WO2023143145A1 - 管路组件、气压检测模块、雾化系统和呼吸机 - Google Patents

管路组件、气压检测模块、雾化系统和呼吸机 Download PDF

Info

Publication number
WO2023143145A1
WO2023143145A1 PCT/CN2023/072180 CN2023072180W WO2023143145A1 WO 2023143145 A1 WO2023143145 A1 WO 2023143145A1 CN 2023072180 W CN2023072180 W CN 2023072180W WO 2023143145 A1 WO2023143145 A1 WO 2023143145A1
Authority
WO
WIPO (PCT)
Prior art keywords
air pressure
pipeline assembly
assembly according
elastic diaphragm
atomization
Prior art date
Application number
PCT/CN2023/072180
Other languages
English (en)
French (fr)
Inventor
郑海崇
桑岭
钟惟德
钟南山
周静
林志敏
王颖治
李军
张谢恩
Original Assignee
深圳摩尔雾化健康医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳摩尔雾化健康医疗科技有限公司 filed Critical 深圳摩尔雾化健康医疗科技有限公司
Publication of WO2023143145A1 publication Critical patent/WO2023143145A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits

Definitions

  • the invention relates to the field of medical equipment, in particular to a pipeline assembly, an air pressure detection module, an atomization system and a ventilator.
  • the nebulizer can be used with the ventilator to nebulize the medicine.
  • Traditional nebulizers are always in working condition when the patient is inhaling and exhaling, resulting in waste of medicine.
  • the air pressure sensor if the air supply and return status of the ventilator is detected by the air pressure sensor, the air pressure sensor is directly connected to the contaminated gas pipeline, which will cause the air pressure sensor to be polluted. It is difficult to use conventional means, such as alcohol, to immerse and disinfect the end of the air pressure sensor. If the air pressure sensor is discarded after a single use, it will increase the cost of use and cause great waste.
  • the present invention provides a pipeline assembly, an air pressure detection module, an atomization system and a ventilator.
  • an embodiment of the present invention provides a pipeline assembly, including: multi-way pipe; Contamination isolation components, The first path of the multi-way pipe is airtightly connected with the pollution isolation component, The pollution isolation component is located in the first path of the multi-way pipe, or is connected to the end of the first path of the multi-way pipe.
  • the multi-way pipe is a three-way pipe.
  • the pollution isolation component includes: A gas filter part, used to filter the pollution of the gas in the first path of the multi-way pipe; or a flexible sealing part, used to isolate the pollution of the gas in the first path of the multi-way pipe, and with the multi-way pipe
  • a gas filter part used to filter the pollution of the gas in the first path of the multi-way pipe
  • a flexible sealing part used to isolate the pollution of the gas in the first path of the multi-way pipe, and with the multi-way pipe
  • the pressure of the gas in the duct produces elastic deformation.
  • the gas filter component includes: a filter element.
  • the filter element is a porous structure, and the pores of the porous structure are 3 microns to 20 microns.
  • the filter element is a polymer material or a ceramic material.
  • the shape of the filter element is: a cylinder or a polygon.
  • the polygon is: a triangular prism or a quadrangular prism.
  • the flexible sealing component includes: an elastic diaphragm.
  • the shape of the elastic diaphragm is: circular or polygonal.
  • the polygon is: a triangle, or a quadrangle, or a pentagon.
  • the elastic diaphragm is in a tensioned state or a relaxed state.
  • the thickness of the elastic membrane is 0.03 mm to 1 mm.
  • the elastic diaphragm has a thickness of 0.1 mm to 0.2 mm.
  • the diameter of the elastic diaphragm is 6 mm to 50 mm.
  • the diameter of the elastic diaphragm is 8 mm to 20 mm.
  • the shape of the elastic diaphragm is a plane or a curved surface.
  • the multi-way pipe includes a concentric reducer
  • the first path is the outer diameter pipe of the concentric reducer
  • the first path is the inner diameter pipe of the concentric reducer
  • one of the channels of the multi-way pipe includes multiple channels, and the first channel and other multiple channels are arranged in parallel in the one channel.
  • an air pressure detection module in an embodiment of the present invention, which is characterized in that it includes: The pipeline assembly of any one of the first aspects, An airtight cavity, the airtight cavity is sealed and socketed on the first path of the multi-way pipe, and the airtight cavity is used to accommodate non-polluting gas; Air pressure sensing part, the air pressure sensing part is placed in the airtight cavity, or the air pressure sensing part communicates with the airtight cavity through the air pressure sensing connection pipeline, and the air pressure sensing part is wired Signal or wireless signal output air pressure signal.
  • an atomization system in an embodiment of the present invention, including: The air pressure detection module in the second aspect; atomization module; The control module controls the atomization operation of the atomization module based on the air pressure signal output by the air pressure sensing component.
  • an embodiment of the present invention provides a ventilator with nebulized drug delivery function, which is characterized in that it includes: The atomization system of the third aspect, Ventilator, The atomization module communicates with the air outlet of the ventilator, At least one of the multi-way tubes other than the first one is in communication with the outlet or return airway of the ventilator or the airway of the patient.
  • the pipeline assembly includes: a multi-way tube; a pollution isolation component, the first path of the multi-way tube is airtightly connected with the pollution isolation component, and the pollution isolation component is located in the first path of the multi-way tube In, or connected to the end of the first channel of the multi-way pipe, so as to effectively isolate the pollution, and keep the air pressure on both sides of the pollution isolation part consistent, which is convenient for the air pressure detection of the air pressure sensor, and does not pollute the air pressure sensor.
  • FIG. 1 shows a structural diagram of an air pressure detection module according to an embodiment of the present invention
  • FIG. 2 shows a structural diagram of an air pressure detection module according to another embodiment of the present invention
  • FIG. 3 shows a structural diagram of an air pressure detection module according to yet another embodiment of the present invention
  • FIG. 4 shows a structural diagram of an air pressure detection module according to yet another embodiment of the present invention
  • Fig. 5 shows a structural diagram of an atomization system according to an embodiment of the present invention
  • Fig. 6 shows a structural diagram of an atomization system according to another embodiment of the present invention
  • Fig. 1 shows a structural diagram of an air pressure detection module according to an embodiment of the present invention
  • FIG. 2 shows a structural diagram of an air pressure detection module according to another embodiment of the present invention
  • FIG. 3 shows a structural diagram of an air pressure detection module according to yet another embodiment of the present invention
  • FIG. 4 shows a structural diagram of an air pressure detection module according to yet another embodiment of the present invention
  • Fig. 5 shows a
  • FIG. 7 shows a structural diagram of an atomization system according to yet another embodiment of the present invention
  • Fig. 8 shows a structural diagram of an atomization system according to yet another embodiment of the present invention
  • Fig. 9 shows an exemplary embodiment of a ventilator with nebulized administration function according to an embodiment of the present invention
  • Fig. 10 shows an exemplary schematic diagram of the air pressure on both sides of the elastic diaphragm according to an embodiment of the present invention
  • FIG. 11 shows an exemplary schematic diagram of the air pressure conversion ratio of the elastic diaphragm according to an embodiment of the present invention.
  • the nebulizer can be used with the ventilator to nebulize the medicine.
  • Traditional nebulizers are always on when the patient is inhaling and exhaling. When the patient exhales, the atomized medicine cannot enter the patient's respiratory tract, resulting in waste of medicine.
  • the air pressure sensor if the air supply and suction status of the ventilator are detected by the air pressure sensor, the air pressure sensor is directly connected to the contaminated gas pipeline, which will cause the air pressure sensor to be polluted. It is difficult to use conventional means, such as alcohol, to immerse and disinfect the end of the air pressure sensor. If the air pressure sensor is discarded after a single use, it will increase the cost of use and cause great waste.
  • the present invention proposes a pipeline assembly, an air pressure detection module, an atomization system and a ventilator.
  • Fig. 1 shows a structural diagram of an air pressure detection module according to an embodiment of the present invention.
  • FIG. 1 shows an air pressure detection module that uses a gas filter and the air pressure sensor is located at the proximal end of the gas filter.
  • the air pressure detection module 100 includes: a pipeline assembly composed of a multi-way pipe 101 such as a tee pipe and a gas filter component 103 such as a filter element.
  • the gas filter element 103 is airtightly connected to the first path 102 of the multi-way tube 101 and located in the first path 102 , and the sealing material 106 acts as a seal between the gas filter element 103 and the first path 102 of the multi-way tube 101 .
  • the gas filter 103 can filter out the gas pollution in the lower part of the multi-way pipe 101 , so that the pollution cannot enter the upper part of the gas filter 103 .
  • the gas filter member 103 allows the passage of non-polluting gas, thereby maintaining the same air pressure on the lower side and the upper side of the gas filter member 103 .
  • the pipeline assembly including the multi-way tube 101 and the gas filter element 103 is subject to contamination by germs, viruses, etc., and may be a single-use assembly.
  • the filter element can be a porous structure, and the pores of the porous structure are 3 microns to 20 microns.
  • the filter element can be polymer material or ceramic material.
  • the filter element can be a cylinder or a polygon, preferably a cylinder.
  • the polyhedron can be a triangular prism, a quadrangular prism, or other polyhedrons.
  • the air pressure detection module 100 further includes: an airtight cavity 104 hermetically sleeved on the first channel 102 of the multi-way tube 101 , and an air pressure sensing component 105 .
  • the air pressure sensing component 105 is located in the airtight cavity 104 and is used for detecting air pressure changes in the ventilator circuit.
  • the air pressure sensing component 105 includes an air pressure sensor, and outputs an air pressure signal through a wired or wireless manner.
  • the airtight cavity 104 and the air pressure sensing component 105 can be used repeatedly.
  • Fig. 2 shows a structural diagram of an air pressure detection module according to another embodiment of the present invention.
  • FIG. 2 shows an air pressure detection module that uses a gas filter and the air pressure sensor is located at the far end of the gas filter.
  • the air pressure detection module 200 includes: a pipeline assembly composed of a multi-way pipe 201 such as a tee pipe and a gas filter component 203 such as a filter element.
  • the gas filter component 203 is airtightly connected to the first path 202 of the multi-way pipe 201 and located in the first path 202 .
  • the gas filter 203 can filter out the gas pollution in the lower part of the multi-way pipe 201 , so that the pollution cannot enter the upper part of the gas filter 203 .
  • the gas filter member 203 allows the passage of non-polluting gas, thereby maintaining the same air pressure on the lower side and the upper side of the gas filter member 203 .
  • the trachea connector 204 forms a closed cavity, and the closed cavity connects the pipeline (not shown in FIG. 2 , refer to 602 in FIG. 6 ) and the pressure sensing component (not shown in FIG. 2 , which can be located in FIG. 6 in the control module 601) are connected to detect changes in air pressure in the ventilator circuit.
  • the air pressure sensing component includes an air pressure sensor, and outputs an air pressure signal, which is transmitted to the control module 601 .
  • the air pressure signal can be transmitted in wired or wireless way, and the wired way is preferred to ensure the reliability of short-distance transmission.
  • the pipeline assembly including the multi-way tube 201 and the gas filter element 203 is subject to contamination by germs, viruses, etc., and may be a single-use assembly.
  • the filter element can be a porous structure, and the pores of the porous structure are 3 microns to 20 microns.
  • the filter element can be polymer material or ceramic material.
  • the filter element can be a cylinder or a polygon, preferably a cylinder.
  • the polyhedron can be a triangular prism, a quadrangular prism, or other polyhedrons.
  • the airtight cavity 204 and the air pressure sensing component can be used repeatedly.
  • Fig. 3 shows a structural diagram of an air pressure detection module according to yet another embodiment of the present invention.
  • FIG. 3 shows an air pressure detection module that uses a flexible sealing component and the air pressure sensor is located at the proximal end of the flexible sealing component.
  • the air pressure detection module 300 includes: a pipeline assembly composed of a multi-way pipe 301 such as a tee pipe and a flexible sealing member 303 such as an elastic diaphragm.
  • the flexible sealing member 303 is hermetically connected to the end of the first channel 302 of the multi-way tube 301 .
  • the flexible sealing part 303 is used as a pollution isolation part, which can completely isolate the lower part and the upper part of the multi-way pipe 301, so that the pollution of the lower part cannot enter the upper part of the flexible sealing part 303 at all.
  • the flexible sealing member 303 can be elastically deformed due to the air pressure, the air pressure at the lower part and the upper part of the flexible sealing member 303 can be transmitted.
  • the pipeline assembly including the multi-way tube 301 and the flexible sealing member 303 is subject to contamination by germs, viruses, etc., and may be a single-use assembly.
  • the use of flexible sealing components as pollution isolation components can completely isolate pollutants such as germs, virus pollutants and other small-sized gases in the pipeline; compared with the filter element solution, it can further improve the effect of isolation and antifouling , improve the safety of use.
  • Pollutants such as gas with small particle size in the pipeline may include: water vapor, residual pharmaceutical ingredients, etc.
  • water vapor due to its extremely small particle size, cannot be effectively blocked by ordinary filter elements.
  • Water vapor may pass through the separator and be transmitted to the air pressure sensing parts. Water vapor may condense on these positions, which may block the The path of air pressure transmission affects the accuracy of air pressure sensing components, and on the other hand, it will also cause corrosion to related components and affect the service life.
  • the present invention defines the ratio of the air pressure at the upper part of the flexible sealing member to the air pressure at the lower part as the air pressure conversion ratio.
  • the aim is to further increase the air pressure conversion ratio, thereby improving the measurement accuracy of the air pressure sensor.
  • the flexible sealing part includes: an elastic diaphragm.
  • the elastic diaphragm is preferably made of silica gel or latex. It has been found through research that in order to achieve a better air pressure conversion ratio, the smaller the elastic modulus of the elastic diaphragm, the better.
  • the shape of the elastic diaphragm can be: circular or polygonal, preferably circular.
  • the polygon can be a triangle, or a quadrangle, or a pentagon, or other polygons.
  • the elastic membrane is in tension or in a relaxed state, preferably in tension.
  • the tensioned state is a state in which the elastic diaphragm 303 is tightly stretched on the first path 302 and the surface is completely flat; the relaxed state is a state in which the elastic diaphragm 303 is not tightly stretched on the first path 302 and the surface has a curved surface.
  • the elastic membrane has a thickness of 0.03 mm to 1 mm, preferably 0.1 mm to 0.2 mm.
  • the shape of the elastic diaphragm can be a curved surface or a plane, preferably a plane.
  • the advantage of the preferred planar elastic diaphragm is that it can increase the air pressure conversion ratio.
  • planar elastic diaphragm has basically equivalent parameter characteristics on both sides of the diaphragm, such as: elastic modulus, etc.; it can transmit air pressure more linearly and accurately, and avoid the elastic diaphragm in the process of rebound and compression. Error, improve the accuracy of air pressure conduction and measurement.
  • the diameter of the elastic diaphragm is also an important parameter affecting the air pressure conversion ratio.
  • the diameter of the elastic diaphragm ranges from 6mm to 50mm.
  • the elastic membrane has a diameter of 8mm to 20mm.
  • Fig. 10 shows an exemplary schematic diagram of the air pressure on both sides of the elastic diaphragm according to an embodiment of the present invention.
  • FIG. 10 exemplarily shows the air pressure on both sides of the elastic diaphragm, which does not constitute a limitation to the present invention.
  • 1001 is in the multi-way tube below the elastic diaphragm shown in Figure 3 and Figure 4
  • the air pressure of 1002 is the air pressure above the elastic diaphragm after being conducted by the elastic diaphragm.
  • the horizontal axis in Fig. 10 is the serial number, the vertical axis is the air pressure, and the air pressure conversion ratio decreases as the air pressure increases.
  • the air pressure conversion ratio When the air pressure is low, the air pressure conversion ratio is 1; when the air pressure is high, the air pressure conversion ratio is 0.6.
  • FIG. 11 shows an exemplary schematic diagram of the air pressure conversion ratio of the elastic diaphragm according to an embodiment of the present invention.
  • Fig. 11 exemplarily shows the air pressure conversion ratio of the elastic diaphragm, which does not constitute a limitation to the present invention.
  • the air pressure detection module 300 further includes: an airtight cavity 304 tightly sleeved on the first channel 302 of the multi-way tube 301 , and an air pressure sensing component 305 .
  • 306 is a sealing material.
  • the air pressure sensing component 305 is located in the airtight cavity 304 and is used for detecting air pressure changes in the ventilator circuit.
  • the air pressure sensing component 305 includes an air pressure sensor, and outputs an air pressure signal in a wired or wireless manner.
  • the airtight cavity 304 and the air pressure sensing component 305 can be used repeatedly.
  • Fig. 4 shows a structural diagram of an air pressure detection module according to yet another embodiment of the present invention.
  • FIG. 4 shows an air pressure detection module using a flexible sealing component and an air pressure sensor located at a distal end of the flexible sealing component.
  • the air pressure detection module 400 includes: a pipeline assembly composed of a multi-way pipe 401 such as a tee pipe and a flexible sealing member 403 such as an elastic diaphragm.
  • the flexible sealing member 403 is airtightly connected to the end of the first channel 402 of the multi-way tube 401 .
  • the flexible sealing part 403 is used as a pollution isolation part, which can completely isolate the lower part and the upper part of the multi-way pipe 401, so that the pollution of the lower part cannot enter the upper part of the flexible sealing part 403 at all.
  • the flexible sealing member 403 can be elastically deformed due to the air pressure, the air pressure at the lower part and the upper part of the flexible sealing member 403 can be transmitted.
  • the pipeline assembly including the multi-way tube 401 and the flexible sealing member 403 is subject to contamination by germs, viruses, etc., and may be a single-use assembly.
  • the flexible sealing part includes: an elastic diaphragm.
  • the shape of the elastic diaphragm can be: circular or polygonal, preferably circular.
  • the polygon can be a triangle, or a quadrangle, or a pentagon, or other polygons.
  • the elastic membrane is in tension or in a relaxed state, preferably in tension.
  • the tensioned state is a state in which the elastic diaphragm is tightly stretched on the first path 402 and the surface is completely flat; the relaxed state is the state in which the elastic diaphragm is not tightly stretched on the first path 402 and the surface has a curved surface.
  • the elastic membrane has a thickness of 0.03 mm to 1 mm, preferably 0.1 mm to 0.2 mm.
  • the diameter of the elastic diaphragm ranges from 6mm to 50mm.
  • the elastic membrane has a diameter of 8mm to 20mm.
  • the shape of the elastic membrane is flat or curved, preferably flat.
  • the elastic diaphragm adopts the above parameters, which can improve the air pressure conversion ratio.
  • the air pressure detection module 400 further includes: an airtight cavity 404 that is airtightly sleeved on the first channel 402 of the multi-way tube 401 .
  • the airtight cavity 404 is connected with an air pressure sensing component (not shown in FIG. 4 , which may be located in the control module 601 of FIG. 8 ) through an air pressure sensing connection pipeline (not shown in FIG. 4 , refer to 801 in FIG. 8 ). Pass, used to detect changes in air pressure in the ventilator circuit.
  • the air pressure sensing component includes an air pressure sensor, and outputs an air pressure signal, which is transmitted to the control module 601 .
  • the air pressure signal can be transmitted in wired or wireless way, and the wired way is preferred to ensure the reliability of short-distance transmission.
  • the airtight cavity 404 is single-use, and the air pressure sensing component can be used repeatedly.
  • Fig. 5 shows a structural diagram of an atomization system according to an embodiment of the present invention.
  • FIG. 5 shows a nebulization system using a gas filter, and the air pressure sensor is located at the proximal end of the gas filter.
  • the atomization system 500 includes: an air pressure detection module 100 , a control module 501 , and an atomization module 502 as shown in FIG. 1 .
  • the atomization system 500 also includes: a signal line 503 .
  • the control module 501 controls the atomization operation of the atomization module 502 based on the air pressure signal output by the air pressure sensing component 105 in the air pressure detection module 100 .
  • the air pressure signal output by the air pressure sensing component 105 is transmitted to the control module 501 via the signal line 503 .
  • the air pressure sensing part 105 detects that the ventilator is positively supplying air and the patient is inhaling, the corresponding air pressure signal is sent to the control module 501, and the control module 501 controls the atomization module 502 to start the atomization operation and administer medicine to the patient;
  • the sensing part 105 detects that the ventilator stops supplying air and the patient exhales, it sends the corresponding air pressure signal to the control module 501, and the control module 501 controls the atomization module 502 to stop the atomization operation, so as to prevent invalid drug administration and save medication.
  • the air pressure signal can also be transmitted to the control module 501 in a wireless manner, which is not limited in the present invention.
  • Fig. 6 shows a structural diagram of an atomization system according to another embodiment of the present invention.
  • FIG. 6 shows a nebulization system using a gas filter with the air pressure sensor located at the distal end of the gas filter.
  • the atomization system 600 includes: an air pressure detection module 200 , a control module 601 , an atomization module 502 , and an air pressure sensing connection pipeline 602 as shown in FIG. 2 .
  • the atomization module 502 in FIG. 6 may be the same as that in FIG. 5 .
  • the air pressure sensing component is located in the control module 601 , communicates with the air pressure detection module 200 through the air pressure sensing connection pipeline 602 , and detects the air pressure in the air pressure detection module 200 .
  • the control module 601 controls the atomization operation of the atomization module 502 based on the air pressure signal output by the air pressure sensing component.
  • the air pressure sensing component detects the positive pressure of the ventilator and the patient’s inhalation
  • the corresponding air pressure signal is sent to the control module 601, and the control module 601 controls the atomization module 502 to start the atomization operation and administer medicine to the patient
  • the detection part detects that the ventilator stops air supply and the patient exhales
  • the corresponding air pressure signal is sent to the control module 601, and the control module 601 controls the atomization module 502 to stop the atomization operation, so as to prevent invalid drug administration and save medication.
  • the air pressure signal can be transmitted in wired or wireless way, and the wired way is preferred to ensure the reliability of short-distance transmission.
  • Fig. 7 shows a structural diagram of an atomization system according to yet another embodiment of the present invention.
  • FIG. 7 shows an atomization system using a flexible sealing member, and the air pressure sensor is located at the proximal end of the flexible sealing member.
  • the atomization system 700 includes: an air pressure detection module 300 , a control module 501 , and an atomization module 502 as shown in FIG. 3 .
  • the atomization system 700 also includes: a signal line 503 .
  • the control module 501 in FIG. 7 may be the same as that in FIG. 5
  • the atomization module 502 in FIG. 7 may be the same as that in FIG. 5 .
  • the control module 501 controls the atomization operation of the atomization module 502 based on the air pressure signal output by the air pressure sensing component 305 in the air pressure detection module 300 .
  • the air pressure signal output by the air pressure sensing component 305 is transmitted to the control module 501 via the signal line 503 .
  • the air pressure sensing part 305 detects that the ventilator is positively blowing air and the patient is inhaling, the corresponding air pressure signal is sent to the control module 501, and the control module 501 controls the atomization module 502 to start the atomization operation and administer medicine to the patient;
  • the sensing unit 305 detects that the ventilator stops supplying air and the patient exhales, it sends the corresponding air pressure signal to the control module 501, and the control module 501 controls the atomization module 502 to stop the atomization operation, so as to prevent invalid drug administration and save medication.
  • the air pressure signal can also be transmitted to the control module 501 in a wireless manner, which is not limited in the present invention.
  • Fig. 8 shows a structural diagram of an atomization system according to yet another embodiment of the present invention.
  • FIG. 8 shows a nebulization system using a flexible sealing member with an air pressure sensor located at the distal end of the flexible sealing member.
  • the atomization system 800 includes: an air pressure detection module 400 , a control module 601 , an atomization module 502 , and an air pressure sensing connection pipeline 801 as shown in FIG. 4 .
  • the control module 601 in FIG. 8 may be the same as that in FIG. 6
  • the atomization module 502 in FIG. 8 may be the same as that in FIG. 5 .
  • the air pressure sensing component is located in the control module 601 , communicates with the air pressure detection module 400 through the air pressure sensing connection pipeline 801 , and detects the air pressure in the air pressure detection module 400 .
  • the control module 601 controls the atomization operation of the atomization module 502 based on the air pressure signal output by the air pressure sensing component.
  • the air pressure sensing component detects the positive pressure of the ventilator and the patient’s inhalation
  • the corresponding air pressure signal is sent to the control module 601, and the control module 601 controls the atomization module 502 to start the atomization operation and administer medicine to the patient
  • the detection part detects that the ventilator stops air supply and the patient exhales
  • the corresponding air pressure signal is sent to the control module 601, and the control module 601 controls the atomization module 502 to stop the atomization operation, so as to prevent invalid drug administration and save medication.
  • the air pressure signal can be transmitted in wired or wireless way, and the wired way is preferred to ensure the reliability of short-distance transmission.
  • the three-way pipe of the air pressure detection module 400 in FIG. 8 and the T-shaped pipe 802 connected to the atomization module 502 can also be designed in a way of combining two into one.
  • the T-shaped tube 802 is used as a pipeline assembly, and the vertical section 803 of the T-shaped tube 802 is divided into two layers of pipelines with concentric diameters and different diameters.
  • Concentric and different-diameter inner diameter pipelines are connected to the outlet of the atomization module 502 for sending atomized medicine into the T-shaped tube 802; concentric and different-diameter outer diameter pipelines place pollution isolation components such as elastic diaphragms.
  • the airtight cavity above the elastic diaphragm communicates with the air pressure sensing component in the control module 601 through the air pressure sensing connection pipeline.
  • the tee pipe of the air pressure detection module 400 can be omitted.
