to generate a diagnosis protection signal Sd. generate and output .
 安全モニタリング部16の第1の処理ブロックB1は、前段側から、XOR部B11と、充放電部B12と、ラッチ部B13と、が順に直列接続することにより構成される。 The first processing block B1 of the safety monitoring unit 16 is configured by sequentially connecting an XOR unit B11, a charging/discharging unit B12, and a latch unit B13 in series from the front side.
 このうち、XOR部B11は、安全入力信号S1と安全入力信号S2とを比較し、かかる信号のHigh/Lowの極性に差異があるかを検知し、差異があった場合に、後段にHigh信号を出力する。XOR部B11は、本開示の「比較部」に対応する。例えば、図3に示すように、XOR部B11は、安全入力信号S1および安全入力信号S2の論理XORを演算するXOR素子X1と、当該演算結果(すなわちXOR素子X1の出力)をプルダウンする抵抗R11と、で構成することができる。ここで、プルダウン抵抗R11は、本開示の「第1抵抗」に対応する。 Of these, the XOR unit B11 compares the safety input signal S1 and the safety input signal S2, detects whether there is a difference in the polarity of High/Low of these signals, and if there is a difference, outputs a High signal to the subsequent stage. to output The XOR section B11 corresponds to the "comparison section" of the present disclosure. For example, as shown in FIG. 3, the XOR unit B11 includes an XOR element X1 that performs a logical XOR operation of the safety input signal S1 and the safety input signal S2, and a resistor R11 that pulls down the result of the operation (that is, the output of the XOR element X1). and can be composed of Here, the pull-down resistor R11 corresponds to the "first resistor" of the present disclosure.
 なお、以下は、同等の機能を有する抵抗を「プルダウン抵抗」と称し、この逆すなわち出力をプルアップする役割を担う抵抗を「プルアップ抵抗」と称する。 In the following, a resistor having an equivalent function will be referred to as a "pull-down resistor", and a resistor that plays the opposite role of pulling up the output will be referred to as a "pull-up resistor".
 プルダウン抵抗R11は、一端がXOR素子X1およびXOR部B11の出力端に接続され、プルダウン抵抗R11の他端は基準電位に接続されている。かかるプルダウン抵抗R11は、例えば、安全モニタリング部16の起動時にXOR部B11の出力電位を基準電位へ下げて、出力値を安定させる役割を有し、後述するラッチ部B13のプルダウン抵抗R14についても同様である。 One end of the pull-down resistor R11 is connected to the output ends of the XOR element X1 and the XOR section B11, and the other end of the pull-down resistor R11 is connected to the reference potential. Such a pull-down resistor R11 has a role of, for example, lowering the output potential of the XOR unit B11 to the reference potential when the safety monitoring unit 16 is activated, and stabilizing the output value. is.
 次に、充放電部B12は、XOR部B11で差異が検知された場合に出力されるHighの電流を充電することで、当該差異が継続した時間情報を記憶するタイマとしての役割を担っている。このような充放電部B12としては、例えば図3に示すように、抵抗R12およびコンデンサC11を(互いに直列的に)接続させるRC一次遅れフィルタ回路(RC時定数回路)を備える構成とすればよい。 Next, the charging/discharging unit B12 plays a role of a timer that stores information on the duration of the difference by charging the high current output when the difference is detected by the XOR unit B11. . As such a charging/discharging unit B12, for example, as illustrated in FIG. .
 ここで、抵抗R12は、本開示の「第2抵抗」に対応する。この抵抗R12の一端はXOR素子(X1)の出力端に接続され、抵抗R12の他端は、充放電部B12の出力端に接続されている。 Here, the resistor R12 corresponds to the "second resistor" of the present disclosure. One end of the resistor R12 is connected to the output end of the XOR element (X1), and the other end of the resistor R12 is connected to the output end of the charging/discharging section B12.
 また、コンデンサC11は、充放電部B12に供給される電流を充電および放電する役割を有し、コンデンサC11の一端(正電圧端子)が、抵抗R12の他端および充放電部B12の出力端に接続され、コンデンサC11の他端は基準電位に接続されている。 Further, the capacitor C11 has a role of charging and discharging the current supplied to the charging/discharging section B12, and one end (positive voltage terminal) of the capacitor C11 is connected to the other end of the resistor R12 and the output terminal of the charging/discharging section B12. , and the other end of the capacitor C11 is connected to the reference potential.
 また、図3に示す例では、直列接続されたダイオードD11および抵抗R13の回路(以下、ダイオード回路ともいう)が、上述した抵抗R12の出力側から入力側に向けて並列に接続されている。ここで、抵抗R13は、本開示の「第3抵抗」に対応する。そして、抵抗R12(第2抵抗)と抵抗R13(第3抵抗)とにおける抵抗値の大小関係は、R12>R13である。 In addition, in the example shown in FIG. 3, a circuit of series-connected diode D11 and resistor R13 (hereinafter also referred to as a diode circuit) is connected in parallel from the output side of resistor R12 to the input side. Here, the resistor R13 corresponds to the "third resistor" of the present disclosure. The magnitude relationship between the resistance values of the resistor R12 (second resistor) and the resistor R13 (third resistor) is R12>R13.
 上記のダイオード回路は、コンデンサC11の充電時には機能せず(抵抗R12のみの回路が機能する)、コンデンサC11の放電時は抵抗R12とR13の並列抵抗回路として機能する。このため、抵抗R12とR13との抵抗値の違いにより、充電と放電の電流(時定数)を互いに異なる値へと調整することができる。 The above diode circuit does not function when charging the capacitor C11 (the circuit with only the resistor R12 functions), and functions as a parallel resistance circuit of the resistors R12 and R13 when discharging the capacitor C11. Therefore, the difference in the resistance values of the resistors R12 and R13 allows the charging and discharging currents (time constants) to be adjusted to different values.
 かかる構成を備える充放電部B12は、前段のXOR部B11の出力がLowからHighになった場合(言い換えると信号S1と信号S2に差異が発生した場合)、コンデンサC11への充電(電荷蓄積)を開始する。そして、充放電部B12は、コンデンサC11に蓄積された電荷が閾値に達するまでの間にXOR部B11の出力がLowに戻った場合(言い換えると信号S1と信号S2に差異が無くなった場合)、コンデンサC11に蓄積された電荷を抵抗R11、抵抗R12、および抵抗R13に放電することにより、コンデンサC11(言い換えるとタイマ)をリセットする。 The charging/discharging unit B12 having such a configuration charges the capacitor C11 (charge accumulation) when the output of the preceding XOR unit B11 changes from Low to High (in other words, when there is a difference between the signals S1 and S2). to start. Then, when the output of the XOR unit B11 returns to Low before the charge accumulated in the capacitor C11 reaches the threshold value (in other words, when there is no difference between the signals S1 and S2), the charge/discharge unit B12 The capacitor C11 (in other words, the timer) is reset by discharging the charge accumulated in the capacitor C11 to the resistors R11, R12, and R13.
 一方、充放電部B12は、XOR部B11の出力が一定時間Highのまま継続した場合、コンデンサC11に電荷が蓄積され、コンデンサC11の電圧はXOR部B11の出力電圧へと漸近する。 On the other hand, in the charging/discharging section B12, when the output of the XOR section B11 remains High for a certain period of time, charges are accumulated in the capacitor C11, and the voltage of the capacitor C11 gradually approaches the output voltage of the XOR section B11.
 さらに、ラッチ部B13は、コンデンサC11の電圧が所定の電圧閾値を超えたか否かを判定し、ひとたび超過した場合、その判定結果をHigh状態の出力として保持(継続的に出力)する機能を有する。この作用は、コンデンサC11の電圧をタイマとみなせば、安全入力信号S1および安全入力信号S2の差異の継続時間が所定の時限を超過したか否かの判定と同等の効果といえる。なお、充放電部B12およびラッチ部B13は、本開示の「ラッチ部」に対応する。また、以降は、ラッチ部B13の出力を信号SLと称することとする。 Furthermore, the latch unit B13 has a function of determining whether or not the voltage of the capacitor C11 exceeds a predetermined voltage threshold, and holding (continuously outputting) the determination result as a High state output when the voltage exceeds the predetermined voltage threshold. . If the voltage of the capacitor C11 is regarded as a timer, this action can be said to have the same effect as determining whether or not the duration of the difference between the safety input signal S1 and the safety input signal S2 has exceeded a predetermined time limit. Note that the charge/discharge unit B12 and the latch unit B13 correspond to the "latch unit" of the present disclosure. Also, hereinafter, the output of the latch section B13 will be referred to as a signal SL.
 例えば、図3に示すように、ラッチ部B13は、論理OR素子O11と、論理OR素子O11の出力をプルダウンするプルダウン抵抗R14とを備える。 For example, as shown in FIG. 3, the latch section B13 includes a logical OR element O11 and a pull-down resistor R14 that pulls down the output of the logical OR element O11.
 また、任意に、ラッチ部B13は、論理OR素子O11の出力を蓄電(充放電)するコンデンサC12を備える。ラッチ部B13は、OR素子O11の入力の一方にタイマ部B12の出力端およびコンデンサC11の電圧端(正電圧端子)が接続され、また、OR素子O11の入力の他方はOR素子O11の出力を直接帰還する回路で構成する。コンデンサC11の電圧は、論理OR素子O11の特性値であるハイレベル電圧を閾値として、かかる電圧閾値の超過の有無が判定される。 Optionally, the latch unit B13 also includes a capacitor C12 that stores (charges and discharges) the output of the logical OR element O11. In the latch unit B13, one input of the OR element O11 is connected to the output terminal of the timer unit B12 and the voltage terminal (positive voltage terminal) of the capacitor C11, and the other input of the OR element O11 is connected to the output of the OR element O11. It consists of a direct feedback circuit. Whether or not the voltage of the capacitor C11 exceeds the threshold is determined using the high-level voltage, which is the characteristic value of the logical OR element O11, as a threshold.
