WO2023144873A1 - Output device, and machine tool - Google Patents

Output device, and machine tool Download PDF

Info

Publication number
WO2023144873A1
WO2023144873A1 PCT/JP2022/002601 JP2022002601W WO2023144873A1 WO 2023144873 A1 WO2023144873 A1 WO 2023144873A1 JP 2022002601 W JP2022002601 W JP 2022002601W WO 2023144873 A1 WO2023144873 A1 WO 2023144873A1
Authority
WO
WIPO (PCT)
Prior art keywords
threshold
state
work
actuator
control device
Prior art date
Application number
PCT/JP2022/002601
Other languages
French (fr)
Japanese (ja)
Inventor
昌治 伊藤
大祐 福岡
徹 山口
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2022/002601 priority Critical patent/WO2023144873A1/en
Publication of WO2023144873A1 publication Critical patent/WO2023144873A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • B23B31/02Chucks
    • B23B31/10Chucks characterised by the retaining or gripping devices or their immediate operating means
    • B23B31/117Retention by friction only, e.g. using springs, resilient sleeves, tapers

Definitions

  • the present disclosure relates to an output device that outputs axial motion to an actuator capable of holding an object.
  • Patent Document 1 discloses a clamp/unclamp detection mechanism for a spindle device, which describes a drawbar that urges a tool in a clamping direction against a shaft hole of a tool spindle rotatably supported by a tool headstock.
  • a portion to be detected is formed so as to protrude in the circumferential direction at the rear end portion of the boss portion of the drawbar.
  • the case to which the detection element that detects the part to be detected is attached can change the mounting rotation angle around a predetermined axis line, and the direction of the detection element to the part to be detected can be changed by changing the mounting rotation angle of the case. Adjustable.
  • the user adjusts so that the detection center of the detection element coincides with the central portion (protrusion peak) of the detected portion when arranged at the clamp position.
  • the detection element outputs a voltage value corresponding to a change in the distance from the detected part.
  • the clamp/unclamp detection mechanism determines clamp/unclamp based on the voltage value.
  • clamping is determined when the output voltage of the detection element reaches a predetermined peak, and unclamping is determined otherwise.
  • the position of the peak of the detected part changes each time the outer diameter of the tool to be clamped is changed, so it is necessary to change the mounting rotation angle of the case and adjust the detection direction of the detection element. be.
  • a predetermined threshold value is used to determine whether to clamp or unclamp. not listed in For this reason, in the technique according to Patent Document 1, there is room for improvement in the technique for determining the clamping state of the object using a threshold value.
  • the present disclosure has been made in view of the above problems, and provides an output device capable of detecting the operating state of an operating device capable of holding an object using a threshold value, and a machine tool including the output device. intended to
  • an output device for outputting axial motion to an actuator capable of holding an object, comprising: an actuator; an output member that is displaced to operate the operating device to hold the object; a detected member that is displaced in the axial direction according to the axial displacement of the output member; and the detected member of the output member.
  • a distance sensor that outputs a detection signal corresponding to the distance between the According to an acquisition unit that acquires a threshold value; and a determination unit that determines a detection value indicated by the detection signal input from the distance sensor based on the threshold value acquired by the acquisition unit, and detects an operating state of the actuator.
  • an output device comprising:
  • the threshold in the present disclosure is not limited to a value indicating one of the detection values indicated by the detection signal, and may be a value having a certain width (range) or a combination of multiple values. Therefore, as the value used as the threshold value, a value within a certain range from the lower limit to the upper limit may be used, or a plurality of values within that range may be used. Further, matching a threshold value with a detected value means not only that the detected value matches one threshold value, but also that the detected value is included in a certain range of threshold values, or that the detected value matches any of a plurality of threshold values. It is a concept that includes doing. Moreover, the content of the present disclosure is extremely useful not only when implemented as an output device, but also when implemented as a machine tool having an output device.
  • the control device acquires the threshold value, determines the detection value indicated by the detection signal of the distance sensor based on the acquired threshold value, and detects the operating state of the output device. Therefore, it is possible to appropriately detect the operation state of the actuator by acquiring and determining a threshold value set in advance according to the type of workpiece or a threshold value set by the user.
  • FIG. 4 A block diagram of a machine tool. Partial sectional view of a drive. The enlarged view which expanded the part of the dog of FIG. Schematic diagram showing the relationship between a proximity sensor and a dog. The figure which shows the setting screen of a threshold value. 4 is a flowchart of chuck drive processing;
  • FIG. 1 shows a block diagram of a machine tool 10 of this embodiment.
  • a machine tool 10 of this embodiment is, for example, an NC lathe, and as shown in FIG.
  • the machine tool of the present disclosure is not limited to lathes, and may be machining centers, milling machines, drilling machines, and the like.
  • the machine tool of the present disclosure may have two or more lathes, or may be a compound machine tool that has both a lathe and a machining center.
  • the processing device 11 is a device that executes processing on a work (not shown).
  • the processing device 11 includes a spindle device 21 , a turret device 22 and a slide device 23 .
  • the spindle device 21 grips the workpiece and rotates it around the spindle. Details of the spindle device 21 will be described later.
  • the turret device 22 includes a tool post to which a plurality of tools can be attached, and rotates the tool post to index (replace) the tools.
  • the slide device 23 is a device that slides the turret device 22 .
  • the slide device 23 slides the turret device 22, for example, in the Z-axis direction parallel to the main shaft of the spindle device 21 and in the X-axis direction perpendicular to the Z-axis direction.
  • the loader 13 is, for example, a gantry-type work transfer device, and is provided on top of the machine tool 10 to transfer work to and from various devices.
  • the various devices mentioned here include the spindle device 21, the reversing device for reversing the work, the machine tools for the pre-process and the post-process, the temporary table for placing the work, and the like.
  • the loader 13 moves, for example, a head having a plurality of claws for chucking a work in the Z-axis direction, the X-axis direction, and the Y-axis direction perpendicular to both axial directions.
  • the operation panel 15 is a user interface, and includes, for example, a touch panel 15A and operation switches 15B.
  • the operation switch 15B is a push button switch, a slide switch, a rotary switch, or the like.
  • the operation panel 15 receives operation inputs from the user via the touch panel 15A and the operation switches 15B, and outputs signals corresponding to the received operation inputs to the control device 17 . Further, the operation panel 15 changes the display contents of the touch panel 15A based on the control of the control device 17 .
  • the operation panel 15 is an example of the reception device and the display reception device of the present disclosure. Note that the reception device and the display reception device of the present disclosure are not limited to the configurations described above.
  • the reception device and the display reception device may have a liquid crystal panel and operation switches, and may be configured to select items displayed on the liquid crystal panel with the operation switches. In other words, the reception device and the display reception device do not have to have a touch panel.
  • the air supply device 16 has, for example, a compressor, a control valve, etc., and supplies air to each device provided in the machine tool 10 .
  • the air supplied from the air supply device 16 is used, for example, as air for driving an air cylinder functioning as a drive source, or as detection air for detecting seating of a workpiece, which will be described later.
  • the control device 17 is a processing device mainly composed of a computer including a CPU and the like, and executes numerical control and sequence control to comprehensively control the operation of the machine tool 10 .
  • the control device 17 is electrically connected to each device of the machine tool 10 (drive source such as the spindle motor 33, etc.), and is capable of controlling the operation of each device.
  • the control device 17 also includes a storage device 18 .
  • the storage device 18 includes, for example, RAM, ROM, flash memory, hard disk, and the like.
  • the storage device 18 stores various control data D1.
  • the control data D1 includes, for example, data such as a program for controlling the operation of the spindle device 21 and the turret device 22, the type of work to be produced, the type of tool used for work, and the position of the tool relative to the work during work.
  • the program referred to here is, for example, a sequence control program (ladder circuit), an NC program, or the like.
  • the control data D1 also includes threshold data D2 for determining a detection value indicated by a detection signal of the proximity sensor 49, which will be described later. Further, the control device 17 can execute the program of the control data D1 by the CPU, and set the threshold in the threshold data D2 according to the operation input of the operation panel 15. FIG. Details of the processing using the threshold data D2 will be described later.
  • control device 17 executes the program of the control data D1 to control each device may be simply referred to as the device name.
  • the control device 17 controls the spindle device 21 means that "the control device 17 executes the program of the control data D1 by the CPU and controls the spindle device 21 based on the program”.
  • the control device 17 controls each device with the above-described configuration to process the workpiece. For example, the control device 17 transfers the workpiece received by the loader 13 from the device of the previous process to the spindle device 21 of the processing device 11 . The processing device 11 rotates the spindle device 21 to rotate the workpiece under the control of the control device 17 . The control device 17 controls the turret device 22 and the slide device 23 to adjust and index the position of the tool, and machine the workpiece of the spindle device 21 with the indexed tool.
  • FIG. 2 shows a partial cross-sectional view of the driving device 31 of the spindle device 21.
  • the direction along the main shaft 25 of the main shaft device 21 is referred to as the axial direction
  • the side of the inducer 57 in the axial direction is referred to as the proximal side
  • the side of the chuck device 32 is referred to as the distal side.
  • the spindle device 21 includes a drive device 31 (FIG. 2), a chuck device 32 (FIG. 2), a spindle motor 33 (FIG. 1), an encoder 34 (FIG. 1), and the like. .
  • a chuck device 32 is attached to the driving device 31 in a range indicated by a dashed line.
  • the chuck device 32 is an example of an actuating device of the present disclosure.
  • the spindle device 21 drives the chuck device 32 by the output of the drive device 31 in the axial direction (base end and tip direction in FIG. 2) to grip the work.
  • the spindle device 21 transmits rotational motion to the chuck device 32 via the driving device 31 to rotate the workpiece around the spindle 25 .
  • a work is an example of an object of the present disclosure.
  • the driving device 31 includes a turntable 41, a spindle 43, pulleys 45 and 46, a hydraulic cylinder 47, a rotary joint 48, a proximity sensor 49, and the like.
  • the turntable 41 has a cylindrical shape along a direction parallel to the axial direction of the main shaft 25 .
  • the spindle 43 is rotatably provided within the turntable 41 .
  • the chuck device 32 is attached to the tip of the spindle 43 .
  • the chucking device 32 has, for example, a contact metal and a plurality of small claws, and clamps (chucks) the work according to the driving of the driving device 31 .
  • a pulley 45 is fixed to the spindle 43 on the proximal end side of the rotating table 41 .
  • a belt 51 is stretched between the pulley 45 and a pulley (not shown) fixed to the rotating shaft of the main shaft motor 33 (see FIG. 2). Therefore, the spindle 43 is rotated by the rotation driving force of the spindle motor 33 transmitted through the belt 51 , and rotates the chuck device 32 . As a result, the workpiece chucked by the chuck device 32 is rotated about the main shaft 25 .
  • a pulley 46 is attached to the spindle 43 on the tip side of the pulley 45 .
  • a timing belt 53 is stretched between the pulley 46 and a pulley (not shown) of the encoder 34 for detecting the rotation speed of the spindle device 21 .
  • the control device 17 detects the rotation speed of the spindle device 21 based on the detection signal from the encoder 34 .
  • a draw bar 55 is inserted inside the spindle 43 .
  • the draw bar 55 has a cylindrical shape along the axial direction of the main shaft 25 .
  • An actuator for driving the chuck device 32 is connected to the draw bar 55 .
  • the machine tool 10 of this example includes a hydraulic cylinder 47 as an example of the actuator of the present disclosure.
  • the hydraulic cylinder 47 includes a cylinder 47A, a piston 47B sliding inside the cylinder 47A, and a rod 47C fixed to the piston 47B.
  • the hydraulic cylinder 47 is a so-called double rod cylinder in which a rod 47C protrudes in both directions of the piston 47B in the axial direction.
  • the rod 47C has a cylindrical shape as a whole, and a draw bar 55 is coaxially connected to a portion protruding from the piston 47B toward the tip side.
  • the rotation axes of the rod 47C and the draw bar 55 are, for example, along the axial direction of the main shaft 25, which is the rotation center of the work.
  • the hydraulic cylinder 47 moves the rod 47C to the proximal side along a direction parallel to the axial direction by being supplied with hydraulic oil via a rotary joint 48 connected to the proximal side, for example.
  • the hydraulic cylinder 47 moves the rod 47C to the tip side by discharging hydraulic oil. This axial movement of the rod 47C is output to the chuck device 32 via the drawbar 55. As shown in FIG.
  • a portion of the rod 47C protruding from the piston 47B to the proximal side extends to an inducer 57 provided at the proximal end of the driving device 31.
  • An air pipe 59 is inserted inside the cylindrical rod 47C and the draw bar 55 .
  • the air pipe 59 has a proximal end connected to the port of the inducer 57 and a distal end connected to the flow path in the chuck device 32 .
  • the air pipe 59 allows the compressed air supplied from the air supply device 16 (see FIG. 1) through the inducer 57 to flow through the flow path inside the chuck device 32 .
  • the control device 17 controls the air supply device 16 to supply compressed air, and, for example, determines whether or not the workpiece is seated on the metal of the chuck device 32 by determining the pressure of the supplied compressed air.
  • a dog 61 is attached to the rod 47C on the proximal end side of the rotary joint 48.
  • the dog 61 has, for example, a substantially disc shape centered on the same axis (the main shaft 25) as the rod 47C and the drawbar 55. As shown in FIG.
  • the dog 61 has a predetermined thickness in the axial direction of the main shaft 25 and rotates around the main shaft 25 .
  • An inclined surface 61A is formed on the outer peripheral surface of the dog 61 in the radial direction (vertical direction in FIG. 2).
  • the inclined surface 61A for example, is inclined at a constant angle, and is inclined outward from the proximal side to the distal side.
  • the proximity sensor 49 is attached at a position facing the inclined surface 61A in the radial direction of the dog 61 with a predetermined distance therebetween. Further, the proximity sensor 49 has its detection direction set, for example, in a direction perpendicular to the main shaft 25 and parallel to the radial direction of the dog 61 . The proximity sensor 49 outputs a detection signal to the control device 17 according to the distance to the inclined surface 61A.
  • the method of communicating the detection signal between the proximity sensor 49 and the control device 17 is not particularly limited, but for example, communication using a communication interface such as IO-Link standardized by IEC 61131-9 can be adopted.
  • the control device 17 detects the operation state (an example of the operation state of the present disclosure) of the chuck device 32 based on the detection signal of the proximity sensor 49, that is, based on the distance between the proximity sensor 49 and the inclined surface 61A. .
  • the spindle device 21 moves the drawbar 55 and the rod 47C (dog 61) in the axial direction according to the drive of the hydraulic cylinder 47, outputs linear motion in the axial direction from the rod 47C, and chucks the linear motion via the drawbar 55. communicate to device 32;
  • the chuck device 32 converts the linear motion in the axial direction into motion for opening and closing the work by operating the child claws in the radial direction, and chucks and releases the chuck of the work. Therefore, the control device 17 can detect the operating state of the chuck device 32 by determining how much the dog 61 (draw bar 55) has been drawn from the distance between the proximity sensor 49 and the inclined surface 61A.
  • the detection method of the proximity sensor 49 is not particularly limited. For example, a detection method using electromagnetic induction that detects eddy currents generated on the inclined surface 61A using a magnetic field may be used. A detection direction using a capacitance for detecting a change in capacitance occurring between the dog 61) may be used. The proximity sensor 49 may output a voltage value or a current value having a magnitude corresponding to the distance from the inclined surface 61A as a detection signal.
  • Proximity sensor 49 is an example of the distance sensor of the present disclosure. Further, the distance sensor of the present disclosure is not limited to sensors using magnetism or capacitance as described above, and may be other sensors such as infrared sensors and ultrasonic sensors.
  • FIG. 3 shows an enlarged view of the portion of the dog 61 in FIG.
  • the dog 61 is driven by the hydraulic cylinder 47 by a distance L1 from an initial position P1 indicated by a solid line in FIG. It is possible to move (retract) to the side.
  • the distance L1 is several tens of mm, for example.
  • the proximity sensor 49 outputs a detection signal corresponding to the distance between the dog 61 and the initial detection position DP1 of the inclined surface 61A when the dog 61 is placed at the initial position P1.
  • the initial detection position DP1 is a position away from the proximal end face 61B of the dog 61 by a distance L2 along the axial direction toward the distal end. That is, the initial detection position DP1 is set at a position deviated inward from the end of the dog 61. As shown in FIG.
  • the proximity sensor 49 outputs a detection signal corresponding to the distance between the dog 61 and the final detection position DP2 of the inclined surface 61A when the dog 61 is placed at the maximum position P2.
  • the final detection position DP2 is a position away from the distal end surface 61C of the dog 61 by a distance L3 along the axial direction toward the base end side. That is, the range from the initial detection position DP1 to the final detection position DP2, which is the detection range of the proximity sensor 49, is a range whose both ends are positions shifted inward from both ends of the dog 61. As shown in FIG.
  • the detection range of the proximity sensor 49 includes both ends of the dog 61 in the axial direction (such as the edge of the base end surface 61B), the detection signal may become unstable. Therefore, by narrowing down the detection range of the proximity sensor 49 to the distances L2 and L3 inward from both ends of the dog 61, the detection accuracy of the operating state based on the detection signal of the proximity sensor 49 can be improved.
  • FIG. 4 schematically shows the proximity sensor 49 and the dog 61.
  • FIG. 4 shows values of the thresholds TH1 to TH6 and black circles indicating the positions where the detection values of the proximity sensor 49 are the thresholds TH1 to TH6. ing.
  • the proximity sensor 49 can detect a range from an initial detection position DP1 when the dog 61 is placed at the initial position P1 to a final detection position DP2 when the dog 61 is placed at the maximum position P2.
  • the control device 17 detects the operating state of the chuck device 32 by comparing the detection value indicated by the detection signal of the proximity sensor 49 and the threshold values TH1 to TH6 of the threshold data D2.
  • the operating state here is, for example, a chucking state, a chucking release state, an over-clamping state, or a chucking failure state.
  • the chucking state is a state in which the chucking device 32 normally chucks the workpiece, and is an example of the holding state of the present disclosure. In the chucked state, the workpiece can be processed.
  • the chuck release state is a state in which the chuck device 32 releases the chuck of the workpiece, and is an example of the hold release state of the present disclosure.
  • An over-clamped state (which can also be referred to as an empty clamped state) is, for example, a state in which the work is not placed at the contact metal position (an example of the holding position of the present disclosure) of the chuck device 32, and the child claw is moved in the direction of chucking the work. , the chuck device 32 could not normally chuck the workpiece.
  • the over-clamped state is, for example, a state in which the chuck device 32 cannot normally chuck the work when the child jaws are moved in the direction of chucking the work while the work seated on the contact metal is not in a normal posture. is.
  • An overclamp condition is an example of a hold failure condition of the present disclosure.
  • the chuck device 32 In the over-clamped state, the chuck device 32 is in a state in which the child jaws are further moved in the chucking direction than the chucked position. Further, the chucking failure state is, for example, when the workpiece is seated on the abutment in a normal posture, but chips adhere to the outer peripheral portion of the workpiece, and the chuck device 32 does not reach the chucking state. 61) is stopped.
  • a chuck failure state is an example of a hold failure state of this disclosure.
  • the chuck device 32 chucks a wrong type of work (hereinafter sometimes referred to as a different type of work)
  • the above-described over-clamping state or chucking failure state occurs.
  • the chuck device 32 stops the small claws (dogs 61) before entering the chucking state. , the chuck fails.
  • the chucking device 32 chucks the child jaws further than the chucking position. It will be in an over-clamped state in which it is moved in the direction.
  • the control device 17 detects each operating state by comparing the detection value of the proximity sensor 49 with the thresholds TH1 to TH6.
  • the detection value of the proximity sensor 49 is, for example, the largest at the initial detection position DP1 where the distance between the proximity sensor 49 and the dog 61 is the longest in the detection range and becomes "80". Also, the detection value is the smallest at DP2 where the distance is the shortest, and becomes "10". Since the inclined surface 61A is inclined at a predetermined angle, the detected value decreases with a constant amount of change from the initial detection position DP1 toward the final detection position DP2.
  • the control device 17 uses, for example, six threshold values TH1, TH2, TH3, TH4, TH5, and TH6 to determine the detection values and detect the operating state of the chuck device 32 .
  • the thresholds TH1 and TH2 are thresholds for detecting the chuck release state.
  • Thresholds TH3 and TH4 are thresholds for detecting a chucking state or a chucking failure state.
  • Thresholds TH5 and TH6 are thresholds for detecting an over-clamped state.
  • the control device 17 controls the hydraulic cylinder 47 to pull the draw bar 55 toward the base end side, and obtains a detection signal from the proximity sensor 49 at predetermined timings.
  • the child claws of the chuck device 32 come into contact with the work at a desired position. Therefore, the drawbar 55 stops at a predetermined position due to the balance between the drawing force of the hydraulic cylinder 47 and the reaction force applied to the child claws from the work.
  • the thresholds TH3 and TH4 are set to values corresponding to detection values detected by the proximity sensor 49 at the position where the draw bar 55 stops when the chuck device 32 normally chucks the workpiece. Therefore, the thresholds TH3 and TH4 have different appropriate values depending on the type of work. In the example shown in FIG. 4, "32.2" is set as the threshold TH3, and "31.9" is set as the threshold TH4.
  • the control device 17 controls the hydraulic cylinder 47 to push the draw bar 55 toward the leading end side, and outputs the detection signal of the proximity sensor 49 at predetermined timings. get.
  • the detected value for example, gradually increases from a value within the range of thresholds TH3 to TH4.
  • the loader 13 is moved when the child jaws are opened to a predetermined position. , the work seated on the contact can be removed while avoiding interference between the work and the sub-claw.
  • the thresholds TH1 and TH2 are values corresponding to detection values of the proximity sensor 49 when the chuck device 32 releases the chucking of the workpiece and the draw bar 55 (dog 61) is arranged at a position where the workpiece can be properly picked up by the loader 13. be.
  • the control device 17 detects the chuck release state, ie, that the chuck of the workpiece has been released.
  • the thresholds TH1 and TH2 are set as the thresholds TH1 and TH2 if the detection values in the state where the draw bar 55 (dog 61) is arranged at the position where the chuck of the work having the largest outer diameter can be released among the works that can be processed by the machine tool 10 are set as the thresholds TH1 and TH2, other The chuck release state can be detected even for small-diameter workpieces.
  • the same threshold values TH1 and TH2 as those for large-diameter workpieces are used for small-diameter workpieces, it takes a long time to detect the chuck release state. Therefore, it is preferable to set appropriate values for the thresholds TH1 and TH2 according to the type of work. In the example shown in FIG. 4, "71.0" is set as the threshold TH1, and "69.0" is set as the threshold TH2.
  • the dog 61 does not stop even if the detected value falls within the range of the threshold values TH3 to TH4, and is further pulled.
  • the control device 17 detects the over-clamping state when the detected value falls within the range of the thresholds TH5 and TH6.
  • the same value "31.9" as the threshold TH4 is set as the threshold TH5.
  • the same value as the value "10.0" of the final detection position DP2 is set as the threshold TH6.
  • the control device 17 detects an over-clamped state and issues an error notification, for example, when the detected value is greater than the threshold TH4 (TH5).
  • the thresholds TH5 and TH6 may be set to values larger than the threshold TH4, that is, different values for each work. Alternatively, any value greater than the threshold TH4 may be set, such as "20.0" as the threshold TH5 and “15.0” as the threshold TH6. In this case, the same thresholds TH5 and TH6 "20.0, 15.0" may be used for all works.
  • the above thresholds TH1 to TH6 are set in the threshold data D2.
  • the vendor may preset the thresholds TH1 to TH6 based on the work of the client.
  • the user may newly set the thresholds TH1 to TH6 after purchasing the machine tool 10, or may change the values set by the vendor.
  • FIG. 5 shows an example of a setting screen for thresholds TH1 to TH6.
  • the control device 17 causes the touch panel 15A to display the setting screen 65 shown in FIG. 5 in response to a predetermined operation input on the touch panel 15A.
  • the control device 17 arranges No, name, current value, minimum value, and maximum value in one line and displays them on the setting screen 65 .
  • the minimum/maximum value of each line is the maximum/minimum value of the range for detecting the item indicated by the name of each line. For example, in the first line (No. 1) "chuck loose end", the threshold TH2 for detecting the chuck release state is set as the minimum value, and the threshold TH1 is set as the maximum value. Further, in No.
  • the threshold TH4 for detecting the chuck state or the chuck failure state is set as the minimum value, and the threshold TH3 is set as the maximum value. Further, in No. 3 "chuck overclamp”, the threshold TH5 for detecting the overclamp state is set to the maximum value, and the threshold TH6 is set to the minimum value.
  • the user can change each value, for example, by performing a touch operation on the portion where each minimum value and maximum value are displayed. This allows the user to set appropriate thresholds TH1 to TH6.
  • control device 17 displays, in each item of the current value 68 on the setting screen 65, the detected value currently detected by the proximity sensor 49, that is, the detected value obtained by detecting the position of the dog 61 in real time.
  • the user can, for example, actually place the workpiece to be processed on the contact metal of the chuck device 32, drive the hydraulic cylinder 47, and stop the hydraulic cylinder 47 at an appropriate chuck position while closing the child jaws.
  • the user can confirm and set the optimum thresholds TH3 and TH4 for the work to be processed by confirming the current value 68 .
  • the user checks the states of the child claws of the chuck device 32 and the loader 13 while pushing out the draw bar 55, and then pulls the hydraulic cylinder 47 at an appropriate chuck release position. to stop At that time, the user can confirm and set appropriate threshold values TH1 and TH2 by confirming the current value 68 .
  • the control device 17 After receiving settings and changes of the threshold values TH1 to TH6 for each item of the minimum value and maximum value, the control device 17 sets the threshold value received on the setting screen 65 when the setting button 67 displayed on the setting screen 65 is touched. TH1 to TH6 are stored in threshold data D2. In subsequent processing, the control device 17 uses the thresholds TH1 to TH6 newly set in the threshold data D2 to execute determination.
  • the threshold data D2 stores, for example, thresholds TH1 to TH6 for each type of workpiece.
  • the threshold data D2 stores a workpiece NO indicating the type of workpiece and thresholds TH1 to TH6 used for processing the workpiece in association with each other.
  • the control device 17 accepts the thresholds TH1 to TH6 for each type of workpiece on the setting screen 65 .
  • the control device 17 displays a screen (not shown) for receiving the work No.
  • the control device 17 reads the thresholds TH1 to TH6 corresponding to the work number received from the threshold data D2 and displays them on the setting screen 65 . This allows the user to set appropriate thresholds TH1 to TH6 for each type of work.
  • FIG. 6 shows a flowchart of chuck drive processing.
  • the control device 17 executes the chucking of the workpiece by the chucking device 32, the machining of the workpiece, and the release of the chucking of the workpiece after machining.
  • the control device 17 executes the chuck driving process by executing a predetermined control program of the control data D1 with the CPU. For example, when a screen for accepting a machining start instruction is displayed on the touch panel 15A based on the user's operation input, the control device 17 starts the chuck driving process shown in FIG. It should be noted that the contents of the chuck driving process shown in FIG. 6, the order of the processes, and the conditions for starting the processes described above are examples.
  • the control device 17 receives a work NO indicating the type of work to be processed on a screen for receiving a start instruction in step (hereinafter simply referred to as "S") 11. For example, when the start button is touch-operated with the work number input, the control device 17 sets thresholds corresponding to the input work number, that is, thresholds TH1 to TH6 associated with the input work number. It is obtained from the threshold data D2 in the storage device 18 (S11).
  • the control device 17 places the workpiece on the spindle device 21 (S13).
  • the control device 17 controls the loader 13 to receive a work to be processed from a device in a previous process or a work stocker, and move the loader 13 that has received the work to place it in front of the spindle device 21.
  • the control device 17 starts to pull the draw bar 55 (S15).
  • the control device 17 drives the hydraulic cylinder 47 to start drawing the drawbar 55, and acquires a detection signal from the proximity sensor 49 at predetermined timings. The detected value decreases as the drawbar 55 (dog 61) moves.
  • the control device 17 determines whether the drawbar 55 has stopped (S17).
  • the method of determining whether the drawbar has stopped is not particularly limited. , it is determined that the drawbar 55 has stopped.
  • the positional information of the drawbar 55 and dog 61 in the axial direction is output to the control device 17 using a device that outputs positional information such as an encoder or linear scale, and the control device 17 stops the drawbar 55 based on the positional information. You can judge.
  • the control device 17 may determine stoppage of the drawbar 55 based on an increase in the external force (reaction force from the workpiece) applied to the hydraulic cylinder 47 or the drawbar 55 .
  • the control device 17 determines whether the detection value of the proximity sensor 49 is greater than the threshold TH5 (S19). As shown in Fig. 4, during the retraction operation, for example, the posture of the seated work is incorrect, a work of a different type with a small outer diameter is placed, or the work is not placed on the contact due to the fall of the work (empty clamp). In the case of , the dog 61 does not stop at the threshold values TH3 to TH4, but is pulled to the tip side beyond the threshold value TH5, resulting in an over-clamped state.
  • control device 17 determines in the pull-in operation that the detected value is greater than the threshold TH5 (S19: YES), that is, when it detects an over-clamped state, it issues an error notification (S21).
  • the control device 17, for example, stops the operation of the machine tool 10, and displays an error message such as "Please confirm the type and orientation of the work placed on the spindle device" on the touch panel 15A (S21).
  • the control device 17 ends the processing shown in FIG. As a result, it is possible to avoid starting an erroneous machining operation such as machining a different kind of workpiece.
  • the control device 17 may use the threshold TH6 instead of the threshold TH5 in the determination process of S19.
  • the control device 17 may determine in S19 that the detected value is equal to or greater than the threshold TH6 and less than the threshold TH5.
  • the control device 17 executes the determination of S17.
  • the control device 17 determines that the drawbar 55 has stopped (S17: YES)
  • the dog 61 is positioned closer to the proximal end than the position of the threshold value TH3. It stops at the (front side) position and becomes a chuck failure state.
  • the controller 17 notifies an error (S21). For example, in S21, the control device 17 displays a message such as "the outer diameter of the work is larger than that of the work to be processed, or there is a possibility that chips are caught in the work" on the touch panel 15A.
  • the control device 17 determines whether the detected value at the time of stopping is equal to or less than the threshold TH4 (S25). For example, if a different type of work with a small outer shape is placed, or if the posture of the work is incorrect, it will be pulled in excessively and chuck failure will occur. Therefore, when the detected value is greater than the threshold TH4 (S25: NO), that is, when the chuck failure state is detected, the controller 17 notifies an error (S21). The control device 17 displays a message such as "Please check the workpiece" on the touch panel 15A.
  • the operating state of the present embodiment includes an over-clamping state in which the workpiece cannot be held normally when the chucking device 32 is chucked in a state in which no workpiece is placed on the abutment of the chucking device 32.
  • the operating state also includes a chucking failure state in which the workpiece cannot be held normally when the chucking device 32 is operated while the workpiece seated on the abutment of the chucking device 32 is not arranged in a normal posture.
  • the controller 17 acquires a threshold TH5 for detecting an over-clamped state and thresholds TH3 and TH4 for detecting a chuck failure state (S11).
  • the control device 17 compares the acquired threshold values TH3, TH4, and TH5 with the detection values, and detects a holding failure state (S19, S23, S25). According to this, by using the detection value of the proximity sensor 49 and the thresholds TH3, TH4, and TH5, an over-clamped state in which the workpiece cannot be chucked normally or a chucking error state can be detected. It is possible to notify the user of the error, etc., and prompt the user to take appropriate measures.
  • the control device 17 executes S27.
  • the control device 17 can detect that the workpiece corresponding to the workpiece NO has been chucked. In other words, it can be confirmed that a suitable workpiece to be machined is in a suitable chuck state. Therefore, the control device 17 releases the chuck of the loader 13 and retracts the loader 13 from the position facing the spindle device 21 (S27).
  • the control device 17 controls the turret device 22 and the slide device 23 to start machining the workpiece chucked by the spindle device 21 .
  • the control device 17 acquires the thresholds TH1 to TH6 corresponding to the work No., ie, the work to be processed. If the detection value of the proximity sensor 49 becomes equal to or greater than the threshold TH3 and equal to or less than the threshold TH4 (S23: YES, S25: YES) when the drawbar 55 is displaced to the base end side in the axial direction, the controller 17 controls the chuck. It detects that the operation state of the device 32 is the chuck state. According to this, by setting and acquiring appropriate values according to the workpiece to be processed as the threshold values TH3 and TH4, the chucking state of the workpiece can be accurately detected.
  • the chuck device 32 can hold a plurality of types of workpieces. Threshold values TH1 to TH6 corresponding to the types of workpieces are stored in the threshold data D2 of the storage device 18, respectively.
  • the control device 17 receives the work No. (work type information) using the setting screen 65 of the touch panel 15A, and stores it in the threshold data D2 in association with the work No. Then, during processing, the control device 17 acquires from the storage device 18 the threshold values TH1 to TH6 corresponding to the work No. received by the touch panel 15A (S11). The control device 17 determines whether the acquired thresholds TH1 to TH6 match the detection values, and detects that the operating state is the chucking state. According to this, the user can set the threshold values TH3, TH4, etc. according to the type of work to be processed only by changing the work No.
  • black squares in FIG. 4 indicate thresholds TH3A and TH4A when a work having a large outer shape is to be processed compared to the work using the thresholds TH3 and TH4 described above.
  • the child claws come into contact with the work outside (open state) and stop when the work is chucked using the thresholds TH3 and TH4.
  • the dog 61 stops on the tip side where the retraction amount is smaller. Therefore, the thresholds TH3A and TH4A are preferably values detected at positions closer to the proximal side than the thresholds TH3 and TH4. In the example shown in FIG. 4, "42.2" is set as the threshold TH3A, and "41.9" is set as the threshold TH4A.
  • the threshold TH5 for detecting the over-clamped state the same value as the threshold TH4A may be used, the threshold TH4 may be used, or any value equal to or greater than the threshold TH4 may be used.
  • the proximity sensor 49 maintains the detection direction for detecting the distance to the inclined surface 61A before and after the type of work is changed.
  • the detection direction of the proximity sensor 49 is maintained in the vertical direction of the drawing (the direction orthogonal to the axial direction of the main shaft 25).
  • the control device 17 executes determination based on the detection signal of the proximity sensor 49 set (fixed) in the same detection direction before and after the type of workpiece is changed.
  • Such a configuration eliminates the need for the user to adjust the detection direction of the proximity sensor 49 in response to a setup change or the like. Since there is no need to work on the proximity sensor 49 attached to the spindle device 21, it is possible to shorten the stoppage time of machining due to a setup change and improve production efficiency.
  • the control device 17 accepts the thresholds TH1 to TH6 in a state in which the detection values that fluctuate based on the driving of the proximity sensor 49 are displayed on the setting screen 65 as the current values 68.
  • the control device 17 determines that the detected value is within the range of the threshold TH3 to the threshold TH4 received on the setting screen 65, it detects that the operation state is the chucking state.
  • the user can confirm the current value 68 by actually chucking the workpiece to be processed by the chuck device 32 at the work site, and can set the thresholds TH3 and TH4 according to the current value 68 . It is possible to reduce the work load of setting the thresholds TH3 and TH4 by the user, and to detect the chucking state more accurately.
  • the control device 17 determines whether or not the machining of the target work received from the loader 13 is completed (S29), and executes S29 until the machining is completed (S29: NO). When the machining is finished (S29: YES), the control device 17 executes control to transfer the finished workpiece from the spindle device 21 to the loader 13 (S31). The control device 17 moves the loader 13 to a position for receiving the workpiece from the spindle device 21 and chucks the workpiece chucked by the spindle device 21 by the loader 13 .
  • the control device 17 controls the hydraulic cylinder 47 to start the process of pushing out the draw bar 55 (S33).
  • the control device 17 acquires the detection signal of the proximity sensor 49 at predetermined timings while pushing out the drawbar 55 .
  • the detected value increases as the drawbar 55 (dog 61) moves.
  • the control device 17 determines whether or not the detection value indicated by the acquired detection signal is equal to or less than the threshold TH2 (S35).
  • the control device 17 determines whether or not the drawbar 55 has stopped (S37).
  • the control device 17 determines whether the drawbar 55 has stopped in the same manner as in S17 described above.
  • the control device 17 executes S35. Note that the control device 17 may use the threshold TH1 instead of the threshold TH2 in the determination process of S35. Alternatively, the control device 17 may determine in S35 that the detected value is equal to or greater than the threshold TH2 and less than the threshold TH1.
  • the control device 17 starts moving the loader 13 that has chucked the workpiece of the spindle device 21 (S39). Therefore, the controller 17 acquires the threshold TH2 for detecting the chuck released state in S11, and when the drawbar 55 is displaced from the chucked state in the direction of releasing the chuck, the detected value becomes equal to or less than the threshold TH2 (S35: YES) Detects that the operating state is the chuck release state. Then, the control device 17 starts moving the loader 13 that has received the workpiece from the chuck device 32 (S39).
  • the loader 13 can more quickly and appropriately receive the machined workpiece from the spindle device 21 .
  • the control device 17 stops pushing the drawbar 55 when the detected value becomes equal to or less than the threshold TH2 (S35: YES). That is, the drawbar 55 is stopped without being pushed to the fully open position of the initial detection position DP1. As a result, the drawing of the drawbar 55 can be started from the position where the child jaws are closed to some extent at the timing of starting the chucking of the next work, that is, at the timing of executing S15 next time, and the time required to chuck the work can be shortened. can.
  • the control device 17 may push the drawbar 55 until the dog 61 reaches the position of the threshold value TH1 or the initial detection position DP1. That is, the draw bar 55 may be pushed to the position where the child claws are completely opened. Further, the control device 17 may start moving the loader 13 after pushing the dog 61 to the position where the detection value is equal to or less than the threshold TH1 or to the initial detection position DP1.
  • the control device 17 determines whether or not machining of all workpieces has been completed (S41). For example, the control device 17 receives the number of workpieces to be processed on the start screen of S11. The control device 17 makes a negative determination in S41 until the processing of the accepted number of workpieces is completed (S41: NO), and executes S13. As a result, machining can be started for the next workpiece to be machined. When the machining of all workpieces is completed (S41: YES), the control device 17 ends the processing shown in FIG. In this manner, the control device 17 can detect the operation of the chuck device 32 based on the thresholds TH1 to TH6 preset by the vendor and the thresholds TH1 to TH6 preset by the user, and can appropriately process the workpiece. .
  • the control device 17 has an acquisition section 17A and a determination section 17B.
  • the acquisition unit 17A and the like are, for example, processing modules realized by executing the control data D1 (NC program, ladder circuit, etc.) in the CPU of the control device 17.
  • FIG. Note that the acquisition unit 17A and the like may be configured with hardware instead of software, or may be configured by combining software and hardware.
  • the acquisition unit 17A is a functional unit that acquires threshold values TH1 to TH6.
  • the determination unit 17B is a functional unit that determines the detection value indicated by the detection signal input from the proximity sensor 49 based on the thresholds TH1 to TH6 acquired by the acquisition unit 17A, and detects the operating state of the chuck device 32.
  • the loader 13 is an example of a robot.
  • the operation panel 15 is an example of the reception device and the display reception device of the present disclosure.
  • a work is an example of an object.
  • the chuck device 32 is an example of an operating device.
  • the drive device 31 and the control device 17 are an example of an output device.
  • the hydraulic cylinder 47 is an example of an actuator.
  • the drawbar 55 is an example of an output member.
  • Dog 61 is an example of a member to be detected.
  • Proximity sensor 49 is an example of a distance sensor.
  • the inclined surface 61A of the dog 61 has a shorter distance from the proximity sensor 49 as it goes from the proximal side to the distal side in the axial direction (see FIG. 3).
  • the control device 17 acquires the thresholds TH1 to TH6 from the threshold data D2 in the storage device 18 (S11).
  • the control device 17 determines the detection value of the proximity sensor 49 based on the acquired threshold values TH1 to TH6, and detects the operating state of the chuck device 32.
  • the operation state of the chuck device 32 can be appropriately detected by obtaining and judging the threshold values TH1 to TH6 set in advance according to the type of work and the threshold values TH1 to TH6 set by the user.
  • the thresholds TH1 to TH6 according to the type of workpiece to be processed by the user in advance on the vendor side, the user can set the appropriate thresholds TH1 to TH6 simply by selecting the workpiece number. Therefore, it is not necessary to adjust the detection direction of the proximity sensor 49 when the work or child claws are changed due to a setup change or the like.
  • the present disclosure is not limited to the above embodiments, and that various improvements and modifications are possible without departing from the scope of the present disclosure.
  • the chuck device 32 that chucks the workpiece with the child claws was adopted as the operating device of the present disclosure, but the present invention is not limited to this.
  • the operating device may be a collet chuck device that holds a work using a collet.
  • the operating device may be a chuck device for chucking a rotating tool of a machining center. Therefore, the object of the present disclosure is not limited to the workpiece, and may be a tool or the like.
  • the operating device is not limited to a device for chucking an object, and may be, for example, a device for rotating the head of a reversing device for reversing a work, or a core pushing device for pushing a work toward a spindle. Therefore, the output member of the present disclosure is not limited to a pull-in member such as the draw bar 55, but may be a push-out member such as a connecting member that rotates the head or a center pushing member.
  • the control device 17 accepts the change of the thresholds TH1 to TH6 from the user on the setting screen 65 shown in FIG. 5, the configuration may not accept the change.
  • control device 17 detects the chucking state when the detected value falls within the range of the threshold TH3 to the threshold TH4, it is not necessary to use such a value with a certain width as the threshold.
  • the control device 17 may determine the chucking state when the detected value matches the threshold TH3, and may determine the chucking failure state when the detected value does not match the threshold TH3.
  • the actuator of the present disclosure is not limited to the hydraulic cylinder 47, and may be a pneumatic cylinder. Further, the actuator may be configured to drive the draw bar 55 and the dog 61 through a gear mechanism using a servomotor as a drive source.
  • the inclined surface 61A in which the distance between the proximity sensor 49 and the proximity sensor 49 gradually decreases from the proximal side to the distal side in the axial direction of the main shaft 25 is adopted.
  • the inclined surface is an inclined surface in which the distance from the proximity sensor 49 gradually decreases from the distal end side to the proximal end side in the axial direction, that is, the inclined surface 61A is inverted with respect to a straight line perpendicular to the axial direction.
  • An inclined surface is also acceptable. In this case, the detection value of the proximity sensor 49 becomes smaller as the drawbar 55 is pulled in, contrary to the above embodiment.
  • the storage device 18 may store only one set of thresholds TH1 to TH6. In this case, the user may appropriately change the thresholds TH1 to TH6 according to the change in the type of work.
  • the screen configuration of the setting screen 65 is an example.
  • the control device 17 does not have to display the current value 68 on the setting screen 65 . Further, the control device 17 may accept, on the setting screen 65, only the change of the thresholds TH3 and TH4 among the thresholds TH1 to TH6.
  • the robot of the present disclosure is not limited to the loader 13, and may be a robot capable of transferring other works such as an articulated robot.
  • the initial detection position DP1 located on the distal side (inner side) of the proximal end face 61B of the dog 61 by a distance L2 and the final detection position DP1 on the proximal side (inner side) of the distal end face 61C by a distance L3.
  • the detection range of the proximity sensor 49 is up to the position DP2.
  • the base end side of the base end face 61B and the tip end side of the tip end face 61C may be included in the detection range.
  • the control device 17 increases the detection value by crossing the tip surface 61C and the dog 61 disappears from the detection range. An overclamp condition may be detected if it increases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gripping On Spindles (AREA)