  • the vertical section 803 of the T-shaped pipe 802 can also be implemented as a two-layer pipeline with concentric and different diameters, and the outer diameter pipeline with concentric and different diameters can be connected to the outlet of the atomization module 502; An elastic diaphragm is placed in the inner diameter tubing.
  • the vertical section 803 of the T-shaped pipe 802 may be divided into multiple parallel paths. One path can be connected to the outlet of the atomization module 502, and an elastic diaphragm is placed in the other path.
  • proximal solution can also be adopted, and the air pressure sensing component is placed above the elastic diaphragm in the vertical section 803, or the elastic diaphragm can be replaced by a filter element solution, which will not be repeated in the present invention.
  • Fig. 9 shows an exemplary embodiment of a ventilator with nebulized drug delivery function according to an embodiment of the present invention.
  • FIG. 9 exemplarily shows a ventilator with an atomized drug delivery function, and does not constitute a limitation to the present invention.
  • a ventilator 900 with the function of atomizing drug administration includes: an atomizing system 901 and a ventilator 902 .
  • the ventilator 900 with the function of nebulized drug delivery may also include: a humidifier 903 and a filter 904 .
  • the atomization system 901 may be any one of the atomization systems shown in FIG. 5 to FIG. 8 .
  • the humidifier 903 is used to humidify the pressurized gas in the airway of the ventilator, and the filter 904 is used to filter out droplets and the like in the gas exhaled by the patient.
  • the atomization module 909 of the atomization system 901 communicates with the outlet airway 910 of the ventilator 902, so as to add atomized medicine into the airway 910 of the ventilator 902 and send it into the patient's respiratory tract.
  • the two circuits 907 and 908 can also communicate with the return airway 911 of the ventilator or the patient's airway 912, and can also detect air pressure.
  • only one channel can be designed to communicate with the outlet airway 910 or the return airway 911 or the patient's airway 912 of the ventilator.
  • the pipeline assembly includes: a multi-way pipe such as a three-way pipe and a pollution isolation part such as a gas filter part or a flexible sealing part.
  • the first path of the multi-way pipe is airtightly connected with the pollution isolation part to prevent gas leakage.
  • the first path 102 of the three-way pipe 101 and the gas filter element 103 such as a filter element are located in the first path 102 of the three-way pipe 101 and are in airtight communication through the sealing material 106 .
  • a gas filter component 203 such as a filter element is hermetically placed in the first path 202 of the tee pipe 201 .
  • the end of the first channel 302 of the tee pipe 301 is hermetically connected to a flexible sealing member 303 such as an elastic membrane.
  • the end of the first channel 402 of the tee pipe 401 is hermetically connected to a flexible sealing member 403 such as an elastic membrane.
  • the pipeline assembly includes: a multi-way tube; a pollution isolation component, the first path of the multi-way tube is airtightly connected with the pollution isolation component, and the pollution isolation component is located in the first path of the multi-way tube, or It is connected to the end of the first channel of the multi-way pipe, so as to effectively isolate the pollution, and keep the air pressure on both sides of the pollution isolation part consistent, which is convenient for the air pressure detection of the air pressure sensor, and does not pollute the air pressure sensor.
  • the multi-way pipe is a three-way pipe, which is convenient to use the first branch to detect air pressure.
  • multi-way pipe can also have other number of passages according to design requirements, such as two-way or four-way, which is not limited in the present invention.
  • the multi-way pipe is a three-way pipe, so as to facilitate the detection of air pressure.
  • the pipeline assembly including the multi-way tube and the pollution isolation part is contaminated by the gas containing viruses and germs, and may be a single-use disposable assembly.
  • the passageway assembly is a single-use assembly, thereby reducing the risk of cross-infection.
  • the pollution isolation component may be a gas filter component as shown in FIG. 1 and FIG. 2 , and is used to filter gas pollution in the first path of the multi-way pipe.
  • the pollution isolation part can also be a flexible sealing part as shown in Fig. 3 and Fig. 4, which is used to isolate the pollution of the gas in the first path of the multi-way pipe, and elastically deforms with the pressure of the gas in the multi-way pipe. The air pressure on both sides of the gas filtering part or the flexible sealing part is kept the same.
  • the pollution isolation component includes: a gas filter component, used to filter the pollution of the gas in the first path of the multi-way pipe; Gas pollution, and elastic deformation with the pressure of the gas in the multi-way tube, so as to isolate the pollution while keeping the air pressure on both sides of the pollution isolation part consistent, so that the accuracy of air pressure detection can be maintained without polluting the air pressure sensor.
  • the gas filter component includes: a filter element.
  • the passing gas filter component includes: a filter element, so as to filter the pollution in the gas in the multi-way pipe and keep the air pressure consistent.
  • the filter element has a porous structure, and the pores of the porous structure are 3 microns to 20 microns.
  • the filter element has a porous structure, and the pores of the porous structure are 3 microns to 20 microns, so as to effectively filter out the pollution of bacteria and viruses in the gas in the multi-way pipe.
  • the shape of the filter element is: a cylinder, or a triangular prism, or a quadrangular prism, or other polygons, preferably a cylinder.
  • the shape of the passing filter element is: a cylinder, or a triangular prism, a quadrangular prism, or other polygons, preferably a cylinder, so as to facilitate processing and facilitate airtight connection with the multi-way pipe.
  • the flexible sealing member includes: an elastic diaphragm.
  • the flexible sealing part includes: an elastic diaphragm, thereby completely isolating the pollution of the gas in the multi-way tube, not polluting the sensor, and keeping the air pressure on both sides of the flexible sealing part consistent to realize accurate detection of air pressure.
  • the shape of the elastic membrane is: circular, or triangular, or quadrangular, or pentagonal, or other polygonal, preferably circular.
  • the shape of the elastic diaphragm is: circular, or triangular, or quadrilateral, or pentagonal, or other polygonal, preferably circular, which is convenient for processing and also facilitates the airtight connection with the multi-way tube .
  • the elastic diaphragm is in a tensioned state or a relaxed state, preferably a tensioned state.
  • the air pressure on both sides of the elastic diaphragm is kept consistent by the elastic diaphragm being in a tensioned state or a relaxed state, preferably a tensioned state.
  • the thickness of the elastic diaphragm is 0.03 mm to 1 mm, preferably 0.1 mm to 0.2 mm.
  • the thickness of the elastic diaphragm is 0.03 mm to 1 mm, preferably 0.1 mm to 0.2 mm, so as to maintain good elasticity and keep the air pressure on both sides of the elastic diaphragm consistent.
  • the diameter of the elastic diaphragm is 6 mm to 50 mm, preferably 8 mm to 20 mm, so as to increase the air pressure conversion ratio.
  • the shape of the elastic diaphragm is a plane or a curved surface, preferably a plane, so as to improve the air pressure conversion ratio.
  • the air pressure detection module includes a pipeline assembly and a sealed cavity.
  • the airtight cavity is sealed and sleeved on the first path of the multi-way pipe, and is used for containing non-polluting gas.
  • the air pressure sensing part is placed in the airtight cavity, as shown in Figure 1 or Figure 3; or the air pressure sensing part communicates with the airtight cavity through the air pressure sensing connection pipeline, as shown in Figure 2 or Figure 4.
  • the air pressure sensing component outputs air pressure signals in the form of wired signals or wireless signals, the transmission of wired signals is reliable, and the use of wireless signals is flexible.
  • the air pressure detection module includes: a pipeline assembly, including: a multi-way tube; a pollution isolation part, the first path of the multi-way tube is airtightly connected with the pollution isolation part; a closed cavity, and the closed cavity is sealed Sleeved on the first path of the multi-way tube, the airtight cavity is used to accommodate non-polluting gas; the air pressure sensing component is placed in the airtight cavity, or the air pressure sensing component is connected to the pipeline through the air pressure sensing The airtight cavity is connected, and the air pressure sensing part outputs the air pressure signal in the form of a wired signal or a wireless signal, thereby realizing the detection of the air pressure in the multi-way tube in various ways, and conveniently transmitting the air pressure signal.
  • a pipeline assembly including: a multi-way tube; a pollution isolation part, the first path of the multi-way tube is airtightly connected with the pollution isolation part; a closed cavity, and the closed cavity is sealed Sleeved on the first path of the multi-way tube, the air
  • the air pressure sensing component is reusable.
  • the air pressure sensing component can be used repeatedly, thereby saving usage cost and avoiding waste.
  • the airtight cavity can be reused.
  • the airtight cavity can be reused, thereby saving the use cost and avoiding waste.
  • both the air pressure sensing component and the airtight cavity can be reused.
  • the air pressure sensing part can be used repeatedly, and the airtight cavity can be used once.
  • the airtight cavity can be reused; Under the condition that the sensing part is connected to the airtight cavity through the air pressure sensing connection pipeline, the airtight cavity can be used for a single use, thereby saving costs as much as possible and avoiding waste.
  • the atomization system includes: an air pressure detection module, an atomization module, and a control module.
  • the air pressure signal output by the air pressure sensing component in the air pressure detection module is transmitted to the control module, and the control module controls the atomization operation of the atomization module based on the air pressure signal. Control the atomization module to atomize the medicine when the ventilator is blowing air under positive pressure and the patient is inhaling, and send it into the patient's respiratory tract.
  • the atomization system includes: an air pressure detection module, an atomization module; a control module, based on the air pressure signal output by the air pressure sensing component, to control the atomization operation of the atomization module, so as to cooperate with the air supply and ventilation of the ventilator.
  • the patient's inhalation is atomized to effectively use the drug and prevent waste.
  • the three-way pipe of the air pressure detection module 400 in FIG. 8 and the T-shaped pipe connected to the atomization module 502 can also be designed in a way of combining two into one.
  • the T-shaped tube 802 is used as a pipeline assembly, and the vertical section 803 of the T-shaped tube 802 is divided into two layers of pipelines with concentric diameters and different diameters.
  • the inner diameter pipeline of the concentric reducer is connected to the outlet of the atomization module 502, and is used to feed the atomized medicine into the T-shaped tube 802; the outer diameter pipeline is placed with a pollution isolation component such as an elastic diaphragm.
  • the airtight cavity above the elastic diaphragm communicates with the air pressure sensing component in the control module 601 through the air pressure sensing connection pipeline.
  • 400 is omitted.
  • the concentric and different-diameter two-layer pipeline of the vertical section 803 of the T-shaped pipe 802 can also be connected to the outlet of the atomization module 502 by the concentric and different-diameter pipeline; the concentric and different-diameter inner diameter pipeline Place the elastic diaphragm in.
  • the vertical section 803 of the T-shaped tube 802 can be divided into two parallel paths, one path is connected to the outlet of the atomization module 502, and an elastic diaphragm is placed in the other path.
  • proximal solution can also be adopted, and the air pressure sensing component is placed above the elastic diaphragm in the vertical section 803, or the elastic diaphragm can be replaced by a filter element solution, which will not be repeated in the present invention.
  • the first channel of the multi-way tube and the atomization outlet channel are located in the same pipeline of the multi-way tube, thereby simplifying the design of the pipeline and saving costs.
  • the multi-way pipe includes concentric reducers, the first path is the outer diameter pipeline of the concentric reducers, or the first path is the inner diameter pipeline of the concentric reducers; or the multi-way pipe
  • One of the channels includes multiple channels, and the first channel and other multiple channels are arranged side by side in one channel, thereby simplifying pipeline design and saving costs.
  • a ventilator 900 with an atomized drug delivery function includes: an atomization system 901 and a ventilator 902 .
  • the ventilator 900 with the function of nebulized drug delivery may also include: a humidifier 903 and a filter 904 .
  • the atomization module 909 of the atomization system 901 communicates with the outlet airway 910 of the ventilator 902, so as to add atomized medicine into the airway 910 of the ventilator 902 and send it into the respiratory tract of the patient.
  • the two circuits 907 and 908 can also communicate with the return airway 911 of the ventilator or the patient's airway 912, and can also detect air pressure.
  • the ventilator with atomized drug delivery function includes: an atomization system, the ventilator, the atomization module communicates with the air outlet of the ventilator, and at least One way is connected with the outlet airway or return airway of the ventilator or the patient's airway, so that the drug is atomized when the patient inhales, and the atomization is stopped when the patient exhales, preventing drug waste and realizing the gap between the atomization system and the ventilator.
  • Flexible connection easy to use.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Emergency Medicine (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种管路组件、气压检测模块(100,200,300,400)、雾化系统(500,600,700,800)和呼吸机(900)。管路组件,包括:多通管(101,201,301,401);污染隔离部件(103,203,303,403),多通管的第一路(102,202,302,402)和污染隔离部件(103,203,303,403)密闭连接,污染隔离部件(103,203,303,403)位于多通管的第一路(102,202,302,402)中,或者连接于多通管的第一路(102,202,302,402)的端部,从而有效隔离污染,并保持污染隔离部件(103,203,303,403)两侧气压一致,方便气压传感器的气压检测,而且不污染气压传感器。

Description

管路组件、气压检测模块、雾化系统和呼吸机 技术领域
本发明涉及医疗器械领域,具体涉及管路组件、气压检测模块、雾化系统和呼吸机。
背景技术
雾化器可以配合呼吸机使用,对药物进行雾化。传统雾化器在病人吸气和呼气时始终处于工作状态,造成药物的浪费。而如果通过气压传感器检测呼吸机的送气和回气状态,气压传感器直接接入被污染气体管路,会导致气压传感器也受到污染。气压传感器端难以采用常规手段,例如酒精进行浸泡消毒。如果气压传感器单次使用后即抛弃,会提高使用成本,造成极大的浪费。
技术问题
为了解决相关技术中的问题,本发明提供了一种管路组件、气压检测模块、雾化系统和呼吸机。
技术解决方案
第一方面,本发明实施例中提供了一种管路组件,包括:
多通管;
污染隔离部件,
所述多通管的第一路和所述污染隔离部件密闭连接,
所述污染隔离部件位于所述多通管的第一路中,或者连接于所述多通管的第一路的端部。
在本发明一种实现方式中,所述多通管为三通管。
在本发明一种实现方式中,所述污染隔离部件包括:
气体过滤部件,用于过滤所述多通管的第一路中的气体的污染;或
柔性密封部件,用于隔离所述多通管的第一路中的气体的污染,并随所述多通管中的气体的压力产生弹性形变。
在本发明一种实现方式中,所述气体过滤部件包括:滤芯。
在本发明一种实现方式中,所述滤芯为多孔结构,所述多孔结构的孔隙为3微米至20微米。
在本发明一种实现方式中,所述滤芯为高分子材料或陶瓷材料。
在本发明一种实现方式中,所述滤芯的形状为:圆柱体或多棱体。
在本发明一种实现方式中,所述多棱体为:三棱柱或四棱柱。
在本发明一种实现方式中,所述柔性密封部件包括:弹性隔膜。
在本发明一种实现方式中,所述弹性隔膜的形状为:圆形或多边形。
在本发明一种实现方式中,所述多边形为:三角形,或四边形,或五边形。
在本发明一种实现方式中,所述弹性隔膜为张紧状态或松弛状态。
在本发明一种实现方式中,所述弹性隔膜的厚度为0.03毫米至1毫米。
在本发明一种实现方式中,所述弹性隔膜的厚度为0.1毫米至0.2毫米。
在本发明一种实现方式中,所述弹性隔膜的直径为6毫米至50毫米。
在本发明一种实现方式中,所述弹性隔膜的直径为8毫米至20毫米。
在本发明一种实现方式中,所述弹性隔膜的形态为平面或曲面。
在本发明一种实现方式中,所述多通管包括同心异径管,所述第一路为同心异径管的外径管路,或所述第一路为同心异径管的内径管路;或所述多通管的其中一个通道中包括多路通道,所述第一路与其它多路通道并列设置于所述一个通道中。
第二方面,本发明实施例中提供了一种气压检测模块,其特征在于,包括:
第一方面中任一项的管路组件,
密闭空腔,所述密闭空腔密封套接于所述多通管的第一路上,所述密闭空腔用于容纳无污染气体;
气压感测部件,所述气压感测部件置于所述密闭空腔中,或者所述气压感测部件通过气压传感连接管路与所述密闭空腔连通,所述气压感测部件以有线信号或无线信号方式输出气压信号。
第三方面,本发明实施例中提供了一种雾化系统,包括:
第二方面中的气压检测模块;
雾化模块;
控制模块,基于所述气压感测部件输出的气压信号,控制所述雾化模块的雾化操作。
第四方面,本发明实施例中提供了一种具有雾化给药功能的呼吸机,其特征在于,包括:
第三方面中的雾化系统,
呼吸机,
所述雾化模块与所述呼吸机的出气道相连通,
所述多通管中的第一路外的至少一路与所述呼吸机的出气道或回气道或患者气道相连通。
有益效果
本发明实施例提供的技术方案可以包括以下有益效果:
根据本发明实施例提供的技术方案,通过管路组件,包括:多通管;污染隔离部件,多通管的第一路和污染隔离部件密闭连接,污染隔离部件位于多通管的第一路中,或者连接于多通管的第一路的端部,从而有效隔离污染,并保持污染隔离部件两侧气压一致,方便气压传感器的气压检测,而且不污染气压传感器。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本发明的其它特征、目的和优点将变得更加明显。在附图中:
图1示出根据本发明一实施方式的气压检测模块的结构图;
图2示出根据本发明另一实施方式的气压检测模块的结构图;
图3示出根据本发明又一实施方式的气压检测模块的结构图;
图4示出根据本发明再一实施方式的气压检测模块的结构图;
图5示出根据本发明一实施方式的雾化系统的结构图;
图6示出根据本发明另一实施方式的雾化系统的结构图;
图7示出根据本发明又一实施方式的雾化系统的结构图;
图8示出根据本发明再一实施方式的雾化系统的结构图;
图9示出根据本发明一实施方式的具有雾化给药功能的呼吸机的示例性实施例;
图10示出根据本发明一实施方式的弹性隔膜两侧气压的示例性示意图;
图11示出根据本发明一实施方式的弹性隔膜的气压转换比的示例性示意图。
本发明的实施方式
下文中,将参考附图详细描述本发明的示例性实施方式,以使本领域技术人员可容易地实现它们。此外,为了清楚起见,在附图中省略了与描述示例性实施方式无关的部分。
在本发明中,应理解,诸如“包括”或“具有”等的术语旨在指示本说明书中所发明的标签、数字、步骤、行为、部件、部分或其组合的存在,并且不欲排除一个或多个其他标签、数字、步骤、行为、部件、部分或其组合存在或被添加的可能性。
另外还需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的标签可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
雾化器可以配合呼吸机使用,对药物进行雾化。传统雾化器在病人吸气和呼气时始终处于工作状态。病人呼气时,雾化的药物无法进入病人的呼吸道,造成药物的浪费。而如果通过气压传感器检测呼吸机的送气和抽气状态,气压传感器直接接入被污染气体管路,会导致气压传感器也受到污染。气压传感器端难以采用常规手段,例如酒精进行浸泡消毒。如果气压传感器单次使用后即抛弃,会提高使用成本,造成极大的浪费。
为了解决上述问题,本发明提出一种管路组件、气压检测模块、雾化系统和呼吸机。
图1示出根据本发明一实施方式的气压检测模块的结构图。
具体地,图1示出了使用气体过滤部件,且气压传感器位于气体过滤部件近端的气压检测模块。
如图1所示,气压检测模块100包括:例如三通管的多通管101和例如滤芯的气体过滤部件103组成的管路组件。气体过滤部件103密闭连接于多通管101的第一路102并位于第一路102中,密封材料106起到气体过滤部件103和多通管101的第一路102间的密闭作用。气体过滤部件103作为污染隔离部件,可以滤除多通管101下段部分中的气体的污染,使得污染无法进入气体过滤部件103的上部。而且,气体过滤部件103允许无污染的气体通过,从而保持气体过滤部件103下侧和上侧的气压相同。
包含多通管101和气体过滤部件103的管路组件受到病菌、病毒等的污染,可以是单次使用组件。
滤芯可以是多孔结构,多孔结构的孔隙为3微米至20微米。滤芯可以是高分子材料或陶瓷材料。滤芯可以是圆柱体或多棱体,优选圆柱体。
多棱体可以为三棱柱,或四棱柱,或其它多棱体。
如图1所示,气压检测模块100还包括:密闭套接于多通管101的第一路102上的密闭空腔104,以及气压感测部件105。气压感测部件105位于密闭空腔104中,用于检测呼吸机管路中的气压变化。气压感测部件105包括气压传感器,通过有线或无线方式输出气压信号。
在如图1的实施例中,密闭空腔104、气压感测部件105可重复使用。
图2示出根据本发明另一实施方式的气压检测模块的结构图。
具体地,图2示出了使用气体过滤部件,且气压传感器位于气体过滤部件远端的气压检测模块。
如图2所示,气压检测模块200包括:例如三通管的多通管201和例如滤芯的气体过滤部件203组成的管路组件。气体过滤部件203密闭连接于多通管201的第一路202并位于第一路202中。气体过滤部件203作为污染隔离部件,可以滤除多通管201下段部分中的气体的污染,使得污染无法进入气体过滤部件203的上部。而且,气体过滤部件203允许无污染的气体通过,从而保持气体过滤部件203下侧和上侧的气压相同。
气管连接件204构成密闭空腔,密闭空腔通过气压传感连接管路(图2中未示出,参考图6中的602)与气压感测部件(图2中未示出,可位于图6的控制模块601中)相连通,用于检测呼吸机管路中的气压变化。气压感测部件包括气压传感器,并输出气压信号,传输至控制模块601。气压信号可采用有线或无线方式传输,优选有线方式,保证短距传输的可靠性。
包含多通管201和气体过滤部件203的管路组件受到病菌、病毒等的污染,可以是单次使用组件。
滤芯可以是多孔结构,多孔结构的孔隙为3微米至20微米。滤芯可以是高分子材料或陶瓷材料。滤芯可以是圆柱体或多棱体,优选圆柱体。
多棱体可以为三棱柱,或四棱柱,或其它多棱体。
在如图2的实施例中,密闭空腔204、气压感测部件可重复使用。
图3示出根据本发明又一实施方式的气压检测模块的结构图。
具体地,图3示出了使用柔性密封部件,且气压传感器位于柔性密封部件近端的气压检测模块。
如图3所示,气压检测模块300包括:例如三通管的多通管301和例如弹性隔膜的柔性密封部件303组成的管路组件。柔性密封部件303密闭连接于多通管301的第一路302的端部。柔性密封部件303作为污染隔离部件,可以完全隔离多通管301下段部分和上段部分,使得下段部分的污染完全无法进入柔性密封部件303的上部。而且,由于柔性密封部件303可以由于气压而产生弹性形变,从而使得柔性密封部件303下部与上部的气压获得传导。
包含多通管301和柔性密封部件303的管路组件受到病菌、病毒等的污染,可以是单次使用组件。
相对于气体过滤部件的方案,采用柔性密封部件作为污染隔离部件能完全隔离病菌、病毒污染物和管道内的其他小粒径气体等污染物;相对于滤芯方案,可以进一步提高隔离、防污效果,提高使用安全性。管道内的小粒径的气体等污染物可以包括:水蒸气、残留的药物成分等。如水蒸气,由于其粒径极小,一般的滤芯无法将其有效阻隔,水蒸气可能透过隔离件,传导至气压感测部件处,水蒸气等可能在这些位置上冷凝,一方面可能会阻塞气压传导的通路,影响气压感测部件的精度,另一方面也会对相关的部件造成腐蚀,影响使用寿命。
但是,由于柔性密封部件本身具有一定的力学特性,其下部的气压经过了柔性密封部件传导后可能会衰减。因此,本发明将柔性密封部件上部的气压与下部的气压的比值定义为气压转换比。本发明优选的实施方式中,旨在进一步提高气压转换比,从而提高气压传感器的测量精度。
柔性密封部件包括:弹性隔膜。弹性隔膜优选为硅胶材质或乳胶材质。经研究发现,为了实现更优的气压转换比,弹性隔膜的弹性模量越小越好。弹性隔膜的形状可以为:圆形或多边形,优选圆形。多边形可以为三角形,或四边形,或五边形,或其它多边形。弹性隔膜为张紧状态或松弛状态,优选张紧状态。张紧状态是弹性隔膜303紧绷在第一路302上,表面完全平整的状态;松弛状态是弹性隔膜303未紧绷在第一路302上,表面具有曲面的状态。弹性隔膜的厚度为0.03毫米至1毫米,优选0.1毫米至0.2毫米。弹性隔膜的形态可以为曲面或平面,优选为平面。优选平面弹性隔膜的好处在于能提高气压转换比。经研究发现,平面形的弹性隔膜在隔膜的两侧具有基本相当参数特性,如:弹性模量等;其能够更线性、准确的传递气压,避免弹性隔膜在回弹和压缩过程中带来的误差,提高气压传导、测量的准确性。
经研究发现,弹性隔膜的直径也是影响气压转换比的重要参数。经研究发现,在一定范围内,弹性隔膜的直径与气压转换比(弹性隔膜两侧的气压比值)呈现正相关的特性,即气压转换比随着弹性隔膜的直径的增大而增大。弹性隔膜的直径的范围为6mm至50mm。优选地,弹性隔膜的直径为8mm至20mm。
图10示出根据本发明一实施方式的弹性隔膜两侧气压的示例性示意图。
本领域普通技术人员可以理解,图10示例性示出了弹性隔膜两侧的气压,而不构成对本发明的限制。
如图10所示,在一个具体的实施方式中(弹性隔膜采用硅胶材质,圆形,0.2毫米厚度,直径12.5毫米),1001是图3、图4所示的弹性隔膜下方的多通管中的气压,1002是经弹性隔膜传导后的,弹性隔膜上方的气压。图10中的横轴是序号,纵轴是气压,气压转换比随着气压的增大而降低。
当气压较低时,气压转换比为1;当气压较高时,气压转换比为0.6。
图11示出根据本发明一实施方式的弹性隔膜的气压转换比的示例性示意图。
本领域普通技术人员可以理解,图11示例性示出了弹性隔膜的气压转换比,而不构成对本发明的限制。
如图11所示,发现,在初始气压值较小的情形下(1000Pa以内),1101示出的气压转换比在1附近,弹性隔膜对气压转换比的影响较小;但随着气压值加大,气压转换比逐渐减小并趋于稳定,气压转换比最低趋近于0.6。
如图3所示,气压检测模块300还包括:密闭套接于多通管301的第一路302上的密闭空腔304,以及气压感测部件305。306是密封材料。气压感测部件305位于密闭空腔304中,用于检测呼吸机管路中的气压变化。气压感测部件305包括气压传感器,并通过有线或无线方式输出气压信号。
在如图3的实施例中,密闭空腔304、气压感测部件305可重复使用。
图4示出根据本发明再一实施方式的气压检测模块的结构图。
具体地,图4示出了使用柔性密封部件,且气压传感器位于柔性密封部件远端的气压检测模块。
如图4所示,气压检测模块400包括:例如三通管的多通管401和例如弹性隔膜的柔性密封部件403组成的管路组件。柔性密封部件403密闭连接于多通管401的第一路402的端部。柔性密封部件403作为污染隔离部件,可以完全隔离多通管401下段部分和上段部分,使得下段部分的污染完全无法进入柔性密封部件403的上部分。而且,由于柔性密封部件403可以由于气压而产生弹性形变,从而使得柔性密封部件403下部与上部的气压获得传导。
包含多通管401和柔性密封部件403的管路组件受到病菌、病毒等的污染,可以是单次使用组件。
柔性密封部件包括:弹性隔膜。弹性隔膜的形状可以为:圆形或多边形,优选圆形。多边形可以为三角形,或四边形,或五边形,或其它多边形。弹性隔膜为张紧状态或松弛状态,优选张紧状态。张紧状态是弹性隔膜紧绷在第一路402上,表面完全平整的状态;松弛状态是弹性隔膜未紧绷在第一路402上,表面具有曲面的状态。弹性隔膜的厚度为0.03毫米至1毫米,优选0.1毫米至0.2毫米。弹性隔膜的直径的范围为6mm至50mm。优选地,弹性隔膜的直径为8mm至20mm。弹性隔膜的形态为平面或曲面,优选平面。弹性隔膜采用上述参数,可以提高气压转换比。
如图4所示,气压检测模块400还包括:密闭套接于多通管401的第一路402上的密闭空腔404。密闭空腔404通过气压传感连接管路(图4中未示出,参考图8中的801)与气压感测部件(图4中未示出,可位于图8的控制模块601中)相连通,用于检测呼吸机管路中的气压变化。气压感测部件包括气压传感器,并输出气压信号,传输至控制模块601。气压信号可采用有线或无线方式传输,优选有线方式,保证短距传输的可靠性。
在如图4的实施例中,密闭空腔404单次使用,气压感测部件可重复使用。
图5示出根据本发明一实施方式的雾化系统的结构图。
具体地,图5示出了使用气体过滤部件,且气压传感器位于气体过滤部件近端的雾化系统。
如图5所示,雾化系统500包括:如图1所示的气压检测模块100、控制模块501、雾化模块502。雾化系统500还包括:信号线503。
控制模块501基于气压检测模块100中的气压感测部件105输出的气压信号,控制雾化模块502的雾化操作。
在本发明的实施例中,气压感测部件105输出的气压信号,经由信号线503传输至控制模块501。
当气压感测部件105检测到呼吸机正压送气、患者吸气时,将相应的气压信号送至控制模块501,控制模块501控制雾化模块502启动雾化操作,向患者给药;当气压感测部件105检测到呼吸机停止送气、患者呼气时,将相应的气压信号送至控制模块501,控制模块501控制雾化模块502停止雾化操作,防止无效给药,节约用药。
本领域普通技术人员可以理解,气压信号也可以由无线方式传输至控制模块501,本发明对此不作限定。
图6示出根据本发明另一实施方式的雾化系统的结构图。
具体地,图6示出了使用气体过滤部件,且气压传感器位于气体过滤部件远端的雾化系统。
如图6所示,雾化系统600包括:如图2所示的气压检测模块200、控制模块601、雾化模块502、气压传感连接管路602。图6中的雾化模块502可以和图5中相同。
气压感测部件位于控制模块601中,通过气压传感连接管路602和气压检测模块200连通,并检测气压检测模块200中的气压。
控制模块601基于气压感测部件输出的气压信号,控制雾化模块502的雾化操作。
当气压感测部件检测到呼吸机正压送气、患者吸气时,将相应的气压信号送至控制模块601,控制模块601控制雾化模块502启动雾化操作,向患者给药;当气压感测部件检测到呼吸机停止送气、患者呼气时,将相应的气压信号送至控制模块601,控制模块601控制雾化模块502停止雾化操作,防止无效给药,节约用药。
气压信号可采用有线或无线方式传输,优选有线方式,保证短距传输的可靠性。
图7示出根据本发明又一实施方式的雾化系统的结构图。
具体地,图7示出了使用柔性密封部件,且气压传感器位于柔性密封部件近端的雾化系统。
如图7所示,雾化系统700包括:如图3所示的气压检测模块300、控制模块501、雾化模块502。雾化系统700还包括:信号线503。图7中的控制模块501可以和图5中相同,图7中的雾化模块502可以和图5中相同。
控制模块501基于气压检测模块300中的气压感测部件305输出的气压信号,控制雾化模块502的雾化操作。
在本发明的实施例中,气压感测部件305输出的气压信号,经由信号线503传输至控制模块501。
当气压感测部件305检测到呼吸机正压送气、患者吸气时,将相应的气压信号送至控制模块501,控制模块501控制雾化模块502启动雾化操作,向患者给药;当气压感测部件305检测到呼吸机停止送气、患者呼气时,将相应的气压信号送至控制模块501,控制模块501控制雾化模块502停止雾化操作,防止无效给药,节约用药。
本领域普通技术人员可以理解,气压信号也可以由无线方式传输至控制模块501,本发明对此不作限定。
图8示出根据本发明再一实施方式的雾化系统的结构图。
具体地,图8示出了使用柔性密封部件,且气压传感器位于柔性密封部件远端的雾化系统。
如图8所示,雾化系统800包括:如图4所示的气压检测模块400、控制模块601、雾化模块502、气压传感连接管路801。图8中的控制模块601可以和图6中相同,图8中的雾化模块502可以和图5中相同。
气压感测部件位于控制模块601中,通过气压传感连接管路801和气压检测模块400连通,并检测气压检测模块400中的气压。
控制模块601基于气压感测部件输出的气压信号,控制雾化模块502的雾化操作。
当气压感测部件检测到呼吸机正压送气、患者吸气时,将相应的气压信号送至控制模块601,控制模块601控制雾化模块502启动雾化操作,向患者给药;当气压感测部件检测到呼吸机停止送气、患者呼气时,将相应的气压信号送至控制模块601,控制模块601控制雾化模块502停止雾化操作,防止无效给药,节约用药。
气压信号可采用有线或无线方式传输,优选有线方式,保证短距传输的可靠性。
在本发明的实施例中,图8中的气压检测模块400的三通管和连接雾化模块502的T形管802还可以采用合二为一的设计方式。例如,将T形管802作为管路组件,将T形管802的竖直段803分隔为同心异径的两层管路。同心异径的内径管路连接雾化模块502的出口,用于向T形管802中送入雾化的药物;同心异径的外径管路中放置例如弹性隔膜的污染隔离部件。弹性隔膜上方的密闭空腔通过气压传感连接管路连通至控制模块601中的气压感测部件。在这种结构中,可以省略气压检测模块400的三通管。
在本发明的实施例中,也可以将T形管802的竖直段803实现为同心异径的两层管路,同心异径的外径管路可以连接雾化模块502的出口;同心异径内径管路中放置弹性隔膜。或者,可以将T形管802的竖直段803分隔为并列的多路。一路可以连接雾化模块502的出口,另一路中放置弹性隔膜。
本领域普通技术人员可以理解,也可以对T形管802的竖直段803采用其它的分隔方式,本发明对此不作限定。
本领域普通技术人员可以理解,也可以采用近端方案,将气压感测部件置于竖直段803中的弹性隔膜上方,或者用滤芯方案取代弹性隔膜,本发明在此不再赘述。
图9示出根据本发明一实施方式的具有雾化给药功能的呼吸机的示例性实施例。
本领域普通技术人员可以理解,图9示例性示出了具有雾化给药功能的呼吸机,而不构成对本发明的限定。
如图9所示,具有雾化给药功能的呼吸机900包括:雾化系统901、呼吸机902。具有雾化给药功能的呼吸机900还可以包括:加湿器903、过滤器904。
本发明的实施例中,雾化系统901可以是图5至图8中的雾化系统中的任意一种。加湿器903用于给呼吸机的出气道中的加压气体加湿,过滤器904用于滤除患者呼出的气体中的飞沫等。
本发明的实施例中,雾化系统901的雾化模块909与呼吸机902的出气道910相连通,以在呼吸机902的出气道910中加入雾化后的药物,送入患者的呼吸道。
雾化系统901的多通管905的除第一路906外的至少一路,例如两路907、908与呼吸机的出气道910连通,用于检测气压。两路907、908也可以与呼吸机的回气道911或患者气道912连通,也可以检测气压。多通管905中,除了第一路906外,也可以设计为只有一路和呼吸机的出气道910或回气道911或患者气道912连通。
本发明的实施例中,如图1至图4所示,管路组件包括:例如三通管的多通管和例如气体过滤部件或者柔性密封部件的污染隔离部件。多通管的第一路和污染隔离部件密闭连接,防止气体的泄露。
例如在图1中,三通管101的第一路102和例如滤芯的气体过滤部件103,气体过滤部件103位于三通管101的第一路102中,通过密封材料106密闭连通。在图2中,三通管201的第一路202中密闭置入例如滤芯的气体过滤部件203。在图3中,三通管301的第一路302的端部和例如弹性隔膜的柔性密封部件303密闭连接。在图4中,三通管401的第一路402的端部和例如弹性隔膜的柔性密封部件403密闭连接。
根据本发明的实施方式,通过管路组件,包括:多通管;污染隔离部件,多通管的第一路和污染隔离部件密闭连接,污染隔离部件位于多通管的第一路中,或者连接于多通管的第一路的端部,从而有效隔离污染,并保持污染隔离部件两侧气压一致,方便气压传感器的气压检测,而且不污染气压传感器。
本发明的实施例中,多通管为三通管,方便用第一支路检测气压。
本领域普通技术人员可以理解,多通管根据设计需求,也可以是其它通路个数,例如两通或者四通,本发明对此不作限定。
根据本发明的实施方式,通过多通管为三通管,从而方便检测气压。
本发明的实施例中,包括多通管、污染隔离部件的管路组件被含病毒、病菌的气体污染,可以是单次使用的可抛弃组件。
根据本发明的实施方式,通过管路组件为单次使用组件,从而减少交叉感染风险。
本发明的实施例中,污染隔离部件可以是如图1、图2中的气体过滤部件,用于过滤多通管的第一路中的气体的污染。污染隔离部件也可以是如图3、图4中的柔性密封部件,用于隔离多通管的第一路中的气体的污染,并随多通管中的气体的压力产生弹性形变。气体过滤部件或柔性密封部件两侧的气压保持一致。
根据本发明的实施方式,通过污染隔离部件包括:气体过滤部件,用于过滤多通管的第一路中的气体的污染;或柔性密封部件,用于隔离多通管的第一路中的气体的污染,并随多通管中的气体的压力产生弹性形变,从而在隔离污染的同时保持污染隔离部件两侧的气压一致,使得在不污染气压传感器的同时保持气压检测的准确性。
本发明的实施例中,气体过滤部件包括:滤芯。
根据本发明的实施方式,通过气体过滤部件包括:滤芯,从而过滤多通管内气体中的污染,并保持气压一致。
本发明的实施例中,滤芯为多孔结构,多孔结构的孔隙为3微米至20微米。
根据本发明的实施方式,通过滤芯为多孔结构,多孔结构的孔隙为3微米至20微米,从而有效滤除多通管内气体中的细菌、病毒的污染。
本发明的实施例中,滤芯的形状为:圆柱体,或三棱柱,或四棱柱,或其它多棱体,优选圆柱体。
根据本发明的实施方式,通过滤芯的形状为:圆柱体,或三棱柱,四棱柱,或其它多棱体,优选圆柱体,从而方便加工,以及方便和多通管的密闭连接。
本发明的实施例中,柔性密封部件包括:弹性隔膜。
根据本发明的实施方式,通过柔性密封部件包括:弹性隔膜,从而完全隔离多通管内气体的污染,不污染传感器,并且保持柔性密封部件两侧的气压一致,实现气压的准确检测。
本发明的实施例中,弹性隔膜的形状为:圆形,或三角形,或四边形,或五边形,或其它多边形,优选圆形。
根据本发明的实施方式,通过弹性隔膜的形状为:圆形,或三角形,或四边形,或五边形,或其它多边形,优选圆形,从而便于加工,也便于保持和多通管的密闭连接。
本发明的实施例中,弹性隔膜为张紧状态或松弛状态,优选张紧状态。
根据本发明的实施方式,通过弹性隔膜为张紧状态或松弛状态,优选张紧状态,从而保持弹性隔膜两侧的气压一致。
本发明的实施例中,弹性隔膜的厚度为0.03毫米至1毫米,优选0.1毫米至0.2毫米。
根据本发明的实施方式,通过弹性隔膜的厚度为0.03毫米至1毫米,优选0.1毫米至0.2毫米,从而保持良好的弹性,保持弹性隔膜两侧的气压一致。
根据本发明的实施方式,通过弹性隔膜的直径为6毫米至50毫米,优选8毫米至20毫米,从而提高气压转换比。
根据本发明的实施方式,通过弹性隔膜的形态为平面或曲面,优选平面,从而提高气压转换比。
在本发明的实施例中,如图1至图4所示,气压检测模块包括管路组件和密闭空腔。密闭空腔密封套接于多通管的第一路上,用于容纳无污染气体。气压感测部件置于密闭空腔中,如图1或图3所示;或气压感测部件通过气压传感连接管路与密闭空腔连通,如图2或图4所示。气压感测部件以有线信号或无线信号方式输出气压信号,有线信号传输可靠,无线信号使用灵活。
根据本发明的实施方式,通过气压检测模块,包括:管路组件,包括:多通管;污染隔离部件,多通管的第一路和污染隔离部件密闭连接;密闭空腔,密闭空腔密封套接于多通管的第一路上,密闭空腔用于容纳无污染气体;气压感测部件,气压感测部件置于密闭空腔中,或者气压感测部件通过气压传感连接管路与密闭空腔连通,气压感测部件以有线信号或无线信号方式输出气压信号,从而以多种方式实现对多通管内的气压的检测,并方便地传输出气压信号。
在本发明的实施例中,气压感测部件可重复使用。
根据本发明的实施方式,通过气压感测部件可重复使用,从而节约使用成本,避免浪费。
在本发明的实施例中,如图1、图2所示,在气压检测模块中,当污染隔离部件为气体过滤部件的条件下,密闭空腔可重复使用。
根据本发明的实施方式,通过污染隔离部件为气体过滤部件的条件下,密闭空腔可重复使用,从而节约使用成本,避免浪费。
在本发明的实施例中,如图3所示,气压感测部件和密闭空腔均可重复使用。如图4所示,气压感测部件可重复使用,密闭空腔单次使用。
根据本发明的实施方式,通过在污染隔离部件为柔性密封部件,且气压感测部件置于密闭空腔中的条件下,密闭空腔可重复使用;在污染隔离部件为柔性密封部件,且气压感测部件通过气压传感连接管路与密闭空腔连接的条件下,密闭空腔单次使用,从而尽可能节约成本,避免浪费。
如图5、图6、图7、图8所示,雾化系统包括:气压检测模块、雾化模块、控制模块。气压检测模块中的气压感测部件输出的气压信号传输至控制模块,控制模块基于气压信号控制雾化模块的雾化操作。在呼吸机正压送气、患者吸气时控制雾化模块雾化药物,送入患者呼吸道,在呼吸机停止正压送气、患者呼气时控制雾化模块停止雾化,防止药物浪费。
根据本发明的实施方式,通过雾化系统包括:气压检测模块,雾化模块;控制模块,基于气压感测部件输出的气压信号,控制雾化模块的雾化操作,从而配合呼吸机的送气和患者的吸气进行雾化,有效利用药物,防止浪费。
在本发明的实施例中,图8中的气压检测模块400的三通管和连接雾化模块502的T形管还可以采用合二为一的设计方式。例如,将T形管802作为管路组件,将T形管802的竖直段803分隔为同心异径的两层管路。同心异径管的内径管路连接雾化模块502的出口,用于向T形管802中送入雾化的药物;外径管路中放置例如弹性隔膜的污染隔离部件。弹性隔膜上方的密闭空腔通过气压传感连接管路连通至控制模块601中的气压感测部件。在这种结构中,省略400。
在本发明的实施例中,也可以在T形管802的竖直段803的同心异径两层管路,同心异径外径管路连接雾化模块502的出口;同心异径内径管路中放置弹性隔膜。或者,可以将T形管802的竖直段803分隔为并列的两路,一路连接雾化模块502的出口,另一路中放置弹性隔膜。
本领域普通技术人员可以理解,也可以对T形管802的竖直段803采用其它的分隔方式,本发明对此不作限定。
本领域普通技术人员可以理解,也可以采用近端方案,将气压感测部件置于竖直段803中的弹性隔膜上方,或者用滤芯方案取代弹性隔膜,本发明在此不再赘述。
根据本发明的实施方式,通过管路组件,多通管的第一路和雾化出口通路位于多通管的同一管路中,从而简化管路设计,节约成本。
根据本发明的实施方式,通过多通管包括同心异径管,第一路为同心异径管的外径管路,或第一路为同心异径管的内径管路;或多通管的其中一个通道中包括多路通道,第一路与其它多路通道并列设置于一个通道中,从而简化管路设计,节约成本。
在本发明的实施例中,如图9所示,具有雾化给药功能的呼吸机900包括:雾化系统901、呼吸机902。具有雾化给药功能的呼吸机900还可以包括:加湿器903、过滤器904。雾化系统901的雾化模块909与呼吸机902的出气道910相连通,以在呼吸机902的出气道910中加入雾化后的药物,送入患者的呼吸道。雾化系统901的多通管905的除第一路906外的至少一路,例如两路907、908与呼吸机的出气道910连通,用于检测气压。两路907、908也可以与呼吸机的回气道911或患者气道912连通,也可以检测气压。
根据本发明的实施方式,通过具有雾化给药功能的呼吸机,包括:雾化系统,呼吸机,雾化模块与呼吸机的出气道相连通,多通管中的第一路外的至少一路与呼吸机的出气道或回气道或患者气道相连通,从而在患者吸气时雾化给药,患者呼气时停止雾化,防止药物浪费,并且实现雾化系统和呼吸机间的灵活连接,方便使用。
以上描述仅为本发明的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本发明中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本发明中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (21)

  1. 一种管路组件,其特征在于,包括:
    多通管;
    污染隔离部件,
    所述多通管的第一路和所述污染隔离部件密闭连接,
    所述污染隔离部件位于所述多通管的第一路中,或者连接于所述多通管的第一路的端部。
  2.  根据权利要求1所述的管路组件,其特征在于,
    所述多通管为三通管。
  3.  根据权利要求1所述的管路组件,其特征在于,所述污染隔离部件包括:
    气体过滤部件,用于过滤所述多通管的第一路中的气体的污染;或
    柔性密封部件,用于隔离所述多通管的第一路中的气体的污染,并随所述多通管中的气体的压力产生弹性形变。
  4.  根据权利要求3所述的管路组件,其特征在于,
    所述气体过滤部件包括:滤芯。
  5.  根据权利要求4所述的管路组件,其特征在于,
    所述滤芯为多孔结构,所述多孔结构的孔隙为3微米至20微米。
  6.  根据权利要求4所述的管路组件,其特征在于,
    所述滤芯为高分子材料或陶瓷材料。
  7.  根据权利要求4所述的管路组件,其特征在于,
    所述滤芯的形状为:圆柱体或多棱体。
  8.  根据权利要求7所述的管路组件,其特征在于,
    所述多棱体为:三棱柱或四棱柱。
  9.  根据权利要求3所述的管路组件,其特征在于,
    所述柔性密封部件包括:弹性隔膜。
  10.  根据权利要求9所述的管路组件,其特征在于,
    所述弹性隔膜的形状为:圆形或多边形。
  11.  根据权利要求10所述的管路组件,其特征在于,
    所述多边形为:三角形,或四边形,或五边形。
  12.  根据权利要求9所述的管路组件,其特征在于,
    所述弹性隔膜为张紧状态或松弛状态。
  13.  根据权利要求9所述的管路组件,其特征在于,
    所述弹性隔膜的厚度为0.03毫米至1毫米。
  14.  根据权利要求13所述的管路组件,其特征在于,
    所述弹性隔膜的厚度为0.1毫米至0.2毫米。
  15.  根据权利要求9所述的管路组件,其特征在于,
    所述弹性隔膜的直径为6毫米至50毫米。
  16.  根据权利要求15所述的管路组件,其特征在于,
    所述弹性隔膜的直径为8毫米至20毫米。
  17.  根据权利要求9所述的管路组件,其特征在于,
    所述弹性隔膜的形态为平面或曲面。
  18.  根据权利要求1所述的管路组件,其特征在于,
    所述多通管包括同心异径管,所述第一路为同心异径管的外径管路,或所述第一路为同心异径管的内径管路;或所述多通管的其中一个通道中包括多路通道,所述第一路与其它多路通道并列设置于所述一个通道中。
  19.  一种气压检测模块,其特征在于,包括:
    权利要求1-18任一项所述的管路组件,
    密闭空腔,所述密闭空腔密封套接于所述多通管的第一路上,所述密闭空腔用于容纳无污染气体;
    气压感测部件,所述气压感测部件置于所述密闭空腔中,或者所述气压感测部件通过气压传感连接管路与所述密闭空腔连通,所述气压感测部件以有线信号或无线信号方式输出气压信号。
  20.  一种雾化系统,其特征在于,包括:
    权利要求19所述的气压检测模块,
    雾化模块;
    控制模块,基于所述气压感测部件输出的气压信号,控制所述雾化模块的雾化操作。
  21.  一种具有雾化给药功能的呼吸机,其特征在于,包括:
    权利要求20所述的雾化系统,
    呼吸机,
    所述雾化模块与所述呼吸机的出气道相连通,
    所述多通管中的第一路外的至少一路与所述呼吸机的出气道或回气道或患者气道相连通。
PCT/CN2023/072180 2022-01-29 2023-01-13 管路组件、气压检测模块、雾化系统和呼吸机 WO2023143145A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220241277.3 2022-01-29
CN202220241277.3U CN218129518U (zh) 2022-01-29 2022-01-29 管路组件、气压检测模块、雾化系统和呼吸机

Publications (1)

Publication Number Publication Date
WO2023143145A1 true WO2023143145A1 (zh) 2023-08-03

Family

ID=84549204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072180 WO2023143145A1 (zh) 2022-01-29 2023-01-13 管路组件、气压检测模块、雾化系统和呼吸机

Country Status (2)

Country Link
CN (1) CN218129518U (zh)
WO (1) WO2023143145A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218129518U (zh) * 2022-01-29 2022-12-27 深圳摩尔雾化健康医疗科技有限公司 管路组件、气压检测模块、雾化系统和呼吸机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693887A (en) * 1995-10-03 1997-12-02 Nt International, Inc. Pressure sensor module having non-contaminating body and isolation member
US20130061690A1 (en) * 2011-09-13 2013-03-14 Grand Mate Co., Ltd. Pressure gauge and pressure detecting circuit thereof
CN104010570A (zh) * 2011-12-27 2014-08-27 皇家飞利浦有限公司 具有集成式过滤器的呼吸测量设备
CN104225741A (zh) * 2013-06-06 2014-12-24 液体空气医疗系统公司 用于患者呼吸装置的气体压力测量系统
CN111214736A (zh) * 2020-03-20 2020-06-02 青岛未来移动医疗科技有限公司 一种智能微网雾化器及雾化系统
CN112169101A (zh) * 2020-09-27 2021-01-05 湖南明康中锦医疗科技发展有限公司 一种呼吸支持设备的药物雾化系统及控制方法
CN114129842A (zh) * 2022-01-29 2022-03-04 广州国家实验室 管路组件、气压检测模块、雾化系统、呼吸机和控制方法
CN218129518U (zh) * 2022-01-29 2022-12-27 深圳摩尔雾化健康医疗科技有限公司 管路组件、气压检测模块、雾化系统和呼吸机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693887A (en) * 1995-10-03 1997-12-02 Nt International, Inc. Pressure sensor module having non-contaminating body and isolation member
US20130061690A1 (en) * 2011-09-13 2013-03-14 Grand Mate Co., Ltd. Pressure gauge and pressure detecting circuit thereof
CN104010570A (zh) * 2011-12-27 2014-08-27 皇家飞利浦有限公司 具有集成式过滤器的呼吸测量设备
CN104225741A (zh) * 2013-06-06 2014-12-24 液体空气医疗系统公司 用于患者呼吸装置的气体压力测量系统
CN111214736A (zh) * 2020-03-20 2020-06-02 青岛未来移动医疗科技有限公司 一种智能微网雾化器及雾化系统
CN112169101A (zh) * 2020-09-27 2021-01-05 湖南明康中锦医疗科技发展有限公司 一种呼吸支持设备的药物雾化系统及控制方法
CN114129842A (zh) * 2022-01-29 2022-03-04 广州国家实验室 管路组件、气压检测模块、雾化系统、呼吸机和控制方法
CN218129518U (zh) * 2022-01-29 2022-12-27 深圳摩尔雾化健康医疗科技有限公司 管路组件、气压检测模块、雾化系统和呼吸机

Also Published As

Publication number Publication date
CN218129518U (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
US6328030B1 (en) Nebulizer for ventilation system
EP3160559B1 (en) A micro-humidifier
WO2021185055A1 (zh) 一种智能微网雾化器及雾化系统
WO2023143145A1 (zh) 管路组件、气压检测模块、雾化系统和呼吸机
CN111529840A (zh) 新型防护口罩系统
CN212973802U (zh) 一种用于医院和家庭环境的多功能呼吸治疗系统
CN106983942A (zh) 一种医用超声波雾化器
CN114129842B (zh) 管路组件、气压检测模块、雾化系统、呼吸机和控制方法
WO2018107567A1 (zh) 一种压力指示器
CN204319442U (zh) 一种氧气吸入器
CN208049155U (zh) 一种一次性麻醉呼吸管路
CN103239783B (zh) 人工呼吸系统和用于人工呼吸系统的减少污染的接插系统
CN202061198U (zh) 新生儿呼吸机氧驱动气管内雾化装置
CN108568016A (zh) 一种中医内科呼吸监测装置
CN209187817U (zh) 一种兼容呼吸气、排痰和雾化的呼吸回路
CN213723914U (zh) 一种开放气道的患者使用的密闭式吸痰管
CN112914490A (zh) 一种控制飞沫传染的一次性喉镜片
CN214415385U (zh) 一种便于消毒的雾化器用连接管
CN219721601U (zh) 一种吸氧面罩
CN215231373U (zh) 一种呼吸控制阀
CN210933312U (zh) 适用于多种雾化装置的呼吸机湿化器
CN214209087U (zh) 一种奶嘴式幼儿雾化器
CN214485247U (zh) 防护性呼吸回路接头
CN215275220U (zh) 一种人工气道雾化器
CN213609088U (zh) 一种密闭式吸氧装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746027

Country of ref document: EP

Kind code of ref document: A1