 第2の処理ブロックB2は、安全入力信号S1および安全入力信号S2の両方がともにモータ3の運転許可状態(例えばHigh)を示す場合にこれを検出(判定)し、検出結果(運転許可状態の場合Lo)を出力する。例えば、第2の処理ブロックB2は、図3に示すように、安全入力信号S1および安全入力信号S2の論理NANDを演算するNAND素子N1と、NAND素子N1の出力をプルアップする抵抗R21と、で構成する。 The second processing block B2 detects (determines) when both the safety input signal S1 and the safety input signal S2 indicate an operation permission state (for example, High) of the motor 3, and determines the detection result (operation permission state). If Lo) is output. For example, as shown in FIG. 3, the second processing block B2 includes a NAND element N1 for calculating a logical NAND of the safety input signal S1 and the safety input signal S2, a resistor R21 for pulling up the output of the NAND element N1, Consists of
 第3の処理ブロックB3は、入力信号の論理和(OR演算)を行うOR素子O3と、OR素子O3の出力端および第3の処理ブロックB3の出力側に接続されたプルアップ用抵抗R3と、を備える。OR素子O3の入力端は、第1の処理ブロックB1の出力端と、第2の処理ブロックB2の出力端とにそれぞれ接続されている。 The third processing block B3 includes an OR element O3 that performs a logical sum (OR operation) of input signals, and a pull-up resistor R3 connected to the output end of the OR element O3 and the output side of the third processing block B3. , provided. The input end of the OR element O3 is connected to the output end of the first processing block B1 and the output end of the second processing block B2, respectively.
 かくして、安全モニタリング部16は、第1の処理ブロックB1の出力と第2の処理ブロックB2の出力を、第3の処理ブロックB3のOR素子O3によりOR演算し、OR演算の結果(Lo又はHigh)を、診断保護信号Sdとして出力する。そして、安全モニタリング部16から出力されたLo又はHighの診断保護信号Sdは、後段の安全トルクオフ回路10におけるバッファ素子BF0(図2を参照)のイネーブル端子に入力される。 Thus, the safety monitoring unit 16 ORs the output of the first processing block B1 and the output of the second processing block B2 using the OR element O3 of the third processing block B3, and outputs the result of the OR operation (Lo or High ) as the diagnostic protection signal Sd. Then, the low or high diagnostic protection signal Sd output from the safety monitoring unit 16 is input to the enable terminal of the buffer element BF0 (see FIG. 2) in the safe torque-off circuit 10 in the subsequent stage.
 以下、同様に、診断保護信号SdがLo状態である場合をモータ3の運転許可状態であるとして説明する。この場合、第1の処理ブロックB1は、起動時にプルダウン抵抗R11,14等の作動によりLo信号を出力する。その後、第1の処理ブロックB1は、外部安全装置2から入力される安全入力信号S1と安全入力信号との間に差異が発生し(XOR部B11の出力がHighになる)、その差異が所定時間経過した場合、Highの診断保護信号Sdを継続的に出力する。 Hereinafter, similarly, the case where the diagnosis protection signal Sd is in the Lo state will be described as the operation permission state of the motor 3 . In this case, the first processing block B1 outputs a Lo signal by operating the pull-down resistors R11, R14, etc. at startup. After that, in the first processing block B1, a difference occurs between the safety input signal S1 input from the external safety device 2 and the safety input signal (the output of the XOR section B11 becomes High), and the difference becomes a predetermined value. When the time elapses, the high diagnostic protection signal Sd is continuously output.
 第2の処理ブロックB2の出力は、安全入力信号S1およびS2がともにHigh(運転許可状態)であった場合にLoを出力することになる。また、第3の処理ブロックB3は、第1の処理ブロックB1の出力と第2の処理ブロックB2の出力との論理ORを診断保護信号Sdとして出力する。 The output of the second processing block B2 will be Lo when both the safety input signals S1 and S2 are High (operation permitted state). Also, the third processing block B3 outputs the logical OR of the output of the first processing block B1 and the output of the second processing block B2 as the diagnosis protection signal Sd.
 したがって、安全モニタリング部16は、第1の処理ブロックB1で差異が一定時間継続した旨の異常を判定した場合に限り、通常とは異なる信号を出力する(信号S1およびS2間の異常を検出する)ことができる。 Therefore, the safety monitoring unit 16 outputs a signal different from the normal signal (detects an abnormality between the signals S1 and S2) only when the first processing block B1 determines that the difference has continued for a certain period of time. )be able to.
 以上のように、本実施の形態は、モータ3に駆動電流を送出してモータ3ひいては加工機器を通常動作状態とし、外部安全装置2から送出される加工機器の安全機能動作に関する安全入力信号S1,S2(多重化された指令)に応じてモータ3ひいては加工機器を通常動作状態から安全停止(この例ではSTO)状態とするようにモータ3に送出される駆動電流を制御するモータ制御部(安全トルクオフ回路10、3相インバータ11等)を備えるモータ制御装置1に、安全入力信号S1,S2(多重化された指令)が互いに一致するか否かを監視する安全モニタリング部16(指令監視部)が内蔵される構成を備える。 As described above, in this embodiment, the drive current is sent to the motor 3 to bring the motor 3 and the processing equipment into the normal operation state, and the safety input signal S1 related to the safety function operation of the processing equipment sent from the external safety device 2 , S2 (multiplexed commands), the motor control unit ( A safety monitoring unit 16 (command monitoring unit ) is built in.
 そして、図3で詳述したように、安全モニタリング部16(指令監視部)は、安全入力信号S1,S2(指令)の互いに一致しない期間が許容値を超えた場合、モータ3を安全停止(STO)させるための安全停止命令(診断保護信号Sd=High)を生成し、生成された安全停止命令(Highの診断保護信号Sd)をモータ制御部(安全トルクオフ回路10)に送出する。 As described in detail with reference to FIG. 3, the safety monitoring unit 16 (command monitoring unit) causes the motor 3 to safely stop ( A safe stop command (diagnostic protection signal Sd=High) for STO) is generated, and the generated safe stop command (High diagnostic protection signal Sd) is sent to the motor control unit (safe torque off circuit 10).
 具体的には、安全モニタリング部16(指令監視部)は、各々の安全入力信号S1,S2(指令)を比較して差異をHigh信号として出力するXOR部B11(比較部)と、High信号の電荷を蓄積する蓄電部(充放電部B12)と、蓄電部の電圧が閾値を超えた場合、安全停止命令(Highの診断保護信号Sd)を生成および出力する安全停止命令生成部(充放電部B12、ラッチ部B13)と、を備える。 Specifically, the safety monitoring unit 16 (command monitoring unit) includes an XOR unit B11 (comparison unit) that compares the respective safety input signals S1 and S2 (command) and outputs the difference as a High signal, and a High signal A power storage unit (charging/discharging unit B12) that accumulates electric charge, and a safe stop command generation unit (charging/discharging unit) that generates and outputs a safety stop command (High diagnostic protection signal Sd) when the voltage of the power storage unit exceeds a threshold value. B12 and a latch portion B13).
 上述したような安全モニタリング部16を備えた本実施形態のモータ制御装置1では、安全入力信号S1および安全入力信号S2を入力して相互に比較し、これら2つの入力(S1,S2)の一方に異常があった場合に、当該異常を検知してモータ3の動作のSTOを作動させることができる。 In the motor control device 1 of the present embodiment having the safety monitoring unit 16 as described above, the safety input signal S1 and the safety input signal S2 are inputted and compared with each other, and one of these two inputs (S1, S2) , the abnormality can be detected and the STO of the operation of the motor 3 can be operated.
 また、安全モニタリング部16をモータ制御装置1の内部装置として組み込んだ本実施の形態によれば、外部安全装置2が正しく動作しているかを、外部の監視装置を用いることなく監視することが可能となり、言い換えると結線せずに、監視することができる。したがって、多重の安全入力信号を監視し異常を検知するモニタリング機能を内部に搭載するモータ制御装置1ひいては加工機器システム全体での安全設計が容易になる利点がある。 Further, according to the present embodiment in which the safety monitoring unit 16 is incorporated as an internal device of the motor control device 1, it is possible to monitor whether the external safety device 2 is operating properly without using an external monitoring device. In other words, monitoring can be performed without wiring. Therefore, there is an advantage that the safety design of the motor control device 1 and the processing equipment system as a whole, which incorporates a monitoring function for monitoring multiple safety input signals and detecting abnormalities, is facilitated.
 さらに、安全モニタリング部16(指令監視部)の蓄電部(充放電部B12)は、XOR部B11(比較部)のHigh信号の出力時からコンデンサC11の電圧が閾値を超えるまでの時間を確保するようにコンデンサC11を充電するRC時定数回路(R12およびC11)を備える。また、安全停止命令生成部は、コンデンサC11の電圧が閾値を超える(コンデンサC11から放電される)ことにより、安全停止信号(Highの診断保護信号Sd)の出力を保持するラッチ部B13を備える。 Furthermore, the power storage unit (charge/discharge unit B12) of the safety monitoring unit 16 (command monitoring unit) secures the time from when the XOR unit B11 (comparison unit) outputs a High signal until the voltage of the capacitor C11 exceeds the threshold. An RC time constant circuit (R12 and C11) is provided to charge capacitor C11 as follows. The safety stop command generation unit also includes a latch unit B13 that holds the output of the safety stop signal (High diagnostic protection signal Sd) when the voltage of the capacitor C11 exceeds the threshold (discharged from the capacitor C11).