Abstract

The objective of the present invention is to provide an output device capable of employing a threshold to detect an operating state of an operating device capable of holding a target object, and a machine tool provided with the output device. The output device comprises: an actuator; an output member which is displaced in an axial direction on the basis of the drive of the actuator, thereby operating the operating device to hold the target object; a detected member which is displaced in the axial direction in accordance with the axial-direction displacement of the output member; a distance sensor which outputs a detection signal corresponding to a distance to the detected member; and a control device into which the detection signal from the distance sensor is input. The detected member has an inclined surface of which a distance to the distance sensor decreases with increasing distance from one side to the other side in the axial direction. The distance sensor outputs to the control device the detection signal corresponding to the distance to the inclined surface. The control device includes: an acquiring unit which acquires a threshold; and a determining unit which, on the basis of the threshold acquired by the acquiring unit, determines a detected value indicated by the detection signal output form the distance sensor, and detects the operating state of the operating device.

Description

出力装置、及び工作機械Output devices and machine tools
 本開示は、対象物を保持可能な作動装置に対して軸方向の運動を出力する出力装置に関するものである。 The present disclosure relates to an output device that outputs axial motion to an actuator capable of holding an object.
 従来、軸方向の運動を出力する出力装置について種々提案されている。例えば、下記特許文献1の主軸装置のクランプ・アンクランプ検出機構は、工具主軸台により回転自在に支持された工具主軸の軸穴に工具をクランプ方向に付勢するドローバについて記載されている。このドローバのボス部の後端部には、被検出部が周方向に突出するように形成されている。被検出部を検出する検出素子を取り付けたケースは、所定の軸線を中心に取付回転角度を可変可能となっており、ケースの取付回転角度を変化させることにより検出素子の被検出部に対する方向を調節可能となっている。ユーザは、クランプ位置に配置した際の被検出部の中央部(突出のピーク)に検出素子の検出中心が一致するように調整する。検出素子は、被検出部との間の距離の変化に応じた電圧値を出力する。クランプ・アンクランプ検出機構は、電圧値に基づいてクランプ、アンクランプを判定する。 Conventionally, various proposals have been made for output devices that output motion in the axial direction. For example, Patent Document 1 below discloses a clamp/unclamp detection mechanism for a spindle device, which describes a drawbar that urges a tool in a clamping direction against a shaft hole of a tool spindle rotatably supported by a tool headstock. A portion to be detected is formed so as to protrude in the circumferential direction at the rear end portion of the boss portion of the drawbar. The case to which the detection element that detects the part to be detected is attached can change the mounting rotation angle around a predetermined axis line, and the direction of the detection element to the part to be detected can be changed by changing the mounting rotation angle of the case. Adjustable. The user adjusts so that the detection center of the detection element coincides with the central portion (protrusion peak) of the detected portion when arranged at the clamp position. The detection element outputs a voltage value corresponding to a change in the distance from the detected part. The clamp/unclamp detection mechanism determines clamp/unclamp based on the voltage value.
特開2000-354939号公報(段落0029、0032、0033、図7、0048、図8)Japanese Patent Application Laid-Open No. 2000-354939 (paragraphs 0029, 0032, 0033, FIGS. 7, 0048, and 8)
 上記したクランプ・アンクランプ検出機構では、検出素子の出力電圧が所定のピークとなった場合にクランプと判定し、それ以外の場合をアンクランプと判定している。図7の実施例では、クランプ対象の工具の外径が変更されるごとに被検出部のピークの位置が変化するため、ケースの取付回転角度を変更し検出素子の検出方向を調整する必要がある。また、図8の実施例では、所定の閾値を用いてクランプ、アンクランプを判定することが記載されているが、判定に用いる閾値としてどのような閾値を用い、どのように判定するのか具体的に記載されていない。このため、上記特許文献1に係わる技術では、閾値を用いて対象物のクランプの状態を判定する技術において改善の余地があった。 In the clamp/unclamp detection mechanism described above, clamping is determined when the output voltage of the detection element reaches a predetermined peak, and unclamping is determined otherwise. In the embodiment of FIG. 7, the position of the peak of the detected part changes each time the outer diameter of the tool to be clamped is changed, so it is necessary to change the mounting rotation angle of the case and adjust the detection direction of the detection element. be. Further, in the embodiment of FIG. 8, it is described that a predetermined threshold value is used to determine whether to clamp or unclamp. not listed in For this reason, in the technique according to Patent Document 1, there is room for improvement in the technique for determining the clamping state of the object using a threshold value.
 本開示は、上記の課題に鑑みてなされたものであり、対象物を保持可能な作動装置の動作状態について、閾値を用いて動作状態を検出できる出力装置、及び出力装置を備える工作機械を提供することを目的とする。 The present disclosure has been made in view of the above problems, and provides an output device capable of detecting the operating state of an operating device capable of holding an object using a threshold value, and a machine tool including the output device. intended to
 上記課題を解決するために、本明細書は、対象物を保持可能な作動装置に対して軸方向の運動を出力する出力装置であって、アクチュエータと、前記アクチュエータの駆動に基づいて軸方向に変位し前記作動装置を作動させて前記対象物を保持させる出力部材と、前記出力部材の軸方向への変位に応じて軸方向へ変位する被検出部材と、前記出力部材の前記被検出部材との間の距離に応じた検出信号を出力する距離センサと、前記距離センサの前記検出信号を入力する制御装置と、を備え、前記被検出部材は、前記軸方向の一方側から他方側へ行くに従って前記距離センサとの間の距離が短くなる傾斜面を有し、前記距離センサは、前記傾斜面との間の距離に応じた前記検出信号を前記制御装置に出力し、前記制御装置は、閾値を取得する取得部と、前記取得部により取得した前記閾値に基づいて前記距離センサから入力した前記検出信号が示す検出値を判定し、前記作動装置の動作状態を検出する判定部と、を有する、出力装置を開示する。
 尚、本開示における閾値は、検出信号が示す検出値の1つを示す値に限らず、一定の幅(範囲)を有する値や複数の値の組み合わせでも良い。このため、閾値として用いる値として、下限値から上限値までの一定の範囲内の値を用いても良く、その範囲内に含まれる複数の値を用いても良い。また、閾値と検出値が一致するとは、検出値と1つの閾値が一致することだけでなく、検出値が一定の範囲の閾値に含まれることや、検出値が複数の閾値の何れかに一致することを含む概念である。
 また、本開示の内容は、出力装置としての実施に限らず、出力装置を備える工作機械として実施しても極めて有益である。
In order to solve the above problems, the present specification provides an output device for outputting axial motion to an actuator capable of holding an object, comprising: an actuator; an output member that is displaced to operate the operating device to hold the object; a detected member that is displaced in the axial direction according to the axial displacement of the output member; and the detected member of the output member. a distance sensor that outputs a detection signal corresponding to the distance between the According to an acquisition unit that acquires a threshold value; and a determination unit that determines a detection value indicated by the detection signal input from the distance sensor based on the threshold value acquired by the acquisition unit, and detects an operating state of the actuator. An output device comprising:
Note that the threshold in the present disclosure is not limited to a value indicating one of the detection values indicated by the detection signal, and may be a value having a certain width (range) or a combination of multiple values. Therefore, as the value used as the threshold value, a value within a certain range from the lower limit to the upper limit may be used, or a plurality of values within that range may be used. Further, matching a threshold value with a detected value means not only that the detected value matches one threshold value, but also that the detected value is included in a certain range of threshold values, or that the detected value matches any of a plurality of threshold values. It is a concept that includes doing.
Moreover, the content of the present disclosure is extremely useful not only when implemented as an output device, but also when implemented as a machine tool having an output device.
 本開示の出力装置、工作機械によれば、制御装置は、閾値を取得し、取得した閾値に基づいて距離センサの検出信号が示す検出値を判定し、出力装置の動作状態を検出する。このため、ワークの種類に応じて予め設定された閾値やユーザによって設定された閾値を取得し判定することで作動装置の動作状態を適切に検出することができる。 According to the output device and machine tool of the present disclosure, the control device acquires the threshold value, determines the detection value indicated by the detection signal of the distance sensor based on the acquired threshold value, and detects the operating state of the output device. Therefore, it is possible to appropriately detect the operation state of the actuator by acquiring and determining a threshold value set in advance according to the type of workpiece or a threshold value set by the user.
工作機械のブロック図。A block diagram of a machine tool. 駆動装置の一部断面図。Partial sectional view of a drive. 図2のドッグの部分を拡大した拡大図。The enlarged view which expanded the part of the dog of FIG. 近接センサとドッグの関係を示す模式図。Schematic diagram showing the relationship between a proximity sensor and a dog. 閾値の設定画面を示す図。The figure which shows the setting screen of a threshold value. チャック駆動処理のフローチャート。4 is a flowchart of chuck drive processing;
 以下、本開示の出力装置及び工作機械を具体化した一実施例について図面を参照しながら説明する。図1は、本実施例の工作機械10のブロック図を示している。本実施例の工作機械10は、例えば、NC旋盤であり、図1に示すように、加工装置11、ローダ13、操作盤15、エア供給装置16、制御装置17等を備えている。尚、本開示の工作機械は、旋盤に限らず、例えば、マシニングセンタ、フライス盤、ボール盤などでも良い。また、本開示の工作機械は、2つ以上の旋盤を備えても良く、旋盤とマシニングセンタを両方備える複合型の工作機械でも良い。 An embodiment embodying the output device and machine tool of the present disclosure will be described below with reference to the drawings. FIG. 1 shows a block diagram of a machine tool 10 of this embodiment. A machine tool 10 of this embodiment is, for example, an NC lathe, and as shown in FIG. Note that the machine tool of the present disclosure is not limited to lathes, and may be machining centers, milling machines, drilling machines, and the like. Also, the machine tool of the present disclosure may have two or more lathes, or may be a compound machine tool that has both a lathe and a machining center.
 加工装置11は、ワーク(図示略)に対する加工を実行する装置である。加工装置11は、主軸装置21と、タレット装置22と、スライド装置23を備えている。主軸装置21は、ワークを把持して主軸を中心に回転させる。主軸装置21の詳細については後述する。タレット装置22は、複数の工具を取り付け可能な刃物台を備え、刃物台を回転させて工具の割り出し(入れ替え)を実行する。スライド装置23は、タレット装置22をスライド移動させる装置である。スライド装置23は、例えば、主軸装置21の主軸と平行なZ軸方向及びZ軸方向に垂直なX軸方向へタレット装置22をスライド移動させる。 The processing device 11 is a device that executes processing on a work (not shown). The processing device 11 includes a spindle device 21 , a turret device 22 and a slide device 23 . The spindle device 21 grips the workpiece and rotates it around the spindle. Details of the spindle device 21 will be described later. The turret device 22 includes a tool post to which a plurality of tools can be attached, and rotates the tool post to index (replace) the tools. The slide device 23 is a device that slides the turret device 22 . The slide device 23 slides the turret device 22, for example, in the Z-axis direction parallel to the main shaft of the spindle device 21 and in the X-axis direction perpendicular to the Z-axis direction.
 ローダ13は、例えば、ガントリ式のワーク搬送装置であり、工作機械10の上部に設けられ各種装置との間でワークの受け渡しを実行する。ここでいう各種装置とは、主軸装置21、ワークを反転させる反転装置、前工程や後工程の工作機械、ワークを載置する仮置き台などである。ローダ13は、例えば、ワークをチャックする複数の爪を備えたヘッドを、Z軸方向、X軸方向、及び両軸方向に垂直なY軸方向へ移動させる。 The loader 13 is, for example, a gantry-type work transfer device, and is provided on top of the machine tool 10 to transfer work to and from various devices. The various devices mentioned here include the spindle device 21, the reversing device for reversing the work, the machine tools for the pre-process and the post-process, the temporary table for placing the work, and the like. The loader 13 moves, for example, a head having a plurality of claws for chucking a work in the Z-axis direction, the X-axis direction, and the Y-axis direction perpendicular to both axial directions.
 操作盤15は、ユーザインタフェースであり、例えば、タッチパネル15Aや操作スイッチ15B等を備えている。操作スイッチ15Bは、押しボタンスイッチ、スライドスイッチ、ロータリースイッチなどである。操作盤15は、タッチパネル15Aや操作スイッチ15Bを介してユーザからの操作入力を受け付け、受け付けた操作入力に応じた信号を制御装置17に出力する。また、操作盤15は、制御装置17の制御に基づいて、タッチパネル15Aの表示内容等を変更する。操作盤15は、本開示の受付装置、表示受付装置の一例である。尚、本開示の受付装置、表示受付装置は、上記した構成に限らない。例えば、受付装置、表示受付装置は、液晶パネルと操作スイッチを備え、液晶パネルに表示された項目を操作スイッチで選択する構成でも良い。即ち、受付装置、表示受付装置は、タッチパネルを備えなくとも良い。 The operation panel 15 is a user interface, and includes, for example, a touch panel 15A and operation switches 15B. The operation switch 15B is a push button switch, a slide switch, a rotary switch, or the like. The operation panel 15 receives operation inputs from the user via the touch panel 15A and the operation switches 15B, and outputs signals corresponding to the received operation inputs to the control device 17 . Further, the operation panel 15 changes the display contents of the touch panel 15A based on the control of the control device 17 . The operation panel 15 is an example of the reception device and the display reception device of the present disclosure. Note that the reception device and the display reception device of the present disclosure are not limited to the configurations described above. For example, the reception device and the display reception device may have a liquid crystal panel and operation switches, and may be configured to select items displayed on the liquid crystal panel with the operation switches. In other words, the reception device and the display reception device do not have to have a touch panel.
 エア供給装置16は、例えば、コンプレッサや制御弁等を備え、工作機械10が備える各装置へエアを供給する。エア供給装置16から供給するエアは、例えば、駆動源として機能するエアシリンダを駆動するためのエアや、後述するワークの着座を検出する検出用のエアとして用いられる。 The air supply device 16 has, for example, a compressor, a control valve, etc., and supplies air to each device provided in the machine tool 10 . The air supplied from the air supply device 16 is used, for example, as air for driving an air cylinder functioning as a drive source, or as detection air for detecting seating of a workpiece, which will be described later.
 制御装置17は、CPU等を備えコンピュータを主体とする処理装置であり、数値制御やシーケンス制御を実行し工作機械10の動作を統括的に制御する。制御装置17は、工作機械10の各装置(主軸モータ33などの駆動源等)と電気的に接続され、各装置の動作を制御可能となっている。また、制御装置17は、記憶装置18を備えている。記憶装置18は、例えば、RAM、ROM、フラッシュメモリ、ハードディスク等を備えている。記憶装置18には、各種の制御データD1が記憶されている。 The control device 17 is a processing device mainly composed of a computer including a CPU and the like, and executes numerical control and sequence control to comprehensively control the operation of the machine tool 10 . The control device 17 is electrically connected to each device of the machine tool 10 (drive source such as the spindle motor 33, etc.), and is capable of controlling the operation of each device. The control device 17 also includes a storage device 18 . The storage device 18 includes, for example, RAM, ROM, flash memory, hard disk, and the like. The storage device 18 stores various control data D1.
 制御データD1は、例えば、主軸装置21やタレット装置22の動作を制御するプログラム、生産するワークの種類、作業に使用する工具の種類、作業時におけるワークに対する工具の位置等のデータが設定されている。ここで言うプログラムとは、例えば、シーケンス制御のプログラム(ラダー回路)やNCプログラムなどである。また、制御データD1には、後述する近接センサ49の検出信号が示す検出値を判定するための閾値データD2が含まれている。また、制御装置17は、制御データD1のプログラムをCPUで実行し、操作盤15の操作入力に応じて閾値を閾値データD2に設定することができる。閾値データD2を用いた処理の詳細については後述する。尚、以下の説明では、制御装置17が制御データD1のプログラムを実行して各装置を制御することを、単に装置名で記載する場合がある。例えば、「制御装置17が主軸装置21を制御する」とは、「制御装置17が制御データD1のプログラムをCPUで実行し、プログラムに基づいて主軸装置21を制御する」ことを意味している。 The control data D1 includes, for example, data such as a program for controlling the operation of the spindle device 21 and the turret device 22, the type of work to be produced, the type of tool used for work, and the position of the tool relative to the work during work. there is The program referred to here is, for example, a sequence control program (ladder circuit), an NC program, or the like. The control data D1 also includes threshold data D2 for determining a detection value indicated by a detection signal of the proximity sensor 49, which will be described later. Further, the control device 17 can execute the program of the control data D1 by the CPU, and set the threshold in the threshold data D2 according to the operation input of the operation panel 15. FIG. Details of the processing using the threshold data D2 will be described later. In the following description, the fact that the control device 17 executes the program of the control data D1 to control each device may be simply referred to as the device name. For example, "the control device 17 controls the spindle device 21" means that "the control device 17 executes the program of the control data D1 by the CPU and controls the spindle device 21 based on the program". .
 制御装置17は、上記した構成により各装置を制御してワークに対する加工を実行する。例えば、制御装置17は、前工程の装置からローダ13に受け取ったワークを、加工装置11の主軸装置21に渡す。加工装置11は、制御装置17の制御に基づいて主軸装置21を回転させワークを回転させる。制御装置17は、タレット装置22やスライド装置23を制御して工具の位置の調整や割り出しを実行し、割り出した工具によって主軸装置21のワークの加工を実行する。 The control device 17 controls each device with the above-described configuration to process the workpiece. For example, the control device 17 transfers the workpiece received by the loader 13 from the device of the previous process to the spindle device 21 of the processing device 11 . The processing device 11 rotates the spindle device 21 to rotate the workpiece under the control of the control device 17 . The control device 17 controls the turret device 22 and the slide device 23 to adjust and index the position of the tool, and machine the workpiece of the spindle device 21 with the indexed tool.
(主軸装置21について)
 本実例では、本願の出力装置を、主軸装置21の駆動装置31と、その駆動装置31を制御する制御装置17に適用した例を説明する。図2は、主軸装置21の駆動装置31の一部断面図を示している。尚、以下の説明では、図2に示すように、主軸装置21の主軸25に沿った方向を軸方向と称し、軸方向におけるインジューサ57側を基端側、チャック装置32側を先端側と称して説明する。図2は、後述する油圧シリンダ47や回転継手48については断面を図示せず、内部構造を透過的(破線で)に図示している。図1及び図2に示すように、主軸装置21は、駆動装置31(図2)、チャック装置32(図2)、主軸モータ33(図1)、エンコーダ34(図1)等を備えている。駆動装置31には、一点鎖線で示す範囲にチャック装置32が組み付けられている。チャック装置32は、本開示の作動装置の一例である。主軸装置21は、駆動装置31の軸方向(図2における基端、先端方向)の出力によってチャック装置32を駆動しワークを把持する。主軸装置21は、駆動装置31を介して回転運動をチャック装置32に伝達し、主軸25を中心にワークを回転させる。ワークは、本開示の対象物の一例である。
(Regarding spindle device 21)
In this example, an example in which the output device of the present application is applied to the driving device 31 of the spindle device 21 and the control device 17 that controls the driving device 31 will be described. FIG. 2 shows a partial cross-sectional view of the driving device 31 of the spindle device 21. As shown in FIG. In the following description, as shown in FIG. 2, the direction along the main shaft 25 of the main shaft device 21 is referred to as the axial direction, the side of the inducer 57 in the axial direction is referred to as the proximal side, and the side of the chuck device 32 is referred to as the distal side. will be named and explained. FIG. 2 does not show a cross section of a hydraulic cylinder 47 or a rotary joint 48, which will be described later, but shows the internal structure transparently (in broken lines). As shown in FIGS. 1 and 2, the spindle device 21 includes a drive device 31 (FIG. 2), a chuck device 32 (FIG. 2), a spindle motor 33 (FIG. 1), an encoder 34 (FIG. 1), and the like. . A chuck device 32 is attached to the driving device 31 in a range indicated by a dashed line. The chuck device 32 is an example of an actuating device of the present disclosure. The spindle device 21 drives the chuck device 32 by the output of the drive device 31 in the axial direction (base end and tip direction in FIG. 2) to grip the work. The spindle device 21 transmits rotational motion to the chuck device 32 via the driving device 31 to rotate the workpiece around the spindle 25 . A work is an example of an object of the present disclosure.
 詳述すると、駆動装置31は、回転台41、スピンドル43、プーリ45,46、油圧シリンダ47、回転継手48、近接センサ49等を備えている。回転台41は、主軸25の軸方向と平行な方向に沿った円筒形状をなしている。スピンドル43は、回転台41内に回転可能に設けられている。チャック装置32は、スピンドル43の先端部に取り付けられている。チャック装置32は、例えば、当金や複数の小爪を備え、駆動装置31の駆動に応じてワークを挟持(チャック)する。 Specifically, the driving device 31 includes a turntable 41, a spindle 43, pulleys 45 and 46, a hydraulic cylinder 47, a rotary joint 48, a proximity sensor 49, and the like. The turntable 41 has a cylindrical shape along a direction parallel to the axial direction of the main shaft 25 . The spindle 43 is rotatably provided within the turntable 41 . The chuck device 32 is attached to the tip of the spindle 43 . The chucking device 32 has, for example, a contact metal and a plurality of small claws, and clamps (chucks) the work according to the driving of the driving device 31 .
 スピンドル43には、回転台41よりも基端側にプーリ45が固定されている。プーリ45は、主軸モータ33(図2参照)の回転軸に固定されたプーリ(図示略)との間にベルト51が掛け渡されている。従って、スピンドル43は、主軸モータ33の回転駆動力を、ベルト51を介して伝達されて回転し、チャック装置32を回転させる。これにより、チャック装置32にチャックされたワークに対して主軸25を中心とする回転が付与される。また、スピンドル43には、プーリ45よりも先端側にプーリ46が取り付けられている。プーリ46は、主軸装置21の回転数を検出するためのエンコーダ34のプーリ(図示略)との間にタイミングベルト53が掛け渡されている。制御装置17は、エンコーダ34の検出信号に基づいて主軸装置21の回転数を検出する。 A pulley 45 is fixed to the spindle 43 on the proximal end side of the rotating table 41 . A belt 51 is stretched between the pulley 45 and a pulley (not shown) fixed to the rotating shaft of the main shaft motor 33 (see FIG. 2). Therefore, the spindle 43 is rotated by the rotation driving force of the spindle motor 33 transmitted through the belt 51 , and rotates the chuck device 32 . As a result, the workpiece chucked by the chuck device 32 is rotated about the main shaft 25 . A pulley 46 is attached to the spindle 43 on the tip side of the pulley 45 . A timing belt 53 is stretched between the pulley 46 and a pulley (not shown) of the encoder 34 for detecting the rotation speed of the spindle device 21 . The control device 17 detects the rotation speed of the spindle device 21 based on the detection signal from the encoder 34 .
