WO2023144880A1 - 光送信機、光受信機、光送信方法及び光受信方法 - Google Patents
光送信機、光受信機、光送信方法及び光受信方法 Download PDFInfo
- Publication number
- WO2023144880A1 WO2023144880A1 PCT/JP2022/002651 JP2022002651W WO2023144880A1 WO 2023144880 A1 WO2023144880 A1 WO 2023144880A1 JP 2022002651 W JP2022002651 W JP 2022002651W WO 2023144880 A1 WO2023144880 A1 WO 2023144880A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- signal
- narrowband
- wideband
- modulated signal
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 423
- 230000005540 biological transmission Effects 0.000 title claims description 35
- 238000000034 method Methods 0.000 title claims description 27
- 239000004065 semiconductor Substances 0.000 claims abstract description 126
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims abstract description 16
- 238000006243 chemical reaction Methods 0.000 claims description 37
- 230000003321 amplification Effects 0.000 claims description 6
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 description 84
- 108010076504 Protein Sorting Signals Proteins 0.000 description 21
- 238000010586 diagram Methods 0.000 description 19
- 230000010287 polarization Effects 0.000 description 10
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 230000001427 coherent effect Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
Definitions
- the present invention relates to an optical transmitter, an optical receiver, an optical transmission method, and an optical reception method.
- IC-TROSA integrated coherent transmit-receiver optical subassembly
- Non-Patent Document 2 describes a configuration incorporating a semiconductor optical amplifier as an optical preamplifier for an IC-TROSA with a data transmission rate of 400-600 Gb/s and a symbol rate of 64 GBd.
- Kitayama “Experimental Study on Impact of SOA Nonlinear Phase Noise in 40Gbps Coherent 16QAM Transmissions,” ECOC2012, P1.04.
- the symbol rate of optically modulated signals handled by optical transceivers is usually several tens of GBd.
- the fluctuation time of the optical modulated signal is the reciprocal of the symbol rate, which is approximately several tens of ps.
- the carrier lifetime of a semiconductor optical amplifier is usually several hundred ps, which is close to the fluctuation time of an optical modulated signal.
- One aspect of the present invention is an optical transmitter comprising: a multiplexed signal generator that multiplexes a plurality of narrowband signals to generate a broadband optical modulated signal; and a semiconductor optical amplifier that amplifies the intensity of the wideband optical modulated signal.
- One aspect of the present invention is an optical receiver comprising a semiconductor optical amplifier that amplifies the intensity of a wideband modulated optical signal, and a demultiplexer that separates the wideband modulated optical signal into narrowband signals.
- An aspect of the present invention is an optical transmission method comprising: a multiplexed signal generating step of multiplexing a plurality of narrowband signals to generate a broadband optical modulated signal; and a semiconductor optical amplification step of amplifying the intensity of the wideband optical modulated signal.
- One aspect of the present invention is an optical receiving method comprising a semiconductor optical amplification step of amplifying the intensity of a broadband optical modulated signal, and a demultiplexing step of demultiplexing the wideband optical modulated signal into narrowband signals.
- the technology of the present invention can reduce the effects of nonlinear distortion caused by semiconductor optical amplifiers.
- FIG. 1 is a diagram showing the configuration of an optical transmission system 1 according to a first embodiment
- FIG. 1 is a diagram showing the configuration of an optical transmitter 2 according to a first embodiment
- FIG. 4 is a flow chart showing the operation of the optical transmitter 2 according to the first embodiment; It is a modification of the optical transmitter 2 according to the first embodiment.
- 1 is a diagram showing the configuration of an optical receiver 4 according to a first embodiment
- FIG. 4 is a flow chart showing the operation of the optical receiver 4 according to the first embodiment
- FIG. 3 is a diagram showing the configuration of an optical transmitter 2 according to a second embodiment
- FIG. 8 is a flow chart showing the operation of the optical transmitter 2 according to the second embodiment
- FIG. 4 is a diagram showing the configuration of an optical receiver 4 according to a second embodiment
- FIG. 9 is a flow chart showing the operation of the optical receiver 4 according to the second embodiment
- FIG. 11 is a diagram showing configurations of a digital signal processing unit 21 and a digital signal processing unit 43 according to a third embodiment
- It is a table
- 4 is a graph showing the relationship between the magnitude of the injection current (SOA injection current) to the semiconductor optical amplifier and the SNR penalty; It is a figure which shows the optical transmitter-receiver 100 which concerns on this embodiment.
- 1 is a diagram showing an optical transceiver 100 that performs polarization multiplexing according to this embodiment;
- FIG. 1 is a diagram showing the configuration of an optical transmission system 1 according to the first embodiment.
- the optical transmission system 1 is communication equipment using optical signals.
- the optical transmission system comprises an optical transmitter 2 , a transmission line 3 and an optical receiver 4 .
- the optical transmitter 2 is a communication device that transmits optical signals.
- the transmission line 3 transmits an optical signal transmitted from the optical transmitter 2 to the optical receiver 4 .
- the optical receiver 4 is a communication device that receives optical signals.
- FIG. 2 is a diagram showing the configuration of the optical transmitter 2 according to the first embodiment.
- the optical transmitter 2 comprises a digital signal processor 21 , a multiplexed signal generator 22 and a semiconductor optical amplifier 23 .
- the multiplexed signal generator 22 is implemented by a broadband signal generator 221 , an optical modulator 222 and a signal light source 223 .
- the digital signal processing unit 21 includes a signal generation unit 211, a band division unit 212, a narrow band signal processing unit 213, and a digital-analog conversion unit 214.
- Signal generation section 211 generates a modulated signal sequence (I(n), Q(n)) from a transmission data sequence, which is binary information.
- I(n) and Q(n) are electrical signals representing the in-phase and quadrature components of the modulated signal.
- Signal generating section 211 outputs the generated modulated signal sequence (I(n), Q(n)) to band dividing section 212 .
- Band division section 212 divides the modulated signal sequence input from signal generation section 211 into narrowband signals, and inputs the narrowband signals to narrowband signal processing section 213 .
- a narrowband signal is a signal whose band is narrower than the modulated signal sequence.
- the narrowband signal processing unit 213 performs addition and subtraction processing of the narrowband signals and inputs them to the digital-analog conversion unit 214 .
- the digital-analog converter 214 converts the modulated signal sequence input from the narrowband signal processor 213 into an analog signal.
- the digital-analog converter 214 converts the converted analog signal sequences (I 1 ′′(t), Q 1 ′′(t)) and (I 2 ′′(t), Q 2 ′′(t)) into broadband Output to the signal generator 221 .
- the wideband signal generator 221 generates a wideband signal from a plurality of narrowband analog signals preprocessed by the band divider 212 and the narrowband signal processor 213 and input from the digital-analog converter 214 . Division of the modulated signal sequence into narrowband signals in the band division unit 212, addition and subtraction processing of the narrowband signals in the narrowband signal processing unit 213, and wideband processing from a plurality of narrowband analog signals in the wideband signal generation unit 221.
- Signal generation can be implemented in any manner. For example, using the method disclosed in Japanese Patent Application Laid-Open No. 2018-019255 results in the following processing.
- Band dividing section 212 divides the modulated signal sequence (I(n), Q(n)) input from signal generating section 211 into an upper sideband and a lower sideband, and frequency-shifts them.
- the band dividing unit 212 divides the frequency-shifted upper sideband signal (narrowband signal, (I 1 '(n), Q 1 '(n)) and lower sideband signal (narrowband signal (I 2 '(n) , Q 2 ′(n)) to the narrowband signal processing unit 213 .
- Narrowband signal processing section 213 performs at least one of addition processing and subtraction processing between the upper sideband signal and the lower sideband signal input from band dividing section 212. conduct.
- the narrowband signal processing unit 213 processes the narrowband signals (I 1 ''(n), Q 1 ''(n) and (I 2 ''(n)) that have undergone at least one of addition and subtraction processing. , Q 2 ′′(n)) to the digital-analog converter 214 .
- the wideband signal generation unit 221 frequency-shifts each of the plurality of analog signals input from the digital-analog conversion unit 214 .
- the wideband signal generation unit 221 adds a plurality of frequency-shifted analog signals to generate a wideband signal.
- the bandwidth of the wideband signal is greater than the bandwidth of the analog signal to be summed.
- the wideband signal generator 221 outputs the generated wideband signals (I(t), Q(t)) to the optical modulator 222 . Since the wideband signal (I(t), Q(t)) is generated by adding a plurality of different frequency-shifted analog signal sequences, the frequency band of the wideband signal sequence is wider than that of the analog signal sequence.
- the optical modulator 222 modulates the optical signal as a carrier wave output from the signal light source 223 with the broadband signal input from the wideband signal generator 221 to generate a wideband optical modulated signal.
- the optical modulator 222 outputs the generated broadband optical modulated signal to the semiconductor optical amplifier 23 .
- the semiconductor optical amplifier 23 amplifies the intensity of the broadband optical modulated signal input from the optical modulator 222 .
- the semiconductor optical amplifier 23 outputs the amplified optical modulated signal to the optical receiver 4 via the transmission line 3 .
- the modulation signal sequence may be divided into three or more narrowband signals and output from the digital/analog converter to generate a wideband optical modulation signal.
- a configuration may be adopted in which a driver amplifier is inserted between the wideband signal generator 221 and the optical modulator 222 to amplify the wideband signal.
- the multiplexed signal generator 22 may have a structure in which the broadband signal generator 221 and the optical modulator 222 are integrated.
- a signal light source 223 and a driver amplifier may be added to the integrated multiplexed signal generator 22 and integrated.
- the narrowband signal processing unit 213 may be configured as an analog circuit and inserted between the digital-analog converting unit 214 and the wideband signal generating unit 221 . Also, the narrowband signal processing unit 213 may be integrated by adding it to the integrated multiplexed signal generation unit 22 .
- FIG. 3 is a flow chart showing the operation of the optical transmitter 2 according to the first embodiment.
- the signal generator 211 generates a modulated signal (step S1).
- the band division unit 212 converts the modulated signal into a narrowband signal (step S2).
- the wideband signal generator 221 generates a wideband signal based on a plurality of narrowband signals (step S3).
- the optical modulator 222 generates a wideband optical modulated signal based on the wideband signal (step S4).
- the semiconductor optical amplifier 23 amplifies the broadband optical modulated signal (step S5).
- the optical transmitter 2 according to the first embodiment generates a broadband signal wider than the narrowband signals based on a plurality of narrowband signals. Since the variation time of the wideband optical modulated signal is equal to the reciprocal of the optical signal bandwidth, the wideband optically modulated signal generated based on the wideband signal is faster than the optical modulated signal generated based on the narrower band signal than the wideband signal. is also a signal with a short fluctuation time. Therefore, the optical transmitter 2 according to the first embodiment can make the fluctuation time of the optical modulation signal sufficiently shorter than the carrier lifetime of the semiconductor optical amplifier. Therefore, the optical transmitter 2 according to the first embodiment can reduce the influence of nonlinear distortion caused by the semiconductor optical amplifier.
- DACs digital-to-analog converters
- ADCs analog-to-digital converters
- CMOS Complementary Metal Oxide Semiconductor
- the broadband signal generated by the optical transmitter 2 according to the first embodiment has a sufficiently wide band.
- the optical transmitter 2 according to the first embodiment may have the configuration shown in FIG. As illustrated, the optical transmitter 2 according to the first embodiment outputs independent narrowband signals from a plurality of digital signal processing units (digital signal processing unit 21-1 and digital signal processing unit 21-2). and a wideband signal generated based on the independent narrowband signals.
- the optical transmitter 2 includes two digital signal processing units 21 (21-1, 21- 2), the narrowband signal processor 213, the wideband signal generator 221, the optical modulator 222, and the signal light source 223, and the multiplexed signal generator 22.
- a signal generator 211-1 of the digital signal processor 21-1 generates a modulated signal sequence (I 1 (n), Q 1 (n)), which is a narrowband signal, from a transmission data sequence, which is binary information. good too.
- the signal generator 211-1 of the digital signal processor 21-1 may output the generated modulated signal sequence (I 1 (n), Q 1 (n)) to the digital-analog converter 214-1.
- the signal generation unit 211-2 of the digital signal processing unit 21-2 generates a modulated signal sequence (I 2 (n), Q 2 (n)), which are narrowband signals, from the transmission data sequence, which is binary information. may be generated.
- the signal generator 211-1 of the digital signal processor 21-2 may output the generated modulated signal sequence (I 2 (n), Q 2 (n)) to the digital-analog converter 214-1. .
- the digital-analog converter 214-1 of the digital signal processor 21-1 may convert the modulated signal sequence input from the signal generator 211-1 into an analog signal.
- the digital-analog converter 214-1 of the digital signal processor 21-1 may output the converted analog signals (I 1 (t), Q 1 (t)) to the narrowband signal processor 213.
- the digital-analog converter 214-2 of the digital signal processor 21-2 may convert the modulated signal sequence input from the signal generator 211-2 into an analog signal.
- the digital-analog converter 214-2 of the digital signal processor 21-2 may output the converted analog signals (I 2 (t), Q 2 (t)) to the narrowband signal processor 213.
- the narrowband signal processing unit 213 is an analog signal input from the digital-analog conversion unit 214-1 of the digital signal processing unit 21-1 and the digital-analog conversion unit 214-2 of the digital signal processing unit 21-2. At least one of addition and subtraction of the narrowband signals may be performed on the narrowband signals.
- the optical transmitter 2 need not perform the operation of converting the modulated signal into the narrowband signal (step S2 in the flowchart of FIG. 3). Also, the optical transmitter 2 shown in FIG. 4 may include three or more digital signal processing units 21 .
- FIG. 5 is a diagram showing the configuration of the optical receiver 4 according to the first embodiment.
- the optical receiver 4 comprises a semiconductor optical amplifier 41 , a demultiplexer 42 and a digital signal processor 43 .
- the multiplexed signal separator 42 is implemented by a photoelectric converter 421 , a local light source 422 , a wideband signal-narrowband signal converter 423 and a narrowband signal processor 424 .
- the semiconductor optical amplifier 41 amplifies the intensity of the broadband optical modulated signal received via the transmission line 3 .
- the semiconductor optical amplifier 41 outputs the amplified optical signal to the photoelectric conversion section 421 .
- the photoelectric conversion unit 421 converts the optical signal input from the semiconductor optical amplifier 41 into an electrical signal.
- the photoelectric conversion unit 421 causes the broadband optical modulated signal input from the semiconductor optical amplifier 41 to interfere with the local light output from the local light source 422, thereby converting the optical signal into an analog wideband signal (I(t) , Q(t)).
- the photoelectric converter 421 outputs the electrical signal to the wideband signal-narrowband signal converter 423 .
- the photoelectric conversion unit 421 includes, for example, a 90-degree optical hybrid, a photodiode, and a transimpedance amplifier (TIA).
- the photoelectric conversion unit 421 generates interference light from the optical signal input from the semiconductor optical amplifier 41 and local light by, for example, a 90-degree optical hybrid.
- the in-phase and quadrature components of the interfering light are respectively input to photodiodes.
- the current signal generated by the photodiode is converted into a voltage signal by the TIA, and the voltage signal is output to the wideband signal-narrowband signal converter 423 .
- the wideband signal-narrowband signal converter 423 separates the wideband signal into a plurality of narrowband signals and inputs them to the narrowband signal processor 424 .
- the narrowband signal processing unit 424 performs signal processing between narrowband signals and outputs the processed signals to the digital signal processing unit 43 .
- Separation of a wideband signal into narrowband signals in the wideband signal-narrowband signal converter 423 and signal processing between narrowband signals in the narrowband signal processor 424 can be performed by any method. For example, using the method disclosed in International Publication No. 2019/031447 results in the following processing.
- the wideband signal-narrowband signal conversion unit 423 divides the wideband signals (I(t), Q(t)) input from the photoelectric conversion unit 421 into a plurality of (two in this embodiment) wideband signals. do.
- the wideband signal-narrowband signal converter 423 frequency-shifts the divided wideband signals to obtain narrowband signals.
- the wideband signal-narrowband signal conversion unit 423 converts a plurality of frequency-shifted narrowband signals ((I 1 '(t), Q 1 '(t)), (I 2 '(t), Q 2 '(t) ) are respectively output to narrowband signal processing section 424.
- Each of the narrowband signals is represented by (Equation 1).
- Narrowband signal processing section 424 performs at least one of addition and subtraction processing of a plurality of narrowband signals input from wideband signal-narrowband signal conversion section 423 among the plurality of narrowband signals.
- the narrowband signal processing unit 424 performs a plurality of narrowband signals ((I 1 (t), Q 1 (t)), (I 2 (t), Q 2 (t)) to the analog-digital converter 431 .
- the narrow band signal processing section 424 may be configured to be provided in the decoding section 432 of the digital signal processing section 43 .
- the digital signal processing section 43 includes an analog-digital conversion section 431 and a decoding section 432 .
- the analog-to-digital converter 431 converts the narrow-band analog signal series input from the multiplexed signal separator 42 into digital signal series ((I 1 (n), Q 1 (n)), (I 2 (n), Q 2 (n))
- the decoding unit 432 converts the narrowband signal into a wideband signal, equalizes the waveform distortion caused by the optical transmitter 2, the transmission line 3, and the optical receiver 4, and converts it into a digital signal. Decode the sequence.
- the decoding unit 432 does not convert the narrowband signal into a wideband signal, and independently equalizes waveform distortion generated in the narrowband signal by the optical transmitter 2, the transmission line 3, and the optical receiver 4, and then converts the digital signal into a digital signal.
- a configuration for decoding a sequence may be used.
- FIG. 6 is a flow chart showing the operation of the optical receiver 4 according to the first embodiment.
- the semiconductor optical amplifier 41 amplifies the broadband optical modulated signal received by the optical receiver 4 with the semiconductor optical amplifier (step S11).
- the multiplexed signal demultiplexer 42 demultiplexes the wideband optical modulated signal into narrowband signals (step S12).
- the digital signal processing unit 43 converts the narrowband analog signal series into a digital signal series by the analog-digital conversion unit 431, and decodes the narrowband signal by the decoding unit 432 (step S13).
- the semiconductor optical amplifier 23 and the optical receiver 4 provided in the optical transmitter 2 The influence of nonlinear distortion caused by the provided semiconductor optical amplifier 41 can be reduced.
- the optical receiver 4 according to the first embodiment may have the configuration shown in FIG. As illustrated, the optical receiver 4 according to the first embodiment may be configured to include a plurality of digital signal processing units 43 (a digital signal processing unit 43-1 and a digital signal processing unit 43-2). Also, the optical receiver 4 may be configured to include three or more digital signal processing units.
- FIG. 8 is a diagram showing the configuration of the optical transmitter 2 according to the second embodiment.
- the optical transmitter 2 according to the second embodiment multiplexes a plurality of modulated optical signals with different center wavelengths in a wavelength multiplexing section to generate a wideband modulated optical signal. It is characterized by generating
- the optical transmitter 2 according to the second embodiment includes a plurality of digital signal processing units 21 (two in this embodiment).
- the configuration of each digital signal processing section 21 according to the second embodiment is the same as that of the digital signal processing section 21 according to the first embodiment, and includes a band dividing section 212 and a narrow band signal processing section 213 .
- a plurality of digital signal processing units 21 may be integrated into one digital signal processing unit 21 , and the band dividing unit 212 and the narrowband signal processing unit 213 may be provided.
- the plurality of digital signal processing units 21 include only the signal generation unit 211 and the digital-analog conversion unit 214, and the I(n) and Q(n) signals are DA-converted without dividing the band. It may be something to do.
- the multiplexed signal generator 22 does not include the broadband signal generator 221, and optically modulates the plurality of analog narrowband signals output from the plurality of digital signal processors 21, and multiplexes the wavelengths. good.
- the optical transmitter 2 integrates a plurality of digital signal processing units 21 into one digital signal processing unit 21, and includes only the signal generation unit 211 and the digital-analog conversion unit 214, and transmits a plurality of narrowband signals. may be configured to output .
- the multiplexed signal generator 22 includes a plurality of broadband signal generators 221 , optical modulators 222 and signal light sources 223 (two in this embodiment), and a wavelength multiplexer 224 . Further, the optical transmitter 2 according to the second embodiment does not include a plurality of signal light sources 223, and the signal light source 223 is a supercontinuum light source having a plurality of optical carriers. Signal light may be output to the modulation section 222 .
- the optical modulation section 222 modulates each analog signal sequence input from the digital signal processing section 21 to generate an optical modulated signal.
- the optical modulator 222 according to the second embodiment outputs the modulated optical signal to the wavelength multiplexer 224 .
- the wavelength multiplexing unit 224 multiplexes the optical modulated signals input from the plurality of optical modulators 222 to generate a wideband optical modulated signal.
- the frequency band of the wideband optical modulated signal is larger than the frequency band of the optical modulated signal.
- the wavelength multiplexer 224 outputs the broadband optical modulated signal to the semiconductor optical amplifier 23 .
- the semiconductor optical amplifier 23 according to the second embodiment amplifies the intensity of the broadband optical modulated signal input from the wavelength multiplexing section 224 .
- the semiconductor optical amplifier 23 according to the second embodiment outputs the amplified optical signal to the optical receiver 4 via the transmission line 3 .
- FIG. 9 is a flow chart showing the operation of the optical transmitter 2 according to the second embodiment.
- the signal generator 211 generates a modulated signal (step S21).
- the band division unit 212 converts the modulated signal into a narrowband signal (step S22).
- the wideband signal generator 221 generates a wideband signal based on the multiple narrowband signals (step S23).
- the wavelength multiplexing unit 224 multiplexes the plurality of modulated optical signals output from the optical modulation unit 222 to generate a wideband optical modulated signal (step S24).
- the semiconductor optical amplifier 23 amplifies the broadband optical modulated signal (step S25). As described above, when the digital signal processor 21 includes only the signal generator 211 and the digital-analog converter 214 and the multiplexed signal generator 22 does not include the wideband signal generator 221, step S22 can be omitted. .
- the optical transmitter 2 according to the second embodiment can generate an optical signal with a wide band by multiplexing the modulated optical signals with the wavelength multiplexing unit 224 . Therefore, the fluctuation time of the modulated optical signal handled by the optical transmitter 2 according to the second embodiment is shorter than the carrier lifetime of the semiconductor optical amplifier, like the optical transmitter 2 according to the first embodiment. Therefore, the optical transmitter 2 according to the second embodiment can reduce the influence of nonlinear distortion caused by the semiconductor optical amplifier.
- FIG. 10 is a diagram showing the configuration of the optical receiver 4 according to the second embodiment.
- the optical receiver 4 according to the second embodiment demultiplexes the broadband optical modulated signal with a wavelength demultiplexer 425 to generate a narrowband signal.
- the optical receiver 4 according to the second embodiment includes a semiconductor optical amplifier 41 , a multiplexed signal separator 42 and a plurality (two in this embodiment) of digital signal processors 43 .
- the multiplexed signal separator 42 includes a wavelength demultiplexer 425, a plurality of (two in this embodiment) photoelectric converters 421, a local light source 422, a broadband signal-narrowband signal converter 423, and a narrowband signal processor. 424.
- Each digital signal processing unit 43 according to the second embodiment has the same configuration as the digital signal processing unit 43 according to the first embodiment, and includes an analog-digital conversion unit 431 and a decoding unit 432 .
- the demultiplexing unit 42 includes only the wavelength demultiplexing unit 425, photoelectric conversion unit 421, and local light source 422, and I( t) and Q(t) signals.
- the optical receiver 4 may include one digital signal processing unit 43 to AD-convert and decode the signal input from the photoelectric conversion unit 421 .
- the optical receiver 4 according to the second embodiment does not include a plurality of local light sources 422, and the local light source 422 is a supercontinuum light source having a plurality of optical carriers. Local light may be output to the photoelectric conversion unit 421 .
- the wavelength demultiplexer 425 demultiplexes the broadband optical modulated signal input from the semiconductor optical amplifier 41 .
- the wavelength demultiplexing units 425 output the demultiplexed optical signals to the corresponding photoelectric conversion units 421 .
- the photoelectric converter 421 converts the optical signal input from the wavelength demultiplexer 425 into an electrical signal.
- the wideband signal-narrowband signal conversion unit 423 according to the second embodiment separates the wideband signal input from the photoelectric conversion unit 421 into a plurality of narrowband signals and inputs the narrowband signals to the narrowband signal processing unit 424 .
- the narrowband signal processing unit 424 according to the second embodiment performs addition and subtraction processing of the plurality of narrowband signals input from the wideband signal-narrowband signal conversion unit 423. Do at least one process.
- the analog-to-digital converter 431 converts the narrow-band analog signal series input from the multiplexed signal separator 42 into a digital signal series.
- the decoding unit 432 according to the second embodiment converts the narrowband signal into a wideband signal, equalizes the waveform distortion caused by the optical transmitter 2, the transmission line 3, and the optical receiver 4, and then converts the digital signal sequence into Decrypt.
- FIG. 11 is a flow chart showing the operation of the optical receiver 4 according to the second embodiment.
- the semiconductor optical amplifier 41 amplifies the broadband optical modulated signal received by the optical receiver 4 (step S31).
- the wavelength demultiplexer 425 provided in the multiplexed signal demultiplexer 42 demultiplexes the broadband optical modulated signal into narrowband signals (step S32).
- the digital signal processing unit 43 converts the narrowband analog signal series into a digital signal series by the analog-digital conversion unit 431, and decodes the narrowband signal by the decoding unit 432 (step S33).
- the frequency band of the optical signal transmitted by the optical transmitter 2 is a wide band. 2 and the semiconductor optical amplifier 41 provided in the optical receiver 4 can reduce the influence of nonlinear distortion.
- FIG. 12 is a diagram showing configurations of the digital signal processing section 21 and the digital signal processing section 43 according to the third embodiment.
- the digital signal processing section 21 according to the third embodiment includes an SOA distortion compensation section 215 inside the digital signal processing section 21 .
- the digital signal processor 43 according to the third embodiment includes an SOA distortion estimator 434 and a physical parameter estimator 435 unlike the digital signal processor 43 according to the first or second embodiment. Note that if the physical parameters are known, the digital signal processing section 43 according to the third embodiment does not need to include the SOA distortion estimating section 434 and the physical parameter estimating section 435 .
- any method can be used for the SOA distortion compensator 215, the SOA distortion estimator 434, and the physical parameter estimator 435.
- FIG. For example, using the method described in Japanese Patent Application Laid-Open No. 2018-019255, the distortion caused by SOA can be compensated as follows.
- the SOA distortion compensator 215 compensates for distortion caused by the semiconductor optical amplifier 23 for the modulated signal generated by the signal generator 211 .
- SOA distortion compensating section 215 outputs the compensated signal to band dividing section 212 .
- the SOA distortion compensator 215 acquires the estimated values of the physical parameters of the semiconductor optical amplifier 23 from the physical parameter estimator 435 of the optical receiver 4 .
- the SOA distortion compensator 215 estimates nonlinear signal distortion occurring in the optical signal input to the semiconductor optical amplifier 23 based on the estimated values of the physical parameters of the semiconductor optical amplifier 23, and compensates for the nonlinear signal distortion. Note that if the physical parameters are known, the physical parameters may be set in the SOA distortion compensator 215 .
- the SOA distortion compensator 215 calculates the gain coefficient h(t) of the nonlinear signal distortion generated in the optical signal input to the semiconductor optical amplifier 23 by the semiconductor optical amplifier 23 based on the estimated value of the physical parameter of the semiconductor optical amplifier 23. do.
- SOA distortion compensator 215 uses gain coefficient ⁇ h(t), which is the inverse characteristic of gain coefficient h(t) for nonlinear signal distortion, to obtain a value (exp Calculate ((-h(t)(1+j ⁇ ))/2)).
- the SOA distortion compensator 215 inputs the value (exp(( ⁇ h(t)(1+j ⁇ ))/2)) representing the inverse characteristic of the gain coefficient h(t) of the nonlinear signal distortion to the semiconductor optical amplifier 23. Multiply the optical signal.
- the SOA distortion compensator 215 can pre-equalize the nonlinear signal distortion that occurs in the optical signal input to the semiconductor optical amplifier 23 .
- E I (t) represents the complex amplitude of the optical signal acquired by the semiconductor optical amplifier 23 (the optical modulated signal output by the optical modulator 222).
- E o (t) represents the complex amplitude of the optical signal transmitted by the semiconductor optical amplifier 23 .
- h(t) denotes a gain factor.
- ⁇ indicates the linewidth enhancement factor.
- j indicates the imaginary unit.
- exp(h(t)(1+j ⁇ )/2) represents the nonlinear signal distortion caused by the semiconductor optical amplifier 23 to the optical modulation signal.
- Equation (1) the gain coefficient h(t) is expressed by the differential equation shown in Equation (2).
- ⁇ c denotes the carrier lifetime.
- h 0 denotes the non-saturated gain.
- P sat indicates the saturation power.
- Expression (2) shows that the time change of the gain coefficient h(t) depends on the power of the optical signal acquired by the semiconductor optical amplifier 23 . Therefore, if the physical parameters of the semiconductor optical amplifier 23 are known, the gain coefficient h(t) dependent on the power of the optical signal can be obtained from equation (2).
- the SOA distortion compensator 215 can obtain the gain coefficient h(t) as a numerical solution from Equation (2) by, for example, the Euler method or the time evolution solution by the N-th order (N is a positive integer) Runge-Kutta method.
- SOA distortion compensating section 215 may use an analytical solution if it exists when obtaining gain coefficient h(t) from equation (2).
- SOA distortion compensation section 215 uses the gain coefficient ( ⁇ h(t)) of the inverse characteristic of gain coefficient h(t) to obtain a value (exp( ⁇ Calculate h(t)(1+j ⁇ )/2)).
- the SOA distortion compensator 215 multiplies the modulated optical signal E I (t) by a value (exp( ⁇ h(t)(1+j ⁇ )/2)) representing the inverse characteristic of the gain coefficient h(t) of the nonlinear signal distortion. This compensates for the nonlinear signal distortion that occurs in the optical modulated signal in the semiconductor optical amplifier 23 . As a result, the SOA distortion compensator 215 can pre-equalize the nonlinear signal distortion caused in the optical modulated signal by the semiconductor optical amplifier 23 .
- the SOA distortion compensator 215 may obtain the gain coefficient h(t) from Equation (2) by a solution method other than the time evolution solution method. If the physical parameters of the semiconductor optical amplifier 23 are not estimated, the SOA distortion compensator 215 may set the gain coefficient h(t) to 0 and may be configured so as not to compensate for the nonlinear signal distortion that occurs in the optical modulated signal in the semiconductor optical amplifier 23. good. When the physical parameters of the semiconductor optical amplifier 23 are not estimated, the modulated signal output from the signal generator 211 bypasses the SOA distortion compensator 215 and compensates for the nonlinear signal distortion that occurs in the optical modulated signal in the semiconductor optical amplifier 23. You can take a configuration that does not.
- the SOA distortion estimator 434 acquires the received signal, which is a digital signal based on the transmission signal of the optical transmitter 2, from the analog-digital converter 431.
- the SOA distortion estimator 434 acquires the transmission signal of the optical transmitter 2 from the optical transmitter 2 as a reference signal.
- the SOA distortion estimating unit 434 uses a communication channel (see Non-Patent Document 5), an optical A transmission signal of the transmitter 2 is obtained from the optical transmitter 2 as a reference signal.
- the SOA distortion estimator 434 acquires a part of the known signal of the transmission data sequence from the optical transmitter 2 as a reference signal.
- the SOA distortion estimator 434 acquires a sequence of symbol values of the received signal from the optical transmitter 2 as a reference signal.
- the SOA distortion estimator 434 calculates the nonlinear signal generated in the transmission signal by the semiconductor optical amplifier 23 based on the result of dividing the measured optical signal E o (t) by the optical signal E I (t) and equation (1).
- a value representing the distortion (exp(h(t)(1+j ⁇ )/2)) and the linewidth enhancement factor ⁇ are obtained as shown in Equation (3).
- the SOA distortion estimator 434 may calculate the average value of the same symbol using the reference signal as a repeated signal. This allows the SOA distortion estimator 434 to reduce signal distortion due to white noise. The SOA distortion estimator 434 can improve the estimation accuracy of nonlinear signal distortion.
- the SOA distortion estimator 434 may not be able to accurately estimate the nonlinear signal distortion due to deterioration in signal quality.
- the SOA distortion estimating section 434 may repeat the estimation by feeding back the estimated value once. As a result, the SOA distortion estimator 434 can compensate the transfer function with higher accuracy even when the nonlinear signal distortion caused by the semiconductor optical amplifier 23 is large.
- the measured values of the physical parameters of the semiconductor optical amplifier 23 may differ from the design values of the physical parameters of the semiconductor optical amplifier 23 due to individual differences caused by manufacturing errors of the semiconductor optical amplifier 23 and the like. Therefore, the physical parameter estimator 435 estimates physical parameters of the semiconductor optical amplifier 23 by digital signal processing. As a result, the SOA distortion compensator 215 of the optical transmitter 2 can absorb individual differences in the semiconductor optical amplifiers 23 of the optical transmitter 2 and compensate for nonlinear signal distortion. The SOA distortion estimator 434 can compensate nonlinear signal distortion even for the semiconductor optical amplifier 23 having unknown physical parameters. The physical parameter estimator 435 estimates the physical parameter of the semiconductor optical amplifier 23 based on the result of the SOA distortion estimator 434 estimating the nonlinear signal distortion based on the reference signal.
- the physical parameter estimator 435 estimates the physical parameters of the semiconductor optical amplifier 23 from the gain coefficient h(t) obtained using the equation (3) and the equation (2).
- the physical parameters of the semiconductor optical amplifier 23 are, for example, carrier lifetime ⁇ c , non-saturation gain h 0 , and saturation power P sat .
- the method of estimating the physical parameters of the semiconductor optical amplifier 23 by the physical parameter estimation unit 435 is not limited to a specific method.
- the physical parameter estimator 435 may estimate the physical parameters of the semiconductor optical amplifier 23 by fitting using the method of least squares, calculation using simultaneous equations, or the like.
- the physical parameter estimator 435 feeds back the physical parameters of the semiconductor optical amplifier 23 to the SOA distortion compensator 215 through the communication channel (see Non-Patent Document 5), control channel 5 such as NE-OpS or NW-OpS.
- the physical parameter estimating unit 435 detects the semiconductor optical amplifier based on the optical signal transmitted over the dedicated line instead of the transmission line 3. Twenty-three physical parameters may be estimated. After estimating the physical parameters of the semiconductor optical amplifier 23, the physical parameter estimator 435 transmits to the optical transmitter 2 and the decoder 432 a signal resulting from deleting the reference signal from the transmission signal added with the reference signal. can be done. After this, if the physical parameter needs to be re-estimated, the physical parameter estimator 435 may re-add the reference signal to the transmission signal.
- the physical parameter estimator 435 continues the estimation result of the physical parameter of the semiconductor optical amplifier 23 when the current injected into the semiconductor optical amplifier 23 does not change or when the intensity of the optical signal acquired by the semiconductor optical amplifier 23 does not change. can be used as intended. In these cases, the physical parameter estimator 435 may temporarily stop estimating the physical parameters of the semiconductor optical amplifier 23, or may calculate the physical parameters of the semiconductor optical amplifier 23 continuously and periodically. The physical parameter estimator 435 recalculates the physical parameters of the semiconductor optical amplifier 23 when the current injected into the semiconductor optical amplifier 23 does not change or when the intensity of the optical signal acquired by the semiconductor optical amplifier 23 changes.
- the optical transmitter 2 can compensate for the distortion caused by the semiconductor optical amplifier 23 with respect to the modulated signal generated by the signal generation unit 211.
- the influence of nonlinear distortion can be reduced.
- the SOA distortion estimator 434 and the physical parameter estimator 435 are not limited to the digital signal processor 43 .
- both the physical parameter estimating unit 435 or the SOA distortion estimating unit 434 and the physical parameter estimating unit 435 are provided in the corresponding digital signal processing unit 21, and the digital signal processing unit 43 and the digital signal processing unit 21 , may send and receive signals.
- the SOA distortion compensator is not limited to the digital signal processor 21 .
- the decoding unit 432 of the digital signal processing unit 43 is provided with an SOA distortion compensation unit, and a value (exp( ⁇ h(t)(1+j ⁇ )/2)) may be used to compensate for non-linear signal distortion that occurs in the transmitted signal at the semiconductor optical amplifier 23 .
- the SOA distortion compensator provided in the SOA distortion compensator 215 and the decoder 432 compensates for the nonlinear signal distortion caused by the semiconductor optical amplifier 41 provided in the optical receiver 4 as well as the nonlinear signal distortion caused by the semiconductor optical amplifier 23.
- the symbol rates of wideband optical modulated signals input from the optical modulator 222 of the optical transmitter 2 to the semiconductor optical amplifier 23 are 42 GBd, 84 GBd, and 168 GBd.
- the modulation method is polarization multiplexed 16QAM (quadrature amplitude modulation) with stochastic constellation shaping. Also, the current injected into the semiconductor optical amplifier 23 was changed to change the amplification factor.
- FIG. 13 is a table showing signal space diagrams under each condition.
