WO2023144708A1 - Novel biomarker for diagnosis of ovarian cancer - Google Patents

Novel biomarker for diagnosis of ovarian cancer Download PDF

Info

Publication number
WO2023144708A1
WO2023144708A1 PCT/IB2023/050614 IB2023050614W WO2023144708A1 WO 2023144708 A1 WO2023144708 A1 WO 2023144708A1 IB 2023050614 W IB2023050614 W IB 2023050614W WO 2023144708 A1 WO2023144708 A1 WO 2023144708A1
Authority
WO
WIPO (PCT)
Prior art keywords
ovarian cancer
protein
expression level
gene
present
Prior art date
Application number
PCT/IB2023/050614
Other languages
French (fr)
Korean (ko)
Inventor
한승만
노동영
유명희
강운범
허성현
정현훈
김세익
Original Assignee
㈜베르티스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ㈜베르티스 filed Critical ㈜베르티스
Publication of WO2023144708A1 publication Critical patent/WO2023144708A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57442Specifically defined cancers of the uterus and endometrial
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/167Mass label
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2458/00Labels used in chemical analysis of biological material
    • G01N2458/15Non-radioactive isotope labels, e.g. for detection by mass spectrometry

Definitions

  • the present invention relates to a method for preventing or treating ovarian cancer by measuring the expression level of a factor specifically regulated in ovarian cancer to predict onset or regulating the expression of the factor.
  • Ovarian cancer is the most lethal gynecological cancer and accounts for 5% of all cancer-related deaths in women worldwide. Because ovarian cancer has no symptoms specific to ovarian cancer and no effective screening tools are available, most OC patients are diagnosed at a fairly advanced stage with a 5-year survival rate of less than 30%. However, if ovarian cancer can be diagnosed at an early stage, this 5-year survival rate can be improved by up to 90%.
  • High-grade serous ovarian cancer is the most common histologic type, accounting for 70% of all OC cases.
  • HGSOC is the most aggressive type of ovarian cancer, and is often diagnosed at a fairly advanced stage due to the rapid growth of the tumor.
  • the overall survival rate of HGSOC patients has hardly improved for decades, and accordingly, there is a great clinical demand for early diagnosis of HGSOC with high accuracy.
  • a highly reliable biomarker that can be used to accurately diagnose HGSOC with high sensitivity and specificity has not yet been discovered.
  • MS Mass spectrometry
  • DIA Data Independent Acquisition
  • DIA is based on the fragmentation of all precursor ions in a large isolation window over the entire range of mass-to-charge values (m/z), which is a prior art data-dependent acquisition (DDA) method.
  • DDA data-dependent acquisition
  • the present inventors analyzed the serum proteome using DIA-based mass spectrometry to discover an efficient diagnostic biomarker for ovarian cancer, through which ovarian cancer-specific blood in the blood that can diagnose ovarian cancer with high accuracy
  • This study aimed to discover potential biomarkers and confirm their effects.
  • the present inventors discovered an efficient diagnostic biomarker for ovarian cancer, which has the poorest prognosis among gynecological cancers but has a low survival rate due to the absence of early diagnosis methods, and ultimately, the mortality rate due to ovarian cancer, especially high-grade serous ovarian cancer.
  • an efficient diagnostic biomarker for ovarian cancer which has the poorest prognosis among gynecological cancers but has a low survival rate due to the absence of early diagnosis methods, and ultimately, the mortality rate due to ovarian cancer, especially high-grade serous ovarian cancer.
  • proteins that are specifically up- or down-regulated in ovarian cancer patients or genes encoding them were discovered, and by measuring the expression levels of these markers, ovarian cancer can be diagnosed at an early stage with high accuracy, as well as using blood
  • the present invention was completed by discovering that it is a highly reliable marker that can also be applied to a mass spectrometry diagnosis method.
  • an object of the present invention is to provide a composition for diagnosing ovarian cancer.
  • Another object of the present invention is to provide a method for providing information necessary for the diagnosis of ovarian cancer.
  • Another object of the present invention is to provide a composition for preventing or treating ovarian cancer.
  • Another object of the present invention is to provide a screening method for a composition for preventing or treating ovarian cancer.
  • the present invention is an ovarian cancer comprising, as an active ingredient, an agent for measuring the expression level of one or more genes selected from the group consisting of FGA , VWF , ARHGDIB and SERPINF2 or proteins encoded by them. ) Provides a composition for diagnosis.
  • the present inventors discovered an efficient diagnostic biomarker for ovarian cancer, which has the poorest prognosis among gynecological cancers but has a low survival rate due to the absence of early diagnosis methods, and ultimately, the mortality rate due to ovarian cancer, especially high-grade serous ovarian cancer.
  • an efficient diagnostic biomarker for ovarian cancer which has the poorest prognosis among gynecological cancers but has a low survival rate due to the absence of early diagnosis methods, and ultimately, the mortality rate due to ovarian cancer, especially high-grade serous ovarian cancer.
  • proteins that are specifically up- or down-regulated in ovarian cancer patients or genes encoding them were discovered, and by measuring the expression levels of these markers, ovarian cancer can be diagnosed at an early stage with high accuracy, as well as using blood
  • the present invention was completed by discovering that it is a highly reliable marker that can also be applied to a mass spectrometry diagnosis method.
  • FGA Fiinogen alpha chain protein
  • VWF is the name of a gene encoding the von Willebrand Factor protein in humans.
  • the aforementioned von Willebrand factor protein may be referred to as VWF, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as names for the corresponding protein.
  • ARHGDIB is the name of a gene encoding Rho GDP-dissociation inhibitor 2 protein in humans.
  • Rho GDP-dissociation inhibitor 2 protein described above may be referred to as RhoGD12, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as names for the protein.
  • SERPINF2 is the name of a gene encoding the alpha 2-antiplasmin protein in humans.
  • the above-mentioned alpha 2-antiplasmin protein may be referred to as A2AP, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as the name of the protein.
  • genes used herein can be used as biomarkers for diagnosis of ovarian cancer independently or in combination of two or more, and when used in combination, a set of corresponding genes can be a “biomarker panel”.
  • biomarker panel may also be referred to as “biomarker detection panel”, and detection; Diagnosis; judgment of prognosis; diagnosis of stage; or a set of two or more biomarkers that can be used to monitor a disease or condition.
  • the biomarker components of this biomarker set may be packaged together or physically linked by reversibly or irreversibly binding to a solid support.
  • the biomarker panel of the present invention may be provided through a separate tube sold or shipped together as part of a kit;
  • diagnosis includes determination of a subject's susceptibility to a particular disease, determination of whether a subject currently has a particular disease, and determination of the prognosis of a subject suffering from a particular disease. do.
  • the term “diagnostic composition” refers to FGA , VWF , ARHGDIB , and SERPINF2 in order to determine whether or not to develop ovarian cancer in a subject or predict the possibility of onset. It means an integrated mixture or device including a means for measuring the expression level of one or more genes selected from the group consisting of genes or proteins they encode, and thus may be expressed as a “diagnostic kit”.
  • the agent for measuring the expression level of a gene used as a marker in the present invention is a primer or probe that specifically binds to the nucleic acid molecule of the gene.
  • nucleic acid molecule has the meaning of comprehensively including DNA (gDNA and cDNA) and RNA molecules, and nucleotides, which are basic structural units in nucleic acid molecules, are not only natural nucleotides, but also sugars or bases that are modified. (Scheit, Nucleotide Analogs , John Wiley, New York (1980); Uhlman and Peyman, Chemical Reviews , 90:543-584 (1990)).
  • primer refers to conditions in which synthesis of a primer extension product complementary to a nucleic acid chain (template) is induced, that is, the presence of nucleotides and a polymerizer such as DNA polymerase, synthesis under conditions of suitable temperature and pH. refers to an oligonucleotide that serves as the starting point of Specifically, the primer is a single chain deoxyribonucleotide.
  • Primers used in the present invention may include naturally occurring dNMP (ie, dAMP, dGMP, dCMP and dTMP), modified nucleotides or non-natural nucleotides, and may also include ribonucleotides.
  • the primer of the present invention may be an extension primer that anneals to a target nucleic acid to form a sequence complementary to the target nucleic acid by a template-dependent nucleic acid polymerase, which is extended to a position where the immobilized probe is annealed, so that the probe becomes occupies the annealed area.
  • the extension primer used in the present invention includes a hybrid nucleotide sequence complementary to a target nucleic acid, for example, a specific nucleotide sequence of genes used as markers in the present invention.
  • the term "complementary” means that a primer or probe is sufficiently complementary to selectively hybridize to a target nucleic acid sequence under predetermined annealing or hybridization conditions, substantially complementary and perfectly complementary. ), and specifically means completely complementary cases.
  • substantially complementary sequence is intended to include not only completely identical sequences, but also sequences that are partially inconsistent with the sequence to be compared, within the range of annealing to a specific sequence and acting as a primer.
  • the primer must be long enough to prime the synthesis of the extension product in the presence of the polymerization agent.
  • the suitable length of a primer depends on a number of factors, such as temperature, pH and the source of the primer, but is typically 15-30 nucleotides. Shorter primer molecules generally require lower temperatures to form a sufficiently stable hybrid complex with the template.
  • the design of such primers can be easily performed by those skilled in the art by referring to the target nucleotide sequence, and can be performed using, for example, a primer design program (eg, PRIMER 3 program).
  • the term “probe” refers to a natural or modified monomer including deoxyribonucleotide and ribonucleotide capable of hybridizing to a specific nucleotide sequence, or a linear oligomer having a linkage. Specifically, the probe is single-stranded for maximum efficiency in hybridization, more specifically a deoxyribonucleotide.
  • a probe used in the present invention a sequence perfectly complementary to a specific nucleotide sequence of genes used as markers in the present invention may be used, but substantially within a range that does not interfere with specific hybridization Complementary sequences may also be used. In general, since the stability of a duplex formed by hybridization tends to be determined by the matching of the terminal sequence, it is preferable to use a probe complementary to the 3'-end or 5'-end of the target sequence. do.
  • an agent for measuring a protein encoded by genes used as markers in the present invention includes an antibody or an antigen-binding fragment thereof that specifically binds to the protein; or an aptamer that specifically binds to the corresponding protein.
  • proteins encoded by genes used as markers in the present invention can be detected according to an immunoassay method using an antigen-antibody reaction and used to analyze whether or not ovarian cancer has occurred.
  • an immunoassay can be performed according to various immunoassay or immunostaining protocols previously developed.
  • antibodies labeled with radioactive isotopes may be used.
  • Antibodies that specifically recognize proteins used as markers in the present invention are polyclonal or monoclonal antibodies, preferably monoclonal antibodies.
  • Antibodies of the present invention can be prepared by methods commonly practiced in the art, such as fusion methods (Kohler and Milstein, European Journal of Immunology , 6:511-519 (1976)), recombinant DNA methods (US Pat. No. 4,816,567 ) or phage antibody library methods (Clackson et al, Nature , 352:624-628 (1991) and Marks et al, J. Mol. Biol. , 222:58, 1-597 (1991)). . General procedures for antibody preparation are described in Harlow, E.
  • the term “antigen binding fragment” refers to a part of a polypeptide capable of binding to an antigen in the overall immunoglobulin structure, and includes, for example, F(ab')2, Fab', Fab, Fv and scFvs, but are not limited thereto.
  • the term “specifically binding” has the same meaning as “specifically recognizing”, and refers to a specific interaction between an antigen and an antibody (or a fragment thereof) through an immunological reaction. means that
  • an aptamer that specifically binds to the above-described protein may be used instead of an antibody.
  • the term “aptamer” refers to a single-stranded nucleic acid (RNA or DNA) molecule or peptide molecule that binds to a specific target substance with high affinity and specificity.
  • RNA or DNA nucleic acid
  • peptide molecule that binds to a specific target substance with high affinity and specificity.
  • the markers used in the diagnosis of ovarian cancer in the present invention are proteins having the entire sequence and can be targets for diagnosis of ovarian cancer, as well as some fragments of each protein described in Table 2 or SEQ ID NOs: 1 to 21 of the present specification. It can be a target for cancer diagnosis, and in this case, in addition to mass spectrometry, all types of protein or peptide fragment detection methods including the above-described protein measurement method can be used.
  • the above diagnostic composition is a group consisting of S100A9 , VCL , THBS1 , MPO , IGFBP2 , SRGN , PF4 , GP1BA , LRG1 , PRG4 , LBP , PPBP , C3 , FCGBP , CD14 , APOA1 and APOA4 It further comprises an agent for measuring the expression level of one or more genes selected from or the protein they encode as an active ingredient.
  • S100A9 is the name of a gene encoding calcium-binding protein A9 protein in humans.
  • the aforementioned calcium-binding protein A9 protein may be referred to as S100A9, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as a name for the protein.
  • VCL is the name of a gene encoding the Vinculin protein in humans.
  • the above-described vinculin protein may be referred to as VCL, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as the name of the protein.
  • THBS1 is the name of a gene encoding the Thrombospondin 1 protein in humans.
  • the aforementioned thrombospondin 1 protein may be referred to as TSP1, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as names for the protein.
  • MPO myeloperoxidase protein
  • the aforementioned myeloid cell peroxidase protein may be referred to as MPO, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as the name of the protein.
  • IGFBP2 is the name of a gene encoding insulin-like growth factor-binding protein 2 in humans.
  • the above-described insulin-like growth factor-binding protein 2 may be referred to as IBP2, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as the name of the protein.
  • SRGN is the name of a gene encoding Serglycin protein in humans.
  • the aforementioned serglycin protein may be referred to as SRGN, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as the name of the protein.
  • PF4 is the name of a gene encoding the platelet factor 4 protein in humans.
  • the aforementioned platelet factor 4 protein may be referred to as PF4, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as names for the protein.
  • GP1BA is the name of a gene encoding platelet glycoprotein Ib alpha chain protein in humans.
  • the aforementioned platelet glycoprotein Ib alpha chain protein may be referred to as GP1BA, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as the name of the protein.
  • LRG1 is the name of a gene encoding the leucine-rich alpha-2-glycoprotein 1 protein in humans.
  • the aforementioned leucine-rich alpha-2-glycoprotein 1 protein may be referred to as LRG1, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as names for the protein.
  • PRG4 is the name of a gene encoding the protein Proteoglycan 4 in humans.
  • the aforementioned proteoglycan 4 protein may be referred to as PRG4, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as the name of the protein.
  • LBP is the name of a gene encoding a lipopolysaccharide binding protein protein in humans.
  • the aforementioned lipopolysaccharide-binding protein may be referred to as LBP, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as the name of the protein.
  • PPBP Pro-Platelet basic protein in humans.
  • the aforementioned all-platelet basic protein may be referred to as PPBP, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as the name of the protein.
  • C3 is the name of a gene encoding the complement component 3 protein in humans.
  • the aforementioned complement component 3 protein may be referred to as C3, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as names for the protein.
  • FCGBP is the name of a gene encoding an IgGFc-binding protein in humans.
  • the aforementioned IgGFc-binding protein may be referred to as FCGBP, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as the name of the protein.
  • CD14 is the name of a gene encoding Cluster of differentiation 14 protein in humans.
  • the aforementioned differentiation cluster 14 protein may be referred to as CD14, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as names for the protein.
  • APOA1 is the name of a gene encoding Apolipoprotein A1 protein in humans.
  • the apolipoprotein A1 protein described above may be referred to as APOA1, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as the name of the protein.
  • APOA4 is the name of a gene encoding Apolipoprotein A4 (Apolipoprotein A4) protein in humans.
  • the apolipoprotein A4 protein described above may be referred to as APOA4, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as the name of the protein.
  • the expression level of the FGA , VWF or ARHGDIB gene or the protein they encode is increased in an individual with ovarian cancer, and the expression level of the SERPINF2 gene or the protein they encode is decreased.
  • the term “increased expression level” used while referring to the “composition for diagnosing ovarian cancer” refers to a case in which the expression level of a corresponding gene or a protein encoded by the corresponding gene is significantly higher than that of a control group or a normal group. Specifically, the expression level is increased by about 10% or more, about 20% or more, about 30% or more, about 40% or more, about 50% or more, or about 60% or more compared to the control or normal group. It means an increased case, but does not exclude a range outside of this.
  • the term “decreased expression level” used while referring to the “diagnostic composition for ovarian cancer” refers to a case in which the expression level of a corresponding gene or a protein encoded by the corresponding gene is significantly lower than that of a control group or a normal group. Specifically, the expression level is reduced by about 10% or more, about 20% or more, about 30% or more, about 40% or more, about 50% or more, or about 60% or more compared to the control or normal group. It means a reduced case, but does not exclude a range outside of this.
  • the expression level of the protein is increased, and the expression level of the APOA1 or APOA4 gene or the protein they encode is decreased.
  • the ovarian cancer that can be diagnosed with the composition of the present invention is high-grade serous ovarian cancer (HGSOC).
  • HGSOC high-grade serous ovarian cancer
  • HGSOC is one of several subtypes of ovarian cancer, and includes clear cell and endometrioid subtypes. Together they constitute the three major subtypes of ovarian cancer.
  • HGSOC is the most malignant form of ovarian cancer and is a subtype that accounts for up to 70% of all ovarian cancer cases. It is known to have a poor prognosis.
  • the present invention provides information necessary for diagnosis of ovarian cancer, including the step of measuring the expression levels of FGA , VWF , ARHGDIB and SERPINF2 genes or proteins encoded by them in a biological sample isolated from an individual. Provides a way to provide
  • proteins or genes encoding them having the above positive correlation in an individual or in a biological sample isolated from the individual are highly expressed;
  • proteins having the aforementioned negative correlation or genes encoding them are underexpressed, the subject is determined to have ovarian cancer or is likely to develop in the future.
  • the term “high expression” refers to a case in which the expression level of a corresponding gene or a protein encoded by the corresponding gene is significantly higher than that of the control group or normal group, and specifically, the expression level is about approx. An increase of 10% or more, an increase of about 20% or more, an increase of about 30% or more, an increase of about 40% or more, an increase of about 50% or more, or an increase of about 60% or more.
  • the term “low expression” refers to a case in which the expression level of a corresponding gene or a protein encoded by the corresponding gene is significantly lower than that of the control group or normal group, and specifically, the expression level is about approx.
  • the term “individual” refers to an individual to whom a sample is provided to measure the expression level of the gene or the protein encoded by the gene of the present invention, and is ultimately analyzed for the onset of ovarian cancer.
  • Subjects include, without limitation, humans, mice, rats, guinea pigs, dogs, cats, horses, cows, pigs, monkeys, chimpanzees, baboons or rhesus monkeys, specifically humans. Since the composition of the present invention also provides information for predicting the genetic risk of developing ovarian cancer in the future as well as the current onset of ovarian cancer, the subject of the present invention may be an ovarian cancer patient and has not yet developed ovarian cancer. It may be an unhealthy individual.
  • measuring the expression level is performed by mass spectrometry (MS).
  • mass spectrometry may also be referred to as “mass spectrometry” and means a method of analyzing unknown compounds by their mass.
  • Mass spectrometry is performed by filtering, detecting, and measuring ions using the m/z value, which is the mass-to-charge ratio.
  • mass spectrometry (1) ionizes a compound to charge it.
  • Step (2) measuring the molecular weight of the charged compound and calculating the m/z value.
  • the calculated m/z value is used as a reference to identify and quantify the target compound in complex mixtures.
  • the mass spectrometry of the present specification can be performed through all types of mass spectrometry using the above principle.
  • the mass spectrometry measures the expression level of one or more peptides selected from the group consisting of SEQ ID NOs: 1, 2, 12 and 21.
  • Mass spectrometry for proteins used as biomarkers of ovarian cancer in the present invention is specifically performed by multiple reaction monitoring (MRM) or parallel reaction monitoring (Parallel reaction monitoring) through peptide fragments represented by SEQ ID NOs: 1 to 21 below. monitoring, PRM), but is not limited to:
  • SEQ ID NO: 2 HIVTFDGQNFK
  • SEQ ID NO: 3 S100A9: NIETIINTFHQYSVK
  • SEQ ID NO: 4 (VCL): LLAVAATAPPDAPNR
  • SEQ ID NO: 5 (THBS1): TIVTTLQDSIR
  • SEQ ID NO: 7 (IGFBP2): LIQGAPTIR
  • SEQ ID NO: 8 (SRGN): IQDLNR
  • SEQ ID NO: 10 (GP1BA): LTSLPLGALR
  • SEQ ID NO: 12 (ARHGDIB): TLLGDGPVVTDPK
  • SEQ ID NO: 15 (PPBP): NIQSLEVIGK
  • SEQ ID NO: 18 (CD14): FPAIQNLALR
  • SEQ ID NO: 21 (SERPINF2): EDFLEQSEQLFGAK.
  • the term “multiple reaction monitoring” is an analytical technique capable of selectively separating, detecting, and quantifying a specific analyte and monitoring its concentration change.
  • parent ions among the ion fragments generated in the ionization source are selectively transferred to the collision tube using the first mass filter (Q1).
  • the mother ions that have reached the collider tube collide with the internal collider gas are split to generate daughter ions, and are sent to the second mass filter (Q2), where only characteristic ions are delivered to the detector.
  • Q2 the second mass filter
  • MRM is used for quantitative analysis of small molecules and is used to diagnose specific genetic diseases.
  • the MRM method is advantageous in that it is easy to simultaneously measure a plurality of peptides, and it is possible to confirm the relative concentration difference of protein diagnostic marker candidates between a normal person and a cancer patient without an antibody.
  • MRM analysis is being introduced for the analysis of complex proteins and peptides in blood, especially in proteome analysis using mass spectrometry (Anderson L. et al., Mol CellProteomics, 5: 375-88 , 2006; DeSouza, L. V. et al., Anal. Chem., 81: 3462-70, 2009).
  • parallel reaction monitoring is a parallel application of MRM. Unlike MRM, which analyzes a pair of parent/daughter ions at once, all daughter ions generated from a selected parent ion are simultaneously monitored. way to analyze it.
  • mass spectrometry for proteins used as biomarkers of ovarian cancer can be performed through Data-Independent Acquisition (DIA).
  • DIA Data-Independent Acquisition
  • data-independent acquisition analysis method is a method of analyzing all ions belonging to the m/z value of a selected range without selecting a specific parent ion.
  • the method for providing information necessary for the diagnosis of ovarian cancer described above includes S100A9 , VCL , THBS1 , MPO , IGFBP2 , SRGN , PF4 , GP1BA , LRG1 , PRG4 , LBP , PPBP , C3 , FCGBP , CD14 , APOA1 and APOA4 , and one or more genes selected from the group consisting of, or the step of measuring the expression level of the protein they encode additionally comprises.
  • measuring the expression level is performed by mass spectrometry (MS).
  • the mass spectrometry is composed of SEQ ID NOs: 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19 and 20
  • the expression level of one or more peptides selected from the group is measured.
  • the biological sample is blood.
  • blood means “whole blood”, and such blood includes plasma and serum.
  • whole blood refers to blood that is generally composed of uncoagulated plasma and cellular components.
  • Plasma accounts for about 50-60% of the total blood volume, and cellular components (eg red blood cells, white blood cells or platelets) may account for about 40-50%.
  • plasma refers to the liquid component of blood and functions as a transport medium in supplying nutrients to cells and organs of the body.
  • the term “serum” is a word meaning a pale yellow liquid collected from blood. Specifically, when blood is left unattended after being collected, red clots are formed as the fluidity of blood decreases. It refers to the light yellow body fluid component that remains when the coagulum is removed.
  • diagnosis of ovarian cancer is possible using the biomarkers of the present invention, and the diagnosis can be made through liquid biopsy using a patient-derived bodily fluid such as blood as a biological sample.
  • a patient-derived bodily fluid such as blood as a biological sample.
  • the ovarian cancer is high-grade serous ovarian cancer (HGSOC).
  • the present invention relates to the group consisting of FGA, VWF, S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, ARHGDIB, PRG4, LBP, PPBP, C3, FCGBP and CD14 Inhibitors for one or more selected from;
  • a composition for preventing or treating ovarian cancer comprising, as an active ingredient, an activator for at least one selected from the group consisting of APOA1, APOA4, and SERPINF2 is provided.
  • the present inventors found that the occurrence of ovarian cancer can be suppressed when FGA, VWF and ARHGDIB proteins or genes encoding them are inhibited, or when SERPINF2 protein or genes encoding them are overexpressed or activated in ovarian cancer patients. proved experimentally.
  • the term “inhibitor” refers to a substance that causes a decrease in the activity or expression of target genes, specifically FGA , VWF and ARHGDIB genes, whereby the activity or expression of the target gene becomes undetectable or to an insignificant level. Not only when present, but also means a substance that lowers the activity or expression to the extent that the biological function of the target gene can be significantly lowered.
  • Inhibitors of target genes are, for example, shRNA, siRNA, miRNA, ribozyme, PNA (peptide nucleic acids) antisense oligonucleotides or targets that inhibit the expression of the gene at the gene level, the sequence of which is already known in the art All known in the art including, but not limited to, CRISPR systems containing guide RNAs recognizing genes, antibodies or aptamers that inhibit at the protein level, as well as compounds, peptides and natural products that inhibit their activity Means of inhibition at the gene and protein level can be used.
  • small hairpin RNA is a single strand consisting of 50-70 nucleotides forming a stem-loop structure in vivo , which is used to suppress the expression of a target gene through RNA interference. It refers to the RNA sequence that creates a tight hairpin structure.
  • long RNAs of 19-29 nucleotides complementary to both sides of the loop region of 5-10 nucleotides form a double-stranded stem, which is introduced into the cell through a vector containing a U6 promoter so that it is always expressed. It is transduced and is usually passed on to daughter cells, allowing inheritance of suppression of the target gene.
  • RNA refers to a short double-stranded RNA capable of inducing RNAi (RNA interference) through cleavage of a specific mRNA. It consists of a sense RNA strand having a sequence homologous to the mRNA of the target gene and an antisense RNA strand having a sequence complementary thereto. The total length is 10 to 100 bases, preferably 15 to 80 bases, and most preferably 20 to 70 bases, and if the expression of the target gene can be inhibited by the RNAi effect, the blunt end or cohesive All ends are possible. As for the sticky end structure, both a structure with 3 ends protruding and a structure with 5 ends protruding are possible.
  • miRNA refers to a single-stranded RNA molecule that inhibits target gene expression through complementary binding with mRNA of a target gene while having a short stem-loop structure as an oligonucleotide that is not expressed in cells. do.
  • ribozyme is a type of RNA and refers to an RNA molecule having a function such as an enzyme that recognizes a specific RNA base sequence and cuts it itself.
  • a ribozyme is composed of a region that binds with specificity to a complementary nucleotide sequence of a target mRNA strand and a region that cleaves a target RNA.
  • PNA peptide nucleic acid
  • antisense oligonucleotide refers to a nucleotide sequence complementary to a sequence of a specific mRNA, which binds to a complementary sequence in a target mRNA and performs translation into a protein, translocation into the cytoplasm, maturation, or all other functions.
  • Antisense oligonucleotides can be modified at one or more bases, sugars or backbone positions to enhance potency (De Mesmaeker et al., Curr Opin Struct Biol. , 5(3):343-55, 1995). .
  • the oligonucleotide backbone can be modified with phosphorothioates, phosphotriesters, methyl phosphonates, short-chain alkyls, cycloalkyls, short-chain heteroatomic, heterocyclic sugarsulfones, and the like.
  • gRNA guideRNA
  • CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
  • the expression inhibitor of the present invention may be a specific antibody that inhibits the activity of the protein encoded by the genes.
  • An antibody that specifically recognizes a target protein is a polyclonal or monoclonal antibody, preferably a monoclonal antibody.
  • the term "activator” refers to an active ingredient that enhances the expression level or activity of a target gene, specifically, the SERPINF2 protein, for example, the expression of SERPINF2, a protein whose sequence and structure are already known in the art It includes, but is not limited to, nucleic acid molecules, peptides, proteins, compounds, and natural products that enhance at the gene or protein level or enhance intrinsic biological activity. Accordingly, “SERPINF2 protein activator” is used as the same meaning as “SERPINF2 protein agonist”.
  • prevention refers to suppressing the occurrence of a disease or disease in a subject who has not been diagnosed with the disease or disease, but is likely to suffer from the disease or disease.
  • treatment refers to (a) inhibition of the development of a disease, condition or condition; (b) alleviation of the disease, condition or symptom; or (c) eliminating the disease, disorder or condition.
  • Administration of the composition of the present invention to a subject inhibits the expression of FGA, VWF and ARHGDIB proteins or genes encoding them; As the expression of the SERPINF2 protein or the gene encoding it is activated, the generation of ovarian cancer cells is inhibited, thereby suppressing the development of symptoms due to ovarian cancer, removing them, or alleviating them.
  • composition of the present invention itself may be a composition for treating these diseases, or may be administered together with other pharmacological ingredients to be applied as a treatment adjuvant for the above diseases.
  • treatment or “therapeutic agent” in the present specification includes the meaning of "therapeutic aid” or “therapeutic aid”.
  • the ovarian cancer that can be prevented or treated with the composition of the present invention is high-grade serous ovarian cancer (HGSOC).
  • the present invention provides a method for screening a composition for preventing or treating ovarian cancer comprising the following steps:
  • test substance selected from the group consisting of FGA, VWF, S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, ARHGDIB, PRG4, LBP, PPBP, C3, FCGBP, CD14, APOA1, APOA4, and SERPINF2 contacting a test substance with a biological sample comprising at least one protein, genes encoding them, or cells expressing them;
  • biological sample refers to any sample obtained from mammals, including humans, containing cells expressing the above-described genes or proteins produced by the expression of the above-described genes, including tissues, organs, cells, or cell cultures. Including, but not limited to. More specifically, the biological sample may be cancer tissue, cancer cells, a culture thereof, or blood.
  • test substance used while referring to the screening method of the present invention is added to a sample containing cells expressing the gene of the present invention and used in screening to examine whether or not it affects the activity or expression level of these genes. means an unknown substance.
  • the test substance includes, but is not limited to, compounds, nucleotides, peptides and natural extracts.
  • the step of measuring the expression level or activity of the gene in the biological sample treated with the test substance may be performed by various methods for measuring the expression level and activity known in the art.
  • the ovarian cancer is high-grade serous ovarian cancer (HGSOC).
  • the present invention is an ovarian cancer (Ovarian Cancer) to a subject.
  • S100A9 , VCL , THBS1 , MPO , IGFBP2 , SRGN , PF4 , GP1BA , LRG1 , PRG4 , LBP , PPBP , C3 , FCGBP , CD14 , APOA1 and APOA4 consisting of Provided is a method for diagnosing ovarian cancer, which further comprises administering to a subject a composition characterized in that it further comprises, as an active ingredient, an agent for measuring the expression level of at least one gene selected from the group or a protein encoded by the gene selected from the group.
  • the present invention relates to the group consisting of FGA, VWF, S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, ARHGDIB, PRG4, LBP, PPBP, C3, FCGBP and CD14 Inhibitors for one or more selected from; Or a method for preventing or treating ovarian cancer comprising administering to a subject a composition for preventing or treating ovarian cancer comprising, as an active ingredient, an activator for at least one selected from the group consisting of APOA1, APOA4, and SERPINF2. to provide.
  • Genes that can be used for diagnosis, prevention or treatment of ovarian cancer in the present invention proteins encoded by the genes; Since the expression inhibitors or activators of the genes and proteins have already been described above, they are omitted to avoid excessive redundancy.
  • the present invention provides a method for diagnosing ovarian cancer by measuring the expression level of genes or proteins involved in the onset of ovarian cancer, and a method for preventing or treating ovarian cancer by regulating their expression.
  • the present invention provides an effective biomarker for ovarian cancer, particularly high-grade serous ovarian cancer, thereby providing a method for predicting the onset of ovarian cancer early and with high reliability, while suppressing the expression of the relevant factors. Or by activating it, it can be usefully used for efficient prevention or treatment of ovarian cancer.
  • 1A is a schematic illustration of the experimental procedure for targeted MS analysis followed by comprehensive serum proteome profiling experiments.
  • Figure 1b is a graph showing the protein concentration dynamic range of serum proteins identified by comprehensive serum proteome profiling for spectral library generation, and protein concentration estimates were obtained from the Human Protein Atlas (blood proteins).
  • Figure 1c is a picture showing the MS/MS spectrum annotated with the peptide (QCYLQQVK) of RNF213.
  • Figure 2a is a graph showing the number of peptides (top) and proteins (bottom) identified by LC-DIA-MS / MS in HGSOC and HC, total and average number of identified peptides and proteins (Average number) is indicated.
  • Figure 2b is a picture showing the results of PCA analysis of the HGSOC and HC serum proteomes, and the deviations explained by each principal component are indicated.
  • Figure 2c is a heatmap of the expression of DEProteins in HGSOC and HC, showing the number of up- and down-regulated proteins.
  • Figure 2d is a picture showing the pathway enriched by DEProteins, and the dot plot shows the importance of the pathway enriched by DEProteins as log10 (p-value).
  • Figure 2e is a diagram showing a network model showing interactions between DEProteins involved in the enriched pathway of Figure 2d.
  • 3A is a box plot showing normalized peak areas (light/heavy) of 21 potential HGSOC diagnostic biomarkers in a validation cohort using targeted MS experiments.
  • 3B is a box plot showing normalized protein abundance of 21 biomarker candidates in a discovery cohort using LC-DIA-MS/MS.
  • HGSOC high-grade serous ovarian cancer
  • HCs controls
  • PFS progression-free survival
  • the 14 most abundant proteins in plasma (albumin, IgA, IgG, IgM, ⁇ 1-antitrypsin, ⁇ 1-acid glycoprotein, apolipoprotein A1, apolipoprotein A2, complement C3, transferrin) using a multiple affinity removal column (MARS14) , ⁇ 2-macroglobulin, transthyretin, haptoglobin and fibrinogen) were removed.
  • MARS14 multiple affinity removal column
  • An aliquot of 40 ⁇ L of serum diluted 4-fold with proprietary “Buffer A” was injected onto the MARS14 depletion column of a binary HPLC system (20A Prominence, Shimadzu, Tokyo, Japan).
  • the unbound fraction was collected in a collection tube containing 100 ⁇ L of 5% SDS in 100 mM TEAB solution and then completely dried in a speed-vac concentrator (Thermo Fisher Scientific, Waltham, MA, USA). The dried samples were resuspended in 100 ⁇ L of 50 mM TEAB solution and sonicated for 10 minutes. 100 ⁇ g of protein was reduced (DTT, 10 mM, 56° C., 30 minutes) and alkylated (IAA, 20 mM, room temperature in the dark, 30 minutes). Samples were then prepared by suspension trapping (S-Trap) based tryptic digestion according to the manufacturer's instructions with slight modifications.
  • S-Trap suspension trapping
  • samples were washed with 90:10% methanol/50 mM ammonium bicarbonate. Samples were then digested with 50 mM ammonium bicarbonate and trypsin (1:25 trypsin/protein) was added to this fraction followed by overnight incubation at 37°C. Digested peptides were eluted by centrifugation at 1,000 g for 60 seconds. Two additional elutions were performed using 0.2% formic acid and 0.2% formic acid in 50% acetonitrile. The three eluents were pooled together, dried by vacuum centrifugation and stored at -80°C until use.
  • a previously developed dual online noncontiguous fractionating and concatenating reverse phase/reverse phase liquid chromatography (DO-NCFC-RP/RPLC) system was used to obtain 24 NCFC fractions. modified to create
  • the online NCFC device consisted of a mid-pH RP column (150 ⁇ m ⁇ 50 cm) and two NCFC valves (25-port, 1-channel, C5M-66024D, VICI) interconnected by 24 fractional loops (200 ⁇ m).
  • two SPE columns 150 ⁇ m ⁇ 3 cm
  • two analytical columns 75 ⁇ m ⁇ 150 cm
  • Serum peptides (25 ⁇ g, 40 ⁇ g or 50 ⁇ g) from each pooled sample group were injected and separated on a mid-pH column for online 1st dimensional separation.
  • Gradient (1-50% solvent B at a flow rate of 1 ⁇ L/min) using mid-pH solvent A (10 mM TEAB, pH 7.5 in water solvent) and mid-pH solvent B (10 mM TEAB, pH 7.5 in 99% ACN solvent). 120 min) was created.
  • mid-pH solvent A (10 mM TEAB, pH 7.5 in water solvent
  • mid-pH solvent B (10 mM TEAB, pH 7.5 in 99% ACN solvent
  • each of the 24 online NCFC fractions was transferred to a SPE column while diluting 10-fold with an acidification and dilution buffer (0.2% TFA in water).
  • an acidification and dilution buffer (0.2% TFA in water).
  • low-pH solvent A water solvent, 0.1% formic acid
  • low-pH solvent B ACN solvent, 0.1% formic acid
  • a gradient (10-37.5% Sol B, 37.5% Sol B over 160 min at a flow rate of 0.3 ⁇ L/min) -80% Sol B for 5 minutes, 80% Sol B for 13 minutes, 10% Sol B for 2 minutes).
  • the DO-NCFC-RP/RPLC is an Orbitrap ExplorisTM 480 Mass Spectrometer (Thermo Fisher Scientific, Bremen, Germany) with a high field asymmetric waveform ion mobility spectrometry (FAIMS ProTM, Thermo Fisher Scientific, Bremen, Germany). , Germany) online.
  • Peptides were ionized using our company's nanoelectrospray source with 3 kV spray voltage, and the temperature of the desolvation capillary was set at 250 °C.
  • Three compensation voltages (CVs) of -35V, -50V and -60V were used with a cycle time of 1 second. Temperatures of the inner and outer electrodes were both set to 100°C.
  • MS/MS spectra were obtained at a resolution of 15,000, an AGC target of 1000, and an IT of 32 ms.
  • MS/MS data were subjected to post-experimental monoisotopic mass refinement (mPE-MMR), and the resulting MS/MS data (e.g.
  • mgf files were submitted to the UniProt human reference database (released August 2020, containing 97.093 entries) and general The protein database consisting of contaminants (179 items) was searched using the MS-GF+ search engine (v9949, http://proteomics.ucsd.edu/software-tools/ms-gf/).
  • the search parameters were semi-tryptic cleavage and a precursor mass tolerance of 10 ppm. Carbamidomethylation of cysteine was used for static modification, and oxidation of methionine and deamidation of asparagine and glutamine were used for variable modifications.
  • the search results were filtered by target-decoy analysis with a False Discovery Rate (FDR) of 1% at the PSM (Peptide Spectrum Match) level.
  • FDR False Discovery Rate
  • a spectral library database was constructed using representative MS/MS spectra of the final peptides.
  • the MS2 spectrum with the highest search score i.e., -log(SpecE-value)
  • the fragment peaks of the representative MS/MS spectra for each peptide matched the theoretical fragments (type b and y) within 0.01 Da.
  • Annotated fragments were collected, and other unannotated fragments were removed.
  • representative MS/MS spectra with at least 5 annotated fragments were included in the spectral library, along with experimental mass information and retention time information. Experimental retention times were converted to normalized elution times using an iRT peptide (Ki-3002-2, Biognosys) spiked into each NCFC fraction.
  • Digested peptides were isolated using a Dionex UltiMate 3000 RSLCnano system (Thermo Fisher Scientific). Trypsinized peptides were reconstituted in 0.1% TFA and run on an AcclaimTM Pepmap RSLC C18 column (150 mm ⁇ 150 ⁇ m i.d., 2 ⁇ m, 100 ⁇ ) equipped with a C18 Pepmap trap column (20 mm ⁇ 100 ⁇ m i.d., 5 ⁇ m, 100 ⁇ ; Thermo Scientific). Separation was performed over 60 minutes (1 ⁇ L/min) using a 5-40% acetonitrile gradient in a 50° C. environment and 0.1% formic acid and 5% DMSO.
  • the LC was connected to an Orbitrap ExplorisTM 480 mass spectrometer with an EASY-SPRAYTM source (Thermo Fisher Scientific). Mass spectrometry runs were run in DIA mode.
  • the overall MS resolution was set to 60,000
  • the overall MS AGC target was 300% with an IT of 25 ms
  • the m/z range was set to 300-1,400.
  • the AGC target value for the MS2 spectrum was set at 1000%, and 44 windows of 24 Da with an overlap of 1 Da were used. Resolution was set to 15,000 and IT was set to 22 ms. NCE was set at 27.
  • LC-DIA-MS/MS data were processed using DIA-NN17 (version 1.7.10) with its own serum spectral library. Spectra were retrieved with default settings except that the m/z range was 300-1,300 for precursors and 200-1,300 for fragment ions. Identification results were filtered with an FDR of 1% at the precursor level. Quantities of peptides and proteins were obtained using the MaxLFQ algorithm, and the corresponding quantity data were quantile normalized. All LC-MS/MS data have been deposited with the ProteomeXchange consortium through the PRIDE partner repository under the dataset identifier PXD033169.
  • test statistics were calculated using Students' t-test, Wilcoxon-Ranksum test and log2-median-ratio at each comparison. Then, all samples were randomly permuted 10,000 times to estimate the test statistics and empirical distributions of log2-median-ratio for the null hypothesis. Calculate the observed test statistic and adjusted p-value for the log2-median-ratio for each peptide or protein using the estimated empirical distribution, then combine these p-values using Stouffer's method to calculate the overall p-value.
  • Pathway over-representation analysis was performed using ConsensusPathDB.
  • the pathway represented by DEProteins was identified as a pathway with a q-value of less than 0.05 and a number of molecules involved in the pathway of 3 or more.
  • the entire set of genes identified in the present study was used as a background gene list.
  • the identified pathways were classified into 'immune system', 'IGF signaling', 'TGF- ⁇ signaling', 'ECM organization' or 'lipoprotein assembly' according to their functional relevance.
  • a network model was constructed for the DEProteins associated with the overrepresented pathways.
  • the network was constructed by setting nodes to proteins and adding protein-protein interactions and activation/inhibition relationships. Nodes were aligned based on localization and activation/inhibition relationships obtained from the KEGG (Kyoto Encyclopedia of Genes and Genomes) database and literature search. Networks were drawn using Cytoscape.
  • MRM-MS Multiple Reaction Monitoring-Mass Spectrometry analysis was applied with Qtrap5500 plus (Sciex). Trypsinized peptides were sampled on a ZORBAX 300SB-C18 reversed-phase column (0.5 mm ⁇ 150 ⁇ m i.d., 3.5 ⁇ m, 100 ⁇ ; Agilent) using a 5-40% acetonitrile gradient in 0.1% formic acid over 15 min (20 ⁇ L/min). separated. Collision energy (CE) values for each ionized peptide were determined using SKYLINE, which provides values. Parallel Reaction Monitoring-Mass Spectrometry (PRM-MS) analysis was applied with an Orbitrap ExplorisTM 480 mass spectrometer.
  • PRM-MS Parallel Reaction Monitoring-Mass Spectrometry
  • Trypsinized peptides were prepared on an AcclaimTM Pepmap RSLC C18 column (150 mm ⁇ 150 ⁇ m i.d., 2 ⁇ m, 100 ⁇ ) equipped with a C18 Pepmap trap column (20 mm ⁇ 100 ⁇ m i.d., 5 ⁇ m, 100 ⁇ , Thermo Scientific) at 50 °C in 0.1% formic acid and Separation was carried out over 60 min (1.5 ⁇ L/min) using a 5-40% acetonitrile gradient in 5% DMSO. Mass spectrometry was performed in targeted mass mode. Precursor target mass, m/z value and charge state were listed through data-dependent acquisition analysis using synthetic peptides.
  • the overall MS resolution was set to 60,000
  • the overall MS AGC target was set to 300 with an IT of 25 ms
  • the m/z range was set to 280-1,200.
  • MS/MS resolution was set to 15,000
  • IT was set to 22 ms
  • NCE was set to 27.
  • the minute voltage was set to 2.5 kV, and the peaks of the PRM-MS spectrum were selected and calculated by SKYLINE.
  • Human HGSOC cancer cell line SK-OV-3 was obtained from Seoul National University College of Medicine (Korea). SK-OV-3 cells were cultured at 37°C in 5 medium containing RPMI 1640 (Corning; 10-041-CV), 10% fetal bovine serum (FBS; Invitrogen), and 1% Penicillin/streptomycin (WelGENE Inc.). Incubated with % CO2. Cells were maintained with fresh nutrients for 3 days.
  • Plasmids tagged with Myc-DDK were purchased from OriGene Technologies, Inc. (Rockville, MD). A Myc-DDK tagged SERPINF2-human serpin peptidase inhibitor (RC206435) plasmid was used for transfection. Plasmids were transfected into SK-OV-3 cells using Lipofectamine 3000 reagent according to the manufacturer's protocol from Invitrogen (#L3000008). For knockdown experiments, the following siRNAs were purchased from Genolution, Inc. (Korea):
  • siVWF-1 5'-CCUUCUGAGCCCACAAUAAUU-3' SEQ ID NO: 25
  • siVWF-2 5'-GCUGUAAGUCUGAAGUAGAUU-3' SEQ ID NO: 26
  • siRNA was transfected into SK-OV-3 cells using Lipofectamine RNAiMAX transfection reagent according to the manufacturer's protocol from Invitrogen (#13778075). SK-OV-3 cells were exposed to siRNA reagent for 72 hours and harvested with PBS (WelGENE Inc.). In addition, DNA transfections were incubated for 28 hours in Opti-MEM diluted with Lipofectamine and harvested for Western blotting. For proliferation assays and cell migration, cells were transfected at 48 hours with siRNA reagents and at 24 hours with DNA transfected reagents.
  • Cells were lysed in RIPA lysis buffer (cell biolabs, Inc.) containing a phosphatase inhibitor (100X cocktail GenDEPOT). Lysates were boiled in SDS sample buffer (Alfa Aesar Thermo) at 95° C. for 5 minutes. Proteins were separated on a 4-20% precast SDS-PAGE gel (BIORAD) and transferred to a FL-PVDF membrane (MERCK) in a 15 min ATTO EZ Fast protocol. Membrane blocking was performed by overnight incubation at 4° C. with primary antibodies in 5% bovine albumin serum (BSA; EcoCell) in 1X TBST.
  • BSA bovine albumin serum
  • Membranes were first reduced, washed three times with 1X TBST, and incubated with secondary antibodies for 30 minutes at room temperature. Then, the detected proteins were used for western blotting reagent solution (Roche) and ECL (Electrochemiluminescence) of ODYSSEY Fc System (Li-Cor Bioscience).
  • FGA M ⁇ 1:500; ab92572, Abcam
  • VWF R ⁇ 1:500; ab189500, Abcam
  • ARHGDIB D4GDI 1:1000; ab181252, Abcam
  • FLAG GT231 M ⁇ 1:1000; GTX629631, GeneTex Inc
  • anti-mouse IgG antibody HRP 1:3000; 170-6516, BIORAD
  • anti-rabbit IgG antibody HRP 1:3000; 170-6515, BIORAD.
  • the WST-1 assay kit was used for cell proliferation assay according to TaKara's manufacturer's protocol (MK400; Premix WST-1 Cell Proliferation Assay System). Transfected cells were plated in 96-well plates at a density of 1000 cells per well in 100 ⁇ l medium and incubated for 5 days. Then, the cells were treated with 10ul WST-1 reagent, and after 4 hours, the absorbance of the formazan dye was measured at 450 nm to analyze cell proliferation.
  • MK400 Premix WST-1 Cell Proliferation Assay System
  • Transfected cells were plated in 6-well plates at a density of 500 cells per well. After 10 days, the colonies were washed once with PBS at room temperature, stained with 0.5% crystal violet (V5265, Sigma) for 1 hour, and washed three times to remove residual dye. Colonies were then dried overnight and analyzed using ImageJ software.
  • HGSOC patient cases and 48 healthy control (HC) subjects were prepared: (1) a discovery set for proteomics profiling consisting of 26 HGSOC and 24 HC ( discovery set) and (2) a validation set for targeted MS experiments consisting of 28 HGSOCs and 24 HCs (Table 1).
  • the mean age of HGSOC patients was 59.5 and 56 years in the discovery and validation sets, respectively, and 46 and 48.5 years in the discovery and validation sets, respectively, for HC.
  • the number of FIGO stage I, II, and III HGSOC patients was 3, 3, and 20 in the discovery set and 3, 10, and 15 in the validation set, respectively.
  • Dual online non-contiguous fractionating and concatenating reverse-phase/reverse phase liquid chromatography combined with a FAIMS-MS/MS instrument (DO-NCFC-RP/RPLC-FAIMS-MS) -phase liquid chromatography coupled to a FAIMS-MS/MS instrument (DO-NCFC-RP/RPLC-FAIMS-MS/MS) was used to perform comprehensive global proteome profiling experiments of serum samples.
  • a total of 9 sets of DO-NCFC-RP/RPLC-FAIMS-MS/MS experiments were performed on 6 groups of depleted serum samples, each group included 24 online NCFC fractions and 3 CVs (Fig. 1a ).
  • the identified serum proteome was estimated to cover approximately 8 orders of dynamic ranges (Ceruloplasmin at 440 ⁇ g/mL to Ring finger protein 213 at 3.5 pg/mL). 213), Figs. 1b and 1c).
  • the serum proteome of the present invention provides a high coverage serum proteome and can be used to construct an OC serum spectral library.
  • a spectral library was constructed using the tandem spectrum with the highest search score for the peptide and five or more annotated fragment ion peaks.
  • the spectral library contained 127,444 spectra of 94,212 non-overlapping peptides covering 8,458 protein groups.
  • LC-DIA-MS/MS analysis was performed on 24 HCs and 26 HGSOCs in the discovery cohort for HGSOC diagnostic biomarker discovery.
  • a DIA-NN search using the OC serum spectral library identified 29,721 peptides and 2,439 proteins in all samples (Fig. 2a), which is the largest quantification of the serum proteome of OC to date.
  • the number of peptides identified across samples varied from 13,818-15,987 with an average of 14,797 and proteins varied from 1,012-1,240 with an average of 1,104.
  • Principal component analysis (PCA) confirmed that the corresponding serum proteome clearly separated HGSOC from HC (Fig. 2b).
  • TLR4 toll-like receptor 4
  • NET neutrophil extracellular trap
  • IGF insulin-like growth factor
  • FC ⁇ R Fc gamma receptor
  • a network model involving the coagulation and complement cascade is characterized by (1) coagulation action, including upregulation of procoagulants (F11, VWF and FGA/B), downregulation of anticoagulant factors (SERPINA5/F2 and A2M); and (2) commonly upregulated complement processes (MBL2, C3/9/C4A/B/BPA/BPB and CFHR2/5) that cross talk with the coagulation cascade to promote coagulation or carry out the reverse reaction.
  • procoagulants F11, VWF and FGA/B
  • SERPINA5/F2 and A2M downregulation of anticoagulant factors
  • MBL2, C3/9/C4A/B/BPA/BPB and CFHR2/5 commonly upregulated complement processes
  • Networks involving neutrophils and macrophages can (1) form NETs (LBP, ACTB and MPO); (2) TLR4 signaling, including upregulation of TLR4 signaling activating proteins (LBP, FGA/B, CD14, S100A8) and downregulation of TLR4 signaling inhibitory proteins (APOA1/4/C3); and (3) downregulation of FC ⁇ R-mediated phagocytosis (IGLC2/3/HG2/HG3/KC/KV1-5/KV1D-33/KV3-20/KV3D-20/KV4-1) were co-regulated.
  • upregulation of FCGBP together with activation of TLR4 signaling can cause macrophage recruitment to the tumor microenvironment (TME).
  • networks comprising platelets showed coordinated upregulation of platelet activation and aggregation (e.g., VCL, GP1BA, PF4, PPBP, SRGN, VWF, and FGA) that can be promoted by NET formation and lead to the coagulation process.
  • platelet activation and aggregation e.g., VCL, GP1BA, PF4, PPBP, SRGN, VWF, and FGA
  • the network model including IGF, TGF- ⁇ signaling and ECM organization was (1) upstream of ECM organization (EFEMP1, SERPINE1, PCOLCE, SPARC, TIMP1, FN1, NID1, ENO1, LCP1, ARHGDIB and FGA/B). control; (2) IGF signaling (IGFBP2 and APP); and (3) TGF- ⁇ signaling (LRG1, LTBP1, THBS1, PRG4 and SERPINE1) collectively contribute to cancer cell proliferation, migration and invasion in HGSOC.
  • EFEMP1, SERPINE1, PCOLCE, SPARC, TIMP1, FN1, NID1, ENO1, LCP1, ARHGDIB and FGA/B IGF signaling
  • IGFBP2 and APP IGF signaling
  • TGF- ⁇ signaling LRG1, LTBP1, THBS1, PRG4 and SERPINE1
  • potential HGSOC-related diagnostic biomarkers for targeted MS experiments were selected according to the following criteria: fold change, expression consistency across samples, and comparison with previously reported OC pathophysiology. correlation.
  • VWF coagulation and complement cascade
  • MPO NET formation
  • TLR4 signaling LBP, CD14 and S100A8/9
  • lipoprotein assembly APOA1/4
  • macrophage recruitment to the TME FCGBP
  • platelet activation and aggregation VCL, PFN1, FLNA, GP1BA, VWF, FN1, FGA, PF4, PPBP, SRGN and CALU
  • ECM organization SPARC, TIMP1, FN1, ENO1, LCP1 and ARHGDIB
  • IGF signaling IGFBP2
  • TGF- ⁇ signaling LRG1, LTBP1, THBS1 and PRG4
  • Targeted MS analysis was performed in an independent cohort of 25 HC and 28 HGSOC patients using stable isotope labeled (SIL) peptides of 33 biomarker candidates to validate their potential diagnostic value. Seven candidates (FLNA, FN1, LTBP1, PFN1, S100A8, TIMP1, and CALU) did not show detectable transition signals in MRM or PRM experiments, so they were excluded from the final biomarker candidate set. Expression patterns of the final set of 26 diagnostic biomarker candidates were compared with each other with target MS (FIG. 3A) and LC-DIA-MS/MS analysis (FIG. 3B) results. Targeted MS analysis showed that the expression of 21 of 26 candidates showed a statistically significant (P ⁇ 0.05) change between HGSOC and HC (Table 2), which was consistent with the LC-DIA-MS/MS analysis.
  • SIL stable isotope labeled
  • HGSOC serum biomarkers such as FGA, VWF, ARHGDIB and SERPINF2 can play an important regulatory role in cancer cell proliferation and migration in HGSOC.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Urology & Nephrology (AREA)
  • Oncology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Hospice & Palliative Care (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Reproductive Health (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to a method for diagnosing ovarian cancer by measuring an expression level of a gene or protein involved in the onset of ovarian cancer and a method for preventing or treating ovarian cancer by regulating the expression thereof. Designed to provide a biomarker useful for ovarian cancer, especially high-grade serous ovarian cancer (HGSOC), the present invention provides a method for predicting the onset of ovarian cancer at an early stage with high reliance while suppressing or activating the expression of corresponding factors, whereby the present invention can be advantageously used for effectively preventing or treating ovarian cancer.

Description

난소암의 진단용 신규 바이오마커Novel biomarkers for diagnosis of ovarian cancer
본 발명은 난소암에서 특이적으로 조절되는 인자의 발현량을 측정하여 발병 여부를 예측하거나, 해당 인자의 발현을 조절함으로써 난소암을 예방 또는 치료하는 법에 관한 것이다.The present invention relates to a method for preventing or treating ovarian cancer by measuring the expression level of a factor specifically regulated in ovarian cancer to predict onset or regulating the expression of the factor.
난소암(ovarian cancer, OC)은 가장 치명적인 부인과 암이며 전 세계 여성의 전체 암 관련 사망의 5%를 차지한다. 난소암은 난소암에 특이적인 증상이 없고, 효과적인 선별 도구(screening tools)가 부재하기 때문에, 대부분의 OC환자들은 5년 생존율이 30% 미만에 불과한 상당히 병기가 진행된 단계에서 진단된다. 하지만, 초기 단계에서 난소암을 진단할 수 있다면, 이러한 5년 생존율은 최대 90%까지 향상시킬 수 있다.Ovarian cancer (OC) is the most lethal gynecological cancer and accounts for 5% of all cancer-related deaths in women worldwide. Because ovarian cancer has no symptoms specific to ovarian cancer and no effective screening tools are available, most OC patients are diagnosed at a fairly advanced stage with a 5-year survival rate of less than 30%. However, if ovarian cancer can be diagnosed at an early stage, this 5-year survival rate can be improved by up to 90%.
고등급 장액성 난소암(High-grade Serous Ovarian Cacner, HGSOC)은 모든 OC 케이스들 중에서 70%를 차지하는 가장 흔한 조직학적 유형이다. 이러한 HGSOC는 난소암의 유형 중 가장 공격적인 유형이며, 빠르게 종양이 자라나는 특성 상 흔히 상당히 병기가 진행된 상태에서 진단된다. 특히, HGSOC 환자의 전체 생존율은 수십 년 동안 거의 개선되지 않았으며, 이에 따라 HGSOC를 조기에 높은 정확도로 진단하는 것에 대한 임상학적 요구가 매우 큰 상황이다. 그러나, 현재 높은 감도 및 특이도로 HGSOC를 정확하게 진단하는데 사용될 수 있는 신뢰도가 높은 바이오 마커는 발굴되지 않고 있는 실정이다.High-grade serous ovarian cancer (HGSOC) is the most common histologic type, accounting for 70% of all OC cases. HGSOC is the most aggressive type of ovarian cancer, and is often diagnosed at a fairly advanced stage due to the rapid growth of the tumor. In particular, the overall survival rate of HGSOC patients has hardly improved for decades, and accordingly, there is a great clinical demand for early diagnosis of HGSOC with high accuracy. However, a highly reliable biomarker that can be used to accurately diagnose HGSOC with high sensitivity and specificity has not yet been discovered.
한편, 혈액은 액체 생검(Liquid Biopsy)의 최소 침습적 특성으로 인해 광범위한 암 바이오마커 연구의 초점이 되어 왔다. 이전 연구들에서는 microRNA에서 엑소좀, 단백질에 이르는 OC에 대한 잠재적인 혈액 바이오마커들이 확인된 바 있다. 혈액 내 암 항원(Cancer Antigen)인 CA-125 및 인간 부고환 단백질(Human Epididymis Protein-4, HE4)의 측정은 현재 OC 검출(진단) 및 모니터링의 골드 스탠다드로써 활용되고 있다. 그러나, 이러한 바이오마커들은 현재 임상환경에서 널리 사용되고 있음에도 불구하고, 낮은 민감도 및 낮은 특이성으로 인하여 OC환자의 사망률을 줄이는 데 제한적인 면이 존재한다. 이러한 점으로 인하여 OC환자에게 있어서 진단 방법의 옵션이 상당히 제한되어 있으므로, 새로운 OC 진단용 바이오마커에 대한 추가적인 발굴이 절실한 상황이다.Meanwhile, blood has been the focus of extensive cancer biomarker research due to the minimally invasive nature of liquid biopsy. Previous studies have identified potential blood biomarkers for OC ranging from microRNAs to exosomes to proteins. Measurement of CA-125, a cancer antigen, and human epididymis protein-4 (HE4) in the blood are currently used as gold standards for OC detection (diagnosis) and monitoring. However, although these biomarkers are currently widely used in clinical environments, they have limitations in reducing the mortality of OC patients due to low sensitivity and low specificity. Due to this point, since the options of diagnostic methods for OC patients are significantly limited, additional discovery of new biomarkers for diagnosing OC is urgently needed.
프로테옴 전체 분석(Proteome-wide Analysis)은 이전에 식별된 바가 없는 새로운 바이오마커를 발견하고 우선 순위를 지정하는데 유용하게 사용 가능한 방법이다. 질량 분석법(Mass Spectrometry, MS)은 인간 단백질체의 비-편향적인 프로파일링을 제공할 수 있기 때문에 단백질체학에서 포괄적인 연구에 효율적으로 사용된다. 최근에는 데이터 비의존성 획득 분석법(Data Independent Acquisition, DIA)을 기반으로 한 MS 분석법이 차세대 단백질체학의 분석 방법론으로 부상하고 있다. DIA는 질량 대 전하 값(m/z)의 전체 범위에 걸쳐 있는 큰 격리 창(large isolation window)의 모든 전구체 이온의 단편화를 기반으로 하는데, 이는 종래 기술인 데이터 의존성 획득 분석법(Data-dependent Acquisition, DDA)보다 향상된 감도, 재현성 및 분획 요구의 최소화 등의 장점을 가진다.Proteome-wide analysis is a useful method for discovering and prioritizing new biomarkers that have not been previously identified. Mass spectrometry (MS) is effectively used for comprehensive studies in proteomics because it can provide unbiased profiling of human proteomes. Recently, MS analysis based on Data Independent Acquisition (DIA) is emerging as an analysis methodology for next-generation proteomics. DIA is based on the fragmentation of all precursor ions in a large isolation window over the entire range of mass-to-charge values (m/z), which is a prior art data-dependent acquisition (DDA) method. ) has advantages such as improved sensitivity, reproducibility, and minimization of fractionation requirements.
이에, 본 발명자들은 난소암에 대한 효율적인 진단용 바이오마커를 발굴하기 위하여 DIA 기반 질량 분석을 이용하여 혈청 프로테옴을 분석하였으며, 이를 통하여 난소암을 조기에 높은 정확도로 진단할 수 있는 혈액 내의 난소암-특이적인 바이오마커를 발굴하고, 그 효과를 확인하고자 하였다.Accordingly, the present inventors analyzed the serum proteome using DIA-based mass spectrometry to discover an efficient diagnostic biomarker for ovarian cancer, through which ovarian cancer-specific blood in the blood that can diagnose ovarian cancer with high accuracy This study aimed to discover potential biomarkers and confirm their effects.
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.A number of papers and patent documents are referenced throughout this specification and their citations are indicated. The contents of the cited papers and patent documents are incorporated herein by reference in their entirety to more clearly describe the level of the technical field to which the present invention belongs and the contents of the present invention.
본 발명자들은 부인과 암 중 예후가 가장 불량하면서도 조기진단 방법이 부재하여 환자의 생존율이 낮은 난소암에 대한 효율적인 진단용 바이오마커를 발굴하여, 궁극적으로는 난소암, 특히 고등급 장액성 난소암으로 인한 사망률을 현저히 낮출 수 있는 새로운 진단 방법을 개발하고자 예의 연구 노력하였다. 그 결과, 난소암 환자에서 특이적으로 상향 또는 하향 조절되는 단백질 또는 이를 인코딩하는 유전자들을 발굴하였고, 이들 마커의 발현 수준을 측정함으로써 난소암을 조기에 높은 정확도로 진단할 수 있을 뿐만 아니라 혈액을 이용한 질량분석 진단방법에도 적용될 수 있는 신뢰도 높은 마커임을 발견함으로써, 본 발명을 완성하게 되었다.The present inventors discovered an efficient diagnostic biomarker for ovarian cancer, which has the poorest prognosis among gynecological cancers but has a low survival rate due to the absence of early diagnosis methods, and ultimately, the mortality rate due to ovarian cancer, especially high-grade serous ovarian cancer. In order to develop a new diagnostic method that can significantly lower the As a result, proteins that are specifically up- or down-regulated in ovarian cancer patients or genes encoding them were discovered, and by measuring the expression levels of these markers, ovarian cancer can be diagnosed at an early stage with high accuracy, as well as using blood The present invention was completed by discovering that it is a highly reliable marker that can also be applied to a mass spectrometry diagnosis method.
따라서 본 발명의 목적은 난소암의 진단용 조성물을 제공하는 데 있다.Accordingly, an object of the present invention is to provide a composition for diagnosing ovarian cancer.
본 발명의 다른 목적은 난소암의 진단에 필요한 정보를 제공하는 방법을 제공하는 데 있다. Another object of the present invention is to provide a method for providing information necessary for the diagnosis of ovarian cancer.
본 발명의 또 다른 목적은 난소암의 예방 또는 치료용 조성물을 제공하는 데 있다.Another object of the present invention is to provide a composition for preventing or treating ovarian cancer.
본 발명의 또 다른 목적은 난소암의 예방 또는 치료용 조성물의 스크리닝 방법을 제공하는 데 있다.Another object of the present invention is to provide a screening method for a composition for preventing or treating ovarian cancer.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.
본 발명의 일 양태에 따르면, 본 발명은 FGA, VWF, ARHGDIBSERPINF2로 구성된 군으로부터 선택되는 하나 이상의 유전자 또는 이들이 인코딩하는 단백질의 발현량을 측정하는 제제를 유효성분으로 포함하는 난소암(Ovarian Cancer)의 진단용 조성물을 제공한다.According to one aspect of the present invention, the present invention is an ovarian cancer comprising, as an active ingredient, an agent for measuring the expression level of one or more genes selected from the group consisting of FGA , VWF , ARHGDIB and SERPINF2 or proteins encoded by them. ) Provides a composition for diagnosis.
본 발명자들은 부인과 암 중 예후가 가장 불량하면서도 조기진단 방법이 부재하여 환자의 생존율이 낮은 난소암에 대한 효율적인 진단용 바이오마커를 발굴하여, 궁극적으로는 난소암, 특히 고등급 장액성 난소암으로 인한 사망률을 현저히 낮출 수 있는 새로운 진단 방법을 개발하고자 예의 연구 노력하였다. 그 결과, 난소암 환자에서 특이적으로 상향 또는 하향 조절되는 단백질 또는 이를 인코딩하는 유전자들을 발굴하였고, 이들 마커의 발현 수준을 측정함으로써 난소암을 조기에 높은 정확도로 진단할 수 있을 뿐만 아니라 혈액을 이용한 질량분석 진단방법에도 적용될 수 있는 신뢰도 높은 마커임을 발견함으로써, 본 발명을 완성하게 되었다.The present inventors discovered an efficient diagnostic biomarker for ovarian cancer, which has the poorest prognosis among gynecological cancers but has a low survival rate due to the absence of early diagnosis methods, and ultimately, the mortality rate due to ovarian cancer, especially high-grade serous ovarian cancer. In order to develop a new diagnostic method that can significantly lower the As a result, proteins that are specifically up- or down-regulated in ovarian cancer patients or genes encoding them were discovered, and by measuring the expression levels of these markers, ovarian cancer can be diagnosed at an early stage with high accuracy, as well as using blood The present invention was completed by discovering that it is a highly reliable marker that can also be applied to a mass spectrometry diagnosis method.
본 명세서에서 용어“FGA”는 인간에서 피브리노겐 알파 체인(Fibrinogen alpha chain) 단백질을 인코딩하는 유전자의 명칭이다. 전술한 피브리노겐 알파 체인 단백질은 FIBA라고 지칭될 수도 있으나, 이에 제한되지 않고 해당 단백질의 호칭으로서 통용되는 모든 가명(aliases) 또는 동의어(Synonyms)로 지칭될 수 있다.As used herein, the term “ FGA ” is the name of a gene encoding the fibrinogen alpha chain protein in humans. The fibrinogen alpha chain protein described above may be referred to as FIBA, but is not limited thereto and may be referred to as all aliases or synonyms commonly used as the name of the protein.
본 명세서에서 용어“VWF”는 인간에서 폰 빌레브란트 인자(von Willebrand Factor) 단백질을 인코딩하는 유전자의 명칭이다. 전술한 폰 빌레브란트 인자 단백질은 VWF라고 지칭될 수도 있으나, 이에 제한되지 않고 해당 단백질의 호칭으로서 통용되는 모든 가명(aliases) 또는 동의어(Synonyms)로 지칭될 수 있다.As used herein, the term “ VWF ” is the name of a gene encoding the von Willebrand Factor protein in humans. The aforementioned von Willebrand factor protein may be referred to as VWF, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as names for the corresponding protein.
본 명세서에서 용어“ARHGDIB”는 인간에서 로 GDP-해리 억제 인자 2(Rho GDP-dissociation inhibitor 2) 단백질을 인코딩하는 유전자의 명칭이다. 전술한 로 GDP-해리 억제 인자 2 단백질은 RhoGD12라고 지칭될 수도 있으나, 이에 제한되지 않고 해당 단백질의 호칭으로서 통용되는 모든 가명(aliases) 또는 동의어(Synonyms)로 지칭될 수 있다.As used herein, the term “ ARHGDIB ” is the name of a gene encoding Rho GDP-dissociation inhibitor 2 protein in humans. The Rho GDP-dissociation inhibitor 2 protein described above may be referred to as RhoGD12, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as names for the protein.
본 명세서에서 용어“SERPINF2”는 인간에서 알파 2-안티플라스민(Alpha 2-antiplasmin) 단백질을 인코딩하는 유전자의 명칭이다. 전술한 알파 2-안티플라스민 단백질은 A2AP라고 지칭될 수도 있으나, 이에 제한되지 않고 해당 단백질의 호칭으로서 통용되는 모든 가명(aliases) 또는 동의어(synonyms)로 지칭될 수 있다.As used herein, the term “ SERPINF2 ” is the name of a gene encoding the alpha 2-antiplasmin protein in humans. The above-mentioned alpha 2-antiplasmin protein may be referred to as A2AP, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as the name of the protein.
본 명세서에서 사용되는 모든 유전자들은 각각 독립적으로 또는 2개 이상의 조합으로써 난소암의 진단을 위한 바이오마커로 사용될 수 있으며, 조합으로써 사용되는 경우 해당 유전자들의 세트는“바이오마커 패널”일 수 있다. All genes used herein can be used as biomarkers for diagnosis of ovarian cancer independently or in combination of two or more, and when used in combination, a set of corresponding genes can be a “biomarker panel”.
본 명세서에서 용어“바이오마커 패널”은 “바이오마커 검출 패널”이라고도 지칭될 수 있으며, 검출; 진단; 예후의 판단; 병기의 진단; 또는 질환 또는 상태의 모니터링에 사용될 수 있는 2개 이상의 바이오마커 세트를 의미한다. 이러한 바이오마커 세트의 바이오마커 구성들은 함께 패키징되거나 가역적 또는 비가역적으로 고체 서포트(solid support)에 결합함으로써 물리적으로 연관되어 있을 수 있다. 예를 들어, 본 발명의 바이오마커 패널은 키트(kit)의 일부로 함께 판매 또는 배송되는 별도의 튜브를 통하여 제공될 수 있거나; 칩(chip), 막(membrane), 스트립(strip), 필터(filter), 비드(bead), 입자(particle), 필라먼트(filament), 섬유(fiber), 겔(gel) 또는 메트릭스의 표면 또는 내부, 멀티 웰 플레이트(multi-well plates)의 웰 또는 기타 지지체에 결합되어 제공될 수 있으나, 위의 예시에 제한되지 않고 바이오마커의 조합으로서 질환의 진단에 사용될 수 있는 모든 종류의 바이오마커 패널을 포함한다.In this specification, the term “biomarker panel” may also be referred to as “biomarker detection panel”, and detection; Diagnosis; judgment of prognosis; diagnosis of stage; or a set of two or more biomarkers that can be used to monitor a disease or condition. The biomarker components of this biomarker set may be packaged together or physically linked by reversibly or irreversibly binding to a solid support. For example, the biomarker panel of the present invention may be provided through a separate tube sold or shipped together as part of a kit; The surface of a chip, membrane, strip, filter, bead, particle, filament, fiber, gel or matrix; It may be provided inside, coupled to the wells of multi-well plates or other supports, but is not limited to the above example, and all kinds of biomarker panels that can be used for diagnosis of diseases as a combination of biomarkers include
본 명세서에서 용어“진단”은 특정 질환에 대한 개체의 감수성(susceptibility)의 판정, 특정 질환을 현재 개체가 가지고 있는 지 여부의 판정, 및 특정 질환에 걸린 한 객체의 예후(prognosis)의 판정을 포함한다.As used herein, the term "diagnosis" includes determination of a subject's susceptibility to a particular disease, determination of whether a subject currently has a particular disease, and determination of the prognosis of a subject suffering from a particular disease. do.
본 명세서에서 용어“진단용 조성물”은 대상체 내 난소암의 발병 여부를 판단 하거나 발병 가능성을 예측하기 위해 FGA, VWF, ARHGDIBSERPINF2 구성된 군으로부터 선택되는 하나 이상의 유전자 또는 이들이 인코딩하는 단백질의 발현량 측정 수단을 포함하는 통합적인 혼합물(mixture) 또는 장비(device)를 의미하며, 이에“진단용 키트”로 표현될 수도 있다.As used herein, the term “diagnostic composition” refers to FGA , VWF , ARHGDIB , and SERPINF2 in order to determine whether or not to develop ovarian cancer in a subject or predict the possibility of onset. It means an integrated mixture or device including a means for measuring the expression level of one or more genes selected from the group consisting of genes or proteins they encode, and thus may be expressed as a “diagnostic kit”.
본 발명의 구체적인 구현예에 따르면, 본 발명에서 마커로 사용되는 유전자의 발현량을 측정하는 제제는 상기 유전자의 핵산 분자에 특이적으로 결합하는 프라이머 또는 프로브이다.According to a specific embodiment of the present invention, the agent for measuring the expression level of a gene used as a marker in the present invention is a primer or probe that specifically binds to the nucleic acid molecule of the gene.
본 명세서에서, 용어“핵산 분자”는 DNA(gDNA 및 cDNA) 그리고 RNA 분자를 포괄적으로 포함하는 의미를 갖으며, 핵산 분자에서 기본 구성 단위인 뉴클레오타이드는 자연의 뉴클레오타이드뿐만 아니라, 당 또는 염기 부위가 변형된 유사체 (analogue)도 포함한다(Scheit, Nucleotide Analogs, John Wiley, New York(1980); Uhlman 및 Peyman, Chemical Reviews, 90:543-584(1990)).In this specification, the term “nucleic acid molecule” has the meaning of comprehensively including DNA (gDNA and cDNA) and RNA molecules, and nucleotides, which are basic structural units in nucleic acid molecules, are not only natural nucleotides, but also sugars or bases that are modified. (Scheit, Nucleotide Analogs , John Wiley, New York (1980); Uhlman and Peyman, Chemical Reviews , 90:543-584 (1990)).
본 명세서에서 사용되는 용어“프라이머”는 핵산쇄(주형)에 상보적인 프라이머 연장 산물의 합성이 유도되는 조건, 즉, 뉴클레오타이드와 DNA 중합효소와 같은 중합제의 존재, 적합한 온도와 pH의 조건에서 합성의 개시점으로 작용하는 올리고뉴클레오타이드를 의미한다. 구체적으로는, 프라이머는 디옥시리보뉴클레오타이드 단일쇄이다. 본 발명에서 이용되는 프라이머는 자연(naturally occurring) dNMP(즉, dAMP, dGMP, dCMP 및 dTMP), 변형 뉴클레오타이드 또는 비-자연 뉴클레오타이드를 포함할 수 있으며, 리보뉴클레오타이드도 포함할 수 있다.As used herein, the term “primer” refers to conditions in which synthesis of a primer extension product complementary to a nucleic acid chain (template) is induced, that is, the presence of nucleotides and a polymerizer such as DNA polymerase, synthesis under conditions of suitable temperature and pH. refers to an oligonucleotide that serves as the starting point of Specifically, the primer is a single chain deoxyribonucleotide. Primers used in the present invention may include naturally occurring dNMP (ie, dAMP, dGMP, dCMP and dTMP), modified nucleotides or non-natural nucleotides, and may also include ribonucleotides.
본 발명의 프라이머는 타겟 핵산에 어닐링 되어 주형-의존성 핵산 중합효소에 의해 타겟 핵산에 상보적인 서열을 형성하는 연장 프라이머(extension primer)일 수 있으며, 이는 고정화 프로브가 어닐링 되어 있는 위치까지 연장되어 프로브가 어닐링 되어 있는 부위를 차지한다.The primer of the present invention may be an extension primer that anneals to a target nucleic acid to form a sequence complementary to the target nucleic acid by a template-dependent nucleic acid polymerase, which is extended to a position where the immobilized probe is annealed, so that the probe becomes occupies the annealed area.
본 발명에서 이용되는 연장 프라이머는 타겟 핵산, 예를 들어 본 발명에서 마커로 사용되는 유전자들의 특정 염기서열에 상보적인 혼성화 뉴클레오타이드 서열을 포함한다. 용어“상보적”은 소정의 어닐링 또는 혼성화 조건하에서 프라이머 또는 프로브가 타겟 핵산 서열에 선택적으로 혼성화할 정도로 충분히 상보적인 것을 의미하며, 실질적으로 상보적(substantially complementary)인 경우 및 완전히 상보적(perfectly complementary)인 경우를 모두 포괄하는 의미이며, 구체적으로는 완전히 상보적인 경우를 의미한다. 본 명세서에서 용어“실질적으로 상보적인 서열”은 완전히 일치되는 서열뿐만 아니라, 특정 서열에 어닐링하여 프라이머 역할을 할 수 있는 범위 내에서, 비교 대상의 서열과 부분적으로 불일치되는 서열도 포함되는 의미이다.The extension primer used in the present invention includes a hybrid nucleotide sequence complementary to a target nucleic acid, for example, a specific nucleotide sequence of genes used as markers in the present invention. The term "complementary" means that a primer or probe is sufficiently complementary to selectively hybridize to a target nucleic acid sequence under predetermined annealing or hybridization conditions, substantially complementary and perfectly complementary. ), and specifically means completely complementary cases. As used herein, the term "substantially complementary sequence" is intended to include not only completely identical sequences, but also sequences that are partially inconsistent with the sequence to be compared, within the range of annealing to a specific sequence and acting as a primer.
프라이머는, 중합제의 존재 하에서 연장 산물의 합성을 프라이밍시킬 수 있을 정도로 충분히 길어야 한다. 프라이머의 적합한 길이는 다수의 요소, 예컨대, 온도, pH 및 프라이머의 소스(source)에 따라 결정되지만 전형적으로 15-30 뉴클레오타이드이다. 짧은 프라이머 분자는 주형과 충분히 안정된 혼성 복합체를 형성하기 위하여 일반적으로 보다 낮은 온도를 요구한다. 이러한 프라이머의 설계는 타겟 뉴클레오티드 서열을 참조하여 당업자가 용이하게 실시할 수 있으며, 예컨대, 프라이머 디자인용 프로그램(예: PRIMER 3 프로그램)을 이용하여 할 수 있다.The primer must be long enough to prime the synthesis of the extension product in the presence of the polymerization agent. The suitable length of a primer depends on a number of factors, such as temperature, pH and the source of the primer, but is typically 15-30 nucleotides. Shorter primer molecules generally require lower temperatures to form a sufficiently stable hybrid complex with the template. The design of such primers can be easily performed by those skilled in the art by referring to the target nucleotide sequence, and can be performed using, for example, a primer design program (eg, PRIMER 3 program).
본 명세서에서 용어“프로브”는 특정 뉴클레오타이드 서열에 혼성화될 수 있는 디옥시리보뉴클레오타이드 및 리보뉴클레오타이드를 포함하는 자연 또는 변형되는 모노머 또는 결합을 갖는 선형의 올리고머를 의미한다. 구체적으로, 프로브는 혼성화에서의 최대 효율을 위하여 단일가닥이며, 더욱 구체적으로는 디옥시리보뉴클레오타이드이다. 본 발명에 이용되는 프로브로서, 본 발명에서 마커로 사용되는 유전자들의 특정 염기서열에 완전하게(perfectly) 상보적인 서열이 이용될 수 있으나, 특이적 혼성화를 방해하지 않는 범위 내에서 실질적으로(substantially) 상보적인 서열이 이용될 수도 있다. 일반적으로, 혼성화에 의해 형성되는 듀플렉스(duplex)의 안정성은 말단의 서열의 일치에 의해 결정되는 경향이 있기 때문에, 타겟 서열의 3’-말단 또는 5’-말단에 상보적인 프로브를 사용하는 것이 바람직하다.As used herein, the term “probe” refers to a natural or modified monomer including deoxyribonucleotide and ribonucleotide capable of hybridizing to a specific nucleotide sequence, or a linear oligomer having a linkage. Specifically, the probe is single-stranded for maximum efficiency in hybridization, more specifically a deoxyribonucleotide. As a probe used in the present invention, a sequence perfectly complementary to a specific nucleotide sequence of genes used as markers in the present invention may be used, but substantially within a range that does not interfere with specific hybridization Complementary sequences may also be used. In general, since the stability of a duplex formed by hybridization tends to be determined by the matching of the terminal sequence, it is preferable to use a probe complementary to the 3'-end or 5'-end of the target sequence. do.
혼성화에 적합한 조건은 Joseph Sambrook, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, N.Y.(2001) 및 Haymes, B. D., et al., Nucleic Acid Hybridization, A Practical Approach, IRL Press, Washington, D.C.(1985)에 개시된 사항을 참조하여 결정할 수 있다.Conditions suitable for hybridization are described in Joseph Sambrook, et al., Molecular Cloning, A Laboratory Manual , Cold Spring Harbor Laboratory Press, NY (2001) and Haymes, BD, et al., Nucleic Acid Hybridization, A Practical Approach , IRL Press, Washington , can be determined by referring to the matters disclosed in DC (1985).
본 발명의 구체적인 구현예에 따르면, 본 발명에서 마커로 사용되는 유전자들이 인코딩하는 단백질을 측정하는 제제는 해당 단백질에 특이적으로 결합하는 항체 또는 이의 항원 결합 단편; 또는 해당 단백질에 특이적으로 결합하는 앱타머이다.According to a specific embodiment of the present invention, an agent for measuring a protein encoded by genes used as markers in the present invention includes an antibody or an antigen-binding fragment thereof that specifically binds to the protein; or an aptamer that specifically binds to the corresponding protein.
본 발명에 따르면, 본 발명에서 마커로 사용되는 유전자들이 인코딩하는 단백질을 항원-항체 반응을 이용한 면역분석(immunoassay) 방법에 따라 검출하여 난소암의 발병 여부를 분석하는 데 이용할 수 있다. 이러한 면역분석은 종래에 개발된 다양한 면역분석 또는 면역염색 프로토콜에 따라 실시될 수 있다.According to the present invention, proteins encoded by genes used as markers in the present invention can be detected according to an immunoassay method using an antigen-antibody reaction and used to analyze whether or not ovarian cancer has occurred. Such an immunoassay can be performed according to various immunoassay or immunostaining protocols previously developed.
예를 들어, 본 발명의 방법이 방사능면역분석 방법에 따라 실시되는 경우, 방사능동위원소(예컨대, C14, I125, P32 및 S35)로 표지된 항체가 이용될 수 있다. 본 발명에서 마커로 사용되는 단백질들을 특이적으로 인식하는 항체는 폴리클로날 또는 모노클로날 항체이며, 바람직하게는 모노클로날 항체이다.For example, when the method of the present invention is performed according to the radioimmunoassay method, antibodies labeled with radioactive isotopes (eg, C 14 , I 125 , P 32 and S 35 ) may be used. Antibodies that specifically recognize proteins used as markers in the present invention are polyclonal or monoclonal antibodies, preferably monoclonal antibodies.
본 발명의 항체는 당업계에서 통상적으로 실시되는 방법들, 예를 들어, 융합 방법(Kohler and Milstein, European Journal of Immunology, 6:511-519 (1976)), 재조합 DNA 방법(미국 특허 제4,816,567호) 또는 파아지 항체 라이브러리 방법(Clackson et al, Nature, 352:624-628(1991) 및 Marks et al, J. Mol. Biol., 222:58, 1-597(1991))에 의해 제조될 수 있다. 항체 제조에 대한 일반적인 과정은 Harlow, E. and Lane, D., Using Antibodies: A Laboratory Manual, Cold Spring Harbor Press, New York, 1999; 및 Zola, H., Monoclonal Antibodies: A Manual of Techniques, CRC Press, Inc., Boca Raton, Florida, 1984에 상세하게 기재되어 있다.Antibodies of the present invention can be prepared by methods commonly practiced in the art, such as fusion methods (Kohler and Milstein, European Journal of Immunology , 6:511-519 (1976)), recombinant DNA methods (US Pat. No. 4,816,567 ) or phage antibody library methods (Clackson et al, Nature , 352:624-628 (1991) and Marks et al, J. Mol. Biol. , 222:58, 1-597 (1991)). . General procedures for antibody preparation are described in Harlow, E. and Lane, D., Using Antibodies: A Laboratory Manual , Cold Spring Harbor Press, New York, 1999; and Zola, H., Monoclonal Antibodies: A Manual of Techniques , CRC Press, Inc., Boca Raton, Florida, 1984.
상술한 면역분석 과정에 의한 최종적인 시그널의 강도를 분석함으로써, 난소암의 발병 여부 또는 발병 가능성을 예측할 수 있다. 즉, 개체의 시료에서 상술한 단백질에 대한 시그널이 정상 시료보다 강하게 나오는 경우에는 개체에서 난소암이 발병하였거나 향후 발병할 가능성이 높은 것으로 판단된다.By analyzing the strength of the final signal by the above-described immunoassay process, it is possible to predict whether or not to develop ovarian cancer. That is, when the signal for the above-mentioned protein is stronger than in the normal sample in the sample of the object, the object has a high possibility that ovarian cancer has developed or will develop in the future. It is judged to be
본 명세서에서 용어“항원 결합 단편(antigen binding fragment)”은 면역글로불린 전체 구조 중 항원이 결합할 수 있는 폴리펩티드의 일부를 의미하며, 예를 들어 F(ab')2, Fab', Fab, Fv 및 scFv를 포함하나, 이에 제한되는 것은 아니다.As used herein, the term “antigen binding fragment” refers to a part of a polypeptide capable of binding to an antigen in the overall immunoglobulin structure, and includes, for example, F(ab')2, Fab', Fab, Fv and scFvs, but are not limited thereto.
본 명세서에서 용어 "특이적으로 결합(specifically binding)" 은 "특이적으로 인식(specifically recognizing)"과 동일한 의미로서, 항원과 항체(또는 이의 단편)가 면역학적 반응을 통해 특이적으로 상호작용하는 것을 의미한다.As used herein, the term "specifically binding" has the same meaning as "specifically recognizing", and refers to a specific interaction between an antigen and an antibody (or a fragment thereof) through an immunological reaction. means that
본 발명은 항체 대신 상술한 단백질에 특이적으로 결합하는 앱타머를 이용할 수도 있다. 본 명세서에서 용어“앱타머”는 특정 표적물질에 높은 친화력과 특이성으로 결합하는 단일 줄기의(single-stranded) 핵산(RNA 또는 DNA) 분자 또는 펩타이드 분자를 의미한다. 앱타머의 일반적인 내용은 Hoppe-Seyler F, Butz K "Peptide aptamers: powerful new tools for molecular medicine". J Mol Med. 78(8):426-30(2000); Cohen BA, Colas P, Brent R . "An artificial cell-cycle inhibitor isolated from a combinatorial library". Proc Natl Acad Sci USA. 95(24):14272-7(1998)에 상세하게 개시되어 있다.In the present invention, an aptamer that specifically binds to the above-described protein may be used instead of an antibody. As used herein, the term “aptamer” refers to a single-stranded nucleic acid (RNA or DNA) molecule or peptide molecule that binds to a specific target substance with high affinity and specificity. For a general discussion of aptamers see Hoppe-Seyler F, Butz K "Peptide aptamers: powerful new tools for molecular medicine". J Mol Med. 78(8):426-30 (2000); Cohen BA, Colas P, Brent R. "An artificial cell-cycle inhibitor isolated from a combinatorial library". Proc Natl Acad Sci USA. 95(24):14272-7 (1998).
본 발명에서 난소암의 진단에 사용되는 마커들은 전체 서열을 가지는 단백질로서 난소암 진단의 타겟이 될 수 있을 뿐만 아니라, 본 명세서의 표 2 또는 서열 번호 1 내지 21에 기재된 각 단백질들의 일부 절편만으로도 난소암 진단의 타겟이 될 수 있으며, 이 경우 질량 분석 외에도 상술한 단백질의 측정 방법을 포함한 모든 종류의 단백질 또는 펩타이드 절편의 검출방법이 이용될 수 있다.The markers used in the diagnosis of ovarian cancer in the present invention are proteins having the entire sequence and can be targets for diagnosis of ovarian cancer, as well as some fragments of each protein described in Table 2 or SEQ ID NOs: 1 to 21 of the present specification. It can be a target for cancer diagnosis, and in this case, in addition to mass spectrometry, all types of protein or peptide fragment detection methods including the above-described protein measurement method can be used.
본 발명의 구체적인 구현예에 따르면, 전술한 진단용 조성물은 S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, PRG4, LBP, PPBP, C3, FCGBP, CD14, APOA1APOA4로 구성된 군으로부터 선택되는 하나 이상의 유전자 또는 이들이 인코딩하는 단백질의 발현량을 측정하는 제제를 유효성분으로 추가적으로 포함한다.According to a specific embodiment of the present invention, the above diagnostic composition is a group consisting of S100A9 , VCL , THBS1 , MPO , IGFBP2 , SRGN , PF4 , GP1BA , LRG1 , PRG4 , LBP , PPBP , C3 , FCGBP , CD14 , APOA1 and APOA4 It further comprises an agent for measuring the expression level of one or more genes selected from or the protein they encode as an active ingredient.
본 명세서에서 용어“S100A9”는 인간에서 칼슘-결합 단백질 A9 (Calcium-binding protein A9) 단백질을 인코딩하는 유전자의 명칭이다. 전술한 칼슘-결합 단백질 A9 단백질은 S100A9라고 지칭될 수도 있으나, 이에 제한되지 않고 해당 단백질의 호칭으로서 통용되는 모든 가명(aliases) 또는 동의어(synonyms)로 지칭될 수 있다.In the present specification, the term “ S100A9 ” is the name of a gene encoding calcium-binding protein A9 protein in humans. The aforementioned calcium-binding protein A9 protein may be referred to as S100A9, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as a name for the protein.
본 명세서에서 용어“VCL”은 인간에서 빈쿨린(Vinculin) 단백질을 인코딩하는 유전자의 명칭이다. 전술한 빈쿨린 단백질은 VCL이라고 지칭될 수도 있으나, 이에 제한되지 않고 해당 단백질의 호칭으로서 통용되는 모든 가명(aliases) 또는 동의어(synonyms)로 지칭될 수 있다.As used herein, the term “ VCL” is the name of a gene encoding the Vinculin protein in humans. The above-described vinculin protein may be referred to as VCL, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as the name of the protein.
본 명세서에서 용어“THBS1”은 인간에서 트롬보스폰딘 1(Thrombospondin 1) 단백질을 인코딩하는 유전자의 명칭이다. 전술한 트롬보스폰딘 1 단백질은 TSP1이라고 지칭될 수도 있으나, 이에 제한되지 않고 해당 단백질의 호칭으로서 통용되는 모든 가명(aliases) 또는 동의어(synonyms)로 지칭될 수 있다.As used herein, the term “ THBS1” is the name of a gene encoding the Thrombospondin 1 protein in humans. The aforementioned thrombospondin 1 protein may be referred to as TSP1, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as names for the protein.
본 명세서에서 용어“MPO”는 인간에서 골수세포형과산화효소(Myeloperoxidase) 단백질을 인코딩하는 유전자의 명칭이다. 전술한 골수세포형과산화효소 단백질은 MPO라고 지칭될 수도 있으나, 이에 제한되지 않고 해당 단백질의 호칭으로서 통용되는 모든 가명(aliases) 또는 동의어(synonyms)로 지칭될 수 있다.In the present specification, the term “ MPO” is the name of a gene encoding a myeloperoxidase protein in humans. The aforementioned myeloid cell peroxidase protein may be referred to as MPO, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as the name of the protein.
본 명세서에서 용어“IGFBP2”는 인간에서 인슐린유사성장인자-결합 단백질2(Insulin-like growth factor-binding protein 2)을 인코딩하는 유전자의 명칭이다. 전술한 인슐린유사성장인자-결합 단백질 2은 IBP2라고 지칭될 수도 있으나, 이에 제한되지 않고 해당 단백질의 호칭으로서 통용되는 모든 가명(aliases) 또는 동의어(synonyms)로 지칭될 수 있다.In the present specification, the term “ IGFBP2” is the name of a gene encoding insulin-like growth factor-binding protein 2 in humans. The above-described insulin-like growth factor-binding protein 2 may be referred to as IBP2, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as the name of the protein.
본 명세서에서 용어“SRGN”은 인간에서 세르글리신(Serglycin) 단백질을 인코딩하는 유전자의 명칭이다. 전술한 세르글리신 단백질은 SRGN이라고 지칭될 수도 있으나, 이에 제한되지 않고 해당 단백질의 호칭으로서 통용되는 모든 가명(aliases) 또는 동의어(synonyms)로 지칭될 수 있다.As used herein, the term “ SRGN” is the name of a gene encoding Serglycin protein in humans. The aforementioned serglycin protein may be referred to as SRGN, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as the name of the protein.
본 명세서에서 용어“PF4”은 인간에서 혈소판 인자 4(Platelet factor 4) 단백질을 인코딩하는 유전자의 명칭이다. 전술한 혈소판 인자 4 단백질은 PF4라고 지칭될 수도 있으나, 이에 제한되지 않고 해당 단백질의 호칭으로서 통용되는 모든 가명(aliases) 또는 동의어(synonyms)로 지칭될 수 있다.As used herein, the term “ PF4” is the name of a gene encoding the platelet factor 4 protein in humans. The aforementioned platelet factor 4 protein may be referred to as PF4, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as names for the protein.
본 명세서에서 용어“GP1BA”은 인간에서 혈소판 당단백 Ib 알파 사슬(Platelet glycoprotein Ib alpha chain) 단백질을 인코딩하는 유전자의 명칭이다. 전술한 혈소판 당단백 Ib 알파 사슬 단백질은 GP1BA라고 지칭될 수도 있으나, 이에 제한되지 않고 해당 단백질의 호칭으로서 통용되는 모든 가명(aliases) 또는 동의어(synonyms)로 지칭될 수 있다.In this specification, the term “ GP1BA” is the name of a gene encoding platelet glycoprotein Ib alpha chain protein in humans. The aforementioned platelet glycoprotein Ib alpha chain protein may be referred to as GP1BA, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as the name of the protein.
본 명세서에서 용어“LRG1”은 인간에서 류신-풍부 알파-2-당단백질 1(Leucine-rich alpha-2-glycoprotein 1) 단백질을 인코딩하는 유전자의 명칭이다. 전술한 류신-풍부 알파-2-당단백질 1 단백질은 LRG1이라고 지칭될 수도 있으나, 이에 제한되지 않고 해당 단백질의 호칭으로서 통용되는 모든 가명(aliases) 또는 동의어(synonyms)로 지칭될 수 있다.As used herein, the term “ LRG1” is the name of a gene encoding the leucine-rich alpha-2-glycoprotein 1 protein in humans. The aforementioned leucine-rich alpha-2-glycoprotein 1 protein may be referred to as LRG1, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as names for the protein.
본 명세서에서 용어“PRG4”는 인간에서 프로테오글리칸 4(Proteoglycan 4) 단백질을 인코딩하는 유전자의 명칭이다. 전술한 프로테오글리칸 4 단백질은 PRG4라고 지칭될 수도 있으나, 이에 제한되지 않고 해당 단백질의 호칭으로서 통용되는 모든 가명(aliases) 또는 동의어(synonyms)로 지칭될 수 있다.As used herein, the term “ PRG4” is the name of a gene encoding the protein Proteoglycan 4 in humans. The aforementioned proteoglycan 4 protein may be referred to as PRG4, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as the name of the protein.
본 명세서에서 용어“LBP”는 인간에서 지질다당류결합단백질 (Lipopolysaccharide binding protein) 단백질을 인코딩하는 유전자의 명칭이다. 전술한 지질다당류결합단백질은 LBP라고 지칭될 수도 있으나, 이에 제한되지 않고 해당 단백질의 호칭으로서 통용되는 모든 가명(aliases) 또는 동의어(synonyms)로 지칭될 수 있다.In the present specification, the term “ LBP” is the name of a gene encoding a lipopolysaccharide binding protein protein in humans. The aforementioned lipopolysaccharide-binding protein may be referred to as LBP, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as the name of the protein.
본 명세서에서 용어“PPBP”는 인간에서 전-혈소판 염기성 단백질(Pro-Platelet basic protein)을 인코딩하는 유전자의 명칭이다. 전술한 전-혈소판 염기성 단백질은 PPBP라고 지칭될 수도 있으나, 이에 제한되지 않고 해당 단백질의 호칭으로서 통용되는 모든 가명(aliases) 또는 동의어(synonyms)로 지칭될 수 있다.As used herein, the term “ PPBP” is the name of a gene encoding Pro-Platelet basic protein in humans. The aforementioned all-platelet basic protein may be referred to as PPBP, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as the name of the protein.
본 명세서에서 용어“C3”는 인간에서 보체 성분 3(Complement component 3) 단백질을 인코딩하는 유전자의 명칭이다. 전술한 보체 성분 3 단백질은 C3라고 지칭될 수도 있으나, 이에 제한되지 않고 해당 단백질의 호칭으로서 통용되는 모든 가명(aliases) 또는 동의어(synonyms)로 지칭될 수 있다.As used herein, the term “ C3” is the name of a gene encoding the complement component 3 protein in humans. The aforementioned complement component 3 protein may be referred to as C3, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as names for the protein.
본 명세서에서 용어“FCGBP”는 인간에서 IgGFc-결합 단백질(IgGFc-binding protein)을 인코딩하는 유전자의 명칭이다. 전술한 IgGFc-결합 단백질은 FCGBP라고 지칭될 수도 있으나, 이에 제한되지 않고 해당 단백질의 호칭으로서 통용되는 모든 가명(aliases) 또는 동의어(synonyms)로 지칭될 수 있다.In this specification, the term “ FCGBP” is the name of a gene encoding an IgGFc-binding protein in humans. The aforementioned IgGFc-binding protein may be referred to as FCGBP, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as the name of the protein.
본 명세서에서 용어“CD14”는 인간에서 분화 클러스터 14(Cluster of differentiation 14) 단백질을 인코딩하는 유전자의 명칭이다. 전술한 분화 클러스터 14 단백질은 CD14라고 지칭될 수도 있으나, 이에 제한되지 않고 해당 단백질의 호칭으로서 통용되는 모든 가명(aliases) 또는 동의어(synonyms)로 지칭될 수 있다.As used herein, the term “ CD14” is the name of a gene encoding Cluster of differentiation 14 protein in humans. The aforementioned differentiation cluster 14 protein may be referred to as CD14, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as names for the protein.
본 명세서에서 용어“APOA1”는 인간에서 아포지질단백질 A1(Apolipoprotein A1) 단백질을 인코딩하는 유전자의 명칭이다. 전술한 아포지질단백질 A1 단백질은 APOA1이라고 지칭될 수도 있으나, 이에 제한되지 않고 해당 단백질의 호칭으로서 통용되는 모든 가명(aliases) 또는 동의어(synonyms)로 지칭될 수 있다.In the present specification, the term “ APOA1” is the name of a gene encoding Apolipoprotein A1 protein in humans. The apolipoprotein A1 protein described above may be referred to as APOA1, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as the name of the protein.
본 명세서에서 용어“APOA4”는 인간에서 아포지질단백질 A4(Apolipoprotein A4) 단백질을 인코딩하는 유전자의 명칭이다. 전술한 아포지질단백질 A4 단백질은 APOA4라고 지칭될 수도 있으나, 이에 제한되지 않고 해당 단백질의 호칭으로서 통용되는 모든 가명(aliases) 또는 동의어(synonyms)로 지칭될 수 있다.In the present specification, the term “ APOA4” is the name of a gene encoding Apolipoprotein A4 (Apolipoprotein A4) protein in humans. The apolipoprotein A4 protein described above may be referred to as APOA4, but is not limited thereto and may be referred to by all aliases or synonyms commonly used as the name of the protein.
본 발명의 구체적인 구현예에 따르면, 난소암을 가진 개체에서 상기 FGA, VWF 또는 ARHGDIB 유전자 또는 이들이 인코딩하는 단백질의 발현량은 증가되고, 상기 SERPINF2 유전자 또는 이들이 인코딩하는 단백질의 발현량은 감소된다.According to a specific embodiment of the present invention, the expression level of the FGA , VWF or ARHGDIB gene or the protein they encode is increased in an individual with ovarian cancer, and the expression level of the SERPINF2 gene or the protein they encode is decreased.
본 발명의 구성 중“난소암의 진단용 조성물”을 언급하면서 사용되는 용어“발현량은 증가”는 대조군 또는 정상군에 비해 해당 유전자 또는 해당 유전자에 의하여 인코딩되는 단백질의 발현량이 유의하게 높은 경우를 의미하며, 구체적으로는 발현량이 상기 대조군 또는 정상군과 비교하여 약 10% 이상 증가, 약 20% 이상 증가, 약 30% 이상 증가, 약 40% 이상 증가, 약 50% 이상 증가, 또는 약 60% 이상 증가한 경우를 의미하나, 이를 벗어나는 범위를 제외하는 것은 아니다.Among the components of the present invention, the term “increased expression level” used while referring to the “composition for diagnosing ovarian cancer” refers to a case in which the expression level of a corresponding gene or a protein encoded by the corresponding gene is significantly higher than that of a control group or a normal group. Specifically, the expression level is increased by about 10% or more, about 20% or more, about 30% or more, about 40% or more, about 50% or more, or about 60% or more compared to the control or normal group. It means an increased case, but does not exclude a range outside of this.
본 발명의 구성 중“난소암의 진단용 조성물”을 언급하면서 사용되는 용어“발현량은 감소”는 대조군 또는 정상군에 비해 해당 유전자 또는 해당 유전자에 의하여 인코딩되는 단백질의 발현량이 유의하게 낮은 경우를 의미하며, 구체적으로는 발현량이 상기 대조군 또는 정상군과 비교하여 약 10% 이상 감소, 약 20% 이상 감소, 약 30% 이상 감소, 약 40% 이상 감소, 약 50% 이상 감소, 또는 약 60% 이상 감소한 경우를 의미하나, 이를 벗어나는 범위를 제외하는 것은 아니다.Among the components of the present invention, the term “decreased expression level” used while referring to the “diagnostic composition for ovarian cancer” refers to a case in which the expression level of a corresponding gene or a protein encoded by the corresponding gene is significantly lower than that of a control group or a normal group. Specifically, the expression level is reduced by about 10% or more, about 20% or more, about 30% or more, about 40% or more, about 50% or more, or about 60% or more compared to the control or normal group. It means a reduced case, but does not exclude a range outside of this.
본 발명의 구체적인 구현예에 따르면, 난소암을 가진 개체에서 상기 S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, PRG4, LBP, PPBP, C3, FCGBP 또는 CD14 유전자 또는 이들이 인코딩하는 단백질의 발현량은 증가되고, 상기 APOA1 또는 APOA4 유전자 또는 이들이 인코딩하는 단백질의 발현량은 감소된다.According to a specific embodiment of the present invention, the S100A9 , VCL , THBS1 , MPO , IGFBP2 , SRGN , PF4 , GP1BA, LRG1 , PRG4 , LBP , PPBP , C3 , FCGBP or CD14 genes or those encoding in an individual with ovarian cancer The expression level of the protein is increased, and the expression level of the APOA1 or APOA4 gene or the protein they encode is decreased.
본 발명에서 사용된 유전자, 이들이 인코딩하는 단백질 및 본 발명의 용어 “발현량은 증가”와 “발현량은 감소”에 대해서는 이미 상술하였으므로, 과도한 중복을 방지하기 위해 그 기재를 생략한다.Since the genes used in the present invention, the proteins they encode, and the terms "increase in expression level" and "decrease in expression level" of the present invention have already been described in detail, their descriptions are omitted to prevent excessive redundancy.
본 발명의 구체적인 구현예에 따르면, 본 발명의 조성물로 진단될 수 있는 난소암은 고등급 장액성 난소암(High-grade serous ovarian cancer, HGSOC)이다.According to a specific embodiment of the present invention, the ovarian cancer that can be diagnosed with the composition of the present invention is high-grade serous ovarian cancer (HGSOC).
본 명세서에서 용어“고등급 장액성 난소암(High-grade serous ovarian cancer, HGSOC)”은 난소암의 여러 아형(subtype) 중 하나로써, 투명세포(clear cell) 및 자궁내막양(endometrioid) 아형과 함께 3개의 주요 난소암의 아형을 구성한다. HGSOC는 난소암의 가장 악성 형태이며 모든 난소암 사례의 최대 70%를 차지하는 아형으로, 나팔관에서 기원하기 때문에 질병 경과 초기에 복부를 통해 퍼지며, 증상이 나타나는 시기에는 보통 심각한 병기의 종양인 경우가 많아서 예후가 좋지 않은 것으로 알려져 있다.As used herein, the term "high-grade serous ovarian cancer (HGSOC)" is one of several subtypes of ovarian cancer, and includes clear cell and endometrioid subtypes. Together they constitute the three major subtypes of ovarian cancer. HGSOC is the most malignant form of ovarian cancer and is a subtype that accounts for up to 70% of all ovarian cancer cases. It is known to have a poor prognosis.
본 발명의 또 다른 양태에 따르면, 본 발명은 개체로부터 분리된 생물학적 시료 내의 FGA, VWF, ARHGDIBSERPINF2 유전자 또는 이들이 인코딩하는 단백질의 발현량을 측정하는 단계를 포함하는 난소암의 진단에 필요한 정보를 제공하는 방법을 제공한다.According to another aspect of the present invention, the present invention provides information necessary for diagnosis of ovarian cancer, including the step of measuring the expression levels of FGA , VWF , ARHGDIB and SERPINF2 genes or proteins encoded by them in a biological sample isolated from an individual. Provides a way to provide
본 발명자들은 난소암, 특히 고등급 장액성 난소암 환자에게서 FGA, VWF, S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, ARHGDIB, PRG4, LBP, PPBP, C3, FCGBP 및 CD14 단백질 또는 이들을 인코딩하는 유전자의 발현량과 난소암의 발병 가능성이 양의 상관관계를 가지고, APOA1, APOA4 및 SERPINF2 단백질 또는 이들을 인코딩하는 유전자의 발현량과 난소암의 발병 가능성이 음의 상관관계를 가짐을 최초로 규명하였다. 이에, 개체 내 또는 개체로부터 분리된 생물학적 시료내의 전술한 양의 상관관계를 가지는 단백질 또는 이들을 인코딩하는 유전자가 고발현되거나; 전술한 음의 상관관계를 가지는 단백질 또는 이들을 인코딩하는 유전자가 저발현되는 경우 상기 개체는 난소암이 발병한 개체거나 향후 발병할 가능성이 높은 개체로 판단한다.We found that FGA, VWF, S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, ARHGDIB, PRG4, LBP, PPBP, C3, FCGBP and CD14 in patients with ovarian cancer, especially high-grade serous ovarian cancer. For the first time, the expression levels of proteins or genes encoding them have a positive correlation with the likelihood of developing ovarian cancer, and the expression levels of APOA1, APOA4 and SERPINF2 proteins or genes encoding them have a negative correlation with the likelihood of developing ovarian cancer. identified. Thus, proteins or genes encoding them having the above positive correlation in an individual or in a biological sample isolated from the individual are highly expressed; When proteins having the aforementioned negative correlation or genes encoding them are underexpressed, the subject is determined to have ovarian cancer or is likely to develop in the future.
본 명세서에서 용어“고발현”은 대조군 또는 정상군에 비해 해당 유전자 또는 해당 유전자에 의하여 인코딩되는 단백질의 발현량이 유의하게 높은 경우를 의미하며, 구체적으로는 발현량이 상기 대조군 또는 정상군과 비교하여 약 10% 이상 증가, 약 20% 이상 증가, 약 30% 이상 증가, 약 40% 이상 증가, 약 50% 이상 증가, 또는 약 60% 이상 증가한 경우를 의미하나, 이를 벗어나는 범위를 제외하는 것은 아니다.As used herein, the term “high expression” refers to a case in which the expression level of a corresponding gene or a protein encoded by the corresponding gene is significantly higher than that of the control group or normal group, and specifically, the expression level is about approx. An increase of 10% or more, an increase of about 20% or more, an increase of about 30% or more, an increase of about 40% or more, an increase of about 50% or more, or an increase of about 60% or more.
본 명세서에서 용어“저발현”은 대조군 또는 정상군에 비해 해당 유전자 또는 해당 유전자에 의하여 인코딩되는 단백질의 발현량이 유의하게 낮은 경우를 의미하며, 구체적으로는 발현량이 상기 대조군 또는 정상군과 비교하여 약 10% 이상 감소, 약 20% 이상 감소, 약 30% 이상 감소, 약 40% 이상 감소, 약 50% 이상 감소, 또는 약 60% 이상 감소한 경우를 의미하나, 이를 벗어나는 범위를 제외하는 것은 아니다.As used herein, the term “low expression” refers to a case in which the expression level of a corresponding gene or a protein encoded by the corresponding gene is significantly lower than that of the control group or normal group, and specifically, the expression level is about approx. A decrease of 10% or more, a decrease of about 20% or more, a decrease of about 30% or more, a decrease of about 40% or more, a decrease of about 50% or more, or a decrease of about 60% or more, but not excluding the range outside this range.
본 명세서에서 용어“개체”는 본 발명의 유전자 또는 이들이 인코딩하는 단백질의 발현량을 측정하기 위한 시료를 제공하고, 궁극적으로 난소암의 발병 여부의 분석 대상이 되는 개체를 의미한다. 개체는 제한없이 인간, 마우스, 래트, 기니아 피그, 개, 고양이, 말, 소, 돼지, 원숭이, 침팬지, 비비 또는 붉은털 원숭이를 포함하며, 구체적으로는 인간이다. 본 발명의 조성물은 현재 난소암의 발병 여부뿐 아니라 향후 난소암이 발병할 유전적 위험성을 예측하기 위한 정보도 제공하기 때문에, 본 발명의 개체는 난소암 환자일 수도 있고, 아직 난소암이 발병하지 않은 건강한 개체일수도 있다.As used herein, the term “individual” refers to an individual to whom a sample is provided to measure the expression level of the gene or the protein encoded by the gene of the present invention, and is ultimately analyzed for the onset of ovarian cancer. Subjects include, without limitation, humans, mice, rats, guinea pigs, dogs, cats, horses, cows, pigs, monkeys, chimpanzees, baboons or rhesus monkeys, specifically humans. Since the composition of the present invention also provides information for predicting the genetic risk of developing ovarian cancer in the future as well as the current onset of ovarian cancer, the subject of the present invention may be an ovarian cancer patient and has not yet developed ovarian cancer. It may be an unhealthy individual.
본 발명의 구체적인 구현예에 따르면, 상기 발현량을 측정하는 단계는 질량 분석(Mass Spectrometry, MS)에 의해 수행된다.According to a specific embodiment of the present invention, measuring the expression level is performed by mass spectrometry (MS).
본 명세서에서 용어“질량 분석”은“질량 분석법”으로도 호칭될 수 있으며, 미지의 화합물을 그들의 질량으로 분석하는 방법을 의미한다. 질량 분석은 질량 대 전하비(mass-to-charge ratio)인 m/z값을 이용하여 이온을 필터링, 탐지 및 측정하는 방식을 통하여 수행되며, 일반적으로 질량분석은 (1) 화합물을 이온화하여 하전 시키는 단계 (2) 하전된 화합물의 분자량을 측정하고 m/z값을 계산하는 단계를 포함한다. 계산된 m/z값은 기준으로 복잡한 혼합물에서 목표로 하는 화합물을 식별하고 정량하는 데 사용된다. 본 명세서의 질량 분석은 상기와 같은 원리를 이용하는 모든 종류의 질량 분석법을 통하여 실행될 수 있다.In this specification, the term “mass spectrometry” may also be referred to as “mass spectrometry” and means a method of analyzing unknown compounds by their mass. Mass spectrometry is performed by filtering, detecting, and measuring ions using the m/z value, which is the mass-to-charge ratio. In general, mass spectrometry (1) ionizes a compound to charge it. Step (2) measuring the molecular weight of the charged compound and calculating the m/z value. The calculated m/z value is used as a reference to identify and quantify the target compound in complex mixtures. The mass spectrometry of the present specification can be performed through all types of mass spectrometry using the above principle.
본 발명의 구체적인 구현예에 따르면, 상기 질량 분석은 서열 번호 1, 2, 12 및 21로 구성된 군으로부터 선택되는 하나 이상의 펩티드의 발현 수준을 측정한다.According to a specific embodiment of the present invention, the mass spectrometry measures the expression level of one or more peptides selected from the group consisting of SEQ ID NOs: 1, 2, 12 and 21.
본 발명에서 난소암의 바이오마커로 사용된 단백질들에 대한 질량 분석은 구체적으로 하기의 서열번호 1 내지 21로 표시된 펩타이드 절편을 통한 다중 반응 모니터링(Multiple reaction monitoring, MRM) 또는 병렬 반응 모니터링(Parallel reaction monitoring ,PRM)을 통하여 이루어질 수 있으나, 이에 제한되지 않는다:Mass spectrometry for proteins used as biomarkers of ovarian cancer in the present invention is specifically performed by multiple reaction monitoring (MRM) or parallel reaction monitoring (Parallel reaction monitoring) through peptide fragments represented by SEQ ID NOs: 1 to 21 below. monitoring, PRM), but is not limited to:
서열번호 1 (FGA) : HPDEAAFFDTASTGKSEQ ID NO: 1 (FGA): HPDEAAFFDTASTGK
서열번호 2 (VWF) : HIVTFDGQNFKSEQ ID NO: 2 (VWF): HIVTFDGQNFK
서열번호 3 (S100A9) : NIETIINTFHQYSVKSEQ ID NO: 3 (S100A9): NIETIINTFHQYSVK
서열번호 4 (VCL) : LLAVAATAPPDAPNRSEQ ID NO: 4 (VCL): LLAVAATAPPDAPNR
서열번호 5 (THBS1) : TIVTTLQDSIRSEQ ID NO: 5 (THBS1): TIVTTLQDSIR
서열번호 6 (MPO) : VVLEGGIDPILRSEQ ID NO: 6 (MPO): VVLEGGIDPILR
서열번호 7 (IGFBP2) : LIQGAPTIRSEQ ID NO: 7 (IGFBP2): LIQGAPTIR
서열번호 8 (SRGN) : IQDLNRSEQ ID NO: 8 (SRGN): IQDLNR
서열번호 9 (PF4) : TTSQVRPRSEQ ID NO: 9 (PF4): TTSQVRPR
서열번호 10 (GP1BA) : LTSLPLGALRSEQ ID NO: 10 (GP1BA): LTSLPLGALR
서열번호 11 (LRG1) : DLLLPQPDLRSEQ ID NO: 11 (LRG1): DLLLPQPDLR
서열번호 12 (ARHGDIB) : TLLGDGPVVTDPKSEQ ID NO: 12 (ARHGDIB): TLLGDGPVVTDPK
서열번호 13 (PRG4) : DQYYNIDVPSRSEQ ID NO: 13 (PRG4): DQYYNIDVPSR
서열번호 14 (LBP) : ITLPDFTGDLRSEQ ID NO: 14 (LBP): ITLPDFTGDLR
서열번호 15 (PPBP) : NIQSLEVIGKSEQ ID NO: 15 (PPBP): NIQSLEVIGK
서열번호 16 (C3) : TGLQEVEVKSEQ ID NO: 16 (C3): TGLQEVEVK
서열번호 17 (FCGBP) : GNPAVSYVRSEQ ID NO: 17 (FCGBP): GNPAVSYVR
서열번호 18 (CD14) : FPAIQNLALRSEQ ID NO: 18 (CD14): FPAIQNLALR
서열번호 19 (APOA1) : VQPYLDDFQKSEQ ID NO: 19 (APOA1): VQPYLDDFQK
서열번호 20 (APOA4) : QLTPYAQRSEQ ID NO: 20 (APOA4): QLTPYAQR
서열번호 21 (SERPINF2) : EDFLEQSEQLFGAK.SEQ ID NO: 21 (SERPINF2): EDFLEQSEQLFGAK.
본 명세서에서 용어“다중 반응 모니터링”은 특정 분석물질을 선택적으로 분리하여 검출하고 정량하여 그 농도변화를 모니터링할 수 있는 분석기술로써, MRM은 생체 시료 중에 존재하는 미량의 바이오마커와 같은 물질을 정량적으로 정확하게 다중 측정할 수 있는 방법으로 제1 질량필터 (Q1)를 이용하여 이온화원에서 생성된 이온 단편들 중 어미이온을 선택적으로 충돌관으로 전달한다. 이어 충돌관에 도달한 어미이온은 내부 충돌기체와 충돌하여, 쪼개져 딸이온을 생성하여 제2질량 필터 (Q2)로 보내지고, 여기서 특징적인 이온만이 검출부로 전달된다. 이런 방식으로 목적하는 성분의 정보만을 검출할 수 있는 선택성 및 민감도가 높은 분석 방법이다. MRM은 작은 분자의 정량분석에 활용되어 특정 유전병을 진단하는데 쓰이고 있다. MRM 방법은 다수의 펩티드를 동시에 측정하기에 용이하며, 항체가 없이 정상인과 암환자 사이에서 단백질 진단 마커 후보들의 상대적 농도차를 확인할 수 있다는 장점이 있다. 또한 민감도와 선택성이 탁월하여 특히, 질량분석기를 이용한 프로테옴 분석에서 혈액 내에 있는 복잡한 단백질과 펩티드의 분석을 위해 MRM 분석방법이 도입되고 있다(Anderson L. et al., Mol CellProteomics, 5: 375-88, 2006; DeSouza, L. V. et al., Anal. Chem., 81: 3462-70, 2009).As used herein, the term “multiple reaction monitoring” is an analytical technique capable of selectively separating, detecting, and quantifying a specific analyte and monitoring its concentration change. In a method capable of accurately performing multi-measurement, parent ions among the ion fragments generated in the ionization source are selectively transferred to the collision tube using the first mass filter (Q1). Subsequently, the mother ions that have reached the collider tube collide with the internal collider gas, are split to generate daughter ions, and are sent to the second mass filter (Q2), where only characteristic ions are delivered to the detector. In this way, it is an analysis method with high selectivity and sensitivity that can detect only the information of the target component. MRM is used for quantitative analysis of small molecules and is used to diagnose specific genetic diseases. The MRM method is advantageous in that it is easy to simultaneously measure a plurality of peptides, and it is possible to confirm the relative concentration difference of protein diagnostic marker candidates between a normal person and a cancer patient without an antibody. In addition, because of its excellent sensitivity and selectivity, MRM analysis is being introduced for the analysis of complex proteins and peptides in blood, especially in proteome analysis using mass spectrometry (Anderson L. et al., Mol CellProteomics, 5: 375-88 , 2006; DeSouza, L. V. et al., Anal. Chem., 81: 3462-70, 2009).
본 명세서에서 용어“병렬 반응 모니터링”은 MRM을 병렬적으로 적용한 것으로써, 한 번에 한 쌍의 어미이온/딸이온을 분석하는 MRM과 달리, 선택된 하나의 어미이온에서 생성되는 모든 딸이온을 동시에 분석하는 방법이다.In this specification, the term “parallel reaction monitoring” is a parallel application of MRM. Unlike MRM, which analyzes a pair of parent/daughter ions at once, all daughter ions generated from a selected parent ion are simultaneously monitored. way to analyze it.
본 발명에서 난소암의 바이오마커로 사용된 단백질들에 대한 질량 분석은 구체적으로 데이터 비의존성 획득 분석법(Data-Independent Acquisition, DIA)을 통하여 이루어질 수 있다. 본 명세서에서 용어“데이터 비의존성 획득 분석법”은 특정 어미이온을 선택하는 과정 없이 선택한 범위의 m/z값에 속하는 모든 이온을 분석하는 방법이다.In the present invention, mass spectrometry for proteins used as biomarkers of ovarian cancer can be performed through Data-Independent Acquisition (DIA). In this specification, the term "data-independent acquisition analysis method" is a method of analyzing all ions belonging to the m/z value of a selected range without selecting a specific parent ion.
본 발명의 구체적인 구현예에 따르면, 전술한 난소암의 진단에 필요한 정보를 제공하는 방법은 S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, PRG4, LBP, PPBP, C3, FCGBP, CD14, APOA1APOA4로 구성된 군으로부터 선택되는 하나 이상의 유전자 또는 이들이 인코딩하는 단백질의 발현량을 측정하는 단계를 추가적으로 포함한다.According to a specific embodiment of the present invention, the method for providing information necessary for the diagnosis of ovarian cancer described above includes S100A9 , VCL , THBS1 , MPO , IGFBP2 , SRGN , PF4 , GP1BA , LRG1 , PRG4 , LBP , PPBP , C3 , FCGBP , CD14 , APOA1 and APOA4 , and one or more genes selected from the group consisting of, or the step of measuring the expression level of the protein they encode additionally comprises.
본 발명의 구체적인 구현예에 따르면, 상기 발현량을 측정하는 단계는 질량 분석(Mass Spectrometry, MS)에 의해 수행된다.According to a specific embodiment of the present invention, measuring the expression level is performed by mass spectrometry (MS).
본 발명의 구체적인 구현예에 따르면, 상기 질량 분석은 서열 번호 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19 및 20으로 구성된 군으로부터 선택되는 하나 이상의 펩티드의 발현 수준을 측정한다.According to a specific embodiment of the present invention, the mass spectrometry is composed of SEQ ID NOs: 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19 and 20 The expression level of one or more peptides selected from the group is measured.
본 발명의 구체적인 구현예에 따르면, 상기 생물학적 시료는 혈액이다.According to a specific embodiment of the present invention, the biological sample is blood.
본 명세서에서 용어“혈액”은 “전혈(whole blood)”를 의미하며, 이러한 혈액은 혈장 및 혈청을 포함한다.In this specification, the term “blood” means “whole blood”, and such blood includes plasma and serum.
본 명세서에서 사용된 용어“전혈(whole blood)”은 일반적으로 응고되지 않은 혈장과 세포 성분으로 구성된 혈액을 의미한다. 혈장은 전혈 부피의 약 50 내지 60%를 차지하며, 세포 성분(예를 들어, 적혈구, 백혈구 또는 혈소판)은 약 40 내지 50%를 차지할 수 있다.As used herein, the term “whole blood” refers to blood that is generally composed of uncoagulated plasma and cellular components. Plasma accounts for about 50-60% of the total blood volume, and cellular components (eg red blood cells, white blood cells or platelets) may account for about 40-50%.
본 명세서에서 사용된 용어“혈장(plasma)”는 혈액의 액체 성분을 의미하며, 신체의 세포 및 기관에 양분을 공급하는데 있어서 운반 매체(transport medium)으로써 기능한다.As used herein, the term “plasma” refers to the liquid component of blood and functions as a transport medium in supplying nutrients to cells and organs of the body.
본 명세서에서 사용된 용어“혈청(serum)”은 혈액으로부터 채취한 담황색 액체를 의미하는 단어로, 구체적으로는 혈액을 채취한 후 방치하게 되면 혈액의 유동성이 감소하면서 적색 응고체가 생기게 되는데, 해당 적색 응고체를 제거하는 경우 남는 담황색 체액 성분을 의미한다.As used herein, the term “serum” is a word meaning a pale yellow liquid collected from blood. Specifically, when blood is left unattended after being collected, red clots are formed as the fluidity of blood decreases. It refers to the light yellow body fluid component that remains when the coagulum is removed.
본 발명에 따르면, 본 발명의 바이오마커들을 이용하여 난소암의 진단이 가능하고, 해당 진단은 혈액 등의 환자 유래 체액을 생물학적 시료로 하여 액체 생검(Liquid Biopsy)을 통하여 이루어질 수 있으며, 이러한 액체 생검법은 종래의 조직 생검 절차에 비하여 비-침습적이어서 환자의 고통을 최소화할 수 있다는 장점과 더불어 더욱 신속하게 암에 대한 정보를 얻을 수 있는 이점을 가진다.According to the present invention, diagnosis of ovarian cancer is possible using the biomarkers of the present invention, and the diagnosis can be made through liquid biopsy using a patient-derived bodily fluid such as blood as a biological sample. Compared to the conventional tissue biopsy procedure, it is non-invasive and has the advantage of minimizing the pain of the patient and obtaining information about cancer more quickly.
본 발명의 구체적인 구현예에 따르면, 상기 난소암은 고등급 장액성 난소암(High-grade serous ovarian cancer, HGSOC)이다.According to a specific embodiment of the present invention, the ovarian cancer is high-grade serous ovarian cancer (HGSOC).
본 발명에서 난소암 또는 고등급 장액성 난소암의 의미에 대해서는 이미 상술하였으므로, 과도한 중복을 방지하기 위해 그 기재를 생략한다.Since the meaning of ovarian cancer or high-grade serous ovarian cancer in the present invention has already been described above, description thereof is omitted to prevent excessive duplication.
본 발명의 또 다른 양태에 따르면, 본 발명은 FGA, VWF, S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, ARHGDIB, PRG4, LBP, PPBP, C3, FCGBP 및 CD14로 이루어진 군으로부터 선택되는 하나 이상에 대한 억제제; 또는 APOA1, APOA4, 및 SERPINF2로 이루어진 군으로부터 선택되는 하나 이상에 대한 활성화제를 유효성분으로 포함하는 난소암의 예방 또는 치료용 조성물을 제공한다.According to another aspect of the present invention, the present invention relates to the group consisting of FGA, VWF, S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, ARHGDIB, PRG4, LBP, PPBP, C3, FCGBP and CD14 Inhibitors for one or more selected from; Alternatively, a composition for preventing or treating ovarian cancer comprising, as an active ingredient, an activator for at least one selected from the group consisting of APOA1, APOA4, and SERPINF2 is provided.
본 발명에서 사용된 유전자 및 이들이 인코딩하는 단백질에 대해서는 이미 상술하였으므로, 과도한 중복을 방지하기 위해 그 기재를 생략한다.Since the genes used in the present invention and the proteins they encode have already been described above, their descriptions are omitted to prevent excessive redundancy.
본 발명에 따르면, 본 발명자들은 난소암 환자에서 FGA, VWF 및 ARHGDIB 단백질 또는 이들을 인코딩하는 유전자들을 억제하거나, SERPINF2 단백질 또는 이들을 인코딩하는 유전자를 과발현 또는 활성화하는 경우 난소암의 발병을 억제할 수 있음을 실험적으로 증명하였다.According to the present invention, the present inventors found that the occurrence of ovarian cancer can be suppressed when FGA, VWF and ARHGDIB proteins or genes encoding them are inhibited, or when SERPINF2 protein or genes encoding them are overexpressed or activated in ovarian cancer patients. proved experimentally.
본 명세서에서 용어“억제제”는 타겟 유전자, 구체적으로는 FGA, VWFARHGDIB 유전자들의 활성 또는 발현의 저하를 야기시키는 물질을 의미하며, 이에 의해 타겟 유전자의 활성 또는 발현이 탐지 불가능해지거나 무의미한 수준으로 존재하게 되는 경우 뿐 아니라, 타겟 유전자의 생물학적 기능이 유의하게 저하될 수 있을 정도로 활성 또는 발현을 저하시키는 물질을 의미한다.As used herein, the term "inhibitor" refers to a substance that causes a decrease in the activity or expression of target genes, specifically FGA , VWF and ARHGDIB genes, whereby the activity or expression of the target gene becomes undetectable or to an insignificant level. Not only when present, but also means a substance that lowers the activity or expression to the extent that the biological function of the target gene can be significantly lowered.
타겟 유전자의 억제제는 예를 들어 당업계에 이미 그 서열이 공지된 상기 유전자의 발현을 유전자 수준에서 억제하는 shRNA, siRNA, miRNA, 리보자임(ribozyme), PNA(peptide nucleic acids) 안티센스 올리고뉴클레오타이드 또는 타겟 유전자를 인식하는 가이드 RNA를 포함하는 CRISPR 시스템과, 단백질 수준에서 억제하는 항체 또는 앱타머 뿐 아니라, 이들의 활성을 억제하는 화합물, 펩타이드 및 천연물을 포함하나, 이에 제한되지 않고 당업계에 공지된 모든 유전자 및 단백질 수준의 억제수단이 사용될 수 있다.Inhibitors of target genes are, for example, shRNA, siRNA, miRNA, ribozyme, PNA (peptide nucleic acids) antisense oligonucleotides or targets that inhibit the expression of the gene at the gene level, the sequence of which is already known in the art All known in the art including, but not limited to, CRISPR systems containing guide RNAs recognizing genes, antibodies or aptamers that inhibit at the protein level, as well as compounds, peptides and natural products that inhibit their activity Means of inhibition at the gene and protein level can be used.
본 명세서에서 용어“shRNA(small hairpin RNA)”는 인 비보 상에서 스템-루프(stem-loop) 구조를 이루는 단일 가닥으로 50-70개로 구성된 뉴클레오타이드로서, RNA 간섭을 통해 타겟 유전자의 발현을 억제하기 위한 타이트한 헤어핀 구조를 만드는 RNA 서열을 의미한다. 통상적으로 5-10개의 뉴클레오타이드의 루프 부위 양쪽으로 상보적으로 19-29개의 뉴클레오타이드의 긴 RNA가 염기쌍을 이루어 이중가닥의 스템을 형성하며, 언제나 발현되도록 하기 위하여 U6 프로모터를 포함하는 벡터를 통해 세포 내로 형질도입되며 대개 딸세포로 전달되어 타겟 유전자의 발현억제가 유전되도록 한다.In the present specification, the term "small hairpin RNA (shRNA)" is a single strand consisting of 50-70 nucleotides forming a stem-loop structure in vivo , which is used to suppress the expression of a target gene through RNA interference. It refers to the RNA sequence that creates a tight hairpin structure. Usually, long RNAs of 19-29 nucleotides complementary to both sides of the loop region of 5-10 nucleotides form a double-stranded stem, which is introduced into the cell through a vector containing a U6 promoter so that it is always expressed. It is transduced and is usually passed on to daughter cells, allowing inheritance of suppression of the target gene.
본 명세서에서 용어“siRNA”는 특정 mRNA의 절단(cleavage)을 통하여 RNAi(RNA interference) 현상을 유도할 수 있는 짧은 이중사슬 RNA를 의미한다. 타겟 유전자의 mRNA와 상동인 서열을 가지는 센스 RNA 가닥과 이와 상보적인 서열을 가지는 안티센스 RNA 가닥으로 구성된다. 전체 길이는 10 내지 100 염기, 바람직하게는 15 내지 80 염기, 가장 바람직하게는 20 내지 70 염기이고, 타겟 유전자의 발현을 RNAi 효과에 의하여 억제할 수 있는 것이면 평활(blunt)말단 혹은 점착(cohesive) 말단 모두 가능하다. 점착 말단 구조는 3 말단 돌출한 구조와 5 말단 쪽이 돌출한 구조 모두 가능하다.As used herein, the term "siRNA" refers to a short double-stranded RNA capable of inducing RNAi (RNA interference) through cleavage of a specific mRNA. It consists of a sense RNA strand having a sequence homologous to the mRNA of the target gene and an antisense RNA strand having a sequence complementary thereto. The total length is 10 to 100 bases, preferably 15 to 80 bases, and most preferably 20 to 70 bases, and if the expression of the target gene can be inhibited by the RNAi effect, the blunt end or cohesive All ends are possible. As for the sticky end structure, both a structure with 3 ends protruding and a structure with 5 ends protruding are possible.
본 명세서에서 용어“miRNA(microRNA)”는 세포내에서 발현되지 않는 올리고뉴클레오타이드로서 짧은 스템-루프 구조를 가지면서 타겟 유전자의 mRNA와 상보적인 결합을 통하여 타겟 유전자 발현을 억제하는 단일 가닥 RNA분자를 의미한다.As used herein, the term “miRNA (microRNA)” refers to a single-stranded RNA molecule that inhibits target gene expression through complementary binding with mRNA of a target gene while having a short stem-loop structure as an oligonucleotide that is not expressed in cells. do.
본 명세서에서 용어“리보자임(ribozyme)”은 RNA의 일종으로 특정한 RNA의 염기 서열을 인식하여 자체적으로 이를 절단하는 효소와 같은 기능을 가진 RNA 분자를 의미한다. 리보자임은 타겟 mRNA 가닥의 상보적인 염기서열로 특이성을 가지고 결합하는 영역과 타겟 RNA를 절단하는 영역으로 구성된다.In the present specification, the term “ribozyme” is a type of RNA and refers to an RNA molecule having a function such as an enzyme that recognizes a specific RNA base sequence and cuts it itself. A ribozyme is composed of a region that binds with specificity to a complementary nucleotide sequence of a target mRNA strand and a region that cleaves a target RNA.
본 명세서에서 용어“PNA(Peptide nucleic acid)”는 핵산과 단백질의 성질을 모두 가지면서 DNA 또는 RNA와 상보적으로 결합이 가능한 분자를 의미한다. PNA는 자연계에서는 발견되지 않고 인공적으로 화학적인 방법으로 합성되며, 상보적인 염기 서열의 천연 핵산과 혼성화(hybridization)를 통해 이중가닥을 형성하여 타겟 유전자의 발현을 조절한다.In the present specification, the term “peptide nucleic acid (PNA)” refers to a molecule that has properties of both nucleic acid and protein and can complementarily bind to DNA or RNA. PNA is not found in nature, but is artificially synthesized by chemical methods, and forms double strands through hybridization with natural nucleic acids having complementary nucleotide sequences to regulate the expression of target genes.
본 명세서에서 용어“안티센스 올리고뉴클레오타이드”는 특정 mRNA의 서열에 상보적인 뉴클레오타이드 서열로서 타겟 mRNA 내의 상보적 서열에 결합하여 이의 단백질로의 번역, 세포질내로의 전위(translocation), 성숙(maturation) 또는 다른 모든 전체적인 생물학적 기능에 대한 필수적인 활성을 저해하는 핵산 분자를 의미한다. 안티센스 올리고뉴클레오타이드는 효능을 증진시키기 위하여 하나 이상의 염기, 당 또는 골격(backbone)의 위치에서 변형될 수 있다(De Mesmaeker et al., Curr Opin Struct Biol., 5(3):343-55, 1995). 올리고뉴클레오타이드 골격은 포스포로티오에이트, 포스포트리에스테르, 메틸 포스포네이트, 단쇄 알킬, 시클로알킬, 단쇄 헤테로아토믹, 헤테로시클릭 당숄포네이 등으로 변형될 수 있다.As used herein, the term “antisense oligonucleotide” refers to a nucleotide sequence complementary to a sequence of a specific mRNA, which binds to a complementary sequence in a target mRNA and performs translation into a protein, translocation into the cytoplasm, maturation, or all other functions. A nucleic acid molecule that inhibits an essential activity for overall biological function. Antisense oligonucleotides can be modified at one or more bases, sugars or backbone positions to enhance potency (De Mesmaeker et al., Curr Opin Struct Biol. , 5(3):343-55, 1995). . The oligonucleotide backbone can be modified with phosphorothioates, phosphotriesters, methyl phosphonates, short-chain alkyls, cycloalkyls, short-chain heteroatomic, heterocyclic sugarsulfones, and the like.
본 명세서에서 용어“gRNA(guideRNA)”는 타겟 유전자를 인식하여 핵산분해효소(nuclease)를 유도함으로써 인식된 분위를 특이적으로 절단하는 유전자 편집 시스템에 사용되는 RNA 분자를 의미한다. 이러한 유전자 편집 시스템에는 대표적으로 CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats) 시스템이 있다.As used herein, the term “gRNA (guideRNA)” refers to an RNA molecule used in a gene editing system that recognizes a target gene and induces a nuclease to specifically cut the recognized locus. A typical example of such a gene editing system is a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system.
본 발명에 따르면, 본 발명의 발현 억제제는 상기 유전자들이 코딩하는 단백질의 활성을 저해하는 특이적 항체일 수 있다. 목적 단백질을 특이적으로 인식하는 항체는 폴리클로날 또는 모노클로날 항체이며, 바람직하게는 모노클로날 항체이다.According to the present invention, the expression inhibitor of the present invention may be a specific antibody that inhibits the activity of the protein encoded by the genes. An antibody that specifically recognizes a target protein is a polyclonal or monoclonal antibody, preferably a monoclonal antibody.
본 발명에서 이용될 수 있는 항체 또는 앱타머에 대해서는 이미 상술하였으므로, 과도한 중복을 방지하기 위해 그 기재를 생략한다.Since the antibodies or aptamers that can be used in the present invention have already been described above, their descriptions are omitted to prevent excessive duplication.
본 명세서에서 용어“활성화제”는 타겟 유전자, 구체적으로는 SERPINF2 단백질의 발현량 또는 활성을 증진시키는 유효성분을 의미하며, 예를 들어 당업계에 이미 그 서열 및 구조가 공지된 단백질인 SERPINF2의 발현을 유전자 또는 단백질 수준에서 증진시키거나 고유의 생물학적 활성을 증진시키는 핵산분자, 펩타이드, 단백질, 화합물 및 천연물을 포함하나, 이에 제한되는 것은 아니다. 이에,“SERPINF2 단백질의 활성화제(activator)”는“SERPINF2 단백질 작용제(agonist)”와 동일한 의미로 사용된다.As used herein, the term "activator" refers to an active ingredient that enhances the expression level or activity of a target gene, specifically, the SERPINF2 protein, for example, the expression of SERPINF2, a protein whose sequence and structure are already known in the art It includes, but is not limited to, nucleic acid molecules, peptides, proteins, compounds, and natural products that enhance at the gene or protein level or enhance intrinsic biological activity. Accordingly, “SERPINF2 protein activator” is used as the same meaning as “SERPINF2 protein agonist”.
본 명세서에서 용어“예방”은 질환 또는 질병을 보유하고 있다고 진단된 적은 없으나, 이러한 질환 또는 질병에 걸릴 가능성이 있는 대상체에서 질환 또는 질병의 발생을 억제하는 것을 의미한다.As used herein, the term “prevention” refers to suppressing the occurrence of a disease or disease in a subject who has not been diagnosed with the disease or disease, but is likely to suffer from the disease or disease.
본 명세서에서 용어“치료”는 (a) 질환, 질병 또는 증상의 발전의 억제; (b) 질환, 질병 또는 증상의 경감; 또는 (c) 질환, 질병 또는 증상을 제거하는 것을 의미한다. 본 발명의 조성물을 대상체에 투여하면 FGA, VWF 및 ARHGDIB 단백질 또는 이를 인코딩하는 유전자의 발현이 억제되거나; SERPINF2 단백질 또는 이를 인코딩하는 유전자의 발현이 활성화되면서 난소암세포의 생성이 저해되어 난소암으로 인한 증상의 발전을 억제하거나, 이를 제거하거나 또는 경감시키는 역할을 한다. 따라서, 본 발명의 조성물 그 자체로 이들 질환 치료의 조성물이 될 수도 있고, 혹은 다른 약리성분과 함께 투여되어 상기 질환에 대한 치료 보조제로 적용될 수도 있다. 이에, 본 명세서에서 용어“치료”또는“치료제”는“치료 보조”또는“치료 보조제”의 의미를 포함한다.As used herein, the term “treatment” refers to (a) inhibition of the development of a disease, condition or condition; (b) alleviation of the disease, condition or symptom; or (c) eliminating the disease, disorder or condition. Administration of the composition of the present invention to a subject inhibits the expression of FGA, VWF and ARHGDIB proteins or genes encoding them; As the expression of the SERPINF2 protein or the gene encoding it is activated, the generation of ovarian cancer cells is inhibited, thereby suppressing the development of symptoms due to ovarian cancer, removing them, or alleviating them. Therefore, the composition of the present invention itself may be a composition for treating these diseases, or may be administered together with other pharmacological ingredients to be applied as a treatment adjuvant for the above diseases. Accordingly, the term "treatment" or "therapeutic agent" in the present specification includes the meaning of "therapeutic aid" or "therapeutic aid".
본 발명의 구체적인 구현예에 따르면, 본 발명의 조성물로 예방 또는 치료될 수 있는 난소암은 고등급 장액성 난소암(High-grade serous ovarian cancer, HGSOC)이다.According to a specific embodiment of the present invention, the ovarian cancer that can be prevented or treated with the composition of the present invention is high-grade serous ovarian cancer (HGSOC).
본 발명에서 난소암 또는 고등급 장액성 난소암의 의미에 대해서는 이미 상술하였으므로, 과도한 중복을 방지하기 위해 그 기재를 생략한다.Since the meaning of ovarian cancer or high-grade serous ovarian cancer in the present invention has already been described above, description thereof is omitted to prevent excessive duplication.
본 발명의 또 다른 양태에 따르면, 본 발명은 다음의 단계를 포함하는 난소암의 예방 또는 치료용 조성물의 스크리닝 방법을 제공한다:According to another aspect of the present invention, the present invention provides a method for screening a composition for preventing or treating ovarian cancer comprising the following steps:
(a) FGA, VWF, S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, ARHGDIB, PRG4, LBP, PPBP, C3, FCGBP, CD14, APOA1, APOA4, 및 SERPINF2로 구성된 군으로부터 선택되는 하나 이상의 단백질, 이들을 인코딩하는 유전자 또는 이들을 발현하는 세포를 포함하는 생물학적 시료에 시험물질을 접촉시키는 단계;(a) selected from the group consisting of FGA, VWF, S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, ARHGDIB, PRG4, LBP, PPBP, C3, FCGBP, CD14, APOA1, APOA4, and SERPINF2 contacting a test substance with a biological sample comprising at least one protein, genes encoding them, or cells expressing them;
(b) 상기 생물학적 시료 내 상기 단백질 또는 상기 유전자의 발현량을 측정하는 단계, (b) measuring the expression level of the protein or gene in the biological sample;
상기 생물학적 시료 내 상기 FGA, VWF, S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, ARHGDIB, PRG4, LBP, PPBP, C3, FCGBP 또는 CD14의 단백질 또는 유전자의 활성 또는 발현량이 감소하거나 또는 상기 APOA1, APOA4, 또는 SERPINF2의 단백질 또는 유전자의 활성 또는 발현량이 증가하는 경우 난소암의 예방 또는 치료용 조성물로 판정한다.Reduction in activity or expression of the FGA, VWF, S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, ARHGDIB, PRG4, LBP, PPBP, C3, FCGBP or CD14 protein or gene in the biological sample Or, if the activity or expression level of the protein or gene of APOA1, APOA4, or SERPINF2 is increased, it is determined as a composition for preventing or treating ovarian cancer.
본 발명에서 마커로 사용되는 난소암 발병 관련 유전자 또는 이들이 인코딩하는 단백질; 및 이들의 발현 조절을 통해 예방 또는 치료할 수 있는 난소암에 대해서는 이미 상술하였으므로, 과도한 중복을 피하기 위해 그 기재를 생략한다.ovarian cancer pathogenesis-related genes used as markers in the present invention or proteins encoded by them; And ovarian cancer that can be prevented or treated through regulation of their expression has already been described above, so description thereof is omitted to avoid excessive redundancy.
본 발명에서 용어“생물학적 시료”는 인간을 포함한 포유동물로부터 얻어지는, 상술한 유전자를 발현하는 세포 또는 상술한 유전자가 발현되어 생성된 단백질을 포함하고 있는 모든 시료로서, 조직, 기관, 세포 또는 세포 배양액을 포함하나, 이에 제한되지 않는다. 보다 구체적으로는, 상기 생물학적 시료는 암조직, 암세포, 이의 배양액 또는 혈액일 수 있다.In the present invention, the term “biological sample” refers to any sample obtained from mammals, including humans, containing cells expressing the above-described genes or proteins produced by the expression of the above-described genes, including tissues, organs, cells, or cell cultures. Including, but not limited to. More specifically, the biological sample may be cancer tissue, cancer cells, a culture thereof, or blood.
본 발명의 스크리닝 방법을 언급하면서 사용되는 용어“시험물질”은 본 발명의 유전자를 발현하는 세포를 포함하는 시료에 첨가되어 이들 유전자의 활성 또는 발현량에 영향을 미치는지 여부를 검사하기 위하여 스크리닝에서 이용되는 미지의 물질을 의미한다. 상기 시험물질은 화합물, 뉴클레오타이드, 펩타이드 및 천연 추출물을 포함하나, 이에 제한되는 것은 아니다. 시험물질을 처리한 생물학적 시료에서 상기 유전자의 발현량 또는 활성을 측정하는 단계는 당업계에 공지된 다양한 발현량 및 활성 측정방법에 의해 수행될 수 있다.The term "test substance" used while referring to the screening method of the present invention is added to a sample containing cells expressing the gene of the present invention and used in screening to examine whether or not it affects the activity or expression level of these genes. means an unknown substance. The test substance includes, but is not limited to, compounds, nucleotides, peptides and natural extracts. The step of measuring the expression level or activity of the gene in the biological sample treated with the test substance may be performed by various methods for measuring the expression level and activity known in the art.
본 발명의 구체적인 구현예에 따르면, 상기 난소암은 고등급 장액성 난소암(High-grade serous ovarian cancer, HGSOC)이다.According to a specific embodiment of the present invention, the ovarian cancer is high-grade serous ovarian cancer (HGSOC).
본 발명에서 난소암 또는 고등급 장액성 난소암의 의미에 대해서는 이미 상술하였으므로, 과도한 중복을 방지하기 위해 그 기재를 생략한다.Since the meaning of ovarian cancer or high-grade serous ovarian cancer in the present invention has already been described above, description thereof is omitted to prevent excessive duplication.
본 발명의 또 다른 양태에 따르면, 본 발명은 FGA, VWF, ARHGDIBSERPINF2로 구성된 군으로부터 선택되는 하나 이상의 유전자 또는 이들이 인코딩하는 단백질의 발현량을 측정하는 제제를 유효성분으로 포함하는 난소암(Ovarian Cancer)의 진단용 조성물을 대상체에 투여하는 단계를 포함하는 난소암의 진단 방법을 제공한다.According to another aspect of the present invention, the present invention is an ovarian cancer (Ovarian Cancer) to a subject.
본 발명의 구체적인 구현예에 따르면, 본 발명의 진단방법에서 S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, PRG4, LBP, PPBP, C3, FCGBP, CD14, APOA1APOA4로 구성된 군으로부터 선택되는 하나 이상의 유전자 또는 이들이 인코딩하는 단백질의 발현량을 측정하는 제제를 유효성분으로 추가적으로 포함하는 것을 특징으로 하는 조성물을 대상체에 투여하는 단계를 추가적으로 포함하는 난소암의 진단 방법을 제공한다.According to a specific embodiment of the present invention, in the diagnostic method of the present invention, S100A9 , VCL , THBS1 , MPO , IGFBP2 , SRGN , PF4 , GP1BA , LRG1 , PRG4 , LBP , PPBP , C3 , FCGBP , CD14 , APOA1 and APOA4 consisting of Provided is a method for diagnosing ovarian cancer, which further comprises administering to a subject a composition characterized in that it further comprises, as an active ingredient, an agent for measuring the expression level of at least one gene selected from the group or a protein encoded by the gene selected from the group.
본 발명의 또 다른 양태에 따르면, 본 발명은 FGA, VWF, S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, ARHGDIB, PRG4, LBP, PPBP, C3, FCGBP 및 CD14로 이루어진 군으로부터 선택되는 하나 이상에 대한 억제제; 또는 APOA1, APOA4, 및 SERPINF2로 이루어진 군으로부터 선택되는 하나 이상에 대한 활성화제를 유효성분으로 포함하는 난소암의 예방 또는 치료용 조성물을 대상체에 투여하는 단계를 포함하는 난소암의 예방 또는 치료 방법을 제공한다.According to another aspect of the present invention, the present invention relates to the group consisting of FGA, VWF, S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, ARHGDIB, PRG4, LBP, PPBP, C3, FCGBP and CD14 Inhibitors for one or more selected from; Or a method for preventing or treating ovarian cancer comprising administering to a subject a composition for preventing or treating ovarian cancer comprising, as an active ingredient, an activator for at least one selected from the group consisting of APOA1, APOA4, and SERPINF2. to provide.
본 발명에서 난소암의 진단, 예방 또는 치료에 이용될 수 있는 유전자, 상기 유전자가 암호화하는 단백질; 상기 유전자 및 단백질의 발현 억제제 또는 활성화제에 대해서는 이미 상술하였으므로, 과도한 중복을 피하기 위해 이를 생략한다.Genes that can be used for diagnosis, prevention or treatment of ovarian cancer in the present invention, proteins encoded by the genes; Since the expression inhibitors or activators of the genes and proteins have already been described above, they are omitted to avoid excessive redundancy.
본 발명의 특징 및 이점을 요약하면 다음과 같다:The features and advantages of the present invention are summarized as follows:
(a) 본 발명은 난소암의 발병에 관여하는 유전자 또는 단백질의 발현량을 측정함으로써 난소암을 진단하는 방법 및 이들의 발현 조절을 통하여 난소암을 예방 또는 치료하는 방법을 제공한다.(a) The present invention provides a method for diagnosing ovarian cancer by measuring the expression level of genes or proteins involved in the onset of ovarian cancer, and a method for preventing or treating ovarian cancer by regulating their expression.
(b) 본 발명은 난소암, 특히 고등급 장액성 난소암에 대한 유효한 바이오마커를 제공함으로써, 난소암의 발병을 조기에 높은 신뢰도로 예측할 수 있는 방법을 제공함과 동시에, 해당 인자들의 발현을 억제 또는 활성화함으로써 난소암의 효율적인 예방 또는 치료에 유용하게 이용될 수 있다.(b) The present invention provides an effective biomarker for ovarian cancer, particularly high-grade serous ovarian cancer, thereby providing a method for predicting the onset of ovarian cancer early and with high reliability, while suppressing the expression of the relevant factors. Or by activating it, it can be usefully used for efficient prevention or treatment of ovarian cancer.
도 1a는 포괄적인 혈청 프로테옴 프로파일링 실험(comprehensive serum proteome profiling experiments)에 이은 표적 MS 분석을 위한 실험 절차를 도식적으로 나타낸 그림이다.1A is a schematic illustration of the experimental procedure for targeted MS analysis followed by comprehensive serum proteome profiling experiments.
도 1b는 스펙트럼 라이브러리 생성을 위한 포괄적인 혈청 프로테옴 프로파일링으로 식별된 혈청 단백질의 단백질 농도 동적 범위를 나타낸 그래프로, 단백질 농도 추정치는 Human Protein Atlas(혈액 단백질)에서 얻었다.Figure 1b is a graph showing the protein concentration dynamic range of serum proteins identified by comprehensive serum proteome profiling for spectral library generation, and protein concentration estimates were obtained from the Human Protein Atlas (blood proteins).
도 1c는 RNF213의 펩타이드(QCYLQQVK) 주석이 달린 MS/MS 스펙트럼을 도시한 그림이다.Figure 1c is a picture showing the MS/MS spectrum annotated with the peptide (QCYLQQVK) of RNF213.
도 2a는 HGSOC 및 HC에서 LC-DIA-MS/MS로 식별된 펩타이드(상단) 및 단백질(하단)의 수를 도시한 그래프로써, 확인된 펩티드 및 단백질의 총(Total) 및 평균수(Average number)가 표시되어 있다.Figure 2a is a graph showing the number of peptides (top) and proteins (bottom) identified by LC-DIA-MS / MS in HGSOC and HC, total and average number of identified peptides and proteins (Average number) is indicated.
도 2b는 HGSOC 및 HC 혈청 프로테옴의 PCA 분석 결과를 도시한 그림으로, 각 주성분에 의하여 설명되는 편차가 표시되어 있다.Figure 2b is a picture showing the results of PCA analysis of the HGSOC and HC serum proteomes, and the deviations explained by each principal component are indicated.
도 2c는 HGSOC 및 HC에서 DEProteins의 발현 히트맵으로써, 상향 및 하향 조절된 단백질의 수가 표시되어 있다.Figure 2c is a heatmap of the expression of DEProteins in HGSOC and HC, showing the number of up- and down-regulated proteins.
도 2d는 DEProteins에 의해 강화된 경로를 도시한 그림으로, 점 플롯(dot plot)은 DEProteins에 의해 강화된 경로의 중요성을 log10(p-값)으로 보여준다.Figure 2d is a picture showing the pathway enriched by DEProteins, and the dot plot shows the importance of the pathway enriched by DEProteins as log10 (p-value).
도 2e는 도 2d의 강화된 경로에 관여하는 DEProteins 간의 상호 작용을 보여주는 네트워크 모델을 도시한 그림이다.Figure 2e is a diagram showing a network model showing interactions between DEProteins involved in the enriched pathway of Figure 2d.
도 3a는 표적 MS 실험을 사용하여 검증 코호트(validation cohort)에서 21개의 잠재적인 HGSOC 진단 바이오마커의 정규화된 피크 영역(light/heavy)을 보여주는 박스 플롯이다.3A is a box plot showing normalized peak areas (light/heavy) of 21 potential HGSOC diagnostic biomarkers in a validation cohort using targeted MS experiments.
도 3b는 LC-DIA-MS/MS를 사용하여 발견 코호트(discovery cohort)에서 21개 바이오마커 후보의 정규화된 단백질 풍부도을 보여주는 박스 플롯이다.3B is a box plot showing normalized protein abundance of 21 biomarker candidates in a discovery cohort using LC-DIA-MS/MS.
도 4a는 DMSO와 함께, 대조군 siRNA(siControl) 또는 FGA, VWF 및 ARHGDIB에 대해 표시된 siRNA로 처리하거나; 또는 SERPINF2의 과발현시킨 후(조건당 n=3), 증식 분석을 통하여 SK-OV-3 세포의 생존력 값(Viability value)을 측정한 결과를 도시한 그래프이다.FIG. 4A shows treatment with a control siRNA (siControl) or the indicated siRNAs against FGA, VWF and ARHGDIB, together with DMSO; Or, after overexpression of SERPINF2 (n=3 per condition), it is a graph showing the results of measuring the viability value of SK-OV-3 cells through proliferation analysis.
도 4b는 표시된 siRNA로 SK-OV-3 세포를 처리하거나; 또는 SERPINF2를 과발현시킨 후(조건당 n=3), 0시간 또는 12시간에 측정한 상처 부위의 대표 이미지(좌측) 및 정량화 결과(우측)를 나타낸 것이다.Figure 4b treated SK-OV-3 cells with the indicated siRNAs; Or, after overexpressing SERPINF2 (n=3 per condition), representative images (left) and quantification results (right) of the wound area measured at 0 or 12 hours are shown.
도 4c는 표시된 siRNA로 처리시 또는 SERPINF2의 과발현시 (조건당 n=3), SK-OV-3 세포의 콜로니 형성 결과의 대표 이미지(좌측) 및 결과 그래프(우측)를 나타낸 것이다.4C shows representative images (left) and resultant graphs (right) of colony formation results of SK-OV-3 cells when treated with the indicated siRNAs or when SERPINF2 was overexpressed (n=3 per condition).
도 4d는 DMSO와 함께, 대조군 siRNA(siControl) 또는 FGA, VWF 및 ARHGDIB에 대해 표시된 siRNA로 처리하거나; 또는 SERPINF2의 과발현시킨 후(조건당 n=3), 발현량을 웨스턴 블롯팅으로 측정한 결과를 도시한 그림이다.4D shows treatment with control siRNA (siControl) or indicated siRNAs against FGA, VWF and ARHGDIB, together with DMSO; Alternatively, after overexpression of SERPINF2 (n=3 per condition), the figure shows the result of measuring the expression level by Western blotting.
도 4e는 대조군인 siControl 또는 FGA, VWF 및 ARHGDIB에 대해 표시된 siRNA로 처리한 후(조건당 n=3), 증식 분석을 통하여 SK-OV-3 세포의 생존력 값(Viability values)을 측정한 결과를 도시한 그래프이다.Figure 4e shows the results of measuring the viability values of SK-OV-3 cells through a proliferation assay after treatment with siControl as a control or siRNAs indicated for FGA, VWF and ARHGDIB (n = 3 per condition). This is the graph shown.
도 4f는 표시된 siRNA로 SK-OV-3 세포를 처리한 후(조건당 n=3), 0시간 또는 12시간에 측정한 상처 부위의 대표 이미지(좌측) 및 정량화 결과(우측)를 나타낸 것이다.Figure 4f shows representative images (left) and quantification results (right) of the wound area measured at 0 or 12 hours after SK-OV-3 cells were treated with the indicated siRNAs (n=3 per condition).
도 4g는 표시된 siRNA로 처리 시(조건당 n=3), SK-OV-3 세포의 콜로니 형성 결과의 대표 이미지(좌측) 및 결과 그래프(우측)를 나타낸 것이다.Figure 4g shows representative images (left) and result graphs (right) of colony formation results of SK-OV-3 cells when treated with the indicated siRNAs (n=3 per condition).
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for explaining the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .
실시예Example
실험방법 및 분석방법Experiment method and analysis method
연구 모집단study population
본 연구에서, 고등급 장액성 난소암(High-grade serous ovarian cancer, HGSOC) 환자와 대조군(HCs)의 혈청 샘플을 사용하였다. 연구대상인 모집단 그룹의 경우 다음 조건을 충족하는 환자를 식별하였다: (1) HGSOC 진단을 받은 환자; (2) 2012년 8월부터 2020년 12월 사이에 1차 외과적 치료를 받은 자 (3) 서면 동의서를 제공한 후 과학적 목적을 위해 수술 하루 전에 채취한 혈액 샘플을 기증한 사람. 한편, HGSOC 이외의 악성 종양이 있는 환자는 제외하였다. In this study, serum samples from high-grade serous ovarian cancer (HGSOC) patients and controls (HCs) were used. For the population group studied, patients who met the following criteria were identified: (1) patients diagnosed with HGSOC; (2) Those who underwent primary surgical treatment between August 2012 and December 2020 (3) Those who donated a blood sample taken one day before surgery for scientific purposes after providing written informed consent. Meanwhile, patients with malignancies other than HGSOC were excluded.
본 발명자들은 진단 당시 연령, 국제 산부인과 연맹(FIGO) 병기, 초기 혈청 CA-125 수치와 같은 환자의 기준 임상 병리학적 특성(baseline clinicopathologic characteristics)을 수집하였다. 생존 결과 측면에서, 무진행 생존(progression-free survival, PFS)은 진단일부터 질환 진행일까지의 시간 간격으로 정의하였다. 해당 실험 대상의 혈청 샘플은 냉동되어 신선하게 유지되었고, 서울대학교 병원 인간 바이오 뱅크에서 회수하였다. 대조군은 서울대학교병원 헬스케어시스템 강남센터에 정기건강검진을 받은 건강한 사람을 대상으로 하였다. We collected baseline clinicopathologic characteristics of the patients, such as age at diagnosis, International Federation of Obstetricians and Gynecologists (FIGO) stage, and initial serum CA-125 level. In terms of survival outcome, progression-free survival (PFS) was defined as the time interval from the date of diagnosis to the date of disease progression. Serum samples of the test subjects were frozen and kept fresh, and were recovered from the Human Biobank of Seoul National University Hospital. The control group was healthy people who underwent regular health checkups at Seoul National University Hospital Health Care System Gangnam Center.
시약reagent
다중 친화성 제거 컬럼(Agilent Technology, Palo Alto, CA, USA); S-Trap(Protifi, Huntington, NY, USA); 트리에틸암모늄 바이카보네이트 완충액(TEAB; Sigma); 아세토니트릴(ACN; Macron, Avantor Performance Materials, Center Valley, PA); DL-디티오트레이톨(DTT; Sigma); 요오도아세트아미드(IAA; Sigma); 트리플루오로아세트산(TFA; Pierce, Rockford, IL); 포름산(FA; 시그마); 디메틸 설폭사이드(DMSO; Sigma)를 사용하였다.multiple affinity elimination columns (Agilent Technology, Palo Alto, Calif., USA); S-Trap (Protifi, Huntington, NY, USA); triethylammonium bicarbonate buffer (TEAB; Sigma); acetonitrile (ACN; Macron, Avantor Performance Materials, Center Valley, PA); DL-dithiothreitol (DTT; Sigma); iodoacetamide (IAA; Sigma); trifluoroacetic acid (TFA; Pierce, Rockford, IL); Formic acid (FA; Sigma); Dimethyl sulfoxide (DMSO; Sigma) was used.
혈청샘플 준비Serum sample preparation
다중 친화성 제거 컬럼(MARS14)을 사용하여 혈장에서 가장 풍부한 14개의 단백질(알부민, IgA, IgG, IgM, α1-항트립신, α1-산 당단백질, 아포지단백질 A1, 아포지단백질 A2, 보체 C3, 트랜스페린, α2-마크로글로불린, 트랜스티레틴, 합토글로빈 및 피브리노겐)을 제거하였다. 전용(proprietary) “Buffer A”로 4배 희석된 혈청의 40μL의 부분 샘플을 바이너리 HPLC 시스템(20A Prominence, Shimadzu, Tokyo, Japan)의 MARS14 고갈 컬럼에 주입하였다. 결합되지 않은 분획을 100mM TEAB 용액에 100μL의 5% SDS가 포함된 수집 튜브에 수집한 다음, speed-vac 농축기(Thermo Fisher Scientific, Waltham, MA, USA)로 완전히 건조하였다. 건조된 샘플을 100μL의 50mM TEAB 용액에 재현탁하고 10분 동안 초음파 처리하였다. 단백질 100㎍을 환원시키고(DTT, 10mM, 56℃, 30분) 알킬화시켰다(IAA, 20mM, 암실 상온, 30분). 그런 다음 약간 변형한 제조업체의 지침에 따라 현탁액 트래핑(suspension trapping, S-Trap) 기반 트립신 소화(tryptic digestion)로 샘플을 준비하였다. 요약하면, 로딩 후 샘플을 90:10% 메탄올/50mM 중탄산암모늄으로 세척하였다. 그런 다음 샘플을 50mM 중탄산 암모늄으로 소화시켰고 트립신(1:25 트립신/단백질)을 이 분획에 첨가한 후 37℃에서 밤새 인큐베이션하였다. 소화된 펩티드를 1,000g에서 60초 동안 원심분리기로 용리하였다. 0.2% 포름산 및 50% 아세토니트릴에 포함된 0.2% 포름산을 사용하여 2번의 추가 용리를 수행하였다. 3개의 용리액을 함께 모으고, 진공 원심 분리하여 건조하고 사용할 때까지 -80℃에서 보관하였다.The 14 most abundant proteins in plasma (albumin, IgA, IgG, IgM, α1-antitrypsin, α1-acid glycoprotein, apolipoprotein A1, apolipoprotein A2, complement C3, transferrin) using a multiple affinity removal column (MARS14) , α2-macroglobulin, transthyretin, haptoglobin and fibrinogen) were removed. An aliquot of 40 μL of serum diluted 4-fold with proprietary “Buffer A” was injected onto the MARS14 depletion column of a binary HPLC system (20A Prominence, Shimadzu, Tokyo, Japan). The unbound fraction was collected in a collection tube containing 100 μL of 5% SDS in 100 mM TEAB solution and then completely dried in a speed-vac concentrator (Thermo Fisher Scientific, Waltham, MA, USA). The dried samples were resuspended in 100 μL of 50 mM TEAB solution and sonicated for 10 minutes. 100 μg of protein was reduced (DTT, 10 mM, 56° C., 30 minutes) and alkylated (IAA, 20 mM, room temperature in the dark, 30 minutes). Samples were then prepared by suspension trapping (S-Trap) based tryptic digestion according to the manufacturer's instructions with slight modifications. Briefly, after loading, samples were washed with 90:10% methanol/50 mM ammonium bicarbonate. Samples were then digested with 50 mM ammonium bicarbonate and trypsin (1:25 trypsin/protein) was added to this fraction followed by overnight incubation at 37°C. Digested peptides were eluted by centrifugation at 1,000 g for 60 seconds. Two additional elutions were performed using 0.2% formic acid and 0.2% formic acid in 50% acetonitrile. The three eluents were pooled together, dried by vacuum centrifugation and stored at -80°C until use.
혈청 스펙트럼 라이브러리 생성을 위한 포괄적인 혈청 프로테옴 프로파일링 실험Comprehensive Serum Proteome Profiling Experiments for Serum Spectral Library Generation
혈청 프로테옴 프로파일링 실험을 위해 총 157개의 혈청 펩타이드 샘플을 조합하여 6개의 합동 샘플 그룹(pooled sample groups)(Benign, Clear Cell, Endometriod, High-Grade Serous, Mucinous 및 Healthy)을 만들었다.For serum proteome profiling experiments, a total of 157 serum peptide samples were combined to create 6 pooled sample groups (Benign, Clear Cell, Endometriod, High-Grade Serous, Mucinous and Healthy).
이전에 개발된 이중 온라인 비연속 분획화(dual online noncontiguous fractionating) 및 연결 역상/역상 액체 크로마토그래피(concatenating reverse phase/reverse phase liquid chromatography )(DO-NCFC-RP/RPLC) 시스템을 24개의 NCFC 분획을 생성하도록 수정하였다. 요약하면, 온라인 NCFC 장치는 중간-pH RP 컬럼(150μm × 50cm)과 24개의 분수 루프(200μm)로 상호 연결된 2개의 NCFC 밸브(25포트, 1채널, C5M-66024D, VICI)로 구성하였다. 이중 온라인 액체 크로마토그래피 시스템의 경우 2개의 SPE 컬럼(150μm × 3cm)과 2개의 분석 컬럼(75μm × 150cm)을 사용하였다. 모든 컬럼은 Jupiter C18 재료(3 μm, 300 Å, Phenomenex)로 채워서 자체 제작하였으며, 60℃ 에서 가열하였다.A previously developed dual online noncontiguous fractionating and concatenating reverse phase/reverse phase liquid chromatography (DO-NCFC-RP/RPLC) system was used to obtain 24 NCFC fractions. modified to create In summary, the online NCFC device consisted of a mid-pH RP column (150 μm × 50 cm) and two NCFC valves (25-port, 1-channel, C5M-66024D, VICI) interconnected by 24 fractional loops (200 μm). For the dual online liquid chromatography system, two SPE columns (150 μm × 3 cm) and two analytical columns (75 μm × 150 cm) were used. All columns were built in-house, packed with Jupiter C18 material (3 μm, 300 Å, Phenomenex), and heated at 60 °C.
각 합동 샘플 그룹의 혈청 펩타이드(25μg, 40μg 또는 50μg)를 온라인 1차원 분리(online 1st dimensional separation)를 위해 중간-pH 컬럼에 주입하고 분리하였다. 중간-pH 용매 A(물 용매에서 10mM TEAB, pH 7.5) 및 중간-pH 용매 B(99% ACN 용매에서 10mM TEAB, pH 7.5)를 사용하여 구배(유속 1μL/min에서 1-50% 용매B로 120분)를 생성하였다. mRP 기울기 용출 동안 2개의 NCFC 밸브를 5주기 동안 1분 간격으로 동시에 회전하여 24개의 분획 루프 각각에 비연속적으로 연결된 5개의 1분 용출액이 포함되도록 하였다. 2차원 분리를 위해 24개의 온라인 NCFC 분획 각각을 산성화 및 희석 완충액(0.2% TFA in water)으로 10배 희석하면서 SPE 컬럼으로 옮겼다. 저-pH 용매 A(물 용매, 0.1% 포름산) 및 저-pH 용매 B(ACN 용매, 0.1% 포름산)를 사용하여 구배(0.3μL/min의 유속에서 160분 동안 10-37.5% Sol B, 37.5-80% Sol 5분 동안 B, 13분 동안 80% Sol B, 2분 동안 10% Sol B)하였다.Serum peptides (25 μg, 40 μg or 50 μg) from each pooled sample group were injected and separated on a mid-pH column for online 1st dimensional separation. Gradient (1-50% solvent B at a flow rate of 1 μL/min) using mid-pH solvent A (10 mM TEAB, pH 7.5 in water solvent) and mid-pH solvent B (10 mM TEAB, pH 7.5 in 99% ACN solvent). 120 min) was created. During mRP gradient elution, two NCFC valves were rotated simultaneously at 1-minute intervals for 5 cycles to include 5 discontinuously connected 1-minute eluates in each of the 24 fractionation loops. For two-dimensional separation, each of the 24 online NCFC fractions was transferred to a SPE column while diluting 10-fold with an acidification and dilution buffer (0.2% TFA in water). Using low-pH solvent A (water solvent, 0.1% formic acid) and low-pH solvent B (ACN solvent, 0.1% formic acid), a gradient (10-37.5% Sol B, 37.5% Sol B over 160 min at a flow rate of 0.3 μL/min) -80% Sol B for 5 minutes, 80% Sol B for 13 minutes, 10% Sol B for 2 minutes).
DO-NCFC-RP/RPLC는 고자기장 비대칭 파형 이온 이동성 분광계(high field asymmetric waveform ion mobility spectrometry)(FAIMS ProTM, Thermo Fisher Scientific, Bremen, Germany)가 있는 Orbitrap Exploris™ 480 질량 분석기(Thermo Fisher Scientific, Bremen, Germany)에 온라인으로 연결하였다. 펩타이드는 본사의 3kV 분무전압(spray voltage)를 가지는 나노전기분무 소스(nanoelectrospray source)를 이용하여 이온화하였고, 탈용매화 모세관의 온도는 250℃로 설정하였다. -35V, -50V 및 -60V의 세 가지 보상 전압(CV)을 1초 주기 시간으로 사용하였다. 내부 및 외부 전극의 온도는 모두 100℃로 설정하였다. 각 CV에 대해 전체 MS 스캔(300-1400 Th)은 60,000의 분해능에서 얻었고 전체 MS AGC 타겟값은 20ms의 IT로 500이었다. 1.2 Th의 격리 창(isolation window)과 28의 정규화된 충돌 에너지(normalized collision energy, NCE)는 고에너지 충돌 해리(HCD)에 사용하였다. MS/MS 스펙트럼은 15,000의 분해능과 1000의 AGC 타겟 및 32ms의 IT에서 수득하였다. MS/MS 데이터는 mPE-MMR(Post-Experiment Monoisotopic Mass Refinement)을 거치게 하였고, 결과 MS/MS 데이터(예: mgf 파일)는 UniProt 인간 참조 데이터베이스(2020년 8월 출시, 97.093개 항목 포함) 및 일반적인 오염 물질(179개 항목)로 구성된 단백질 데이터베이스에서 MS-GF+ 검색 엔진(v9949, http://proteomics.ucsd.edu/software-tools/ms-gf/)를 이용하여 검색하였다. 검색 매개변수(search parameters)는 반-트립신 절단(semi-tryptic cleavage) 및 10ppm의 전구체 질량 허용 오차로 하였다. 시스테인의 카르바미도메틸화 (Carbamidomethylation)는 정적 변형(static modification)에 사용하였고, 메티오닌의 산화와 아스파라긴과 글루타민의 탈아미드화는 가변 변형(variable modifications)에 사용하였다. 검색결과는 PSM(Peptide Spectrum Match) 수준에서 1%의 FDR(False Discovery Rate)의 표적-유인체 분석(target-decoy analysis)으로 필터링하였다. 단백질 추론(protein inference)을 위해 이분 그래프 분석(bipartite graph analysis)을 사용하였다. 형제 펩타이드(sibling peptides)가 가장 많은 단백질을 각 단백질 군에서 대표 단백질로 선정하였다. 하나 이상의 단백질이 같은 수의 형제 펩타이드를 가진 경우에는 서열 커버리지가 가장 높은 단백질을 대표 단백질로 선택하였다. 또한, 독특한 펩타이드를 갖는 단백질을 별도의 대표 단백질로 간주하였다.The DO-NCFC-RP/RPLC is an Orbitrap Exploris™ 480 Mass Spectrometer (Thermo Fisher Scientific, Bremen, Germany) with a high field asymmetric waveform ion mobility spectrometry (FAIMS ProTM, Thermo Fisher Scientific, Bremen, Germany). , Germany) online. Peptides were ionized using our company's nanoelectrospray source with 3 kV spray voltage, and the temperature of the desolvation capillary was set at 250 °C. Three compensation voltages (CVs) of -35V, -50V and -60V were used with a cycle time of 1 second. Temperatures of the inner and outer electrodes were both set to 100°C. For each CV, full MS scans (300–1400 Th) were obtained at a resolution of 60,000 and the full MS AGC target was 500 with an IT of 20 ms. An isolation window of 1.2 Th and a normalized collision energy (NCE) of 28 were used for high-energy collision dissociation (HCD). MS/MS spectra were obtained at a resolution of 15,000, an AGC target of 1000, and an IT of 32 ms. MS/MS data were subjected to post-experimental monoisotopic mass refinement (mPE-MMR), and the resulting MS/MS data (e.g. mgf files) were submitted to the UniProt human reference database (released August 2020, containing 97.093 entries) and general The protein database consisting of contaminants (179 items) was searched using the MS-GF+ search engine (v9949, http://proteomics.ucsd.edu/software-tools/ms-gf/). The search parameters were semi-tryptic cleavage and a precursor mass tolerance of 10 ppm. Carbamidomethylation of cysteine was used for static modification, and oxidation of methionine and deamidation of asparagine and glutamine were used for variable modifications. The search results were filtered by target-decoy analysis with a False Discovery Rate (FDR) of 1% at the PSM (Peptide Spectrum Match) level. For protein inference, bipartite graph analysis was used. A protein with the most sibling peptides was selected as a representative protein in each protein group. When more than one protein has the same number of sibling peptides, the protein with the highest sequence coverage was selected as the representative protein. In addition, proteins with unique peptides were regarded as separate representative proteins.
최종 펩타이드의 대표적인 MS/MS 스펙트럼을 사용하여 스펙트럼 라이브러리 데이터베이스를 구축하였다. 요약하면, 각 펩타이드 이온에서 가장 높은 검색 점수(즉, -log(SpecE-value))를 갖는 MS2 스펙트럼을 대표적인 MS/MS 스펙트럼으로 선택하였다. 각 펩타이드에 대해 대표적인 MS/MS 스펙트럼의 단편 피크는 0.01 Da 내에서 이론적인 단편(b 및 y 타입)과 일치하였다. 주석이 달린 절편(annotated fragments)은 수집하고, 주석이 없는 다른 조각은 제거하였다. 최종적으로, 5개 이상의 주석이 달린 단편이 있는 대표적인 MS/MS 스펙트럼이 실험 질량 정보 및 머무름 시간 정보와 함께 스펙트럼 라이브러리에 포함되었다. 각 NCFC 분획에 스파이킹된 iRT 펩타이드(Ki-3002-2, Biognosys)를 사용하여 실험적 머무름 시간을 정규화된 용출 시간으로 변환하였다.A spectral library database was constructed using representative MS/MS spectra of the final peptides. In summary, the MS2 spectrum with the highest search score (i.e., -log(SpecE-value)) for each peptide ion was selected as a representative MS/MS spectrum. The fragment peaks of the representative MS/MS spectra for each peptide matched the theoretical fragments (type b and y) within 0.01 Da. Annotated fragments were collected, and other unannotated fragments were removed. Finally, representative MS/MS spectra with at least 5 annotated fragments were included in the spectral library, along with experimental mass information and retention time information. Experimental retention times were converted to normalized elution times using an iRT peptide (Ki-3002-2, Biognosys) spiked into each NCFC fraction.
데이터 비의존성 획득 분석법 및 데이터 처리Data-independent acquisition methods and data processing
소화된 펩티드는 Dionex UltiMate 3000 RSLCnano 시스템(Thermo Fisher Scientific)을 사용하여 분리하였다. 트립신으로 처리된 펩티드를 0.1% TFA에서 재구성하고 C18 Pepmap 트랩 컬럼(20mm x 100μm i.d., 5μm, 100 Å; Thermo Scientific)이 장착된 Acclaim™ Pepmap RSLC C18 컬럼(150mm × 150μm i.d., 2μm, 100Å)에서 50℃ 환경 및 0.1% 포름산 및 5% DMSO에서 5-40% 아세토니트릴 구배를 사용하여 60분(1μL/min)에 걸쳐 분리하였다. LC는 EASY-SPRAY™ 소스(Thermo Fisher Scientific)가 있는 Orbitrap Exploris™ 480 질량 분석기에 연결하였다. 질량 분석 실행은 DIA 모드에서 작동시켰다. DIA 실험의 경우 전체 MS 분해능은 60,000으로 설정되었고 전체 MS AGC 목표는 25ms의 IT로 300%이었으며, m/z 범위는 300-1,400으로 설정하였다. MS2 스펙트럼에 대한 AGC 목표 값은 1000%로 설정하였으며, 24 Da의 44개의 윈도우를 1 Da의 중첩과 함께 사용하였다. 해상도는 15,000으로, IT는 22ms로 설정하였다. NCE는 27로 설정하였다. 이중 CV(dual CV)가 -35V 및 -45V인 FAIMS에는 가스 흐름(gas flow)이 적용되지 않고 분무 전압(spray voltage)이 2.5kV로 설정되었다는 점을 제외하고는 기본 설정을 사용하였다. LC-DIA-MS/MS 데이터는 자체 혈청 스펙트럼 라이브러리와 함께 DIA-NN17(버전 1.7.10)을 사용하여 처리하였다. m/z 범위가 전구체의 경우 300-1,300이고 단편 이온의 경우 200-1,300이라는 점을 제외하고는 스펙트럼은 기본 설정으로 검색하였다. 식별 결과는 전구체 수준에서 1%의 FDR으로 필터링하였다. MaxLFQ 알고리즘을 사용하여 펩티드 및 단백질의 양(quantities)을 얻었고, 해당 양 데이터를 분위수 정규화(quantile normalization)하였다. 모든 LC-MS/MS 데이터는 데이터세트 식별자 PXD033169로 PRIDE 파트너 리포지토리(repository)를 통해 ProteomeXchange 컨소시엄에 기탁하였다.Digested peptides were isolated using a Dionex UltiMate 3000 RSLCnano system (Thermo Fisher Scientific). Trypsinized peptides were reconstituted in 0.1% TFA and run on an Acclaim™ Pepmap RSLC C18 column (150 mm × 150 μm i.d., 2 μm, 100 Å) equipped with a C18 Pepmap trap column (20 mm × 100 μm i.d., 5 μm, 100 Å; Thermo Scientific). Separation was performed over 60 minutes (1 μL/min) using a 5-40% acetonitrile gradient in a 50° C. environment and 0.1% formic acid and 5% DMSO. The LC was connected to an Orbitrap Exploris™ 480 mass spectrometer with an EASY-SPRAY™ source (Thermo Fisher Scientific). Mass spectrometry runs were run in DIA mode. For the DIA experiment, the overall MS resolution was set to 60,000, the overall MS AGC target was 300% with an IT of 25 ms, and the m/z range was set to 300-1,400. The AGC target value for the MS2 spectrum was set at 1000%, and 44 windows of 24 Da with an overlap of 1 Da were used. Resolution was set to 15,000 and IT was set to 22 ms. NCE was set at 27. The default settings were used except that no gas flow was applied and the spray voltage was set to 2.5 kV for FAIMS with dual CVs of -35V and -45V. LC-DIA-MS/MS data were processed using DIA-NN17 (version 1.7.10) with its own serum spectral library. Spectra were retrieved with default settings except that the m/z range was 300-1,300 for precursors and 200-1,300 for fragment ions. Identification results were filtered with an FDR of 1% at the precursor level. Quantities of peptides and proteins were obtained using the MaxLFQ algorithm, and the corresponding quantity data were quantile normalized. All LC-MS/MS data have been deposited with the ProteomeXchange consortium through the PRIDE partner repository under the dataset identifier PXD033169.
차등differential 발현 분석Expression analysis
통합 통계 방법(integrative statistical method)을 적용하여 차등적으로 발현된 펩타이드 및 단백질(각각 DEPeptides 및 DEProteins)을 정의하였다. 요약하면, 각 펩타이드 또는 단백질에 대해 각 비교에서 Students' t-test, Wilcoxon-Ranksum 테스트 및 log2-median-ratio를 사용하여 검정 통계량(test statistics)을 계산하였다. 그런 다음 모든 샘플을 10,000번 무작위로 치환하여 귀무 가설에 대한 검정 통계 및 log2-median-ratio의 경험 분포(empirical distributions)를 추정하였다. 추정된 경험 분포를 사용하여 각 펩타이드 또는 단백질에 대해 관찰된 검정 통계 및 log2-median-ratio에 대한 조정된 p-값을 계산한 다음 Stouffer의 방법(Stouffer’s method)을 사용하여 이러한 p-값을 결합하여 전체 p-값을 계산하였다. 마지막으로, 각 비교에서 전체 p-값이 <0.05이고, 경험적 분포의 10번째 및 90번째 백분위수 평균보다 절대 log2-median-ratio가 더 큰 것으로 DEPeptides를 식별하였다. 본 발명자들은 t-test p-value가 <0.05이고, 절대 log2-median-ratios 값이 log2-median-ratios에 대한 경험적 분포의 10번째 및 90번째 백분위수의 평균보다 크며, 일관된 DEPeptides의 수(the number of consistent DEPeptides)≥1인 것으로 DEProteins를 정의하였다. 각 비교에서 두 테스트 그룹의 전체 샘플의 절반 이상에서 발현된 펩타이드와 단백질만을 가설 테스트에 사용하였다.An integrative statistical method was applied to define differentially expressed peptides and proteins (DEPeptides and DEProteins, respectively). Briefly, for each peptide or protein, test statistics were calculated using Students' t-test, Wilcoxon-Ranksum test and log2-median-ratio at each comparison. Then, all samples were randomly permuted 10,000 times to estimate the test statistics and empirical distributions of log2-median-ratio for the null hypothesis. Calculate the observed test statistic and adjusted p-value for the log2-median-ratio for each peptide or protein using the estimated empirical distribution, then combine these p-values using Stouffer's method to calculate the overall p-value. Finally, we identified DEPeptides with an overall p-value <0.05 for each comparison and an absolute log2-median-ratio greater than the mean of the 10th and 90th percentiles of the empirical distribution. We found that the t-test p-value was <0.05, the absolute log2-median-ratios value was greater than the mean of the 10th and 90th percentiles of the empirical distribution for log2-median-ratios, and the number of consistent DEPeptides (the DEProteins were defined as number of consistent DEPeptides)≥1. In each comparison, only peptides and proteins expressed in more than half of the total samples of the two test groups were used for hypothesis testing.
경로분석path analysis
ConsensusPathDB를 사용하여 경로 과잉 표현 분석(Pathway over-representation analysis)을 수행하였다. DEProteins가 나타내는 경로는 q-value가 0.05 미만이고 경로에 관여하는 분자의 수가 3 이상인 경로로 식별하였다. 현재 연구에서 확인된 전체 유전자 세트는 배경 유전자 목록으로 사용하였다. 확인된 경로는 기능적 관련성에 따라 '면역계', 'IGF 신호전달', 'TGF-β 신호전달', 'ECM 조직' 또는 '지단백질 조립'으로 분류하였다. 과도하게 표현된 경로와 관련된 DEProteins에 대한 네트워크 모델을 구성하였다. 네트워크는 노드를 단백질로 설정하고 단백질-단백질 상호작용 및 활성화/억제 관계를 추가하여 구성하였다. KEGG(Kyoto Encyclopedia of Genes and Genomes) 데이터베이스 및 문헌 검색에서 얻은 국소화(localization) 및 활성화/억제 관계를 기반으로 노드를 정렬하였다. 네트워크는 Cytoscape를 사용하여 그렸다.Pathway over-representation analysis was performed using ConsensusPathDB. The pathway represented by DEProteins was identified as a pathway with a q-value of less than 0.05 and a number of molecules involved in the pathway of 3 or more. The entire set of genes identified in the present study was used as a background gene list. The identified pathways were classified into 'immune system', 'IGF signaling', 'TGF-β signaling', 'ECM organization' or 'lipoprotein assembly' according to their functional relevance. A network model was constructed for the DEProteins associated with the overrepresented pathways. The network was constructed by setting nodes to proteins and adding protein-protein interactions and activation/inhibition relationships. Nodes were aligned based on localization and activation/inhibition relationships obtained from the KEGG (Kyoto Encyclopedia of Genes and Genomes) database and literature search. Networks were drawn using Cytoscape.
다중 및 병렬 반응 모니터링 분석Multiple and parallel reaction monitoring assays
MRM-MS(Multiple Reaction Monitoring-Mass Spectrometry) 분석은 Qtrap5500 plus(Sciex)와 함께 적용하였다. 트립신으로 처리한 펩티드는 ZORBAX 300SB-C18 역상 컬럼(0.5mm × 150μm i.d., 3.5μm, 100Å; Agilent)에서 0.1% 포름산의 5-40% 아세토니트릴 구배를 사용하여 15분(20μL/min)에 걸쳐 분리하였다. 각 이온화된 펩타이드에 대한 충돌 에너지(Collision energy, CE) 값은 값을 제공하는 SKYLINE을 이용하여 결절하였다. Parallel Reaction Monitoring-Mass Spectrometry(PRM-MS) 분석은 Orbitrap Exploris™ 480 질량 분석기로 적용하였다. 트립신으로 처리한 펩티드는 C18 Pepmap 트랩 컬럼(20mm x 100μm i.d., 5μm, 100Å, Thermo Scientific)이 장착된 Acclaim™ Pepmap RSLC C18 컬럼(150mm × 150μm i.d., 2μm, 100Å)에서 50℃, 0.1% 포름산 및 5% DMSO에서 5-40% 아세토니트릴 구배를 사용하여 60분 이상(1.5μL/min) 동안 분리하였다. 질량 분석은 표적 질량 모드(targeted mass mode)에서 실행하였다. 전구체 표적 질량, m/z 값 및 전하 상태는 합성 펩타이드를 사용한 데이터 의존 획득 분석을 통해 나열하였다. PRM 실험의 경우 전체 MS 분해능은 60,000으로, 전체 MS AGC 목표는 25ms의 IT로 300으로 설정하였고, m/z 범위는 280-1,200으로 설정하였다. MS/MS 분해능은 15,000으로, IT는 22ms로 설정하였으며, NCE는 27로 설정하였다. 분 전압은 2.5kV로 설정하였고, PRM-MS 스펙트럼 피크를 선택하고 SKYLINE으로 계산하였다.MRM-MS (Multiple Reaction Monitoring-Mass Spectrometry) analysis was applied with Qtrap5500 plus (Sciex). Trypsinized peptides were sampled on a ZORBAX 300SB-C18 reversed-phase column (0.5 mm × 150 μm i.d., 3.5 μm, 100 Å; Agilent) using a 5-40% acetonitrile gradient in 0.1% formic acid over 15 min (20 μL/min). separated. Collision energy (CE) values for each ionized peptide were determined using SKYLINE, which provides values. Parallel Reaction Monitoring-Mass Spectrometry (PRM-MS) analysis was applied with an Orbitrap Exploris™ 480 mass spectrometer. Trypsinized peptides were prepared on an Acclaim™ Pepmap RSLC C18 column (150 mm × 150 μm i.d., 2 μm, 100 Å) equipped with a C18 Pepmap trap column (20 mm × 100 μm i.d., 5 μm, 100 Å, Thermo Scientific) at 50 °C in 0.1% formic acid and Separation was carried out over 60 min (1.5 μL/min) using a 5-40% acetonitrile gradient in 5% DMSO. Mass spectrometry was performed in targeted mass mode. Precursor target mass, m/z value and charge state were listed through data-dependent acquisition analysis using synthetic peptides. For the PRM experiment, the overall MS resolution was set to 60,000, the overall MS AGC target was set to 300 with an IT of 25 ms, and the m/z range was set to 280-1,200. MS/MS resolution was set to 15,000, IT was set to 22 ms, and NCE was set to 27. The minute voltage was set to 2.5 kV, and the peaks of the PRM-MS spectrum were selected and calculated by SKYLINE.
인-비트로 기능 분석In vitro functional analysis
세포 배양cell culture
인간 HGSOC 암 세포주 SK-OV-3은 서울대학교 의과대학(한국)에서 입수하였다. SK-OV-3 세포는 RPMI 1640(Corning; 10-041-CV), 10% 소태아혈청(FBS; Invitrogen), 및 1% Penicillin/streptomycin(WelGENE Inc.)을 함유하는 배지에서 37℃ in 5% CO2로 배양하였다. 세포는 3일 동안 신선한 영양소로 유지하였다.Human HGSOC cancer cell line SK-OV-3 was obtained from Seoul National University College of Medicine (Korea). SK-OV-3 cells were cultured at 37°C in 5 medium containing RPMI 1640 (Corning; 10-041-CV), 10% fetal bovine serum (FBS; Invitrogen), and 1% Penicillin/streptomycin (WelGENE Inc.). Incubated with % CO2. Cells were maintained with fresh nutrients for 3 days.
플라스미드 및 siRNA 형질감염Plasmid and siRNA transfection
Myc-DDK 태그가 붙은 플라스미드는 OriGene Technologies, Inc.(Rockville, MD)에서 구입하였다. Myc-DDK 태그가 붙은 SERPINF2-인간 세르핀 펩티다제 억제제(RC206435) 플라스미드를 형질감염에 사용하였다. Invitrogen(#L3000008)의 제조업체 프로토콜에 따라 Lipofectamine 3000 시약을 사용하여 플라스미드를 SK-OV-3 세포에 형질감염시켰다. 녹다운 실험을 위해 다음 siRNA를 Genolution, Inc.(한국)에서 구입하였다 : Plasmids tagged with Myc-DDK were purchased from OriGene Technologies, Inc. (Rockville, MD). A Myc-DDK tagged SERPINF2-human serpin peptidase inhibitor (RC206435) plasmid was used for transfection. Plasmids were transfected into SK-OV-3 cells using Lipofectamine 3000 reagent according to the manufacturer's protocol from Invitrogen (#L3000008). For knockdown experiments, the following siRNAs were purchased from Genolution, Inc. (Korea):
Negative Control 5’-CCUCGUGCCGUUCCAUCAGGUAGUU-3’(서열번호 22), Negative Control 5'-CCUCGUGCCGUUCCAUCAGGUAGUU-3' (SEQ ID NO: 22),
siFGA-1 5'-CUCUGUAUCUGGUAGUACUUU-3‘ (서열번호 23), siFGA-1 5'-CUCUGUAUCUGGUAGUACUUU-3' (SEQ ID NO: 23),
siFGA-2 5'-GGAUUUAGGCACAUUGUCUUU-3‘ (서열번호 24), siFGA-2 5'-GGAUUUAGGCACAUUGUCUUU-3' (SEQ ID NO: 24),
siVWF-1 5'-CCUUCUGAGCCCACAAUAAUU-3‘ (서열번호 25), siVWF-1 5'-CCUUCUGAGCCCACAAUAAUU-3' (SEQ ID NO: 25),
siVWF-2 5'-GCUGUAAGUCUGAAGUAGAUU-3‘ (서열번호 26), siVWF-2 5'-GCUGUAAGUCUGAAGUAGAUU-3' (SEQ ID NO: 26),
siARHGDIB-1 5'-GGAAAUGGACAAAGAUGAUUU-3‘ (서열번호 27) 및 siARHGDIB-1 5'-GGAAAUGGACAAAGAUGAUUU-3' (SEQ ID NO: 27) and
siARHGDIB-2 5'-AAACCAUUGUGUUAAAGGAUU-3‘ (서열번호 28).siARHGDIB-2 5'-AAACCAUUGUGUUAAAGGAUU-3' (SEQ ID NO: 28).
Invitrogen(#13778075)의 제조업체 프로토콜에 따라 Lipofectamine RNAiMAX 형질감염 시약을 사용하여 siRNA를 SK-OV-3 세포에 형질감염시켰다. SK-OV-3 세포를 siRNA 시약에 72시간 노출시키고 PBS(WelGENE Inc.)로 수확하였다. 또한, DNA 형질감염을 리포펙타민으로 희석된 Opti-MEM에서 28시간 동안 인큐베이션하고 웨스턴 블롯팅을 위해 수확하였다. 증식 분석 및 세포 이동을 위해, 세포를 48시간째에 siRNA 시약으로 형질감염시키고 24시간째에 DNA 형질감염된 시약으로 형질감염시켰다.siRNA was transfected into SK-OV-3 cells using Lipofectamine RNAiMAX transfection reagent according to the manufacturer's protocol from Invitrogen (#13778075). SK-OV-3 cells were exposed to siRNA reagent for 72 hours and harvested with PBS (WelGENE Inc.). In addition, DNA transfections were incubated for 28 hours in Opti-MEM diluted with Lipofectamine and harvested for Western blotting. For proliferation assays and cell migration, cells were transfected at 48 hours with siRNA reagents and at 24 hours with DNA transfected reagents.
웨스턴 블롯팅western blotting
포스파타제 억제제(100X 칵테일 GenDEPOT)를 포함하는 RIPA 용해 완충액(cell biolabs, Inc.)에서 세포를 용해시켰다. 용해물을 95℃, 5분에서 SDS 샘플 완충액(Alfa Aesar Thermo)으로 끓였다. 단백질을 4-20% 프리캐스트 SDS-PAGE 겔(BIORAD)로 분리하고 ATTO EZ Fast 프로토콜의 15분에 FL-PVDF 멤브레인(MERCK)으로 옮겼다. 막 차단은 1X TBST에서 5% 알부민 소 혈청(BSA; EcoCell)과 1차 항체와 함께 4℃에서 밤새 인큐베이션하여 수행하였다. 막을 1차 환원시킨 다음 1X TBST로 3회 세척하고 실온에서 30분 동안 2차 항체로 인큐베이션하였다. 그런 다음 검출된 단백질은 웨스턴 블롯팅 시약 용액(Roche)과 ODYSSEY Fc System (Li-Cor Bioscience)의 ECL(ElectroChemiLuminescence)을 사용하였다. 웨스턴 블롯팅을 위해 다음 항체를 사용하였다: FGA(Mα 1:500; ab92572, Abcam), VWF(Rα 1:500; ab189500, Abcam), ARHGDIB(D4GDI 1:1000; ab181252, Abcam), α-Tubulin DM1A Mα 1:1000; Cell Signaling Technology Inc.), FLAG(GT231 Mα 1:1000; GTX629631, GeneTex Inc), 항-마우스 IgG 항체 HRP(1:3000; 170-6516, BIORAD) 및 항-토끼 IgG 항체 HRP(1:3000; 170-6515, BIORAD).Cells were lysed in RIPA lysis buffer (cell biolabs, Inc.) containing a phosphatase inhibitor (100X cocktail GenDEPOT). Lysates were boiled in SDS sample buffer (Alfa Aesar Thermo) at 95° C. for 5 minutes. Proteins were separated on a 4-20% precast SDS-PAGE gel (BIORAD) and transferred to a FL-PVDF membrane (MERCK) in a 15 min ATTO EZ Fast protocol. Membrane blocking was performed by overnight incubation at 4° C. with primary antibodies in 5% bovine albumin serum (BSA; EcoCell) in 1X TBST. Membranes were first reduced, washed three times with 1X TBST, and incubated with secondary antibodies for 30 minutes at room temperature. Then, the detected proteins were used for western blotting reagent solution (Roche) and ECL (Electrochemiluminescence) of ODYSSEY Fc System (Li-Cor Bioscience). For Western blotting, the following antibodies were used: FGA (Mα 1:500; ab92572, Abcam), VWF (Rα 1:500; ab189500, Abcam), ARHGDIB (D4GDI 1:1000; ab181252, Abcam), α-Tubulin DM1A Ma 1:1000; Cell Signaling Technology Inc.), FLAG (GT231 Mα 1:1000; GTX629631, GeneTex Inc), anti-mouse IgG antibody HRP (1:3000; 170-6516, BIORAD) and anti-rabbit IgG antibody HRP (1:3000; 170-6515, BIORAD).
세포 증식 분석cell proliferation assay
WST-1 분석 키트는 TaKara의 제조업체 프로토콜(MK400; Premix WST-1 Cell Proliferation Assay System)에 따라 세포 증식 분석에 사용하였다. 형질감염된 세포를 100μl 배지에 웰당 1000개 세포의 밀도로 96-웰 플레이트에 플레이팅하고 5일 동안 인큐베이션하였다. 그런 다음 세포에 10ul WST-1 시약을 처리하고 4시간 후 450nm에서 formazan 염료의 흡광도를 측정하여 세포의 증식을 분석하였다.The WST-1 assay kit was used for cell proliferation assay according to TaKara's manufacturer's protocol (MK400; Premix WST-1 Cell Proliferation Assay System). Transfected cells were plated in 96-well plates at a density of 1000 cells per well in 100 μl medium and incubated for 5 days. Then, the cells were treated with 10ul WST-1 reagent, and after 4 hours, the absorbance of the formazan dye was measured at 450 nm to analyze cell proliferation.
상처 치유 분석Wound Healing Assay
세포 이동은 웰당 500개 세포의 밀도로 배양된 12웰 플레이트에서 SK-OV-3 세포의 스크래치를 통해 평가하였다. 10×/0.22 PH1 렌즈와 MC170 HD 카메라가 있는 LEICA DMi1 현미경 시스템을 사용하여 0시간 및 12시간 시점의 상처 치유 이미지 스냅을 획득하였다. 실험은 3개의 웰을 통하여 삼중으로 수행하였다. 각 실험에서 4가지 다른 위치에서 상처 봉합의 평균 너비를 ImageJ 소프트웨어를 사용하여 촬영하였다.Cell migration was assessed by scratching SK-OV-3 cells in 12-well plates cultured at a density of 500 cells per well. Wound healing image snaps were acquired at 0 and 12 h time points using a LEICA DMi1 microscope system with a 10×/0.22 PH1 lens and an MC170 HD camera. Experiments were performed in triplicate through three wells. The average width of the wound closure at 4 different locations in each experiment was imaged using ImageJ software.
콜로니 형성 분석Colony formation assay
형질감염된 세포를 웰당 500개 세포의 밀도로 6-웰 플레이트에 플레이팅하였다. 10일 후, 콜로니를 실온에서 PBS로 1회 세척하고 0.5% 크리스탈 바이올렛(V5265, Sigma)으로 1시간 동안 염색하고, 3회 세척하여 잔여 염색약을 제거하였다. 그런 다음 콜로니를 밤새 건조시키고 ImageJ 소프트웨어를 사용하여 분석하였다.Transfected cells were plated in 6-well plates at a density of 500 cells per well. After 10 days, the colonies were washed once with PBS at room temperature, stained with 0.5% crystal violet (V5265, Sigma) for 1 hour, and washed three times to remove residual dye. Colonies were then dried overnight and analyzed using ImageJ software.
인비트로 기능 분석의 통계 분석Statistical analysis of in vitro functional analysis
양방적 t-검정(Two-tailed t-test)을 모든 기능적 실험 결과의 통계적 유의성을 추정하는 데 사용하였다. 0.05 미만의 p-값은 유의미한 것으로 간주하였고, 각 실험은 3개의 생물학적 복제로 수행하였다.Two-tailed t-tests were used to estimate the statistical significance of all functional test results. A p-value of less than 0.05 was considered significant and each experiment was performed in three biological replicates.
실험결과Experiment result
연구 모집단의 특성화Characterization of the study population
HGSOC에 대한 잠재적 진단 바이오마커의 발견을 위해 54개의 HGSOC에 대한 환자 케이스와 48명의 건강한 대조군(HC) 피험자를 준비하였다 : (1) 26 HGSOC 및 24 HC로 구성된 단백질체학 프로파일링을 위한 발견 세트(discovery set) 및 (2) 28개의 HGSOC 및 24개의 HC로 구성된 표적 MS(targeted MS) 실험에 대한 검증 세트(validation set)(표 1). HGSOC 환자의 평균 연령은 발견 및 검증 세트에서 각각 59.5세 및 56세였고, HC의 경우 발견 및 검증 세트에서 각각 46세 및 48.5세이었다. FIGO Ⅰ기, Ⅱ기, Ⅲ기 HGSOC 환자의 수는 디스커버리 세트에서 각각 3, 3, 20명, 검증 세트에서 3, 10, 15명이었다. 중간 관찰 기간인 25개월 동안 HGSOC 환자 중 발견세트에서 42.3%, 검증세트에서 57.1% 1차 치료 수술 후 재발을 경험하였다.For the discovery of potential diagnostic biomarkers for HGSOC, 54 HGSOC patient cases and 48 healthy control (HC) subjects were prepared: (1) a discovery set for proteomics profiling consisting of 26 HGSOC and 24 HC ( discovery set) and (2) a validation set for targeted MS experiments consisting of 28 HGSOCs and 24 HCs (Table 1). The mean age of HGSOC patients was 59.5 and 56 years in the discovery and validation sets, respectively, and 46 and 48.5 years in the discovery and validation sets, respectively, for HC. The number of FIGO stage I, II, and III HGSOC patients was 3, 3, and 20 in the discovery set and 3, 10, and 15 in the validation set, respectively. During the interim observation period of 25 months, 42.3% of HGSOC patients in the discovery set and 57.1% in the validation set experienced recurrence after primary treatment surgery.
Figure POPB232040PCT-appb-img-000001
Figure POPB232040PCT-appb-img-000001
포괄적인 OC 혈청 스펙트럼 라이브러리Comprehensive OC serum spectral library
FAIMS-MS/MS 기기(DO-NCFC-RP/RPLC-FAIMS-MS)와 결합된 이중 온라인 비연속 분별(dual online non-contiguous fractionating) 및 연결 역상/역상 액체 크로마토그래피(concatenating reverse-phase/reverse-phase liquid chromatography coupled to a FAIMS-MS/MS instrument)(DO-NCFC-RP/RPLC-FAIMS-MS/MS)를 사용하여 혈청 샘플의 포괄적인 글로벌 프로테옴 프로파일링 실험을 수행하였다. 6개 그룹의 고갈된 혈청 샘플에서 총 9개 세트의 DO-NCFC-RP/RPLC-FAIMS-MS/MS 실험을 수행했으며, 각 그룹에는 온라인 NCFC 24개 분획과 3개의 CV가 포함되었다(도 1a). 총 216개의 LC-FAIMS-MS/MS 전역 프로테옴 데이터세트를 얻었고 MS-GF+ 검색을 통해 137,086개의 펩타이드와 12,066개의 단백질 그룹을 식별하였다. 확인된 혈청 프로테옴은 대략 8개의 동적 범위(8 orders of dynamic ranges)를 포함하는 것으로 추정하였다(440㎍/mL의 세룰로플라스민(Ceruloplasmin)에서 3.5pg/ml의 링 핑거 단백질 213(Ring finger protein 213)까지, 도 1b 및 1c). 본 발명의 혈청 프로테옴은 높은 범위의 혈청 프로테옴을 제공하며, OC 혈청 스펙트럼 라이브러리를 구성하는 데 사용 가능하다. 확인된 혈청 펩타이드의 탠덤 스펙트럼 중 펩타이드에 대한 검색 점수가 가장 높은 탠덤 스펙트럼과 5개 이상의 주석이 달린 단편 이온 피크를 사용하여 스펙트럼 라이브러리를 구성하였다. 스펙트럼 라이브러리에는 8,458개의 단백질 그룹을 포함하는 94,212개의 비중복 펩티드의 127,444개의 스펙트럼이 포함되었다.Dual online non-contiguous fractionating and concatenating reverse-phase/reverse phase liquid chromatography combined with a FAIMS-MS/MS instrument (DO-NCFC-RP/RPLC-FAIMS-MS) -phase liquid chromatography coupled to a FAIMS-MS/MS instrument (DO-NCFC-RP/RPLC-FAIMS-MS/MS) was used to perform comprehensive global proteome profiling experiments of serum samples. A total of 9 sets of DO-NCFC-RP/RPLC-FAIMS-MS/MS experiments were performed on 6 groups of depleted serum samples, each group included 24 online NCFC fractions and 3 CVs (Fig. 1a ). A total of 216 LC-FAIMS-MS/MS global proteome datasets were obtained, and 137,086 peptides and 12,066 protein groups were identified through MS-GF+ search. The identified serum proteome was estimated to cover approximately 8 orders of dynamic ranges (Ceruloplasmin at 440 μg/mL to Ring finger protein 213 at 3.5 pg/mL). 213), Figs. 1b and 1c). The serum proteome of the present invention provides a high coverage serum proteome and can be used to construct an OC serum spectral library. Among tandem spectra of identified serum peptides, a spectral library was constructed using the tandem spectrum with the highest search score for the peptide and five or more annotated fragment ion peaks. The spectral library contained 127,444 spectra of 94,212 non-overlapping peptides covering 8,458 protein groups.
HGSOC에 대한 잠재적 진단 바이오마커의 발견Discovery of potential diagnostic biomarkers for HGSOC
HGSOC 진단 바이오마커 발견을 위해 발견 코호트(discovery cohort)에서 24개 HC 및 26개 HGSOC에 대한 LC-DIA-MS/MS 분석을 수행하였다. OC 혈청 스펙트럼 라이브러리를 사용한 DIA-NN 검색 결과, 모든 샘플에서 29,721개의 펩타이드와 2,439개의 단백질이 식별되었으며(도 2a), 이는 현재까지 OC의 혈청 프로테옴에서 가장 큰 정량화에 해당한다. 샘플 전체에 걸쳐 확인된 펩티드의 수는 평균 14,797로 13,818-15,987 범위에서 다양했고 단백질은 평균 1,104로 1,012-1,240 범위에서 다양하였다. 주성분 분석(principal component analysis, PCA)을 통하여 해당 혈청 프로테옴이 HC에서 HGSOC를 명확하게 분리함을 확인할 수 있었다(도 2b). 다운스트림 분석을 위해, HGSOC 및 HC 그룹 모두에서 전체 샘플의 절반 이상에서 정량화된 14,755개의 펩타이드 및 951개의 단백질을 사용하였다. 그런 다음 HGSOC에 대한 잠재적 진단 바이오마커를 식별하기 위해 차등 발현 분석을 수행하였다. 그 결과, HC와 비교하여 HGSOC 환자의 혈청에서 100개의 상향 및 54개의 하향 조절된 단백질을 확인할 수 있었다(도 2c).LC-DIA-MS/MS analysis was performed on 24 HCs and 26 HGSOCs in the discovery cohort for HGSOC diagnostic biomarker discovery. A DIA-NN search using the OC serum spectral library identified 29,721 peptides and 2,439 proteins in all samples (Fig. 2a), which is the largest quantification of the serum proteome of OC to date. The number of peptides identified across samples varied from 13,818-15,987 with an average of 14,797 and proteins varied from 1,012-1,240 with an average of 1,104. Principal component analysis (PCA) confirmed that the corresponding serum proteome clearly separated HGSOC from HC (Fig. 2b). For downstream analysis, 14,755 peptides and 951 proteins quantified in more than half of the total samples in both HGSOC and HC groups were used. Differential expression analysis was then performed to identify potential diagnostic biomarkers for HGSOC. As a result, compared to HC, 100 up-regulated and 54 down-regulated proteins were identified in the serum of HGSOC patients (Fig. 2c).
경로 분석을 통하여, 상향 조절된 단백질이 보체 및 응고 캐스케이드, 혈소판 활성화 및 응집, 톨유사 수용체 4(TLR4) 신호 전달, 호중구 세포외 트랩(NET) 형성뿐만 아니라, 인슐린 유사 성장인자(IGF) 및 변형 성장 인자 β(TGF-β) 신호 전달 및 세포외 기질(ECM) 조직을 포함한 면역 과정에 관여한다는 것을 확인하였다. 반면, Fc 감마 수용체(FCγR) 활성화 및 혈장 지단백질 조립에 관여하는 단백질은 유의하게 하향 조절되었다(도 2d).Pathway analysis revealed that up-regulated proteins were involved in complement and coagulation cascades, platelet activation and aggregation, toll-like receptor 4 (TLR4) signaling, neutrophil extracellular trap (NET) formation, as well as insulin-like growth factor (IGF) and It has been confirmed that it is involved in immune processes including growth factor β (TGF-β) signaling and extracellular matrix (ECM) organization. On the other hand, proteins involved in Fc gamma receptor (FCγR) activation and plasma lipoprotein assembly were significantly down-regulated (FIG. 2d).
다음으로 HGSOC 혈청에서 과도하게 표현된 프로세스에 관련된 단백질 간의 상호 작용을 설명하는 네트워크 모델을 구성하였다(도 2e). 응고 및 보체 캐스케이드를 포함하는 네트워크 모델은 (1) 응고 촉진제 (F11, VWF 및 FGA/B)의 상향 조절, 항응고 인자(SERPINA5/F2 및 A2M)의 하향 조절을 포함하는 응고 작용; 및 (2) 응고를 촉진 또는 그 역반응을 수행하기 위해 응고 캐스케이드와 교차 작용(cross talk)하는 보체 과정(MBL2, C3/9/C4A/B/BPA/BPB 및 CFHR2/5)이 공통적으로 상향 조절됨을 나타내었다.Next, we constructed a network model describing the interactions between proteins involved in the process overrepresented in HGSOC serum (Fig. 2e). A network model involving the coagulation and complement cascade is characterized by (1) coagulation action, including upregulation of procoagulants (F11, VWF and FGA/B), downregulation of anticoagulant factors (SERPINA5/F2 and A2M); and (2) commonly upregulated complement processes (MBL2, C3/9/C4A/B/BPA/BPB and CFHR2/5) that cross talk with the coagulation cascade to promote coagulation or carry out the reverse reaction. showed
호중구와 대식세포를 포함하는 네트워크는 (1) NET 형성(LBP, ACTB 및 MPO); (2) TLR4 신호전달 활성화 단백질(LBP, FGA/B, CD14, S100A8)의 상향 조절 및 TLR4 신호전달 억제 단백질(APOA1/4/C3)의 하향 조절을 포함하는 TLR4 신호전달; 및 (3) FCγR 매개 식균 작용(IGLC2/3/HG2/HG3/KC/KV1-5)의 하향 조절 /KV1D-33/KV3-20/KV3D-20/KV4-1)이 공동 조절됨을 나타내었다. 또한, TLR4 신호의 활성화와 함께 FCGBP의 상향 조절은 종양 미세 환경(TME)에 대한 대식세포 모집을 일으킬 수 있음을 확인하였다. 또한, 혈소판을 포함하는 네트워크는 NET 형성에 의해 촉진되고 응고 과정을 유도할 수 있는 혈소판 활성화 및 응집(예: VCL, GP1BA, PF4, PPBP, SRGN, VWF 및 FGA)의 조정된 상향 조절됨을 나타내었다.Networks involving neutrophils and macrophages can (1) form NETs (LBP, ACTB and MPO); (2) TLR4 signaling, including upregulation of TLR4 signaling activating proteins (LBP, FGA/B, CD14, S100A8) and downregulation of TLR4 signaling inhibitory proteins (APOA1/4/C3); and (3) downregulation of FCγR-mediated phagocytosis (IGLC2/3/HG2/HG3/KC/KV1-5/KV1D-33/KV3-20/KV3D-20/KV4-1) were co-regulated. In addition, it was confirmed that upregulation of FCGBP together with activation of TLR4 signaling can cause macrophage recruitment to the tumor microenvironment (TME). In addition, networks comprising platelets showed coordinated upregulation of platelet activation and aggregation (e.g., VCL, GP1BA, PF4, PPBP, SRGN, VWF, and FGA) that can be promoted by NET formation and lead to the coagulation process. .
마지막으로, IGF, TGF-β 신호 및 ECM 조직을 포함하는 네트워크 모델은 (1) ECM 조직(EFEMP1, SERPINE1, PCOLCE, SPARC, TIMP1, FN1, NID1, ENO1, LCP1, ARHGDIB 및 FGA/B)의 상향 조절; (2) IGF 신호전달(IGFBP2 및 APP); 및 (3) TGF-β 신호전달(LRG1, LTBP1, THBS1, PRG4 및 SERPINE1)은 HGSOC에서 암 세포 증식, 이동 및 침입에 집합적으로 기여함을 나타내었다.Finally, the network model including IGF, TGF-β signaling and ECM organization was (1) upstream of ECM organization (EFEMP1, SERPINE1, PCOLCE, SPARC, TIMP1, FN1, NID1, ENO1, LCP1, ARHGDIB and FGA/B). control; (2) IGF signaling (IGFBP2 and APP); and (3) TGF-β signaling (LRG1, LTBP1, THBS1, PRG4 and SERPINE1) collectively contribute to cancer cell proliferation, migration and invasion in HGSOC.
네트워크 모델에서, 다음의 기준에 따라 표적 MS 실험(targeted MS experiments)을 위한 잠재적인 HGSOC 관련 진단 바이오마커를 선택하였다: 배수 변화, 샘플 전반에 걸친 발현 일관성, 및 이전에 보고된 OC 병리생리와의 연관성.In the network model, potential HGSOC-related diagnostic biomarkers for targeted MS experiments were selected according to the following criteria: fold change, expression consistency across samples, and comparison with previously reported OC pathophysiology. correlation.
응고 및 보체 캐스케이드(VWF, SERPINF2, MBL2, C3 및 C4B); NET 형성(MPO); TLR4 신호 전달(LBP, CD14 및 S100A8/9); 지단백질 어셈블리(APOA1/4), TME로의 대식세포 모집(FCGBP); 혈소판 활성화 및 응집(VCL, PFN1, FLNA, GP1BA, VWF, FN1, FGA, PF4, PPBP, SRGN 및 CALU); ECM 조직(SPARC , TIMP1, FN1, ENO1, LCP1 및 ARHGDIB); IGF 신호 전달(IGFBP2); 및 TGF-β 신호 전달(LRG1, LTBP1, THBS1 및 PRG4)(도 2e의 빨간색으로 표시된 것)을 포함하는 앞서 언급한 생물학적 과정과 관련된 33개의 바이오마커 후보의 초기 세트를 선정하였다.coagulation and complement cascade (VWF, SERPINF2, MBL2, C3 and C4B); NET formation (MPO); TLR4 signaling (LBP, CD14 and S100A8/9); lipoprotein assembly (APOA1/4), macrophage recruitment to the TME (FCGBP); platelet activation and aggregation (VCL, PFN1, FLNA, GP1BA, VWF, FN1, FGA, PF4, PPBP, SRGN and CALU); ECM organization (SPARC, TIMP1, FN1, ENO1, LCP1 and ARHGDIB); IGF signaling (IGFBP2); and TGF-β signaling (LRG1, LTBP1, THBS1 and PRG4) (shown in red in Fig. 2e).
HGSOC에 대한 잠재적 진단 바이오마커 검증Validation of potential diagnostic biomarkers for HGSOC
33개의 바이오마커 후보의 안정 동위원소 표지(SIL) 펩타이드를 사용하여 25명의 HC 및 28명의 HGSOC 환자의 독립적인 코호트에서 표적 MS 분석(MRM 또는 PRM)을 수행하여 잠재적 진단 가치를 검증하였다. 7개의 후보(FLNA, FN1, LTBP1, PFN1, S100A8, TIMP1 및 CALU)는 MRM 또는 PRM 실험에서 감지 가능한 트랜지션(transition) 신호를 나타내지 않았으므로 최종 바이오마커 후보 세트에서 제외하였다. 26개의 진단 바이오마커 후보의 최종 세트의 발현 패턴을, 표적 MS(도 3a)와 LC-DIA-MS/MS 분석(도 3b) 결과들을 가지고 서로 비교하였다. 표적 MS 분석은 26개 후보 중 21개의 발현이 HGSOC와 HC(표 2) 사이에 통계적으로 유의한(P <0.05) 변화를 나타냄을 보였고, 이는 LC-DIA-MS/MS 분석과 일치하였다.Targeted MS analysis (MRM or PRM) was performed in an independent cohort of 25 HC and 28 HGSOC patients using stable isotope labeled (SIL) peptides of 33 biomarker candidates to validate their potential diagnostic value. Seven candidates (FLNA, FN1, LTBP1, PFN1, S100A8, TIMP1, and CALU) did not show detectable transition signals in MRM or PRM experiments, so they were excluded from the final biomarker candidate set. Expression patterns of the final set of 26 diagnostic biomarker candidates were compared with each other with target MS (FIG. 3A) and LC-DIA-MS/MS analysis (FIG. 3B) results. Targeted MS analysis showed that the expression of 21 of 26 candidates showed a statistically significant (P < 0.05) change between HGSOC and HC (Table 2), which was consistent with the LC-DIA-MS/MS analysis.
Figure POPB232040PCT-appb-img-000002
Figure POPB232040PCT-appb-img-000002
HGSOC에 대한 혈청 바이오마커의 인-비트로 기능 실험In vitro functional testing of serum biomarkers on HGSOC
상기 HGSOC 혈청 바이오마커는 HGSOC에서 조절되는 생물학적 과정의 단순한 결과라기보다는 기능적 역할을 수행할 수 있다는 가정하에, 3 개의 강하게 상향 조절된 바이오마커(FGA, VWF 및 ARHGDIB)와 하나의 강하게 하향 조절된 바이오마커(SERPINF2)에 대해 기능적 분석을 수행하였다. 먼저 대조군 siRNA 및 3개의 상향 조절된 바이오마커 각각에 대한 siRNA를 발현하는 SK-OV-3 인간 HGSOC 세포의 세포 생존, 이동 및 집락 형성 능력을 비교하였다(도 4d). SK-OV-3 세포에서 FGA, VWF 및 ARHGDIB의 녹다운에 의하여 세포 생존, 이동 및 콜로니 형성 능력을 현저히 감소됨을 확인하였다(P <0.05)(도 4a 내지 c 및 e 내지 g). 한편, SK-OV-3 세포에서 SERPINF2의 과발현(도 4d)은 상당히(P <0.05) 그들의 생존력, 이동 및 집락 형성 능력을 감소킴을 확인하였다(도 4 a 내지 c 및 e 내지 g). 상기 데이터를 통하여 FGA, VWF, ARHGDIB 및 SERPINF2와 같은 HGSOC 혈청 바이오마커가 HGSOC에서 암세포 증식 및 이동에 중요한 조절 역할을 할 수 있음을 알 수 있었다.Three strongly up-regulated biomarkers (FGA, VWF and ARHGDIB) and one strongly down-regulated biomarker, under the assumption that the HGSOC serum biomarkers may play a functional role rather than a mere consequence of biological processes regulated in HGSOC. Functional analysis was performed for a marker (SERPINF2). First, the cell survival, migration and colony formation abilities of SK-OV-3 human HGSOC cells expressing control siRNA and siRNAs for each of the three upregulated biomarkers were compared (FIG. 4d). In SK-OV-3 cells, it was confirmed that cell viability, migration, and colony formation ability were significantly reduced by knockdown of FGA, VWF, and ARHGDIB (P <0.05) (FIG. 4a to c and e to g). On the other hand, overexpression of SERPINF2 in SK-OV-3 cells (Fig. 4d) significantly (P <0.05) reduced their viability, migration and colony forming ability (Fig. 4a to c and e to g). Through the above data, it was found that HGSOC serum biomarkers such as FGA, VWF, ARHGDIB and SERPINF2 can play an important regulatory role in cancer cell proliferation and migration in HGSOC.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.Having described specific parts of the present invention in detail above, it is clear that these specific techniques are only preferred embodiments for those skilled in the art, and the scope of the present invention is not limited thereto. Accordingly, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.

Claims (17)

  1. FGA, VWF, ARHGDIBSERPINF2로 구성된 군으로부터 선택되는 하나 이상의 유전자 또는 이들이 인코딩하는 단백질의 발현량을 측정하는 제제를 유효성분으로 포함하는 난소암(Ovarian Cancer)의 진단용 조성물.A composition for diagnosis of ovarian cancer comprising, as an active ingredient, an agent for measuring the expression level of at least one gene selected from the group consisting of FGA , VWF , ARHGDIB and SERPINF2 or a protein encoded by them.
  2. 제 1 항에 있어서, S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, PRG4, LBP, PPBP, C3, FCGBP, CD14, APOA1APOA4로 구성된 군으로부터 선택되는 하나 이상의 유전자 또는 이들이 인코딩하는 단백질의 발현량을 측정하는 제제를 유효성분으로 추가적으로 포함하는 것을 특징으로 하는 조성물.According to claim 1, S100A9 , VCL , THBS1 , MPO , IGFBP2 , SRGN , PF4 , GP1BA , LRG1 , PRG4 , LBP , PPBP , C3 , FCGBP , CD14 , APOA1 and one or more genes selected from the group consisting of APOA4 or these A composition characterized in that it further comprises an agent for measuring the expression level of the protein encoded as an active ingredient.
  3. 제 1 항에 있어서, 난소암을 가진 개체에서 상기 FGA, VWF 또는 ARHGDIB 유전자 또는 이들이 인코딩하는 단백질의 발현량은 증가되고, 상기 SERPINF2 유전자 또는 이들이 인코딩하는 단백질의 발현량은 감소되는 것을 특징으로 하는 조성물.The composition according to claim 1, wherein the expression level of the FGA , VWF or ARHGDIB gene or the protein they encode is increased, and the expression level of the SERPINF2 gene or the protein they encode is decreased in the subject with ovarian cancer. .
  4. 제 2 항에 있어서, 난소암을 가진 개체에서 상기 S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, PRG4, LBP, PPBP, C3, FCGBP 또는 CD14 유전자 또는 이들이 인코딩하는 단백질의 발현량은 증가되고, 상기 APOA1 또는 APOA4 유전자 또는 이들이 인코딩하는 단백질의 발현량은 감소되는 것을 특징으로 하는 조성물.The method of claim 2, wherein the expression of the S100A9 , VCL , THBS1 , MPO , IGFBP2 , SRGN , PF4 , GP1BA , LRG1 , PRG4 , LBP , PPBP , C3 , FCGBP or CD14 genes or the proteins they encode in an individual with ovarian cancer A composition characterized in that the amount is increased and the expression level of the APOA1 or APOA4 gene or the protein they encode is reduced.
  5. 제 1 항에 있어서, 상기 난소암은 고등급 장액성 난소암(High-grade serous ovarian cancer, HGSOC)인 것을 특징으로 하는 조성물.The composition according to claim 1, wherein the ovarian cancer is high-grade serous ovarian cancer (HGSOC).
  6. 개체로부터 분리된 생물학적 시료 내의 FGA, VWF, ARHGDIBSERPINF2 유전자 또는 이들이 인코딩하는 단백질의 발현량을 측정하는 단계를 포함하는 난소암의 진단에 필요한 정보를 제공하는 방법.A method for providing information necessary for diagnosing ovarian cancer, comprising measuring the expression levels of FGA , VWF , ARHGDIB and SERPINF2 genes or proteins encoded by them in a biological sample isolated from a subject.
  7. 제 6 항에 있어서, 상기 발현량을 측정하는 단계는 질량 분석(Mass Spectrometry, MS)에 의해 수행되는 것을 특징으로 하는 방법.The method according to claim 6, wherein the step of measuring the expression level is performed by mass spectrometry (MS).
  8. 제 7 항에 있어서, 상기 질량 분석은 서열 번호 1, 2, 12 및 21로 구성된 군으로부터 선택되는 하나 이상의 펩티드의 발현 수준을 측정하는 것을 특징으로 하는 방법.8. The method of claim 7, wherein the mass spectrometry measures the expression level of one or more peptides selected from the group consisting of SEQ ID NOs: 1, 2, 12 and 21.
  9. 제 6 항에 있어서, S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, PRG4, LBP, PPBP, C3, FCGBP, CD14, APOA1APOA4로 구성된 군으로부터 선택되는 하나 이상의 유전자 또는 이들이 인코딩하는 단백질의 발현량을 측정하는 단계를 추가적으로 포함하는 것을 특징으로 하는 방법.According to claim 6, S100A9 , VCL , THBS1 , MPO , IGFBP2 , SRGN , PF4 , GP1BA , LRG1 , PRG4 , LBP , PPBP , C3 , FCGBP , CD14 , One or more genes selected from the group consisting of APOA1 and APOA4 or these A method characterized in that it further comprises the step of measuring the expression level of the protein encoded.
  10. 제 9 항에 있어서, 상기 발현량을 측정하는 단계는 질량 분석(Mass Spectrometry, MS)에 의해 수행되는 것을 특징으로 하는 방법.10. The method of claim 9, wherein the step of measuring the expression level is performed by mass spectrometry (MS).
  11. 제 10 항에 있어서, 상기 질량 분석은 서열 번호 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19 및 20으로 구성된 군으로부터 선택되는 하나 이상의 펩티드의 발현 수준을 측정하는 것을 특징으로 하는 방법.11. The method of claim 10, wherein the mass spectrometry is selected from the group consisting of SEQ ID NOs: 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19 and 20 A method comprising measuring the expression level of one or more peptides.
  12. 제 6 항에 있어서, 상기 생물학적 시료는 혈액인 것을 특징으로 하는 방법.7. The method of claim 6, wherein the biological sample is blood.
  13. 제 6 항에 있어서, 상기 난소암은 고등급 장액성 난소암(High-grade serous ovarian cancer, HGSOC)인 것을 특징으로 하는 방법.7. The method of claim 6, wherein the ovarian cancer is high-grade serous ovarian cancer (HGSOC).
  14. FGA, VWF, S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, ARHGDIB, PRG4, LBP, PPBP, C3, FCGBP 및 CD14로 이루어진 군으로부터 선택되는 하나 이상에 대한 억제제; 또는 APOA1, APOA4, 및 SERPINF2로 이루어진 군으로부터 선택되는 하나 이상에 대한 활성화제를 유효성분으로 포함하는 난소암의 예방 또는 치료용 조성물.an inhibitor for one or more selected from the group consisting of FGA, VWF, S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, ARHGDIB, PRG4, LBP, PPBP, C3, FCGBP and CD14; Or a composition for preventing or treating ovarian cancer comprising, as an active ingredient, an activator for at least one selected from the group consisting of APOA1, APOA4, and SERPINF2.
  15. 제 14 항에 있어서, 상기 난소암은 고등급 장액성 난소암(High-grade serous ovarian cancer, HGSOC)인 것을 특징으로 하는 조성물.15. The composition according to claim 14, wherein the ovarian cancer is high-grade serous ovarian cancer (HGSOC).
  16. 다음의 단계를 포함하는 난소암의 예방 또는 치료용 조성물의 스크리닝 방법:A method for screening a composition for preventing or treating ovarian cancer comprising the following steps:
    (a) FGA, VWF, S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, ARHGDIB, PRG4, LBP, PPBP, C3, FCGBP, CD14, APOA1, APOA4, 및 SERPINF2로 구성된 군으로부터 선택되는 하나 이상의 단백질, 이들을 인코딩하는 유전자 또는 이들을 발현하는 세포를 포함하는 생물학적 시료에 시험물질을 접촉시키는 단계;(a) selected from the group consisting of FGA, VWF, S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, ARHGDIB, PRG4, LBP, PPBP, C3, FCGBP, CD14, APOA1, APOA4, and SERPINF2 contacting a test substance with a biological sample comprising at least one protein, genes encoding them, or cells expressing them;
    (b) 상기 생물학적 시료 내 상기 단백질 또는 상기 유전자의 발현량을 측정하는 단계, (b) measuring the expression level of the protein or gene in the biological sample;
    상기 생물학적 시료 내 상기 FGA, VWF, S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, ARHGDIB, PRG4, LBP, PPBP, C3, FCGBP 또는 CD14의 단백질 또는 유전자의 활성 또는 발현량이 감소하거나 또는 상기 APOA1, APOA4, 또는 SERPINF2의 단백질 또는 유전자의 활성 또는 발현량이 증가하는 경우 난소암의 예방 또는 치료용 조성물로 판정한다.Reduction in activity or expression of the FGA, VWF, S100A9, VCL, THBS1, MPO, IGFBP2, SRGN, PF4, GP1BA, LRG1, ARHGDIB, PRG4, LBP, PPBP, C3, FCGBP or CD14 protein or gene in the biological sample Or, if the activity or expression level of the protein or gene of APOA1, APOA4, or SERPINF2 is increased, it is determined as a composition for preventing or treating ovarian cancer.
  17. 제 16 항에 있어서, 상기 난소암은 고등급 장액성 난소암(High-grade serous ovarian cancer, HGSOC)인 것을 특징으로 하는 방법.17. The method of claim 16, wherein the ovarian cancer is High-grade serous ovarian cancer (HGSOC).
PCT/IB2023/050614 2022-01-25 2023-01-25 Novel biomarker for diagnosis of ovarian cancer WO2023144708A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220010746 2022-01-25
KR10-2022-0010746 2022-01-25

Publications (1)

Publication Number Publication Date
WO2023144708A1 true WO2023144708A1 (en) 2023-08-03

Family

ID=87470867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/050614 WO2023144708A1 (en) 2022-01-25 2023-01-25 Novel biomarker for diagnosis of ovarian cancer

Country Status (2)

Country Link
KR (2) KR102573076B1 (en)
WO (1) WO2023144708A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009009890A1 (en) * 2007-07-16 2009-01-22 University Health Network Ovarian cancer biomarkers
KR20200057652A (en) * 2018-11-16 2020-05-26 가톨릭대학교 산학협력단 Biomarker for predicting development of hereditary ovarian cancer and use thereof
WO2021146659A1 (en) * 2020-01-17 2021-07-22 Mercy Bioanalytics, Inc. Compositions and methods for detection of ovarian cancer
CN113391072A (en) * 2021-05-30 2021-09-14 浙江省肿瘤医院 Ovarian cancer urine marker combination and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009009890A1 (en) * 2007-07-16 2009-01-22 University Health Network Ovarian cancer biomarkers
KR20200057652A (en) * 2018-11-16 2020-05-26 가톨릭대학교 산학협력단 Biomarker for predicting development of hereditary ovarian cancer and use thereof
WO2021146659A1 (en) * 2020-01-17 2021-07-22 Mercy Bioanalytics, Inc. Compositions and methods for detection of ovarian cancer
CN113391072A (en) * 2021-05-30 2021-09-14 浙江省肿瘤医院 Ovarian cancer urine marker combination and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUH SUNGHYUN, KANG CHAEWON, PARK JI EUN, NAM DOWOON, KIM SE IK, SEOL AERAN, CHOI KYERIM, HWANG DAEHEE, YU MYEONG-HEE, CHUNG HYUN H: "Novel Diagnostic Biomarkers for High-Grade Serous Ovarian Cancer Uncovered by Data-Independent Acquisition Mass Spectrometry", JOURNAL OF PROTEOME RESEARCH, AMERICAN CHEMICAL SOCIETY, vol. 21, no. 9, 2 September 2022 (2022-09-02), pages 2146 - 2159, XP093082170, ISSN: 1535-3893, DOI: 10.1021/acs.jproteome.2c00218 *
XIU, L. ET AL.: "Identification of serum peptide biomarker for ovarian cancer diagnosis by Clin-TOF-II-MS combined with magnetic beads technology", ZHONGHUA ZHONGLIU ZAZHI (CHINESE JOURNAL OF ONCOLOGY), ZHONGGUO KEXUE YIXUE KEXUEYUAN, CN, vol. 43, no. 11, 23 November 2021 (2021-11-23), CN , pages 1188 - 1195, XP009547807, ISSN: 0253-3766 *

Also Published As

Publication number Publication date
KR102573076B1 (en) 2023-09-01
KR20230115268A (en) 2023-08-02
KR20230114677A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
WO2018208091A2 (en) Biomarker for monitoring or diagnosing onset of liver cancer in high-risk group for liver cancer and use thereof
Roberts et al. Comparison of human and murine enteroendocrine cells by transcriptomic and peptidomic profiling
Jia et al. Cancer-associated Fibroblasts induce epithelial-mesenchymal transition via the Transglutaminase 2-dependent IL-6/IL6R/STAT3 axis in Hepatocellular Carcinoma
US20160209415A1 (en) Method to predict or diagnose a colorectal cancer
WO2021101339A1 (en) Composition for predicting response to standard preoperative chemoradiation therapy and prognosis following treatment, and method and composition for predicting patients with very unsatisfactory prognoses following standard therapy
WO2021006649A1 (en) Biomarker panel for diagnosing pancreatic cancer and use thereof
US20100285971A1 (en) Traceability of Cellular Cycle Anomalies Targeting Oncology and Neurodegeneration
WO2019182371A1 (en) Composition for diagnosis of degenerative neurological diseases
Schwartz et al. Insights into epithelial cell senescence from transcriptome and secretome analysis of human oral keratinocytes
WO2023144708A1 (en) Novel biomarker for diagnosis of ovarian cancer
WO2019225923A1 (en) Composition for diagnosing diseases
WO2021177691A1 (en) Composition for diagnosis or treatment of anticancer drug resistance
WO2020166992A1 (en) Composition for cancer diagnosis
WO2022265392A1 (en) Multiple biomarkers for diagnosing ovarian cancer, and use thereof
Tian et al. Interleukin‐4‒induced posttranscriptional gene regulation of CCL26 by the RNA‐binding protein HuR in primary human nasal polyp‒derived epithelial cells
WO2022203314A2 (en) Composition for differential diagnosis of malignant peripheral nerve sheath tumor
WO2021167177A1 (en) Companion diagnosis biomarker composition and companion diagnosis kit containing same
WO2015130115A1 (en) Novel antibody specific for tspan8 and uses thereof
WO2023191543A1 (en) Composition for diagnosing cancer
Iwasaki et al. Multi-omics approach reveals posttranscriptionally regulated genes are essential for human pluripotent stem cells
WO2017043679A1 (en) Protein biomarker panel for detecting non-small cell lung cancer and method for diagnosing a non-small cell lung cancer by the use thereof
WO2019088709A2 (en) Information providing method for predicting ovarian cancer prognosis by using nc886 gene
WO2018088826A2 (en) Composition for diagnosing colorectal cancer metastasis or predicting prognosis and use thereof
WO2020130467A2 (en) Pharmaceutical composition for prevention or treatment of cd8+ memory t cell-mediated disease
WO2024039196A1 (en) Biomarker for diagnosis, metastasis or prognosis prediction of cancer and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746557

Country of ref document: EP

Kind code of ref document: A1