 また、スピンドル43の内部には、ドローバ55が挿入されている。ドローバ55は、主軸25の軸方向に沿った筒形状をなしている。ドローバ55には、チャック装置32を駆動するためのアクチュエータが連結されている。本実例の工作機械10は、本開示のアクチュエータの一例として油圧シリンダ47を備えている。油圧シリンダ47は、シリンダ47Aと、シリンダ47A内を摺動するピストン47Bと、ピストン47Bに固定されたロッド47Cを備えている。油圧シリンダ47は、軸方向におけるピストン47Bの両方向にロッド47Cを突き出した、所謂、両ロッドシリンダである。ロッド47Cは、全体として円筒形状をなし、ピストン47Bから先端側に突き出した部分にドローバ55が同軸上に連結されている。ロッド47C及びドローバ55の回転軸は、例えば、ワークの回転中心である主軸25の軸方向に沿った方向となっている。油圧シリンダ47は、例えば、基端側に連結された回転継手48を介して作動油を供給されることによりロッド47Cを軸方向と平行な方向に沿って基端側へ移動させる。また、油圧シリンダ47は、作動油を排出されることによりロッド47Cを先端側へ移動させる。このロッド47Cの軸方向の運動がドローバ55を介してチャック装置32へ出力される。 A draw bar 55 is inserted inside the spindle 43 . The draw bar 55 has a cylindrical shape along the axial direction of the main shaft 25 . An actuator for driving the chuck device 32 is connected to the draw bar 55 . The machine tool 10 of this example includes a hydraulic cylinder 47 as an example of the actuator of the present disclosure. The hydraulic cylinder 47 includes a cylinder 47A, a piston 47B sliding inside the cylinder 47A, and a rod 47C fixed to the piston 47B. The hydraulic cylinder 47 is a so-called double rod cylinder in which a rod 47C protrudes in both directions of the piston 47B in the axial direction. The rod 47C has a cylindrical shape as a whole, and a draw bar 55 is coaxially connected to a portion protruding from the piston 47B toward the tip side. The rotation axes of the rod 47C and the draw bar 55 are, for example, along the axial direction of the main shaft 25, which is the rotation center of the work. The hydraulic cylinder 47 moves the rod 47C to the proximal side along a direction parallel to the axial direction by being supplied with hydraulic oil via a rotary joint 48 connected to the proximal side, for example. Moreover, the hydraulic cylinder 47 moves the rod 47C to the tip side by discharging hydraulic oil. This axial movement of the rod 47C is output to the chuck device 32 via the drawbar 55. As shown in FIG.
 ロッド47Cのピストン47Bから基端側に突き出した部分は、駆動装置31の基端部に設けられたインジューサ57まで延びている。円筒形状をなすロッド47C及びドローバ55の内部には、エアパイプ59が挿入されている。エアパイプ59は、基端側をインジューサ57のポートに接続され、先端側をチャック装置32内の流路に接続されている。エアパイプ59は、インジューサ57を介してエア供給装置16(図1参照)から供給された圧縮エアをチャック装置32内の流路へ流す。制御装置17は、エア供給装置16を制御して圧縮エアを供給し、例えば、供給する圧縮エアの圧力を判定することでチャック装置32の当金にワークが着座したか否かを判定する。 A portion of the rod 47C protruding from the piston 47B to the proximal side extends to an inducer 57 provided at the proximal end of the driving device 31. An air pipe 59 is inserted inside the cylindrical rod 47C and the draw bar 55 . The air pipe 59 has a proximal end connected to the port of the inducer 57 and a distal end connected to the flow path in the chuck device 32 . The air pipe 59 allows the compressed air supplied from the air supply device 16 (see FIG. 1) through the inducer 57 to flow through the flow path inside the chuck device 32 . The control device 17 controls the air supply device 16 to supply compressed air, and, for example, determines whether or not the workpiece is seated on the metal of the chuck device 32 by determining the pressure of the supplied compressed air.
 また、ロッド47Cは、回転継手48よりも基端側にドッグ61が取り付けられている。ドッグ61は、例えば、ロッド47C及びドローバ55と同軸(主軸25)を中心とする略円板形状をなしている。ドッグ61は、主軸25の軸方向に所定の厚みを有し主軸25を中心に回転する。ドッグ61の半径方向(図2における上下方向)の外周面には、傾斜面61Aが形成されている。傾斜面61Aは、例えば、一定の角度で傾斜しており、基端側から先端側に行くに従って外側に傾斜している。 A dog 61 is attached to the rod 47C on the proximal end side of the rotary joint 48. The dog 61 has, for example, a substantially disc shape centered on the same axis (the main shaft 25) as the rod 47C and the drawbar 55. As shown in FIG. The dog 61 has a predetermined thickness in the axial direction of the main shaft 25 and rotates around the main shaft 25 . An inclined surface 61A is formed on the outer peripheral surface of the dog 61 in the radial direction (vertical direction in FIG. 2). The inclined surface 61A, for example, is inclined at a constant angle, and is inclined outward from the proximal side to the distal side.
 近接センサ49は、例えば、ドッグ61の半径方向において傾斜面61Aとの間に所定の距離を設けて対向する位置に取り付けられている。また、近接センサ49は、例えば、主軸25に直交する方向であり、ドッグ61の半径方向と平行な方向を検出方向に設定されている。近接センサ49は、傾斜面61Aとの間の距離に応じた検出信号を制御装置17に出力する。近接センサ49と制御装置17の間で検出信号を通信方法は、特に限定されないが、例えば、IEC 61131―9で標準化されたIO-Linkなどの通信インタフェースを用いた通信を採用することができる。 For example, the proximity sensor 49 is attached at a position facing the inclined surface 61A in the radial direction of the dog 61 with a predetermined distance therebetween. Further, the proximity sensor 49 has its detection direction set, for example, in a direction perpendicular to the main shaft 25 and parallel to the radial direction of the dog 61 . The proximity sensor 49 outputs a detection signal to the control device 17 according to the distance to the inclined surface 61A. The method of communicating the detection signal between the proximity sensor 49 and the control device 17 is not particularly limited, but for example, communication using a communication interface such as IO-Link standardized by IEC 61131-9 can be adopted.
 制御装置17は、近接センサ49の検出信号に基づいて、即ち、近接センサ49と傾斜面61Aの間の距離に基づいて、チャック装置32の動作状態(本開示の動作状態の一例)を検出する。主軸装置21は、油圧シリンダ47の駆動に応じてドローバ55やロッド47C(ドッグ61)を軸方向に進退させ、ロッド47Cから軸方向に直線運動を出力し、ドローバ55を介して直線運動をチャック装置32に伝達する。チャック装置32は、軸方向の直線運動を、子爪を径方向に動作させワークの開閉を行なう運動に変換し、ワークのチャック及びチャックの解除を実行する。従って、制御装置17は、近接センサ49と傾斜面61Aの間の距離からドッグ61(ドローバ55)がどの程度だけ引き込まれたか判定することで、チャック装置32の動作状態を検出できる。 The control device 17 detects the operation state (an example of the operation state of the present disclosure) of the chuck device 32 based on the detection signal of the proximity sensor 49, that is, based on the distance between the proximity sensor 49 and the inclined surface 61A. . The spindle device 21 moves the drawbar 55 and the rod 47C (dog 61) in the axial direction according to the drive of the hydraulic cylinder 47, outputs linear motion in the axial direction from the rod 47C, and chucks the linear motion via the drawbar 55. communicate to device 32; The chuck device 32 converts the linear motion in the axial direction into motion for opening and closing the work by operating the child claws in the radial direction, and chucks and releases the chuck of the work. Therefore, the control device 17 can detect the operating state of the chuck device 32 by determining how much the dog 61 (draw bar 55) has been drawn from the distance between the proximity sensor 49 and the inclined surface 61A.
 尚、近接センサ49の検出方法は、特に限定されないが、例えば、磁界を用いて傾斜面61Aに発生する渦電流を検出する電磁誘導を用いた検出方法でも良く、近接センサ49と傾斜面61A(ドッグ61)との間に生じる静電容量の変化を検出する静電容量を用いた検出方向でも良い。近接センサ49は、傾斜面61Aとの間の距離に応じた大きさの電圧値や電流値を検出信号として出力しても良い。近接センサ49は、本開示の距離センサの一例である。また、本開示の距離センサは、上記した磁気や静電容量を用いたセンサに限らず、赤外線センサ、超音波センサ等の他のセンサでも良い。 The detection method of the proximity sensor 49 is not particularly limited. For example, a detection method using electromagnetic induction that detects eddy currents generated on the inclined surface 61A using a magnetic field may be used. A detection direction using a capacitance for detecting a change in capacitance occurring between the dog 61) may be used. The proximity sensor 49 may output a voltage value or a current value having a magnitude corresponding to the distance from the inclined surface 61A as a detection signal. Proximity sensor 49 is an example of the distance sensor of the present disclosure. Further, the distance sensor of the present disclosure is not limited to sensors using magnetism or capacitance as described above, and may be other sensors such as infrared sensors and ultrasonic sensors.
 図3は、図2におけるドッグ61の部分を拡大した拡大図を示している。図3に示すように、例えば、ドッグ61は、油圧シリンダ47の駆動に応じて、図3に実線で示す初期位置P1から、2点鎖線で示す引き込みの最大位置P2までの距離L1だけ基端側に移動(引き込み)可能となっている。距離L1は、例えば、数十mmである。近接センサ49は、ドッグ61を初期位置P1に配置した状態において、傾斜面61Aの初期検出位置DP1との間の距離に応じた検出信号を出力する。初期検出位置DP1は、ドッグ61の基端面61Bから軸方向に沿って距離L2だけ先端側に離れた位置である。即ち、初期検出位置DP1は、ドッグ61の端部から内側にずれた位置に設定されている。 FIG. 3 shows an enlarged view of the portion of the dog 61 in FIG. As shown in FIG. 3, for example, the dog 61 is driven by the hydraulic cylinder 47 by a distance L1 from an initial position P1 indicated by a solid line in FIG. It is possible to move (retract) to the side. The distance L1 is several tens of mm, for example. The proximity sensor 49 outputs a detection signal corresponding to the distance between the dog 61 and the initial detection position DP1 of the inclined surface 61A when the dog 61 is placed at the initial position P1. The initial detection position DP1 is a position away from the proximal end face 61B of the dog 61 by a distance L2 along the axial direction toward the distal end. That is, the initial detection position DP1 is set at a position deviated inward from the end of the dog 61. As shown in FIG.
 また、近接センサ49は、ドッグ61を最大位置P2に配置した状態において、傾斜面61Aの最終検出位置DP2との間の距離に応じた検出信号を出力する。最終検出位置DP2は、ドッグ61の先端面61Cから軸方向に沿って距離L3だけ基端側に離れた位置である。即ち、近接センサ49の検出範囲である初期検出位置DP1から最終検出位置DP2の範囲は、ドッグ61の両端から内側にずれた位置を両端とする範囲となっている。軸方向のドッグ61の両端(基端面61Bの縁部など)を近接センサ49の検出範囲に含めると、検出信号が不安定となる虞がある。そこで、近接センサ49の検出範囲を、ドッグ61の両端から内側に距離L2,L3だけ内側となる範囲を絞ることで近接センサ49の検出信号に基づく動作状態の検出精度を高めることができる。 Also, the proximity sensor 49 outputs a detection signal corresponding to the distance between the dog 61 and the final detection position DP2 of the inclined surface 61A when the dog 61 is placed at the maximum position P2. The final detection position DP2 is a position away from the distal end surface 61C of the dog 61 by a distance L3 along the axial direction toward the base end side. That is, the range from the initial detection position DP1 to the final detection position DP2, which is the detection range of the proximity sensor 49, is a range whose both ends are positions shifted inward from both ends of the dog 61. As shown in FIG. If the detection range of the proximity sensor 49 includes both ends of the dog 61 in the axial direction (such as the edge of the base end surface 61B), the detection signal may become unstable. Therefore, by narrowing down the detection range of the proximity sensor 49 to the distances L2 and L3 inward from both ends of the dog 61, the detection accuracy of the operating state based on the detection signal of the proximity sensor 49 can be improved.
 図4は、近接センサ49とドッグ61とを模式的に示している。尚、図4は、閾値を用いた判定方法の説明を分かり易くするため、各閾値TH1~TH6の値と、近接センサ49の検出値が閾値TH1~TH6となる位置を示す黒い丸を図示している。図4に示すように、近接センサ49は、ドッグ61を初期位置P1に配置した場合の初期検出位置DP1から、最大位置P2に配置した場合の最終検出位置DP2までの範囲を検出可能となる。 FIG. 4 schematically shows the proximity sensor 49 and the dog 61. In order to facilitate the explanation of the determination method using the thresholds, FIG. 4 shows values of the thresholds TH1 to TH6 and black circles indicating the positions where the detection values of the proximity sensor 49 are the thresholds TH1 to TH6. ing. As shown in FIG. 4, the proximity sensor 49 can detect a range from an initial detection position DP1 when the dog 61 is placed at the initial position P1 to a final detection position DP2 when the dog 61 is placed at the maximum position P2.
 制御装置17は、近接センサ49の検出信号が示す検出値と、閾値データD2の閾値TH1~TH6を比較することでチャック装置32の動作状態を検出する。ここでいう動作状態とは、例えば、チャック状態、チャック解除状態、オーバクランプ状態、チャック失敗状態である。チャック状態とは、チャック装置32がワークを正常にチャックした状態であり、本開示の保持状態の一例である。チャック状態では、ワークに対する加工が実行可能である。チャック解除状態とは、チャック装置32がワークのチャックを解除した状態であり、本開示の保持解除状態の一例である。チャック解除状態では、ローダ13がチャック装置32から受け取ったワークを保持して移動することが可能である。オーバクランプ状態(空クランプ状態とも言い得る)とは、例えば、チャック装置32の当金の位置(本開示の保持位置の一例)にワークが配置されていない状態でワークをチャックする方向へ子爪を動作させたためにチャック装置32がワークを正常にチャックできなかった状態である。あるいは、オーバクランプ状態とは、例えば、当金に着座したワークが正常な姿勢でない状態でワークをチャックする方向へ子爪を移動させた場合にチャック装置32がワークを正常にチャックできなかった状態である。オーバクランプ状態は、本開示の保持失敗状態の一例である。オーバクランプ状態では、チャック装置32は、チャック状態となる位置よりもさらに子爪をチャックする方向へ移動させた状態となる。また、チャック失敗状態とは、例えば、ワークが正常な姿勢で当金に着座しているものの、ワークの外周部分に切粉が付着し、チャック装置32がチャック状態となる前に子爪(ドッグ61)が停止する状態である。チャック失敗状態は、本開示の保持失敗状態の一例である。 The control device 17 detects the operating state of the chuck device 32 by comparing the detection value indicated by the detection signal of the proximity sensor 49 and the threshold values TH1 to TH6 of the threshold data D2. The operating state here is, for example, a chucking state, a chucking release state, an over-clamping state, or a chucking failure state. The chucking state is a state in which the chucking device 32 normally chucks the workpiece, and is an example of the holding state of the present disclosure. In the chucked state, the workpiece can be processed. The chuck release state is a state in which the chuck device 32 releases the chuck of the workpiece, and is an example of the hold release state of the present disclosure. In the chuck released state, the loader 13 can hold and move the workpiece received from the chuck device 32 . An over-clamped state (which can also be referred to as an empty clamped state) is, for example, a state in which the work is not placed at the contact metal position (an example of the holding position of the present disclosure) of the chuck device 32, and the child claw is moved in the direction of chucking the work. , the chuck device 32 could not normally chuck the workpiece. Alternatively, the over-clamped state is, for example, a state in which the chuck device 32 cannot normally chuck the work when the child jaws are moved in the direction of chucking the work while the work seated on the contact metal is not in a normal posture. is. An overclamp condition is an example of a hold failure condition of the present disclosure. In the over-clamped state, the chuck device 32 is in a state in which the child jaws are further moved in the chucking direction than the chucked position. Further, the chucking failure state is, for example, when the workpiece is seated on the abutment in a normal posture, but chips adhere to the outer peripheral portion of the workpiece, and the chuck device 32 does not reach the chucking state. 61) is stopped. A chuck failure state is an example of a hold failure state of this disclosure.
 また、ワークとして誤った種類のワーク(以下、異種ワークという場合がある)をチャック装置32でチャックした場合、上記したオーバクランプ状態又はチャック失敗状態となる。例えば、加工対象のワークよりも外径の大きい異種ワークがローダ13によってチャック装置32の当金に着座された場合、チャック装置32は、チャック状態となる前に子爪(ドッグ61)が停止し、チャック失敗状態となる。また、例えば、加工対象のワークよりも外径の小さい異種ワークがローダ13によってチャック装置32の当金に着座された場合、チャック装置32は、チャック状態となる位置よりもさらに子爪をチャックする方向へ移動させたオーバクランプ状態となる。制御装置17は、近接センサ49の検出値と、閾値TH1~TH6を比較することで上記した各動作状態を検出する。 Also, if the chuck device 32 chucks a wrong type of work (hereinafter sometimes referred to as a different type of work), the above-described over-clamping state or chucking failure state occurs. For example, when a different type of work having an outer diameter larger than that of the work to be processed is seated on the abutment of the chuck device 32 by the loader 13, the chuck device 32 stops the small claws (dogs 61) before entering the chucking state. , the chuck fails. Further, for example, when a different kind of work having an outer diameter smaller than that of the work to be processed is seated on the abutment of the chucking device 32 by the loader 13, the chucking device 32 chucks the child jaws further than the chucking position. It will be in an over-clamped state in which it is moved in the direction. The control device 17 detects each operating state by comparing the detection value of the proximity sensor 49 with the thresholds TH1 to TH6.
 図4に示すように、近接センサ49の検出値は、例えば、検出範囲において近接センサ49とドッグ61の間の距離が最も長くなる初期検出位置DP1で最も大きくなり「80」となる。また、検出値は、距離が最も短くなるDP2で最も小さくなり「10」となる。傾斜面61Aは、所定の角度で傾斜しているため、検出値は、初期検出位置DP1から最終検出位置DP2に向かうに従って一定の変化量で減少する。 As shown in FIG. 4, the detection value of the proximity sensor 49 is, for example, the largest at the initial detection position DP1 where the distance between the proximity sensor 49 and the dog 61 is the longest in the detection range and becomes "80". Also, the detection value is the smallest at DP2 where the distance is the shortest, and becomes "10". Since the inclined surface 61A is inclined at a predetermined angle, the detected value decreases with a constant amount of change from the initial detection position DP1 toward the final detection position DP2.
 制御装置17は、例えば、6つの閾値TH1,TH2,TH3,TH4,TH5,TH6を用いて検出値を判定し、チャック装置32の動作状態を検出する。閾値TH1,TH2は、チャック解除状態を検出するための閾値である。閾値TH3,TH4は、チャック状態やチャック失敗状態を検出するための閾値である。閾値TH5,TH6は、オーバクランプ状態を検出するための閾値である。 The control device 17 uses, for example, six threshold values TH1, TH2, TH3, TH4, TH5, and TH6 to determine the detection values and detect the operating state of the chuck device 32 . The thresholds TH1 and TH2 are thresholds for detecting the chuck release state. Thresholds TH3 and TH4 are thresholds for detecting a chucking state or a chucking failure state. Thresholds TH5 and TH6 are thresholds for detecting an over-clamped state.
 制御装置17は、例えば、チャック装置32をチャック動作させる際に、油圧シリンダ47を制御してドローバ55を基端側へ引き込みつつ、近接センサ49から検出信号を所定のタイミングごとに取得する。ワークを正常にチャックできた場合、チャック装置32の子爪が所望の位置でワークと接触する。このため、ドローバ55は、油圧シリンダ47による引き込み力とワークから子爪に受ける反力の釣り合いなどによって所定の位置で停止する。閾値TH3,TH4は、チャック装置32が正常にワークをチャックした場合に、ドローバ55が停止する位置において近接センサ49で検出する検出値に応じた値が設定されている。このため、閾値TH3,TH4は、ワークの種類に応じて適切な値が異なる。図4に示す例では、閾値TH3として「32.2」が、閾値TH4として「31.9」が設定されている。 For example, when chucking the chuck device 32, the control device 17 controls the hydraulic cylinder 47 to pull the draw bar 55 toward the base end side, and obtains a detection signal from the proximity sensor 49 at predetermined timings. When the work can be chucked normally, the child claws of the chuck device 32 come into contact with the work at a desired position. Therefore, the drawbar 55 stops at a predetermined position due to the balance between the drawing force of the hydraulic cylinder 47 and the reaction force applied to the child claws from the work. The thresholds TH3 and TH4 are set to values corresponding to detection values detected by the proximity sensor 49 at the position where the draw bar 55 stops when the chuck device 32 normally chucks the workpiece. Therefore, the thresholds TH3 and TH4 have different appropriate values depending on the type of work. In the example shown in FIG. 4, "32.2" is set as the threshold TH3, and "31.9" is set as the threshold TH4.
 また、制御装置17は、チャック装置32をチャック状態からチャック解除状態へ移行させる場合、油圧シリンダ47を制御してドローバ55を先端側へ押し出しつつ、近接センサ49の検出信号を所定のタイミングごとに取得する。検出値は、例えば、閾値TH3~TH4の範囲内の値から徐々に大きくなる。例えば、チャック装置32の加工後のワークをローダ13でチャックした状態で、チャック装置32の子爪をチャック位置から開く方向へ移動させた場合、子爪が所定の位置まで開くと、ローダ13は、ワークと子爪の干渉を回避して当金に着座したワークを取り出すことができる。閾値TH1,TH2は、チャック装置32がワークのチャックを解除し、且つローダ13によって適切にワークを取り出せる位置にドローバ55(ドッグ61)を配置した場合における近接センサ49の検出値に応じた値である。制御装置17は、チャック解除状態へ移行しつつ、取得した検出信号が示す検出値が閾値TH1~TH2の範囲になると、チャック解除状態、即ち、ワークのチャックを解除できたことを検出する。 When the chucking device 32 is to be shifted from the chucking state to the chucking release state, the control device 17 controls the hydraulic cylinder 47 to push the draw bar 55 toward the leading end side, and outputs the detection signal of the proximity sensor 49 at predetermined timings. get. The detected value, for example, gradually increases from a value within the range of thresholds TH3 to TH4. For example, when the child jaws of the chuck device 32 are moved in the opening direction from the chucking position in a state in which the loader 13 chucks the workpiece after machining by the chuck device 32, the loader 13 is moved when the child jaws are opened to a predetermined position. , the work seated on the contact can be removed while avoiding interference between the work and the sub-claw. The thresholds TH1 and TH2 are values corresponding to detection values of the proximity sensor 49 when the chuck device 32 releases the chucking of the workpiece and the draw bar 55 (dog 61) is arranged at a position where the workpiece can be properly picked up by the loader 13. be. When the detection value indicated by the acquired detection signal reaches the range of threshold values TH1 and TH2 while transitioning to the chuck release state, the control device 17 detects the chuck release state, ie, that the chuck of the workpiece has been released.
 例えば、工作機械10で加工可能なワークのうち、最も外径の大きいワークのチャックを解除できる位置にドローバ55(ドッグ61)を配置した状態の検出値を閾値TH1,TH2に設定すれば、他の小径のワークについてもチャック解除状態を検出できる。しなしながら、小径のワークについても大径のものと同じ閾値TH1,TH2を用いた場合、チャック解除状態を検出するまでの時間が長くなってしまう。このため、閾値TH1,TH2についても、ワークの種類に応じて適切な値を設定することが好ましい。図4に示す例では、閾値TH1として「71.0」が、閾値TH2として「69.0」が設定されている。 For example, if the detection values in the state where the draw bar 55 (dog 61) is arranged at the position where the chuck of the work having the largest outer diameter can be released among the works that can be processed by the machine tool 10 are set as the thresholds TH1 and TH2, other The chuck release state can be detected even for small-diameter workpieces. However, if the same threshold values TH1 and TH2 as those for large-diameter workpieces are used for small-diameter workpieces, it takes a long time to detect the chuck release state. Therefore, it is preferable to set appropriate values for the thresholds TH1 and TH2 according to the type of work. In the example shown in FIG. 4, "71.0" is set as the threshold TH1, and "69.0" is set as the threshold TH2.
 また、オーバクランプ状態となる場合、ドッグ61は、検出値が閾値TH3~TH4の範囲となっても停止せず、さらに引き込まれる。制御装置17は、チャック装置32をチャック動作させる際に、検出値が閾値TH5~TH6の範囲内になると、オーバクランプ状態であることを検出する。図4に示す例では、閾値TH5として、閾値TH4と同一値「31.9」が設定されている。また、閾値TH6として、最終検出位置DP2の値「10.0」と同一値が設定されている。この場合、制御装置17は、例えば、検出値が閾値TH4(TH5)よりも大きい値になると、オーバクランプ状態を検出し、エラー通知を実行する。尚、閾値TH5,TH6は、閾値TH4より大きい値、即ち、ワークごとに異なる値を設定しても良い。あるいは、閾値TH5として「20.0」、閾値TH6として「15.0」など、閾値TH4よりも大きい任意の値を設定しても良い。この場合、全てのワークで同一の閾値TH5,TH6「20.0、15.0」を用いても良い。 Also, in the over-clamped state, the dog 61 does not stop even if the detected value falls within the range of the threshold values TH3 to TH4, and is further pulled. When the chucking device 32 performs a chucking operation, the control device 17 detects the over-clamping state when the detected value falls within the range of the thresholds TH5 and TH6. In the example shown in FIG. 4, the same value "31.9" as the threshold TH4 is set as the threshold TH5. Further, the same value as the value "10.0" of the final detection position DP2 is set as the threshold TH6. In this case, the control device 17 detects an over-clamped state and issues an error notification, for example, when the detected value is greater than the threshold TH4 (TH5). The thresholds TH5 and TH6 may be set to values larger than the threshold TH4, that is, different values for each work. Alternatively, any value greater than the threshold TH4 may be set, such as "20.0" as the threshold TH5 and "15.0" as the threshold TH6. In this case, the same thresholds TH5 and TH6 "20.0, 15.0" may be used for all works.
 上記した閾値TH1~TH6は、閾値データD2に設定されている。例えば、ベンダは、クライアントに工作機械10を納品する前に、クライアントのワークに基づいて閾値TH1~TH6を予め設定しても良い。あるいは、ユーザは、工作機械10を購入してから閾値TH1~TH6を新規に設定しても良く、ベンダ側で設定された値を変更しても良い。 The above thresholds TH1 to TH6 are set in the threshold data D2. For example, before delivering the machine tool 10 to the client, the vendor may preset the thresholds TH1 to TH6 based on the work of the client. Alternatively, the user may newly set the thresholds TH1 to TH6 after purchasing the machine tool 10, or may change the values set by the vendor.
 図5は、閾値TH1~TH6の設定画面の一例を示している。制御装置17は、例えば、タッチパネル15Aに対する所定の操作入力に応じて図5に示す設定画面65をタッチパネル15Aに表示させる。図5に示すように、制御装置17は、No、名称、現在値、最小値、最大値を一行に並べて設定画面65に表示する。各行の最小値・最大値は、各行の名称が示す項目を検出する範囲の最大値・最小値である。例えば、1行目(No1)の「チャック ゆるめ端」には、チャック解除状態を検出する閾値TH2が最小値、閾値TH1が最大値として設定されている。また、No2の「チャック 締め端」には、チャック状態やチャック失敗状態を検出する閾値TH4が最小値、閾値TH3が最大値として設定されている。また、No3の「チャック オーバクランプ」には、オーバクランプ状態を検出する閾値TH5が最大値、閾値TH6が最小値に設定されている。ユーザは、例えば、各最小値・最大値が表示された部分をタッチ操作することで、各値を変更することができる。これにより、適切な閾値TH1~TH6をユーザが設定することができる。 FIG. 5 shows an example of a setting screen for thresholds TH1 to TH6. For example, the control device 17 causes the touch panel 15A to display the setting screen 65 shown in FIG. 5 in response to a predetermined operation input on the touch panel 15A. As shown in FIG. 5, the control device 17 arranges No, name, current value, minimum value, and maximum value in one line and displays them on the setting screen 65 . The minimum/maximum value of each line is the maximum/minimum value of the range for detecting the item indicated by the name of each line. For example, in the first line (No. 1) "chuck loose end", the threshold TH2 for detecting the chuck release state is set as the minimum value, and the threshold TH1 is set as the maximum value. Further, in No. 2 "chuck tightening end", the threshold TH4 for detecting the chuck state or the chuck failure state is set as the minimum value, and the threshold TH3 is set as the maximum value. Further, in No. 3 "chuck overclamp", the threshold TH5 for detecting the overclamp state is set to the maximum value, and the threshold TH6 is set to the minimum value. The user can change each value, for example, by performing a touch operation on the portion where each minimum value and maximum value are displayed. This allows the user to set appropriate thresholds TH1 to TH6.
 また、制御装置17は、設定画面65の現在値68の各項目に、近接センサ49により現在検出されている検出値、即ち、ドッグ61の位置をリアルタイムで検出した検出値を表示する。これにより、ユーザは、例えば、加工対象のワークをチャック装置32の当金に実際に配置し油圧シリンダ47を駆動して子爪を閉じながら適切なチャック位置で油圧シリンダ47を停止させる。その際に、ユーザは、現在値68を確認することで加工対象のワークに最適な閾値TH3,TH4を確認・設定できる。同様に、チャック解除状態を検出する閾値TH1,TH2についても、例えば、ユーザは、ドローバ55を押し出しながらチャック装置32の子爪とローダ13の状態を確認し、適切なチャック解除位置で油圧シリンダ47を停止させる。その際に、ユーザは、現在値68を確認することで、適切な閾値TH1,TH2を確認・設定できる。 In addition, the control device 17 displays, in each item of the current value 68 on the setting screen 65, the detected value currently detected by the proximity sensor 49, that is, the detected value obtained by detecting the position of the dog 61 in real time. As a result, the user can, for example, actually place the workpiece to be processed on the contact metal of the chuck device 32, drive the hydraulic cylinder 47, and stop the hydraulic cylinder 47 at an appropriate chuck position while closing the child jaws. At this time, the user can confirm and set the optimum thresholds TH3 and TH4 for the work to be processed by confirming the current value 68 . Similarly, regarding the threshold values TH1 and TH2 for detecting the chuck release state, for example, the user checks the states of the child claws of the chuck device 32 and the loader 13 while pushing out the draw bar 55, and then pulls the hydraulic cylinder 47 at an appropriate chuck release position. to stop At that time, the user can confirm and set appropriate threshold values TH1 and TH2 by confirming the current value 68 .
 制御装置17は、最小値・最大値の各項目の閾値TH1~TH6の設定や変更を受け付けた後、設定画面65に表示した設定ボタン67をタッチ操作されると、設定画面65で受け付けた閾値TH1~TH6を閾値データD2に保存する。制御装置17は、その後の処理において、新たに閾値データD2に設定した閾値TH1~TH6を用いて判定を実行する。 After receiving settings and changes of the threshold values TH1 to TH6 for each item of the minimum value and maximum value, the control device 17 sets the threshold value received on the setting screen 65 when the setting button 67 displayed on the setting screen 65 is touched. TH1 to TH6 are stored in threshold data D2. In subsequent processing, the control device 17 uses the thresholds TH1 to TH6 newly set in the threshold data D2 to execute determination.
 また、閾値データD2には、例えば、ワークの種類毎に閾値TH1~TH6が記憶されている。閾値データD2には、ワークの種類を示すワークNOと、そのワークの処理に用いる閾値TH1~TH6とが関連付けて記憶されている。そして、制御装置17は、設定画面65において、ワークの種類毎に閾値TH1~TH6を受け付ける。例えば、制御装置17は、設定画面65に表示したワーク選択ボタン69をタッチ操作されると、ワークNOを受け付ける画面(図示略)を表示する。制御装置17は、受付画面でワークNOを受け付けると、受け付けたワークNOに応じた閾値TH1~TH6を閾値データD2から読み出し設定画面65に表示する。これにより、ユーザは、ワークの種類ごとに適切な閾値TH1~TH6を設定できる。 Also, the threshold data D2 stores, for example, thresholds TH1 to TH6 for each type of workpiece. The threshold data D2 stores a workpiece NO indicating the type of workpiece and thresholds TH1 to TH6 used for processing the workpiece in association with each other. Then, the control device 17 accepts the thresholds TH1 to TH6 for each type of workpiece on the setting screen 65 . For example, when the work selection button 69 displayed on the setting screen 65 is touch-operated, the control device 17 displays a screen (not shown) for receiving the work No. When the work number is received on the reception screen, the control device 17 reads the thresholds TH1 to TH6 corresponding to the work number received from the threshold data D2 and displays them on the setting screen 65 . This allows the user to set appropriate thresholds TH1 to TH6 for each type of work.
(チャック駆動処理)
 次に、制御装置17が実行するチャック駆動処理について説明する。図6は、チャック駆動処理のフローチャートを示している。制御装置17は、チャック駆動処理を実行することで、チャック装置32によるワークのチャック、ワークの加工、加工後のワークのチャック解除を実行する。制御装置17は、制御データD1の所定の制御プログラムをCPUで実行することでチャック駆動処理を実行する。制御装置17は、例えば、ユーザの操作入力に基づいて、加工の開始指示を受け付ける画面をタッチパネル15Aに表示すると、図6に示すチャック駆動処理を開始する。尚、図6に示すチャック駆動処理の内容、処理の順番、上記した処理の開始条件は一例である。
(Chuck driving process)
Next, chuck drive processing executed by the control device 17 will be described. FIG. 6 shows a flowchart of chuck drive processing. By executing the chuck driving process, the control device 17 executes the chucking of the workpiece by the chucking device 32, the machining of the workpiece, and the release of the chucking of the workpiece after machining. The control device 17 executes the chuck driving process by executing a predetermined control program of the control data D1 with the CPU. For example, when a screen for accepting a machining start instruction is displayed on the touch panel 15A based on the user's operation input, the control device 17 starts the chuck driving process shown in FIG. It should be noted that the contents of the chuck driving process shown in FIG. 6, the order of the processes, and the conditions for starting the processes described above are examples.
 制御装置17は、チャック駆動処理を開始すると、ステップ(以下、単に「S」と記載する)11において、開始指示を受け付ける画面で加工対象のワークの種類を示すワークNOを受け付ける。制御装置17は、例えば、ワークNOを入力された状態で開始ボタンをタッチ操作されると、入力されたワークNOに応じた閾値、即ち、入力されたワークNOと関連付けられた閾値TH1~TH6を記憶装置18の閾値データD2から取得する(S11)。 When the chuck driving process is started, the control device 17 receives a work NO indicating the type of work to be processed on a screen for receiving a start instruction in step (hereinafter simply referred to as "S") 11. For example, when the start button is touch-operated with the work number input, the control device 17 sets thresholds corresponding to the input work number, that is, thresholds TH1 to TH6 associated with the input work number. It is obtained from the threshold data D2 in the storage device 18 (S11).
 次に、制御装置17は、ワークを主軸装置21に配置する(S13)。制御装置17は、例えば、ローダ13を制御して、前工程の装置やワークストッカから加工対象のワークをローダ13に受け取り、ワークを受け取ったローダ13を移動させて主軸装置21の前に配置する。制御装置17は、チャック装置32との間でワークを受け渡し可能な位置にローダ13を配置すると、ドローバ55の引き込みを開始する(S15)。制御装置17は、油圧シリンダ47を駆動してドローバ55の引き込みを開始するとともに、近接センサ49から検出信号を所定のタイミングごとに取得する。検出値は、ドローバ55(ドッグ61)の移動にともなって減少する。 Next, the control device 17 places the workpiece on the spindle device 21 (S13). For example, the control device 17 controls the loader 13 to receive a work to be processed from a device in a previous process or a work stocker, and move the loader 13 that has received the work to place it in front of the spindle device 21. . After locating the loader 13 at a position where the workpiece can be transferred to and from the chuck device 32, the control device 17 starts to pull the draw bar 55 (S15). The control device 17 drives the hydraulic cylinder 47 to start drawing the drawbar 55, and acquires a detection signal from the proximity sensor 49 at predetermined timings. The detected value decreases as the drawbar 55 (dog 61) moves.
 次に、制御装置17は、ドローバ55が停止したか否かを判定する(S17)。ドローバの停止を判定する方法は特に限定されないが、例えば、制御装置17は、近接センサ49の検出値が所定時間だけ一定の範囲内に収束した場合や、検出値の変化量が所定の値以下となった場合に、ドローバ55が停止したと判定する。あるいは、エンコーダやリニアスケールなどの位置情報を出力する装置を用いて軸方向におけるドローバ55やドッグ61の位置情報を制御装置17に出力し、制御装置17が位置情報に基づいてドローバ55の停止を判定しても良い。また、制御装置17は、油圧シリンダ47やドローバ55に付与される外力(ワークからの反力)の増加に基づいてドローバ55の停止を判定しても良い。 Next, the control device 17 determines whether the drawbar 55 has stopped (S17). The method of determining whether the drawbar has stopped is not particularly limited. , it is determined that the drawbar 55 has stopped. Alternatively, the positional information of the drawbar 55 and dog 61 in the axial direction is output to the control device 17 using a device that outputs positional information such as an encoder or linear scale, and the control device 17 stops the drawbar 55 based on the positional information. You can judge. Further, the control device 17 may determine stoppage of the drawbar 55 based on an increase in the external force (reaction force from the workpiece) applied to the hydraulic cylinder 47 or the drawbar 55 .
 制御装置17は、引き込み中のドローバ55が停止していないと判定した場合(S17:NO)、近接センサ49の検出値が閾値TH5より大きいか否かを判定する(S19)。図4に示すように、引き込み動作において、例えば、着座したワークの姿勢がおかしい、外径が小さい異種ワークが配置された、ワークの脱落によってワークが当金に配置されていない(空クランプ)などの場合、ドッグ61が閾値TH3~TH4の位置で停止せずに、閾値TH5の位置よりも先端側まで引き込まれるオーバクランプ状態となる。このため、制御装置17は、引き込み動作において、検出値が閾値TH5よりも大きいと判定すると(S19:YES)、即ち、オーバクランプ状態を検出すると、エラー通知する(S21)。制御装置17は、例えば、工作機械10の動作を停止させ、「主軸装置に配置されているワークの種類・姿勢を確認して下さい」などのエラーメッセージをタッチパネル15Aに表示する(S21)。制御装置17は、図6に示す処理を終了する。これにより、異種ワークに対する加工などの誤った加工作業が開始されること回避できる。尚、制御装置17は、S19の判定処理において、閾値TH5の代わりに閾値TH6を用いても良い。あるいは、制御装置17は、S19で検出値が閾値TH6以上で且つ閾値TH5未満であることを判定しても良い。 When the control device 17 determines that the drawbar 55 that is being drawn is not stopped (S17: NO), it determines whether the detection value of the proximity sensor 49 is greater than the threshold TH5 (S19). As shown in Fig. 4, during the retraction operation, for example, the posture of the seated work is incorrect, a work of a different type with a small outer diameter is placed, or the work is not placed on the contact due to the fall of the work (empty clamp). In the case of , the dog 61 does not stop at the threshold values TH3 to TH4, but is pulled to the tip side beyond the threshold value TH5, resulting in an over-clamped state. Therefore, when the control device 17 determines in the pull-in operation that the detected value is greater than the threshold TH5 (S19: YES), that is, when it detects an over-clamped state, it issues an error notification (S21). The control device 17, for example, stops the operation of the machine tool 10, and displays an error message such as "Please confirm the type and orientation of the work placed on the spindle device" on the touch panel 15A (S21). The control device 17 ends the processing shown in FIG. As a result, it is possible to avoid starting an erroneous machining operation such as machining a different kind of workpiece. Note that the control device 17 may use the threshold TH6 instead of the threshold TH5 in the determination process of S19. Alternatively, the control device 17 may determine in S19 that the detected value is equal to or greater than the threshold TH6 and less than the threshold TH5.
 一方、制御装置17は、検出値が閾値TH5以下である場合(S19:NO)、S17の判定を実行する。制御装置17は、ドローバ55が停止したと判定した場合(S17:YES)、停止した時点における検出値が閾値TH3以上であるか否かを判定する(S23)。例えば、外形の大きい異種ワークが配置された場合、切粉を子爪とワークの間に挟み込んだ場合、あるいはワークの姿勢が誤っている場合など、ドッグ61が閾値TH3の位置よりも基端側(手前側)の位置で停止しチャック失敗状態となる。従って、制御装置17は、検出値がTH3以上でない場合(S23:NO)、即ち、チャック失敗状態を検出すると、エラーを通知する(S21)。制御装置17は、例えば、S21において「ワークの外径が、加工対象のワークより大きい、あるいは切粉を挟み込んだ可能性があります。」などのメッセージをタッチパネル15Aに表示する。 On the other hand, when the detected value is equal to or less than the threshold TH5 (S19: NO), the control device 17 executes the determination of S17. When the control device 17 determines that the drawbar 55 has stopped (S17: YES), it determines whether or not the detected value at the time of stop is equal to or greater than the threshold TH3 (S23). For example, when a different type of workpiece with a large outer shape is placed, when chips are caught between the child claw and the workpiece, or when the posture of the workpiece is incorrect, the dog 61 is positioned closer to the proximal end than the position of the threshold value TH3. It stops at the (front side) position and becomes a chuck failure state. Therefore, when the detected value is not equal to or greater than TH3 (S23: NO), that is, when the chuck failure state is detected, the controller 17 notifies an error (S21). For example, in S21, the control device 17 displays a message such as "the outer diameter of the work is larger than that of the work to be processed, or there is a possibility that chips are caught in the work" on the touch panel 15A.
 また、制御装置17は、停止した時点の検出値が閾値TH3以上である場合(S23:YES)、停止した時点の検出値が閾値TH4以下であるか否かを判定する(S25)。例えば、外形の小さい異種ワークが配置され場合や、ワークの姿勢が誤っている場合、過剰に引き込まれチャック失敗状態となる。従って、制御装置17は、検出値が閾値TH4より大きい場合(S25:NO)、即ち、チャック失敗状態を検出すると、エラーを通知する(S21)。制御装置17は、「ワークを確認して下さい」などのメッセージをタッチパネル15Aに表示する。 Also, when the detected value at the time of stopping is equal to or greater than the threshold TH3 (S23: YES), the control device 17 determines whether the detected value at the time of stopping is equal to or less than the threshold TH4 (S25). For example, if a different type of work with a small outer shape is placed, or if the posture of the work is incorrect, it will be pulled in excessively and chuck failure will occur. Therefore, when the detected value is greater than the threshold TH4 (S25: NO), that is, when the chuck failure state is detected, the controller 17 notifies an error (S21). The control device 17 displays a message such as "Please check the workpiece" on the touch panel 15A.
 従って、本実施例の動作状態には、チャック装置32の当金にワークが配置されていない状態でチャック装置32をチャック動作させた場合にワークを正常に保持できないオーバクランプ状態が含まれている。また、動作状態には、チャック装置32の当金に着座したワークが正常な姿勢で配置されていない状態でチャック装置32をチャック動作させた場合にワークを正常に保持できないチャック失敗状態が含まれる。制御装置17は、オーバクランプ状態を検出する閾値TH5と、チャック失敗状態を検出する閾値TH3,TH4を取得する(S11)。そして、制御装置17は、取得した閾値TH3,TH4,TH5と検出値を比較し、保持失敗状態を検出する(S19,S23,S25)。これによれば、近接センサ49の検出値と閾値TH3,TH4,TH5を用いることで、ワークが正常にチャックできないオーバクランプ状態やチャックミス状態を検出できる。ユーザにエラーの通知等を実施し、適切な対応を促すことができる。 Therefore, the operating state of the present embodiment includes an over-clamping state in which the workpiece cannot be held normally when the chucking device 32 is chucked in a state in which no workpiece is placed on the abutment of the chucking device 32. . The operating state also includes a chucking failure state in which the workpiece cannot be held normally when the chucking device 32 is operated while the workpiece seated on the abutment of the chucking device 32 is not arranged in a normal posture. . The controller 17 acquires a threshold TH5 for detecting an over-clamped state and thresholds TH3 and TH4 for detecting a chuck failure state (S11). Then, the control device 17 compares the acquired threshold values TH3, TH4, and TH5 with the detection values, and detects a holding failure state (S19, S23, S25). According to this, by using the detection value of the proximity sensor 49 and the thresholds TH3, TH4, and TH5, an over-clamped state in which the workpiece cannot be chucked normally or a chucking error state can be detected. It is possible to notify the user of the error, etc., and prompt the user to take appropriate measures.
 制御装置17は、検出値がTH4以下の場合(S25:YES)、S27を実行する。制御装置17は、検出値が閾値TH3以上で、且つ閾値TH4以下であることを判定することで、ワークNOに応じたワークがチャック状態となったことを検出できる。即ち、適切な加工対象のワークが適切なチャック状態となったことを確認できる。このため、制御装置17は、ローダ13のチャックを解除し、主軸装置21と対向する位置からローダ13を退避させる(S27)。制御装置17は、タレット装置22やスライド装置23を制御して、主軸装置21にチャックされたワークに対する加工を開始する。 When the detected value is equal to or less than TH4 (S25: YES), the control device 17 executes S27. By determining that the detected value is equal to or greater than the threshold TH3 and equal to or less than the threshold TH4, the control device 17 can detect that the workpiece corresponding to the workpiece NO has been chucked. In other words, it can be confirmed that a suitable workpiece to be machined is in a suitable chuck state. Therefore, the control device 17 releases the chuck of the loader 13 and retracts the loader 13 from the position facing the spindle device 21 (S27). The control device 17 controls the turret device 22 and the slide device 23 to start machining the workpiece chucked by the spindle device 21 .
 従って、制御装置17は、S11において、ワークNOに応じた、即ち、加工対象のワークに応じた閾値TH1~TH6を取得する。制御装置17は、ドローバ55を軸方向の基端側へ変位させた場合に、近接センサ49の検出値が閾値TH3以上で、且つ閾値TH4以下になると(S23:YES、S25:YES)、チャック装置32の動作状態がチャック状態であることを検出する。これによれば、閾値TH3,TH4として加工対象のワークに応じた適切な値を設定・取得することで、ワークのチャック状態を精度良く検出できる。 Therefore, in S11, the control device 17 acquires the thresholds TH1 to TH6 corresponding to the work No., ie, the work to be processed. If the detection value of the proximity sensor 49 becomes equal to or greater than the threshold TH3 and equal to or less than the threshold TH4 (S23: YES, S25: YES) when the drawbar 55 is displaced to the base end side in the axial direction, the controller 17 controls the chuck. It detects that the operation state of the device 32 is the chuck state. According to this, by setting and acquiring appropriate values according to the workpiece to be processed as the threshold values TH3 and TH4, the chucking state of the workpiece can be accurately detected.
 また、チャック装置32は、複数の種類のワークを保持可能である。記憶装置18の閾値データD2には、ワークの種類に対応した閾値TH1~TH6がそれぞれ記憶されている。制御装置17は、図5に示すように、タッチパネル15Aの設定画面65を用いて、ワークNO(ワークの種類の情報)を受け付け、ワークNOに関連付けて閾値データD2に記憶する。そして、加工時において、制御装置17は、タッチパネル15Aで受け付けたワークNOに対応する閾値TH1~TH6を記憶装置18から取得する(S11)。制御装置17は、取得した閾値TH1~TH6と検出値との一致を判定し、動作状態がチャック状態であることを検出する。これによれば、ユーザは、ワークNOを変更するだけで、加工対象のワークの種類に応じた閾値TH3,TH4等を設定できる。 Also, the chuck device 32 can hold a plurality of types of workpieces. Threshold values TH1 to TH6 corresponding to the types of workpieces are stored in the threshold data D2 of the storage device 18, respectively. As shown in FIG. 5, the control device 17 receives the work No. (work type information) using the setting screen 65 of the touch panel 15A, and stores it in the threshold data D2 in association with the work No. Then, during processing, the control device 17 acquires from the storage device 18 the threshold values TH1 to TH6 corresponding to the work No. received by the touch panel 15A (S11). The control device 17 determines whether the acquired thresholds TH1 to TH6 match the detection values, and detects that the operating state is the chucking state. According to this, the user can set the threshold values TH3, TH4, etc. according to the type of work to be processed only by changing the work No.
 例えば、図4の黒い四角は、上記した閾値TH3,TH4を用いるワークに比べて、外形の大きいワークが加工対象となる場合の閾値TH3A,TH4Aを示している。この場合、子爪は、閾値TH3,TH4を用いるワークをチャックする時よりも外側(開いた状態)でワークと接触し停止する。ドッグ61は、より引き込み量の少ない先端側で停止する。従って、閾値TH3A,TH4Aとしては、閾値TH3,TH4に比べて基端側となる位置で検出される値が好ましい。図4に示す例では、閾値TH3Aとして「42.2」が,閾値TH4Aとして「41.9」が設定されている。この場合、オーバクランプ状態を検出する閾値TH5として、閾値TH4Aと同一値を用いても良く、閾値TH4を用いても良く、閾値TH4以上の任意の値を用いて良い。このようにワークの種類に応じて閾値TH3,TH4を変更することで、チャック状態を精度良く検出できる。 For example, black squares in FIG. 4 indicate thresholds TH3A and TH4A when a work having a large outer shape is to be processed compared to the work using the thresholds TH3 and TH4 described above. In this case, the child claws come into contact with the work outside (open state) and stop when the work is chucked using the thresholds TH3 and TH4. The dog 61 stops on the tip side where the retraction amount is smaller. Therefore, the thresholds TH3A and TH4A are preferably values detected at positions closer to the proximal side than the thresholds TH3 and TH4. In the example shown in FIG. 4, "42.2" is set as the threshold TH3A, and "41.9" is set as the threshold TH4A. In this case, as the threshold TH5 for detecting the over-clamped state, the same value as the threshold TH4A may be used, the threshold TH4 may be used, or any value equal to or greater than the threshold TH4 may be used. By changing the thresholds TH3 and TH4 in accordance with the type of workpiece in this manner, the chucking state can be detected with high accuracy.
 また、近接センサ49は、ワークの種類が変更される前後において傾斜面61Aとの間の距離を検出する検出方向を維持されている。例えば、図3に示す場合には、近接センサ49の検出方向は、図面の上下方向(主軸25の軸方向に直交する方向)で維持される。また、制御装置17は、ワークの種類が変更される前後において、同一の検出方向に設定(固定)された近接センサ49の検出信号に基づく判定を実行する。このような構成では、段取り替えなどに応じてユーザが近接センサ49の検出方向を調整する必要がなくなる。主軸装置21に取り付けられた近接センサ49に対する作業が不要となるため、段取り替えにともなう加工の停止時間を短縮でき、生産効率を向上できる。 Also, the proximity sensor 49 maintains the detection direction for detecting the distance to the inclined surface 61A before and after the type of work is changed. For example, in the case shown in FIG. 3, the detection direction of the proximity sensor 49 is maintained in the vertical direction of the drawing (the direction orthogonal to the axial direction of the main shaft 25). Further, the control device 17 executes determination based on the detection signal of the proximity sensor 49 set (fixed) in the same detection direction before and after the type of workpiece is changed. Such a configuration eliminates the need for the user to adjust the detection direction of the proximity sensor 49 in response to a setup change or the like. Since there is no need to work on the proximity sensor 49 attached to the spindle device 21, it is possible to shorten the stoppage time of machining due to a setup change and improve production efficiency.
 また、図4に示すように、制御装置17は、近接センサ49の駆動に基づいて変動する検出値を設定画面65に現在値68として表示した状態で、閾値TH1~TH6を受け付ける。そして、制御装置17は、その設定画面65で受け付けた閾値TH3~閾値TH4の範囲に検出値が含まれると判定すると、動作状態がチャック状態であることを検出する。これによれば、ユーザは、加工対象のワークを作業現場で実際にチャック装置32にチャックさせて現在値68を確認し、その現在値68に応じた閾値TH3,TH4を設定できる。ユーザによる閾値TH3,TH4の設定作業の作業負荷を軽減できるとともに、チャック状態をより精度良く検出できる。 Further, as shown in FIG. 4, the control device 17 accepts the thresholds TH1 to TH6 in a state in which the detection values that fluctuate based on the driving of the proximity sensor 49 are displayed on the setting screen 65 as the current values 68. When the control device 17 determines that the detected value is within the range of the threshold TH3 to the threshold TH4 received on the setting screen 65, it detects that the operation state is the chucking state. According to this, the user can confirm the current value 68 by actually chucking the workpiece to be processed by the chuck device 32 at the work site, and can set the thresholds TH3 and TH4 according to the current value 68 . It is possible to reduce the work load of setting the thresholds TH3 and TH4 by the user, and to detect the chucking state more accurately.
 制御装置17は、S27で加工を開始すると、ローダ13から受け取った対象ワークの加工が終了したか否かを判定し(S29)、加工が終了するまで(S29:NO)、S29を実行する。制御装置17は、加工が終了すると(S29:YES)、加工が終了したワークを主軸装置21からローダ13に受け渡す制御を実行する(S31)。制御装置17は、主軸装置21からワークを受け取る位置にローダ13を移動させ、主軸装置21がチャックしているワークをローダ13によってチャックする。 After starting machining in S27, the control device 17 determines whether or not the machining of the target work received from the loader 13 is completed (S29), and executes S29 until the machining is completed (S29: NO). When the machining is finished (S29: YES), the control device 17 executes control to transfer the finished workpiece from the spindle device 21 to the loader 13 (S31). The control device 17 moves the loader 13 to a position for receiving the workpiece from the spindle device 21 and chucks the workpiece chucked by the spindle device 21 by the loader 13 .
 制御装置17は、ローダ13によってワークをチャックすると、油圧シリンダ47を制御してドローバ55を押し出す処理を開始する(S33)。制御装置17は、ドローバ55を押し出しつつ、近接センサ49の検出信号を所定のタイミングごとに取得する。検出値は、ドローバ55(ドッグ61)の移動にともなって増加する。制御装置17は、取得した検出信号が示す検出値が閾値TH2以下であるか否かを判定する(S35)。制御装置17は、検出値が閾値TH2以下でないと判定すると、ドローバ55が停止したか否かを判定する(S37)。制御装置17は、上記したS17と同様にドローバ55の停止を判定し、停止した場合(S37:YES)、エラーを通知する(S21)。この場合、何らか不具合でチャックを解除する前にドローバ55が停止したため、例えば、制御装置17は、「主軸装置21のチャック状態を確認して下さい」などのメッセージをタッチパネル15Aに表示する。制御装置17は、ドローバ55が停止していない場合(S37:NO)、S35を実行する。尚、制御装置17は、S35の判定処理において、閾値TH2の代わりに閾値TH1を用いても良い。あるいは、制御装置17は、S35で検出値が閾値TH2以上で且つ閾値TH1未満であることを判定しても良い。 When the work is chucked by the loader 13, the control device 17 controls the hydraulic cylinder 47 to start the process of pushing out the draw bar 55 (S33). The control device 17 acquires the detection signal of the proximity sensor 49 at predetermined timings while pushing out the drawbar 55 . The detected value increases as the drawbar 55 (dog 61) moves. The control device 17 determines whether or not the detection value indicated by the acquired detection signal is equal to or less than the threshold TH2 (S35). When the control device 17 determines that the detected value is not equal to or less than the threshold TH2, it determines whether or not the drawbar 55 has stopped (S37). The control device 17 determines whether the drawbar 55 has stopped in the same manner as in S17 described above. If the drawbar 55 has stopped (S37: YES), an error is notified (S21). In this case, the drawbar 55 stops before the chuck is released due to some problem, so the controller 17 displays a message such as "Please check the chuck state of the spindle device 21" on the touch panel 15A. If the drawbar 55 is not stopped (S37: NO), the control device 17 executes S35. Note that the control device 17 may use the threshold TH1 instead of the threshold TH2 in the determination process of S35. Alternatively, the control device 17 may determine in S35 that the detected value is equal to or greater than the threshold TH2 and less than the threshold TH1.
 一方、制御装置17は、取得した検出値が閾値TH2以下の場合(S35:YES)、主軸装置21のワークをチャックしたローダ13の移動を開始する(S39)。従って、制御装置17は、チャック解除状態を検出する閾値TH2をS11で取得し、チャック状態からチャックを解除する方向へドローバ55を変位させた場合に、検出値が閾値TH2以下になると(S35:YES)動作状態がチャック解除状態であることを検出する。そして、制御装置17は、チャック装置32からワークを受け取ったローダ13の移動を開始させる(S39)。検出値が閾値TH2以下になると、主軸装置21に着座したワークを、子爪などとの干渉を回避して取り出せ、且つ、子爪が開ききる前(出来るだけ早いタイミング)で取り出せる状態となる。このため、ローダ13は、より迅速且つ適切に主軸装置21から加工後のワークを受け取ることができる。ローダ13は、制御装置17の制御に基づいて、例えば、後工程の工作機械、排出装置などまでワークを搬送する。 On the other hand, when the acquired detection value is equal to or less than the threshold TH2 (S35: YES), the control device 17 starts moving the loader 13 that has chucked the workpiece of the spindle device 21 (S39). Therefore, the controller 17 acquires the threshold TH2 for detecting the chuck released state in S11, and when the drawbar 55 is displaced from the chucked state in the direction of releasing the chuck, the detected value becomes equal to or less than the threshold TH2 (S35: YES) Detects that the operating state is the chuck release state. Then, the control device 17 starts moving the loader 13 that has received the workpiece from the chuck device 32 (S39). When the detected value becomes equal to or less than the threshold value TH2, the workpiece seated on the spindle device 21 can be taken out while avoiding interference with the small claws, etc., and can be taken out before the small claws are fully opened (at the earliest possible timing). Therefore, the loader 13 can more quickly and appropriately receive the machined workpiece from the spindle device 21 . The loader 13, under the control of the control device 17, transports the work to, for example, a post-process machine tool, discharge device, or the like.
 制御装置17は、検出値が閾値TH2以下になると(S35:YES)、ドローバ55の押し出しを停止する。即ち、初期検出位置DP1の完全に開ききる位置まで押し込まずにドローバ55を停止させる。これにより、次のワークのチャックを開始するタイミング、即ち、次にS15を実行するタイミングで子爪をある程度閉じた位置からドローバ55の引き込みを開始でき、ワークをチャックするまでに必要な時間を短縮できる。尚、制御装置17は、ドッグ61が閾値TH1の位置や初期検出位置DP1となるまでドローバ55を押し出しても良い。即ち、完全に子爪が開く位置までドローバ55を押し込んでも良い。また、制御装置17は、検出値が閾値TH1以下となる位置や初期検出位置DP1までドッグ61を押し出した後にローダ13の移動を開始しても良い。 The control device 17 stops pushing the drawbar 55 when the detected value becomes equal to or less than the threshold TH2 (S35: YES). That is, the drawbar 55 is stopped without being pushed to the fully open position of the initial detection position DP1. As a result, the drawing of the drawbar 55 can be started from the position where the child jaws are closed to some extent at the timing of starting the chucking of the next work, that is, at the timing of executing S15 next time, and the time required to chuck the work can be shortened. can. The control device 17 may push the drawbar 55 until the dog 61 reaches the position of the threshold value TH1 or the initial detection position DP1. That is, the draw bar 55 may be pushed to the position where the child claws are completely opened. Further, the control device 17 may start moving the loader 13 after pushing the dog 61 to the position where the detection value is equal to or less than the threshold TH1 or to the initial detection position DP1.
 制御装置17は、S39を実行すると、全てのワークに対する加工が終了したか否かを判定する(S41)。例えば、制御装置17は、S11の開始画面において加工するワークの数を受け付ける。制御装置17は、受け付けた数のワークの加工が終了するまでS41で否定判定し(S41:NO)、S13を実行する。これにより、次の加工対象のワークに対する加工を開始できる。制御装置17は、全てのワークに対する加工が終了すると(S41:YES)、図6に示す処理を終了する。このようにして、制御装置17は、予めベンダによって設定された閾値TH1~TH6やユーザによって設定された閾値TH1~TH6に基づいてチャック装置32の動作を検出し、ワークの加工を適切に実行できる。 After executing S39, the control device 17 determines whether or not machining of all workpieces has been completed (S41). For example, the control device 17 receives the number of workpieces to be processed on the start screen of S11. The control device 17 makes a negative determination in S41 until the processing of the accepted number of workpieces is completed (S41: NO), and executes S13. As a result, machining can be started for the next workpiece to be machined. When the machining of all workpieces is completed (S41: YES), the control device 17 ends the processing shown in FIG. In this manner, the control device 17 can detect the operation of the chuck device 32 based on the thresholds TH1 to TH6 preset by the vendor and the thresholds TH1 to TH6 preset by the user, and can appropriately process the workpiece. .
 尚、図1に示すように、制御装置17は、取得部17Aと、判定部17Bを有している。取得部17A等は、例えば、制御装置17のCPUにおいて制御データD1(NCプログラムやラダー回路など)を実行することで実現される処理モジュールである。尚、取得部17A等を、ソフトウェアで構成せずに、ハードウェアで構成しても良く、ソフトウェアとハードウェアを組み合わせて構成しても良い。 As shown in FIG. 1, the control device 17 has an acquisition section 17A and a determination section 17B. The acquisition unit 17A and the like are, for example, processing modules realized by executing the control data D1 (NC program, ladder circuit, etc.) in the CPU of the control device 17. FIG. Note that the acquisition unit 17A and the like may be configured with hardware instead of software, or may be configured by combining software and hardware.
 取得部17Aは、閾値TH1~TH6を取得する機能部である。判定部17Bは、取得部17Aにより取得した閾値TH1~TH6に基づいて近接センサ49から入力した検出信号が示す検出値を判定し、チャック装置32の動作状態を検出する機能部である。 The acquisition unit 17A is a functional unit that acquires threshold values TH1 to TH6. The determination unit 17B is a functional unit that determines the detection value indicated by the detection signal input from the proximity sensor 49 based on the thresholds TH1 to TH6 acquired by the acquisition unit 17A, and detects the operating state of the chuck device 32.
 因みに、ローダ13は、ロボットの一例である。操作盤15は、本開示の受付装置、表示受付装置の一例である。ワークは対象物の一例である。チャック装置32は、作動装置の一例である。駆動装置31及び制御装置17は、出力装置の一例である。油圧シリンダ47は、アクチュエータの一例である。ドローバ55は、出力部材の一例である。ドッグ61は、被検出部材の一例である。近接センサ49は、距離センサの一例である。 By the way, the loader 13 is an example of a robot. The operation panel 15 is an example of the reception device and the display reception device of the present disclosure. A work is an example of an object. The chuck device 32 is an example of an operating device. The drive device 31 and the control device 17 are an example of an output device. The hydraulic cylinder 47 is an example of an actuator. The drawbar 55 is an example of an output member. Dog 61 is an example of a member to be detected. Proximity sensor 49 is an example of a distance sensor.
 以上、上記した本実施例によれば以下の効果を奏する。
 本実施例の一態様では、ドッグ61の傾斜面61Aは、軸方向の基端側から先端側へ行くに従って近接センサ49との間の距離が短くなっている(図3参照)。制御装置17は、記憶装置18の閾値データD2から閾値TH1~TH6を取得する(S11)。制御装置17は、取得した閾値TH1~TH6に基づいて近接センサ49の検出値を判定し、チャック装置32の動作状態を検出する。これによれば、ワークの種類に応じて予め設定された閾値TH1~TH6やユーザによって設定された閾値TH1~TH6を取得し判定することでチャック装置32の動作状態を適切に検出できる。その結果、先行技術文献のようなクランプ対象の工具が変更されるごとにセンサの検出方向を調整する必要がなくなる。例えば、ベンダ側で予めユーザが加工するワークの種類に応じた閾値TH1~TH6を設定することで、ユーザは、ワークNOを選択するだけ、適切な閾値TH1~TH6を設定できる。従って、段取り替えなどでワークや子爪などを変更した場合に、近接センサ49の検出方向を調整する必要がない。
As described above, the present embodiment described above has the following effects.
In one aspect of the present embodiment, the inclined surface 61A of the dog 61 has a shorter distance from the proximity sensor 49 as it goes from the proximal side to the distal side in the axial direction (see FIG. 3). The control device 17 acquires the thresholds TH1 to TH6 from the threshold data D2 in the storage device 18 (S11). The control device 17 determines the detection value of the proximity sensor 49 based on the acquired threshold values TH1 to TH6, and detects the operating state of the chuck device 32. FIG. According to this, the operation state of the chuck device 32 can be appropriately detected by obtaining and judging the threshold values TH1 to TH6 set in advance according to the type of work and the threshold values TH1 to TH6 set by the user. As a result, it is no longer necessary to adjust the detection direction of the sensor each time the tool to be clamped is changed, as in the prior art document. For example, by setting the thresholds TH1 to TH6 according to the type of workpiece to be processed by the user in advance on the vendor side, the user can set the appropriate thresholds TH1 to TH6 simply by selecting the workpiece number. Therefore, it is not necessary to adjust the detection direction of the proximity sensor 49 when the work or child claws are changed due to a setup change or the like.
 尚、本開示は上記の実施例に限定されるものではなく、本開示の趣旨を逸脱しない範囲内での種々の改良、変更が可能であることは言うまでもない。
 例えば、上記実施形態では、本開示の作動装置としてワークを子爪でチャックするチャック装置32を採用したが、これに限定されない。例えば、作動装置としては、コレットを用いてワークを保持するコレットチャック装置でも良い。また、作動装置としては、マシニングセンタの回転工具をチャックするチャック装置でも良い。従って、本開示の対象物は、ワークに限らず、工具などでも良い。また、作動装置は、対象物をチャック等する装置に限らず、例えば、ワークを反転させる反転装置のヘッドを回転させる装置、ワークを主軸に向かって押し出す芯押し装置でも良い。従って、本開示の出力部材は、ドローバ55のような引き込む部材に限らず、ヘッドを回転させる連結部材や芯押し部材のような押し出す部材でも良い。
 また、制御装置17は、図5に示す設定画面65において、閾値TH1~TH6の変更をユーザから受け付けたが、受け付けない構成でも良い。
It goes without saying that the present disclosure is not limited to the above embodiments, and that various improvements and modifications are possible without departing from the scope of the present disclosure.
For example, in the above-described embodiment, the chuck device 32 that chucks the workpiece with the child claws was adopted as the operating device of the present disclosure, but the present invention is not limited to this. For example, the operating device may be a collet chuck device that holds a work using a collet. Also, the operating device may be a chuck device for chucking a rotating tool of a machining center. Therefore, the object of the present disclosure is not limited to the workpiece, and may be a tool or the like. Further, the operating device is not limited to a device for chucking an object, and may be, for example, a device for rotating the head of a reversing device for reversing a work, or a core pushing device for pushing a work toward a spindle. Therefore, the output member of the present disclosure is not limited to a pull-in member such as the draw bar 55, but may be a push-out member such as a connecting member that rotates the head or a center pushing member.
In addition, although the control device 17 accepts the change of the thresholds TH1 to TH6 from the user on the setting screen 65 shown in FIG. 5, the configuration may not accept the change.
 制御装置17は、検出値が閾値TH3から閾値TH4の範囲内となった場合に、チャック状態であることを検出したが、閾値としてこのような一定の幅を持った値を用いなくとも良い。例えば、制御装置17は、検出値が閾値TH3と一致した場合にチャック状態と判定し、閾値TH3と一致しない場合にチャック失敗状態と判定しても良い。
 本開示のアクチュエータは、油圧シリンダ47に限らず、空気圧のシリンダでも良い。また、アクチュエータは、サーボモータを駆動源としてギア機構を介してドローバ55やドッグ61を駆動する構成でも良い。
Although the control device 17 detects the chucking state when the detected value falls within the range of the threshold TH3 to the threshold TH4, it is not necessary to use such a value with a certain width as the threshold. For example, the control device 17 may determine the chucking state when the detected value matches the threshold TH3, and may determine the chucking failure state when the detected value does not match the threshold TH3.
The actuator of the present disclosure is not limited to the hydraulic cylinder 47, and may be a pneumatic cylinder. Further, the actuator may be configured to drive the draw bar 55 and the dog 61 through a gear mechanism using a servomotor as a drive source.
 上記実施例では、本開示の傾斜面として、主軸25の軸方向の基端側から先端側に向かうに従って近接センサ49との間の距離が徐々に短くなる傾斜面61Aを採用したが、これに限らない。傾斜面は、軸方向の先端側から基端側に向かうに従って近接センサ49との間の距離が徐々に短くなる傾斜面、即ち、軸方向に垂直な直線に対して傾斜面61Aを反転させた傾斜面でも良い。この場合、近接センサ49の検出値は、例えば、上記実施例とは逆に、ドローバ55を引き込むほど小さい値となる。従って、閾値TH1~TH6を、検出値の減少に合わせて大小関係を変更する。
 工作機械10は、閾値TH1~TH6をワークの種類ごとに備えたが、1組の閾値TH1~TH6だけを記憶装置18に記憶する構成でも良い。この場合、ユーザは、ワークの種類の変更に応じて、閾値TH1~TH6を適宜変更しても良い。
 設定画面65の画面構成は一例である。制御装置17は、現在値68を設定画面65に表示しなくとも良い。また、制御装置17は、閾値TH1~TH6のうち、閾値TH3,TH4の変更だけを設定画面65で受け付けても良い。
In the above embodiment, as the inclined surface of the present disclosure, the inclined surface 61A in which the distance between the proximity sensor 49 and the proximity sensor 49 gradually decreases from the proximal side to the distal side in the axial direction of the main shaft 25 is adopted. Not exclusively. The inclined surface is an inclined surface in which the distance from the proximity sensor 49 gradually decreases from the distal end side to the proximal end side in the axial direction, that is, the inclined surface 61A is inverted with respect to a straight line perpendicular to the axial direction. An inclined surface is also acceptable. In this case, the detection value of the proximity sensor 49 becomes smaller as the drawbar 55 is pulled in, contrary to the above embodiment. Therefore, the magnitude relationship of the thresholds TH1 to TH6 is changed according to the decrease in the detected value.
Although the machine tool 10 has thresholds TH1 to TH6 for each type of workpiece, the storage device 18 may store only one set of thresholds TH1 to TH6. In this case, the user may appropriately change the thresholds TH1 to TH6 according to the change in the type of work.
The screen configuration of the setting screen 65 is an example. The control device 17 does not have to display the current value 68 on the setting screen 65 . Further, the control device 17 may accept, on the setting screen 65, only the change of the thresholds TH3 and TH4 among the thresholds TH1 to TH6.
 本開示のロボットは、ローダ13に限らず、多関節ロボットなどの他のワークを受け渡し可能なロボットでも良い。
 上記実施例では、図4に示すように、ドッグ61の基端面61Bから距離L2だけ先端側(内側)の初期検出位置DP1と、先端面61Cから距離L3だけ基端側(内側)の最終検出位置DP2までを、近接センサ49の検出範囲とした。しかしながら、基端面61Bの基端側や先端面61Cの先端側を検出範囲に含めても良い。制御装置17は、例えば、検出値が10以下(最終検出位置DP2より先端側の位置の検出値)まで小さくなった後、先端面61Cを越えて検出範囲からドッグ61がなくなることで検出値が増加した場合にオーバクランプ状態を検出しても良い。
The robot of the present disclosure is not limited to the loader 13, and may be a robot capable of transferring other works such as an articulated robot.
In the above-described embodiment, as shown in FIG. 4, the initial detection position DP1 located on the distal side (inner side) of the proximal end face 61B of the dog 61 by a distance L2 and the final detection position DP1 on the proximal side (inner side) of the distal end face 61C by a distance L3. The detection range of the proximity sensor 49 is up to the position DP2. However, the base end side of the base end face 61B and the tip end side of the tip end face 61C may be included in the detection range. For example, after the detection value becomes 10 or less (the detection value at the tip side of the final detection position DP2), the control device 17 increases the detection value by crossing the tip surface 61C and the dog 61 disappears from the detection range. An overclamp condition may be detected if it increases.
 10 工作機械、13 ローダ(ロボット)、15 操作盤(受付装置、表示受付装置)、17 制御装置(出力装置)、17A 取得部、17B 判定部、18 記憶装置、31 駆動装置(出力装置)、32 チャック装置(作動装置)、47 油圧シリンダ(アクチュエータ)、49 近接センサ(距離センサ)、55 ドローバ(出力部材)、61 ドッグ(被検出部材)、61A 傾斜面、TH1~TH6 閾値。 10 machine tool, 13 loader (robot), 15 operation panel (reception device, display reception device), 17 control device (output device), 17A acquisition unit, 17B determination unit, 18 storage device, 31 drive device (output device), 32 Chuck device (actuating device), 47 Hydraulic cylinder (actuator), 49 Proximity sensor (distance sensor), 55 Drawbar (output member), 61 Dog (detected member), 61A Inclined surface, TH1 to TH6 Threshold.

Claims (7)

  1.  対象物を保持可能な作動装置に対して軸方向の運動を出力する出力装置であって、
     アクチュエータと、
     前記アクチュエータの駆動に基づいて軸方向に変位し前記作動装置を作動させて前記対象物を保持させる出力部材と、
     前記出力部材の軸方向への変位に応じて軸方向へ変位する被検出部材と、
     前記被検出部材との間の距離に応じた検出信号を出力する距離センサと、
     前記距離センサの前記検出信号を入力する制御装置と、
     を備え、
     前記被検出部材は、
     前記軸方向の一方側から他方側へ行くに従って前記距離センサとの間の距離が短くなる傾斜面を有し、
     前記距離センサは、
     前記傾斜面との間の距離に応じた前記検出信号を前記制御装置に出力し、
     前記制御装置は、
     閾値を取得する取得部と、
     前記取得部により取得した前記閾値に基づいて前記距離センサから入力した前記検出信号が示す検出値を判定し、前記作動装置の動作状態を検出する判定部と、
     を有する、出力装置。
    An output device for outputting axial motion to an actuator capable of holding an object,
    an actuator;
    an output member that is axially displaced based on driving of the actuator to operate the actuator to hold the object;
    a member to be detected that is axially displaced according to the axial displacement of the output member;
    a distance sensor that outputs a detection signal corresponding to the distance to the member to be detected;
    a control device for inputting the detection signal of the distance sensor;
    with
    The member to be detected is
    having an inclined surface in which the distance from the distance sensor becomes shorter as it goes from one side to the other side in the axial direction;
    The distance sensor is
    outputting the detection signal corresponding to the distance from the inclined surface to the control device;
    The control device is
    an acquisition unit that acquires a threshold;
    a determination unit that determines a detection value indicated by the detection signal input from the distance sensor based on the threshold value acquired by the acquisition unit, and detects an operating state of the actuator;
    An output device having
  2.  前記動作状態には、
     前記作動装置が前記対象物を保持している保持状態が含まれ、
     前記取得部は、
     前記対象物に応じた前記閾値を取得し、
     前記判定部は、
     前記アクチュエータの駆動に基づいて前記出力部材を前記軸方向へ変位させた場合に、前記検出値が前記閾値に一致すると、前記動作状態が前記保持状態であることを検出する、請求項1に記載の出力装置。
    The operating state includes:
    a holding state in which the actuator holds the object;
    The acquisition unit
    Acquiring the threshold corresponding to the object;
    The determination unit is
    2. The apparatus according to claim 1, wherein when the output member is displaced in the axial direction by driving the actuator and the detected value matches the threshold, it is detected that the operating state is the holding state. output device.
  3.  前記作動装置は、
     複数の種類の前記対象物を保持可能であり、
     前記出力装置は、
     複数の種類の前記対象物の各々に対応した複数の前記閾値を記憶する記憶装置と、
     前記対象物の種類を受け付ける受付装置と、
     をさらに備え、
     前記取得部は、
     前記受付装置で受け付けた前記対象物の種類に対応する前記閾値を前記記憶装置から取得し、
     前記判定部は、
     前記取得部により取得した前記閾値と前記検出値との一致を判定し、前記動作状態が前記保持状態であることを検出する、請求項2に記載の出力装置。
    The actuator is
    capable of holding a plurality of types of said objects;
    The output device is
    a storage device that stores a plurality of threshold values corresponding to each of a plurality of types of objects;
    a reception device that receives the type of the object;
    further comprising
    The acquisition unit
    obtaining from the storage device the threshold value corresponding to the type of the object received by the reception device;
    The determination unit is
    3. The output device according to claim 2, wherein a match between said threshold acquired by said acquisition unit and said detection value is determined to detect that said operating state is said holding state.
  4.  前記検出値を表示し、前記閾値を受け付ける表示受付装置を備え、
     前記取得部は、
     前記アクチュエータの駆動に基づいて前記軸方向に前記出力部材が変位するのにともなって変動する前記検出信号が示す前記検出値を前記表示受付装置に表示し、且つ、前記検出値を表示した状態において前記閾値として用いる値を前記表示受付装置で受け付けて前記閾値を取得し、
     前記判定部は、
     前記取得部により取得した前記閾値と前記検出値との一致を判定し、前記動作状態が前記保持状態であることを検出する、請求項2又は請求項3に記載の出力装置。
    A display reception device that displays the detected value and receives the threshold,
    The acquisition unit
    In a state in which the detection value indicated by the detection signal, which varies as the output member is displaced in the axial direction based on the driving of the actuator, is displayed on the display reception device, and the detection value is displayed. receiving a value used as the threshold value by the display receiving device to obtain the threshold value;
    The determination unit is
    4. The output device according to claim 2, wherein a match between said threshold value acquired by said acquisition unit and said detection value is determined to detect that said operating state is said holding state.
  5.  前記動作状態には、
     前記作動装置の保持位置に前記対象物が配置されていない状態、又は前記保持位置の前記対象物が正常な姿勢で配置されていない状態で前記対象物を保持する方向へ前記作動装置を動作させた場合に前記作動装置が前記対象物を正常に保持できない保持失敗状態が含まれ、
     前記取得部は、
     前記保持失敗状態を検出する前記閾値を取得し、
     前記判定部は、
     前記取得部により取得した前記閾値と前記検出信号が示す前記検出値を比較し、前記動作状態が前記保持失敗状態であることを検出する、請求項1から請求項4の何れか1項に記載の出力装置。
    The operating state includes:
    The operating device is operated in a direction to hold the object in a state in which the object is not placed at the holding position of the operating device, or in a state in which the object at the holding position is not placed in a normal posture. includes a holding failure state in which the actuator cannot hold the object normally when
    The acquisition unit
    obtaining the threshold for detecting the retention failure state;
    The determination unit is
    5. The apparatus according to any one of claims 1 to 4, wherein the threshold obtained by the obtaining unit is compared with the detection value indicated by the detection signal to detect that the operating state is the retention failure state. output device.
  6.  前記作動装置は、
     複数の種類の前記対象物を保持可能であり、
     前記距離センサは、
     前記対象物の種類が変更される前後において前記傾斜面との間の距離を検出する検出方向を維持されており、
     前記判定部は、
     前記対象物の種類が変更される前後において、同一の前記検出方向に設定された前記距離センサの前記検出信号に基づく判定を実行する、請求項1から請求項5の何れか1項に記載の出力装置。
    The actuator is
    capable of holding a plurality of types of said objects;
    The distance sensor is
    A detection direction for detecting a distance to the inclined surface is maintained before and after the type of the object is changed,
    The determination unit is
    6. The method according to any one of claims 1 to 5, wherein the determination is performed based on the detection signal of the distance sensor set in the same detection direction before and after the type of the object is changed. output device.
  7.  前記対象物は、
     加工対象のワークであり、
     請求項1から請求項6の何れか1項に記載の出力装置と、
     前記作動装置と、
     前記作動装置との間で前記ワークの受け渡しを実行するロボットと、
     を備える工作機械であって、
     前記動作状態には、
     前記作動装置が前記ワークを保持しているワーク保持状態と、前記ワークの保持を解除しているワーク保持解除状態が含まれ、
     前記取得部は、
     前記ワーク保持解除状態を検出する前記閾値を取得し、
     前記判定部は、
     前記ワーク保持状態から前記ワークの保持を解除する前記軸方向へ前記出力部材を変位させた場合に、前記検出信号が示す前記検出値が前記閾値以下になると前記動作状態が前記ワーク保持解除状態であることを検出し、前記作動装置から前記ワークを受け取った前記ロボットの移動を実行させる、工作機械。
    The object is
    A work to be processed,
    an output device according to any one of claims 1 to 6;
    the actuator;
    a robot that transfers the workpiece to and from the actuator;
    A machine tool comprising
    The operating state includes:
    A work holding state in which the actuator holds the work and a work holding release state in which the work is released from holding,
    The acquisition unit
    obtaining the threshold value for detecting the work holding release state;
    The determination unit is
    When the output member is displaced from the work holding state in the axial direction for releasing the holding of the work, if the detection value indicated by the detection signal becomes equal to or less than the threshold value, the operating state is the work holding release state. A machine tool that detects that something is there and causes the robot that has received the workpiece from the actuator to move.
PCT/JP2022/002601 2022-01-25 2022-01-25 Output device, and machine tool WO2023144873A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/002601 WO2023144873A1 (en) 2022-01-25 2022-01-25 Output device, and machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/002601 WO2023144873A1 (en) 2022-01-25 2022-01-25 Output device, and machine tool