- the six signal space diagrams shown in FIG. 13 are output from the optical transmitter 2 when the currents injected into the semiconductor optical amplifier 23 are 100 mA and 350 mA, and the symbol rates of the broadband optical modulation signal are 42 GBd, 84 GBd and 168 GBd.
- 2 is a signal space diagram showing a signal that By increasing the symbol rate of the optical modulation signal from 42 GBd to 84 GBd, and from 84 GBd to 168 GBd, the boundaries between signal points became clearer and the nonlinear distortion caused by the semiconductor optical amplifier was reduced. It was confirmed when it was 350mA.
- the SN ratio of the optical signal output from the semiconductor optical amplifier 23 of the optical transmitter 2 and the output from the EDFA when the semiconductor optical amplifier 23 of the optical transmitter is replaced with an EDFA (Erbium Doped Fiber Amplifier) The dependence of the injection current to the semiconductor optical amplifier was shown with the difference from the SN ratio of the optical signal as the SNR penalty.
- FIG. 14 is a graph showing the relationship between the magnitude of the injection current (SOA injection current) into the semiconductor optical amplifier and the SNR penalty.
- SOA injection current was 350 mA
- the SNR penalty for the symbol rate of 168 GBd of the optical modulation signal was about 2 dB less than the SNR penalty for the symbol rate of 42 GBd, and about 1 dB less than the SNR penalty for the symbol rate of 84 GBd. Therefore, it was shown that nonlinear distortion caused by the semiconductor optical amplifier is reduced by using an optically modulated signal with a high symbol rate, especially when the amplification factor of the semiconductor optical amplifier is high.
- the signal generator 211 generates a modulated signal sequence (I(n), Q(n)), which is an electrical signal representing the in-phase component and the quadrature component of the optical signal, but is not limited to this.
- a modulated signal sequence I(n), Q(n)
- electric signals XI(n), XQ(n), YI(n), YQ(n ) may be generated.
- the semiconductor optical amplifier 23 of the optical transmitter 2 amplifies the intensity of the optical modulated signal generated by the optical modulation section 222, but it is not limited to this.
- the semiconductor optical amplifier 23 may be provided between the optical modulator 222 and the signal light source 223 , amplify the signal light input from the signal light source 223 , and output the amplified signal light to the optical modulator 222 .
- the semiconductor optical amplifier 23 is included in the optical modulation unit 222, and only one of the X polarized wave component and the Y polarized wave component, or the semiconductor optical amplifier 23 may be included in the optical modulation section 222 and both may be amplified.
- the semiconductor optical amplifier 41 of the optical receiver 4 amplifies the intensity of the optical signal input to the optical receiver 4, but is not limited to this.
- the semiconductor optical amplifier 41 is included in the photoelectric conversion unit 421, and only one of the X polarized wave component and the Y polarized wave component, or the semiconductor optical amplifier 41 may be included in the photoelectric conversion unit 421 and both may be amplified.
- the optical transmitter 2 and the optical receiver 4 may be realized by the same device.
- the signal light source 223 and the local light source 422 may be the same light source.
- the configuration example handles the IQ modulated signal, but the configuration example handles the intensity modulated signal.
- the local light source 422 and the 90-degree optical hybrid that constitutes the photoelectric conversion unit 421 can be omitted.
- FIG. 15 is a diagram showing the optical transceiver 100 according to this embodiment.
- the optical transceiver 100 comprises a processing unit 101 and an optical front end 102 .
- the processing device 101 includes a digital signal processing section 21 and a digital signal processing section 43 .
- the optical front end 102 includes a multiplexed signal generator 22 , a semiconductor optical amplifier 23 , a semiconductor optical amplifier 41 and a multiplexed signal separator 42 .
- the multiplexed signal generator 22, the semiconductor optical amplifier 23, the semiconductor optical amplifier 41, and the multiplexed signal separator 42 forming the optical front end 102 may be integrated.
- a signal light source 223 may be integrated into the optical front end 102 .
- the demultiplexer 42 may have the function of the local light source 422 by branching the signal light source 223 without having the local light source 422 .
- FIG. 16 is a diagram showing an optical transceiver 100 that performs polarization multiplexing according to this embodiment.
- the signal generation unit 211 generates electrical signals (XI(n), XQ(n) , YI(n), YQ(n)), and the band division unit 212, the narrowband signal processing unit 213, and the digital-analog conversion unit 214 generate an electric signal related to the X polarization and an electric signal related to the Y polarization. are processed independently.
- the wideband signal generator 221 independently processes the electrical signal associated with the X-polarized wave and the electrical signal associated with the Y-polarized wave, and the optical modulator 222 performs polarization synthesis in addition to optical modulation. to generate an optical signal.
- the photoelectric conversion unit 421 depolarizes the optical signal and then photoelectrically converts the optical signal, thereby generating broadband signals related to the X polarization and the Y polarization.
- the wideband signal-narrowband signal conversion unit 423, the narrowband signal processing unit 424, and the analog-digital conversion unit 431 independently process the electrical signal related to the X polarized wave and the electrical signal related to the Y polarized wave.
- the decoding unit 432 decodes the electrical signal associated with the X polarized wave and the electrical signal associated with the Y polarized wave to generate a reception data sequence.
- the multiplexed signal generator 22 , the semiconductor optical amplifier 23 , the semiconductor optical amplifier 41 and the multiplexed signal separator 42 may be integrated to form the optical front end 102 .
- a signal light source 223 may be integrated into this optical front end 102 .
- optical transmission system 1 optical transmission system, 2 optical transmitter, 3 transmission line, 4 optical receiver, 21 digital signal processing unit, 211 signal generation unit, 212 band division unit, 213 narrowband signal processing unit, 214 digital-analog conversion unit, 22 Multiplexed signal generator 221 Broadband signal generator 222 Optical modulator 223 Signal light source 224 Wavelength multiplexer 23, 41 Semiconductor optical amplifier 42 Multiplexed signal separator 421 Photoelectric converter 422 Local light source 423 Wideband signal-narrowband signal converter, 424 narrowband signal processor, 425 wavelength demultiplexer
