WO2023143897A1 - Angleichen von ladezuständen von batteriemodulen eines elektrofahrzeugs - Google Patents
Angleichen von ladezuständen von batteriemodulen eines elektrofahrzeugs Download PDFInfo
- Publication number
- WO2023143897A1 WO2023143897A1 PCT/EP2023/050363 EP2023050363W WO2023143897A1 WO 2023143897 A1 WO2023143897 A1 WO 2023143897A1 EP 2023050363 W EP2023050363 W EP 2023050363W WO 2023143897 A1 WO2023143897 A1 WO 2023143897A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- charge
- state
- electric vehicle
- battery modules
- battery
- Prior art date
Links
- 230000000903 blocking effect Effects 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 14
- 238000007726 management method Methods 0.000 description 17
- 238000011161 development Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 244000037459 secondary consumers Species 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/21—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/80—Exchanging energy storage elements, e.g. removable batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/13—Maintaining the SoC within a determined range
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/19—Switching between serial connection and parallel connection of battery modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/22—Balancing the charge of battery modules
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/441—Methods for charging or discharging for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/448—End of discharge regulating measures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0024—Parallel/serial switching of connection of batteries to charge or load circuit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0025—Sequential battery discharge in systems with a plurality of batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/0048—Detection of remaining charge capacity or state of charge [SOC]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
- H02J7/007182—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/12—Bikes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/547—Voltage
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/40—The network being an on-board power network, i.e. within a vehicle
- H02J2310/48—The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
Definitions
- the invention relates to an electric vehicle, having a plurality of battery modules with the same nominal module voltage, a determining device for determining at least one battery state parameter representing a state of charge of the battery modules; a switching system that is set up to switch current paths of the battery modules individually conducting or blocking; an energy management system that controls the switching system.
- the invention also relates to a method for adjusting the states of charge of a plurality of battery modules with the same nominal module voltage of an electric vehicle, in which at least one battery state parameter representing a state of charge of the battery modules is determined.
- the invention can be applied particularly advantageously to electrically powered motorcycles and small vehicles.
- a discharge control system of an electrical storage pack disclosed in EP 2 056422 A1 comprises a plurality of electrically rechargeable cells connected in series, and a discharge line is connected from an electrically rechargeable cell to a load drive feeding circuit.
- the discharge control system includes cell voltage detection units for detecting respective cell voltages of the plurality of cells, a switch group consisting of a plurality of switches connected between the plurality of cells, and a control unit designating a cell having a highest cell voltage in the plurality of electrically rechargeable cells possessed by the electric storage pack turns on/off one by one in accordance with the detection results by the cell voltage detecting units and the switches of the switch group to switch a discharge line from an electrically rechargeable cell of the group to the load drive feed circuit.
- EP 2 879 266 A1 discloses a power management method for a stacked-cell rechargeable energy storage device, comprising: monitoring state parameters of individual cells in the stacked-cell rechargeable energy storage device; and selectively connecting cells to a load according to the state parameter of the cells.
- an electric vehicle having a plurality of battery modules electrically connected in parallel and having the same nominal battery voltage, a determining device for determining at least one battery state parameter representing a state of charge of the battery modules; a switching system that is set up to switch current paths of the battery modules individually conducting or blocking; an energy management system which is coupled to the determination device and controls the switching system and which is set up to, when at least one of the battery modules has a state of charge which is noticeably lower than a state of charge of at least one other of the battery modules, the current path of the at least one battery module with the lower state of charge during to switch the electric vehicle to a non-conducting mode until the state of charge of the at least one battery module with the higher state of charge has adjusted to the state of charge of the at least one battery module with the lower state of charge, and then to switch on the current path of the at least one battery module with the previously lower state of charge .
- This electric vehicle has the advantage that the charging states of the battery modules can be adjusted with very little circuit complexity.
- this is advantageously carried out in the background practically unnoticed by the user of the electric vehicle.
- the adjustment is independent of charging processes for charging the battery modules.
- the electric vehicle can be a hybrid vehicle or an all-electric vehicle.
- the battery modules serve at least to drive it and can therefore also be referred to as “drive battery modules”.
- the battery modules are provided in addition to supplying power to at least one electric drive motor to operate other consumers ("auxiliary consumers"), e.g. for lights, displays, brakes, steering, etc.
- auxiliary consumers e.g. for lights, displays, brakes, steering, etc.
- a further electrical energy store can only be intended to supply the secondary consumers.
- a battery module is understood to mean, in particular, a battery unit which can be handled independently and which can be connected to the on-board power supply system of the electric vehicle via corresponding poles, for example.
- a battery module can have one or more battery cells that are suitably connected in a basically known manner.
- the battery modules have a specific nominal module voltage and a specific nominal power.
- An actual module voltage of a battery module can be measured via its contacts or poles. In particular, its terminal voltage can also be measured during ferry operation.
- the battery modules are of the same electrochemical type.
- the battery modules or the battery cells contained therein are lithium-ion accumulators, which advantageously have a higher specific energy than other commercially available accumulator types.
- the determining device is set up to determine at least one battery state parameter representing a state of charge of the battery modules.
- the determination can include or be a measurement, in which case the determination device can also be designated as a measurement device. However, the determination can also include calculating a battery condition parameter from one or more measured values.
- the determination device can include, for example, an AD converter for converting physical measurement signals into digital measurement values and possibly a data processing device such as a microprocessor, ASIC, FPGA, etc. for further processing of the measurement data into data derived therefrom.
- a battery status parameter represents the state of charge of a battery module (also known as SoC, "State of Charge”) can mean in particular that conclusions can be drawn about the state of charge from the battery state parameter, e.g. the state of charge can be calculated or estimated.
- the current module voltage is a suitable battery state parameter, since the module voltage also increases with a higher state of charge and therefore the module voltage can be used as a direct measure of the state of charge.
- the switching system comprises a plurality of electrically actuated switches such as electronic switches (e.g. transistors), mechanically switching switches (e.g. relays), etc.
- electrically actuated switches such as electronic switches (e.g. transistors), mechanically switching switches (e.g. relays), etc.
- the fact that current paths of the battery modules can be individually switched on or off includes, in particular, that a battery module whose current path is switched on is electrically connected to the circuit or the power supply network of the electric vehicle and is available to the electric vehicle for power supply. This battery module is then “coupled”. A battery module whose current path is blocked is electrically isolated from the circuit and is not available to the electric vehicle for power supply. This battery module is then "disconnected”.
- controllably conducting or blocking switching can be implemented, for example, in such a way that a switch is electrically wired in series with an associated battery module: if the switch is open, the circuit is broken and thus switched to blocking, and switched to conducting when the switch is closed. This is particularly easy to implement. However, other switching topologies can also be used.
- the energy management system is used in particular to make the electrical power currently required available to the electrical consumers of the vehicle.
- the fact that the energy management system is coupled to the determination device includes, in particular, that data determined or determined by the determination device, e.g control the switching system.
- the fact that the energy management system can control the switching system includes, in particular, that it can switch the switches of the switching system accordingly, e.g. can open or close them.
- a battery module has a state of charge that is "noticeably lower" than a state of charge of another battery module can mean, in particular, that the states of charge (ie, a battery state parameter representing the state of charge or the state of charge SoC derived therefrom as such) are greater than a predetermined tolerance level distinguish from each other.
- the fact that this state is maintained until the state of charge of the at least one battery module with the higher state of charge has equalized the state of charge of the at least one battery module with the lower state of charge includes the state being maintained until the states of charge differ by less than the specified tolerance level from one another differentiate. If this is the case, the battery module with the lower state of charge is coupled back into the power supply.
- the at least one battery status parameter is a module voltage of the battery module, in particular the terminal voltage of the battery module. This is particularly advantageous because the module voltage is comparatively easy to measure, is often already measured in electric vehicles, and the module voltage also represents a reliable measure of the state of charge.
- the electric vehicle can be designed, for example, so that the determining device is a measuring device for measuring the module voltages of the battery modules and the energy management system is set up to do so when at least one of the battery modules has a module voltage that is noticeably lower than a module voltage of at least one the other of the battery modules, to block the current path of the at least one battery module with the lower module voltage during driving operation of the electric vehicle until the module voltage of the at least one battery module with the higher module voltage has adjusted to the module voltage of the at least one battery module with the lower module voltage, and then to turn on the current path of the at least one battery module with the previously lower module voltage.
- the determining device is a measuring device for measuring the module voltages of the battery modules and the energy management system is set up to do so when at least one of the battery modules has a module voltage that is noticeably lower than a module voltage of at least one the other of the battery modules, to block the current path of the at least one battery module with the lower module voltage during driving operation of the electric vehicle until the module voltage of the at
- the electric vehicle has at least one receptacle for the multiple battery modules, which can be removed from their receptacle by the user and charged by the user.
- the advantage is achieved that the adjustment of the states of charge can also be carried out individually by a user or by a service authority commissioned with this without further effort.
- This is particularly advantageous for electric vehicles that do not have a charging socket or an inductive charging receiver. As a result, such electric vehicles can be kept particularly small, compact and inexpensive.
- a user can then also charge the battery modules at home via a charging adapter that is connected to the domestic electricity network, for example plugged into a socket, without requiring a wall box, for example.
- a charging adapter that is connected to the domestic electricity network, for example plugged into a socket, without requiring a wall box, for example.
- the battery modules together can provide an electrical output of at least 11 kW. This is advantageous in order to be able to easily move the electric vehicle with at least one or even more users, possibly also with a load, on the street with the flowing traffic.
- a single battery module can provide an electrical (nominal) power of up to 7 kW.
- the electric vehicle is an electrically powered motorcycle.
- This can be designed particularly advantageously as described above, because battery modules that can be removed and charged by the user especially for motorcycles help to avoid a significant increase in the scarce installation space.
- battery modules that can be removed and charged by the user especially for motorcycles help to avoid a significant increase in the scarce installation space.
- just a few battery modules are sufficient to let them ride smoothly on the road.
- the electric vehicle is an electrically powered compact car.
- removable battery modules that can be charged by the user help to maintain a compact size and an inexpensive design.
- the electric vehicle has a receptacle for exactly two battery modules. This saves installation space and costs. Furthermore, the implementation outlay for the battery management system can advantageously be kept particularly low in this way.
- the electric vehicle has a receptacle for more than two battery modules, which advantageously increases the electrical power available to the electric vehicle.
- the battery modules can also be adjusted in stages, possibly in groups. This is now shown as an example using three battery modules B1, B2 and B3, which have different states of charge SoC (B1) > SoC (B2) > SoC (B3) outside their tolerance dimensions, which can also be represented by the module voltages V, for which V (B1) > V (B2) + AV > V (B3) + AV where AV is the tolerance for the module voltages.
- battery modules B2 and B3 are first decoupled so that the electric vehicle is only supplied by battery module B1.
- the battery module B2 is then reconnected so that the electric vehicle is now supplied by the battery modules B1 and B2.
- the battery module B3 is then reconnected to the vehicle electrical system.
- only the battery module B3 is initially decoupled, so that the electric vehicle is supplied with electrical energy from the group of battery modules B1 and B2.
- the battery module B2 is then decoupled so that the electric vehicle is now only supplied by the battery module B1.
- the battery modules B2 and B3 are then reconnected to the vehicle electrical system.
- This scheme has the advantage that at the beginning of a ferry operation, a comparatively high electrical Power is available, which can be advantageous for example in cold ambient temperatures when starting.
- the above equalization schemes can be analogously adapted to more than three battery modules. Further adjustment schemes can also be provided, the complexity of which can increase with the number of battery modules available for the energy supply. The adjustment schemes can also take into account different speed discharges.
- the tolerance for the module voltages is in a range between 0.25 V and 0.75 V, specifically around 0.5 V.
- the battery modules have the same (depending on the design or type) nominal power.
- the equalization schemes can be adapted to the nominal power of the battery modules, e.g. so that with the same measured module voltages, a battery module with a lower nominal power is discharged before or after a battery module with a higher nominal power.
- the energy management system is set up to switch on the current paths of at least so many battery modules that a power requirement of the electric vehicle can be met by the battery modules that are switched on. This is advantageous in order to prevent a required or requested power consumption of the electric vehicle resulting from ferry operation from being available from the battery modules, e.g. because overtaking or driving uphill is being carried out, a consumer such as an air conditioning system is switched on, etc. If the required power consumption exceeds the power provided by the at least one coupled battery module, the adjustment process can be interrupted, for example by all battery modules being coupled and/or it is possible to switch between different adjustment schemes.
- the at least one receptacle is equipped with the battery modules, in particular with all battery modules.
- the battery modules in particular with all battery modules.
- only partial assembly is also possible, which reduces the weight of the electric vehicle.
- a small car can be fitted with fewer than the maximum possible number of battery modules if the load is low and/or the expected driving distance is short.
- the object is also achieved by a method for adjusting the states of charge of a plurality of battery modules electrically connected in parallel and having the same nominal module voltage of an electric vehicle, in which at least one battery state parameter representing a state of charge of the battery modules is determined when at least one of the battery modules has a Has a state of charge that is noticeably lower than a state of charge of at least one other of the battery modules, the at least one battery module with the lower state of charge is decoupled until the state of charge of the at least one battery module with the higher state of charge matches the state of charge of the at least one battery module with the lower state of charge has adjusted, and then the at least one battery module is coupled with the lower state of charge.
- the method can be designed analogously to the electric vehicle and vice versa, and has the same advantages.
- the characteristics, features and advantages of this invention described above, and the manner in which they are achieved, will become clearer and more clearly understood in connection with the following schematic description of an exemplary embodiment, which will be explained in more detail in connection with the drawings.
- FIG. 1 shows a sketch of an electric vehicle designed according to the invention with two battery modules
- FIG. 2 shows a possible process sequence for adjusting the state of charge of the battery modules of the electric vehicle from FIG.
- FIG. 1 shows a sketch of an electric vehicle 1, e.g. an all-electric motorcycle, which has a receptacle 2 for two battery modules B1 and B2, which are inserted into receptacle 2 and are therefore available as electrical energy stores for operating the electric vehicle 1.
- the battery modules B1 and B2 are designed here as lithium-ion accumulators with the same nominal module voltage and the same or different nominal power, which are electrically connected in parallel with one another.
- the battery modules B1 and B2 can be removed from their receptacle 2 by the user and charged by the user, e.g. by connecting to a charging adapter that can be connected to a household power supply.
- the battery modules B1, B2 can advantageously together provide the electric vehicle 1 with an electrical output of at least 11 kW.
- a determination device 3 of the electric vehicle 1 is set up to measure battery state parameters in the form of a module voltage V (B1) or V (B2) present at the poles or terminals of the battery modules B1, B2.
- the module voltages V(B1), V(B2) are sufficiently accurate representatives for the charge state of the respective battery module B1 or B2 for the purpose of matching the state of charge of the battery modules B1, B2.
- the module voltages V(B1), V(B2) can therefore be used directly as a measure of the state of charge of the respective battery module B1, B2.
- the determination device 3 from the module voltages V (B1), V (B2) if necessary other battery status parameters such as a state of health etc. and / or from other parameters such as an ambient temperature etc. the respective Calculate the state of charge, eg using a formula, using a family of characteristics, etc.
- the variant in which the module voltages V (B1), V (B2) are used directly as a measure of the state of charge is described further below.
- the electric vehicle 1 also has a switching system 4 which is set up to switch current paths of the battery modules B1 , B2 individually on or off.
- the switching system 4 here has two electrically switchable switches Sw1 and Sw2, which are electrically connected in series to an associated battery module B1 or B2.
- the switches Sw1, Sw2 can be switched by means of a control device 5, as a result of which the switches Sw1 and Sw2 can be individually selectively switched on or off.
- the switches Sw1, Sw2 can, for example, be mechanically switching switches such as relays etc. and/or electronic switches such as transistors etc. If the switches Sw1, Sw2 are turned on, they are connected or coupled to a power supply network for supplying at least one electrical drive 6 and possibly other electrical consumers. If the switches Sw1, Sw2 are turned off, they are separated or decoupled from the power supply network.
- the determining device 3 and the switching system 4 are connected to an energy management system 7 .
- the energy management system 7 can receive values of the module voltages V(B1), V(B2) from the determining device 3 and can instruct the switching system 4 to switch the switches Sw1 and/or Sw2 to a desired switching position.
- the energy management system 7 and the switching system 4 can be integrated into one another, so that the energy management system 7 then, for example, also assumes the function of the switching system 4 and can switch the switches Sw1 and Sw2 directly, for example.
- the energy management system 7 and determination device 3 can be integrated into one another, so that the energy management system 7 can then, for example, receive the physical voltage signals from the battery modules B1, B2 and, for example, convert them into digital measured values and, if necessary, process them further.
- V(B2) has a noticeably lower charging voltage V(B2) than the battery module B1, ie V(B1)>V(B2)+AV with AV applying to the tolerance measure, is described in more detail below as an example.
- V (B1) measured by the determination device 3
- V (B2) eg whether V (B1) - V (B2) > AV.
- V(B2)>V(B1)+AV can be used analogously.
- AV is advantageously in a range between 0.25 V and 0.75 V, especially around 0.5 V.
- the energy management system 7 is set up to turn switch Sw2 off, while switch Sw1 is turned on or remains on.
- the switch Sw2 is turned on again, and both battery modules B1 and B2 are now coupled or connected to the power supply network with at least approximately the same module voltages V(B1), V(B2).
- a first step S1 the electric vehicle 1 is switched on by a user for ferry operation.
- step S2 it is checked whether the condition V(B1)>V(B2)+AV or the condition V(B2)>V(B1)+AV is present.
- step S2 is carried out again. In between, in a third step S3, both switches Sw1 and Sw2 are turned on. If they are already switched on, they remain switched on.
- step S4 the battery module B2, which has the lower module voltage V(B2), is decoupled from the power supply network or remains decoupled if it was already decoupled. Then it branches back to step S2.
- the checking of the deviation of the module voltages V (B1) and V (B2) from each other in step S2 can be repeated cyclically, e.g. every 0.1 s to 1 s.
- Steps S4 are carried out, in particular subject to the situation that the currently connected battery module B1 has a battery for operating the electric vehicle 1 can supply sufficient electrical power. If this is not the case, both battery modules B1 and B2 are or remain connected.
- This can be implemented in the above method sequence in such a way that a step S5 is carried out between step S2 and step S3, in which it is queried whether the electrical power requested by the electric vehicle 1 is higher—alternatively, equal to or higher—than that of electrical power that can be provided by the battery module B1 with the higher module voltage V (B1). If this is the case ("Yes"), the process goes to step S4, otherwise ("N"), the process branches to step S3. This ensures that there are always enough battery modules B1, B2 coupled that a power requirement of the electric vehicle 1 can be met by the coupled battery modules B1, B2.
- a numerical specification can also include exactly the specified number as well as a usual tolerance range, as long as this is not explicitly excluded.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Die Erfindung betrifft ein Elektrofahrzeug (1), aufweisend mehrere elektrisch parallel verschaltete Batteriemodule (B1, B2) gleicher Nominal-Modulspannung, eine Bestimmungseinrichtung (3) zum Bestimmen mindestens eines einen Ladezustand der Batteriemodule repräsentierenden Batteriezustandsparameters (V (B1), V (B2)); ein Schaltsystem (4), das dazu eingerichtet ist, Strompfade der Batteriemodule (B1, B2) individuell leitend oder sperrend zu schalten; ein das Schaltsystem ansteuerndes Energiemanagementsystem (7), das dazu eingerichtet ist, dann, wenn mindestens eines der Batteriemodule (B1, B2) einen Ladezustand (V (B2)) aufweist, der merklich niedriger ist als ein Ladezustand (V (B1)) mindestens eines anderen der Batteriemodule (B1, B2), den Strompfad des mindestens einen Batteriemoduls (B2) mit dem niedrigeren Ladezustand (V (B2)) während eines Fahrbetriebs des Elektrofahrzeugs (1) sperrend zu schalten, bis sich der Ladezustand (V (B1)) des mindestens einen Batteriemoduls (B1) mit dem höheren Ladezustand (V (B2)) an den Ladezustand des mindestens einen Batteriemoduls (B2) mit dem niedrigeren Ladezustand (V (B2)) angeglichen hat, und dann den Strompfad des mindestens einen Batteriemoduls (B2) mit dem niedrigeren Ladezustand (V (B1)) leitend zu schalten.
Description
Angleichen von Ladezuständen von Batteriemodulen eines Elektrofahrzeugs
Die Erfindung betrifft ein Elektrofahrzeug, aufweisend mehrere Batteriemodule gleicher Nominal-Modulspannung, eine Bestimmungseinrichtung zum Bestimmen mindestens eines einen Ladezustand der Batteriemodule repräsentierenden Batteriezustandsparameters; ein Schaltsystem, das dazu eingerichtet ist, Strompfade der Batteriemodule individuell leitend oder sperrend zu schalten; ein das Schaltsystem ansteuerndes Energiemanagementsystem. Die Erfindung betrifft auch ein Verfahren zum Angleichen von Ladezuständen mehrerer Batteriemodule gleicher Nominal-Modulspannung eines Elektrofahrzeugs, bei dem mindestens ein einen Ladezustand der Batteriemodule repräsentierender Batteriezustandsparameter bestimmt wird. Die Erfindung ist insbesondere vorteilhaft anwendbar auf elektrisch angetriebene Motorräder und Kleinfahrzeuge.
Für Elektrofahrzeuge ist es gewünscht, kleine und leichte Batterien bereitzustellen, die eine ausreichende elektrische Leitung zum Betreiben, insbesondere Antreiben, des Elektrofahrzeugs bereitstellen. Jedoch können kleine, leichte Li-Ionen-Batteriemodule lediglich eine relativ geringe elektrische Leistung bereitstellen, weshalb sie in der Regel nur in leistungsschwachen Elektrofahrzeugen zu finden sind.
Es ist bekannt, durch Zusammenschalten von Batteriemodulen die bereitgestellte elektrische Leistung zu erhöhen. Dabei tritt das Problem auf, dass die Batteriemodule einen unterschiedlichen Ladezustand aufweisen können, was sich beispielsweise nachteiligerweise in abweichenden Modulspannungen äußern kann, die so groß werden können, dass das ein Zusammenschalten der Batteriemodule wegen der dann auftretenden hohen Ausgleichsströme nicht möglich ist. Eine bekannte Möglichkeit, unterschiedliche Modulspannungen im Betrieb des Elektrofahrzeugs auszugleichen, besteht in der Verwendung von DC/DC-Wandlern, die aber einen großen Bauraum benötigen und zudem teuer sind. Eine weitere Möglichkeit besteht darin, die Ladezustände der Batteriemodule während eines gemeinsamen Ladevorgangs an einer Ladestation durch individuelles Auf- und Entladen anzugleichen.
Ein in EP 2 056422 A1 offenbartes Entladungssteuersystem eines elektrischen Speicherpacks weist eine Vielzahl von elektrisch wiederaufladbaren Zellen auf, die in Reihe geschaltet sind, und eine Entladungsleitung ist von einer elektrisch wiederaufladbaren Zelle mit einer Lastantriebsspeiseschaltung verbunden. Das Entladungssteuersystem umfasst Zellspannungs-Erfassungseinheiten zum Erfassen jeweiliger Zellspannungen der Vielzahl von Zellen, eine Schaltergruppe, die aus einer Vielzahl von Schaltern besteht, die zwischen die Vielzahl von Zellen geschaltet sind, und eine Steuereinheit, die eine Zelle mit einer höchsten Zellspannung bezeichnet in der Vielzahl von elektrisch wiederaufladbaren Zellen, die der elektrische Speicherpack besitzt, in Übereinstimmung mit den Erfassungsergebnissen durch die Zellspannungserfassungseinheiten und die Schalter der Schaltergruppe einzeln ein-/ausschaltet, um eine Entladungsleitung von einer elektrisch wiederaufladbaren Zelle der Gruppe zum Lastantriebsspeisekreis.
Zur Energieversorgung elektronischer Schaltungen offenbart EP 2 879 266 A1 ein Energieverwaltungsverfahren für einen wiederaufladbaren Stapelzellen-Energiespeicher, das umfasst: Überwachen von Zustandsparametern einzelner Zellen in dem wiederaufladbaren Stapelzellen-Energiespeicher; und selektives Verbinden von Zellen mit einer Last gemäß dem Zustandsparameter der Zellen.
Es ist die Aufgabe der vorliegenden Erfindung, die Nachteile des Standes der Technik zumindest teilweise zu überwinden und insbesondere eine einfach und preiswert umsetzbare Möglichkeit bereitzustellen, Ladezustände mehrerer Batteriemodule eines Elektrofahrzeugs anzugleichen.
Diese Aufgabe wird gemäß den Merkmalen der unabhängigen Ansprüche gelöst. Bevorzugte Ausführungsformen sind insbesondere den abhängigen Ansprüchen entnehmbar.
Die Aufgabe wird gelöst durch ein Elektrofahrzeug, aufweisend mehrere elektrisch parallel verschaltete Batteriemodule gleicher Nominal-Batteriespannung, eine Bestimmungseinrichtung zum Bestimmen mindestens eines einen Ladezustand der Batteriemodule repräsentierenden Batteriezustandsparameters; ein Schaltsystem, das dazu eingerichtet ist, Strompfade der Batteriemodule individuell leitend oder sperrend zu schalten;
ein mit dem Bestimmungseinrichtung gekoppeltes und das Schaltsystem ansteuerndes Energiemanagementsystem, das dazu eingerichtet ist, dann wenn mindestens eines der Batteriemodule einen Ladezustand aufweist, der merklich niedriger ist als ein Ladezustand mindestens eines anderen der Batteriemodule, den Strompfad des mindestens einen Batteriemoduls mit dem niedrigeren Ladezustand während eines Fährbetriebs des Elektrofahrzeugs sperrend zu schalten, bis sich der Ladezustand des mindestens einen Batteriemoduls mit dem höheren Ladezustand an den Ladezustand des mindestens einen Batteriemoduls mit dem niedrigeren Ladezustand angeglichen hat, und dann den Strompfad des mindestens einen Batteriemoduls mit dem zuvor niedrigeren Ladezustand leitend zu schalten.
Dieses Elektrofahrzeug weist den Vorteil auf, dass das Angleichen der Ladezustände der Batteriemodule mit einem sehr geringen Schaltungsaufwand umsetzbar ist. Außerdem wird durch das Angleichen während des Fährbetriebs dieses für den Nutzer des Elektrofahrzeugs vorteilhafterweise praktisch unmerklich im Hintergrund durchgeführt. Ferner wird vorteilhafterweis erreicht, dass das Angleichen unabhängig von Ladevorgängen zum Aufladen der Batteriemodule ist.
Das Elektrofahrzeug kann ein Hybridfahrzeug oder ein vollelektrisch angetriebenes Fahrzeug sein.
Die Batteriemodule dienen bei einem Elektrofahrzeug zumindest zu seinem Antrieb und können somit auch als "Antriebsbatteriemodule" bezeichnet werden. Es ist eine Weiterbildung, dass die Batteriemodule zusätzlich zum Bestromen mindestens eines elektrischen Antriebsmotors zum Betreiben weiterer Verbraucher ("Nebenverbraucher") vorgesehen sind, z.B. für Licht, Anzeigen, Bremsen, Lenkung, usw. Außer diesen Batteriemodulen kann in einer Weiterbildung ein weiterer elektrischer Energiespeicher nur zur Versorgung der Nebenverbraucher vorgesehen sein.
Dadurch, dass die Batteriemodule elektrisch parallel verschaltet sind, erhöht sich mit der Zahl der Batteriemodule die abrufbare Leistung, wodurch beispielsweise die Reichweite des Elektrofahrzeugs und/oder dessen Höchstgeschwindigkeit gesteigert werden kann.
Unter einem Batteriemodul wird insbesondere eine eigenständig handhabbare Batterieeinheit verstanden, welche z.B. über entsprechende Pole mit dem Energiebordnetz des Elektrofahrzeugs verbindbar ist. Ein Batteriemodul kann ein oder mehrere Batteriezellen aufweisen, die in grundsätzlich bekannter Weise geeignet verschaltet sind. Die Batteriemodule weisen eine bestimme Nominal-Modulspannung und eine bestimme Nominal- Leistung auf. Eine tatsächliche Modulspannung eines Batteriemoduls ist über seine Kontakte bzw. Pole messbar. Insbesondere ist auch seine Klemmenspannung im Fährbetrieb messbar.
Es ist eine Weiterbildung, dass die Batteriemodule gleichen elektrochemischen Typs sind. Es ist eine Weiterbildung, dass die Batteriemodule bzw. die darin enthaltenen Batteriezellen Lithium-Ionen-Akkumulatoren sind, die vorteilhafterweise eine höhere spezifische Energie aufweisen als andere kommerziell erhältliche Akkumulatortypen.
Die Bestimmungseinrichtung ist eingerichtet zum Bestimmen mindestens eines einen Ladezustand der Batteriemodule repräsentierenden Batteriezustandsparameters. Das Bestimmen kann ein Messen umfassen oder sein, in welche Fall die Bestimmungseinrichtung auch als Messeinrichtung bezeichenbar ist. Das Bestimmen kann aber auch ein Berechnen eines Batteriezustandsparameter aus einem oder mehreren Messwerten umfassen. Die Bestimmungseinrichtung kann beispielsweise einen AD-Wandler zum Umwandeln physikalischer Messignale in digitale Messwerte umfassen und ggf. eine Datenverarbeitungseinrichtung wie einen Mikroprozessor, ASIC, FPGA usw. zur Weiterverarbeitung der Messdaten in daraus abgeleitete Daten. Dass ein Batteriezustandsparameter den Ladezustand eines Batteriemoduls (auch als SoC, "State of Charge" bekannt) repräsentiert, kann insbesondere bedeuten, dass aus dem Batteriezustandsparameter auf den Ladezustand geschlossen werden kann, z.B. der Ladezustand berechnet oder abgeschätzt werden kann. Beispielsweise ist die aktuelle Modulspannung ein geeigneter Batteriezustandsparameter, da sich die Modulspannung mit höherem Ladezustand ebenfalls erhöht und daher die Modulspannung als ein direktes Maß für den Ladezustand genutzt werden kann.
Das Schaltsystem umfasst insbesondere ein Mehrzahl von elektrisch betätigbaren Schaltern wie z.B. elektronischen Schaltern (z.B. Transistoren), mechanisch schaltenden Schalter (z.B. Relais), usw.
Dass Strompfade der Batteriemodule individuell leitend oder sperrend schaltbar sind, umfasst insbesondere, dass ein Batteriemodul, dessen Strompfad leitend geschaltet ist, mit dem Stromkreis bzw. das Stromversorgungsnetz des Elektrofahrzeugs elektrisch verbunden ist und dem Elektrofahrzeug zur Stromversorgung zur Verfügung steht. Dieses Batteriemodul ist dann "angekoppelt". Ein Batteriemodul, dessen Strompfad sperrend geschaltet ist, ist von dem Stromkreis elektrisch getrennt und steht dem Elektrofahrzeug zur Stromversorgung nicht zur Verfügung. Dieses Batteriemodul ist dann "abgekoppelt". Die Fähigkeit zur steuerbar leitenden oder sperrenden Schaltung kann beispielsweise so umgesetzt sein, dass ein Schalter elektrisch in Reihe mit einem zugehörigen Batteriemodul verdrahtet ist: ist der Schalter offen, ist der Stromkreis aufgetrennt und damit sperrend geschaltet, bei geschlossenem Schalter leitend geschaltet. Dies ist besonders einfach umsetzbar Jedoch sind auch andere Schalttopologien einsetzbar.
Das Energiemanagementsystem dient insbesondere dazu, den elektrischen Verbrauchern des Fahrzeugs die aktuell benötigte elektrische Leistung zur Verfügung zu stellen.
Dass das Energiemanagementsystem mit der Bestimmungseinrichtung gekoppelt ist, umfasst insbesondere, dass von der Bestimmungseinrichtung bestimmte bzw. ermittelte Daten, z.B. Messdaten wie eine Modulspannung usw. und/oder daraus abgeleitete Daten wie der Ladezustand usw., von dem Energiemanagementsystem dazu verwendet werden können, das Schaltsystem anzusteuern.
Dass das Energiemanagementsystem das Schaltsystem ansteuern kann, umfasst insbesondere, dass es die Schalter des Schaltsystems entsprechend schalten kann, z.B. öffnen oder schließen kann.
Dass ein Batteriemodul einen Ladezustand aufweist, der "merklich niedriger" ist als ein Ladezustand eines anderen Batteriemoduls, kann insbesondere bedeuten, dass sich die Ladezustände (d.h., ein den Ladezustand repräsentierender Batteriezustandsparameter oder der daraus abgeleiteter Ladezustand SoC als solcher) stärker als ein vorgegebenes Toleranzmaß voneinander unterscheiden.
Dass der Strompfad des mindestens einen Batteriemoduls mit dem niedrigeren Ladezustand während eines Fährbetriebs des Elektrofahrzeugs sperrend geschaltet wird, also dieses mindestens eine Batteriemodul von der Stromversorgung des Elektrofahrzeugs abgekoppelt wird, bewirkt, dass dann nur das mindestens eine Batteriemodul mit dem diesbezüglich höheren Ladezustand zur Versorgung des Elektrofahrzeugs mit elektrischer Energie zur Verfügung steht. Im Fährbetrieb wird folgend nur das mindestens eine Batteriemodul mit dem höheren Ladezustand durch mindestens einen elektrischen Verbraucher entladen, wodurch dessen Ladezustand sinkt.
Dass dieser Zustand beibehalten wird, bis sich der Ladezustand des mindestens einen Batteriemoduls mit dem höheren Ladezustand dem Ladezustand des mindestens einen Batteriemoduls mit dem niedrigeren Ladezustand angeglichen hat, umfasst, dass der Zustand beibehalten wird, bis die Ladezustände sich um weniger als das vorgegebene Toleranzmaß voneinander unterscheiden. Wenn dies der Fall ist, wird das Batteriemodul mit dem niedrigeren Ladezustand wieder in die Stromversorgung ein- bzw. angekoppelt.
Es ist eine Ausgestaltung, dass der mindestens eine Batteriezustandsparameter eine Modulspannung des Batteriemoduls ist, insbesondere die Klemmenspannung des Batteriemoduls. Dies ist besonders vorteilhaft, weil die Modulspannung vergleichsweise einfach messbar ist, in Elektrofahrzeugen häufig bereits gemessen wird und die Modulspannung zudem ein zuverlässiges Maß für den Ladezustand darstellt. In diesem Fall kann das Elektrofahrzeug beispielsweise so ausgebildet sein, dass die Bestimmungseinrichtung eine Messeinrichtung zum Messen der Modulspannungen der Batteriemodule ist und das Energiemanagementsystem dazu eingerichtet ist, dann, wenn mindestens eines der Batteriemodule eine Modulspannung aufweist, der merklich niedriger ist als eine Modulspannung mindestens eines anderen der Batteriemodule, den Strompfad des mindestens einen Batteriemoduls mit der niedrigeren Modulspannung während eines Fährbetriebs des Elektrofahrzeugs sperrend zu schalten, bis sich die Modulspannung des mindestens einen Batteriemoduls mit dem höheren Modulspannung an die Modulspannung des mindestens einen Batteriemoduls mit der niedrigeren Modulspannung angeglichen hat, und dann den Strompfad des mindestens einen Batteriemoduls mit der zuvor niedrigeren Modulspannung leitend zu schalten.
Es ist eine Ausgestaltung, dass das Elektrofahrzeug mindestens eine Aufnahme für die mehreren Batteriemodule aufweist, welche nutzerseitig aus ihrer Aufnahme entnehmbar und nutzerseitig aufladbar sind. So wird der Vorteil erreicht, dass die Angleichung der Ladezustände auch für einzeln von einem Nutzer oder von einer damit beauftragten Serviceinstanz Batteriemodule ohne weiteren Aufwand durchführbar ist. Auf ein gemeinsames Aufladen der Batteriemodule an einer Ladestation, z.B. Ladesäule, kann verzichtet werden. Dies ist besonders vorteilhaft für Elektrofahrzeuge, die keine Ladedose oder keinen induktiven Ladeaufnehmer aufweisen. Solche Elektrofahrzeuge können dadurch besonders klein, kompakt und preiswert gehalten werden. Insbesondere kann ein Nutzer die Batteriemodule dann auch zu Hause über einen an das Hausstromnetz angeschlossenen, z.B. in eine Steckdose eingesteckten, Ladeadapter laden, ohne z.B. eine Wallbox zu benötigen. Ein weiterer Vorteil des Ladens der Batteriemodule außerhalb des Elektrofahrzeugs besteht darin, dass das Elektrofahrzeug dann gezielt auch mit weniger als der maximal Zahl von Batteriemodulen bestückt und betrieben werden kann. Dies kann das Mitführen "halbleerer“ Batteriemodule ersparen.
Es ist eine Weiterbildung, dass die Batteriemodule zusammen eine elektrische Leistung von mindestens 11 kW zur Verfügung stellen können. Dies ist vorteilhaft, um das Elektrofahrzeug mit mindestens einem oder sogar mehreren Nutzern, ggf. auch mit einer Zuladung, auf der Straße ohne weiteres mit dem fließenden Verkehr mitbewegen zu können.
Es ist eine Ausgestaltung, dass ein einzelnes Batteriemodul eine elektrische (Nominal-) Leistung von bis zu 7 kW zur Verfügung stellen kann.
Es ist eine Ausgestaltung, dass das Elektrofahrzeug ein elektrisch angetriebenes Motorrad ist. Dies ist besonders vorteilhaft wie oben beschrieben ausgestaltbar, weil speziell für Motorräder entnehmbare und nutzerseitig aufladbare Batteriemodule eine signifikante Vergrößerung des knappen Bauraums zu vermeiden helfen. Zudem sind durch das geringe Gewicht von elektrisch angetriebenen Motorrädern schon wenige Batteriemodule ausreichend, um es im Straßenverkehr flüssig mitfahren zu lassen.
Es ist eine Ausgestaltung, dass das Elektrofahrzeug ein elektrisch angetriebener Kleinwagen ist. Auch hier helfen entnehmbare und nutzerseitig aufladbare Batteriemodule, eine kompakte Baugröße und einen preiswerten Aufbau beizubehalten.
Es ist eine Ausgestaltung, dass das Elektrofahrzeug eine Aufnahme für genau zwei Batteriemodule aufweist. Dies spart Bauraum und Kosten. Ferner lässt sich so vorteilhafterweise der Implementierungsaufwand für das Batteriemanagementsystem besonders gering halten.
Es ist eine Weiterbildung, dass das Elektrofahrzeug eine Aufnahme für mehr als zwei Batteriemodule aufweist, was vorteilhafterweise eine dem Elektrofahrzeugs zur Verfügung stehende elektrische Leistung erhöht. In diesem Fall lassen sich die Batteriemodule ebenfalls gestuft angleichen, ggf. gruppenweise. Dies sei nun beispielhaft anhand von drei Batteriemodulen B1 , B2 und B3 ausgeführt, welche unterschiedliche Ladezustände SoC (B1) > SoC (B2) > SoC (B3) außerhalb ihrer Toleranzmaße aufweisen, was sich auch durch die Modulspannungen V abbilden lässt, für die dann V (B1) > V (B2) + AV > V (B3) + AV mit AV dem Toleranzmaß für die Modulspannungen gelte.
In einem möglichen Angleichungsschema werden zunächst die Batteriemodule B2 und B3 abgekoppelt, so dass das Elektrofahrzeug nur von Batteriemodul B1 versorgt wird. Dadurch entlädt sich das Batteriemodul B1 , bis V (B1) = V (B2) + AV oder bis V (B1) = V (B2) gilt. Folgend wird das Batteriemodul B2 wieder angekoppelt, so dass das Elektrofahrzeug nun von den Batteriemodule B1 und B2 versorgt wird. Dadurch entladen sich beide Batteriemodule B1 und B2, bis V (B1) = V (B2) + AV = V (B3) + AV oder bis V (B1) = V (B2) = V (B3) gilt. Folgend wird auch das Batteriemodul B3 wieder an das Versorgungsbordnetz angekoppelt. Diese Weiterbildung weist den Vorteil auf, dass die Spannungsdifferenz über alle drei Batteriemodule B1 bis B3 besonders schnell reduzierbar ist.
In einem anderen möglichen Angleichungsschema wird zunächst nur das Batteriemodul B3 abgekoppelt, so dass das Elektrofahrzeug von der Gruppe der Batteriemodule B1 und B2 mit elektrischer Energie versorgt wird. Dadurch entladen sich die Batteriemodule B1 und B2, bis V (B2) = V (B3) + AV oder bis V (B2) = V (B3) gilt. Folgend wird das Batteriemodul B2 abgekoppelt, so dass das Elektrofahrzeug nun nur noch durch das Batteriemodul B1 versorgt wird. Dadurch entlädt sich Batteriemodul B1 , bis V (B1) = V (B2) + AV = V (B3) + AV oder bis V (B1) = V (B2) = V (B3) gilt. Folgend werden die Batteriemodule B2 und B3 wieder an das Versorgungsbordnetz angekoppelt. Dieses Schema weist den Vorteil auf, dass zu Beginn eines Fährbetriebs eine vergleichsweise hohe elektrische
Leistung zur Verfügung steht, was beispielsweise bei kalten Umgebungstemperaturen beim Start vorteilhaft sein kann.
Die obigen Angleichungsschemata können auf mehr als mehr als drei Batteriemodule analog angepasst werden. Auch können noch weitere Angleichungsschemata vorgesehen werden, deren Komplexität mit der Zahl der zur Energieversorgung zur Verfügung stehenden Batteriemodul ansteigen kann. Die Angleichungsschemata können auch unterschiedlich schnelle Entladungen berücksichtigen.
Es ist eine Weiterbildung, dass das Toleranzmaß für die Modulspannungen in einem Bereich zwischen 0,25 V und 0,75 V liegt, speziell bei ca. 0,5 V.
Es ist eine Ausgestaltung, dass die Batteriemodule eine gleiche (bauart- bzw. typbedingte) Nominal-Leistung aufweisen.
Es ist eine Ausgestaltung, dass mindestens zwei der Batteriemodule eine unterschiedliche Nominal-Leistung aufweisen. Dies kann vorteilhaft sein, um einem Nutzer zu ermöglichen, die Leistung seines Elektrofahrzeugs flexibel anzupassen. In diesem Fall können die Angleichungsschemata an die Nominal-Leistungen der Batteriemodule angepasst werden, z.B. so, dass bei gleichen gemessenen Modulspannungen ein Batteriemodul mit einer geringeren Nominal-Leistung vor oder nach einem Batteriemodul mit einer höheren Nominal-Leistung entladen wird.
Es ist eine Ausgestaltung, dass das Energiemanagementsystem dazu eingerichtet ist, die Strompfade mindestens so vieler Batteriemodule leitend zu schalten, dass eine Leistungsanforderung des Elektrofahrzeugs durch die leitend geschalteten Batteriemodule erfüllbar ist. Dies ist vorteilhaft, um zu verhindern, dass eine sich aus dem Fährbetrieb ergebende benötigte bzw. angeforderte Leistungsaufnahme des Elektrofahrzeugs von den Batteriemodulen auch abrufbar ist, z.B. weil ein Überholvorgang oder eine Bergfahrt durchgeführt wird, ein Verbraucher wie z.B. eine Klimaanlage zugeschaltet wird, usw. Liegt die benötigte Leistungsaufnahme über der durch das mindestens eine angekoppelte Batteriemodul zur Verfügung gestellten Leistung, kann der Angleichungsprozess unterbrochen werden, indem z.B. alle Batteriemodule angekoppelt werden und/oder es kann zwischen unterschiedlichen Angleichungsschemata gewechselt werden. In dem obigen Beispiel mit
drei Batteriemodulen könnte z.B. der Fall vorliegen, dass zunächst die benötigte Leistung durch ein Batteriemodul abgedeckt wird, wobei dann das obige erste Angleichungsschema durchgeführt wird, bei dem nur das Batteriemodul B1 angekoppelt ist. Wird nun mehr Leistung benötigt als durch das Batteriemodul B1 zur Verfügung gestellt werden kann, kann auf das obige zweite Angleichungsschema umgeschaltet werden, bei dem auch das Batteriemodul B2 angekoppelt ist. Ist auch dies nicht ausreichend, können alle drei Batteriemodule B1 bis B3 angekoppelt werden. Sinkt folgend die Leistungsanforderung wieder, z.B. weil ein Überholvorgang abgeschlossen worden ist oder das Elektrofahrzeug in zähfließenden Verkehr gerät, kann der Angleichungsvorgang wieder aufgenommen werden, usw.
Es ist eine Ausgestaltung, dass die mindestens eine Aufnahme mit den Batteriemodulen bestückt ist, insbesondere mit allen Batteriemodulen. Jedoch ist grundsätzlich auch eine nur teilweise Bestückung möglich, was eine Gewicht des Elektrofahrzeugs verringert. Beispielsweise kann ein Kleinwagen mit weniger als der maximal möglichen Zahl von Batteriemodulen bestückt werden, wenn die Beladung gering ist und/oder die voraussichtliche Fahrstrecke kurz ist.
Die Aufgabe wird auch gelöst durch ein Verfahren zum Angleichen von Ladezuständen mehrerer elektrisch parallel geschalteter Batteriemodule gleicher Nominal-Modulspannung eines Elektrofahrzeugs, bei dem während eines Fährbetriebs des Elektrofahrzeugs mindestens ein einen Ladezustand der Batteriemodule repräsentierender Batteriezustandsparameter bestimmt wird, dann, wenn mindestens eines der Batteriemodule einen Ladezustand aufweist, der merklich niedriger ist als ein Ladezustand mindestens eines anderen der Batteriemodule, das mindestens eine Batteriemodul mit dem niedrigeren Ladezustand abgekoppelt wird, bis sich der Ladezustand des mindestens einen Batteriemoduls mit dem höheren Ladezustand an den Ladezustand des mindestens einen Batteriemoduls mit dem niedrigeren Ladezustand angeglichen hat, und dann das mindestens eine Batteriemodul mit dem niedrigeren Ladezustand angekoppelt wird.
Das Verfahren kann analog zu dem Elektrofahrzeug ausgebildet werden, und umgekehrt, und weist die gleichen Vorteile auf.
Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden schematischen Beschreibung eines Ausführungsbeispiels, das im Zusammenhang mit den Zeichnungen näher erläutert wird.
Fig.1 zeigt skizzenhaft ein erfindungsgemäß ausgebildetes Elektrofahrzeug mit zwei Batteriemodulen; und
Fig.2 zeigt einen möglichen Verfahrensablauf zum Angleichen des Ladezustands der Batteriemodule des Elektrofahrzeugs aus Fig.1.
Fig.1 zeigt skizzenhaft ein Elektrofahrzeug 1, z.B. ein vollelektrisch angetriebenes Motorrad, das eine Aufnahme 2 für zwei Batteriemodule B1 und B2 aufweist, die vorliegend in die Aufnahme 2 eingesetzt sind und daher als elektrische Energiespeicher zum Betrieb des Elektrofahrzeugs 1 zur Verfügung stehen. Die Batteriemodule B1 und B2 sind hier als Lithium-Ionen-Akkumulatoren mit gleicher Nominal-Modulspannung und gleicher oder unterschiedlicher Nominal-Leistung ausgebildet, die elektrisch parallel miteinander verschaltet sind.
Die Batteriemodule B1 und B2 sind nutzerseitig aus ihrer Aufnahme 2 entnehmbar und nutzerseitig aufladbar, z.B. durch Anschluss an einen an ein Hausstromnetz anschließbaren Ladeadapter. Die Batteriemodule B1 , B2 können vorteilhafterweise zusammen dem Elektrofahrzeug 1 eine elektrische Leistung von mindestens 11 kW zur Verfügung stellen.
Eine Bestimmungseinrichtung 3 des Elektrofahrzeugs 1 ist dazu eingerichtet, Batteriezustandsparameter in Form einer an den Polen bzw. Klemmen der Batteriemodule B1, B2 jeweils anliegenden Modulspannung V (B1) bzw. V (B2) zu messen. Die Modulspannungen V (B1), V (B2) sind zum Zweck der Angleichung der Ladezustände der Batteriemodule B1, B2 ausreichend genaue Repräsentanten für den Ladezustand des jeweiligen Batteriemoduls B1 bzw. B2. Daher können die Modulspannungen V (B1), V (B2) direkt als Maße für den Ladezustand des jeweiligen Batteriemoduls B1 , B2 verwendet werden. Alternativ kann die Bestimmungseinrichtung 3 aus den Modulspannungen V (B1), V (B2) ggf. weiteren Batteriezustandsparametern wie einem Gesundheitszustand usw. und/oder aus noch weiteren Parametern wie einer Umgebungstemperatur usw. den jeweiligen
Ladezustand berechnen, z.B. mittels einer Formel, mittels eines Kennlinienfelds, usw. Im Folgenden wird diejenige Variante weiter beschrieben, bei der die Modulspannungen V (B1), V (B2) direkt als Maß für den Ladezustand verwendet werden.
Das Elektrofahrzeug 1 weist ferner ein Schaltsystem 4 auf, das dazu eingerichtet ist, Strompfade der Batteriemodule B1 , B2 individuell leitend oder sperrend zu schalten. Dazu weist das Schaltsystem 4 hier zwei elektrisch schaltbare Schalter Sw1 und Sw2 auf, die elektrisch in Reihe zu einem zugehörigen Batteriemodul B1 bzw. B2 verschaltet sind. Die Schalter Sw1 , Sw2 sind mittels einer Ansteuereinrichtung 5 schaltbar, wodurch die Schalter Sw1 und Sw2 individuell wahlweise leitend oder sperrend schaltbar sind. Die Schalter Sw1 , Sw2 können beispielsweise mechanisch schaltende Schalter wie Relais usw. und/oder elektronische Schalter wie Transistoren usw. sein. Sind die Schalter Sw1 , Sw2 leitend geschaltet, sind sie an eine Stromversorgungsnetz zum Versorgen zumindest eines elektrischen Antriebs 6 und ggf. weiterer elektrischer Verbraucher angeschlossen bzw. angekoppelt. Sind die Schalter Sw1 , Sw2 sperrend geschaltet, sind sie von dem Stromversorgungsnetz getrennt bzw. abgekoppelt.
Die Bestimmungseinrichtung 3 und das Schaltsystem 4 sind mit einem Energiemanagementsystem 7 verbunden. Das Energiemanagementsystem 7 kann Werte der Modulspannungen V (B1), V (B2) von der Bestimmungseinrichtung 3 empfangen und kann das Schaltsystem 4 anweisen, die Schalter Sw1 und/oder Sw2 in eine gewünschte Schaltstellung zu schalten. In einer Variante können das Energiemanagementsystem 7 und das Schaltsystem 4 ineinander integriert sein, so dass dann z.B. das Energiemanagementsystem 7 auch die Funktion des Schaltsystems 4 übernimmt und beispielsweise die Schalter Sw1 und Sw2 direkt schalten kann. In einer zusätzlichen oder alternativen Variante können das Energiemanagementsystem 7 und Bestimmungseinrichtung 3 ineinander integriert sein, so dass dann z.B. das Energiemanagementsystem 7 die physikalischen Spannungssignale von den Batteriemodulen B1 , B2 empfangen kann und z.B. in digitale Messwerte umwandeln und ggf. weiterverarbeiten kann.
Im Folgenden sei beispielhaft der der Fall näher beschrieben, dass das Batteriemodul B2 eine merklich niedrigere Ladespannung V (B2) aufweist als das Batteriemodul B1 , also V (B1) > V (B2) + AV mit AV dem Toleranzmaß gilt. Dies lässt sich durch einfachen Vergleich der durch die Bestimmungseinrichtung 3 gemessenen Modulspannungen V (B1)
und V (B2) feststellen, z.B. ob V (B1) - V (B2) > AV gilt. Der umgekehrte, nicht ausgeführte Fall mit V (B2) > V (B1) + AV ist analog anwendbar. AV liegt vorteilhafterweise in einem Bereich zwischen 0,25 V und 0,75 V, speziell bei ca. 0,5 V.
Das Energiemanagementsystem 7 ist für den obigen Fall V (B1) > V (B2) dazu eingerichtet, Schalter Sw2 sperrend zu schalten, während Schalter Sw1 leitend geschaltet wird o- der bleibt. Dieser Schaltzustand bleibt bestehen, bis sich die Modulspannung V (B1) durch Entladung während eines Fährbetriebs, insbesondere durch den elektrischen Antrieb 6, so weit entladen hat, dass V (B1) » V (B2) gilt, was z.B., je nach Programmierung, einer der Bedingungen V (B1) < V (B2) + AV oder V (B1) = V (B2) entsprechen kann. Folgend auf diese Angleichung wird der Schalter Sw2 wieder leitend geschaltet, und beide Batteriemodule B1 und B2 sind nun, mit zumindest ungefähr gleichen Modulspannungen V (B1), V (B2) an das Stromversorgungsnetz angekoppelt bzw. angeschlossen.
Dieser Ablauf wird in Fig.2 nochmal für den Fall verdeutlicht. In einem ersten Schritt S1 wird das Elektrofahrzeug 1 durch einen Nutzer für einen Fährbetrieb angeschaltet.
In einem folgenden Schritt S2 wird überprüft, ob die Bedingung V (B1) > V (B2) + AV oder die Bedingung V (B2) > V (B1) + AV vorliegt.
Ist dies nicht der Fall ("N") und liegen die Modulspannungen V (B1) und V (B2) innerhalb ihres Toleranzmaßes, gilt also V (B1) » V (B2), wird Schritt S2 erneut durchgeführt. Dazwischen werden in einem dritten Schritt S3 beide Schalter Sw1 und Sw2 leitend geschaltet. Falls sie bereits leitend geschaltet sind, bleiben sie leitend geschaltet.
Ist dies jedoch der Fall ("J"), wird in Schritt S4 das Batteriemodul B2, das die niedrigere Modulspannung V (B2) aufweist, von dem Stromversorgungsnetz abgekoppelt oder bleibt abgekoppelt, falls es bereits abgekoppelt war. Dann wird zu Schritt S2 zurückverzweigt.
Die Überprüfung der Abweichung der Modulspannungen V (B1) und V (B2) voneinander in Schritt S2 kann zyklisch wiederholt werden, z.B. alle 0,1 s bis 1 s.
Die Schritte S4 werden insbesondere vorbehaltlich der Situation durchgeführt, dass das aktuell angekoppelte Batteriemodul B1 eine zum Betrieb des Elektrofahrzeugs 1
ausreichende elektrische Leistung liefern kann. Ist dies nicht der Fall, werden oder bleiben beide Batteriemodule B1 und B2 angekoppelt. Dies kann in dem obigen Verfahrensablauf so umgesetzt sein, dass zwischen Schritt S2 und Schritt S3 ein Schritt S5 durchgeführt wird, bei dem abgefragt wird, ob die von dem Elektrofahrzeug 1 angeforderte elektrische Leistung höher ist - alternativ, gleich oder höher ist - als die von dem Batteriemodul B1 mit der höheren Modulspannung V (B1) bereitstellbare elektrische Leistung. Ist dies der Fall ("J"), wird zu Schritt S4 übergegangen, ansonsten ("N") zu Schritt S3 weiterverzweigt. Dadurch wird sichergestellt, dass immer so viele Batteriemodule B1 , B2 angekoppelt sind, dass eine Leistungsanforderung des Elektrofahrzeugs 1 durch die angekoppelten Batteriemodule B1 , B2 erfüllbar ist.
Selbstverständlich ist die vorliegende Erfindung nicht auf das gezeigte Ausführungsbeispiel beschränkt.
Allgemein kann unter "ein", "eine" usw. eine Einzahl oder eine Mehrzahl verstanden werden, insbesondere im Sinne von "mindestens ein" oder "ein oder mehrere" usw., solange dies nicht explizit ausgeschlossen ist, z.B. durch den Ausdruck "genau ein" usw.
Auch kann eine Zahlenangabe genau die angegebene Zahl als auch einen üblichen Toleranzbereich umfassen, solange dies nicht explizit ausgeschlossen ist.
Bezugszeichenliste
1 Elektrofahrzeug
2 Aufnahme für Batteriemodule
3 Bestimmungseinrichtung
4 Schaltsystem
5 Ansteuereinrichtung
6 Elektrischer Antrieb
7 Energiemanagementsystem
B1 Batteriemodul
B2 Batteriemodul
Sw1 Schalter
Sw2 Schalter
S1-S5 Verfahrensschritte V (B1) Modulspannung
V (B2) Modulspannung
AV Toleranzmaß
Claims
Patentansprüche Elektrofahrzeug (1), aufweisend
- mehrere elektrisch parallel verschaltete Batteriemodule (B1 , B2) gleicher Nominal-Modulspannung,
- eine Bestimmungseinrichtung
(3) zum Bestimmen mindestens eines einen Ladezustand der Batteriemodule (B1 , B2) repräsentierenden Batteriezustandsparameters (V (B1), V (B2));
- ein Schaltsystem (4), das dazu eingerichtet ist, Strompfade der Batteriemodule (B1 , B2) individuell leitend oder sperrend zu schalten;
- ein das Schaltsystem ansteuerndes Energiemanagementsystem (7), das dazu eingerichtet ist,
- dann, wenn mindestens eines (B2) der Batteriemodule (B1 , B2) einen Ladezustand (V (B2)) aufweist, der merklich niedriger ist als ein Ladezustand (V (B1)) mindestens eines anderen (B1) der Batteriemodule (B1 , B2), den Strompfad des mindestens einen Batteriemoduls (B2) mit dem niedrigeren Ladezustand (V (B2)) während eines Fährbetriebs des Elektrofahrzeugs (1) sperrend zu schalten, bis sich der Ladezustand (V (B1)) des mindestens einen Batteriemoduls (B1) mit dem höheren Ladezustand (V (B1)) an den Ladezustand (V (B2)) des mindestens einen Batteriemoduls (B1 , B2) mit dem niedrigeren Ladezustand (V (B2)) angeglichen hat, und
- dann den Strompfad des mindestens einen Batteriemoduls (B2) mit dem zuvor niedrigeren Ladezustand (V (B1)) leitend zu schalten. Elektrofahrzeug (1) nach Anspruch 1 , wobei der mindestens eine Batteriezustandsparameter (V (B1), V (B2)) eine Modulspannung ist. Elektrofahrzeug (1) nach einem der vorhergehenden Ansprüche, wobei das Elektrofahrzeug (1) mindestens eine Aufnahme (2) für die mehreren Batteriemodule (B1 , B2) aufweist, welche nutzerseitig aus ihrer Aufnahme (2) entnehmbar und nutzerseitig aufladbar sind.
4. Elektrofahrzeug (1) nach einem der vorhergehenden Ansprüche, wobei ein jeweiliges Batteriemodule (B1, B2) eine elektrische Leistung von mindestens 7 kW zur Verfügung stellen kann.
5. Elektrofahrzeug (1) nach einem der vorhergehenden Ansprüche, wobei das Elektrofahrzeug (1) ein elektrisch angetriebenes Motorrad ist.
6. Elektrofahrzeug (1) nach einem der vorhergehenden Ansprüche, wobei das Elektrofahrzeug (1) ein elektrisch angetriebener Kleinwagen ist.
7. Elektrofahrzeug (1) nach einem der vorhergehenden Ansprüche, wobei das Elektrofahrzeug (1) eine Aufnahme (2) für genau zwei Batteriemodule (B1 , B2) aufweist.
8. Elektrofahrzeug (1) nach einem der vorhergehenden Ansprüche, wobei die Batteriemodule (B1, B2) eine gleiche Nominal-Leistung aufweisen.
9. Elektrofahrzeug (1) nach einem der vorhergehenden Ansprüche, wobei mindestens zwei der Batteriemodule (B1 , B2) eine unterschiedliche Nominal-Leistung aufweisen.
10. Elektrofahrzeug (1) nach einem der vorhergehenden Ansprüche, wobei das Energiemanagementsystem (7) dazu eingerichtet ist, die Strompfade mindestens so vieler Batteriemodule (B1, B2) leitend zu schalten, dass eine Leistungsanforderung des Elektrofahrzeugs (1) durch die leitend geschalteten Batteriemodule (B1 , B2) erfüllbar ist.
11. Elektrofahrzeug (1) nach einem der vorhergehenden Ansprüche, wobei die mindestens eine Aufnahme (2) mit Batteriemodulen (B1 , B2) bestückt ist.
12. Verfahren zum Angleichen von Ladezuständen (V (B1), V (B2)) mehrerer elektrisch parallel geschalteter Batteriemodule (B1, B2) gleicher Nominal-Modulspannung eines Elektrofahrzeugs (1), bei dem während eines Fährbetriebs des Elektrofahrzeugs
- mindestens ein einen Ladezustand (V (B1), V (B2)) der Batteriemodule (B1, B2) repräsentierender Batteriezustandsparameter bestimmt wird,
- dann, wenn mindestens eines (B2) der Batteriemodule (B1 , B2) einen Ladezustand (V (B2)) aufweist, der merklich niedriger ist als ein Ladezustand (V (B2)) mindestens eines anderen (B2) der Batteriemodule (B1, B2), das mindestens eine Batteriemodul (B2) mit dem niedrigeren Ladezustand (V (B2)) abgekoppelt wird, bis sich der Ladezustand (V (B1)) des mindestens einen Batteriemoduls (B1) mit dem höheren Ladezustand (V (B1)) an den Ladezustand (V (B2)) des mindestens einen Batteriemoduls (B2) mit dem niedrigeren Ladezustand (V (B2)) angeglichen hat, und
- dann das mindestens eine Batteriemodul (B2) mit dem niedrigeren Ladezustand (V (B2)) angekoppelt wird.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380014757.3A CN118339054A (zh) | 2022-01-27 | 2023-01-10 | 电动车的电池模块的荷电状态的均衡 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102022101927.6A DE102022101927A1 (de) | 2022-01-27 | 2022-01-27 | Angleichen von Ladezuständen von Batteriemodulen eines Elektrofahrzeugs |
DE102022101927.6 | 2022-01-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023143897A1 true WO2023143897A1 (de) | 2023-08-03 |
Family
ID=84982592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2023/050363 WO2023143897A1 (de) | 2022-01-27 | 2023-01-10 | Angleichen von ladezuständen von batteriemodulen eines elektrofahrzeugs |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN118339054A (de) |
DE (1) | DE102022101927A1 (de) |
WO (1) | WO2023143897A1 (de) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2056422A1 (de) | 2007-11-01 | 2009-05-06 | Honda Motor Co., Ltd. | Batterieentladesteuersystem |
US20140091751A1 (en) * | 2012-10-02 | 2014-04-03 | Zero Motorcycles, Inc | System And Method Of Using High Energy Battery Packs |
EP2879266A1 (de) | 2013-11-28 | 2015-06-03 | Dialog Semiconductor GmbH | Leistungsverwaltungsverfahren für eine wiederaufladbare Stapelzellen-Energiespeichereinrichtung und wiederaufladbare Stapelzellen-Energiespeichereinrichtung |
DE102017218067A1 (de) * | 2017-10-11 | 2019-04-11 | Bayerische Motoren Werke Aktiengesellschaft | Mehrspannungs-Speichersystem für ein Fahrzeug |
WO2021054892A1 (en) * | 2019-09-20 | 2021-03-25 | Grabtaxi Holdings Pte. Ltd | Controller, electric power system comprising the controller, method of operating the system, and vehicle comprising the system |
WO2021261360A1 (ja) * | 2020-06-26 | 2021-12-30 | パナソニックIpマネジメント株式会社 | 管理装置、及び電源システム |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3890168B2 (ja) | 1999-08-03 | 2007-03-07 | 株式会社東京アールアンドデー | 電動装置及びその電池ユニットの充放電方法 |
DE102013219967A1 (de) | 2013-10-01 | 2015-04-02 | Bayerische Motoren Werke Aktiengesellschaft | Vorrichtung zum Bereitstellen einer Versorgungsspannung zum Betreiben einer elektrischen Einrichtung eines Fahrzeugs |
DE102016212557A1 (de) | 2016-07-11 | 2018-01-11 | Robert Bosch Gmbh | Batteriesystem zum Versorgen eines Spannungsnetzes mit elektrischer Energie |
-
2022
- 2022-01-27 DE DE102022101927.6A patent/DE102022101927A1/de active Pending
-
2023
- 2023-01-10 WO PCT/EP2023/050363 patent/WO2023143897A1/de active Application Filing
- 2023-01-10 CN CN202380014757.3A patent/CN118339054A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2056422A1 (de) | 2007-11-01 | 2009-05-06 | Honda Motor Co., Ltd. | Batterieentladesteuersystem |
US20140091751A1 (en) * | 2012-10-02 | 2014-04-03 | Zero Motorcycles, Inc | System And Method Of Using High Energy Battery Packs |
EP2879266A1 (de) | 2013-11-28 | 2015-06-03 | Dialog Semiconductor GmbH | Leistungsverwaltungsverfahren für eine wiederaufladbare Stapelzellen-Energiespeichereinrichtung und wiederaufladbare Stapelzellen-Energiespeichereinrichtung |
DE102017218067A1 (de) * | 2017-10-11 | 2019-04-11 | Bayerische Motoren Werke Aktiengesellschaft | Mehrspannungs-Speichersystem für ein Fahrzeug |
WO2021054892A1 (en) * | 2019-09-20 | 2021-03-25 | Grabtaxi Holdings Pte. Ltd | Controller, electric power system comprising the controller, method of operating the system, and vehicle comprising the system |
WO2021261360A1 (ja) * | 2020-06-26 | 2021-12-30 | パナソニックIpマネジメント株式会社 | 管理装置、及び電源システム |
Also Published As
Publication number | Publication date |
---|---|
CN118339054A (zh) | 2024-07-12 |
DE102022101927A1 (de) | 2023-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102015109497B4 (de) | Verfahren und Vorrichtung zum Betreiben einer Lithium-Ionen-Batterie, sowie Fahrzeug | |
DE102019114701A1 (de) | Selbstausgleichende Schaltsteuerung eines wiederaufladbaren Doppelpack-Energiespeichersystems mit Reihen- und Parallelmodi | |
WO2015161861A1 (de) | Multibatteriesystem zur erhöhung der elektrischen reichweite | |
EP1941594B1 (de) | Ladeverfahren zur verlängerung der lebensdauer von batterien und vorrichtung zur durchführung desselben | |
DE102017210611B4 (de) | Elektrische Energieliefervorrichtung mit einer Stromschienenmatrix sowie Verfahren zum Betreiben der Energieliefervorrichtung | |
WO2018233958A1 (de) | VERFAHREN ZUM BETREIBEN EINER VIELZAHL VON NUTZEINHEITEN FÜR EINEN VERSCHLEIßANGLEICH IN EINER ENERGIELIEFERVORRICHTUNG SOWIE ENERGIELIEFERVORRICHTUNG | |
EP3052337B1 (de) | Vorrichtung zur spannnungsversorung eines elektrischen fahrzeugs mit fester haupbatterie und austauschbarer hilfsbatterie | |
DE102013108198B4 (de) | Verfahren zum Ausführen eines Zellausgleichs eines Batteriesystems basierend auf Kapazitätswerten | |
WO2018233954A1 (de) | Elektrische energieliefervorrichtung mit stromschienenmatrix sowie verfahren zum betreiben der energieliefervorrichtung | |
DE102018217382A1 (de) | Verfahren zum Betrieb eines Batteriesystems und Elektrofahrzeug und Batteriesystem für ein Elektrofahrzeug | |
DE102018104212A1 (de) | Lithiumanreicherung zum eindämmen von kapazitätsverlust in li-ionen-batterien | |
DE102017210618A1 (de) | Elektrische Energieliefervorrichtung mit einer Vielzahl von Nutzeinheiten, die zu Strängen verschaltet sind, sowie Verfahren zum Betreiben der Energieliefervorrichtung | |
EP2285618A1 (de) | Elektrische energieversorgungseinheit und verfahren zum laden von akkumulatoren einer elektrischen energieversorgungseinheit und elektrisches leichtfahrzeug mit elektrischer energieversorgungseinheit | |
EP3676933A1 (de) | Vorrichtung zum elektropolieren eines zumindest eine lithium-ionen-zelle aufweisenden energiespeichers, ladegerät, verfahren zum betreiben des ladegeräts | |
EP1332539B1 (de) | Batterieladevorrichtung und verfahren zum laden von batterien mit mehreren batterieblöcken | |
DE102012011840A1 (de) | Bordnetz für ein Kraftfahrzeug | |
DE102015225441A1 (de) | Energiespeicherzellenausgleichssystem für einen in einem Fahrzeug angeordneten Hochvoltspeicher | |
DE102014108601A1 (de) | Verfahren zum Anschließen mehrerer Batterieeinheiten an einen zweipoligen Eingang eines bidirektionalen Batteriewandlers sowie bidirektionaler Batteriewandler und Photovoltaikwechselrichter | |
WO2023143897A1 (de) | Angleichen von ladezuständen von batteriemodulen eines elektrofahrzeugs | |
DE102018213261A1 (de) | Verfahren zum Betreiben eines Batteriesystems und Elektrofahrzeugs | |
EP3470259B1 (de) | Energiespeichersystem mit mehreren parallel verschalteten energiespeichern und verfahren zum betrieb eines energiespeichersystems | |
WO2019007879A1 (de) | Mastersteuergerät für ein batteriesystem | |
DE102013009991A1 (de) | Fremdstartfähige Integration einer Batterie in ein Kraftfahrzeug-Bordnetz | |
DE102020130682A1 (de) | Ausgleichen von zellen einer traktionsbatterie unter verwendung einer statistischen analyse | |
DE102008023291A1 (de) | Elektrisches Leichtfahrzeug mit elektrischer Energieversorgungseinheit und Verfahren zum Laden und Entladen von Akkumulatoren eines elektrischen Leichtfahrzeugs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23700637 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202380014757.3 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18714920 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |