WO2023143606A1 - Fully human endogenous gene delivery system - Google Patents

Fully human endogenous gene delivery system Download PDF

Info

Publication number
WO2023143606A1
WO2023143606A1 PCT/CN2023/073840 CN2023073840W WO2023143606A1 WO 2023143606 A1 WO2023143606 A1 WO 2023143606A1 CN 2023073840 W CN2023073840 W CN 2023073840W WO 2023143606 A1 WO2023143606 A1 WO 2023143606A1
Authority
WO
WIPO (PCT)
Prior art keywords
human endogenous
delivery system
gene delivery
fully human
seq
Prior art date
Application number
PCT/CN2023/073840
Other languages
French (fr)
Inventor
Cheng Wang
Xiyan WANG
Original Assignee
Innovec Biotherapeutics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innovec Biotherapeutics filed Critical Innovec Biotherapeutics
Publication of WO2023143606A1 publication Critical patent/WO2023143606A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/10022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16023Virus like particles [VLP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16041Use of virus, viral particle or viral elements as a vector
    • C12N2740/16045Special targeting system for viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16051Methods of production or purification of viral material
    • C12N2740/16052Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles

Definitions

  • the present invention relates to a fully human endogenous gene delivery system. Specifically, the present invention relates to a fully human endogenous gene delivery system comprising a human endogenous enveloping protein, a human endogenous capsid protein, and a gene of interest, which has the advantage of being safe and efficient and can be applied to CRISPR systems, gene therapy, vaccine manufacturing, and the like.
  • Biologic nucleotide delivery vectors are applied for gene therapy in a series of disease to eliminate genetic disorders or to restore deficient gene expression.
  • Lentiviral vectors derived from self-inactivated HIV-1 have been identified as efficient gene transfer vectors for stable long-term gene expression in host cells by integrating viral RNA genome into host chromatin. Lentiviral transduction depends on virus-cell membrane fusion which is mediated by envelope glycoprotein-extracellular receptor interaction.
  • VSVg Vesicular stomatitis G glycoprotein is the most widely-utilized enveloping element in diverse lentiviral packaging system for its ideal viral particle stability, and outstanding gene transduction efficiency to host cells derived from different original tissue types.
  • lentiviral vectors showed significant immunogenic properties during in vivo studies which have reported unexpected immune responses. Moreover, the non-site-specific integrity of lentiviral genome into host DNA also brought up risk and limitation for further application of lentiviral vectors, which requires improvement of gene delivery system with lower immunogenicity or integrating activity.
  • VLPs virus-like particles
  • Human paternally expressed 10 hPEG10
  • hPEG10 mRNA UTR regions and package of entire mRNA fragment into hPEG10 capsid allows the replacement of protein-coding sequence with gene of interest (GOI) , thus enables hPEG10 to specifically package mRNA of GOI cargoed with hPEG10 mRNA UTR (cargoRNA) into its capsid particle upon applicable design.
  • GOI gene of interest
  • hPEG10 VLP is capable to entry host cells by co-packaging with fusogens, result in an engineered mRNA delivery VLP system.
  • VSVg and mouse syncytin a (Syna) are characterized fusogens when co-expressed with hPEG10 and cargoRNA in HEK 293 cell line, and VSVg/Syna-pseudotyped hPEG10 VLPs exhibited considerable transduction efficiency and diverse gene functions (GFP, Cre recombinase, Cas9 nuclease) in human and mouse cells in vitro.
  • hPEG10 VLP showed less immunogenic than lentiviral vectors due to its human endogenous capsid and might be a more safety mRNA delivery vector for the non-integrating property of cargoRNA.
  • the present invention relates to gene delivery system, production method and use thereof.
  • the present invention provides a fully human endogenous gene delivery system comprising a human endogenous enveloping protein, a human endogenous capsid protein, and a gene of interest.
  • the human endogenous enveloping protein can be selected from the group consisting of hERV-K, hERV-H, hERV-W, hERV-FRD, hERV-E, and a variant thereof.
  • hERV-K can be selected from the group consisting of hERV-K108, hERV-K109, hERV-K113, hERV-K115;
  • hERV-H can be selected from the group consisting of hERV-H/env59, hERV-H/env60, hERV-H/env62;
  • hERV-W can be ERVW-1; and
  • hERV-FRD can be ERVFRD-1.
  • the human endogenous enveloping protein can be c-terminal truncated ERVFRD-1.
  • the c-terminal truncated ERVFRD-1 has an amino acid sequence as set forth in any one of SEQ ID NOs.: 2-7, or a variant having at least 90%homology thereto.
  • the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del515 having an amino acid sequence as set forth in SEQ ID NO.: 2, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del514 having an amino acid sequence as set forth in SEQ ID NO.: 3, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del513 having an amino acid sequence as set forth in SEQ ID NO.: 4, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del512 having an amino acid sequence as set forth in SEQ ID NO.: 5, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del511 having an amino acid sequence as set forth in SEQ ID NO.: 6, or a variant thereof, the c-terminal truncated ERVFRD
  • the human endogenous capsid protein is selected from the group consisting of hPEG10, hArc, and a variant thereof.
  • the human endogenous capsid protein is hPEG10 having an amino acid sequence as set forth in SEQ ID NO.: 8, or a variant thereof.
  • the gene of interest comprises DNA or RNA, preferably RNA. More specifically, the gene of interest comprises but is not limited to mRNA, circle RNA, gRNA, siRNA, miRNA, shRNA, ASO (antisense oligonucleotide) , RNA scaffold, and non-coding RNA.
  • the present invention provides a packaging system for producing a fully human endogenous gene delivery system of the present invention, which comprises at least at least an enveloping plasmid comprising CDS for a human endogenous enveloping protein, a packaging plasmid comprising CDS for a human endogenous capsid protein, and a transfer plasmid comprising a gene of interest.
  • the human endogenous enveloping protein can be selected from the group consisting of hERV-K, hERV-H, hERV-W, hERV-FRD, hERV-E, and a variant thereof.
  • hERV-K can be selected from the group consisting of hERV-K108, hERV-K109, hERV-K113, hERV-K115;
  • hERV-H can be selected from the group consisting of hERV-H/env59, hERV-H/env60, hERV-H/env62;
  • hERV-W can be ERVW-1; and
  • hERV-FRD can be ERVFRD-1.
  • the human endogenous enveloping protein can be c-terminal truncated ERVFRD-1.
  • the c-terminal truncated ERVFRD-1 has an amino acid sequence as set forth in any one of SEQ ID NOs.: 2-7, or a variant thereof.
  • the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del515 having an amino acid sequence as set forth in SEQ ID NO.: 2, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del514 having an amino acid sequence as set forth in SEQ ID NO.: 3, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del513 having an amino acid sequence as set forth in SEQ ID NO.: 4, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del512 having an amino acid sequence as set forth in SEQ ID NO.: 5, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del511 having an amino acid sequence as set forth in SEQ ID NO.: 6, or a variant thereof, the c-terminal truncated ERVFRD
  • the CDS for a human endogenous enveloping protein has a nucleotide sequence as set forth in any one of SEQ ID NOs.: 10-15, or a variant thereof. More specifically, the CDS for tERVFRD-1 Del515 has a nucleotide sequence as set forth in SEQ ID NO.: 10, or a variant thereof, the CDS for tERVFRD-1 Del514 has a nucleotide sequence as set forth in SEQ ID NO.: 11, or a variant thereof, the CDS for tERVFRD-1 Del513 has a nucleotide sequence as set forth in SEQ ID NO.: 12, or a variant thereof, the CDS for tERVFRD-1 Del512 has a nucleotide sequence as set forth in SEQ ID NO.: 13, or a variant thereof, the CDS for tERVFRD-1 Del511 has a nucleotide sequence as set forth in SEQ ID NO.: 14, or a variant thereof, the CDS for tERVFRD-1 Del
  • the human endogenous capsid protein is selected from the group consisting of hPEG10, hArc, and a variant thereof.
  • the human endogenous capsid protein is hPEG10 having an amino acid sequence as set forth in SEQ ID NO.: 8, or a variant thereof.
  • the CDS for hPEG10 has a nucleotide sequence as set forth in SEQ ID NO.: 16, or a variant thereof.
  • the present invention provides a kit for produce a fully human endogenous gene delivery system of the present invention, which comprises a packaging system of the present invention, and a packaging cell line.
  • the present invention provides a method to produce a fully human endogenous gene delivery system of the present invention, which comprises the following steps:
  • a) transfecting a package cell line with a packaging system comprising at least (1) an enveloping plasmid comprising CDS for a human endogenous enveloping protein, (2) a packaging plasmid comprising CDS for a human endogenous capsid protein, and (3) a transfer plasmid comprising a gene of interest.
  • step b) incubating the transfected cells obtained in step a) to produce the fully human endogenous gene delivery system of the present invention
  • step b) harvesting and concentrating the fully human endogenous gene delivery system obtained in step b) ,
  • step c) further comprises centrifuging and/or purifying the fully human endogenous gene delivery system obtained in step b) .
  • the present invention provides a fully human endogenous gene delivery system for use in delivering Cas9 mRNA and gRNA to a subject for enabling gene editing and gene therapy, or in carrying mRNA expressing tumor antigens and viral antigens for vaccines, or in expressing cellular reprogramming factors for making pluripotent stem cells, modifying cellular function, or in delivering chimeric antigen receptor mRNA for cellular use in immunotherapy, or in expressing intact mRNA, small RNA, and RNP for gene therapy.
  • the present invention provides use of a fully human endogenous gene delivery system in delivering Cas9 mRNA and gRNA to a subject for enabling gene editing and gene therapy, or in carrying mRNA expressing tumor antigens and viral antigens for vaccines, or in expressing cellular reprogramming factors for making pluripotent stem cells, modifying cellular function, or in delivering chimeric antigen receptor mRNA for cellular use in immunotherapy, or in expressing intact mRNA, small RNA, and RNP for gene therapy.
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising a fully human endogenous gene delivery system of the present invention, a packaging system of the present invention, or a kit of the present invention; and a pharmaceutically acceptable carrier.
  • Fig. 1 is a graph showing design and strategy for identification of hPEG10 VLPs pseudotyped with different fusogens.
  • Fig. 1A shows biological structure of VLP, and fusogen, capsid and cargoRNA are annotated with icons.
  • Fig. 1B shows key ORFs of VLP packaging plasmid system.
  • Fig. 2 is a graph showing that c-terminal truncated ERVFRD-1 resulted in comparable production and less fusogenic properties during fully human VLP transduction.
  • Fig. 2A shows that fusogen induced cell-to-cell fusion at 48 h after co-transfection of packaging plasmids.
  • Fig. 2C shows cell fusogenicity and GFP expression 24 h after hPEG10 fully human VLP treatment.
  • Fig. 3 is a graph illustrating the bioinformatics workflow to search candidate genes in human genome which may encode capsid and envelop proteins, and selected capsid (CA) and envelop (ENV) encoding genes.
  • Fig. 3A shows the bioinformatics workflow to search candidate genes in human genome, HHpred and blast were used as the primary searching algorithms.
  • Fig. 3B shows the expression of CA genes in different human tissues.
  • Fig. 3C shows the expression of ENV genes in different human tissues.
  • Fig. 3D shows the maximum likelihood phylogenetic tree of the investigated CA genes.
  • Fig. 3E shows the maximum likelihood phylogenetic tree of the investigated ENV genes.
  • Fig. 4 is a graph showing the purification and transduction to diverse cell lines of fully human VLP.
  • Fig. 4A shows the yield of hPEG10 VLPs enveloped with different fusogens.
  • Fig. 4B shows the transduction of GFP mRNA to different cell lines by fully human VLP.
  • Fig. 4C shows statistics of fully human VLP transducted GFP positive cells analyzed by FACS.
  • Fig. 5 is a graph showing the transduction of CRISPR RNAs by fully human VLP.
  • Fig. 5A shows the design of CRISPR edit-on system on HEK 293T genome.
  • Fig. 5B shows the in-frame fluorescent protein mCherry expression after the transduction of SpCas9 mRNA and gRNA by fully human VLP.
  • Fusogen is a class of proteins which mediate virus-cell membrane fusion by receptor-ligand interaction during viral infection process.
  • Lentivirus, psuedotyped lentivirus and VLPs enveloped with different fusogens are practically employed to transfer therapeutic RNA fragment into host cells in vitro. Yet, the non-human components of gene transfer vectors remain immunogenic risks for in vivo utilization.
  • Endogenous retrovirus group FRD member 1 (ERVFRD-1) is identified as human endogenous expressing gene and a homologue of mouse syncytin b (Synb) , ERVFRD-1-pseudotyped lentivirus induces strong cellular membrane fusion during infection of host cells. Full-length ERVFRD-1 fusogen induced cellular membrane fusion results in severe cell death and poor production of viral particles.
  • the inventors conceived a fully human endogenous gene delivery system that minimizes the non-human components of the gene delivery system.
  • the term “fully human endogenous gene delivery system” refers to a gene delivery system in which both the enveloping and capsid proteins are human endogenous proteins, or fusions or truncated proteins derived from human endogenous proteins. It should be understood by those of skill in the art that some components/elements of non-human origin may still be comprised in the fully human endogenous gene delivery system of the present invention.
  • the RNA delivered by the system of the present invention may comprise non-human origin sequences, such as optimized codons for amino acid, transcriptional regulatory elements, small interfering RNA (siRNA) , guide RNA (gRNA) , and the like.
  • the inventors first performed a bioinformatic screen for potential candidate capsid protein encoding genes and enveloping protein encoding genes in the human genome.
  • CA gene collection includes the following genes: ARC, PNMA3, PNMA5, ZCH12, PNMA1, PNMA6A, MOAP1, APRV1, PEG10, RTL10, and ENV gene collection includes: ERV3-1, ERVK-6, ERVMER34-1, Syncytin-1, Syncytin-2.
  • the bait sequences were aligned and the aligned CA and ENV domain sequences were extracted, respectively. Two routes were then used to fish additional candidate genes.
  • the CA and ENV homologues were searched in human protein database (PDB_mmCIF30_12_Oct and PDB_mmCIF30_12_Oct) , and the HHpred search results were filtered (hhpred probability > 90 and homologues length > 100) .
  • all human open reading frames (ORFs) were extract from human reference genome (GRCh38) and the DNA sequences were converted into protein sequences.
  • a blast database was constructed for the extracted ORFs.
  • the aligned CA and ENV bait sequences were blasted against the database. The blast results were filtered if the aligned protein sequence length > 100, aligned sequence identity > 50%and blast e value ⁇ 0.001.
  • the identified candidate genes were combined to generate the final list.
  • the candidate CA encoding genes and ENV encoding genes after the screening are shown in Figs. 3D and 3E.
  • the candidate CA encoding genes comprise MOAP1, PNMA1, PNMA2, PNMA3, PNMA6A, PNMA5, ZCH12, ZCC18, RTL1, ZSC9, ZN274, RTL9, ARC APRV1, PEG10, NOL3, BOP, RTL4, RTL3, RTL5, and RTL6.
  • the candidate ENV encoding genes comprises ERVV1, ERVV2, ENVT1, EFC2, SYCY2, SYCY1, ENK6, ENK19, ENR1, OCC1, ERB1, MER34, and FGL1.
  • proteins encoded by the aforesaid genes, or fusions or truncated proteins derived therefrom can be used in the fully human endogenous gene delivery system of the present invention.
  • the inventors designed lentivirus/VLP packaging system with truncated ERVFRD-1 expressing vectors, tERVFRD-1 Del 515 (SEQ ID NO.: 2) , tERVFRD-1 Del 514 (tERVFRD-1 V1, SEQ ID NO.: 3) , tERVFRD-1 Del 513 (SEQ ID NO.: 4) , tERVFRD-1 Del 512 (SEQ ID NO.: 5) and tERVFRD-1 Del511 (SEQ ID NO.: 6) , tERVFRD-1 Del 510 (tERVFRD-1 V2, SEQ ID NO.: 7) , which are partially expressed with deletion of C-terminal residual amino acids respectively.
  • Truncated ERVFRD-1 proteins showed significant weaker membrane fusion during lentiviral/VLP packaging in HEK 293T cell line as well as the similar lentiviral/VLP production to VSVg-pseudotyped packaging systems.
  • tERVFRD-1 V2-hPEG10 VLP exhibited comparable cell fusion and higher mRNA transfer efficiency than VSVg-hPEG10 VLP.
  • C-terminal truncated ERVFRD-1 pseudotyped lentiviral particle/VLP is a novel designed and identified gene delivery system.
  • the present invention provides a fully human endogenous gene delivery system comprising a human endogenous enveloping protein, a human endogenous capsid protein, and a gene of interest.
  • the human endogenous enveloping protein is selected from the group consisting of hERV-K, hERV-H, hERV-W, hERV-FRD, hERV-E, and a variant thereof.
  • hERV-K can be selected from the group consisting of hERV-K108, hERV-K109, hERV-K113, hERV-K115;
  • hERV-H can be selected from the group consisting of hERV-H/env59, hERV-H/env60, hERV-H/env62;
  • hERV-W can be ERVW-1; and
  • hERV-FRD can be ERVFRD-1 (or named Syncytin-2) .
  • the variant can have an amino acid sequence that is substantially identical, for example, at least about 70 to 99%identical, and all integers thereof to the original amino sequence of the protein, and which form functionally equivalent three-dimensional structures and retain the biological activity of the protein. It is well known in the biological field that specific amino acid substitutions can be formed in the protein sequence without affecting the function of the protein. Substitution mutations, insertion and deletion variants of the disclosed amino acid sequences can be readily prepared by methods well known in the art. These variants can be used in the same manner as the deliberately exemplified sequences, provided that the variants have essential sequence identity with the deliberately exemplified sequences of the present invention and maintain the desired functionality.
  • the human endogenous enveloping protein is a fragment of the protein of hERV family including but not limited to hERV-K, hERV-H, hERV-W, hERV-FRD, hERV-E.
  • the human endogenous enveloping protein is c-terminal truncated ERVFRD-1.
  • the c-terminal truncated ERVFRD-1 is obtained by removing 20-30 amino acid residues from c-terminal of the full-length ERVFRD-1, for example, 22-30, 23-30, 23-29, or 23-28 amino acid residues, or any number in the above ranges, for example, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 amino acid residues.
  • the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del515 having an amino acid sequence as set forth in SEQ ID NO.: 2, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del514 having an amino acid sequence as set forth in SEQ ID NO.: 3, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del513 having an amino acid sequence as set forth in SEQ ID NO.: 4, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del512 having an amino acid sequence as set forth in SEQ ID NO.: 5, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del511 having an amino acid sequence as set forth in SEQ ID NO.: 6, or a variant thereof, the c-terminal truncated ERVFRD
  • the variant of tERVFRD-1 D515 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 2.
  • the variant of tERVFRD-1 D515 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 amino acid residue addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 2.
  • the variant of tERVFRD-1 D514 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 3.
  • the variant of tERVFRD-1 D514 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 amino acid residue addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 3.
  • the variant of tERVFRD-1 D513 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 4.
  • the variant of tERVFRD-1 D513 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 amino acid residue addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 4.
  • the variant of tERVFRD-1 D512 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 5.
  • the variant of tERVFRD-1 D512 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 amino acid residue addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 5.
  • the variant of tERVFRD-1 D511 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 6.
  • the variant of tERVFRD-1 D511 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 amino acid residue addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 6.
  • the variant of tERVFRD-1 Del510 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 7.
  • the variant of tERVFRD-1 Del510 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 amino acid residue addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 7.
  • the full human endogenous gene delivery system is a pseudotyped viral particle, preferably a pseudotyped lentiviral particle, or a VLP.
  • viral vector refers to a non-replicating, non-pathogenic virus engineered to deliver genetic material into a cell.
  • viral genes essential for replication and virulence have been replaced by heterologous target genes.
  • viral particle refers to an extracellular form of a non-pathogenic virus, in particular a viral vector, which consists of genetic material made from DNA or RNA and surrounded by a protein shell (called a capsid) , which in some cases is derived from a host cell. In some cases, it is surrounded by an envelope that is derived from a portion of the host cell membrane and includes viral glycoproteins.
  • a viral vector which consists of genetic material made from DNA or RNA and surrounded by a protein shell (called a capsid) , which in some cases is derived from a host cell. In some cases, it is surrounded by an envelope that is derived from a portion of the host cell membrane and includes viral glycoproteins.
  • virus-like particle or "VLP” refers to a self-assembling, non-replicating, non-pathogenic, genome-free particle that is similar in size and configuration to an intact infectious virus particle.
  • the human endogenous capsid protein is selected from the group consisting of hPEG10, hArc, and a variant thereof.
  • the human endogenous capsid protein is hPEG10 having an amino acid sequence as set forth in SEQ ID NO.: 8, or a variant thereof.
  • the variant of hPEG10 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 8.
  • the variant of hPEG10 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 amino acid residue addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 8.
  • the fully human endogenous gene delivery system of the present invention may also include those constituent parts commonly included in common lentiviral vector particles, VLPs in the art, including but not limited to lipid bilayers, and the like.
  • the fully human endogenous gene delivery system of the present invention delivers DNA or RNA, preferably RNA.
  • the RNAs to be delivered include but are not limited to stranded mRNA or circle RNA for encoding proteins, gRNA for gene editing systems, siRNA/miRNA/shRNA or ASO (antisense oligonucleotide) for gene silencing/interference, RNA scaffolds or non-coding RNAs for protein factor recruitment, transcriptional regulatory functions, and the like.
  • the present invention provides a packaging system for producing a fully human endogenous gene delivery system of the present invention, which comprises at least at least an enveloping plasmid comprising CDS (coding sequence) for a human endogenous enveloping protein, a packaging plasmid comprising CDS for a human endogenous capsid protein, and a transfer plasmid comprising a gene of interest.
  • a packaging system for producing a fully human endogenous gene delivery system of the present invention which comprises at least at least an enveloping plasmid comprising CDS (coding sequence) for a human endogenous enveloping protein, a packaging plasmid comprising CDS for a human endogenous capsid protein, and a transfer plasmid comprising a gene of interest.
  • the human endogenous enveloping protein, the human endogenous capsid protein and the gene of interest can be used in the packing system are also described as aforesaid.
  • the CDS for a human endogenous enveloping protein is CDS for tERVFRD-1 D515 as set forth in SEQ ID NO.: 10, or a variant thereof, CDS for tERVFRD-1 D514 as set forth in SEQ ID NO.: 11, or a variant thereof, CDS for tERVFRD-1 D513 as set forth in SEQ ID NO.: 12, or a variant thereof, CDS for tERVFRD-1 D512 as set forth in SEQ ID NO.: 13, or a variant thereof, CDS for tERVFRD-1 D511 as set forth in SEQ ID NO.: 14, or a variant thereof, CDS for tERVFRD-1 D510 as set forth in SEQ ID NO.: 15, or a variant thereof.
  • the variant of CDS for tERVFRD-1 D515 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 10.
  • the variant of CDS for tERVFRD-1 D515 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 nucleotides addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 10.
  • the variant of CDS for tERVFRD-1 D514 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 11.
  • the variant of CDS for tERVFRD-1 D514 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 nucleotides addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 11.
  • the variant of CDS for tERVFRD-1 D513 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 12.
  • the variant of CDS for tERVFRD-1 D513 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 nucleotides addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 12.
  • the variant of CDS for tERVFRD-1 D512 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 13.
  • the variant of CDS for tERVFRD-1 D512 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 nucleotides addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 13.
  • the variant of CDS for tERVFRD-1 D511 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 14.
  • the variant of CDS for tERVFRD-1 D511 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 nucleotides addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 14.
  • the variant of CDS for tERVFRD-1 Del510 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 15.
  • the variant of CDS for tERVFRD-1 Del510 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 nucleotides addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 15.
  • the CDS for a human endogenous capsid protein is CDS for hPEG10 as set forth in SEQ ID NO.: 16, or a variant thereof.
  • the variant of CDS for hPEG10 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 16.
  • the variant of CDS for hPEG10 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 nucleotides addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 16.
  • the packaging system may further comprise in any one of the plasmids at least one element selected from but not limited to: a 5' LTR, a ⁇ element, an RRE element, a cPPT/CTS element, a polyclonal site for insertion of a nucleotide sequence encoding a polypeptide of interest, a WPRE element, a 3' LTR, and a UTR, a cytomegalovirus (CMV) enhancer/promoter sequence, a terminator, an internal enhancer, an internal promoter, all of which are commonly known to those skilled in the art.
  • CMV cytomegalovirus
  • Construction of the plasmid can be accomplished using any suitable genetic engineering techniques known in the art, including, without limitation, the standard techniques of restriction endonuclease digestion, ligation, transformation, plasmid purification, and DNA sequencing, for example as described in Sambrook et al. (1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, N.Y. ) , Coffin et al. (Retroviruses. Cold Spring Harbor Laboratory Press, N. Y. (1997) ) and "RNA Viruses: A Practical Approach" (Alan J. Cann, Ed., Oxford University Press, (2000) , each of the foregoing which is incorporated herein by reference in its entirety.
  • the packaging system comprises a gene of interest that is desirable to express in target cells.
  • the gene of interest is located between the 5' LTR and 3' LTR sequences.
  • the gene of interest is preferably in a functional relationship with other genetic elements, for example transcription regulatory sequences including promoters or enhancers, to regulate expression of the gene of interest in a particular manner.
  • transcription regulatory sequences including promoters or enhancers
  • the useful transcriptional regulatory sequences are those that are highly regulated with respect to activity, both temporally and spatially.
  • Expression control elements that may be used for regulating the expression of the components are known in the art and include, but are not limited to, inducible promoters, constitutive promoters, secretion signals, enhancers and other regulatory elements.
  • the transfer plasmid comprises a UTR sequence upstream of the gene of interest, and/or a UTR sequence downstream of the gene of interest.
  • the UTR sequences can be same or different.
  • the present invention provides a kit for produce a fully human endogenous gene delivery system of the present invention, which comprises a packaging system of the present, and a packaging cell line.
  • the present invention provides a method to produce a fully human endogenous gene delivery system of the present invention, which comprises the following steps:
  • a) transfecting a package cell line with a packaging system comprising at least (1) an enveloping plasmid comprising CDS for a human endogenous enveloping protein, (2) a packaging plasmid comprising CDS for a human endogenous capsid protein, and (3) a transfer plasmid comprising a gene of interest.
  • step b) incubating the transfected cells obtained in step a) to produce the fully human endogenous gene delivery system of the present invention
  • step b) harvesting and concentrating the fully human endogenous gene delivery system obtained in step b) ,
  • step c) further comprises centrifuging and/or purifying the fully human endogenous gene delivery system obtained in step b)
  • the packaging cell line comprises cultured cells capable of packaging a lentiviral vector/VLP.
  • the packaging cell line is the HEK-293T cell line. Similar results can be achieved in other cell lines, including but not limited to mammalian gene expression cell lines such as Vero and CHO. Other cell lines that can be transfected in vitro and are capable of producing high titers of lentiviral vectors/VLPs may be used.
  • the present disclosure also provides for genetic engineering of packaging cell lines to otherwise improve the immune properties of the lentiviral vectors and particles of the present disclosure, the other means including but not limited to adding genes, deleting genes and introducing point mutations into genes.
  • the present invention provides a fully human endogenous gene delivery system for use in delivering Cas9 mRNA and gRNA to a subject for enabling gene editing and gene therapy, or in carrying mRNA expressing tumor antigens and viral antigens for vaccines, or in expressing cellular reprogramming factors for making pluripotent stem cells, modifying cellular function, or in delivering chimeric antigen receptor mRNA for cellular use in immunotherapy, or in expressing intact mRNA, small RNA, and RNP for gene therapy.
  • the present invention provides use of a fully human endogenous gene delivery system in delivering Cas9 mRNA and gRNA to a subject for enabling gene editing and gene therapy, or in carrying mRNA expressing tumor antigens and viral antigens for vaccines, or in expressing cellular reprogramming factors for making pluripotent stem cells, modifying cellular function, or in delivering chimeric antigen receptor mRNA for cellular use in immunotherapy, or in expressing intact mRNA, small RNA, and RNP for gene therapy.
  • the fully human endogenous gene delivery system of the present invention may be used in a therapeutic treatment in human or animal subjects.
  • the treatment may be a vaccine for immunization, wherein the vaccine is prophylactic or therapeutic.
  • the vaccine comprises a fully human endogenous gene delivery system with a pharmaceutically acceptable carrier.
  • the fully human endogenous gene delivery system may be administered in vitro to cells, including the step of mixing the cells with any of the above fully human endogenous gene delivery system.
  • compositions comprising a packaging system, a host cell line, a kit or a fully human endogenous gene delivery system as described above.
  • Such compositions comprise therapeutically effective amounts of the above packaging system, host cell line, kit or fully human endogenous gene delivery system, as well as a pharmaceutically acceptable carrier.
  • the term "pharmaceutically acceptable carrier” refers to a solid or liquid diluent, filler, antioxidant, stabilizer, or other substance that can be safely administered without undue adverse side effects and is suitable for maintaining the viability of the drug or active agent located therein.
  • a variety of different carriers well known in the art may be used, including, but not limited to, sugars, starches, cellulose and derivatives thereof, maltose, gelatin, talc, calcium sulfate, vegetable oils, synthetic oils, polyols, alginic acid, phosphate buffers, emulsifiers, isotonic saline, and/or pyrogen-free water, and the like.
  • the pharmaceutical compositions may also contain small amounts of wetting agents or emulsifiers or pH buffers.
  • These pharmaceutical compositions can take the form of solutions, suspensions, emulsions, tablets, pills, capsules, powders, sustained release formulations, and the like.
  • compositions provided herein can be made in clinically acceptable dosage forms such as powders, injectables, etc.
  • the pharmaceutical compositions of the present invention may be administered to a subject using any suitable route, for example, by oral, intravenous infusion, intramuscular, subcutaneous, subperitoneal, rectal, sublingual, or via inhalation, transdermal, etc.
  • the pharmaceutical composition is formulated according to conventional procedures suitable for intravenous or intramuscular administration.
  • the pharmaceutical composition for intravenous or intramuscular administration is a solution in a sterile isotonic aqueous buffer.
  • said pharmaceutical composition may also comprise a solubilizing agent and a local anesthetic such as lidocaine to relieve pain at the subject's injection site.
  • the term "subject” means an animal, such as a mammal, including but not limited to a human, rodent, ape, feline, canine, equine, bovine, porcine, sheep, goat, mammalian laboratory animal, mammalian farm animal, mammalian sport animal, and mammalian pet.
  • Subjects may be male or female and may be of any age, including infants, juveniles, young adults, adults, and elderly subjects.
  • a subject is an individual in need of treatment for a disease or condition.
  • the subject receiving the treatment may be a patient who has a condition associated with the treatment or is at risk of developing the condition.
  • the subject is a human, such as a human patient.
  • the term is often used interchangeably with "patient” , "test subject” , "treatment subject” , and the like.
  • the packaging system, or the fully human endogenous gene delivery system of the present invention may be delivered in a vesicle, particularly a liposome.
  • the nucleic acid sequence, the packaging system, or the fully human endogenous gene delivery system of the present invention may be delivered in a controlled release system.
  • the term “approximately” or “about” means a quantity, level, value, number, frequency, percentage, dimension, size, amount, weight, or length range of ⁇ 15%, ⁇ 10%, ⁇ 9%, ⁇ 8%, ⁇ 7%, ⁇ 6%, ⁇ 5%, ⁇ 4%, ⁇ 3%, ⁇ 2%, or ⁇ 1%with respect to a reference quantity, level, value, number, frequency, percentage, dimension, size, amount, weight, or length.
  • any concentration range, percentage range, ratio range, or integer range shall be understood to include any integer value within said range and, where appropriate, fractions thereof (such as tenths and hundredths of an integer) .
  • fractions thereof such as tenths and hundredths of an integer.
  • HEK 293T cell line (ATCC, CRL-3216)
  • Fetal bovine serum (Gibco, A3161002C)
  • Lipofectamine 3000 transfection reagent (Invitrogen, L3000015)
  • HIV1 p24 ELISA Kit (Abcam, ab218268)
  • ERVFRD-1/tERVFRD-1 Del515/tERVFRD-1 Del514 (tERVFRD-1 V1) /tERVFRD-1 Del513/tERVFRD-1 Del512/tERVFRD-1 Del511/tERVFRD-1 Del510 (tERVFRD-1 V2) CDS were synthesized and cloned separately into pCMV-VSVg plasmid (purchased from CellBiolabs) with Gibson Assembly, while VSVg CDS was removed by EcoRI treatment to make the pFusogen plasmids.
  • pCapsid plasmids was inserted into pCMV-VSVg by replacing the VSVg with synthesized hPEG10 CDS or other human endogenous Gag-pol used in this invention.
  • CargoRNA plasmids were constructed with pSMPUW-IRES-Puro (purchased from CellBiolabs) plasmid by the insertion corresponding UTR Cargo (GFP or Cas9) UTR downstream of CMV promoter for strong mRNA transcription.
  • FIG. 1A provides a schematic diagram of the structure of VLPs according to the examples and comparative examples of the present invention, wherein cargoRNA represents an example of the gene of interest to be delivered.
  • FIG. 1B provides a schematic diagram of the structures of plasmids according to the examples and comparative examples of the present invention.
  • the pFusogen represents an example of enveloping plasmid
  • the pCapsid represents an example of packaging plasmid
  • the pCargoRNA represents an example of transfer plasmid.
  • Example 2 VLP packaging, purification and titration
  • HEK 293T cells were seeded in 100 mm dish and grown to 70% ⁇ 80%confluent for plasmid transfection.
  • VLP packaging 5 ⁇ g pSMPUW-hPEG10, 10 ⁇ g pCargoRNA-GFP and 5 ⁇ g pFusogen plasmids were co-transfected with Lipofectamine 3000 transfection reagent into HEK 293T cells, cell culture supernatant was harvested at 48 h after transfection.
  • VLPs were purified and concentrated by ultracentrifugation involving a 20%sucrose cushion at 80000 g for 2 h, the Beckman ultracentrifuge was set to 4°C during VLP ultracentrifugation. Purified VLPs were titrated by RT-qPCR and were stored at -80°C.
  • Isolated cell culture supernatant containing lentiviral particle/VLP or purified VLPs was pre-treated with 25 U/mL benzonase at 37°C for 1 h to remove free DNA/RNA, then benzonase was inactivated by 56°C incubation for 10 min.
  • Lentiviral/VLP genomic RNA were extracted with EasyPure Viral DNA/RNA Kit (Transgen Biotech) , and VLP genomic RNA were subsequently analyzed by RT-qPCR with TransScript II One-Step RT-PCR SuperMix (Transgen Biotech) .
  • Fig. 2A shows that fusogen induced cell-to-cell fusion at 48 h after co-transfection of packaging plasmids, tERVFRD-1 V2 exhibited significant less fusogenic effect than other human envelope candidates.
  • Fig. 2B illustrates that both tERVFRD-1 V1 and tERVFRD-1 V2 result in normal VLP production.
  • 5 ⁇ 10 4 HEK 293T cells were planted in 24-well plate for 12 ⁇ 16 h, VLP solution was gently added into cell culture supernatant. VLPs were quickly settled and attached to adherent HEK 293T cells with 1000 g centrifuging at room temperature for 30 min, cell culture medium was renewed afterwhile.
  • FIG. 2C shows all ERVFRD-1 envelopes mediated comparable GFP transduction to VSVg.
  • VLP containing ERVFRD-1 or tERVFRD-1 V1 induced cell to cell fusion, which will limit the usage of those VLPs since cell fusion might lead to cell death or carcinogenesis.
  • Example 4 Discovery of endogenous Gags and Envelopes.
  • Fig. 3A shows the workflow to search candidate genes in human genome which may encode capsid and envelop proteins. Results with contact CA or Env open reading frame are showing in Figs. 3B-3E. Several Envelopes were moved to next step to test their VLP packaging and transduction capability.
  • the 293T edit-on cell line was constructed by infection of a lentivirus carrying a GFP gRNA sequence upstream a frameshifted mCherry. Indels induced by Cas9-gGFP complex may turn on the mCherry by put it on frame.
  • a plasmid with GFP sgRNA were transfected into HEK 293T cell to serve gGFP RNA during VLP production.
  • the cells were analyzed by FACS. The mCherry was turned on, indicating that Cas9 was transduced by VLP (Fig. 5) .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Provided is a fully human endogenous gene delivery system, which comprising a human endogenous enveloping protein, a human endogenous capsid protein, and a gene of interest. The endogenous gene delivery can be applied to CRISPR system, gene therapy,vaccine manufacturing and the like.

Description

Fully Human Endogenous Gene Delivery System
This application claims priority to PCT application No. PCT/CN2022/075171, filed January 30, 2022, the contents of which are hereby incorporated by reference in its entirety.
Field of the Invention
The present invention relates to a fully human endogenous gene delivery system. Specifically, the present invention relates to a fully human endogenous gene delivery system comprising a human endogenous enveloping protein, a human endogenous capsid protein, and a gene of interest, which has the advantage of being safe and efficient and can be applied to CRISPR systems, gene therapy, vaccine manufacturing, and the like.
Background of the Invention
Biologic nucleotide delivery vectors are applied for gene therapy in a series of disease to eliminate genetic disorders or to restore deficient gene expression. Lentiviral vectors derived from self-inactivated HIV-1 have been identified as efficient gene transfer vectors for stable long-term gene expression in host cells by integrating viral RNA genome into host chromatin. Lentiviral transduction depends on virus-cell membrane fusion which is mediated by envelope glycoprotein-extracellular receptor interaction. Vesicular stomatitis G glycoprotein (VSVg) is the most widely-utilized enveloping element in diverse lentiviral packaging system for its ideal viral particle stability, and outstanding gene transduction efficiency to host cells derived from different original tissue types. However, lentiviral vectors showed significant immunogenic properties during in vivo studies which have reported unexpected immune responses. Moreover, the non-site-specific integrity of lentiviral genome into host DNA also brought up risk and limitation for further application of lentiviral vectors, which requires improvement of gene delivery system with lower immunogenicity or integrating activity.
Recently, virus-like particles (VLPs) are employed into gene therapy field for design and construction of safety, specific and efficient mRNA delivery systems. Human paternally expressed 10 (hPEG10) functions as capsid-like properties and recognizes its own mRNA at not protein-coding sequence but 5'/3' UTR regions, therefore formulates capsid-mRNA VLP-like structure. The specific recognition of hPEG10 mRNA UTR regions and package of entire mRNA fragment into hPEG10 capsid allows the replacement of protein-coding sequence with gene of interest (GOI) ,  thus enables hPEG10 to specifically package mRNA of GOI cargoed with hPEG10 mRNA UTR (cargoRNA) into its capsid particle upon applicable design. Furthermore, hPEG10 VLP is capable to entry host cells by co-packaging with fusogens, result in an engineered mRNA delivery VLP system. VSVg and mouse syncytin a (Syna) are characterized fusogens when co-expressed with hPEG10 and cargoRNA in HEK 293 cell line, and VSVg/Syna-pseudotyped hPEG10 VLPs exhibited considerable transduction efficiency and diverse gene functions (GFP, Cre recombinase, Cas9 nuclease) in human and mouse cells in vitro. Additionally, hPEG10 VLP showed less immunogenic than lentiviral vectors due to its human endogenous capsid and might be a more safety mRNA delivery vector for the non-integrating property of cargoRNA. These results indicates that gene delivery systems consisted of highly or fully human endogenous elements would be a promising vector for in vivo gene transduction in human body.
In summary, notwithstanding the existing need, no gene delivery system consisting of highly or fully endogenous human elements has been developed to date. Thus, the technical problem underlying the present invention can be seen as the provision of means and methods which allow for safe and efficient gene delivery in a fully human endogenous way. The technical problem is solved by the embodiments characterized in the claims and herein below.
Summary of the Invention
The present invention relates to gene delivery system, production method and use thereof.
In a first aspect, the present invention provides a fully human endogenous gene delivery system comprising a human endogenous enveloping protein, a human endogenous capsid protein, and a gene of interest.
In a specific embodiment, the human endogenous enveloping protein can be selected from the group consisting of hERV-K, hERV-H, hERV-W, hERV-FRD, hERV-E, and a variant thereof. More specifically, hERV-K can be selected from the group consisting of hERV-K108, hERV-K109, hERV-K113, hERV-K115; hERV-H can be selected from the group consisting of hERV-H/env59, hERV-H/env60, hERV-H/env62; hERV-W can be ERVW-1; and hERV-FRD can be ERVFRD-1.
In a specific embodiment, the human endogenous enveloping protein can be c-terminal truncated ERVFRD-1. Preferably, the c-terminal truncated ERVFRD-1 has an amino acid sequence as set forth in any one of SEQ ID NOs.: 2-7, or a variant having at least 90%homology thereto. More specifically, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del515 having an amino acid sequence as set forth in SEQ  ID NO.: 2, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del514 having an amino acid sequence as set forth in SEQ ID NO.: 3, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del513 having an amino acid sequence as set forth in SEQ ID NO.: 4, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del512 having an amino acid sequence as set forth in SEQ ID NO.: 5, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del511 having an amino acid sequence as set forth in SEQ ID NO.: 6, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del510 having an amino acid sequence as set forth in SEQ ID NO.: 7, or a variant thereof.
In a specific embodiment, the human endogenous capsid protein is selected from the group consisting of hPEG10, hArc, and a variant thereof.
In a specific embodiment, the human endogenous capsid protein is hPEG10 having an amino acid sequence as set forth in SEQ ID NO.: 8, or a variant thereof.
In a specific embodiment, the gene of interest comprises DNA or RNA, preferably RNA. More specifically, the gene of interest comprises but is not limited to mRNA, circle RNA, gRNA, siRNA, miRNA, shRNA, ASO (antisense oligonucleotide) , RNA scaffold, and non-coding RNA.
In a second aspect, the present invention provides a packaging system for producing a fully human endogenous gene delivery system of the present invention, which comprises at least at least an enveloping plasmid comprising CDS for a human endogenous enveloping protein, a packaging plasmid comprising CDS for a human endogenous capsid protein, and a transfer plasmid comprising a gene of interest.
In a specific embodiment, the human endogenous enveloping protein can be selected from the group consisting of hERV-K, hERV-H, hERV-W, hERV-FRD, hERV-E, and a variant thereof. More specifically, hERV-K can be selected from the group consisting of hERV-K108, hERV-K109, hERV-K113, hERV-K115; hERV-H can be selected from the group consisting of hERV-H/env59, hERV-H/env60, hERV-H/env62; hERV-W can be ERVW-1; and hERV-FRD can be ERVFRD-1.
In a specific embodiment, the human endogenous enveloping protein can be c-terminal truncated ERVFRD-1. Preferably, the c-terminal truncated ERVFRD-1 has an amino acid sequence as set forth in any one of SEQ ID NOs.: 2-7, or a variant thereof. More specifically, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del515 having an amino acid sequence as set forth in SEQ ID NO.: 2, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del514 having an amino acid sequence as set forth in SEQ ID NO.: 3, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del513 having an amino acid sequence as set forth in SEQ ID NO.: 4, or a variant thereof, the c-terminal truncated ERVFRD-1 is  tERVFRD-1 Del512 having an amino acid sequence as set forth in SEQ ID NO.: 5, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del511 having an amino acid sequence as set forth in SEQ ID NO.: 6, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del510 having an amino acid sequence as set forth in SEQ ID NO.: 7, or a variant thereof.
In a specific embodiment, the CDS for a human endogenous enveloping protein has a nucleotide sequence as set forth in any one of SEQ ID NOs.: 10-15, or a variant thereof. More specifically, the CDS for tERVFRD-1 Del515 has a nucleotide sequence as set forth in SEQ ID NO.: 10, or a variant thereof, the CDS for tERVFRD-1 Del514 has a nucleotide sequence as set forth in SEQ ID NO.: 11, or a variant thereof, the CDS for tERVFRD-1 Del513 has a nucleotide sequence as set forth in SEQ ID NO.: 12, or a variant thereof, the CDS for tERVFRD-1 Del512 has a nucleotide sequence as set forth in SEQ ID NO.: 13, or a variant thereof, the CDS for tERVFRD-1 Del511 has a nucleotide sequence as set forth in SEQ ID NO.: 14, or a variant thereof, the CDS for tERVFRD-1 Del510 has a nucleotide sequence as set forth in SEQ ID NO.: 15, or a variant thereof.
In a specific embodiment, the human endogenous capsid protein is selected from the group consisting of hPEG10, hArc, and a variant thereof.
In a specific embodiment, the human endogenous capsid protein is hPEG10 having an amino acid sequence as set forth in SEQ ID NO.: 8, or a variant thereof.
In a specific embodiment, the CDS for hPEG10 has a nucleotide sequence as set forth in SEQ ID NO.: 16, or a variant thereof.
In a third aspect, the present invention provides a kit for produce a fully human endogenous gene delivery system of the present invention, which comprises a packaging system of the present invention, and a packaging cell line.
In a fourth aspect, the present invention provides a method to produce a fully human endogenous gene delivery system of the present invention, which comprises the following steps:
a) transfecting a package cell line with a packaging system comprising at least (1) an enveloping plasmid comprising CDS for a human endogenous enveloping protein, (2) a packaging plasmid comprising CDS for a human endogenous capsid protein, and (3) a transfer plasmid comprising a gene of interest.
b) incubating the transfected cells obtained in step a) to produce the fully human endogenous gene delivery system of the present invention; and
c) harvesting and concentrating the fully human endogenous gene delivery system obtained in step b) ,
preferably wherein step c) further comprises centrifuging and/or purifying the fully human endogenous gene delivery system obtained in step b) .
In a fifth aspect, the present invention provides a fully human endogenous gene delivery system for use in delivering Cas9 mRNA and gRNA to a subject for enabling gene editing and gene therapy, or in carrying mRNA expressing tumor antigens and viral antigens for vaccines, or in expressing cellular reprogramming factors for making pluripotent stem cells, modifying cellular function, or in delivering chimeric antigen receptor mRNA for cellular use in immunotherapy, or in expressing intact mRNA, small RNA, and RNP for gene therapy.
In a sixth aspect, the present invention provides use of a fully human endogenous gene delivery system in delivering Cas9 mRNA and gRNA to a subject for enabling gene editing and gene therapy, or in carrying mRNA expressing tumor antigens and viral antigens for vaccines, or in expressing cellular reprogramming factors for making pluripotent stem cells, modifying cellular function, or in delivering chimeric antigen receptor mRNA for cellular use in immunotherapy, or in expressing intact mRNA, small RNA, and RNP for gene therapy.
In a seventh aspect, the present invention provides a pharmaceutical composition comprising a fully human endogenous gene delivery system of the present invention, a packaging system of the present invention, or a kit of the present invention; and a pharmaceutically acceptable carrier.
Brief Description of the Drawings
In order to describe more clearly the object, technical solutions and beneficial effects of the present invention, the following accompanying drawings are provided.
Fig. 1 is a graph showing design and strategy for identification of hPEG10 VLPs pseudotyped with different fusogens. Fig. 1A shows biological structure of VLP, and fusogen, capsid and cargoRNA are annotated with icons. Fig. 1B shows key ORFs of VLP packaging plasmid system.
Fig. 2 is a graph showing that c-terminal truncated ERVFRD-1 resulted in comparable production and less fusogenic properties during fully human VLP transduction. Fig. 2A shows that fusogen induced cell-to-cell fusion at 48 h after co-transfection of packaging plasmids. Fig. 2B shows statistics of VLP production, n=3. p<0.05, *, p<0.01, **. Fig. 2C shows cell fusogenicity and GFP expression 24 h after hPEG10 fully human VLP treatment.
Fig. 3 is a graph illustrating the bioinformatics workflow to search candidate genes in human genome which may encode capsid and envelop proteins, and selected  capsid (CA) and envelop (ENV) encoding genes.. Fig. 3A shows the bioinformatics workflow to search candidate genes in human genome, HHpred and blast were used as the primary searching algorithms. Fig. 3B shows the expression of CA genes in different human tissues. Fig. 3C shows the expression of ENV genes in different human tissues. Fig. 3D shows the maximum likelihood phylogenetic tree of the investigated CA genes. Fig. 3E shows the maximum likelihood phylogenetic tree of the investigated ENV genes.
Fig. 4 is a graph showing the purification and transduction to diverse cell lines of fully human VLP. Fig. 4A shows the yield of hPEG10 VLPs enveloped with different fusogens. Fig. 4B shows the transduction of GFP mRNA to different cell lines by fully human VLP. Fig. 4C shows statistics of fully human VLP transducted GFP positive cells analyzed by FACS.
Fig. 5 is a graph showing the transduction of CRISPR RNAs by fully human VLP. Fig. 5A shows the design of CRISPR edit-on system on HEK 293T genome. Fig. 5B shows the in-frame fluorescent protein mCherry expression after the transduction of SpCas9 mRNA and gRNA by fully human VLP.
Detailed Description of the Invention
Preferred embodiments of the invention will be described in detail below in conjunction with the accompanying drawings. Experimental methods for which specific conditions are not indicated in the embodiments usually follow conventional conditions, or follow the conditions recommended by the manufacturer. It will be understood that the specific embodiments described herein are intended only to explain the invention and not to limit it.
Fusogen is a class of proteins which mediate virus-cell membrane fusion by receptor-ligand interaction during viral infection process. Lentivirus, psuedotyped lentivirus and VLPs enveloped with different fusogens (for example, VSVg, Syna, ERVW-1, ERVFRD-1) are practically employed to transfer therapeutic RNA fragment into host cells in vitro. Yet, the non-human components of gene transfer vectors remain immunogenic risks for in vivo utilization. Endogenous retrovirus group FRD member 1 (ERVFRD-1) is identified as human endogenous expressing gene and a homologue of mouse syncytin b (Synb) , ERVFRD-1-pseudotyped lentivirus induces strong cellular membrane fusion during infection of host cells. Full-length ERVFRD-1 fusogen induced cellular membrane fusion results in severe cell death and poor production of viral particles.
In view of this, and in order to reduce the immune risk induced by the use of gene delivery systems in humans, the inventors conceived a fully human endogenous  gene delivery system that minimizes the non-human components of the gene delivery system.
As used herein, the term “fully human endogenous gene delivery system” refers to a gene delivery system in which both the enveloping and capsid proteins are human endogenous proteins, or fusions or truncated proteins derived from human endogenous proteins. It should be understood by those of skill in the art that some components/elements of non-human origin may still be comprised in the fully human endogenous gene delivery system of the present invention. Specifically, the RNA delivered by the system of the present invention may comprise non-human origin sequences, such as optimized codons for amino acid, transcriptional regulatory elements, small interfering RNA (siRNA) , guide RNA (gRNA) , and the like.
The inventors first performed a bioinformatic screen for potential candidate capsid protein encoding genes and enveloping protein encoding genes in the human genome.
This bioinformatics screening process is depicted in FIG. 4. First, a gene collection was constructed that included well characterized human endogenous genes encoding capsid (CA) and enveloping (ENV) proteins. CA gene collection includes the following genes: ARC, PNMA3, PNMA5, ZCH12, PNMA1, PNMA6A, MOAP1, APRV1, PEG10, RTL10, and ENV gene collection includes: ERV3-1, ERVK-6, ERVMER34-1, Syncytin-1, Syncytin-2. The bait sequences were aligned and the aligned CA and ENV domain sequences were extracted, respectively. Two routes were then used to fish additional candidate genes. First, by using HHpred algorithm, the CA and ENV homologues were searched in human protein database (PDB_mmCIF30_12_Oct and PDB_mmCIF30_12_Oct) , and the HHpred search results were filtered (hhpred probability > 90 and homologues length > 100) . In the second route, all human open reading frames (ORFs) were extract from human reference genome (GRCh38) and the DNA sequences were converted into protein sequences. A blast database was constructed for the extracted ORFs. The aligned CA and ENV bait sequences were blasted against the database. The blast results were filtered if the aligned protein sequence length > 100, aligned sequence identity > 50%and blast e value < 0.001. The identified candidate genes were combined to generate the final list.
The candidate CA encoding genes and ENV encoding genes after the screening are shown in Figs. 3D and 3E. The candidate CA encoding genes comprise MOAP1, PNMA1, PNMA2, PNMA3, PNMA6A, PNMA5, ZCH12, ZCC18, RTL1, ZSC9, ZN274, RTL9, ARC APRV1, PEG10, NOL3, BOP, RTL4, RTL3, RTL5, and RTL6. The candidate ENV encoding genes comprises ERVV1, ERVV2, ENVT1, EFC2, SYCY2, SYCY1, ENK6, ENK19, ENR1, OCC1, ERB1, MER34, and FGL1.
The proteins encoded by the aforesaid genes, or fusions or truncated proteins derived therefrom can be used in the fully human endogenous gene delivery system of the present invention.
The inventors designed lentivirus/VLP packaging system with truncated ERVFRD-1 expressing vectors, tERVFRD-1 Del 515 (SEQ ID NO.: 2) , tERVFRD-1 Del 514 (tERVFRD-1 V1, SEQ ID NO.: 3) , tERVFRD-1 Del 513 (SEQ ID NO.: 4) , tERVFRD-1 Del 512 (SEQ ID NO.: 5) and tERVFRD-1 Del511 (SEQ ID NO.: 6) , tERVFRD-1 Del 510 (tERVFRD-1 V2, SEQ ID NO.: 7) , which are partially expressed with deletion of C-terminal residual amino acids respectively. Truncated ERVFRD-1 proteins showed significant weaker membrane fusion during lentiviral/VLP packaging in HEK 293T cell line as well as the similar lentiviral/VLP production to VSVg-pseudotyped packaging systems. The inventors packaged VSVg/ERVFRD-1/tERVFRD-1 V1 (tERVFRD-1 D514) /tERVFRD-1 V2 (tERVFRD-1 Del510) -pseudotyped hPEG10 VLP carrying GFP mRNA and treated HEK 293T cell with VLP containing supernatant, found that all VLPs mediated efficient GFP mRNA transduction and expression in HEK 293T cell, whereas tERVFRD-1 V2-hPEG10 VLP exhibited comparable cell fusion and higher mRNA transfer efficiency than VSVg-hPEG10 VLP. C-terminal truncated ERVFRD-1 pseudotyped lentiviral particle/VLP is a novel designed and identified gene delivery system.
The present invention provides a fully human endogenous gene delivery system comprising a human endogenous enveloping protein, a human endogenous capsid protein, and a gene of interest.
In a specific embodiment, the human endogenous enveloping protein is selected from the group consisting of hERV-K, hERV-H, hERV-W, hERV-FRD, hERV-E, and a variant thereof. More specifically, hERV-K can be selected from the group consisting of hERV-K108, hERV-K109, hERV-K113, hERV-K115; hERV-H can be selected from the group consisting of hERV-H/env59, hERV-H/env60, hERV-H/env62; hERV-W can be ERVW-1; and hERV-FRD can be ERVFRD-1 (or named Syncytin-2) .
As used herein, when the term “avariant” of a protein is mentioned, it should be understood that that the variant can have an amino acid sequence that is substantially identical, for example, at least about 70 to 99%identical, and all integers thereof to the original amino sequence of the protein, and which form functionally equivalent three-dimensional structures and retain the biological activity of the protein. It is well known in the biological field that specific amino acid substitutions can be formed in the protein sequence without affecting the function of the protein. Substitution mutations, insertion and deletion variants of the disclosed amino acid  sequences can be readily prepared by methods well known in the art. These variants can be used in the same manner as the deliberately exemplified sequences, provided that the variants have essential sequence identity with the deliberately exemplified sequences of the present invention and maintain the desired functionality.
Preferably, the human endogenous enveloping protein is a fragment of the protein of hERV family including but not limited to hERV-K, hERV-H, hERV-W, hERV-FRD, hERV-E. Specifically, the human endogenous enveloping protein is c-terminal truncated ERVFRD-1. Preferably, the c-terminal truncated ERVFRD-1 is obtained by removing 20-30 amino acid residues from c-terminal of the full-length ERVFRD-1, for example, 22-30, 23-30, 23-29, or 23-28 amino acid residues, or any number in the above ranges, for example, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 amino acid residues. More preferably, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del515 having an amino acid sequence as set forth in SEQ ID NO.: 2, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del514 having an amino acid sequence as set forth in SEQ ID NO.: 3, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del513 having an amino acid sequence as set forth in SEQ ID NO.: 4, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del512 having an amino acid sequence as set forth in SEQ ID NO.: 5, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del511 having an amino acid sequence as set forth in SEQ ID NO.: 6, or a variant thereof, the c-terminal truncated ERVFRD-1 is tERVFRD-1 Del510 having an amino acid sequence as set forth in SEQ ID NO.: 7, or a variant thereof.
Preferably, the variant of tERVFRD-1 D515 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 2. Preferably, the variant of tERVFRD-1 D515 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 amino acid residue addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 2. Preferably, the variant of tERVFRD-1 D514 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 3. Preferably, the variant of tERVFRD-1 D514 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 amino acid residue addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 3. Preferably, the variant of tERVFRD-1 D513 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 4. Preferably, the variant of tERVFRD-1 D513 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 amino acid residue addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 4. Preferably, the variant of tERVFRD-1 D512 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 5. Preferably, the variant of tERVFRD-1 D512 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 amino  acid residue addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 5. Preferably, the variant of tERVFRD-1 D511 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 6. Preferably, the variant of tERVFRD-1 D511 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 amino acid residue addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 6. Preferably, the variant of tERVFRD-1 Del510 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 7. Preferably, the variant of tERVFRD-1 Del510 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 amino acid residue addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 7.
In a specific embodiment, the full human endogenous gene delivery system is a pseudotyped viral particle, preferably a pseudotyped lentiviral particle, or a VLP.
As used herein, the term "viral vector" refers to a non-replicating, non-pathogenic virus engineered to deliver genetic material into a cell. In viral vectors, viral genes essential for replication and virulence have been replaced by heterologous target genes.
As used herein, the term "viral particle" refers to an extracellular form of a non-pathogenic virus, in particular a viral vector, which consists of genetic material made from DNA or RNA and surrounded by a protein shell (called a capsid) , which in some cases is derived from a host cell. In some cases, it is surrounded by an envelope that is derived from a portion of the host cell membrane and includes viral glycoproteins.
As used herein, the term "virus-like particle" or "VLP" refers to a self-assembling, non-replicating, non-pathogenic, genome-free particle that is similar in size and configuration to an intact infectious virus particle.
In a specific embodiment, the human endogenous capsid protein is selected from the group consisting of hPEG10, hArc, and a variant thereof.
Preferably, the human endogenous capsid protein is hPEG10 having an amino acid sequence as set forth in SEQ ID NO.: 8, or a variant thereof.
Preferably, the variant of hPEG10 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 8. Preferably, the variant of hPEG10 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 amino acid residue addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 8.
As is well known to those skilled in the art, the fully human endogenous gene  delivery system of the present invention may also include those constituent parts commonly included in common lentiviral vector particles, VLPs in the art, including but not limited to lipid bilayers, and the like.
In a specific embodiment, the fully human endogenous gene delivery system of the present invention delivers DNA or RNA, preferably RNA. Specifically, the RNAs to be delivered include but are not limited to stranded mRNA or circle RNA for encoding proteins, gRNA for gene editing systems, siRNA/miRNA/shRNA or ASO (antisense oligonucleotide) for gene silencing/interference, RNA scaffolds or non-coding RNAs for protein factor recruitment, transcriptional regulatory functions, and the like.
The present invention provides a packaging system for producing a fully human endogenous gene delivery system of the present invention, which comprises at least at least an enveloping plasmid comprising CDS (coding sequence) for a human endogenous enveloping protein, a packaging plasmid comprising CDS for a human endogenous capsid protein, and a transfer plasmid comprising a gene of interest.
The human endogenous enveloping protein, the human endogenous capsid protein and the gene of interest can be used in the packing system are also described as aforesaid.
In a specific embodiment, the CDS for a human endogenous enveloping protein is CDS for tERVFRD-1 D515 as set forth in SEQ ID NO.: 10, or a variant thereof, CDS for tERVFRD-1 D514 as set forth in SEQ ID NO.: 11, or a variant thereof, CDS for tERVFRD-1 D513 as set forth in SEQ ID NO.: 12, or a variant thereof, CDS for tERVFRD-1 D512 as set forth in SEQ ID NO.: 13, or a variant thereof, CDS for tERVFRD-1 D511 as set forth in SEQ ID NO.: 14, or a variant thereof, CDS for tERVFRD-1 D510 as set forth in SEQ ID NO.: 15, or a variant thereof.
Preferably, the variant of CDS for tERVFRD-1 D515 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 10. Preferably, the variant of CDS for tERVFRD-1 D515 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 nucleotides addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 10. Preferably, the variant of CDS for tERVFRD-1 D514 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 11.Preferably, the variant of CDS for tERVFRD-1 D514 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 nucleotides addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 11. Preferably, the variant of CDS for tERVFRD-1 D513 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 12. Preferably, the variant of CDS  for tERVFRD-1 D513 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 nucleotides addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 12. Preferably, the variant of CDS for tERVFRD-1 D512 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 13. Preferably, the variant of CDS for tERVFRD-1 D512 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 nucleotides addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 13. Preferably, the variant of CDS for tERVFRD-1 D511 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 14.Preferably, the variant of CDS for tERVFRD-1 D511 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 nucleotides addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 14. Preferably, the variant of CDS for tERVFRD-1 Del510 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 15. Preferably, the variant of CDS for tERVFRD-1 Del510 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 nucleotides addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 15.
In a specific embodiment, the CDS for a human endogenous capsid protein is CDS for hPEG10 as set forth in SEQ ID NO.: 16, or a variant thereof.
Preferably, the variant of CDS for hPEG10 has about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 98%, or about 99%identity to SEQ ID NO.: 16. Preferably, the variant of CDS for hPEG10 contains 1 to 10, or 1 to 8, or 1 to 6, or 1 to 4, or 1, 2, 3, 4 nucleotides addition, deletion or substitution to the amino acid sequence of SEQ ID NO.: 16.
In a specific embodiment, the packaging system may further comprise in any one of the plasmids at least one element selected from but not limited to: a 5' LTR, a ψelement, an RRE element, a cPPT/CTS element, a polyclonal site for insertion of a nucleotide sequence encoding a polypeptide of interest, a WPRE element, a 3' LTR, and a UTR, a cytomegalovirus (CMV) enhancer/promoter sequence, a terminator, an internal enhancer, an internal promoter, all of which are commonly known to those skilled in the art.
Construction of the plasmid can be accomplished using any suitable genetic engineering techniques known in the art, including, without limitation, the standard techniques of restriction endonuclease digestion, ligation, transformation, plasmid purification, and DNA sequencing, for example as described in Sambrook et al. (1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, N.Y. ) , Coffin et al. (Retroviruses. Cold Spring Harbor Laboratory Press, N. Y. (1997) ) and "RNA Viruses: A Practical Approach" (Alan J. Cann, Ed., Oxford University  Press, (2000) , each of the foregoing which is incorporated herein by reference in its entirety.
The packaging system comprises a gene of interest that is desirable to express in target cells. Typically, the gene of interest is located between the 5' LTR and 3' LTR sequences. Further, the gene of interest is preferably in a functional relationship with other genetic elements, for example transcription regulatory sequences including promoters or enhancers, to regulate expression of the gene of interest in a particular manner. In certain instances, the useful transcriptional regulatory sequences are those that are highly regulated with respect to activity, both temporally and spatially. Expression control elements that may be used for regulating the expression of the components are known in the art and include, but are not limited to, inducible promoters, constitutive promoters, secretion signals, enhancers and other regulatory elements.
In a specific embodiment, the transfer plasmid comprises a UTR sequence upstream of the gene of interest, and/or a UTR sequence downstream of the gene of interest. The UTR sequences can be same or different.
The present invention provides a kit for produce a fully human endogenous gene delivery system of the present invention, which comprises a packaging system of the present, and a packaging cell line.
The present invention provides a method to produce a fully human endogenous gene delivery system of the present invention, which comprises the following steps:
a) transfecting a package cell line with a packaging system comprising at least (1) an enveloping plasmid comprising CDS for a human endogenous enveloping protein, (2) a packaging plasmid comprising CDS for a human endogenous capsid protein, and (3) a transfer plasmid comprising a gene of interest.
b) incubating the transfected cells obtained in step a) to produce the fully human endogenous gene delivery system of the present invention; and
c) harvesting and concentrating the fully human endogenous gene delivery system obtained in step b) ,
preferably wherein step c) further comprises centrifuging and/or purifying the fully human endogenous gene delivery system obtained in step b) 
The packaging cell line comprises cultured cells capable of packaging a lentiviral vector/VLP. In some cases, the packaging cell line is the HEK-293T cell line. Similar results can be achieved in other cell lines, including but not limited to mammalian gene expression cell lines such as Vero and CHO. Other cell lines that can be transfected in vitro and are capable of producing high titers of lentiviral vectors/VLPs may be used.
The present disclosure also provides for genetic engineering of packaging cell lines to otherwise improve the immune properties of the lentiviral vectors and particles of the present disclosure, the other means including but not limited to adding genes, deleting genes and introducing point mutations into genes.
The present invention provides a fully human endogenous gene delivery system for use in delivering Cas9 mRNA and gRNA to a subject for enabling gene editing and gene therapy, or in carrying mRNA expressing tumor antigens and viral antigens for vaccines, or in expressing cellular reprogramming factors for making pluripotent stem cells, modifying cellular function, or in delivering chimeric antigen receptor mRNA for cellular use in immunotherapy, or in expressing intact mRNA, small RNA, and RNP for gene therapy.
The present invention provides use of a fully human endogenous gene delivery system in delivering Cas9 mRNA and gRNA to a subject for enabling gene editing and gene therapy, or in carrying mRNA expressing tumor antigens and viral antigens for vaccines, or in expressing cellular reprogramming factors for making pluripotent stem cells, modifying cellular function, or in delivering chimeric antigen receptor mRNA for cellular use in immunotherapy, or in expressing intact mRNA, small RNA, and RNP for gene therapy.
The fully human endogenous gene delivery system of the present invention may be used in a therapeutic treatment in human or animal subjects. The treatment may be a vaccine for immunization, wherein the vaccine is prophylactic or therapeutic. The vaccine comprises a fully human endogenous gene delivery system with a pharmaceutically acceptable carrier. Alternatively, the fully human endogenous gene delivery system may be administered in vitro to cells, including the step of mixing the cells with any of the above fully human endogenous gene delivery system.
Also provided herein are pharmaceutical compositions comprising a packaging system, a host cell line, a kit or a fully human endogenous gene delivery system as described above. Such compositions comprise therapeutically effective amounts of the above packaging system, host cell line, kit or fully human endogenous gene delivery system, as well as a pharmaceutically acceptable carrier.
As used herein, the term "pharmaceutically acceptable carrier" refers to a solid or liquid diluent, filler, antioxidant, stabilizer, or other substance that can be safely administered without undue adverse side effects and is suitable for maintaining the viability of the drug or active agent located therein. In accordance with the route of administration, a variety of different carriers well known in the art may be used, including, but not limited to, sugars, starches, cellulose and derivatives thereof, maltose, gelatin, talc, calcium sulfate, vegetable oils, synthetic oils, polyols, alginic acid, phosphate buffers, emulsifiers, isotonic saline, and/or pyrogen-free water, and  the like.
If necessary, the pharmaceutical compositions may also contain small amounts of wetting agents or emulsifiers or pH buffers. These pharmaceutical compositions can take the form of solutions, suspensions, emulsions, tablets, pills, capsules, powders, sustained release formulations, and the like.
The pharmaceutical compositions provided herein can be made in clinically acceptable dosage forms such as powders, injectables, etc. The pharmaceutical compositions of the present invention may be administered to a subject using any suitable route, for example, by oral, intravenous infusion, intramuscular, subcutaneous, subperitoneal, rectal, sublingual, or via inhalation, transdermal, etc.
In preferred embodiments, the pharmaceutical composition is formulated according to conventional procedures suitable for intravenous or intramuscular administration. Typically, the pharmaceutical composition for intravenous or intramuscular administration is a solution in a sterile isotonic aqueous buffer. Where necessary, said pharmaceutical composition may also comprise a solubilizing agent and a local anesthetic such as lidocaine to relieve pain at the subject's injection site.
As used herein, the term "subject" means an animal, such as a mammal, including but not limited to a human, rodent, ape, feline, canine, equine, bovine, porcine, sheep, goat, mammalian laboratory animal, mammalian farm animal, mammalian sport animal, and mammalian pet. Subjects may be male or female and may be of any age, including infants, juveniles, young adults, adults, and elderly subjects. In some embodiments, a subject is an individual in need of treatment for a disease or condition. In some embodiments, the subject receiving the treatment may be a patient who has a condition associated with the treatment or is at risk of developing the condition. In particular embodiments, the subject is a human, such as a human patient. The term is often used interchangeably with "patient" , "test subject" , "treatment subject" , and the like.
In an embodiment, the packaging system, or the fully human endogenous gene delivery system of the present invention may be delivered in a vesicle, particularly a liposome. In yet another embodiment, the nucleic acid sequence, the packaging system, or the fully human endogenous gene delivery system of the present invention may be delivered in a controlled release system.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs.
The articles “a” , “an” , and “the” are used herein to refer to one or to more than one (i.e. to at least one) of the grammatical object of the article. By way of  example, “an element” means one element or more than one element.
The use of alternatives (e.g., "or" ) should be understood to mean one, two, or any combination thereof of the alternatives.
The term "and/or" is to be understood as referring to one or both alternatives.
As used herein, the term "approximately" or "about" means a quantity, level, value, number, frequency, percentage, dimension, size, amount, weight, or length range of ±15%, ±10%, ±9%, ±8%, ±7%, ±6%, ±5%, ±4%, ±3%, ±2%, or ±1%with respect to a reference quantity, level, value, number, frequency, percentage, dimension, size, amount, weight, or length.
Unless otherwise specified, any concentration range, percentage range, ratio range, or integer range shall be understood to include any integer value within said range and, where appropriate, fractions thereof (such as tenths and hundredths of an integer) . When immediately preceded by a numeric or numeric value, the term "approximately" refers to plus or minus 10 percent of the numeric or numeric range.
Throughout the specification, unless the context otherwise requires, the term "comprise/comprises/comprising" should be understood to mean the inclusion of a specified step, or element, or group of steps or elements, but does not exclude any other step, or element, or group of steps or elements. In particular embodiments, the terms "include" , "have" , "contain" and "comprise" are used synonymously.
All publications and patents mentioned herein are hereby incorporated by reference in their entirety as if each individual publication or patent were specifically and separately indicated as not incorporated by reference. In the event of conflict, this application (including any definitions herein) shall control. However, any references, articles, publications, patents, patent publications and patent applications cited herein are not and shall not be deemed to be admissions or suggestions of any kind which constitute valid prior art or form part of the common knowledge of any country in the world.
The present invention is further described in the following examples, which are not limiting the scope of the present invention as described in the claims.
Example
Materials
HEK 293T cell line (ATCC, CRL-3216)
Fetal bovine serum (Gibco, A3161002C)
Dulbecco's Modified Eagle Medium (Gibco, 11965092)
Penicillin-Streptomycin (Gibco, 15140122)
0.05%Trypsin-EDTA (Gibco, 25300062)
Opti-MEM (Gibco, 31985070)
Lipofectamine 3000 transfection reagent (Invitrogen, L3000015)
D-PBS, with Ca2+, Mg2+ (Corning, 21-030-CV)
24-well TC-treated culture plate (Costar, 3524)
100 mm TC-treated culture dish (Jet Bio-Filtration, TCD010100)
15 mL Centrifuge Tube (Axygen, SCT-15ML-25-S)
Serological Pipets (Jet Bio-Filtration)
Benzonase (Sigma-Aldrich, E8263-25KU)
EasyPure Viral DNA/RNA Kit (Transgen, ER201-02)
TransScript II One-Step RT-PCR SuperMix (Transgen, AH411-02)
HIV1 p24 ELISA Kit (Abcam, ab218268)
Example 1: Vector design &construction
ERVFRD-1/tERVFRD-1 Del515/tERVFRD-1 Del514 (tERVFRD-1 V1) /tERVFRD-1 Del513/tERVFRD-1 Del512/tERVFRD-1 Del511/tERVFRD-1 Del510 (tERVFRD-1 V2) CDS were synthesized and cloned separately into pCMV-VSVg plasmid (purchased from CellBiolabs) with Gibson Assembly, while VSVg CDS was removed by EcoRI treatment to make the pFusogen plasmids. pCapsid plasmids was inserted into pCMV-VSVg by replacing the VSVg with synthesized hPEG10 CDS or other human endogenous Gag-pol used in this invention. CargoRNA plasmids were constructed with pSMPUW-IRES-Puro (purchased from CellBiolabs) plasmid by the insertion corresponding UTR Cargo (GFP or Cas9) UTR downstream of CMV promoter for strong mRNA transcription. Fig. 1A provides a schematic diagram of the structure of VLPs according to the examples and comparative examples of the present invention, wherein cargoRNA represents an example of the gene of interest to be delivered. FIG. 1B provides a schematic diagram of the structures of plasmids according to the examples and comparative examples of the present invention. The pFusogen represents an example of enveloping plasmid, the pCapsid represents an example of packaging plasmid, and the pCargoRNA represents an example of transfer plasmid.
Example 2: VLP packaging, purification and titration
HEK 293T cells were seeded in 100 mm dish and grown to 70%~80%confluent for plasmid transfection. For VLP packaging, 5 μg pSMPUW-hPEG10, 10 μg pCargoRNA-GFP and 5 μg pFusogen plasmids were co-transfected with  Lipofectamine 3000 transfection reagent into HEK 293T cells, cell culture supernatant was harvested at 48 h after transfection. VLPs were purified and concentrated by ultracentrifugation involving a 20%sucrose cushion at 80000 g for 2 h, the Beckman ultracentrifuge was set to 4℃ during VLP ultracentrifugation. Purified VLPs were titrated by RT-qPCR and were stored at -80℃.
Isolated cell culture supernatant containing lentiviral particle/VLP or purified VLPs was pre-treated with 25 U/mL benzonase at 37℃ for 1 h to remove free DNA/RNA, then benzonase was inactivated by 56℃ incubation for 10 min. Lentiviral/VLP genomic RNA were extracted with EasyPure Viral DNA/RNA Kit (Transgen Biotech) , and VLP genomic RNA were subsequently analyzed by RT-qPCR with TransScript II One-Step RT-PCR SuperMix (Transgen Biotech) .
Example 3 VLP transduction Assay
Fig. 2A shows that fusogen induced cell-to-cell fusion at 48 h after co-transfection of packaging plasmids, tERVFRD-1 V2 exhibited significant less fusogenic effect than other human envelope candidates. Fig. 2B illustrates that both tERVFRD-1 V1 and tERVFRD-1 V2 result in normal VLP production. For testing the ability of VLP transduction, 5×104 HEK 293T cells were planted in 24-well plate for 12~16 h, VLP solution was gently added into cell culture supernatant. VLPs were quickly settled and attached to adherent HEK 293T cells with 1000 g centrifuging at room temperature for 30 min, cell culture medium was renewed afterwhile. GFP expression efficiency was detected and analyzed with Cyto-FLEX S flow cytometer at 24 h after VLP infection. Fig. 2C shows all ERVFRD-1 envelopes mediated comparable GFP transduction to VSVg. However, VLP containing ERVFRD-1 or tERVFRD-1 V1 induced cell to cell fusion, which will limit the usage of those VLPs since cell fusion might lead to cell death or carcinogenesis.
Example 4: Discovery of endogenous Gags and Envelopes.
Fig. 3A shows the workflow to search candidate genes in human genome which may encode capsid and envelop proteins. Results with contact CA or Env open reading frame are showing in Figs. 3B-3E. Several Envelopes were moved to next step to test their VLP packaging and transduction capability.
Example 5: Production and transduction of VLP with more human endogenous envelopes
Different envelops could mediated significant VLP particle formation (Fig. 4A) . However only VSVg and tERVFRD-1 V2 mediated GFP transduction in several cell lines (Figs. 4B and 4C) . we did not detect GFP transduction of VLPs with other human endogenous envelopes. One of the reasons might be the lack of receptors on those cells.
Examples 6: VLP mediating Cas9 transduction
To detect Cas9 transduction, the 293T edit-on cell line was constructed by infection of a lentivirus carrying a GFP gRNA sequence upstream a frameshifted mCherry. Indels induced by Cas9-gGFP complex may turn on the mCherry by put it on frame.
24 h before transfection of VLP-Cas9 packaging plasmids, a plasmid with GFP sgRNA were transfected into HEK 293T cell to serve gGFP RNA during VLP production. 24 h after VLP transduction, the cells were analyzed by FACS. The mCherry was turned on, indicating that Cas9 was transduced by VLP (Fig. 5) .
Sequence Listings
Amino acid sequence of ERVFRD-1 (SEQ ID NO.: 1)
Amino acid sequence of ERVFRD-1 Del515 (SEQ ID NO.: 2)

Amino acid sequence of tERVFRD-1 Del514 (SEQ ID NO.: 3)
Amino acid sequence of ERVFRD-1 Del513 (SEQ ID NO.: 4)
Amino acid sequence of ERVFRD-1 Del512 (SEQ ID NO.: 5)
Amino acid sequence of ERVFRD-1 Del511 (SEQ ID NO.: 6)

Amino acid sequence of tERVFRD-1 Del510 (SEQ ID NO.: 7)
Amino acid sequence of hPEG10 (SEQ ID NO.: 8)
Nucleotide sequence of CDS for ERVFRD-1 (SEQ ID NO.: 9)

Nucleotide sequence of CDS for ERVFRD-1 Del515 (SEQ ID NO.: 10)

Nucleotide sequence of CDS for tERVFRD-1 Del514 (SEQ ID NO.: 11)

Nucleotide sequence of CDS for ERVFRD-1 Del513 (SEQ ID NO.: 12)
Nucleotide sequence of CDS for ERVFRD-1 Del512 (SEQ ID NO.: 13)

Nucleotide sequence of CDS for ERVFRD-1 Del511 (SEQ ID NO.: 14)

Nucleotide sequence of CDS for tERVFRD-1 Del510 (SEQ ID NO.: 15)
Nucleotide sequence of CDS for hPEG10 (SEQ ID NO.: 16)

Claims (11)

  1. A fully human endogenous gene delivery system, which comprises (1) a human endogenous enveloping protein, (2) a human endogenous capsid protein, and (3) a gene of interest.
  2. The fully human endogenous gene delivery system according to claim 1, wherein the human endogenous enveloping protein is selected from the group consisting of hERV-K, hERV-H, hERV-W, hERV-FRD, hERV-E, and a variant thereof.
  3. The fully human endogenous gene delivery system according to claim 1 or 2, wherein the human endogenous enveloping protein is c-terminal truncated ERVFRD-1.
  4. The fully human endogenous gene delivery system according to any one of claims 1 to 3, wherein the human endogenous capsid protein is selected from the group consisting of hPEG10, hArc, and a variant thereof.
  5. The fully human endogenous gene delivery system according to any one of claims 1 to 4, wherein the human endogenous capsid protein is hPEG10 having amino acid sequence as set forth in SEQ ID NO.: 8 or a variant having at least 90%homology to SEQ ID NO.: 8.
  6. The fully human endogenous gene delivery system according to any one of claims 1 to 5, wherein the gene of interest is DNA or RNA, preferably RNA, more preferably mRNA.
  7. A packaging system for producing a fully human endogenous gene delivery system according to any one of claims 1-6, which comprises at least (1) an enveloping plasmid comprising CDS for a human endogenous enveloping protein, (2) a packaging plasmid comprising CDS for a human endogenous capsid protein, and (3) a transfer plasmid comprising a gene of interest.
  8. A kit for produce a fully human endogenous gene delivery system according to any one of claims 1-6, which comprises a packaging system according to claim 7, and a packaging cell line.
  9. A method to produce a fully human endogenous gene delivery system according to any one of claims 1 to 6, which comprises the following steps:
    a) transfecting a package cell line with a packaging system comprising at least (1) an enveloping plasmid comprising CDS for a human endogenous enveloping protein, (2) a packaging plasmid comprising CDS for a human endogenous capsid protein, and (3) a transfer plasmid comprising a gene of interest.
    b) incubating the transfected cells obtained in step a) to produce the fully human endogenous gene delivery system according to any one of claims 1 to 6; and
    c) harvesting and concentrating the fully human endogenous gene delivery system obtained in step b) ,
    preferably wherein step c) further comprises centrifuging and/or purifying the fully human endogenous gene delivery system obtained in step b) .
  10. A fully human endogenous gene delivery system according to any one of claims 1-6 for use in delivering Cas9 mRNA and gRNA to a subject for enabling gene editing and gene therapy, or in carrying mRNA expressing tumor antigens and viral antigens for vaccines, or in expressing cellular reprogramming factors for making pluripotent stem cells, modifying cellular function, or in delivering chimeric antigen receptor mRNA for cellular use in immunotherapy, or in expressing intact mRNA, small RNA, and RNP for gene therapy.
  11. Use of a fully human endogenous gene delivery system according to any one of claims 1-6 in delivering Cas9 mRNA and gRNA to a subject for enabling gene editing and gene therapy, or in carrying mRNA expressing tumor antigens and viral antigens for vaccines, or in expressing cellular reprogramming factors for making pluripotent stem cells, modifying cellular function, or in delivering chimeric antigen receptor mRNA for cellular use in immunotherapy, or in expressing intact mRNA, small RNA, and RNP for gene therapy.
PCT/CN2023/073840 2022-01-30 2023-01-30 Fully human endogenous gene delivery system WO2023143606A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2022075171 2022-01-30
CNPCT/CN2022/075171 2022-01-30

Publications (1)

Publication Number Publication Date
WO2023143606A1 true WO2023143606A1 (en) 2023-08-03

Family

ID=87470755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073840 WO2023143606A1 (en) 2022-01-30 2023-01-30 Fully human endogenous gene delivery system

Country Status (1)

Country Link
WO (1) WO2023143606A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021055855A1 (en) * 2019-09-20 2021-03-25 The Broad Institute, Inc. Compositions and methods for delivering cargo to a target cell
WO2021188996A1 (en) * 2020-03-20 2021-09-23 The Broad Institute, Inc. Compositions and methods for enhanced lentiviral production
US11129892B1 (en) * 2020-05-18 2021-09-28 Vnv Newco Inc. Vaccine compositions comprising endogenous Gag polypeptides

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021055855A1 (en) * 2019-09-20 2021-03-25 The Broad Institute, Inc. Compositions and methods for delivering cargo to a target cell
WO2021188996A1 (en) * 2020-03-20 2021-09-23 The Broad Institute, Inc. Compositions and methods for enhanced lentiviral production
US11129892B1 (en) * 2020-05-18 2021-09-28 Vnv Newco Inc. Vaccine compositions comprising endogenous Gag polypeptides

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE Protein 19 February 2010 (2010-02-19), GENBANK: "paternally expressed 10 isoform 3 [Homo sapiens]", XP093081029, retrieved from NCBI Database accession no. NP_001165908.1 *
SEGEL ET AL.: "Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery", SCIENCE, vol. 373, no. 6557, 20 August 2021 (2021-08-20), XP055919110, DOI: 10.1126/science.abg6155 *

Similar Documents

Publication Publication Date Title
CN108368157B (en) Human immunodeficiency virus antigens, vectors, compositions, and methods of use thereof
EP1880012B1 (en) Vaccine composition
WO2016154055A1 (en) Vector formulations
US20210163988A1 (en) Cancer immunotherapy by delivering class ii mhc antigens using a vlp-replicon
CN112442514B (en) Lentiviral packaging vector system, lentivirus, construction method of lentivirus and kit
CZ2003784A3 (en) Enhanced conditionally replicating vectors, processes of their preparation and their use
WO2023143606A1 (en) Fully human endogenous gene delivery system
US6461616B1 (en) EIAV p26 deletion vaccine and diagnostic
WO1993005147A1 (en) Defective interfering hiv particles with chimeric cd4-env
CN116640736A (en) Construction of SARS-CoV-2 vaccine candidate strain of recombinant human 4 type adenovirus vector and its application
JP4627950B2 (en) Molecular clone with mutant HIV gag / pol, SIV gag and SIV env genes
WO2021036247A1 (en) Chimeric antigen receptor t cell targeting her2 and interfering with il-6 expression, preparation method therefor and use thereof
JP7150241B2 (en) Infectious disease vaccine using non-infectious paramyxovirus particles
EP1255849A2 (en) Recombinant rhabdoviruses as live-viral vaccines for immunodeficiency viruses
RU2768032C1 (en) GENETIC CONSTRUCT FOR GENE EXPRESSION mNG_CD4-CXCR4, RECOMBINANT PLASMID rVSV_MNG_CD4-CXCR4 AND A RECOMBINANT VESICULAR STOMATITIS VIRUS STRAIN rVSV_mNG_CD4-CXCR4, WHICH PROVIDES TARGETED VIROLYSIS OF CELLS EXPOSING HIV-1 GP120/GP41 PROTEINS TROPISM X4 ON THEIR SURFACE
WO2024103579A1 (en) Preparation method for coronavirus pseudovirus particle
US20220228169A1 (en) Small ruminant lentivirus vector
RU2769125C1 (en) GENETIC CONSTRUCT FOR EXPRESSION OF mNG_CD4-CCR5 GENES, RECOMBINANT PLASMID rVSV_mNG_CD4-CCR5 AND RECOMBINANT STRAIN OF VESICULAR STOMATITIS VIRUS rVSV_mNG_CD4-CCR5 PROVIDING TARGETED VIROLYSIS OF CELLS DISPLAYING HIV-1 PROTEINS GP120/GP41 OF R5 TROPISM ON THEIR SURFACE
CN102961757A (en) Pseudovirus particle vaccine carrying double-stranded RNA target antigen and neutralizing antigen
WO2021036246A1 (en) Chimeric antigen receptor t cell targeting egfrviii and interfering with il-6 expression, preparation method therefor and application thereof
WO2022119560A1 (en) Cell strain having increased virus production ability and production method thereof
CN117860880A (en) RdRp-dependent African swine fever taRNA vaccine and construction method and application thereof
AU2012201827B2 (en) Vaccine composition
AU2007201936A1 (en) EIAV Chimeric Vaccine and Diagnostic
JP2004526450A (en) Virus vector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746483

Country of ref document: EP

Kind code of ref document: A1