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optical Communication System (AREA)
Abstract
複数の狭帯域信号を多重し、広帯域光変調信号を生成する多重信号生成部と、前記広帯域光変調信号の強度を増幅する半導体光増幅器と、を備える光送信機。
Description
本発明は、光送信機、光受信機、光送信方法及び光受信方法に関する。
光伝送システムの大容量化に伴い光送受信機のサイズや消費電力が増加している。光送受信機のサイズや消費電力を低減するために、波長可変レーザ、ドライバアンプ、光変調器、受光素子などを一体に実装したIC-TROSA(integrated coherent transmit-receiver optical subassembly)と呼ばれる集積光モジュールの研究開発が進められている(非特許文献1参照)。
半導体光増幅器(SOA、Semiconductor Optical Amplifier)は小型で低消費電力であるため、IC-TROSAのような光モジュールにおける光プリアンプとして使用できる。非特許文献2には、データ伝送速度が400-600 Gb/sでシンボルレートが64 GBdであるIC-TROSAの光プリアンプとして半導体光増幅器を組み込む構成が記載されている。
Implementation Agreement for Integrated Coherent Transmit-Receive Optical Sub Assembly," OIF-IC-TROSA
J. Zhou, et al., "Characterizations of Semiconductor Optical Amplifiers for 64Gbaud 16-64QAM Coherent Optical Transceivers," OFC2019, Tu2H.7
A. A. M. Saleh, "Nonlinear Models of Travelling-wave Optical Amplifiers,"Electronics Letters, vol.24, no.14, pp.835-837, 1988.
N. Kamitani, Y. Yoshida, and K. Kitayama, "Experimental Study on Impact of SOA Nonlinear Phase Noise in 40Gbps Coherent 16QAM Transmissions,"ECOC2012, P1.04.
S. Okamoto, M. Yoshida, K. Yonenaga, and T. Kataoka. "Adaptive Pre-equalization using Bidirectional Pilot Sequences to Estimate and Feed Back Amplitude Transfer Function and Chromatic Dispersion,"OFC2015 Th2A.29.
しかしながら、光送受信機が扱う光変調信号のシンボルレートは通常数十GBdである。光変調信号の変動時間はシンボルレートの逆数であって、およそ数十psである。半導体光増幅器のキャリアライフタイムは通常数百psであり、光変調信号の変動時間と近い値であることから光変調信号に半導体光増幅器に起因する非線形歪みが生じることがある。このような条件では、半導体光増幅器への注入電流を増加して半導体光増幅器を高い光ゲインで駆動した際に、半導体光増幅器に起因した非線形歪みが増大し、光変調信号の著しい性能劣化を引き起こしてしまう。
本発明は、半導体光増幅器に起因する非線形歪みの影響を低減することができる技術を提供することを目的とする。
本発明は、半導体光増幅器に起因する非線形歪みの影響を低減することができる技術を提供することを目的とする。
本発明の一態様は、複数の狭帯域信号を多重し、広帯域光変調信号を生成する多重信号生成部と、前記広帯域光変調信号の強度を増幅する半導体光増幅器と、を備える光送信機である。
本発明の一態様は、広帯域光変調信号の強度を増幅する半導体光増幅器と、前記広帯域光変調信号を狭帯域信号に分離する多重信号分離部と、を備える光受信機である。
本発明の一態様は、複数の狭帯域信号を多重し、広帯域光変調信号を生成する多重信号生成ステップと、前記広帯域光変調信号の強度を増幅する半導体光増幅ステップと、を有する光送信方法である。
本発明の一態様は、広帯域光変調信号の強度を増幅する半導体光増幅ステップと、前記広帯域光変調信号を狭帯域信号に分離する多重信号分離ステップと、を備える光受信方法である。
本発明の技術は、半導体光増幅器に起因する非線形歪みの影響を低減することができる。
〈第1の実施形態〉
図1は、第1の実施形態に係る光伝送システム1の構成を示す図である。光伝送システム1は、光信号を用いた通信機器である。光伝送システムは、光送信機2、伝送路3と、光受信機4を備える。光送信機2は、光信号を送信する通信機器である。伝送路3は光送信機2から送信される光信号を光受信機4に伝送する。光受信機4は光信号を受信する通信機器である。
図1は、第1の実施形態に係る光伝送システム1の構成を示す図である。光伝送システム1は、光信号を用いた通信機器である。光伝送システムは、光送信機2、伝送路3と、光受信機4を備える。光送信機2は、光信号を送信する通信機器である。伝送路3は光送信機2から送信される光信号を光受信機4に伝送する。光受信機4は光信号を受信する通信機器である。
図2は、第1の実施形態に係る光送信機2の構成を示す図である。光送信機2は、デジタル信号処理部21、多重信号生成部22、半導体光増幅器23を備える。多重信号生成部22は、広帯域信号生成部221、光変調部222、及び信号光源223により実現される。
デジタル信号処理部21は、信号生成部211と、帯域分割部212、狭帯域信号処理部213、デジタル-アナログ変換部214を備える。信号生成部211は、バイナリ情報である送信データ系列から変調信号系列(I(n),Q(n))を生成する。I(n)、Q(n)は変調信号の同相成分と直交成分を示す電気信号である。信号生成部211は、生成した変調信号系列(I(n),Q(n))を、帯域分割部212に出力する。帯域分割部212は、信号生成部211から入力された変調信号系列を、狭帯域信号に分割し、狭帯域信号処理部213へ入力する。狭帯域信号は、変調信号系列よりも帯域が狭い信号である。狭帯域信号処理部213は、狭帯域信号どうしの加算や減算処理を行い、デジタル-アナログ変換部214に入力する。
デジタル-アナログ変換部214は、狭帯域信号処理部213から入力された変調信号系列をアナログ信号に変換する。デジタル-アナログ変換部214は、変換したアナログ信号系列(I1’’(t),Q1’’(t))及び(I2’’(t),Q2’’(t))を広帯域信号生成部221へ出力する。
広帯域信号生成部221は、帯域分割部212及び狭帯域信号処理部213で予め処理されて、デジタル-アナログ変換部214から入力された複数の狭帯域のアナログ信号から広帯域信号を生成する。
帯域分割部212における変調信号系列の狭帯域信号への分割、狭帯域信号処理部213における狭帯域信号どうしの加算や減算処理、及び広帯域信号生成部221における複数の狭帯域のアナログ信号からの広帯域信号の生成は任意の手法で実施することができる。例えば、特開2018-019255号公報に開示された手法を用いると以下のような処理となる。
帯域分割部212における変調信号系列の狭帯域信号への分割、狭帯域信号処理部213における狭帯域信号どうしの加算や減算処理、及び広帯域信号生成部221における複数の狭帯域のアナログ信号からの広帯域信号の生成は任意の手法で実施することができる。例えば、特開2018-019255号公報に開示された手法を用いると以下のような処理となる。
帯域分割部212は、信号生成部211から入力された変調信号系列(I(n),Q(n))を、上側波帯と下側波帯とに分割し、周波数シフトする。帯域分割部212は、周波数シフトした上側波帯信号(狭帯域信号、(I1’(n),Q1’(n))及び下側波帯信号(狭帯域信号(I2’(n),Q2’(n))を、それぞれ狭帯域信号処理部213へ出力する。
狭帯域信号処理部213は、帯域分割部212から入力された上側波帯信号及び下側波帯信号について、上側波帯と下側波帯どうしの加算及び減算の処理のうち少なくとも一方の処理を行う。狭帯域信号処理部213は、加算及び減算の処理のうち少なくとも一方の処理を行った狭帯域信号(I1’’(n),Q1’’(n)及び(I2’’(n),Q2’’(n))を、デジタル-アナログ変換部214へ出力する。
広帯域信号生成部221は、デジタル-アナログ変換部214から入力された複数のアナログ信号に対して、それぞれ周波数シフトする。広帯域信号生成部221は、周波数シフトされた複数のアナログ信号どうしの加算の処理を行い、広帯域信号を生成する。広帯域信号の帯域は、加算処理されるアナログ信号の帯域よりも大きい。広帯域信号生成部221は、生成した広帯域信号(I(t),Q(t))を、光変調部222へ出力する。広帯域信号(I(t),Q(t))は、周波数シフトした異なる複数のアナログ信号系列の加算により生成されるため、広帯域信号系列の周波数帯域はアナログ信号系列の周波数帯域よりも広い。
光変調部222は、信号光源223から出力された搬送波としての光信号を、広帯域信号生成部221から入力される広帯域信号で変調して広帯域光変調信号を生成する。光変調部222は、生成した広帯域光変調信号を半導体光増幅器23に出力する。
半導体光増幅器23は、光変調部222から入力される広帯域光変調信号の強度を増幅する。半導体光増幅器23は、伝送路3を介して増幅した光変調信号を光受信機4へ出力する。
尚、変調信号系列を3つ以上の狭帯域信号に分割してデジタル・アナログ変換部から出力し、広帯域光変調信号を生成する構成としても良い。
広帯域信号生成部221及び光変調部222の間にドライバアンプを挿入し、広帯域信号を増幅する構成をとっても良い。多重信号生成部22は広帯域信号生成部221と光変調部222を集積化した構成をとっても良い。この集積化した多重信号生成部22に信号光源223やドライバアンプを追加して集積化する構成としても良い。狭帯域信号処理部213をアナログ回路として、デジタル-アナログ変換部214と広帯域信号生成部221の間に挿入する構成をとっても良い。また、この狭帯域信号処理部213を集積化した多重信号生成部22に追加して集積化する構成としても良い。
尚、変調信号系列を3つ以上の狭帯域信号に分割してデジタル・アナログ変換部から出力し、広帯域光変調信号を生成する構成としても良い。
広帯域信号生成部221及び光変調部222の間にドライバアンプを挿入し、広帯域信号を増幅する構成をとっても良い。多重信号生成部22は広帯域信号生成部221と光変調部222を集積化した構成をとっても良い。この集積化した多重信号生成部22に信号光源223やドライバアンプを追加して集積化する構成としても良い。狭帯域信号処理部213をアナログ回路として、デジタル-アナログ変換部214と広帯域信号生成部221の間に挿入する構成をとっても良い。また、この狭帯域信号処理部213を集積化した多重信号生成部22に追加して集積化する構成としても良い。
図3は、第1の実施形態に係る光送信機2の動作を示すフローチャートである。信号生成部211は、変調信号を生成する(ステップS1)。帯域分割部212は、変調信号を狭帯域信号に変換する(ステップS2)。広帯域信号生成部221は、複数の狭帯域信号に基づいて広帯域信号を生成する(ステップS3)。光変調部222は、広帯域信号に基づいて広帯域光変調信号を生成する(ステップS4)。半導体光増幅器23は、広帯域光変調信号を増幅する(ステップS5)。
以上説明したように、第1の実施形態に係る光送信機2は、複数の狭帯域信号に基づいて当該狭帯域信号よりも広帯域である広帯域信号を生成する。広帯域光変調信号の変動時間は光信号帯域の逆数と等しいことから、広帯域信号に基づいて生成される広帯域光変調信号は、広帯域信号よりも狭い帯域の信号に基づいて生成される光変調信号よりも変動時間が短い信号である。そのため、第1の実施形態に係る光送信機2は光変調信号の変動時間を、半導体光増幅器のキャリアライフタイムよりも十分短くすることができる。そのため、第1の実施形態に係る光送信機2は、半導体光増幅器に起因する非線形歪みの影響を軽減することができる。
広帯域信号を生成するためには、高速動作可能なデジタル-アナログ変換器(DAC:Digital-to-Analog Converter)、及びアナログ-デジタル変換器(ADC:Analog-to-Digital Converter)が不可欠であるが、CMOS(Complementary Metal Oxide Semiconductor:相補型金属酸化膜半導体)プラットフォームを用いて作成されたDAC及びADCは、そのアナログ出力帯域が30GHz程度と不十分である。しかしながら、第1の実施形態に係る光送信機2が生成する広帯域信号は十分に広い帯域を有する。
第1の実施形態に係る光送信機2は、図4に示す構成であってもよい。図示するように、第1の実施形態に係る光送信機2は複数のデジタル信号処理部(デジタル信号処理部21-1及びデジタル信号処理部21-2)から、独立した狭帯域信号がそれぞれ出力され、当該独立した狭帯域信号に基づいて生成された広帯域信号が生成されてもよい。
図4に示すように、第1の実施形態に係る光送信機2は、信号生成部211と、デジタル-アナログ変換部214と、からなる2つのデジタル信号処理部21(21-1、21-2)と、狭帯域信号処理部213と、広帯域信号生成部221と、光変調部222と、信号光源223と、からなる多重信号生成部22と、から構成されてもよい。
デジタル信号処理部21-1の信号生成部211-1は、バイナリ情報である送信データ系列から、狭帯域信号である変調信号系列(I1(n),Q1(n))を生成してもよい。デジタル信号処理部21-1の信号生成部211-1は、生成した変調信号系列(I1(n),Q1(n))を、デジタル-アナログ変換部214-1へ出力してもよい。
同様に、デジタル信号処理部21-2の信号生成部211-2は、バイナリ情報である送信データ系列から、狭帯域信号である変調信号系列(I2(n),Q2(n))を生成してもよい。デジタル信号処理部21-2の信号生成部211-1は、生成した変調信号系列(I2(n),Q2(n))を、デジタル-アナログ変換部214-1へ出力してもよい。
同様に、デジタル信号処理部21-2の信号生成部211-2は、バイナリ情報である送信データ系列から、狭帯域信号である変調信号系列(I2(n),Q2(n))を生成してもよい。デジタル信号処理部21-2の信号生成部211-1は、生成した変調信号系列(I2(n),Q2(n))を、デジタル-アナログ変換部214-1へ出力してもよい。
デジタル信号処理部21-1のデジタル-アナログ変換部214-1は、信号生成部211-1から入力された変調信号系列を、アナログ信号に変換してもよい。デジタル信号処理部21-1のデジタル-アナログ変換部214-1は、変換したアナログ信号(I1(t),Q1(t))を、狭帯域信号処理部213へ出力してもよい。
同様に、デジタル信号処理部21-2のデジタル-アナログ変換部214-2は、信号生成部211-2から入力された変調信号系列を、アナログ信号に変換してもよい。デジタル信号処理部21-2のデジタル-アナログ変換部214-2は、変換したアナログ信号(I2(t),Q2(t))を、狭帯域信号処理部213へ出力してもよい。
同様に、デジタル信号処理部21-2のデジタル-アナログ変換部214-2は、信号生成部211-2から入力された変調信号系列を、アナログ信号に変換してもよい。デジタル信号処理部21-2のデジタル-アナログ変換部214-2は、変換したアナログ信号(I2(t),Q2(t))を、狭帯域信号処理部213へ出力してもよい。
狭帯域信号処理部213は、デジタル信号処理部21-1のデジタル-アナログ変換部214-1及びデジタル信号処理部21-2のデジタル-アナログ変換部214-2からそれぞれ入力されたアナログ信号である狭帯域信号について、当該狭帯域信号どうしの加算及び減算の処理のうち少なくとも一方の処理を行ってもよい。
狭帯域信号処理部213は、加算及び減算の処理のうち少なくとも一方の処理を行った狭帯域信号((I1’’(t)=I1(t)+I2(t),Q1’’(t)=-Q1(t)+Q2(t))、(I2’’(t)=I1(t)-I2(t),Q2’’(t)=Q1(t)+Q2(t))を、広帯域信号生成部221へ出力してもよい。
狭帯域信号処理部213は、加算及び減算の処理のうち少なくとも一方の処理を行った狭帯域信号((I1’’(t)=I1(t)+I2(t),Q1’’(t)=-Q1(t)+Q2(t))、(I2’’(t)=I1(t)-I2(t),Q2’’(t)=Q1(t)+Q2(t))を、広帯域信号生成部221へ出力してもよい。
光送信機2が図4に示す構成であるとき、光送信機2は変調信号を狭帯域信号に変換する動作(図3のフローチャートにおけるステップS2)を行わなくてよい。また、図4に示す光送信機2は、デジタル信号処理部21を3つ以上備えてもよい。
図5は、第1の実施形態に係る光受信機4の構成を示す図である。光受信機4は半導体光増幅器41、多重信号分離部42、デジタル信号処理部43を備える。多重信号分離部42は、光電変換部421、局発光源422、広帯域信号-狭帯域信号変換部423、狭帯域信号処理部424により実現される。
半導体光増幅器41は、伝送路3を介して受信した広帯域光変調信号の強度を増幅する。半導体光増幅器41は、増幅した光信号を光電変換部421へ出力する。
光電変換部421は、半導体光増幅器41から入力された光信号を電気信号に変換する。光電変換部421は、半導体光増幅器41から入力された広帯域光変調信号を、局発光源422から出力された局発光と干渉させることで、光信号をアナログ信号である広帯域信号(I(t),Q(t))に変換する。光電変換部421は、電気信号を広帯域信号-狭帯域信号変換部423へ出力する。
光電変換部421は、例えば90度光ハイブリッド、フォトダイオード、トランスインピーダンスアンプ(TIA)を備える。光電変換部421は、例えば90度光ハイブリッドにより半導体光増幅器41から入力された光信号と局発光から干渉光を生成する。干渉光の同相成分及び直交成分は、それぞれフォトダイオードに入力される。フォトダイオードにより生成された電流信号をTIAにより電圧信号に変換し、電圧信号を広帯域信号-狭帯域信号変換部423へ出力する。
広帯域信号-狭帯域信号変換部423は、広帯域信号を複数の狭帯域信号に分離し狭帯域信号処理部424へ入力する。狭帯域信号処理部424は、狭帯域信号どうしの信号処理を行い、デジタル信号処理部43へ出力する。
広帯域信号-狭帯域信号変換部423における広帯域信号の狭帯域信号への分離、狭帯域信号処理部424における狭帯域信号どうしの信号処理は任意の手法で実施することができる。例えば、国際公開第2019/031447号に開示された手法を用いると以下のような処理となる。
広帯域信号-狭帯域信号変換部423は、光電変換部421から入力された広帯域信号(I(t),Q(t))を、複数(本実施形態においては2つ)の広帯域信号にそれぞれ分割する。広帯域信号-狭帯域信号変換部423は、分割した複数の広帯域信号を周波数シフトし狭帯域信号とする。広帯域信号-狭帯域信号変換部423は、周波数シフトした複数の狭帯域信号((I1’(t),Q1’(t))、(I2’(t),Q2’(t))を、それぞれ狭帯域信号処理部424へ出力する。狭帯域信号それぞれは、(式1)で表される。
(式1)
I1’(t)=I1(t)+I2(t),
Q1’(t)=-Q1(t)+Q2(t),
I2’(t)=I1(t)-I2(t),
Q2’(t)=Q1(t)+Q2(t),
I1’(t)=I1(t)+I2(t),
Q1’(t)=-Q1(t)+Q2(t),
I2’(t)=I1(t)-I2(t),
Q2’(t)=Q1(t)+Q2(t),
狭帯域信号処理部424は、広帯域信号-狭帯域信号変換部423から入力された複数の狭帯域信号について、当該複数の狭帯域信号どうしの加算及び減算の処理のうち少なくとも一方の処理を行う。狭帯域信号処理部424は、加算及び減算の処理のうち少なくとも一方の処理を行った複数の狭帯域信号((I1(t)、Q1(t))、(I2(t)、Q2(t))を、アナログ-デジタル変換部431へ出力する。
尚、狭帯域信号処理部424はデジタル信号処理部43の復号部432に備えられる構成としてもよい。
尚、狭帯域信号処理部424はデジタル信号処理部43の復号部432に備えられる構成としてもよい。
デジタル信号処理部43は、アナログ-デジタル変換部431及び復号部432を備える。アナログ-デジタル変換部431は、多重信号分離部42から入力された狭帯域のアナログ信号系列をデジタル信号系列((I1(n)、Q1(n))、(I2(n)、Q2(n))に変換する。復号部432は、狭帯域信号を広帯域信号へ変換し、光送信機2や伝送路3及び光受信機4で生じた波形歪みを等化した後に、デジタル信号系列を復号する。
尚、復号部432は、狭帯域信号を広帯域信号へ変換せず、光送信機2や伝送路3及び光受信機4で狭帯域信号に生じた波形歪みを独立に等化した後に、デジタル信号系列を復号する構成としてもよい。
尚、復号部432は、狭帯域信号を広帯域信号へ変換せず、光送信機2や伝送路3及び光受信機4で狭帯域信号に生じた波形歪みを独立に等化した後に、デジタル信号系列を復号する構成としてもよい。
図6は、第1の実施形態に係る光受信機4の動作を示すフローチャートである。半導体光増幅器41は、光受信機4が受信した広帯域光変調信号を半導体光増幅器で増幅する(ステップS11)。多重信号分離部42は、広帯域光変調信号を狭帯域信号に分離する(ステップS12)。デジタル信号処理部43は、アナログ-デジタル変換部431により、狭帯域のアナログ信号系列をデジタル信号系列に変換し、復号部432で狭帯域信号を復号する(ステップS13)。
第1の実施形態に係る光伝送システム1は、光送信機2が送信する光信号の周波数帯域が広帯域であることから、光送信機2に備えられた半導体光増幅器23及び光受信機4に備えられた半導体光増幅器41に起因する非線形歪みの影響を軽減することができる。
第1の実施形態に係る光受信機4は、図7に示す構成であってもよい。図示するように、第1の実施形態に係る光受信機4は複数のデジタル信号処理部43(デジタル信号処理部43-1及びデジタル信号処理部43-2)を備える構成であってもよい。また、光受信機4が3つ以上のデジタル信号処理部を備えるような構成であってもよい。
〈第2の実施形態〉
図8は、第2の実施形態に係る光送信機2の構成を示す図である。第2の実施形態に係る光送信機2は、第1の実施形態に係る光送信機2と異なり、中心波長の異なる複数の光変調信号を波長合波部で多重して広帯域光変調信号を生成することに特徴がある。第2の実施形態に係る光送信機2は、デジタル信号処理部21を複数(本実施形態では2個)備える。第2の実施形態に係る各デジタル信号処理部21の構成は、第1の実施形態に係るデジタル信号処理部21と同じであり、帯域分割部212及び狭帯域信号処理部213を備える。尚、この際、複数のデジタル信号処理部21を集積化して1つのデジタル信号処理部21とし、帯域分割部212及び狭帯域信号処理部213を備えた構成としてもよい。なお、他の実施形態においては、複数のデジタル信号処理部21は信号生成部211及びデジタル-アナログ変換部214のみ備え、帯域を分割せずにI(n)、Q(n)信号をDA変換するものであってもよい。この場合は、多重信号生成部22は、広帯域信号生成部221を備えず、複数備えたデジタル信号処理部21から出力された複数のアナログ狭帯域信号をそれぞれ光変調し、波長合波してもよい。尚、この際、光送信機2は、複数のデジタル信号処理部21を集積化して1つのデジタル信号処理部21とし、信号生成部211及びデジタル-アナログ変換部214のみ備え、複数の狭帯域信号を出力する構成でもよい。
図8は、第2の実施形態に係る光送信機2の構成を示す図である。第2の実施形態に係る光送信機2は、第1の実施形態に係る光送信機2と異なり、中心波長の異なる複数の光変調信号を波長合波部で多重して広帯域光変調信号を生成することに特徴がある。第2の実施形態に係る光送信機2は、デジタル信号処理部21を複数(本実施形態では2個)備える。第2の実施形態に係る各デジタル信号処理部21の構成は、第1の実施形態に係るデジタル信号処理部21と同じであり、帯域分割部212及び狭帯域信号処理部213を備える。尚、この際、複数のデジタル信号処理部21を集積化して1つのデジタル信号処理部21とし、帯域分割部212及び狭帯域信号処理部213を備えた構成としてもよい。なお、他の実施形態においては、複数のデジタル信号処理部21は信号生成部211及びデジタル-アナログ変換部214のみ備え、帯域を分割せずにI(n)、Q(n)信号をDA変換するものであってもよい。この場合は、多重信号生成部22は、広帯域信号生成部221を備えず、複数備えたデジタル信号処理部21から出力された複数のアナログ狭帯域信号をそれぞれ光変調し、波長合波してもよい。尚、この際、光送信機2は、複数のデジタル信号処理部21を集積化して1つのデジタル信号処理部21とし、信号生成部211及びデジタル-アナログ変換部214のみ備え、複数の狭帯域信号を出力する構成でもよい。
第2の実施形態に係る多重信号生成部22は、広帯域信号生成部221、光変調部222及び信号光源223を複数(本実施形態では2個)備え、波長合波部224を備える。また、第2の実施形態に係る光送信機2は信号光源223を複数個備えず、信号光源223を複数の光搬送波を有するスーパーコンティニウム光源として、これらの搬送波を分割して、複数の光変調部222に信号光を出力してもよい。
第2の実施形態に係る光変調部222は、デジタル信号処理部21から入力されるアナログ信号系列をそれぞれ変調し、光変調信号を生成する。第2の実施形態に係る光変調部222は、光変調信号を波長合波部224へ出力する。
波長合波部224は、複数の光変調部222から入力される光変調信号を合波し、広帯域光変調信号を生成する。広帯域光変調信号の周波数帯域は光変調信号の周波数帯域よりも大きい。波長合波部224は、広帯域光変調信号を半導体光増幅器23へ出力する。
第2の実施形態に係る半導体光増幅器23は、波長合波部224から入力される広帯域光変調信号の強度を増幅する。第2の実施形態に係る半導体光増幅器23は、増幅した光信号を伝送路3を介して光受信機4へ出力する。
図9は、第2の実施形態に係る光送信機2の動作を示すフローチャートである。信号生成部211は、変調信号を生成する(ステップS21)。帯域分割部212は、変調信号を狭帯域信号に変換する(ステップS22)。広帯域信号生成部221は、複数の狭帯域信号に基づいて広帯域信号を生成する(ステップS23)。波長合波部224は、光変調部222から出力される複数の光変調信号を合波し広帯域光変調信号を生成する(ステップS24)。半導体光増幅器23は、広帯域光変調信号を増幅する(ステップS25)。
尚、上述した通りデジタル信号処理部21が信号生成部211及びデジタル-アナログ変換部214のみ備え、多重信号生成部22が広帯域信号生成部221を備えない場合は、ステップS22を省略することができる。
尚、上述した通りデジタル信号処理部21が信号生成部211及びデジタル-アナログ変換部214のみ備え、多重信号生成部22が広帯域信号生成部221を備えない場合は、ステップS22を省略することができる。
第2の実施形態に係る光送信機2は、波長合波部224により光変調信号を合波することで帯域の広い光信号を生成することができる。そのため、第2の実施形態に係る光送信機2が扱う光変調信号の変動時間は、第1の実施形態に係る光送信機2と同様に半導体光増幅器のキャリアライフタイムよりも短い。そのため、第2の実施形態に係る光送信機2は、半導体光増幅器に起因する非線形歪みの影響を軽減することができる。
図10は、第2の実施形態に係る光受信機4の構成を示す図である。第2の実施形態に係る光受信機4は、第1の実施形態に係る光受信機4と異なり広帯域光変調信号を波長分波部425で分波して、狭帯域信号を生成することに特徴がある。第2の実施形態に係る光受信機4は、半導体光増幅器41と、多重信号分離部42と複数(本実施形態では2個)のデジタル信号処理部43を備える。多重信号分離部42は、波長分波部425と、複数(本実施形態では2個)の光電変換部421、局発光源422、広帯域信号-狭帯域信号変換部423、及び狭帯域信号処理部424を備える。第2の実施形態に係る各デジタル信号処理部43は、それぞれ第1の実施形態に係るデジタル信号処理部43と同じ構成であり、アナログ-デジタル変換部431及び復号部432を備える。なお、他の実施形態においては、多重信号分離部42は、波長分波部425、光電変換部421及び局発光源422のみを備え、アナログ信号において狭帯域信号への変換を行わずにI(t)、Q(t)信号を出力するものであってもよい。なお、この際は、光受信機4はデジタル信号処理部43を1つ備え、光電変換部421から入力される信号をAD変換し復号してもよい。また、第2の実施形態に係る光受信機4は局発光源422を複数備えず、局発光源422を複数の光搬送波を有するスーパーコンティニウム光源として、これらの搬送波を分割して、複数の光電変換部421に局発光を出力してもよい。
波長分波部425は、半導体光増幅器41から入力された広帯域光変調信号を分波する。波長分波部425は、分波した光信号をそれぞれ対応する光電変換部421へ出力する。
第2の実施形態に係る光電変換部421は、波長分波部425から入力される光信号を電気信号に変換する。第2の実施形態に係る広帯域信号-狭帯域信号変換部423は光電変換部421から入力される広帯域信号を複数の狭帯域信号に分離し狭帯域信号処理部424へ入力する。第2の実施形態に係る狭帯域信号処理部424は、広帯域信号-狭帯域信号変換部423から入力された複数の狭帯域信号について、当該複数の狭帯域信号どうしの加算及び減算の処理のうち少なくとも一方の処理を行う。第2の実施形態に係るアナログ-デジタル変換部431は、多重信号分離部42から入力された狭帯域のアナログ信号系列をデジタル信号系列に変換する。第2の実施形態に係る復号部432は、狭帯域信号を広帯域信号へ変換し、光送信機2や伝送路3及び光受信機4で生じた波形歪みを等化した後に、デジタル信号系列を復号する。
図11は、第2の実施形態に係る光受信機4の動作を示すフローチャートである。半導体光増幅器41は、光受信機4が受信した広帯域光変調信号を増幅する(ステップS31)。多重信号分離部42に備えた波長分波部425は、広帯域光変調信号を分波し、狭帯域信号に分離する(ステップS32)。デジタル信号処理部43は、アナログ-デジタル変換部431により、狭帯域のアナログ信号系列をデジタル信号系列に変換し、復号部432で狭帯域信号を復号する(ステップS33)。
第2の実施形態に係る光伝送システム1は、第1の実施形態に係る光伝送システム1と同様に、光送信機2が送信する光信号の周波数帯域が広帯域であることから、光送信機2に備えられた半導体光増幅器23及び光受信機4に備えられた半導体光増幅器41に起因する非線形歪みの影響を軽減することができる。
〈第3の実施形態〉
図12は、第3の実施形態に係るデジタル信号処理部21及びデジタル信号処理部43の構成を示す図である。第3の実施形態に係るデジタル信号処理部21は第1の実施形態又は第2の実施形態に係るデジタル信号処理部21と異なり、デジタル信号処理部21内にSOA歪補償部215を備える。第3の実施形態に係るデジタル信号処理部43は第1の実施形態又は第2の実施形態に係るデジタル信号処理部43と異なり、SOA歪推定部434及び物理パラメータ推定部435を備える。なお、物理パラメータが既知である場合には、第3の実施形態に係るデジタル信号処理部43は、SOA歪推定部434と物理パラメータ推定部435を備えなくてもよい。SOA歪補償部215、SOA歪推定部434、物理パラメータ推定部435には任意の手法を用いることができる。例えば特開2018-019255号公報に記載された手法を用いて、以下のようにしてSOAにより生じる歪の補償をすることができる。
図12は、第3の実施形態に係るデジタル信号処理部21及びデジタル信号処理部43の構成を示す図である。第3の実施形態に係るデジタル信号処理部21は第1の実施形態又は第2の実施形態に係るデジタル信号処理部21と異なり、デジタル信号処理部21内にSOA歪補償部215を備える。第3の実施形態に係るデジタル信号処理部43は第1の実施形態又は第2の実施形態に係るデジタル信号処理部43と異なり、SOA歪推定部434及び物理パラメータ推定部435を備える。なお、物理パラメータが既知である場合には、第3の実施形態に係るデジタル信号処理部43は、SOA歪推定部434と物理パラメータ推定部435を備えなくてもよい。SOA歪補償部215、SOA歪推定部434、物理パラメータ推定部435には任意の手法を用いることができる。例えば特開2018-019255号公報に記載された手法を用いて、以下のようにしてSOAにより生じる歪の補償をすることができる。
SOA歪補償部215は、信号生成部211により生成された変調信号に対して、半導体光増幅器23による歪を補償する。SOA歪補償部215は、補償した信号を帯域分割部212に出力する。
SOA歪補償部215は、半導体光増幅器23の物理パラメータの推定値を光受信機4の物理パラメータ推定部435から取得する。SOA歪補償部215は、半導体光増幅器23の物理パラメータの推定値に基づいて、半導体光増幅器23に入力される光信号に生じる非線形信号歪みを推定し、非線形信号歪みを補償する。なお、物理パラメータが既知である場合には、物理パラメータをSOA歪補償部215に設定しておけば良い。
SOA歪補償部215は、半導体光増幅器23によって半導体光増幅器23に入力される光信号に生じる非線形信号歪みの利得係数h(t)を、半導体光増幅器23の物理パラメータの推定値に基づいて算出する。SOA歪補償部215は、非線形信号歪みの利得係数h(t)の逆特性の利得係数-h(t)を用いて、非線形信号歪みの利得係数h(t)の逆特性を表す値(exp((-h(t)(1+jα))/2))を算出する。SOA歪補償部215は、非線形信号歪みの利得係数h(t)の逆特性を表す値(exp((-h(t)(1+jα))/2))を、半導体光増幅器23に入力される光信号に乗算する。これにより、SOA歪補償部215は、半導体光増幅器23に入力される光信号に生じる非線形信号歪みを、予等化することができる。
半導体光増幅器23が取得した光信号と半導体光増幅器23が出力した光信号との関係は、式(1)に示す物理モデルで示される(非特許文献3及び非特許文献4参照)。
ここで、EI(t)は、半導体光増幅器23が取得した光信号(光変調部222が出力する光変調信号)の複素振幅を示す。Eo(t)は、半導体光増幅器23が送信した光信号の複素振幅を示す。h(t)は、利得係数を示す。αは、線幅増大係数を示す。jは、虚数単位を示す。exp(h(t)(1+jα)/2)は、半導体光増幅器23によって光変調信号に生じる非線形信号歪みを示す。
式(1)に示す物理モデルでは、利得係数h(t)は、式(2)に示す微分方程式で表現される。
ここで、τcは、キャリア寿命を示す。h0は、非飽和利得を示す。Psatは、飽和出力を示す。これらは、式(1)に示す線幅増大係数αとともに、半導体光増幅器23の物理パラメータである。式(1)に示す物理モデルでは、これらの物理パラメータが求まれば、半導体光増幅器23によって送信信号に生じる非線形信号歪みの挙動は、表現可能である。
半導体光増幅器23が取得した光信号のパワーに利得係数h(t)の時間変化が依存していることは、式(2)に示されている。したがって、半導体光増幅器23の物理パラメータが分かれば、光信号のパワーに依存した利得係数h(t)は、式(2)から求めることができる。
SOA歪補償部215は、例えば、オイラー法やN次(Nは正の整数)のルンゲクッタ法による時間発展解法によって、式(2)から利得係数h(t)を数値解として求めることができる。SOA歪補償部215は、式(2)から利得係数h(t)を求める場合、解析解が存在すれば解析解を用いてもよい。
SOA歪補償部215は、利得係数h(t)の逆特性の利得係数(-h(t))を用いて、非線形信号歪みの利得係数h(t)の逆特性を表す値(exp(-h(t)(1+jα)/2))を算出する。
SOA歪補償部215は、非線形信号歪みの利得係数h(t)の逆特性を表す値(exp(-h(t)(1+jα)/2))を光変調信号EI(t)に乗算することによって、半導体光増幅器23で光変調信号に生じる非線形信号歪みを補償する。これにより、SOA歪補償部215は、半導体光増幅器23によって光変調信号に生じる非線形信号歪みを、予等化することができる。
なお、SOA歪補償部215は、時間発展解法以外の解法によって、式(2)から利得係数h(t)を求めてもよい。半導体光増幅器23の物理パラメータが推定されていない場合、SOA歪補償部215では、利得係数h(t)を0とし、半導体光増幅器23で光変調信号に生じる非線形信号歪みを補償しない構成をとってもよい。半導体光増幅器23の物理パラメータが推定されていない場合、信号生成部211から出力される変調信号は、SOA歪補償部215を迂回して半導体光増幅器23で光変調信号に生じる非線形信号歪みを補償しない構成をとってもよい。
SOA歪推定部434は、光送信機2の送信信号に基づくデジタル信号である受信信号を、アナログ-デジタル変換部431から取得する。SOA歪推定部434は、光送信機2の送信信号を、参照信号として光送信機2から取得する。例えば、SOA歪推定部434は、コミュニケーションチャネル(非特許文献5参照)、NE-OpS(Network Element-Operations Systems)又はNW-OpS(Network-Operations System)等である制御チャネル5を介して、光送信機2の送信信号を参照信号として光送信機2から取得する。例えば、SOA歪推定部434は、送信データ系列の一部の既知信号を、参照信号として光送信機2から取得する。例えば、SOA歪推定部434は、受信信号のシンボルの値の系列を、参照信号として光送信機2から取得する。
SOA歪推定部434は、測定された光信号Eo(t)を光信号EI(t)で除算した結果と式(1)とに基づいて、半導体光増幅器23によって送信信号に生じる非線形信号歪みを表す値(exp(h(t)(1+jα)/2))と線幅増大係数αとを、式(3)のように求める。
SOA歪推定部434は、参照信号を繰り返し信号として同一シンボルの平均値を算出してもよい。これにより、SOA歪推定部434は、白色雑音による信号歪みを軽減することができる。SOA歪推定部434は、非線形信号歪みの推定精度を上げることができる。
SOA歪推定部434は、半導体光増幅器23による非線形信号歪みが大きい場合、信号品質の劣化により、非線形信号歪みを精度よく推定することができない場合がある。SOA歪推定部434は、一度推定した値をフィードバックして推定を繰り返してもよい。これにより、SOA歪推定部434は、半導体光増幅器23による非線形信号歪みが大きい場合でも、より高い精度で伝達関数を補償することができる。
半導体光増幅器23の物理パラメータの測定値は、半導体光増幅器23の製造誤差等に起因する個体差によって、半導体光増幅器23の物理パラメータの設計値とは異なる場合がある。そこで、物理パラメータ推定部435は、半導体光増幅器23の物理パラメータを、デジタル信号処理によって推定する。これによって、光送信機2のSOA歪補償部215は、光送信機2の半導体光増幅器23の個体差を吸収して、非線形信号歪みを補償することができる。SOA歪推定部434は、未知の物理パラメータを有する半導体光増幅器23に対しても、非線形信号歪みを補償することができる。物理パラメータ推定部435は、SOA歪推定部434が参照信号に基づいて非線形信号歪みを推定した結果に基づいて、半導体光増幅器23の物理パラメータを推定する。
物理パラメータ推定部435は、式(3)を用いて求められた利得係数h(t)と式(2)とよって、半導体光増幅器23の物理パラメータを推定する。半導体光増幅器23の物理パラメータは、例えば、キャリア寿命τc、非飽和利得h0、飽和出力Psatである。
物理パラメータ推定部435は、半導体光増幅器23の物理パラメータを推定する方法は、特定の方法に限定されない。例えば、物理パラメータ推定部435は、半導体光増幅器23の物理パラメータを、最小二乗法によるフィッティングや、連立方程式による算出等によって推定してもよい。
物理パラメータ推定部435は、コミュニケーションチャネル(非特許文献5参照)、NE-OpS又はNW-OpS等の制御チャネル5を通じて、半導体光増幅器23の物理パラメータをSOA歪補償部215にフィードバックする。
なお、物理パラメータ推定部435は、光送信機2と光受信機4とが専用線で直結されている場合、伝送路3の代わりに専用線を伝送された光信号に基づいて、半導体光増幅器23の物理パラメータを推定してもよい。物理パラメータ推定部435は、半導体光増幅器23の物理パラメータを推定した後において、参照信号が加えられた送信信号から参照信号を削除した結果の信号を光送信機2及び復号部432に送信することができる。この後に、物理パラメータを再度推定する必要がある場合、物理パラメータ推定部435は、送信信号に参照信号を再び加えてもよい。物理パラメータ推定部435は、半導体光増幅器23に注入される電流が変化しない場合や、半導体光増幅器23が取得する光信号の強度が変化しない場合、半導体光増幅器23の物理パラメータの推定結果を継続的に使用することができる。これらの場合、物理パラメータ推定部435は、半導体光増幅器23の物理パラメータの推定を一時停止してもよいし、半導体光増幅器23の物理パラメータを継続的及び定期的に算出してもよい。物理パラメータ推定部435は、半導体光増幅器23に注入される電流が変化しない場合や、半導体光増幅器23が取得する光信号の強度が変化した場合、半導体光増幅器23の物理パラメータを再び算出する。
以上により、第3の実施形態に係る光送信機2は、信号生成部211により生成された変調信号に対して、半導体光増幅器23による歪を補償することができ、より半導体光増幅器に起因する非線形歪みの影響を軽減することができる。
SOA歪推定部434及び物理パラメータ推定部435が備えられるのはデジタル信号処理部43に限られない。例えば、物理パラメータ推定部435又はSOA歪推定部434と物理パラメータ推定部435の両方が対応するデジタル信号処理部21に備えられ、デジタル信号処理部43とデジタル信号処理部21とが制御チャネル5を通じて、信号を送受信してもよい。
また、SOA歪補償部が備えられるのはデジタル信号処理部21に限られない。例えばデジタル信号処理部43の復号部432にSOA歪補償部が備えられ、アナログ-デジタル変換部431により変換された信号に非線形信号歪みの利得係数h(t)の逆特性を表す値(exp(-h(t)(1+jα)/2))を乗算することによって、半導体光増幅器23で送信信号に生じる非線形信号歪みを補償してもよい。
SOA歪補償部215及び復号部432に備えたSOA歪補償部は、光受信機4に備えられる半導体光増幅器41により生じる非線形信号歪みも、半導体光増幅器23により生じる非線形信号歪みと同様に補償してもよい。
〈実験例〉
以下、第1の実施形態の図2の構成における実験例を説明する。実験例において、光送信機2の光変調部222から半導体光増幅器23に入力される広帯域光変調信号のシンボルレートは42GBd、84GBd、168GBdである。変調方式は、確率的コンスタレーションシェーピングを施した偏波多重16QAM(quadrature amplitude modulation)である。また、半導体光増幅器23に注入する電流を変化させ、増幅率を変化させた。
以下、第1の実施形態の図2の構成における実験例を説明する。実験例において、光送信機2の光変調部222から半導体光増幅器23に入力される広帯域光変調信号のシンボルレートは42GBd、84GBd、168GBdである。変調方式は、確率的コンスタレーションシェーピングを施した偏波多重16QAM(quadrature amplitude modulation)である。また、半導体光増幅器23に注入する電流を変化させ、増幅率を変化させた。
図13は、各条件における信号空間ダイヤグラムを示す表である。図13に示された6つの信号空間ダイヤグラムは、半導体光増幅器23に注入する電流を100mA及び350mA、広帯域光変調信号のシンボルレートを42GBd、84GBd及び168GBdにした場合に光送信機2から出力される信号を示す信号空間ダイヤグラムである。光変調信号のシンボルレートが42GBdから84GBd、84GBdから168GBdと大きくなることで、信号点間の境界が明確になり、半導体光増幅器に起因する非線形歪みが低減されていることが、特に注入電流が350mAである場合に確認された。
また、光送信機2の半導体光増幅器23から出力される光信号のSN比と、光送信機の半導体光増幅器23をEDFA(Erbium Doped Fiber Amplifier)に取って代えた場合にEDFAから出力される光信号のSN比との差をSNRペナルティとして、半導体光増幅器への注入電流の依存性を示した。
図14は、半導体光増幅器への注入電流(SOA注入電流)の大きさとSNRペナルティの関係を示すグラフである。SOA注入電流が350mAであるとき、光変調信号のシンボルレートが168GBdのSNRペナルティは、シンボルレートが42GBdのSNRペナルティよりも約2dB小さく、シンボルレートが84GBdのSNRペナルティよりも約1dB小さかった。よって、高いシンボルレートの光変調信号を用いることで、特に半導体光増幅器の増幅率が高い場合に、半導体光増幅器に起因する非線形歪みが低減されることが示された。
〈他の実施形態〉
以上、図面を参照してこの発明の実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
以上、図面を参照してこの発明の実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
上記実施形態において信号生成部211は光信号の同相成分と直交成分を示す電気信号である変調信号系列(I(n),Q(n))を生成するがこれに限られない。例えば、光信号の偏波を利用し、光信号のX偏波とY偏波の同相成分と直交成分を示す電気信号(XI(n)、XQ(n)、YI(n)、YQ(n))を生成してもよい。
第1の実施形態において、光送信機2の半導体光増幅器23は光変調部222により生成される光変調信号の強度を増幅するがこれに限られない。半導体光増幅器23は、光変調部222と信号光源223との間に設けられ、信号光源223から入力される信号光を増幅して光変調部222に出力してもよい。また、光信号のX偏波とY偏波とで異なる信号を有する場合、半導体光増幅器23は光変調部222に含まれ、X偏波成分又はY偏波成分の一方のみ、もしくは半導体光増幅器23は光変調部222に複数含まれ両方、を増幅してもよい。