Publications (1)

Publication Number Publication Date
WO2023144873A1 true WO2023144873A1 (en) 2023-08-03

Family

ID=87471161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002601 WO2023144873A1 (en) 2022-01-25 2022-01-25 Output device, and machine tool

Country Status (1)

Country Link
WO (1) WO2023144873A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271610A (en) * 1986-05-20 1987-11-25 Kitagawa Tekkosho:Kk Action detecting mechanism for piston rod of rotary fluid pressure cylinder for chuck
JP2000317707A (en) * 1999-05-13 2000-11-21 Mori Seiki Co Ltd Main spindle device for machine tool
JP2010162647A (en) * 2009-01-15 2010-07-29 Jtekt Corp Rotary shaft apparatus and tool holding condition determining method in rotary shaft apparatus
JP2014100761A (en) * 2012-11-19 2014-06-05 Komatsu Ntc Ltd Machine tool
JP2019121845A (en) * 2017-12-28 2019-07-22 アズビル株式会社 Proximity switch and clamp system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271610A (en) * 1986-05-20 1987-11-25 Kitagawa Tekkosho:Kk Action detecting mechanism for piston rod of rotary fluid pressure cylinder for chuck
JP2000317707A (en) * 1999-05-13 2000-11-21 Mori Seiki Co Ltd Main spindle device for machine tool
JP2010162647A (en) * 2009-01-15 2010-07-29 Jtekt Corp Rotary shaft apparatus and tool holding condition determining method in rotary shaft apparatus
JP2014100761A (en) * 2012-11-19 2014-06-05 Komatsu Ntc Ltd Machine tool
JP2019121845A (en) * 2017-12-28 2019-07-22 アズビル株式会社 Proximity switch and clamp system

Similar Documents

Publication Publication Date Title
US8215214B2 (en) Workpiece gripping method and workpiece centering apparatus
TWM544383U (en) Open/close control device of chuck
US11766754B2 (en) Conveyance apparatus
JP6608006B1 (en) Machine Tools
JP6881725B2 (en) Work processing method, spindle angle correction device and compound lathe
JP2015104759A (en) Object fixing device which fixes object to receiving part, machine tool, robot, and method of fixing object to receiving part
CN111065497B (en) Workpiece conveying robot
WO2023144873A1 (en) Output device, and machine tool
EP1488875A1 (en) Inverted vertical lathe
WO2023033024A1 (en) Turret, clamp state detection method, and clamp state detection program
JP5082679B2 (en) Machine tool system
CN113385975B (en) Feeding and discharging industrial robot combined with numerical control machine tool and feeding and discharging system
US20220314332A1 (en) Machine tool and control device for machine tool
EP1291102B1 (en) Control unit of machine tool
JPH11333672A (en) Work conveying device
KR100799254B1 (en) Work piece clamp checking device
JP6960659B2 (en) Machine tool loading system
WO2021075133A1 (en) Machine tool
JPH06155118A (en) Spindle head for machining center
CN108705158B (en) Self-centering lifting chuck
JP4106213B2 (en) Swiveling pickup chuck device for autoloader
JPH0288101A (en) Work transfer confirmation method for facing type two spindle lathe and control device therefor
JP2023027515A (en) Workpiece turnover device
KR20220109148A (en) Machine tool material supply and discharge device and its control method
JP6305774B2 (en) Work positioning device and machine tool equipped with work positioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923742

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023576275

Country of ref document: JP