 上記のようなRC時定数回路(R12およびC11)は、例えばクロック信号に基づいて時間を計測する一般的なタイマと同様の機能を奏することができ、かつ低コストで実現することができる。 The RC time constant circuit (R12 and C11) as described above can perform the same function as a general timer that measures time based on, for example, a clock signal, and can be realized at low cost.
 他の観点からは、安全モニタリング部16(指令監視部)は、多重化された指令(安全入力信号S1,S2)を、それぞれ第1の処理ブロックB1(第1の信号処理部)と第2の信号処理部B2(第2の信号処理部)とに並列分岐し、第1の処理ブロックB1の演算出力と第2の処理ブロックB2の演算出力との論理和(OR)に基づき、安全トルクオフ回路10(モータ制御部)に対して以下のような診断保護信号Sdを出力する。 From another point of view, the safety monitoring unit 16 (command monitoring unit) sends the multiplexed commands (safety input signals S1, S2) to the first processing block B1 (first signal processing unit) and the second processing block B1 (first signal processing unit), respectively. branched in parallel to the signal processing unit B2 (second signal processing unit), and based on the logical sum (OR) of the calculation output of the first processing block B1 and the calculation output of the second processing block B2, safe torque off The following diagnostic protection signal Sd is output to the circuit 10 (motor controller).
 すなわち、安全モニタリング部16は、上述のタイマ機能により、安全入力信号S1,S2(多重化された指令)の互いに一致しない期間が許容値を超えていない場合には診断保護信号SdとしてLoを送出し、当該一致しない期間が許容値を超えた場合には診断保護信号SdとしてHi(安全停止命令)を送出する。 That is, the safety monitoring unit 16 uses the above-described timer function to send Lo as the diagnostic protection signal Sd when the period in which the safety input signals S1 and S2 (multiplexed commands) do not match each other does not exceed the allowable value. Then, when the period of non-coincidence exceeds the allowable value, Hi (safety stop command) is sent as the diagnosis protection signal Sd.
 上記のような診断保護信号Sdを出力する回路構成の一具体例として、第1の処理ブロックB1(第1の信号処理部)は、XOR部B11と、充放電部B12と、ラッチ部B13とが順に直列に接続され、第2の処理ブロックB2(第2の信号処理部)は、安全入力信号S1,S2(多重化された指令)をNAND演算して出力するNAND部が設けられる。 As a specific example of a circuit configuration for outputting the diagnostic protection signal Sd as described above, the first processing block B1 (first signal processing section) includes an XOR section B11, a charge/discharge section B12, and a latch section B13. are serially connected in order, and the second processing block B2 (second signal processing section) is provided with a NAND section that performs NAND operations on the safety input signals S1 and S2 (multiplexed commands) and outputs them.
 詳細には、XOR部B11は、安全入力信号S1,S2(多重化された指令)の排他的論理和を演算出力するXOR素子X1と、XOR素子X1の出力をプルダウンする第1抵抗(R11)と、を備える。 Specifically, the XOR unit B11 includes an XOR element X1 that outputs an exclusive OR of the safety input signals S1 and S2 (multiplexed instructions), and a first resistor (R11) that pulls down the output of the XOR element X1. And prepare.
 また、充放電部B12は、一端がXOR素子X1の出力端に接続される第2抵抗(R12)と、該第2抵抗(R12)の他端に接続されたコンデンサC11とによるRC時定数回路を備え、XOR素子X1の出力がHighの場合にコンデンサC11を充電し、XOR素子X1の出力がLowの場合にコンデンサC11の電荷を放電する回路である。 The charge/discharge unit B12 is an RC time constant circuit composed of a second resistor (R12) one end of which is connected to the output end of the XOR element X1, and a capacitor C11 connected to the other end of the second resistor (R12). and charges the capacitor C11 when the output of the XOR element X1 is High, and discharges the capacitor C11 when the output of the XOR element X1 is Low.
 さらに、ラッチ部B13は、第1の入力端が上記のRC時定数回路(R12,C11)の出力端に接続されるOR素子O11と、OR素子O11の出力をプルダウンするプルダウン抵抗(R14)と、を備え、OR素子O11の第2の入力端にはOR素子O11の出力が直接接続される回路である。 Further, the latch section B13 includes an OR element O11 whose first input terminal is connected to the output terminal of the RC time constant circuit (R12, C11), and a pull-down resistor (R14) that pulls down the output of the OR element O11. , and the output of the OR element O11 is directly connected to the second input terminal of the OR element O11.
 さらにまた、第2の処理ブロックB2(第2の信号処理部)のNAND部B2は、前記指令(S1,S2)の否定論理積(NAND)を演算し出力する論理NAND素子(N1)と、該論理NAND素子(N1)の出力をプルアップする抵抗(R21)と、を備える。 Furthermore, the NAND section B2 of the second processing block B2 (second signal processing section) includes a logical NAND element (N1) for calculating and outputting a negative logical product (NAND) of the commands (S1, S2), and a resistor (R21) that pulls up the output of the logic NAND element (N1).
 上述した回路構成とすることにより、診断保護信号SdのLo又はHi(安全停止命令)の切り替えを実現できる。また、上述した回路構成とすることにより、後述する種々の技術的課題に対応するための付随的な機能を持たせることができる。 By adopting the circuit configuration described above, it is possible to switch the diagnostic protection signal Sd between Lo and Hi (safety stop command). Further, by adopting the circuit configuration described above, it is possible to provide ancillary functions for coping with various technical problems to be described later.
 このように、本実施の形態によれば、モータ3を駆動制御するインバータ回路等のモータ制御系に、多重系の安全システムのモニタリング機能およびモニタリング結果に応じた保護機能を組み込むことにより、モータ3が用いられる加工機器等の産業機械のシステムでの安全システムの構築をより容易に実現できる。 As described above, according to the present embodiment, a motor control system such as an inverter circuit for driving and controlling the motor 3 is equipped with a monitoring function of a multiple system safety system and a protection function according to the monitoring result. It is possible to more easily construct a safety system in a system of industrial machines such as processing equipment that uses
 以上、図3に示す安全モニタリング部16における主要な回路構成および動作を説明した。次に、図3に示す安全モニタリング部16の付随的な機能および当該機能から得られるメリット等について説明する。 The main circuit configuration and operation of the safety monitoring unit 16 shown in FIG. 3 have been described above. Next, ancillary functions of the safety monitoring unit 16 shown in FIG. 3 and advantages obtained from the functions will be described.
 <充放電部B12における課題と対応する構成>
 安全入力信号S1および安全入力信号S2が安全モニタリング部16の第1の処理ブロックB1に入力される際、XOR部B11が、XOR素子X1の出力(High/Lo)を高い頻度で切り替える事例が発生し得る。このような事例は、例えば、誤差や微小ノイズなどの何等かの要因により、これら2つの安全入力信号(S1,S2)の差異が繰り返し瞬間的に発生するような場合である。
<Problem in charging/discharging unit B12 and corresponding configuration>
When the safety input signal S1 and the safety input signal S2 are input to the first processing block B1 of the safety monitoring unit 16, the XOR unit B11 frequently switches the output (High/Lo) of the XOR element X1. can. Such a case is, for example, a case where the difference between these two safety input signals (S1, S2) repeatedly occurs instantaneously due to some factor such as an error or minute noise.
 かくして、XOR素子X1の出力(High/Lo状態)が切り替わる頻度が高い場合、後段の充放電部B12におけるコンデンサC11の構成によっては、特にコンデンサC11の放電時定数が大きい場合、以下のような問題が発生し得る。すなわち、XOR素子X1の出力がLo状態を保つ時間が短くなることから、充放電部B12のコンデンサC11の電荷が十分に放電されず、また、XOR素子X1の出力が繰り返しHighとなることによりコンデンサC11の電圧上昇特性が不均一になる可能性がある。 Thus, when the frequency of switching the output (High/Lo state) of the XOR element X1 is high, depending on the configuration of the capacitor C11 in the subsequent charging/discharging section B12, particularly when the discharge time constant of the capacitor C11 is large, the following problems may occur. can occur. That is, since the time for which the output of the XOR element X1 remains in the Lo state is shortened, the charge in the capacitor C11 of the charging/discharging section B12 is not sufficiently discharged, and the output of the XOR element X1 repeatedly becomes High, thereby The voltage rise characteristics of C11 may become uneven.
 上記の問題に対処するためには、充放電部B12におけるコンデンサC11の放電特性を向上させることが求められる。また、上述したタイマ計測時間の精度を保ちつつ放電特性を向上させるためには、コンデンサC11の充電時定数に対し、放電時定数を小さくする必要がある。 In order to deal with the above problem, it is required to improve the discharge characteristics of the capacitor C11 in the charging/discharging section B12. Also, in order to improve the discharge characteristics while maintaining the accuracy of the timer measurement time described above, it is necessary to make the discharge time constant smaller than the charge time constant of the capacitor C11.
 この問題に関し、本実施形態では、図3に示すように、充放電部B12の抵抗R12に対して、上述したダイオード回路すなわち抵抗R13とダイオードD11の直列回路を並列接続しており、かつ、ダイオードD11のアノード側をコンデンサC11に接続する構成を採用する。 Regarding this problem, in this embodiment, as shown in FIG. A configuration in which the anode side of D11 is connected to capacitor C11 is adopted.
 この構成によれば、充放電部B12の抵抗R12の抵抗値よりも、XOR部B11の抵抗R11および充放電部B12の抵抗R13の抵抗値を十分小さい値にすることで、コンデンサC11の充電時定数に対し放電時定数を小さくすることができ、放電時間を短縮することができる。 According to this configuration, the resistance value of the resistor R11 of the XOR unit B11 and the resistance value of the resistor R13 of the charging/discharging unit B12 are sufficiently smaller than the resistance value of the resistor R12 of the charging/discharging unit B12. The discharge time constant can be made smaller than the constant, and the discharge time can be shortened.
 したがって、本実施形態における第1の処理ブロックB1の回路構成によれば、上述したタイマ計測時間の精度を一定に保ちつつ、コンデンサC11の放電特性を向上させることができる。また、この回路構成によれば、XOR素子X1の出力(High/Lo状態)が切り替わる頻度が高い場合であっても、コンデンサC11の電圧上昇特性を保つことができる。 Therefore, according to the circuit configuration of the first processing block B1 in this embodiment, it is possible to improve the discharge characteristics of the capacitor C11 while maintaining the accuracy of the timer measurement time described above. Further, according to this circuit configuration, even when the frequency of switching the output (High/Lo state) of the XOR element X1 is high, the voltage rise characteristic of the capacitor C11 can be maintained.
 <ラッチ部B13における課題と対応する構成>
 ラッチ部B13の論理OR素子O11は、ひとたび出力をHighとした場合、Highの出力を継続する回路構成となっていることから、ノイズ等の混入による誤動作に注意する必要がある。
<Problem in Latch Unit B13 and Corresponding Configuration>
Since the logic OR element O11 of the latch section B13 has a circuit configuration in which once the output is set to High, it continues to output High, it is necessary to be careful of malfunction due to mixing of noise or the like.
 この問題に関し、本実施形態では、図3に示すように、OR素子O11の出力にはコンデンサC12を並列に接続する構成を採用している。このような構成とすることにより、ノイズ等の混入の際に当該ノイズ成分をコンデンサC12で吸収することができるので、ノイズ等の混入に起因した誤動作を防止又は抑制することができる。 Regarding this problem, in this embodiment, as shown in FIG. 3, a configuration is adopted in which a capacitor C12 is connected in parallel to the output of the OR element O11. With such a configuration, when noise or the like is mixed, the noise component can be absorbed by the capacitor C12, so malfunction caused by the noise or the like can be prevented or suppressed.
 <<実施の形態2>>
 図4は、本開示のモータ制御装置の実施の形態2による安全トルクオフ回路の構成例である。図4に示す構成は、上述した図2に示す安全トルクオフ回路10の代替例である。
<<Embodiment 2>>
FIG. 4 is a configuration example of a safe torque-off circuit according to Embodiment 2 of the motor control device of the present disclosure. The configuration shown in FIG. 4 is an alternative to the safe torque off circuit 10 shown in FIG. 2 described above.
 以下、図2に示す安全トルクオフ回路10と相違する事項について説明し、同等の構成については、同一の符号を付して適宜その説明を省略する。また、同様に、論理素子に接続される定電圧源についての説明は省略する。  Hereinafter, matters different from the safe torque-off circuit 10 shown in FIG. 2 will be described, and the same reference numerals will be assigned to the same configurations, and the description thereof will be omitted as appropriate. Similarly, the description of the constant voltage source connected to the logic element is omitted.
 図2と図4とを比較して分かるように、図4に示す安全トルクオフ回路10Aは、図2に示す構成に対して、アノード遮断スイッチQ1,Q2が削除され、バッファ素子BF2、論理AND素子A1および論理AND素子A2が追加されている。 2 and 4, the safe torque-off circuit 10A shown in FIG. 4 has the anode cutoff switches Q1 and Q2 removed from the configuration shown in FIG. A1 and a logical AND element A2 have been added.
 概して、図4に示す安全トルクオフ回路10Aにおける図2に示す構成との主な違いは、ゲートドライブ素子GDのアノード端子(U・V・W・X・Y・Z相の全て)が定電圧電源へ直接に並列接続された点と、バッファ素子BF1およびバッファ素子BF2が直列接続される点である。このような構成とすることで、図4に示す安全トルクオフ回路10Aでは、2重系のモータの安全トルクオフを実現することができる。 In general, the main difference between the safe torque-off circuit 10A shown in FIG. 4 and the configuration shown in FIG. and the series connection of buffer element BF1 and buffer element BF2. With such a configuration, the safe torque-off circuit 10A shown in FIG. 4 can achieve safe torque-off of the dual system motor.
 また、この安全トルクオフ回路10Aも、図2に示す構成と同様に、診断保護信号SdによってもSTO動作が可能な構成とすべく、バッファ素子BF1およびバッファ素子BF2のイネーブル端子に、診断保護信号Sdの信号線を分岐させてそれぞれ接続している。 2, the safe torque-off circuit 10A is configured so that the STO operation can be performed even by the diagnostic protection signal Sd. are branched and connected to each other.
 図4に示す例では、診断保護信号Sdが入力されるバッファ素子BF1およびバッファ素子BF2のイネーブル端子に、論理AND素子A1および論理AND素子A2の出力端が接続される。また、論理AND素子A1および論理AND素子A2の入力の一端には、安全入力信号S1および安全入力信号S2の信号線が接続される。さらに、論理AND素子A1および論理AND素子A2の入力の他端には、診断保護信号Sdの反転信号が入力されるように、それぞれ反転部が設けられる(適宜、図4を参照)。 In the example shown in FIG. 4, the output terminals of the logic AND elements A1 and A2 are connected to the enable terminals of the buffer elements BF1 and BF2 to which the diagnosis protection signal Sd is input. Signal lines for the safety input signal S1 and the safety input signal S2 are connected to one ends of the inputs of the logic AND element A1 and the logic AND element A2. Further, the other terminals of the inputs of the logical AND element A1 and the logical AND element A2 are respectively provided with inverting portions so that the inverted signal of the diagnosis protection signal Sd is input (see FIG. 4 as appropriate).
 上記のような構成の安全トルクオフ回路10Aによれば、図2と同様の動作すなわち安全入力信号S1および安全入力信号S2がHighかつ診断保護信号SdがLoの場合、バッファ素子BF1からモータ動作許可状態の信号が出力される。各信号(S1、S2、Sd)が上記以外の場合の動作についても図2の場合と同様であり、詳述を省略する。 According to the safe torque-off circuit 10A configured as described above, when the operation is similar to that of FIG. signal is output. The operation of each signal (S1, S2, Sd) other than the above is the same as in the case of FIG. 2, and a detailed description thereof will be omitted.
 <<実施の形態3>>
 図5は、本開示のモータ制御装置の実施の形態3によるモータ制御装置の例である。図5に示すモータ制御装置1Aは、安全モニタリング部16による安全入力信号S1および安全入力信号S2の差異の監視のみならず、かかる監視を行う安全モニタリング部16が正常に機能しているか否かを検査できる機能を備える。以下に、図1で上述したモータ制御装置1との違いについて述べる。
<<Embodiment 3>>
FIG. 5 is an example of a motor control device according to Embodiment 3 of the motor control device of the present disclosure. The motor control device 1A shown in FIG. 5 not only monitors the difference between the safety input signal S1 and the safety input signal S2 by the safety monitoring unit 16, but also checks whether the safety monitoring unit 16 that performs such monitoring functions normally. It has a function that can be inspected. Differences from the motor control device 1 described above with reference to FIG. 1 will be described below.
 実施の形態3では、モータ制御装置1Aの外部装置として、画像表示ディスプレイなどのモニタ装置2Bを使用することを想定する。なお、図5中に符号2Aで示す外部安全装置は、図1に示す外部安全装置2と等価である。 In Embodiment 3, it is assumed that a monitor device 2B such as an image display is used as an external device of the motor control device 1A. 5 is equivalent to the external safety device 2 shown in FIG.
 実施の形態3のモータ制御装置1Aでは、安全入力信号S1および安全入力信号S2の伝送経路上に、それぞれの信号(S1,S2)の伝送を遮断可能なテストスイッチQT1、QT2を備える。図5に示す状態では、これらテストスイッチQT1、QT2は、いずれもONの状態である。また、実施の形態3では、これらテストスイッチQT1、QT2のON/OFFをモータ制御演算部14Aによって操作できる構成としている。さらに、実施の形態3のモータ制御演算部14Aは、安全モニタリング部16から出力される診断保護信号Sdの状態を検知できる構成としている。 The motor control device 1A of Embodiment 3 includes test switches QT1 and QT2 capable of blocking transmission of the respective signals (S1 and S2) on the transmission paths of the safety input signal S1 and the safety input signal S2. In the state shown in FIG. 5, these test switches QT1 and QT2 are both ON. Further, in Embodiment 3, the ON/OFF of these test switches QT1 and QT2 can be operated by the motor control calculation section 14A. Further, the motor control calculation section 14A of Embodiment 3 is configured to detect the state of the diagnostic protection signal Sd output from the safety monitoring section 16. FIG.
 具体的には、モータ制御演算部14Aは、テストスイッチQT1、QT2のオンオフを操作する信号を出力する操作部142を追加的に備える。この操作部142は、多重の指令(S1,S2)の少なくとも一つをモータ制御部(この例では安全トルクオフ回路10)に送出されないように操作する機能を有する。 Specifically, the motor control calculation unit 14A additionally includes an operation unit 142 that outputs a signal for turning on/off the test switches QT1 and QT2. This operation unit 142 has a function of operating so that at least one of the multiple commands (S1, S2) is not sent to the motor control unit (safe torque off circuit 10 in this example).
 また、モータ制御演算部14Aは、安全モニタリング部16から伝送される診断保護信号Sdに基づいて、外部のモニタ装置2Bに診断保護信号Sdや装置の状態等を通知する通知部141を備える。図示の例では、安全モニタリング部16から出力される診断保護信号Sdは、通知部141および操作部142にも入力される。モータ制御演算部14Aの他の構成(機能)は、図1で上述したモータ制御演算部14と同等である。 The motor control calculation unit 14A also includes a notification unit 141 that notifies the external monitor device 2B of the diagnosis protection signal Sd, the state of the device, etc. based on the diagnosis protection signal Sd transmitted from the safety monitoring unit 16. In the illustrated example, the diagnostic protection signal Sd output from the safety monitoring section 16 is also input to the notification section 141 and the operation section 142 . Other configurations (functions) of the motor control calculation unit 14A are equivalent to those of the motor control calculation unit 14 described above with reference to FIG.
 以下、図5に示す回路構成の意義および利点等について説明する。例えば、図1に示す構成において、仮に診断保護信号Sdの作用によってSTO状態に至った場合、STOの動作によりモータ3はトルクオフの状態になるものの、その要因(この例では、診断保護信号Sdの作用だったのか否か)が判別できない可能性がある。 The significance and advantages of the circuit configuration shown in FIG. 5 will be described below. For example, in the configuration shown in FIG. 1, if the STO state occurs due to the action of the diagnostic protection signal Sd, although the motor 3 is in a torque-off state due to the STO operation, the cause (in this example, the diagnostic protection signal Sd (whether it was an effect or not) may not be able to be determined.
 これに対し、図5に示す回路構成では、診断保護信号Sdを検知する検知手段(通値部141、および操作部142)をモータ制御演算部14Aの内部に搭載するとともに、通値部141を通じて、診断保護信号Sdの波形およびその推移を外部のモニタ装置2Bに通知してモニタ装置2Bで表示することができるので、システム使用者がその要因を特定できる利点がある。 On the other hand, in the circuit configuration shown in FIG. Since the waveform of the diagnostic protection signal Sd and its transition can be notified to the external monitor device 2B and displayed on the monitor device 2B, there is an advantage that the system user can specify the cause.
 また、図5に示す回路構成では、テストスイッチQT1、QT2は、モータ制御演算部14Aに設けられた操作部142から操作できるように構成されることから、より安全性が高まる利点がある。 In addition, in the circuit configuration shown in FIG. 5, the test switches QT1 and QT2 are configured so that they can be operated from the operation section 142 provided in the motor control calculation section 14A, so there is an advantage that the safety is further enhanced.
 より具体的には、例えば、安全入力信号S1、S2がモータ運転許可を示している状態において、テストスイッチQT1またはQT2の一方を作為的に(例えばユーザの操作により)OFFに操作して安全入力信号S1、S2の一方の伝送を遮断し、診断保護信号Sdが正しくHighへと移行するかを確認することができる。言い換えると、図5に示す回路構成によれば、安全モニタリング部16が正常か否かを自己診断することができるため、より故障のない安全システムを構築することがきる。 More specifically, for example, in a state in which the safety input signals S1 and S2 indicate that the motor operation is permitted, one of the test switches QT1 or QT2 is turned OFF intentionally (for example, by a user's operation) to turn off the safety input. By interrupting the transmission of one of the signals S1, S2, it is possible to check whether the diagnosis protection signal Sd correctly transitions to High. In other words, according to the circuit configuration shown in FIG. 5, it is possible to self-diagnose whether or not the safety monitoring unit 16 is normal, so that a more failure-free safety system can be constructed.
 なお、図5中に示すテストスイッチQT1,QT2は、安全入力を遮断する物理スイッチであることを例示したが、他にも、プルダウン・プルアップ等、安全入力信号S1、S2の極性(High/Lo)を反転させるような機構であれば、同等の自己診断機能を果たすことができる。 Although the test switches QT1 and QT2 shown in FIG. 5 are illustrated as physical switches that cut off the safety input, the polarity (high/high/high) of the safety input signals S1 and S2 such as pull-down/pull-up are also possible. A similar self-diagnostic function can be achieved with a mechanism that inverts Lo).
 <<実施の形態4>>
 図6は、本開示の実施の形態4におけるモータ制御装置において、安全入力信号S1、S2の伝送経路に電気的な入力回路を設ける場合の構成例を示す回路図である。
<<Embodiment 4>>
FIG. 6 is a circuit diagram showing a configuration example when an electrical input circuit is provided in the transmission path of the safety input signals S1 and S2 in the motor control device according to Embodiment 4 of the present disclosure.
 図6に示す例では、安全入力信号S1、S2の伝送経路における安全モニタリング部16および安全トルクオフ回路10の前段に、それぞれ、抵抗RFとコンデンサCFとによる一次遅れフィルタを設け、かかるフィルタから出力される電位を安全モニタリング部16および安全トルクオフ回路10に入力する。 In the example shown in FIG. 6, a first-order lag filter consisting of a resistor RF and a capacitor CF is provided in front of the safety monitoring unit 16 and the safe torque-off circuit 10 in the transmission path of the safety input signals S1 and S2. , is input to the safety monitoring unit 16 and the safe torque-off circuit 10 .
 各々の一次遅れフィルタにおいて、抵抗RFの出力側の端子は、コンデンサCFの一方の端子と、安全モニタリング部16および安全トルクオフ回路10の入力端とに接続されている。また、コンデンサCFの他方の端子は、基準電位に接続されている。さらに、各々の一次遅れフィルタの時定数は、上述した安全モニタリング部(指令監視部)16の抵抗R12(第2抵抗)およびコンデンサC11により規定されるRC時定数回路の時定数よりも、十分に短く設定されている。 In each first-order lag filter, the output terminal of the resistor RF is connected to one terminal of the capacitor CF and the input terminals of the safety monitoring section 16 and the safe torque-off circuit 10 . Also, the other terminal of the capacitor CF is connected to the reference potential. Furthermore, the time constant of each first-order lag filter is sufficiently larger than the time constant of the RC time constant circuit defined by the resistor R12 (second resistor) and capacitor C11 of the safety monitoring unit (command monitoring unit) 16 described above. set short.
 上述した回路構成によれば、安全モニタリング部16による診断(Sd=High)を待つことなく安全トルクオフ回路10でSTO動作が得られることになり、多重の安全入力信号S1、S2として望ましい応答を得ることができる。 According to the circuit configuration described above, the STO operation can be obtained in the safe torque-off circuit 10 without waiting for the diagnosis (Sd=High) by the safety monitoring unit 16, and the desired response is obtained as the multiple safety input signals S1 and S2. be able to.
 <<実施の形態5>>
 図7は、実施の形態5に係る図であり、本開示のモータ制御装置を、STOとは異なる安全機能にも適用できるようにした例を示す回路図である。
<<Embodiment 5>>
FIG. 7 is a diagram according to Embodiment 5, and is a circuit diagram showing an example in which the motor control device of the present disclosure can also be applied to a safety function different from STO.
 図7に示すモータ制御装置1Bは、内部に安全制御部20が追加的に搭載され、安全入力信号S1,S2、診断保護信号Sd、およびエンコーダ4の出力(モータ3の回転子の位置情報)は、安全制御部20へ入力される。この安全制御部20は、モータ制御演算部14および安全トルクオフ回路10の前段かつ、外部安全装置2および安全モニタリング部(指令監視部)16の後段に配置され、前記多重の指令、前記指令監視部からの信号、および前記回転子の位置を入力する。 A motor control device 1B shown in FIG. 7 is additionally equipped with a safety control unit 20, and includes safety input signals S1 and S2, a diagnostic protection signal Sd, and the output of the encoder 4 (rotor position information of the motor 3). is input to the safety control unit 20 . The safety control unit 20 is arranged before the motor control calculation unit 14 and the safe torque off circuit 10 and after the external safety device 2 and the safety monitoring unit (command monitoring unit) 16. and the position of the rotor.
 ここで、安全制御部20は、モータ制御演算ブロック14に二重の減速指示SL1、SL2を出力する機能を有する。また、安全制御部20は、安全トルクオフ回路10に二重の安全停止(STO)指示ST1、ST2を出力する機能を有する。 Here, the safety control unit 20 has a function of outputting double deceleration instructions SL1 and SL2 to the motor control calculation block 14. The safety control unit 20 also has a function of outputting double safe stop (STO) instructions ST1 and ST2 to the safe torque-off circuit 10 .
 なお、安全制御部20は、アナログおよびデジタル回路、またはマイコン等のソフトウェア、またはそれらの組み合わせによって実現することができる。 The safety control unit 20 can be realized by analog and digital circuits, software such as a microcomputer, or a combination thereof.
 また、モータ制御装置1は、モータ制御装置1の一部の機能をオプションとして機能分離し増設するような構成としてもよい。例えば、図7に示す安全モニタリング部16および安全制御部20を、本体(すなわちモータ制御装置1の内部のブロック)とは別の、インタフェース等を介して着脱可能なオプションブロックとしてもよい。このような構成とすることにより、必要に応じて、任意の種類の安全機能を増設することができる。したがって、モータ制御装置1の本体側のコストを下げるとともに、モータ3およびモータ3が取り付けられる機器の種類や動作内容に則った、モータ3に対する最適な安全機能を選択することができる。 Also, the motor control device 1 may have a configuration in which some functions of the motor control device 1 are separated and added as an option. For example, the safety monitoring unit 16 and the safety control unit 20 shown in FIG. 7 may be optional blocks that can be attached and detached via an interface or the like, separate from the main body (that is, the internal blocks of the motor control device 1). With such a configuration, any type of safety function can be added as required. Therefore, the cost of the main body of the motor control device 1 can be reduced, and the optimum safety function for the motor 3 can be selected according to the type and operation of the motor 3 and the device to which the motor 3 is attached.
 ある規格では、安全機能Safe Stop1(SS1)は、STOでトルクオフ停止する前段階として、所定の減速パターンに基づき減速させる期間を有する安全停止機能として定義されている。かかる減速期間を確保するSS1を実現する手段として、安全制御部20は、以下のような制御を行うようにする。 In one standard, the safety function SafeStop1 (SS1) is defined as a safe stop function that has a period of deceleration based on a predetermined deceleration pattern as a step prior to torque-off stop at STO. As means for realizing SS1 that ensures such a deceleration period, the safety control unit 20 performs the following control.
 安全制御部20は、安全入力信号S1、S2として停止指令または安全モニタリング部16から安全停止命令(Sd=High)を受信した場合、モータ制御演算ブロック14に二重の減速指示SL1、SL2を送出し、かつ、エンコーダ4からの受信される信号に基づくモータ3の速度の監視を開始する。そして、安全制御部20は、当該監視の結果、モータ3の速度が予め定められた速度(閾値速度)以下になった場合、安全トルクオフ回路10へSTO指示を送出する。このような制御を行うことにより、安全入力信号S1、S2の出力時にモータ3が急停止することがなくなるので、対応する機器のダメージ防止、当該機器を用いて作業している作業者等の安全性を確保することが出来る又は期待できる。 When the safety control unit 20 receives a stop command or a safety stop command (Sd=High) from the safety monitoring unit 16 as the safety input signals S1 and S2, it sends double deceleration instructions SL1 and SL2 to the motor control calculation block 14. and begins monitoring the speed of motor 3 based on signals received from encoder 4 . When the speed of the motor 3 becomes equal to or lower than a predetermined speed (threshold speed) as a result of the monitoring, the safety control unit 20 sends an STO instruction to the safe torque-off circuit 10 . Such control prevents the motor 3 from suddenly stopping when the safety input signals S1 and S2 are output, thereby preventing damage to the corresponding equipment and ensuring the safety of workers working with the equipment. security can be ensured or expected.
 <<実施の形態6>>
 図8は実施の形態6における安全制御部20、および安全トルクオフ回路10の内部回路の一例である。図8に示す回路構成では、診断保護信号SdがHighの際にST1、ST2がLoとなるよう安全制御部20の出力を論理構成することで、診断保護信号Sdが発生した場合には即座にSTOを機能させることができる。このような構成においても、安全入力S1、S2の診断として安全モニタリングブロック16および診断保護信号Sdを活用することで、より故障の少ない安全システムが実現できる。
<<Embodiment 6>>
FIG. 8 shows an example of the internal circuits of the safety control section 20 and the safe torque-off circuit 10 according to the sixth embodiment. In the circuit configuration shown in FIG. 8, the output of the safety control section 20 is logically configured so that ST1 and ST2 become Lo when the diagnostic protection signal Sd is High. STO can work. Even in such a configuration, by utilizing the safety monitoring block 16 and the diagnostic protection signal Sd for diagnosis of the safety inputs S1 and S2, a safety system with fewer failures can be realized.
 <<実施の形態7>>
 図9は、実施の形態7における安全モニタリング部16、および安全トルクオフ回路10の内部回路の一例である。図9に示す回路構成では、安全トルクオフ回路10の内部において、アノード遮断スイッチQ1,Q2の出力とゲートドライブ素子GDのアノードとの間に、第2のアノード遮断スイッチQ1D、Q2Dが挿入されている。
<<Embodiment 7>>
FIG. 9 shows an example of internal circuits of the safety monitoring unit 16 and the safe torque-off circuit 10 according to the seventh embodiment. In the circuit configuration shown in FIG. 9, inside the safe torque-off circuit 10, second anode cutoff switches Q1D and Q2D are inserted between the outputs of the anode cutoff switches Q1 and Q2 and the anode of the gate drive element GD. .
 なお、第2のアノード遮断スイッチQ1D、Q2Dは、通常はON(以下「ノーマリオン」という)の極性であり、これらは診断保護信号SLのHigh出力により駆動する(スイッチオフに切り変わる)構成となっている。本構成により、安全入力信号S1と安全入力信号S2に差異が検知された場合に診断保護信号SLがHighの信号を出力することにより、第2のアノード遮断スイッチQ1D、Q2Dがともにオフ状態となることで、モータ3はトルクオフ状態となる。 The second anode cutoff switches Q1D and Q2D are normally ON (hereinafter referred to as "normally on") polarity, and are driven (switched off) by the high output of the diagnostic protection signal SL. It's becoming With this configuration, when a difference is detected between the safety input signal S1 and the safety input signal S2, the diagnosis protection signal SL outputs a high signal, thereby turning off both the second anode cutoff switches Q1D and Q2D. As a result, the motor 3 is in a torque-off state.
 このうち、指令S1,S2(安全入力信号)に応じてモータ3に供給される駆動信号を遮断する役割を担うアノード遮断スイッチQ1,Q2は、本開示における「第1の遮断部」に対応する。一方、診断保護信号SL(安全停止信号)に応じてモータ3に供給される駆動信号を遮断する役割を担う第2のアノード遮断スイッチQ1D,Q2Dは、本開示における「第2の遮断部」に対応する。この実施形態では、第1の遮断部におけるアノード遮断スイッチQ1と第2のアノード遮断スイッチQ1Dとが直列に接続され、同様に、第1の遮断部におけるアノード遮断スイッチQ2と第2のアノード遮断スイッチQ2Dとが直列に接続された回路構成を備える。 Among them, the anode cutoff switches Q1 and Q2, which play a role of cutting off the drive signals supplied to the motor 3 in response to the commands S1 and S2 (safety input signals), correspond to the "first cutoff section" in the present disclosure. . On the other hand, the second anode cutoff switches Q1D and Q2D, which serve to cut off the drive signal supplied to the motor 3 in response to the diagnostic protection signal SL (safety stop signal), are the "second cutoff section" in the present disclosure. handle. In this embodiment, the anode cutoff switch Q1 and the second anode cutoff switch Q1D in the first cutoff section are connected in series, and similarly, the anode cutoff switch Q2 and the second anode cutoff switch Q2 in the first cutoff section are connected in series. and Q2D are connected in series.
 さらに、図9に示す回路構成では、安全モニタリング部16の入力となる信号は、第2のアノード遮断スイッチQ1D、Q2D(第2の遮断部)の出力電圧をフィードバックするよう入力している。上述のとおり第2のアノード遮断スイッチQ1DおよびQ2Dはノーマリオン極性であることから、装置の起動後から診断保護信号SLがLowであるうちは、安全モニタリング部16への入力は、他の実施の形態と同様に、安全入力信号S1、S2に応じた信号を入力する。 Furthermore, in the circuit configuration shown in FIG. 9, the signal to be input to the safety monitoring section 16 is input so as to feed back the output voltage of the second anode cutoff switches Q1D and Q2D (second cutoff section). As described above, the second anode cutoff switches Q1D and Q2D have normally-on polarities. Therefore, while the diagnostic protection signal SL is Low after the device is started, the input to the safety monitoring unit 16 is not for other implementations. Signals corresponding to the safety input signals S1 and S2 are input in the same manner as in the form.
 一方、安全モニタリング部16が診断保護信号SLをHighとした以降は、第2のアノード遮断スイッチQ1DおよびQ2Dがオフ状態となるため、安全モニタリング部16の入力は安全入力信号S1と安全入力信号S2の入力状態が反映されない可能性があるものの、ラッチ部B13の作用によりモータ3のトルクオフ状態は維持されるため、安全の機能は果たすことができる。 On the other hand, after the safety monitoring unit 16 sets the diagnostic protection signal SL to High, the second anode cutoff switches Q1D and Q2D are turned off, so the inputs to the safety monitoring unit 16 are the safety input signal S1 and the safety input signal S2. Although there is a possibility that the input state of is not reflected, the torque-off state of the motor 3 is maintained by the action of the latch portion B13, so the safety function can be achieved.
 このように、安全モニタリング部16がトルクオフを操作する部位(本実施例では第2のアノード遮断スイッチQ1D、Q2D)に対し下流の信号を安全モニタリング部16の入力としてフィードバックする構成であれば、図3における第2の処理ブロックB2、および第3の処理ブロックB3が不要となる効果が得られ、装置の小型化などに貢献できる。 In this way, if the safety monitoring unit 16 is configured to feed back the downstream signal as an input of the safety monitoring unit 16 to the part (the second anode cutoff switches Q1D and Q2D in this embodiment) that operates the torque off, FIG. 3, the second processing block B2 and the third processing block B3 are not necessary, which contributes to the miniaturization of the apparatus.
 以上、本発明を実施の形態に基づいて説明したが、本発明は、上述した実施の形態の構成はあくまでも一例であって、これに限定されるものではなく、種々の変形が可能である。上述した実施の形態は、必須構成要素を除き、構成要素の追加・削除・置換などが可能である。特に限定しない場合、各構成要素は、単数でも複数でもよい。各種の構成例を組み合わせた形態も可能である。 Although the present invention has been described above based on the embodiments, the present invention is only an example of the configuration of the above-described embodiments, and is not limited to this, and various modifications are possible. In the embodiment described above, addition, deletion, replacement, etc. of components are possible except for essential components. Unless otherwise specified, each component may be singular or plural. A configuration in which various configuration examples are combined is also possible.
 1,1A,1B モータ制御装置
 2,2A 外部安全装置
 2B モニタ装置
 3 モータ
 4 エンコーダ
 5 交流主電源
 10 安全トルクオフ回路(モータ制御部)
 11 3相インバータ(モータ制御部、パワー半導体)
 12 交直変換回路
 13 電流検出部
 14 モータ制御演算部(モータ制御部)
 15 制御パルス生成部(モータ制御部)
 16 安全モニタリング部(指令監視部)
 20 安全制御部(モータ制御部)
 141 通知部
 142 操作部
 A1、A2 論理AND素子
 B1 第1の処理ブロック(第1の信号処理部)
 B2 第2の処理ブロック(第2の信号処理部、NAND部)
 B3 第3の処理ブロック
 S1,S2 安全入力信号(多重の指令)
 Sd 診断保護信号
 Q1、Q2 アノード遮断スイッチ
 BF0、BF1、BF2 バッファ素子
 GD ゲートドライブ素子
 B11 XOR部
  X1…XOR素子、 R11…プルダウン抵抗
 B12 充放電部
  R12…抵抗(第2抵抗)、C11…コンデンサ、R12,C11(RC時定数回路)、D11…ダイオード、R13…抵抗、D11,R13(ダイオード回路)
 B13 ラッチ部
  O11…OR素子
 QT1、QT2 テストスイッチ
 RF,CF 一次遅れフィルタ
 ST1、ST2 停止(STO)指示
 SL1、SL2 減速指示
1, 1A, 1B Motor control device 2, 2A External safety device 2B Monitor device 3 Motor 4 Encoder 5 AC main power supply 10 Safe torque off circuit (motor control unit)
11 3-phase inverter (motor control unit, power semiconductor)
12 AC/DC conversion circuit 13 Current detection unit 14 Motor control calculation unit (motor control unit)
15 control pulse generator (motor controller)
16 Safety Monitoring Department (Command and Monitoring Department)
20 Safety control unit (motor control unit)
141 notification unit 142 operation unit A1, A2 logic AND element B1 first processing block (first signal processing unit)
B2 second processing block (second signal processing unit, NAND unit)
B3 Third processing block S1, S2 Safety input signal (multiple commands)
Sd: diagnostic protection signal Q1, Q2: anode cutoff switch BF0, BF1, BF2: buffer element GD: gate drive element B11: XOR section X1: XOR element, R11: pull-down resistor B12: charging/discharging section R12: resistor (second resistor), C11: capacitor, R12, C11 (RC time constant circuit), D11...diode, R13...resistor, D11, R13 (diode circuit)
B13 Latch part O11... OR element QT1, QT2 Test switch RF, CF First-order lag filter ST1, ST2 Stop (STO) instruction SL1, SL2 Deceleration instruction

Claims (14)

  1.  モータに駆動電流を送出することにより前記モータを通常動作状態とし、外部から送出される安全機能動作に関する多重の指令に応じて前記通常動作状態から安全停止状態とするように前記モータを制御するモータ制御部と、
     各々の前記指令が互いに一致するかを監視する指令監視部と、を備え、
     前記指令監視部は、前記指令の互いに一致しない期間が許容値を超えた場合、前記モータを安全停止させる安全停止命令を生成し、生成された前記安全停止命令を前記モータ制御部に継続的に送出する、
     制御装置。
    A motor that puts the motor into a normal operation state by sending a drive current to the motor, and controls the motor so that the normal operation state goes into a safe stop state in response to a multiple command related to safety function operation sent from the outside. a control unit;
    a command monitoring unit that monitors whether the commands match each other;
    The command monitoring unit generates a safe stop command for safely stopping the motor when a period in which the commands do not match each other exceeds an allowable value, and continuously sends the generated safe stop command to the motor control unit. send out,
    Control device.
  2.  請求項1に記載の制御装置において、
     前記指令監視部は、
     各々の前記指令を比較して差異をHigh信号として出力する比較部と、
     前記High信号の電荷を蓄積する蓄電部と、
     前記蓄電部の電圧が閾値を超えた場合、前記安全停止命令を生成および出力する安全停止命令生成部と、を備える、
     制御装置。
    The control device according to claim 1,
    The command monitoring unit
    a comparison unit that compares each of the commands and outputs a difference as a High signal;
    a storage unit that stores the charge of the High signal;
    a safety stop command generation unit that generates and outputs the safety stop command when the voltage of the power storage unit exceeds a threshold;
    Control device.
  3.  請求項2に記載の制御装置において、
     前記蓄電部は、コンデンサを含み、前記High信号の出力時から前記コンデンサの電圧が前記閾値を超えるまでの時間を確保するように前記コンデンサを充電するRC時定数回路を備え、
     前記安全停止命令生成部は、前記コンデンサの電圧が閾値を超えることにより、前記安全停止命令の出力を保持するラッチ部を備え、
     前記モータ制御部は、前記安全停止命令を受信した場合、前記モータに供給される前記駆動電流を遮断するまたは減らすように制御する、
     制御装置。
    In the control device according to claim 2,
    The power storage unit includes a capacitor, and includes an RC time constant circuit that charges the capacitor so as to ensure a time from when the High signal is output until the voltage of the capacitor exceeds the threshold,
    The safety stop command generation unit includes a latch unit that holds the output of the safety stop command when the voltage of the capacitor exceeds a threshold,
    When the motor control unit receives the safety stop command, the motor control unit controls to cut off or reduce the drive current supplied to the motor.
    Control device.
  4.  請求項3記載の制御装置において、
     さらに、
     前記ラッチ部から出力される信号の状態を外部装置に通知する通知部を備える、
     制御装置。
    In the control device according to claim 3,
    moreover,
    A notification unit that notifies an external device of the state of the signal output from the latch unit,
    Control device.
  5.  請求項4記載の制御装置において、
     さらに、
     前記多重の指令の少なくとも一つを前記モータ制御部に送出されないように操作する操作部、を備える、
     制御装置。
    In the control device according to claim 4,
    moreover,
    an operation unit that operates such that at least one of the multiple commands is not sent to the motor control unit;
    Control device.
  6.  請求項1に記載の制御装置において、
     前記指令監視部は、XOR部と、充放電部と、ラッチ部とが順に直列に接続され、
     前記XOR部は、前記指令の排他的論理和を演算出力するXOR素子と、前記XOR素子の出力をプルダウンする第1抵抗と、を備え、
     前記充放電部は、一端が前記XOR素子の出力端に接続される第2抵抗と、前記第2抵抗の他端に接続されたコンデンサとによるRC時定数回路を備え、前記XOR素子の出力がHighの場合に前記コンデンサを充電し、前記XOR素子の出力がLowの場合に前記コンデンサの電荷を放電し、
     前記ラッチ部は、第1の入力端が前記コンデンサの正電圧端子に接続されるOR素子と、前記OR素子の出力をプルダウンするプルダウン抵抗と、を備え、前記OR素子の第2の入力端には該OR素子の出力が直接接続される、
     制御装置。
    The control device according to claim 1,
    The command monitoring unit includes an XOR unit, a charge/discharge unit, and a latch unit connected in series in order,
    The XOR unit includes an XOR element that outputs an exclusive OR of the command, and a first resistor that pulls down the output of the XOR element,
    The charging/discharging unit includes an RC time constant circuit including a second resistor one end of which is connected to the output end of the XOR element and a capacitor connected to the other end of the second resistor, and the output of the XOR element is When the output of the XOR element is High, the capacitor is charged, and when the output of the XOR element is Low, the capacitor is discharged;
    The latch section includes an OR element whose first input terminal is connected to the positive voltage terminal of the capacitor, and a pull-down resistor that pulls down the output of the OR element. is directly connected to the output of the OR element,
    Control device.
  7.  請求項1に記載の制御装置において、
     前記指令監視部は、多重化された前記指令を、それぞれ第1の信号処理部と第2の信号処理部とに並列分岐し、前記第1の信号処理部の演算出力と前記第2の信号処理部の演算出力との論理和に基づき、前記モータ制御部に対して、前記安全停止命令としてHigh信号を送出する構成であって、
     前記第1の信号処理部は、XOR部と、充放電部と、ラッチ部とが順に直列に接続され、
     前記第2の信号処理部は、多重化された前記指令をNAND演算して出力するNAND部を有し、
     前記XOR部は、前記指令の排他的論理和を演算出力するXOR素子と、前記XOR素子の出力をプルダウンする第1抵抗と、を備え、
     前記充放電部は、一端が前記XOR素子の出力端に接続される第2抵抗と、前記第2抵抗の他端に接続されたコンデンサとによるRC時定数回路を備え、前記XOR素子の出力がHighの場合に前記コンデンサを充電し、前記XOR素子の出力がLowの場合に前記コンデンサの電荷を放電し、
     前記ラッチ部は、第1の入力端が前記コンデンサの正電圧端子に接続されるOR素子と、前記OR素子の出力をプルダウンするプルダウン抵抗と、を備え、前記OR素子の第2の入力端には該OR素子の出力が直接接続され、
     前記NAND部は、前記指令の否定論理積を演算し出力する論理NAND素子と、該論理NAND素子の出力をプルアップするプルアップ抵抗と、を備える、
     制御装置。
    The control device according to claim 1,
    The command monitoring unit branches the multiplexed command in parallel to a first signal processing unit and a second signal processing unit, respectively, and outputs a calculation output of the first signal processing unit and the second signal. A configuration for sending a High signal as the safe stop command to the motor control unit based on a logical sum with the operation output of the processing unit,
    The first signal processing unit includes an XOR unit, a charging/discharging unit, and a latch unit connected in series in order,
    The second signal processing unit has a NAND unit that performs a NAND operation on the multiplexed instructions and outputs them,
    The XOR unit includes an XOR element that outputs an exclusive OR of the command, and a first resistor that pulls down the output of the XOR element,
    The charging/discharging unit includes an RC time constant circuit including a second resistor one end of which is connected to the output end of the XOR element and a capacitor connected to the other end of the second resistor, and the output of the XOR element is When the output of the XOR element is High, the capacitor is charged, and when the output of the XOR element is Low, the capacitor is discharged;
    The latch section includes an OR element whose first input terminal is connected to the positive voltage terminal of the capacitor, and a pull-down resistor that pulls down the output of the OR element. is directly connected to the output of the OR element,
    The NAND unit comprises a logical NAND element for computing and outputting a negative logical product of the command, and a pull-up resistor for pulling up the output of the logical NAND element.
    Control device.
  8.  請求項7に記載の制御装置において、
     前記第1の信号処理部の前記充放電部は、前記第2抵抗に対して、第3抵抗及びダイオードの直列回路が並列に接続されており、
     前記ダイオードは、アノードが前記第2抵抗の出力端側に、カソードが前記第2抵抗の入力端側にむけて接続されることにより、前記RC時定数回路の前記コンデンサに蓄積された電荷の一部を前記第3抵抗を通じて放電する方向に整流する、
     制御装置。
    In the control device according to claim 7,
    The charging/discharging unit of the first signal processing unit includes a series circuit of a third resistor and a diode connected in parallel to the second resistor,
    The diode has an anode connected to the output terminal side of the second resistor and a cathode connected to the input terminal side of the second resistor. rectifying the section in a discharging direction through the third resistor;
    Control device.
  9.  請求項7に記載の制御装置において、
     前記モータ制御部および前記指令監視部の前段に、遅れフィルタ回路を備え、
      前記遅れフィルタ回路の時定数は、前記RC時定数回路の時定数よりも短い、
     制御装置。
    In the control device according to claim 7,
    A delay filter circuit is provided before the motor control unit and the command monitoring unit,
    the time constant of the lag filter circuit is shorter than the time constant of the RC time constant circuit;
    Control device.
  10.  請求項1に記載の制御装置において、
     前記モータ制御部は、
     前記モータに供給される前記駆動電流および前記モータの回転子の位置を入力し、前記モータを正しく動作させるための制御操作量を求める演算を行い、演算された制御操作量を出力するモータ制御演算部と、
     前記モータ制御演算部からの前記制御操作量に基づいて、前記モータに送出される前記駆動電流を調整するスイッチ回路を有するパワー半導体と、
     前記安全停止命令に応じて、前記モータに送出される前記駆動電流を減らす制御を行う安全停止制御部と、を備える、
     制御装置。
    The control device according to claim 1,
    The motor control unit
    A motor control calculation for inputting the drive current supplied to the motor and the position of the rotor of the motor, calculating a control operation amount for correctly operating the motor, and outputting the calculated control operation amount. Department and
    a power semiconductor having a switch circuit that adjusts the drive current sent to the motor based on the control operation amount from the motor control calculation unit;
    a safety stop control unit that performs control to reduce the drive current sent to the motor in response to the safety stop command;
    Control device.
  11.  請求項10に記載の制御装置において、
     前記安全停止制御部は、前記モータ制御演算部の後段かつ前記パワー半導体の前段に設けられ、
     前記指令監視部から前記安全停止命令が生成されていない場合、前記制御操作量の信号を前記パワー半導体に転送し、
     前記指令監視部から前記安全停止命令が生成された場合、前記制御操作量の信号の転送を遮断することにより前記パワー半導体の前記スイッチ回路をオフにして、前記モータに送出される前記駆動電流を遮断する、
      制御装置。
    A control device according to claim 10, wherein
    The safe stop control unit is provided after the motor control calculation unit and before the power semiconductor,
    transferring the control operation amount signal to the power semiconductor when the safe stop command is not generated from the command monitoring unit;
    When the safety stop command is generated from the command monitoring unit, the switch circuit of the power semiconductor is turned off by interrupting the transfer of the signal of the control operation amount, and the drive current sent to the motor is stopped. Cut off,
    Control device.
  12.  請求項11に記載の制御装置において、
     さらに、前記安全停止制御部、および前記モータ制御演算部の前段に配置され、前記多重の指令、前記指令監視部からの信号、および前記回転子の位置を入力する安全制御部を備え、
     前記安全制御部は、前記指令監視部から前記安全停止命令が生成された場合、前記モータの回転動作に基づいて、前記モータに送出される前記駆動電流を漸減する制御を行った後、前記モータに送出される前記駆動電流を遮断する制御を行う、
     制御装置。
    A control device according to claim 11, wherein
    Furthermore, a safety control unit is provided before the safe stop control unit and the motor control calculation unit, and inputs the multiple command, the signal from the command monitoring unit, and the position of the rotor,
    When the safety stop command is generated from the command monitoring unit, the safety control unit performs control to gradually decrease the drive current sent to the motor based on the rotational movement of the motor, and then controls the motor. perform control to cut off the drive current sent to
    Control device.
  13.   請求項6に記載の制御装置において、
     前記安全停止制御部は、
     前記指令に応じて前記モータに供給される駆動電流を遮断する第1の遮断部と、前記安全停止命令に応じて前記モータに供給される駆動電流を遮断する第2の遮断部と、が直列に接続される回路を備え、該回路の出力が前記指令監視部の前記XOR部に入力され、前記第2の遮断部には前記指令監視部の前記ラッチ部の出力が前記安全停止命令として供給され、
     前記指令および前記安全停止命令に応じて、前記モータに送出される前記駆動電流を減らす制御を行う、
     制御装置。
    In the control device according to claim 6,
    The safe stop control unit
    A first interrupter for interrupting the drive current supplied to the motor in response to the command and a second interrupter for interrupting the drive current supplied to the motor in response to the safety stop command are connected in series. , the output of the circuit is input to the XOR unit of the command monitoring unit, and the output of the latch unit of the command monitoring unit is supplied to the second interrupting unit as the safe stop command. is,
    performing control to reduce the drive current sent to the motor in response to the command and the safety stop command;
    Control device.
  14.  請求項1に記載の制御装置が接続され、
     前記制御装置によって制御されるモータを動力源とする、
     加工機器。
    The control device according to claim 1 is connected,
    powered by a motor controlled by the controller;
    processing equipment.
PCT/JP2022/002877 2022-01-26 2022-01-26 Control device and processing equipment WO2023144923A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/002877 WO2023144923A1 (en) 2022-01-26 2022-01-26 Control device and processing equipment
TW111145389A TW202331431A (en) 2022-01-26 2022-11-28 Control device and processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/002877 WO2023144923A1 (en) 2022-01-26 2022-01-26 Control device and processing equipment

Publications (1)

Publication Number Publication Date
WO2023144923A1 true WO2023144923A1 (en) 2023-08-03

Family

ID=87471223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002877 WO2023144923A1 (en) 2022-01-26 2022-01-26 Control device and processing equipment

Country Status (2)

Country Link
TW (1) TW202331431A (en)
WO (1) WO2023144923A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015014862A (en) * 2013-07-04 2015-01-22 富士電機株式会社 Safe drive device and safety device
JP2020035129A (en) * 2018-08-29 2020-03-05 株式会社デンソーウェーブ Functional safety module for industrial apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015014862A (en) * 2013-07-04 2015-01-22 富士電機株式会社 Safe drive device and safety device
JP2020035129A (en) * 2018-08-29 2020-03-05 株式会社デンソーウェーブ Functional safety module for industrial apparatus

Also Published As

Publication number Publication date
TW202331431A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
US9209718B2 (en) Fail safe circuit
US6573681B2 (en) Drive control for a three phase AC motor via an inverter using safe technology
EP1724915B1 (en) Independent safety processor for disabling the operation of high power devices
US20110215751A1 (en) Electric power converter
JP2010284051A (en) Inverter device
KR101775302B1 (en) Power shut-off device
EP2950444A1 (en) Motor control system
EP3633465B1 (en) Diagnostic apparatus
EP3220539B1 (en) Motor controller
WO2023144923A1 (en) Control device and processing equipment
CN104734577B (en) Motor drive
JP7398620B2 (en) Breaking circuit diagnostic device
CN108802611B (en) Abnormality diagnosis device and abnormality diagnosis method
CN105529981B (en) The method for controlling frequency converter
CN110622409B (en) Motor driving device
US10243501B2 (en) Inverter control device
JP2023511516A (en) Motor control system and motor control device
JP6492745B2 (en) Uninterruptible power system
US20230299706A1 (en) Technique for disconnecting the actuation of a power stage
KR101364993B1 (en) Circuit for controlling safety of dc motor
CN114527399A (en) Method and system for safely designing an alternating current battery
JP2017169441A (en) Motor controller
JPH01264573A (en) Reset circuit for power converter
JPH0687667B2 (en) Power converter control device
JPH05103414A (en) Cutoff command circuit with oscillation preventing function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923791

Country of ref document: EP

Kind code of ref document: A1