第1の実施形態において、光受信機4の半導体光増幅器41は光受信機4に入力される光信号の強度を増幅するがこれに限られない。光信号のX偏波とY偏波とで異なる信号を有する場合、半導体光増幅器41は、光電変換部421に含まれ、X偏波成分又はY偏波成分の一方のみ、もしくは半導体光増幅器41は光電変換部421に複数含まれ両方、を増幅してもよい。
光送信機2と光受信機4とは同じ装置により実現されてもよい。このとき、信号光源223と局発光源422とは同一の光源であってもよい。
第1及び第2の実施形態においてはIQ変調信号が扱われる構成例であったが、強度変調信号が扱われる構成例としても良い。この場合は局発光源422と光電変換部421を構成する90度光ハイブリッドを省略することもできる。
図15は、本実施形態に係る光送受信機100を示す図である。光送受信機100は、処理装置101及び光フロントエンド102を備える。処理装置101は、デジタル信号処理部21及びデジタル信号処理部43を備える。光フロントエンド102は、多重信号生成部22、半導体光増幅器23、半導体光増幅器41、多重信号分離部42を備える。光フロントエンド102を構成する多重信号生成部22、半導体光増幅器23、半導体光増幅器41、多重信号分離部42は、集積化された構成をとってもよい。光フロントエンド102に信号光源223を集積化してもよい。多重信号分離部42は局発光源422を備えず、信号光源223を分岐して局発光源422の機能を有していてもよい。
なお、上述した通り、光送受信機100は、光信号の偏波を利用し、光信号のX偏波とY偏波の同相成分と直交成分を示す電気信号(XI(n)、XQ(n)、YI(n)、YQ(n))を用いた通信を行ってもよい。図16は、本実施形態に係る偏波多重を行う光送受信機100を示す図である。
図16に示すように、デジタル信号処理部21において、信号生成部211は、光信号のX偏波とY偏波の同相成分と直交成分を示す電気信号(XI(n)、XQ(n)、YI(n)、YQ(n))を生成し、帯域分割部212、狭帯域信号処理部213及びデジタル-アナログ変換部214は、X偏波に係る電気信号とY偏波に係る電気信号をそれぞれ独立して処理する。多重信号生成部22において、広帯域信号生成部221は、X偏波に係る電気信号とY偏波に係る電気信号をそれぞれ独立して処理し、光変調部222は、光変調に加え偏波合成を行うことで光信号を生成する。
図16に示すように、デジタル信号処理部21において、信号生成部211は、光信号のX偏波とY偏波の同相成分と直交成分を示す電気信号(XI(n)、XQ(n)、YI(n)、YQ(n))を生成し、帯域分割部212、狭帯域信号処理部213及びデジタル-アナログ変換部214は、X偏波に係る電気信号とY偏波に係る電気信号をそれぞれ独立して処理する。多重信号生成部22において、広帯域信号生成部221は、X偏波に係る電気信号とY偏波に係る電気信号をそれぞれ独立して処理し、光変調部222は、光変調に加え偏波合成を行うことで光信号を生成する。
また、多重信号分離部42においては、光電変換部421は光信号を偏波分離した後、光電変換を行うことで、X偏波とY偏波に係る広帯域信号を生成する。広帯域信号-狭帯域信号変換部423、狭帯域信号処理部424、アナログ-デジタル変換部431は、X偏波に係る電気信号とY偏波に係る電気信号をそれぞれ独立して処理する。復号部432は、X偏波に係る電気信号とY偏波に係る電気信号を復号し、受信データ系列を生成する。
尚、多重信号生成部22、半導体光増幅器23、半導体光増幅器41、多重信号分離部42を、集積化し、光フロントエンド102とする構成をとってもよい。この光フロントエンド102に信号光源223を集積化してもよい。
尚、多重信号生成部22、半導体光増幅器23、半導体光増幅器41、多重信号分離部42を、集積化し、光フロントエンド102とする構成をとってもよい。この光フロントエンド102に信号光源223を集積化してもよい。
1 光伝送システム、2 光送信機、3 伝送路、4 光受信機、21 デジタル信号処理部、211 信号生成部、212 帯域分割部、213 狭帯域信号処理部、214 デジタル-アナログ変換部、22 多重信号生成部、221 広帯域信号生成部、222 光変調部、223 信号光源、224 波長合波部、23、41 半導体光増幅器、42 多重信号分離部、421 光電変換部、422 局発光源、423 広帯域信号-狭帯域信号変換部、424 狭帯域信号処理部、425 波長分波部
Claims (10)
- 複数の狭帯域信号を多重し、広帯域光変調信号を生成する多重信号生成部と、
前記広帯域光変調信号の強度を増幅する半導体光増幅器と、
を備える光送信機。 - 前記多重信号生成部は、
前記複数の狭帯域信号から前記狭帯域信号よりも周波数帯域の広い広帯域信号を生成する広帯域信号生成部と、
前記広帯域信号に基づいて光信号を変調し、前記広帯域光変調信号を生成する光変調部と、
を備える請求項1に記載の光送信機。 - 前記多重信号生成部は、
前記狭帯域信号に基づいて光信号を変調し、光変調信号を生成する複数の光変調部と、
複数の前記光変調信号を合波し、前記広帯域光変調信号を生成する波長合波部と、
を備える請求項1に記載の光送信機。 - 前記広帯域光変調信号の前記半導体光増幅器による歪を補償する歪補償部と、
をさらに備える請求項1から3のいずれか一項に記載の光送信機。 - 広帯域光変調信号の強度を増幅する半導体光増幅器と、
前記広帯域光変調信号を狭帯域信号に分離する多重信号分離部と、
を備える光受信機。 - 前記多重信号分離部は、
前記増幅された広帯域光変調信号を電気信号に変換する光電変換部と、
前記電気信号を帯域に基づいて分離する広帯域信号―狭帯域信号変換部と、
を備える請求項5に記載の光受信機。 - 前記多重信号分離部は、
前記増幅された広帯域光変調信号を分波し、狭帯域光変調信号を生成する波長分波部と、
前記狭帯域光変調信号を狭帯域信号に変換する光電変換部と、
を備える請求項5に記載の光受信機。 - 前記広帯域光変調信号の前記半導体光増幅器による歪を補償するSOA歪補償部と、
をさらに備える請求項6又は7に記載の光受信機。 - 複数の狭帯域信号を多重し、広帯域光変調信号を生成する多重信号生成ステップと、
前記広帯域光変調信号の強度を増幅する半導体光増幅ステップと、
を有する光送信方法。 - 広帯域光変調信号の強度を増幅する半導体光増幅ステップと、
前記広帯域光変調信号を狭帯域信号に分離する多重信号分離ステップと、
を備える光受信方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/002651 WO2023144880A1 (ja) | 2022-01-25 | 2022-01-25 | 光送信機、光受信機、光送信方法及び光受信方法 |
JP2023576280A JPWO2023144880A1 (ja) | 2022-01-25 | 2022-01-25 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/002651 WO2023144880A1 (ja) | 2022-01-25 | 2022-01-25 | 光送信機、光受信機、光送信方法及び光受信方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023144880A1 true WO2023144880A1 (ja) | 2023-08-03 |
Family
ID=87471167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/002651 WO2023144880A1 (ja) | 2022-01-25 | 2022-01-25 | 光送信機、光受信機、光送信方法及び光受信方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023144880A1 (ja) |
WO (1) | WO2023144880A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004112781A (ja) * | 2002-08-28 | 2004-04-08 | Matsushita Electric Ind Co Ltd | 光伝送システム |
JP2018019255A (ja) * | 2016-07-28 | 2018-02-01 | 日本電信電話株式会社 | 光送信機、光受信機及び光送受信機 |
JP2019220773A (ja) * | 2018-06-15 | 2019-12-26 | 富士通株式会社 | 光伝送システム、制御装置、光伝送方法及び伝送装置 |
-
2022
- 2022-01-25 WO PCT/JP2022/002651 patent/WO2023144880A1/ja unknown
- 2022-01-25 JP JP2023576280A patent/JPWO2023144880A1/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004112781A (ja) * | 2002-08-28 | 2004-04-08 | Matsushita Electric Ind Co Ltd | 光伝送システム |
JP2018019255A (ja) * | 2016-07-28 | 2018-02-01 | 日本電信電話株式会社 | 光送信機、光受信機及び光送受信機 |
JP2019220773A (ja) * | 2018-06-15 | 2019-12-26 | 富士通株式会社 | 光伝送システム、制御装置、光伝送方法及び伝送装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023144880A1 (ja) | 2023-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jansen et al. | Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF | |
US9667347B2 (en) | Optical transmitter, optical receiver, method of compensating non-linear distortion, and communication apparatus | |
Liu et al. | 448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs | |
Zhang et al. | 30km downstream transmission using 4× 25Gb/s 4-PAM modulation with commercial 10Gbps TOSA and ROSA for 100Gb/s-PON | |
US8594515B2 (en) | Digital phase conjugation for fiber-optic links | |
JP6135415B2 (ja) | 非線形歪み補償装置及び方法並びに光受信器 | |
KR20130018298A (ko) | 광 전송 시스템들에 대한 전자 비선형성 보상 | |
Torrengo et al. | Influence of pulse shape in 112-Gb/s WDM PDM-QPSK transmission | |
Ferreira et al. | Coherent UDWDM-PON with dual-polarization transceivers in real-time | |
Torres-Ferrera et al. | 100+ Gbps/λ 50 km C-band downstream PON using CD digital pre-compensation and direct-detection ONU receiver | |
Mateo et al. | Electronic phase conjugation for nonlinearity compensation in fiber communication systems | |
Sowailem et al. | 770-Gb/s PDM-32QAM coherent transmission using InP dual polarization IQ modulator | |
Ferreira et al. | Demonstration of Nyquist UDWDM-PON with digital signal processing in real-time | |
JP2018042073A (ja) | 光送信機、光伝送システム及び光受信機 | |
JP6633470B2 (ja) | 光送信機、光受信機及び光送受信機 | |
US9673911B2 (en) | Tracking nonlinear cross-phase modulation noise and linewidth induced jitter in coherent optical fiber communication links | |
Kovacs et al. | Simplified coherent optical network units for very-high-speed passive optical networks | |
CN111313976A (zh) | 脉冲幅度调制信号外差相干pon系统及收发方法 | |
Che et al. | 2.4-Tb/s single-wavelength coherent transmission enabled by 114-GHz all-electronic digital-band-interleaved DACs | |
Sotiropoulos et al. | Advanced differential modulation formats for optical access networks | |
WO2023144880A1 (ja) | 光送信機、光受信機、光送信方法及び光受信方法 | |
Wang et al. | Nonlinearity-tolerant OSNR estimation method based on correlation function and statistical moments | |
US20240267129A1 (en) | Signal processing apparatus, signal processing method and communication system | |
US11296789B2 (en) | Optical receiver and optical space communication system | |
Choi | 30.7 Tb/s Transmission over 400 km using 40 WDM channels of DP-16 QAM and Raman amplification without inline repeaters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22923749 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023576280 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |